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ABSTRACT 

SATMAP Inc., a global call management software company, aims to investigate a call center structure 

where a variety of customer inquiries can be handled by an arrangement of agents who individually are 

trained on various subsets of the possible inquiry types. This problem boils down to a complicated 

application of queuing theory and optimizations research. For this project, we devised several objective 

functions for call-agent matching techniques in order to maximize revenue under this framework. In 

order to expand their current Linear Programming approach of agent assignment, we researched 

Quadratic Programming and Lagrange Multipliers as possible solutions. After several mathematical and 

implementation issues, we returned to Linear Programming from a different perspective. 
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Executive Summary 

In this project, we are working with SATMAP, a company that develops customer 

service strategies for call centers. Currently, most call centers have a simple first come, first 

served strategy. However, SATMAP employs a wide variety of techniques to make sure that the 

match between each agent and each call received is as good as possible. We consider that each 

incoming call is concerned with a problem that can be solved using only one service provided by 

the call center. Meanwhile, an agent could be available to help customers with a wide variety of 

problems across several possible services. In this setup, the first natural question that comes to 

mind is how much time should each agent spend on each service in order to maximize the boost 

in revenue? 

This project comes as a continuation of the work that James Elmore did for the company, 

during his summer internship, on creating a simulation out of SATMAP’s strategy. However, as 

indicated before, the MQP is mainly focused on optimizing the utilization of agents across skills. 

In order to do so, our team simulates the data that a calling center might have when employing 

SATMAP’s strategy. In turn, this data can be used to define various objective functions for 

optimization. Depending on the objective functions, our team investigated different optimization 

methods: 

 Linear Programming 

 Quadratic Programming 

 Lagrange Multipliers  

 

 In our project, we tried to create objective functions that had a strong connection to the 

reality. However, in our attempt we have encountered various issues. 
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As we will show, the Linear Programming Method recommends assigning each agent’s 

time entirely on the skill on which they perform the best. However, allowing utilization of each 

agent on a variety of skills increases our choice of agents for each call and allows for a 

potentially better agent to call match.  

Our team also developed a work around the issue that the Linear Programming arises. 

When optimizing, instead of looking at all the calls that are coming in, it would be a better idea 

to only consider the 𝑛𝑏 calls that best match 𝑛𝑏 agents. This way, our optimization program will 

run more often and it will also be able to adapt faster to new data. 

The Quadratic Programming is very difficult to implement since our matrix is indefinite. 

There are algorithms that can solve a convex quadratic optimization problem in polynomial time, 

but there are very few methods of solving an indefinite quadratic optimization problem and all of 

those have NP-complexity. Moreover, the Lagrange Multipliers Method gives computational 

errors, due to the fact that some of our data is very close to 0. When dividing by those data 

points, the result becomes inaccurate.  

Our research indicates that a solution to the Quadratic Programming objective function 

exists, but further analysis for implementation is required. Furthermore, matching multiple 

agents to multiple calls is an effective method for revenue and choice boost.  

Introduction to concepts  

We consider that each call that arrives at the calling center is concerned with a problem that can 

be solved using only one skill. For example, in a telephone company calling service center, calls from 

customers with concerns about the termination of a plan or about connection problems would represent 

two different types of problems that can be solved using two different skills. Hence, we say that a call can 
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only have one skill. Meanwhile, an agent could help customers with a wide variety of problems. 

Therefore, an agent can have multiple skills (and we say that they are logged into multiple skills). Hence, 

the first natural question that comes to mind is, given the strategy that SATMAP employs, how much 

time should each agent spend on each skill in order to maximize the boost in revenue?  

But in order to answer this question, we realize that the amount of time that an agent spends on a 

skill depends on how good a particular agent is on the skills that he is logged into and on the value per 

unit of time that the skill has. Let us denote by 𝐴𝑖𝑗 the time that agent 𝑖 spends on skill 𝑗. We are trying to 

find the optimum 𝐴𝑖𝑗’s that would maximize the revenue boost. As mentioned before, in order to do so, 

we will have to introduce more variables that measure not only the marginal revenue boost that an agent 

brings to the company, but also the ranking of that agent on each skill. Let $𝑗 =
𝐸[𝑅𝑒𝑣𝑒𝑛𝑢𝑒]

𝑎𝑣𝑔 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
, 

obtaining thus, from a financial point of view, a measure of how valuable the skill is to the company. The 

more valuable the skill is, the more time agents should spend on that skill. Hence, the two measures are 

directly proportional. Also, for the ranking, let 𝑧𝑖𝑗 be the z score of agent 𝑖 on skill 𝑗. 

Let us first start with introducing the optimization problem. 

