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Abstract 
Copulas are multivariate probability distributions used in the modeling of multiple random 

variables. In insurance, they are used to create models that preserve the relationship between a 

claim’s loss amount and any associated expenses, especially in large loss scenarios. The goal of 

this project was to develop a copula model for losses and their associated expenses and 

determine whether their use produces different results than current modeling methods. Through 

data analysis and simulation, the team identified that a copula model could be applied to claims 

in Workers’ Compensation. It was found that the copula model did not produce significantly 

different results than those produced using the sponsor’s traditional methods, validating their 

current models.  
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Executive Summary 
A copula is a multivariate function made up of any number of random variables where each 

marginal follows a Uniform (0,1) distribution. Any multivariate CDF can be written as a copula, 

which makes them an extremely useful mathematical tool when modeling multiple random 

variables, especially for variables that exhibit dependence (Klugman et al). Copulas prove 

extremely useful in the insurance industry. This project, sponsored by The Hanover Insurance 

Group, focused on introducing copulas into their modeling process for large losses, and then 

comparing the results with those from their traditional model. Currently, The Hanover separates 

large losses from smaller, or attritional, losses and then models the total losses and expenses 

from each of these claims as one single severity distribution. The Hanover wanted to see if 

modeling large losses and their associated expenses as individual distributions aggregated with a 

copula provided significantly different results. The Hanover provided the team with loss and 

premium data from three commercial lines of business. The team then created a copula model 

using Workers’ Compensation data. 

Using a variety of dependency measures, statistical tests, and visual indicators, the team 

determined that Workers’ Compensation losses and expenses have a dependency structure best 

represented by the Heavy Right Tail (HRT) copula. The team was able to find the appropriate 

marginal distributions for losses and expenses, simulate values using the HRT copula, and 

provide statistical estimates for the top ten percent and top five percent of total losses and 

expenses. They found that the copula model does not offer statistically different results than the 

traditional model for large loss claims. We conclude that The Hanover’s current modeling 

methods are appropriate for this data. The team is hopeful that with future improvements, this 

process could be applied to other business lines and yield additional interesting results.  
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Introduction 
Univariate distributions are a familiar topic to anyone who has studied probability or statistics at 

even the most basic level. There are examples of these distributions all around us, such as 

determining the average grade on a test or predicting how long it will take for a train to arrive. 

Many people also have experience with bivariate distributions, for example, modeling a person’s 

height with their age, or identifying the correlation between a person’s height and weight. Even 

those who have not studied mathematics are familiar with the idea of correlation between two 

variables: taller people generally weigh more (positive correlation), and students who miss more 

school days usually see lower grades (negative correlation). It is also possible to have two 

variables that have no relationship. An example of this could be when flipping a fair coin. An 

observer may obtain heads on the first toss, but on any subsequent attempt, the observer will 

have the same probability of heads, implying that having information about earlier tosses will not 

impact the prediction of the current toss. However, in situations where the data are dependent on 

each other in a consistent manner throughout their entire distributions, one can make 

assumptions about how two variables will move and work together.  

These basic concepts of correlation and dependence are all extremely useful in modeling and 

predicting outcomes in the natural world. But what if one were to encounter situations where 

these simple models are not enough? Sometimes, the data contains multiple variables (more than 

two) that are dependent on one another, or maybe the way these variables are correlated is not 

consistent throughout. Consider one of the most common tasks faced by investors: stock 

portfolio diversification. To mitigate losses, they want to choose stocks that are uncorrelated, or 

those that have little chance of declining at similar times. But, in an extreme economic downturn, 

is this strategy enough to ensure that all stocks will not fall at the same time? Or consider the 

example of an insurance company providing Worker’s Compensation and Homeowner’s 

insurance. These two lines of business are not typically associated with each other. But, if there 

is a part of the country with a significant amount of business that experiences some sort of 

unexpected natural disaster, the insurance company will see large losses in both business lines. 

Copulas can be useful in these situations. 
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Background 

Measures of Dependence 

Suppose it is known that two random variables under investigation exhibit a relationship to one 

another, but it is not known exactly how they are related. To identify the relationship between 

these variables, one needs to understand how to calculate various measures of dependence. 

Measures of dependence can be used to quantify different characteristics of the relationship 

between two variables, such as linearity, monotonicity, and the occurrence of extreme values in 

the tails (Klugman et al). Here, four measures of dependence, Pearson’s correlation coefficient, 

Spearman’s Rho, Kendall’s Tau, and tail dependence, will be discussed. 

Pearson’s Correlation Coefficient 

The most common dependency measure is Pearson’s correlation coefficient (𝑟). Pearson’s 

correlation coefficient takes values between -1 and 1 and measures the linear correlation between 

two data sets (Klugman et al). The Pearson correlation coefficient for random variables 𝑋1 and 

𝑋2 is defined as the following: 

𝑟(𝑋1, 𝑋2)  =
𝐸(𝑋1𝑋2) − 𝐸(𝑋1)𝐸(𝑋2)

(𝑉𝑎𝑟(𝑋1)𝑉𝑎𝑟(𝑋2))1/2
 

Given empirical data, Pearson’s correlation coefficient can be calculated as: 

𝑟 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

where xi is the ith value of vector x, 𝑥̅ is the mean of vector x, yi is the ith value of vector y, and 

𝑦̅ is the mean of vector y. 

As an example, consider the scenario where a teacher records the number of hours their students 

spend studying for a test, and compares it with how they perform on the test. Table 1 displays 

each students’ total study hours, as well as their test grade. For this data, 𝑟 = 0.962, is very close 

to 1. This indicates a strong, positive, linear relationship, which means that students who spent 

more hours studying did better on the test. 

This idea can be extended to more than two variables, where instead of having a single value for 

𝑟, there would be a matrix of different correlations between all the combination of variables. 