Optimization  

 

The better an agent performs on a particular skill, the more time they should spend on it. Hence, 

we realize that the objective function for the optimization should have terms that represent the three 

measures presented above (𝑧𝑖𝑗 , 𝐴𝑖𝑗  𝑎𝑛𝑑 $𝑗).  

Also, SATMAP imposes 2 constraints on the 𝐴𝑖𝑗’s:  

a) Preserve each agent’s total utilization across the skills that he is logged into 
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∑𝐴𝑖𝑗

𝑛𝑠

𝑗=1

= 𝑣𝑖, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 = 1, 𝑛𝑎̅̅ ̅̅ ̅̅  , where 𝑛𝑎 is the total number of agents  

b) Preserve the total agent utilization on each skill  

∑𝐴𝑖𝑗

𝑛𝑎

𝑖=1

= 𝑤𝑗, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅  , where ns is the total number of skills 

We are given 0 < 𝑣𝑖 < 1 and 0 < 𝑤𝑗 < 1.  

In the following sections we will present the different approaches that we attempted in order to 

solve this problem, the reasoning behind using them and the according background information.  

 

Linear Programming 

 

Introduction 

 

A linear program has a linear objective function and linear constraints which can include both 

equalities and inequalities. We call a feasible point one that satisfies the constraints. The feasible set is a 

polytope. The standard form of a linear program is:  

min𝑐𝑇𝑥 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 

In the rest of the chapter, we will assume that the matrix A has full row rank. This is equivalent 

with having a pivot position in every row, assumption which is reasonable for our optimization since our 

matrix of constraints is the result of an intricate strategy. 
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Definition (Basic Feasible Point): 1Let x be a feasible point with at most m nonzero components 

and let B(x) be the set of indices i for which 𝑥𝑖 ≠ 0. Then define a new matrix B that has as columns the 

𝑖𝑡ℎ column of A, for all 𝑖 ∈ 𝐵(𝑥). If the obtained matrix B is invertible, then we say that x is a basic 

feasible point. 

However, why are feasible points important in linear programming? The definition doesn’t give 

us a concrete understanding of the concept, however, the following theorem will.  

Theorem: All basic feasible points are vertices of the feasible polytope { x | Ax=b, 𝑥 ≥ 0}. 

Proof: Let 𝑥 be a basic feasible point and, without loss of generality, assume that 𝐵(𝑥) =

{1,2,… ,𝑚}. Hence, from the definition presented above, we know that 𝑥𝑚+1 = 𝑥𝑚+2 = ⋯ = 𝑥𝑛 = 0 (*) 

and we also have that the matrix 𝐵 = [ 𝐴1  𝐴2  𝐴3… 𝐴𝑚] is invertible.  

Let us assume, by contradiction, that 𝑥 is on a line between 2 other basic feasible points, 𝑦 and 𝑧. 

Hence, we can write 𝑥 = 𝛼𝑦 + (1 − 𝛼)𝑧, for 0 < 𝛼 < 1. By looking at this equation componentwise and 

by using (*), we obtain that 𝑦𝑖 = 𝑧𝑖 = 0, for all 𝑖 = 𝑚 + 1, 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Let 𝑥𝐵 = (𝑥1, 𝑥2, … , 𝑥𝑚) and similarly 

define 𝑦𝐵 and 𝑧𝐵. 

Moreover, since 𝑥, 𝑦 and 𝑧 are all feasible points, they have to satisfy the constraints:  

𝐴𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝑏 ⇒  ∑𝐴𝑖𝑥𝑖

𝑚

𝑖=1

=∑𝐴𝑖𝑦𝑖

𝑚

𝑖=1

=∑𝐴𝑖𝑧𝑖

𝑚

𝑖=1

= 𝑏 ⇒ 𝐵𝑥𝐵 = 𝐵𝑦𝐵 = 𝐵𝑧𝐵 = 𝑏 

However, we know that B is invertible and, by multiplying by its inverse to the left of the last 

equation, we obtain that 𝑥𝐵 = 𝑦𝐵 = 𝑧𝐵 ⇒ 𝑥 = 𝑦 = 𝑧, a contradiction with the assumption that 𝑥 was on 

the line between 𝑦 and 𝑧. 

  

                                                           
1 Jorge Nocedal and Stephen J. Wright 
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Now that we have a better understanding of what a basic feasible point is, we can give the main 

result in Linear Programming:  

Theorem (Fundamental Theorem of Linear Programming): If the system of constraints has a 

solution, then at least one such solution is a basic optimal point. 

Proof: Let 𝑥 be a solution with the minimal number of nonzero entries (𝑝), and let 𝑥𝑖 ≠ 0, for all 

𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ .   

From the constraints, we know that 𝑏 = ∑ 𝐴𝑖𝑥𝑖
𝑝
𝑖=1 . Let us assume now that {𝐴1, 𝐴2, … , 𝐴𝑝} is a 

set of linearly dependent vectors. Hence, we can write one of the vectors as a linear combination of the 

others:  

𝐴𝑝 = ∑𝑐𝑖𝐴𝑖

𝑝−1

𝑖=1

, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟𝑒𝑎𝑙 𝑐𝑖  ⇔ 0 = (∑𝑑𝑖𝐴𝑖

𝑝−1

𝑖=1

)− 𝐴𝑝 

Let 𝑥(𝜀) = 𝑥 + 𝜀(𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑝−1, −1,0,… ,0)
𝑇 = 𝑥 + 𝜀𝑧 With this notation we now have:  

𝐴𝑥(𝜀) = 𝐴𝑥 + 𝜀𝐴(𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑝−1, −1,0,… ,0)
𝑇 = 𝑏 + 𝜀(∑𝑑𝑖𝐴𝑖

𝑝−1

𝑖=1

− 𝐴𝑝) = 𝑏, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜀  

Now since 𝑥 is optimal, we know that 𝑐𝑇(𝑥 + 𝜀𝑧) ≥ 𝑐𝑇𝑥 ⇔ 𝑐𝑇𝜀𝑧 ≥ 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜀. If we now 

choose a positive 𝜀 and a negative one, we arrive at the conclusion that 𝑐𝑇𝑧 = 0. Therefore, we obtain 

that 𝑐𝑇𝑥(𝜀) = 𝑐𝑇𝑥.  

The last step of the proof is to find an 𝜀 ̅that would contradict our initial assumption. We can find 

an 𝜀 ̅such that 𝑥𝑖(𝜀)̅ = 0. In this way, we obtained another solution 𝑥(𝜀)̅ that has 𝑝 − 1 nonzero entries, 

which, as desired, contradicts the assumption that 𝑥 has the minimal number of nonzero entries. 
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Therefore, {𝐴1, 𝐴2, … , 𝐴𝑝} is a set of linearly independent vectors (*). Let us assume that 𝑝 > 𝑚. This 

would imply that the set of vectors is linearly dependent, since there are more vectors than the dimension 

of the space. Therefore, we conclude that 𝑝 ≤ 𝑚. 

If 𝑝 = 𝑚, we can choose 𝐵(𝑥) = {1,2,… ,𝑚} and, from the definition, 𝑥 is a basic feasible point.  

If 𝑝 < 𝑚, we recall that A has full row rank. Therefore, we know that A has a pivot position in 

every row, which, by using (*), implies that A has a pivot position in columns {1, 2,…, p}. We conclude 

that for 𝐵(𝑥) = {1,2,… , 𝑝}, x is a basic feasible point. 

Using the 2 theorems presented above, we realize that if A has full row rank, then at least one  

optimal solution will be at the vertices of the polytope that represents our feasible region. 

Application of concepts 

 

The first and simplest idea for an objective function is 𝑓(𝐴) = ∑ $𝑗𝐴𝑖𝑗𝑧𝑖𝑗𝑖,𝑗 . Let us remember 

that 𝑖 represents the agents, while 𝑗 represents the skills. If we consider to have 𝑛𝑎 agents in total and if 

we consider to have 𝑛𝑠 skills in total, then 𝑖 = 1, 𝑛𝑎̅̅ ̅̅ ̅̅  and 𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅ . However, when implemented, the 

linear program assigns either 1 or 0 to the 𝐴𝑖𝑗’s. As we have seen in the introductory section, at least one 

optimal point is at the vertex of our polytope. Hence, this assignment is not surprising. However, this is 

not an acceptable result since we would like to have as many agents in reserve on every skill as possible. 

But why do we need this? Let us say that we only have 2 agents working on skill 5, than, if all of the 

sudden many calls that require assistance related to skill 5 arrive, the 2 agents will not be able to answer 

as many calls as 10 agents would have been able to. This is in contradiction to one of the business 

objectives that SATMAP has: serving as many calls as possible and this is also why the condition 0 <

𝐴𝑖𝑗 < 1 is important.  
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In a later section of the paper we will see how we can go around this issue, just by looking at the 

initial problem from a new perspective. Before that though, in the next section, we will see our attempts 

of using quadratic programming for finding optimized 𝐴𝑖𝑗, with 0 < 𝐴𝑖𝑗 < 1. 

 

Quadratic Programming 

 

 Introduction 

 Definition (General Quadratic Program): Find  min
𝑥

1

2
𝑥𝑇𝐺𝑥 + 𝑥𝑇𝑑, subject to 𝑎𝑖

𝑇𝑥 =

𝑏𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐸 and 𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼, where G is symmetric.  