Some multivariable distributions such as the multivariate normal and t-distributions utilize a 

correlation matrix, along with other information about these random variables, to create joint 

densities. In many cases, however, linear correlation may not be a sufficient measure of 

dependence (Klugman et al). An example of this is when two variables exhibit weak 

relationships at some areas in the distribution, and very strong relationships in other sections. In 
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these cases, Pearson’s correlation coefficient may give a value near 0, implying that there is no 

relationship between the two variables. Nevertheless, these variables may still depend on each 

other at various points throughout the distribution, and alternative measures of dependence need 

to be investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Hours Spent Studying and Test Grades, 𝑟 = 0.962 

  

Student ID Hours Spent Studying Test Grade 

1 3.75 94 

2 0.75 77 

3 1.75 80 

4 2.25 82 

5 3.25 95 

6 1.00 71 

7 2.00 79 

8 2.50 85 

9 0.50 70 

10 3.50 90 

11 1.25 74 

12 2.75 91 

13 0.25 68 

14 4.00 96 

15 1.50 81 

16 0.00 60 

17 3.00 59 
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Spearman’s Rho 

When considering more complex data sets that are not independent, but also not evenly, linearly 

correlated throughout, new measures of dependency must be introduced. The first of those is 

Spearman’s Rho (𝜌𝑆). Spearman’s Rho measures the strength and direction of the monotonic 

relationship between two ranked variables. A monotonic relationship between two variables 

means that as one variable moves up or down, the other will move in the same direction, and vice 

versa. Pearson’s correlation coefficient also accounts for monotonicity, inherent in linear 

relationship between variables. However, Spearman’s Rho is only concerned with monotonicity, 

so the underlying form of the monotonicity is unimportant. This means that two variables could 

exhibit a perfect linear relationship, an exponential relationship, or any other monotonic 

relationship, and still have the same values of Spearman’s Rho. Pearson’s correlation coefficient 

would be very different in these cases. Spearman’s Rho relies on the rank (or percentile) of the 

observations from each variable, which allows this value to be interpreted as the correlation of 

the percentiles of the random variables.  

Definition: Consider two random variables 𝑋1 and 𝑋2 with CDFs 𝐹1(𝑋1) and 𝐹2(𝑋2), then 

Spearman’s Rho is defined as the following.  

𝜌𝑆 =  𝑟(𝐹1(𝑋1), 𝐹2(𝑋2)) 

Let 𝑈 and 𝑉 be two Uniform (0,1) random variables, then the statement above is equivalent to 

𝜌𝑆 = 𝑟(𝑈, 𝑉)  

In practice, with empirical paired data, Spearman’s Rho can be calculated as: 

𝜌𝑆 = 1 − 
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

where 𝑑𝑖  = the difference in rank of the ith pair, n = the number of pairs 

Now, return to the test grade example, where Spearman’s Rho can be calculated from the same 

data. Table 2 displays each students’ total study hours and test grade, as well as the rank of each. 

The rank of a data point is its placement within the data. So, the highest test grade will be ranked 

at number one, while the lowest test grade will be the lowest ranked. The Spearman’s Rho for 

this data is, 𝜌𝑆 = 0.966. This is similar to the Pearson’s correlation coefficient, which is 

reasonable considering that Spearman’s Rho and Pearson’s correlation coefficient each account 

for monotonicity.  

The simplest example of the difference between Pearson’s correlation coefficient and 

Spearman’s Rho is to consider the relationship between 𝑋 and 𝑋2 for all 𝑋 > 0. There is no 

linear relationship between these two variables, but there is a perfect monotonic relationship. 
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Student ID Hours Spent 

Studying 

Test 

Grade 

Hours Spent 

Studying Rank 

Test Grade 

Rank 

Difference in 

Rank 

1 3.75 94 2 3 1 

2 0.75 77 14 12 2 

3 1.75 80 10 10 0 

4 2.25 82 8 8 0 

5 3.25 95 4 2 2 

6 1.00 71 13 14 1 

7 2.00 79 9 11 2 

8 2.50 85 7 7 0 

9 0.50 70 15 15 0 

10 3.50 90 3 5 2 

11 1.25 74 12 13 1 

12 2.75 91 6 4 2 

13 0.25 68 16 16 0 

14 4.00 96 1 1 0 

15 1.50 81 11 9 2 

16 0.00 60 17 17 0 

17 3.00 59 5 6 1 

Table 2: Hours Spent Studying and Test Grades with Ranks, 𝜌𝑆 = 0.966 
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Kendall’s Tau 

Another measure of dependency that is reliant on the monotonicity of the relationship between 

two variables is Kendall’s Tau. Kendall’s Tau is an important parameter in many copulas and is 

often more efficient to calculate than Spearman’s Rho (Klugman et al). This measure is an 

alternative to Spearman’s Rho, especially when one has a small sample size with many tied 

ranks. Kendall’s Tau (𝜏𝑘) is defined as the following: 

Consider two identically distributed bivariate random variables (𝑋1, 𝑋2) and (𝑌1, 𝑌2), where 𝑋1 

and 𝑌1 come from the same distribution 𝐹1(𝑥), and 𝑋2 and 𝑌2 come from the same distribution 

𝐹2(𝑥). Then, 

𝜏𝑘(𝑋1, 𝑋2) = 𝑃[(𝑋1 − 𝑌1)(𝑋2 − 𝑌2) > 0] − 𝑃[(𝑋1 − 𝑌1)(𝑋2 − 𝑌2) < 0] 

This is equivalent to finding the expected value of the sign of (𝑋1 − 𝑌1)(𝑋2 − 𝑌2). Kendall’s Tau 

can be calculated from empirical data using the principles of concordance and discordance. For a 

pair of data points to be concordant, their rank must move in the same direction. That is, if 
(𝑥1 − 𝑦1)(𝑥2 − 𝑦2) > 0, then the pair is concordant. On the other hand, if (𝑥1 − 𝑦1)(𝑥2 − 𝑦2) <
0, then the pair is discordant, so the ranks of the pair move in opposite directions. The formula 

for Kendall’s Tau, using these definitions, is: 

𝜏𝒌 =  
𝐶 − 𝐷

𝐶 + 𝐷
 

where C = the total number of concordant pairs, D = the total number of discordant pairs. 

To estimate Kendall’s Tau from a data set, consider the study hours and test grade example once 

again, but with new, non-linear data. Table 3 provides values for study hours and test grades, the 

ranks of each, and the number of concordant and discordant pairs. With this data, r = 0.132, 

which indicates non-linearity. However, 𝜏𝑘 = 0.867, indicating that study hours and grades are 

still correlated. This relationship would have been missed without Kendall’s Tau. Kendall’s Tau 

is typically used in these cases; when the relationship between two variables doesn’t follow a 

linear correlation, the two variables of interest are continuous with outliers, or the variables are 

ordinal. 
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Student 

ID 

Hours Spent 

Studying 

Test Grade Hours Spent 

Studying 

Rank 

Test 

Grade 

Rank 

Concordant  

Pairs 

Discordant 

Pairs 

1 3.75 96 2 1 16 0 

2 0.75 94 14 3 14 1 

3 1.75 90 10 5 12 2 

4 2.25 95 8 2 12 0 

5 3.25 89 4 6 11 1 

6 1 91 13 4 11 0 

7 2 85 9 7 10 0 

8 2.5 82 7 8 9 0 

9 0.5 79 15 11 6 2 

10 3.5 80 3 10 6 1 

11 1.25 81 12 9 6 0 

12 2.75 74 6 13 4 1 

13 0.25 71 16 14 3 1 

14 4 77 1 12 3 0 

15 1.5 70 11 15 2 0 

16 0 68 17 16 1 0 

17 3 60 5 17 0 0 

Table 3: Hours Spent Studying and Test Grades with Ranks, Concordant Pairs and Discordant 

Pairs, 𝜏𝑘 = 0.867 
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Tail Dependence 

A fourth measure of dependence that proves useful with non-linear data, and particularly when 

evaluating extreme values, is tail dependence. The upper tail dependence is a measure of how 

severe one random variable is as given another is very severe (Klugman et al). The formulas for 

upper and lower tail dependence are: 

𝜆𝑈𝑝𝑝𝑒𝑟 =  𝑙𝑖𝑚 𝑢→1 𝑃[𝑈 > 𝑧 | 𝑉 > 𝑧] 

𝜆𝐿𝑜𝑤𝑒𝑟 =  𝑙𝑖𝑚 𝑢→0 𝑃[𝑈 ≤ 𝑧 | 𝑉 ≤ 𝑧] 

where 𝑈 and 𝑉 are Uniform (0,1) random variables. 

This measure of dependence separates scales from the underlying distributions, and only 

considers how severe one distribution is compared to the severity of another distribution. To 

illustrate this, return to the stock market diversification example mentioned earlier. Typically, an 

investor tries to diversify their portfolios with two stocks that are uncorrelated. However, during 

“normal” times these stocks may seem uncorrelated, when there are large drops in the market, 

one may see the price of both stocks drop significantly, which would imply some sort of 

dependence between the two (Klugman, et al). In this situation, where the goal is to be prepared 

for large loss scenarios, tail dependence may be the most important measure.  

Summary 

As discussed earlier, it is always important to consider more than one dependence measure, 

because a stock trader still wants to create a portfolio that will perform well during normal times. 

For this reason, they may still want to consider Pearson’s Correlation to find uncorrelated stocks. 

There are also many other scenarios where Kendall’s Tau or Spearman’s Rho are the best 

indicators of the dependency of the data (Klugman et al). All these measures of dependence offer 

important insight into the underlying data structure. Thus, evaluating and reporting these 

measures for a given data set is the first step in developing a copula model. 
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Definition of a Copula and Sklar’s Theorem 

Definition: Let 𝑈1, ⋯ , 𝑈𝑑 be Uniform (0,1) random variables. Then, copula C is defined to be 

𝐶(𝑈1, ⋯ , 𝑈𝑑) = 𝑃(𝑈1 ≤ 𝑢1, ⋯ , 𝑈𝑑 ≤ 𝑢𝑑). 

Essentially, a copula is a multivariate probability distribution which is made up of correlated 

percentiles. This definition can be extended using Sklar’s Theorem, which allows this copula to 

be written as a multivariate distribution. 

Sklar’s Theorem: Let F be a d-dimensional CDF of the random vector 𝑋 = 𝑋1, ⋯ , 𝑋𝑑 and 

marginal distributions 𝐹1, ⋯ , 𝐹𝑑. Then, there exists copula C such that 

𝐹(𝑥1, ⋯ , 𝑥𝑑) = 𝐶[𝐹(𝑥1), ⋯ , 𝐹(𝑥𝑑)] = 𝑃(𝑈1 ≤ 𝑢1, ⋯ , 𝑈𝑑 ≤ 𝑢𝑑) 

where 𝑈1, ⋯ , 𝑈𝑑 are Uniform (0,1) random variables.  

The result of this theorem is that any multivariate distribution can be written as a copula of 

univariate marginal distributions. This allows the modeler to create a multivariate distribution 

given a set of marginal distributions and some idea about the underlying data structure. Using 

copulas, the formulas for the four important dependency measures can be rewritten as follows. 

𝜌𝑆 = 12 ∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝑢𝑑𝑣
1

0

 
1

0

 −  3 

𝜏𝐾 =  4 ∫ ∫ 𝐶(𝑢, 𝑣)𝑐(𝑢, 𝑣)𝑑𝑢𝑑𝑣
1

0

1

0

 −  1 

where 𝑐(𝑢, 𝑣) =
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
, the density function. 

𝜆𝑈𝑝𝑝𝑒𝑟 = 𝑙𝑖𝑚
𝑢→1

1 − 2𝑢 + 𝐶(𝑢, 𝑢)

1 −  𝑃(𝑉 ≤  𝑢)
 

𝜆𝐿𝑜𝑤𝑒𝑟 = 𝑙𝑖𝑚
𝑢→0

𝐶(𝑢, 𝑢)

𝑢
 

The Inverse Transform Method 

The inverse transform method, one of the crucial results needed in the proof of Sklar’s theorem, 

is stated below. 

Theorem: Consider a random variable 𝑋 that has CDF 𝐹𝑋(𝑥). Let 𝑈 be a new random variable 

that is defined by the transformation 𝑈 = 𝐹𝑋(𝑋). Then, 𝑈 ~ Uniform (0,1), and 𝑃(𝑈 ≤ 𝑢) = 𝑢 

for 0 < 𝑢 < 1.  
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Proof: 𝐹𝑋(𝑋) is a function from 𝑋 → (0,1). It is known for realizations of 𝑈, 𝑢, that 0 < 𝑢 < 1.  

𝑃(𝑈 ≤ 𝑢)  =  𝑃(𝐹𝑋(𝑋) ≤ 𝑢) 

= 𝑃(𝐹𝑋
−1[𝐹𝑋(𝑋)] ≤ 𝐹𝑋

−1(𝑢)) 

= 𝑃(𝑋 ≤ 𝐹𝑋
−1(𝑢)) 

= 𝐹𝑋 [𝐹𝑋
−1(𝑢)] =  𝑢 

where 𝐹𝑋
−1(𝑢) = 𝑖𝑛𝑓{𝑥: 𝐹𝑋(𝑥) ≥ 𝑢}. 

The probability integral transform allows one to convert marginal distributions into Uniform 

(0,1) distributions. With information about the marginal CDFs, the probability integral transform 

also allows for simulation of random variables that follow other distributions (Casella & Berger, 

p. 55). 
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Determining the Appropriate Copula Model 

Chi-Square Test of Independence 

Before moving forward with the use of a copula model, one must first determine if the variables 

being modeled exhibit a relationship on each other, or if they are independent. If two random 

variables are independent, then using a copula model is an inefficient method. A definition of 

statistical independence is provided below.  