If 𝐺 is a positive semidefinite matrix, the QP is called to be convex. Convex quadratic programs 

can be solved. In R there are functions that can solve any such QP. However, the problem of solving QP’s 

for which the matrix 𝐺 is not positive semidefinite is more difficult since those functions can have 

multiple stationary points and local minima.  

As we will see in the next section, the biggest problem that we encountered using this method 

was trying to create an objective function that has strong roots in the real world, while trying to obtain a 

matrix 𝐺 that is positive semi-definite. Even more, the entries in our matrix G will depend on 𝑧𝑖𝑗 and $𝑗, 

which, in turn, change with time, accordingly to SATMAP’s strategy. 

 Application of concepts 

After the attempt with the linear program, we decided to turn our attention to creating a quadratic 

objective function. The first one that comes to mind is 𝑓(𝐴) = ∑ $𝑗𝐴𝑖𝑗
2 𝑧𝑖𝑗𝑖,𝑗 . However, it doesn’t take too 

long to realize that such a function would also have the maximum for  𝐴𝑖𝑗  0 or 1. If 𝑧𝑖𝑗 < 0 ⇒ 𝐴𝑖𝑗 = 0  

and if 𝑧𝑖𝑗 > 0⟹  𝐴𝑖𝑗 = 1.  
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Therefore, we would need a penalty function that would keep the optimum solution of our 

objective function in the interval (0,1). But what should this penalty be?  

In the conversations we had with SATMAP, we realized the importance of freedom of choice for 

the agents. The more choices we have for an agent, the better the potential match between him and the 

call and, therefore, more revenue boost is added. Hence, a possible penalty function could be the 

opportunity cost of an agent 𝑖 been on any other skill than the current one (𝑖 been the current skill). 

𝑓(𝐴𝑖𝑗) =∑$𝑗𝑧𝑖𝑗𝐴𝑖𝑗
𝑖,𝑗

−∑$𝑗$𝑘(𝐴𝑖𝑗 − 𝐴𝑖𝑘)
2 (
𝑧𝑖𝑗 + 𝑧𝑖𝑘

2
)
2

𝑖,𝑗,𝑘

 

When we write this function in the form of a quadratic program, we obtain that 𝐺 has as entries: 

𝑜𝑛 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙: − (2𝑛𝑎 − 4)$𝑗
2𝑧𝑖𝑗 − 2$𝑗

2∑𝑧𝑖𝑘

𝑛𝑠

𝑘=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 

𝑛𝑜𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙: 2$𝑗$𝑘(𝑧𝑖𝑗 + 𝑧𝑖𝑘) 

Unfortunately, the resulting matrix is not positive semidefinite and, therefore, as suggested at the 

beginning of this section the optimization problem becomes a lot more complex. 

 

Lagrange Multipliers Method 

Introduction 

Assume that we are trying to find the minimum or maximum of a function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

subject to 𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑐𝑖 ,   𝑓𝑜𝑟 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ . The Lagrange Multipliers method consists of creating 

another function (usually denoted by ℒ) and of introducing some new variables, called Lagrangian 
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Multipliers (usually denoted by 𝜆) such that 
𝜕ℒ

𝜕𝜆𝑖
= 𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝑐𝑖. This is because we want the 

extrema of ℒ to satisfy the equality constraints. Hence, our new function should look like:  

ℒ(�⃗�, 𝜆) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) −∑𝜆𝑖(𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝑐𝑖)

𝑛

𝑖=1

 

As we have seen, the extrema of this new function satisfies the constraints and, moreover, the 

Lagrange Multipliers Method claims that ℒ and 𝑓 have the same extrema. But how are we going to apply 

the Lagrange Multipliers method to our problem? And more importantly, what function should we 

choose? As mentioned before, this function should emphasize the choice that an agent has when it comes 

to the skills that he can be used on. The more skills he can be logged on, the more choice that agent has. 

 Application of concepts 

If we are looking to maximize the choice that an agent has when it comes to the skills that he is 

logged on, why not try to maximize the variance of the time that agents spend on a certain skill? 

However, optimizing the variance itself is difficult since this function is not even polynomial. Therefore, 

we decided to come up with a linearized variance function. Each variance type term is also weighted by 

the dollar value of the skill and by the performance of the agent on the particular skill: 

𝑓(𝐴) =∑∑𝑧𝑖𝑗$𝑗
2(𝐴𝑖𝑗 − 𝜇𝑗)

2

𝑛𝑠

𝑗=1

𝑛𝑎

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝜇𝑗 =
∑ 𝐴𝑖𝑗
𝑛𝑎
𝑖=1

𝑛𝑎
  ∀ 𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅  

Before delving more into the calculations associated with the Lagrange Multipliers Method, let us 

observe that ∑ 𝐴𝑖𝑗
𝑛𝑎
𝑖=1  is exactly the constraint to our optimization problem and let ∑ 𝐴𝑖𝑗

𝑛𝑎
𝑖=1 = 𝑣𝑛𝑎+𝑗,

∀ 𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅  . We also remember that we are trying to preserve each agent’s time spent across the skills 

that he is logged into: ∑ 𝐴𝑖𝑗
𝑛𝑠
𝑗=1 = 𝑣𝑖 , ∀  𝑖 = 1, 𝑛𝑎̅̅ ̅̅ ̅̅ .  