Definition: Two events A and B are independent if 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)  

In terms of random variables 𝑋 and 𝑌, with densities 𝑓𝑥(𝑥)and 𝑓𝑌(𝑦), if 𝑋 and 𝑌 are independent, 

then their joint density can be written as: 

𝑓𝑋,𝑌(𝑥, 𝑦) =  𝑓𝑥(𝑥)𝑓𝑌(𝑦) 

In short, statistical independence says that knowing information about 𝑋 does not affect what is 

known about 𝑌 and vice versa. There are different ways to test for statistical independence. One 

of the most common is to consider a Chi-square test of independence. In this test, consider the 

bivariate case, with two random variables, 𝑋 and 𝑌. Then the following hypotheses exist: 

H0: 𝑋 and 𝑌 are independent 

H1: 𝑋 and 𝑌 are not independent 

To reject H0, one needs to find the test statistic 𝜒𝜈
2, where 𝜈 represents the degrees of freedom. 

 𝜒𝜈
2 is calculated by the formula: 

𝜒𝜈
2 = ∑

(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖

𝑛

𝑖=1

 

where 𝑂𝑖  is the observed value in the ith partition, 𝐸𝑖  is the expected value of points in the ith 

partition, and 𝜈 = (number of rows - 1) * (number of columns - 1). 

Once this test statistic has been calculated, one can use a Chi-square distribution Table to test the 

𝜒𝜈
2 value against a critical value based on the number of degrees of freedom and a predetermined 

level of significance (α). If 𝜒𝜈
2 is larger than the critical value, H0 (independence) is rejected. If it 

is rejected, then it is assumed 𝑋 and 𝑌 exhibit some relationship with each other, even if that 

relationship cannot be determined easily. It is these latter situations that may lend themselves to 

the use of a copula model. 

Consider several observations, 𝒙 =  𝑥1, ⋯ , 𝑥𝑛 and 𝒚 =  𝑦1, ⋯ , 𝑦𝑛, from two random variables 𝑋 

and 𝑌 with CDFs 𝐹𝑥(𝑋) and 𝐹𝑌(𝑌). Consider a percentile plot of bivariate paired data using the 

points (𝐹𝑥(𝑥𝑖), 𝐹𝑌(𝑦𝑖)) for 𝑖 = 1, ⋯ , 𝑛. One can divide this grid into several partitions. Consider 

the case where 100 partitions are used, where each partition is 10% by 10% of the data. If 𝑋 and 
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𝑌 were independent random variables, one would expect each partition to hold 1% of the paired 

observations. If H0 is rejected, then a significant number of the partitions contain either 

significantly more or less than 1% of the data. Figure 1 provides a graphical representation of H0 

(independence) within a percentile plot.  

 

Figure 1: A graphical representation of H0 (independence) in the chi-square test of 

independence. 1% of the data is expected in each square. 

Left-Right Function 

If independence is rejected, tail dependence is a valuable tool in determining which copula 

should be used (Brehm et al). The Left-Right (LR) concentration function is a graph that uses the 

ideas from upper and lower tail dependence to show the tail strengths for a certain copula model 

given a certain value of Kendall’s Tau (Brehm et al). This function is defined on                         

(0 < 𝑧 < 1) and is segmented into its left and right components in a piecewise manner.  

Definition: Given two random variables 𝑋 and 𝑌 with CDFs 𝐹𝑋(𝑋) and 𝐹𝑌(𝑌). The LR 

concentration function is defined by: 

𝐿𝑅(𝑥) = {
 𝑃[𝐹𝑋(𝑋) < 𝑧 | 𝐹𝑌(𝑌) < 𝑧],   0 < 𝑧 ≤  0.5
𝑃[𝐹𝑋(𝑋) > 𝑧 | 𝐹𝑌(𝑌) > 𝑧],   0.5 < 𝑧 < 1

  

The LR function should be interpreted as the conditional probability that 𝐹𝑋(𝑋) is small given 

𝐹𝑌(𝑌) is small or 𝐹𝑋(𝑋) is large given 𝐹𝑌(𝑌) is large. 
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In the context of this project, given certain data, one can calculate Kendall’s Tau and create the 

LR concentration function. Then, the copula that best fits that data can be determined (Brehm et 

al). Figure 2 is a reference graph that can be used to make this determination for a Kendall’s Tau 

value of 0.35. In it, the differences in tail behavior between various copulas can be seen. 

 

Figure 2: LR functions for a variety of copula with Tau = 0.35 (Brehm et al, p.122) 
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Types of Copulas 

Just like there are well known univariate distributions, there are many well-known copulas 

(Klugman et al). Many of the parameters that these copulas take can be estimated as a function of 

Kendall's Tau. Thus, having empirical data and information on the LR concentration function 

allow a modeler to choose a copula and then to solve for the given parameters in the copula. One 

basic, yet sometimes trivial, copula is the Independence Copula.  

Independence Copula 

The Independence Copula is the copula that results from a dependency structure in which each 

individual variable is independent of one another. The Independence Copula is one of several 

Archimedean Copulas, another type of copula, and the special case of the Gaussian Copula with 

a correlation matrix equal to the identity matrix (Klugman et al). For the bivariate case, let 𝑋1 

and 𝑋2 be independent random variables. The corresponding independence copula is 

𝐶(𝑢1, 𝑢2)  =  𝑃(𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2) 

𝐶(𝑢1, 𝑢2) = 𝑃(𝑈1 ≤ 𝑢1) ∗ 𝑃(𝑈2 ≤ 𝑢2)  

𝐶(𝑢1, 𝑢2) = 𝑢1𝑢2 

Heavy Right Tail Copula 

Another important copula that can be useful in insurance applications is the Heavy Right Tail 

(HRT) copula. The HRT copula allows for less correlation in the lower tail (smaller losses) and 

higher correlation in the upper tail (large losses, which is typically important in actuarial 

applications) (Brehm et al). The formula for this copula is: 

𝐶(𝑢, 𝑣)  =  𝑢 + 𝑣 − 1 + [(1 − 𝑢)−1/𝛼 + (1 − 𝑣)−1/𝛼 − 1]−𝛼 

where 𝛼 > 0 can be found using the closed form of Kendall’s Tau for this copula: 

𝜏𝐾(𝛼) =
1

2𝛼 + 1
 

Normal Copula 

One final copula that proves extremely useful is the Normal copula, specifically because it is 

very easy to simulate (Brehm et al). It is lighter in the upper right tail than the HRT copula, but 

still assigns more correlation between variables in the upper right and lower left tails (Brehm et 

al). The formula for this copula is: 

𝐶(𝑢, 𝑣)  = 𝛷(𝑝(𝑢), 𝑝(𝑣)|𝑎) 
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where 𝛷(𝑥, 𝑦|𝑎) is the bivariate standard normal CDF with correlation 𝑎. The closed form of 

Kendall’s Tau for the normal copula is: 