With this notation, our function becomes: 
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𝑓(𝐴) =∑∑𝑧𝑖𝑗$𝑗
2 (𝐴𝑖𝑗 −

𝑣𝑛𝑎+𝑗

𝑛𝑎
)
2

𝑛𝑠

𝑗=1

𝑛𝑎

𝑖=1

 

Moreover, since 𝐴𝑖𝑗 represents the proportion of time that agent 𝑖 spends on skill 𝑗, we realize 

that 0 ≤ 𝐴𝑖𝑗 ≤ 1. Even more, SATMAP would like the agents to spend time on each skill that they are 

logged into (0 < 𝐴𝑖𝑗). For now, let us try to embed the weaker condition, 0 ≤ 𝐴𝑖𝑗, into our function. The 

first idea that comes to mind is to consider 𝐴𝑖𝑗 = 𝑋𝑖𝑗
2 . With this change of variable, our function becomes: 

𝑓(𝐴) =∑∑𝑧𝑖𝑗$𝑗
2 (𝑋𝑖𝑗

2 −
𝑣𝑛𝑎+𝑗

𝑛𝑎
)
2

𝑛𝑠

𝑗=1

𝑛𝑎

𝑖=1

 

Note also that the condition 0 ≤ 𝐴𝑖𝑗 and the fact that 𝑣𝑖 < 1, ∀𝑖 = 1, 𝑛𝑎 + 𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ implies that  𝐴𝑖𝑗 <

1.  

Under those conditions, our Lagrange function will be: 

ℒ(𝐴, 𝜆) =∑𝑧𝑖𝑗$𝑗
2 (𝑋𝑖𝑗

2 −
𝑣𝑛𝑎+𝑗

𝑛𝑎
)
2

𝑖,𝑗

+∑𝜆𝑖 (𝑣𝑖 −∑𝑋𝑖𝑗
2

𝑛𝑠

𝑗=1

)

𝑛𝑎

𝑖=1

+∑𝜆𝑛𝑎+𝑖 (𝑣𝑛𝑎+𝑖 −∑𝑋𝑖𝑗
2

𝑛𝑎

𝑖=1

)

𝑛𝑠

𝑗=1

 

𝜕ℒ

𝜕𝑋𝑖𝑗
= 4𝑧𝑖𝑗$𝑗

2𝑋𝑖𝑗 (𝑋𝑖𝑗
2 −

𝑣𝑛𝑎+𝑗

𝑛𝑎
) − 2𝜆𝑖𝑋𝑖𝑗 − 2𝜆𝑛𝑎+𝑖𝑋𝑖𝑗 = 0 , ∀𝑖 = 1, 𝑛𝑎

̅̅ ̅̅ ̅̅  , ∀𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅  

Hence, we either obtain that 𝑋𝑖𝑗 = 0 or 4𝑧𝑖𝑗$𝑗
2 (𝑋𝑖𝑗

2 −
𝑣𝑛𝑎+𝑗

𝑛𝑎
) − 2𝜆𝑖 − 2𝜆𝑛𝑎+𝑖 = 0. Obviously, 

𝑋𝑖𝑗 = 0 will not satisfy our equality constraints. Therefore, from the second equation we obtain: 

𝐴𝑖𝑗 = 𝑋𝑖𝑗
2 =

𝑣𝑛𝑎+𝑗

𝑛𝑎
+
𝜆𝑖 + 𝜆𝑛𝑎+𝑗

2𝑧𝑖𝑗$𝑗
2 , ∀𝑖 = 1, 𝑛𝑎̅̅ ̅̅ ̅̅  , ∀𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅  

Now that we have found 𝐴𝑖𝑗, we can go back and plug into the equality constraints. Fix an =

1, 𝑛𝑎̅̅ ̅̅ ̅̅  : 
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𝑣𝑖 =∑𝐴𝑖𝑗

𝑛𝑠

𝑗=1

=∑(
𝑣𝑛𝑎+𝑗

𝑛𝑎
+
𝜆𝑖 + 𝜆𝑛𝑎+𝑗

2𝑧𝑖𝑗$𝑗
2 )

𝑗

= (∑
1

2𝑧𝑖𝑗$𝑗
2

𝑗

)𝜆𝑖 + (∑
1

2𝑧𝑖𝑗$𝑗
2

𝑗

𝜆𝑛𝑎+𝑗) +
1

𝑛𝑎
(∑𝑣𝑛𝑎+𝑗

𝑗

)

⇔ (∑
1

2𝑧𝑖𝑗$𝑗
2

𝑗

)𝜆𝑖 + (∑
1

2𝑧𝑖𝑗$𝑗
2

𝑗

𝜆𝑛𝑎+𝑗) = 𝑣𝑖 − 
1

𝑛𝑎
(∑𝑣𝑛𝑎+𝑗

𝑗

) (∗) 

Similarly, if we fix 𝑗 = 1, 𝑛𝑠̅̅ ̅̅ ̅̅  and we use the equality constraints, we obtain:  

𝑣𝑛𝑎+𝑗 =∑(
𝑣𝑛𝑎+𝑗

𝑛𝑎
+
𝜆𝑖 + 𝜆𝑛𝑎+𝑗

2𝑧𝑖𝑗$𝑗
2 )

𝑛𝑎

𝑖=1

=
𝑣𝑛𝑎+𝑗

𝑛𝑎
𝑛𝑎 +∑(

1

2𝑧𝑖𝑗$𝑗
2 𝜆𝑖)

𝑖

+ (∑
1

2𝑧𝑖𝑗$𝑗
2

𝑖

)𝜆𝑛𝑎+𝑗 ⇔ 

⇔∑(
1

2𝑧𝑖𝑗$𝑗
2 𝜆𝑖)

𝑖

+ (∑
1

2𝑧𝑖𝑗$𝑗
2

𝑖

)𝜆𝑛𝑎+𝑗 = 0 (∗∗) 

Hence, by using equations (*) and (**), we obtain a linear system of equalities, where 𝜆 is the 

unknown. All the coefficients of this system are known and, even more, we have 𝑛𝑎 + 𝑛𝑠 equations in 

𝑛𝑎 + 𝑛𝑠 variables. The coefficient matrix for this system will be:  

𝑄 =

(

 
 
 
 
 
 

𝑞11
0

        
0
𝑞22

⋯
𝑞1𝑛𝑎+1  𝑞1𝑛𝑎+2 ⋯ 𝑞1𝑛𝑎+𝑛𝑠
𝑞2𝑛𝑎+1

 𝑞2𝑛𝑎+2 ⋯ 𝑞2𝑛𝑎+𝑛𝑠
⋮ ⋱ ⋮

0
𝑞𝑛𝑎+11
𝑞𝑛𝑎+21
⋮

𝑞𝑛𝑎+𝑛𝑠1

0
𝑞𝑛𝑎+12
𝑞𝑛𝑎+22
⋮

𝑞𝑛𝑎+𝑛𝑠2

⋯

  𝑞𝑛𝑎𝑛𝑎
 𝑞𝑛𝑎𝑛𝑎+1 ⋯ 𝑞𝑛𝑎𝑛𝑎+𝑛𝑠

𝑞𝑛𝑎+1𝑛𝑎+1     0     …       0

               0
                ⋮
                0

 

       𝑞𝑛𝑎+2𝑛𝑎+2  ⋯

    ⋮
          0 …

0
⋮

𝑞𝑛𝑎+𝑛𝑠𝑛𝑎+𝑛𝑠)

 
 
 
 
 
 

 

Also,  

𝑏 = (𝑣1 − 
1

𝑛𝑎
(∑𝑣𝑛𝑎+𝑗

𝑗

) ,… , 𝑣𝑛𝑎 − 
1

𝑛𝑎
(∑𝑣𝑛𝑎+𝑗

𝑗

) , 0,0, … ,0)

𝑇
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Now, if we look at the augmented matrix for our system, we realize that 𝑞𝑖𝑖, ∀𝑖 = 1, 𝑛𝑎̅̅ ̅̅ ̅̅  are the 

pivot positions. Hence, we will have at least 𝑛𝑎 fixed variables. However, it is still possible for the system 

to have many solutions or even no solutions if Q is not invertible.  

As we implemented this idea into R, the biggest problem was exactly the fact that Q was almost 

singular. Another problem is the fact that programs work with approximations of irrational numbers. 

Since some of our entries in the matrix Q are themselves sums of reciprocals, the computational error 

accumulates at each operation. Moreover, if agent 𝑖 is rated as been almost average on skill 𝑗, then 𝑧𝑖𝑗 will 

be very close to 0 and, consequently the respective entry in the matrix Q will become extremely big. 

Batches of agents-same problem, new perspective 

Linear Programming for Batches of Agents 

Introduction 

As mentioned before in the Quadratic Programming approach, the more choice we have for the 

agents, the more revenue boost the company will have. But how do we capture this “choice”? We might 

be able to come up with an objective function that penalizes the lack of choice, but there is an easier way. 