𝜏𝐾(𝑎) =
2𝑎𝑟𝑐𝑠𝑖𝑛(𝑎)

𝜋
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Marginal Distribution Determination and Simulation 

As mentioned before, a copula can help to couple two non-independent sets of data, regardless of 

the distribution of each. Multivariate models that can only account for variables that follow the 

same distribution (i.e., the bivariate normal case) are often seen, but copulas enable one to use 

variables that follow different distributions with different sets of parameters. In many 

applications, it is important to know these true marginal distributions to analyze how effective 

the copula is in terms of prediction. Thus, a knowledge of important and common univariate 

distributions is fundamental. Some of the ones of most interest in the actuarial field are the 

Gamma distribution, the Weibull distribution, the Lognormal distribution, the Pareto distribution, 

and the Burr distribution. Each of these has their own number of distinct parameters that impact 

the shape and scale of the distribution, and these can be estimated from empirical data in a 

variety of ways. The most common method for parameter estimation is Maximum Likelihood 

Estimation (MLE), but there are several other approaches that may be used (Brehm et al). 

Once the parameters are estimated, one must then evaluate the fit of the resulting distribution to 

the empirical data. One important visual indicator is the p-p plot. The p-p plot is a graph that 

helps to determine whether an empirical data set fits a given probability distribution. This plot, 

an example of which in shown in Figure 3, compares the empirical CDFs of the data with that of 

the assumed true CDFs. If the plot of these two distributions is approximately linear, it indicates 

that the assumed true distribution gives a reasonably good fit to the data. In areas where it is 

below this line, then the theoretical CDF is assigning more probability than what was seen in the 

empirical data, and in areas where it is above the line, it is assigning less probability than what 

was seen in the empirical data. Once the estimated distribution is validated, the simulation of 

new data can begin. 

 

Figure 3: An example p-p plot generated in R 

Simulation is an important part of any modeling exercise. It allows one to observe how their 

model may react to certain initial conditions, how different models compare to empirical data, 
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and how changing parameters will affect the outcomes of different models. In the field of 

probability and statistics, modeling is a crucial step in testing how close a model’s results are 

compared to what was observed empirically. Simulation is also an extremely helpful tool in 

generating new, random data that can be evaluated.  

Suppose one would like to simulate 𝑛 pairs of observations that come from random variables 𝑋 

and 𝑌, where 𝑋 and 𝑌 follow a certain copula. The steps to simulate are: 

1. Determine the distributions and parameters. 

2. Generate two sets of Uniform (0,1) observations. 

3. Invert the copula formula to solve for and generate a new, correlated vector. 

4. Apply 𝐹𝑋
−1 and 𝐹𝑌

−1 to the set of uniform observations to create vectors 𝑋 and 𝑌. 

To demonstrate this process, consider the Heavy Right Tail (HRT) copula. 

1. Determine the distribution and parameters. 

Consider two empirical distributions, 𝑋 and 𝑌, that are determined to follow the distributions: 

𝑋 ~ Gamma (α, β) 

𝑌 ~ Uniform (a, b) 

For this copula, Kendall’s Tau is a function of parameter 𝛼: 

𝜏𝐾(𝛼) =
1

2𝛼 + 1
 

Thus, it can be found that: 

𝛼 =
1

2𝜏
−

1

2
 

2. Generate two sets of Uniform (0,1) observations. 

In this case, because copulas are based on two vectors of data, one would generate two random 

vectors: u ~ Uniform (0,1) and p ~ Uniform (0,1).  

3. Invert the copula formula to solve for and generate a vector for the other parameter. 

Next, parameter 𝛼 can be used to solve for v using the conditional distribution, 𝐶1(𝑢, 𝑣), the 

derivative of the closed form of the copula (Brehm et al). For the HRT copula, these formulas 

are: 

𝐶1(𝒖, 𝒗) = 1− [(1 − 𝒖)−
1
𝛼 + (1 − 𝒗)−

1
𝛼 − 1]

−𝛼−1

(1 − 𝒖)−1−
1
𝛼 
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𝐶1
−1(𝒖, 𝒑) = 𝒗 = −1 − [(

(1 − 𝒑)

(1 − 𝒖)−1−
1
𝛼

)

−1
𝛼

 −1

+ 1 − (1 − 𝒖)−
1
𝛼]−𝛼  

Using this equation, vector v can be generated. Vectors u and p are independent, whereas vectors 

u and v will exhibit a similar Kendall’s Tau and tail dependence to the empirical data. In fact, 

these vectors are simulated percentiles of random variables 𝑋 and 𝑌. 

4. Apply 𝐹𝑋
−1and 𝐹𝑌

−1 to the sets of observations to create vector X. 

Using the inverse CDFs for each of the distributions that were estimated in step one, one can use 

u and v to create new vectors x and y in the following way. 

𝒙 = 𝐹𝑋 | 𝛼,𝛽
−1 (𝑢𝑖), 𝑖 = 1, ⋯ , 𝑛 

𝒚 = 𝐹𝑌 | 𝑎,𝑏
−1 (𝑣𝑖), 𝑖 = 1, ⋯ , 𝑛 

𝑋 and 𝑌 follow the marginal distributions that were estimated from the empirical data. The data 

simulated using u and v maintains the same association that is indicated by the copula. 
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Our Project 

For this project, the team worked with The Hanover Insurance Group to obtain and analyze 

insurance data and provide them with insights into how they can integrate copula modeling into 

their models. The Hanover is a property-casualty insurance company located in Worcester, MA, 

and they provided data from their Commercial Lines division. Within Commercial Lines, The 

Hanover highlighted three lines of business for analysis: Business Owner’s Policy (BOP), 

Commercial Package Policy (CPP), and Workers’ Compensation. More information on these 

business lines and their associated data can be found in Appendix A.  

The data contains a collection of claims from accident years 2007 through 2020, including the 

trended ultimate losses and trended ultimate defense and containment costs (DCCE) associated 

with each claim. The team was asked to investigate whether a copula could be introduced into 

their modeling process for losses and DCCE for large loss claims. Currently, The Hanover 

aggregates large losses, losses over $1,000,000, and their associated DCCE, and models the sum 

as one severity distribution. This is mostly done for practicality reasons. The team was tasked 

with determining the copula that offered the most appropriate fit to the empirical losses and 

DCCE, creating a model that used that copula, and analyzing the results in comparison to the 

results obtained by using their traditional severity modeling method.  
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Methodology 

Objectives 

The goals of this project were to investigate the basic mechanics of using copulas to model 

random phenomena, determine when it was appropriate to use a copula for modeling, and to 

apply these findings to real world data. The team created a copula model for Worker’s 

Compensation claims and compared its results to claims modeled by techniques currently used 

by The Hanover Insurance Group. In particular, the team investigated whether there was a 

benefit to using a copula when modeling large losses. There were four main phases of the 

project: 

Phase 1: Data Cleaning and Exploratory Data Analysis 

Phase 2: Copula Selection 

Phase 3: Distribution and Parameter Estimation 

Phase 4: Simulation and Evaluation 

Phase 1: Data Cleaning and Exploratory Data Analysis 

The goal of this phase was to get a more thorough understanding of the available data. This 

helped the team determine where it was appropriate to use a copula, and to calculate important 

empirical measures that would be used later in the simulation phase. The raw data provided by 

The Hanover contained values for losses and DCCE that were not relevant to the goals of this 

project. These values were the losses and DCCE amounts of $0 or less. Thus, the team removed 

all zero or negative dollar amounts for both losses and DCCE. This was done on a pairwise basis, 

so if either the loss or DCCE of a claim had a negative or zero value, the entire pair was 

removed. Once these losses and DCCE were removed from the data, the team moved forward 

conducting preliminary data analysis on three of The Hanover’s commercial lines of business 

(Workers’ Compensation, BOP, and CPP).  

In the preliminary data analysis, the team calculated important descriptive statistics such as the 

mean, standard deviation, quartiles, and counts for losses, DCCE, and the sum of losses and 

DCCE. The goal of this was to determine which data sets were most appropriate for the use of a 

copula model. The team calculated Pearson’s correlation coefficient and Kendall’s Tau between 

losses and DCCE for each line of business. This analysis revealed that Workers’ Compensation 

had a higher value of Kendall’s Tau between losses and DCCE than any of the other lines. 

Additionally, Worker’s Compensation had a much higher claim count, which made it a better 

candidate than other lines for copula modeling. Thus, the team chose to move forward with 

Worker’s Compensation data. 
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Phase 2: Copula Selection 

The next step was to select the copula that offered the best fit to the empirical data. First, the 

team created a percentile plot of losses and DCCE to visualize any obvious patterns in the 

Workers’ Compensation data. To create this percentile plot, the team used the index function in 

Microsoft Excel to determine where each loss and DCCE value was ranked in the data. To 

determine the percentile, the value of the index function was divided by the total count, returning 

the percent of observations less than or equal to the observation being tested. These percentiles 

of losses and DCCE were kept as pairs to keep the information from the same claim together. 

These values were then plotted against each other with DCCE percentile on the Y axis and loss 

percentile on the X axis.  

After visual inspection, the team conducted a Chi-square test of independence on loss percentiles 

and DCCE percentiles. The null hypothesis, that the data were independent, was rejected, 

suggesting claims in Workers’ Compensation had losses and DCCE that were dependent upon 

each other. Had the team found the data to be independent, it would not be an efficient or fruitful 

exercise to continue searching for a copula model because it is well known how to combine two 

independent distributions. 

Using the previously calculated value for Kendall’s Tau, the team then developed the LR 

function from the empirical Workers’ Compensation data. The team referenced the LR function 

displayed in figure 2, and the tails of the empirical LR function indicated the HRT copula may be 

appropriate for this data. However, the reference graph had a different Kendall’s Tau value than 

the empirical data, so the team created a theoretical LR function for the HRT copula that 

exhibited the same Kendall’s Tau seen in the data. To create this theoretical LR function, the 

team used the LR function procedure on two sets of 100,000 observations which followed the 

correlation structure of the HRT copula at the empirical Kendall’s Tau value (how these vectors 

were created will be discussed in Phase 4). Admittedly, this was not an exact theoretical graph, 

but by using a very large sample size of 100,000, this function converged to the true theoretical 

values. From these graphs, the team selected the HRT copula for modeling Workers’ 

Compensation losses and DCCE. 
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Phase 3: Distribution and Parameter Estimation 

In phase three, the team determined the approximate marginal distributions of the empirical 

losses, DCCE, and their sum. Using MLE, the approximate parameters for five common severity 

distributions were identified. These distributions included the Weibull, Burr, Lognormal, 

Gamma, and Pareto distributions, most of which can be accessed through the “actuar” package in 

R. For each distribution, the team estimated the parameters using the fitdist() function from the 

“fitdistrplus” package, which has MLE as one of the options for parameter estimation. In total, 

15 distributions were produced: five for losses, five for DCCE, and five for the sum of losses and 

DCCE. Once each distribution was estimated, the team used the resulting p-p plot to decide 

which distribution and parameters were most appropriate for modeling the marginal distribution 

of losses, DCCE, and their sum. The p-p plot that showed the closest relationship between the 

empirical and theoretical distributions were the Burr distribution for losses, the Pareto 

distribution for DCCE, and the Burr distribution for the sum of losses and DCCE. 

 

The Burr distribution is commonly used to fit insurance claim sizes and it has three parameters 

(a, b, s). Its CDF is given by: 

𝐹𝑋(𝑥) = 1 − [1 + (
𝑥

𝑠
)𝑏]−𝑎 

The inverse CDF, 𝐹𝑋
−1, for this distribution is: 

𝐹𝑋
−1(𝑥)  = 𝑠 [(1 − 𝑢)−

1
𝑎 − 1]

1
𝑏 

The Pareto distribution is used to model data that has heavy tails, and it has two parameters (a, 

s). Its CDF is given by: 

𝐹𝑋(𝑥) = 1 − (
𝑠

𝑥
)𝑎 

The inverse CDF, 𝐹𝑋
−1, for this distribution is: 

𝐹𝑋
−1(𝑥)  =

𝑠

(1 − 𝑢)1/𝑎
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Phase 4: Simulation and Evaluation 

Following the steps provided in the background, the team simulated values from the above 

distributions. There were two models created: losses and DCCE simulated from separate, 

marginal distributions which, with the aid of a copula, were modeled as a joint distribution, and 

the sum of losses and DCCE modeled as one distribution. The steps for the simulations in each 

model are given here. 

Copula Model: 

1. Using R, the team generated two sets of 100,000 uniform random variables: 

p ~ Uniform (0,1) 

u ~ Uniform (0,1) 

2. The next step was to calculate parameter “𝛼” using the value of 𝜏𝐾. For this HRT copula: 

𝜏𝐾 = 0.513 

𝛼 =
1

2𝜏
−

1

2
=

1

2(0.513)
−

1

2
= 0.475 

3. Then, the team calculated 𝒗 = 𝐶1
−1(𝒖, 𝒑). This would connect randomly generated 

percentiles with the copula. As noted in the background, for the HRT copula: 

𝐶1
−1(𝒖, 𝒑) = 𝒗 = −1 − [(

(1 − 𝒑)

(1 − 𝒖)−1−
1
𝛼

)

−1
𝛼

 −1

+ 1 − (1 − 𝒖)−
1
𝛼]−𝛼 

The team used the above formula to generate a new vector v that was based on vectors u 

and p. This left the team with u and v, where each ui were observations from a Uniform 

(0,1) distribution, and each vi an observation between 0 and 1. u and v should exhibit the 

same Kendall’s Tau, and tail dependence structure as the original empirical data. 