We could answer calls only when there are, for example, nb agents available (or only after a predefined 

amount of time). In this scenario, the matching could be done among the best nb agents and the best nb 

calls. By having a bigger pool of agents to select from, we guarantee to have a better matching than when 

we would only have one agent available. As soon as we have a batch of nb agents available, in order to 

find the corresponding 𝐴𝑖𝑗’s, we set up a new linear programming function.  

Application of concepts 
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For the purposes of this approach, we decided to generate an objective function that would 

encourage good matches and put emphasis on high performing agents. In general, we classified matches 

made into four categories depending on the quality of the match (good and bad) and on the performance 

of the agent (high and low). The following table depicts which of the resulting 4 different types of 

matches should have the biggest impact on our objective function (with 1-higest and 4-lowest). A good 

match between an agent and a call is considered to be one in which their respective percentiles are the 

closest among all the possible pairings. Also, the measure used for computing agent’s performance was 

their z-scores.  

 

 High Performance Low Performance 

Good Match 1 3 

Bad Match 2 4 

 
Table 1:  Crude Match Type Breakdown 

Hence, we would need a function that is increasing with quality of match, and increasing in agent 

performance. However, the term that quantifies the agent’s performance should be predominant. The most 

natural increasing function in the quality of the match is: 1 − |𝑎𝑖𝑗 − 𝑐𝑖𝑗|, where 𝑎𝑖𝑗 and 𝑐𝑖𝑗 represent the 

agent and call percentiles, respectively. Moving on, another very natural increasing function in agent’s 

performance would be the exponential. However, since we wanted to have a higher effect on our linear 

function from our agent’s performance, we decided to use 
1−𝑒

−𝑎𝑖𝑗

1−𝑒−1
. This function is increasing in agent 

percentile and it was scaled such that when 𝑎𝑖𝑗 = 1, the function is 1.  

The following picture depicts 𝑓(𝑥) = 𝑥 and 𝑔(𝑥) =
1−𝑒−𝑥

1−𝑒−1
. We notice that 𝑔(𝑥) ≥ 𝑓(𝑥), which is 

exactly what we were looking for: 
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Figure 2: Comparison of Exponential Effect Versus Linear 

Hence, by multiplying the function that measures the quality of the match with the one that 

measures an agent’s performance and by adding the result over all the agents and skills available in the 

particular batch, we obtain the following objective linear function:  

𝑓(𝑥) =∑∑(1 − |𝑎𝑖𝑗 − 𝑐𝑖𝑗|)

𝑛𝑠

𝑗=1

𝑛𝑏

𝑖=1

1 − 𝑒−𝑎𝑖𝑗

1 − 𝑒−1
𝐴𝑖𝑗$𝑖𝑗 

Unlike the other methods that we investigated, an optimal value for this linear program is easily 

calculable and will be easily implementable for simulation. A sample code for testing the flexibility of 

this linear program can be found in the appendix. 
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Conclusions & Recommendations 

 Our original intentions for this project were quite ambitious. The first discussions around the 

scope and goals for the project centered around three major components: developing a utilization 

strategy, testing that strategy, and finally (assuming time allowed) developing a method of validating a 

given strategy. After non-disclosure agreement delays, mathematical issues, and finally computational 

issues, we were only capable of completing the first of these objectives.  

 Of the three approaches for agent utilization that we investigated, the quadratic programming 

approach and the batch match linear programming approach showed the most promise. While the 

quadratic programming objective function was highly indefinite, several mathematical properties imply 

existence of a solution as well as the absence of strict local minimums or maximums that would hamper 

convergence to a true optimal point. Because of this we believe that given enough time, an indefinite 

quadratic programming solver could be developed with sufficient results for simulation. The batch match 

approach has a fairly simplistic form and an optimal batch of matches will always be computable. While 

we were able to find optimal solutions for the batch match LP for some parameter investigations, 

implementation setbacks have prevented a full blown simulation run. The Lagrange multipliers approach 

showed promise but due to the use of z-scores and other small parameters, singularity and near zero 

issues arose. This approach showed the most difficulty and issues in implementation. Because of this, we 

recommend that it is not further investigated. 

 Next steps for the continuation of research on this project most likely should be on the 

implementation side. After the development of several quadratic programming objective functions, a 

positive-definite objective seems very difficult to derive given the varying signs and scales of the 

parameters available as building blocks. Because of this, a rudimentary indefinite quadratic programming 

solver would be of interest. An easy and natural next step would be the implementation of the batch 
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match LP. It shows some promise as an opportunity to increase choice, even in the case where only 2-4 

matches are available. In addition, its ease of implementation makes it an attractive and quick deliverable.  
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Appendix: 
 

Batch-Match Linear Programming Code Sample: 

#Inputs: 
#queue - nskillsXm matrix where m is the max number of calls in the skill queues taken over skills 
#groupseq - Information matching the callgroup of each of the calls in the call queue 
#agentson - matrix indicating which agents are currently available to handle calls 
#agentinfo - agent percentile information 
#callinfo - call percentile information 
#nskills - number of skills in this simulation, 3 is the default 
batchmatch <- function(queue, groupseq, agentson, agentinfo, callinfo, nskills = 3) 
{ 
  nagents = dim(agentson)[1] 
  agentsonsub = agentson 
  considered = rep(0,nagents) 
   
  navail = 0 
  for(b in 1:nagents) 
  { 
    navail = navail + max(agentson[b,]) 
    considered[b] = max(agentson[b,]) 
  } 
   
  agentsonsub = agentson[as.logical(considered),] 
  ncalls = sum(queue > 0) 
   
  #Condition Matrix Generation: 
  { 
   
  #Boolean matrix defining all *possible* matches. Used for constraint conditions in LP. 
  potenmatch = matrix(0, navail, ncalls) 
   
  for(s in 1:nskills) 
  { 
    callsconc = which(queue[s,] > 0) 
    agentsconc = which(agentsonsub[,s] == 1) 
     
    #print(callsconc) 
    #print(agentsconc) 
    if(max(callsconc) > 0 && max(agentsconc) > 0) 
    { 
      potenmatch[agentsconc, callsconc] 
    } 
  } 
   
  #Definition of LP constraints.  
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  #Dimensions: A[navail + ncalls, navail*ncalls], b[navail+ncalls] 
  #Note: The first dimension of A defines the index of the condition. 
  #      The second dimension indicates a unique match between a caller and an agent. 
  #      The index for a match between agent i, and call j (in condition k of A): 
  #                           A[k, navail*j + i] 
   
  #If navail != ncalls, our conditions will vary from a symmetric case. 
  balance = navail - ncalls 
  rowadjust = matrix(0, navail, navail) 
  coladjust = matrix(0, ncalls, ncalls) 
  A = NULL 
  b = rep(1, navail + ncalls) 
   
  if(sum(potenmatch) == 0) 
  { 
    cat("Error: No Matches Available") 
     
    cat("Queue:") 
    print(queue) 
     
    cat("Agent Log Status:") 
    print(agentson) 
  } 
   
  #When the number of agents and calls are equal the conditions are straightforward. 
  #The "rowadjust"ed conditions say that an agent can only match to one call 
  #The "coladjust"ed conditions say that a call can only match to one agent 
  for(p in 1:navail) 
  { 
    rowadjust = 0*rowadjust 
    rowadjust[p,p] = 1 
     
    A = rbind(A, c(rowadjust%*%potenmatch)) 
  } 
 
  for(p in 1:ncalls) 
  { 
    coladjust = 0*coladjust 
    coladjust[p,p] = 1 
     
    if(balance <= 0) #agents < calls 
    { 
      A = rbind(A, c(potenmatch%*%coladjust)) 
    }else #agents > calls 
    { 
      A = rbind(c(potenmatch%*%coladjust), A) 
    } 
  } 
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  if(balance == 0) 
  { 
    meq = rep("=",2*navail) 
  }else 
  { 
    neq = min(navail,ncalls) 
    meq = c(rep("=", neq), rep("<=", navail + ncalls - neq)) 
  } 
   
  } 
   
  cvec = matrix(0, navail, ncalls) 
   
  for(s in 1:nskills) 
  { 
    calls = queue[s, which(queue[s,]>0)] 
    agents = which(agentsonsub[,s] == 1) 
     
    for(c in calls) 
    { 
      for(a in agents) 
      { 
        cvec[a,c] = abs(callinfo[groupseq[c],2] - agentinfo[a,s])*ifelse(abs(agentinfo[a,s]) >= 1, -
agentinfo[a,s], 1) 
      } 
    } 
  } 
   
  cvec = c(cvec) 
  result = solveLP(cvec, b, A, const.dir = meq, lpSolve = TRUE, verbose = 1)[[3]]  
  batchmatch = matrix(result, navail) 
  result = matrix(0,min(ncalls,nagents),2) 
  count = 1 
   
  for(h in 1:navail) 
  { 
    if(max(batchmatch[h,]) == 1) 
    { 
      result[count,] = c(h,which(batchmatch[h,] == 1)) 
      count = count + 1 
    } 
  } 
   
  result 
} 



24 
 

Bibliography 
 

Wright, Jorge Nocedal and Stephen J. Numerical Optimization. New York: Springer, 1999. 

 

 