4. The penultimate step was to apply the inverse CDF of the appropriate distribution to 

these vectors. For losses, this was: 

𝐹𝐿𝑜𝑠𝑠𝑒𝑠
−1 (𝒖 | 𝑎, 𝑏, 𝑠)  = 𝑠 [(1 − 𝒖)−

1

𝑎 − 1]
1

𝑏  

This was done in R using the qburr() function. 

For DCCE, the inverse CDF was: 

𝐹𝐷𝐶𝐶𝐸
−1 (𝒗 | 𝑎, 𝑠)  =

𝑠

(1 − 𝒖)1/𝑎
 

 This was done in R using the qpareto() function. 

5. Finally, the team took these new observations for losses and DCCE and summed them 

together to get an estimate for the total loss and DCCE attributed to each “claim”. 
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𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝐷𝐶𝐶𝐸 = 𝐹𝐿𝑜𝑠𝑠𝑒𝑠
−1 (𝒖) + 𝐹𝐷𝐶𝐶𝐸

−1 (𝒗)  

Non-Copula Model: 

The model for the sum of losses and DCCE was simpler because it did not involve a copula. 

1. The team started by generating a different random sample than the ones used in the 

copula model, still having 100,000 observations: 

w ~ Uniform (0,1) 

2. Then the team used the inverse CDF of the proposed marginal distribution to come up 

with observations: 

𝐹𝐿𝑜𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝐷𝐶𝐶𝐸
−1 (𝒘 | 𝑎, 𝑏, 𝑠)  = 𝑠 [(1 − 𝒘)−

1
𝑎 − 1]

1
𝑏  

 This was calculated in R using the qburr() function. 

3. Since these values already accounted for losses and DCCE, the team did not need to sum 

anything. 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝐷𝐶𝐶𝐸 = 𝐹𝐿𝑜𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝐷𝐶𝐶𝐸
−1 (𝒘) 

After simulating observations for both models, the team noticed that several values for the sum 

of losses and DCCE were much larger than any values observed in the empirical data. This 

caused both models to seem much more heavily right skewed than the empirical data, affecting 

the variance and means of the data sets. So, the team removed all simulated values of total loss 

and DCCE above ten million dollars, because the largest sum of loss and DCCE in the empirical 

data was less than $9,000,000. Additionally, it was infeasible to keep these values in the data 

analysis if they would never occur in real life, as some of these losses were in the billions and 

trillions. For the copula model, the team removed 754 values, and for the non-copula model, the 

team removed 875 values.  

 

Because the focus of this project was the feasibility of copula modeling on large losses, the team 

zoomed in on the top ten percent and top five percent of the remaining results for each sample. 

The team calculated the 90th and 95th percentiles of total losses and DCCE for each model, the 

tail value at risk for the 90th and 95th percentiles, along with the standard deviation and 

coefficients of variation for values above the 90th and 95th percentiles. These served as summary 

statistics for the highest values of losses and DCCE and gave the team an easy way to compare 

the two modeling methods in the upper right tail.  
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Results and Discussion 
Using the steps outlined in the methodology, the team made two models that demonstrated how a 

copula could be used to model losses and DCCE in a specific line of business. This section will 

reveal some key findings from this analysis, discuss how the results from the copula model 

compare to the current modeling methods at The Hanover, and explain some future steps that 

may improve the model. 

Workers’ Compensation and Copulas 

After cleaning the data of all negative and zero values, it was clear that Workers’ Compensation 

had significantly more claims than the other lines of business. Additionally, the value for 

Kendall’s Tau between losses and DCCE within Workers’ Compensation was much higher than 

the values in other business lines, as seen in Table 4. Although the linear correlation wasn’t the 

largest, Worker’s Compensation had the greatest Kendall’s Tau value, which captured the non-

linear relationships between losses and DCCE better than the Pearson correlation coefficient.  

Business Line Claim Count (non-zero losses 

and DCCE) 

r 𝜏𝒌 

BOP Liability 5,229 0.266 0.385 

BOP Property 4,433 0.428 0.368 

CPP Liability 14,525 0.425 0.420 

CPP Property 5,114 0.623 0.447 

Worker’s Comp. 69,728 0.451 0.513 

Table 4: Claim Count, Pearson Correlation, and Kendall's Tau by Business Line 

Due to time constraints, the team wanted to focus on only one line of business for this project. 

The abundance of data and strong dependency between losses and DCCE in Workers’ 

Compensation made that line of business the best candidate to use a copula to model for. 
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Selecting the HRT Copula 

In the percentile plot, displayed in figure 3, one can see the data shows heavy concentration in 

the upper right and lower left tails. This showed the team that there could be a relationship 

between losses and DCCE, even if it was not linear. The Chi-square test of independence 

calculated a p-value of approximately zero, which led the team to reject the null hypothesis that 

losses and DCCE were independent of each other.  

 

Figure 4: The percentile plot of Workers' Compensation losses and DCCE 

The LR graph, which can be seen in figure 4, was created from the empirical Worker’s 

Compensation data, having a Kendall’s Tau of 0.513.  
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Figure 5: LR Function for Workers' Compensation 

This LR function had a shape most similar to that of the HRT copula, based on the reference LR 

function for various copulas with a Kendall’s Tau of 0.35 shown in figure 2. After creating a 

theoretical LR function for the HRT copula with Kendall’s Tau of 0.513, seen in figure 5, it was 

clear the HRT copula was the best choice for modeling Worker’s Compensation claims. It is 

important to note that for the empirical data, the tail of the LR function starts to decrease for a z 

value of 0.8 more significantly than what is seen in the theoretical LR function. This could 

suggest there is a better copula to describe the relationship between loss and DCCE. But, based 

on the copula models known to the team, the HRT copula had the most similar LR function to 

the empirical data.  

 

Figure 6: HRT Copula LR Function from Simulated Data 
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Estimated Distributions and Parameters 

After performing MLE on the empirical data in R, the team determined that the following 

distributions were most appropriate. The CDFs for these distributions can be found in the 

methodology. 

Losses: 

Burr Distribution - Shape Parameter 1 (a) = 0.2045, Shape Parameter 2 (b) = 2.3350, Rate 

Parameter (s) = 0.0029 

DCCE: 

Pareto Distribution - Shape Parameter (a) = 0.4750, Scale Parameter (s) = 16.6585 

Sum of Losses and DCCE: 

Burr Distribution - Shape Parameter 1 (a) = 0.1745, Shape Parameter 2 (b) = 2.6459, Rate 

Parameter (s) = 0.0029 
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Copula Model vs. Non-Copula Model 

A main goal of the project was to determine how the copula model generated total losses and 

DCCE of a claim, versus how the traditional, single-distribution method would generate the total 

losses and DCCE of a claim. To do this, the team considered the top 10% and the top 5% of the 

distributions of each phenomenon, and calculated the means, standard deviations, and 

coefficients of variation for each model, which can be seen in Table 5.  

 90th Percentile 95th Percentile 

 Copula Model Non-Copula Model Copula Model Non-Copula Model 

VaR $41,528 $42,261 $157,761 $155,580 

TVaR $703,326 $717,308 $1,324,868 $1,352,989 

St Dev $1,461,655 $1,496,667 $1,870,281 $1,915,474 

CV 2.078 2.087 1.412 1.416 

Table 5: Results for the copula model vs. the non-copula model 

These statistics do not differ significantly between the models at either the 90th or the 95th 

percentile. Thus, the models offer very similar results, and the copula model does not provide 

any significant improvement over the traditional modeling method. One likely explanation is that 

the size of the losses dominates the size of any associated DCCE within a claim. Because losses 

are often so much larger than the DCCE of a claim in Workers’ Compensation, modeling losses 

and DCCE as a sum is very similar to just modeling losses by themselves. This is also apparent 

in the similarities between the distribution and parameters of losses and the sum of losses and 

DCCE. However, if there were lines of business where DCCE makes up a more significant 

amount of the total claim, than a copula model may yield significantly different results than the 

traditional modeling method.  
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Potential Future Steps 

1. Incorporate spliced distributions 

2. Investigate statistical tests to evaluate goodness of fit 

3. Apply copula modeling in other lines of business 

1. Incorporate spliced distributions 

As can be seen in Table 5, the estimates for the TVaR and the standard deviation of the top 

simulated claims are much larger than what is seen in the empirical data. This is mainly due to 

the limitations the team faced when estimating the distributions for losses, DCCE, and their sum. 

Using MLE, the team was not able to set any limitations for how high the losses and DCCE 

could be because the distributions chosen had infinite domains. Without a maximum, very large 

values of losses and DCCE were generated. Even though values over 10 million dollars were 

removed from the simulation data, the model was still over-predicting large losses in general. If 

this model were to be improved in the future, the team would propose exploring a spliced 

distribution for losses. If a spliced distribution were used, one may be able to control the 

probability that a large loss occurs. With this decreased probability of large losses, the mean and 

standard deviation of the models at the upper percentiles would decrease and be a better fit with 

the empirical data. 

2. Investigate statistical tests to evaluate goodness of fit 

Another step that the team would have liked to achieve, given more time, would be to investigate 

statistical tests that could be used to obtain evidence to support the modeling choices they made. 

Most of the justification given in this report for copula selection and distribution estimation was 

based on plots (LR Functions, p-p plots, etc.) and other visual indicators. The team discussed 

several possibilities of different tests that could be used to evaluate the choice in copula and 

distributions, and test whether the differences in the model were statistically significant, but 

ultimately ran out of time. If this project were to be continued, it is recommended that the new 

team investigate some possible statistics or tests that would provide a more robust adjudication 

of the modeling selections and estimates. 

3. Apply copula modeling in other lines of business 

Lastly, the team believes that if this model was applied to a line of business where the DCCE 

made up a more significant amount of the total claim, than it may offer more insight into the use 

of copula modeling at The Hanover. Although this project confirms that The Hanover’s current 

large loss modeling methods are reasonable in Workers’ Compensation, copulas are still worth 

investigating in other business lines.  
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Conclusion 
Copulas are a statistical tool that can help guide insurance companies in extreme economic 

situations. By taking advantage of different measures of dependence, it is possible to study the 

underlying data structure between multiple random variables. This information allows a modeler 

to determine an appropriate copula model for a set of empirical data. Once this copula is chosen 

and estimates of the marginal distributions have been made, a modeler can create a joint 

probability model for several random variables.  

This project focused on connecting losses and DCCE of insurance claims in large loss scenarios. 

The team was able to create a copula model for use with Workers’ Compensation data, finding 

that the HRT copula was the most appropriate. Through parameter estimation for the marginal 

distributions, the team was able to simulate losses and DCCE that followed the data structure 

originally observed. While this model did not yield significantly different results than traditional 

modeling methods used by The Hanover, it did confirm that The Hanover’s current method for 

modeling Worker’s Compensation claims is valid. 
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Appendix A: The Hanover Commercial Lines 
Commercial lines insurance provides property and liability coverage to businesses, rather than to 

individuals. Property insurance covers damage to buildings, cars, and other physical products, 

while liability insurance protects businesses from claims that result from an injury to a person or 

damage to another person’s property. Within commercial lines at The Hanover, there are three 

main lines of business, Business Owner’s Policy (BOP), Commercial Package Policy (CPP), and 

Workers’ Compensation. BOP provides property and liability insurance for smaller businesses, 

while CPP provides similar coverages to larger businesses that have more risks associated with 

them. BOP would cover a lawsuit stemming from an accident in a mom-and-pop shop, but CPP 

might cover the loss of a retail freight truck that is involved in an accident. Workers’ 

Compensation protects employers from claims associated with injuries to their employees that 

occur while they are on the job. This type of insurance would cover medical expenses, legal fees, 

and lost wages that may result from work-related incidents. 
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Appendix B: Fitting Large Losses with the 

Normal Copula 
In insurance, it is typically of more interest to analyze the right tail of the distribution because 

that is where the insurance company pays large dollar amounts. For this reason, the team 

considered cutting the data so that it would solely focus on large losses. To cut the data, the team 

determined where large and attritional losses, the smaller loss values that wouldn’t be 

considered, would be separated. The team considered a few different thresholds for large loss 

amounts: $1,000,000, $750,000, $500,000, $250,000, and $100,000. The team decided to split 

data based on loss amount since the losses are the more significant portion of the total claim 

amount. So, even if a claim had a large sum for its loss and DCCE, it was dropped if the loss did 

not reach the specified threshold. 

When splitting the data at these loss thresholds, the counts of remaining claims dropped 

significantly. More notably, the values for Kendall's Tau dropped closer and closer to zero, with 

some even becoming negative, as seen in Table 6.  

Claims Included Number of Claims Kendall’s Tau (𝜏𝒌) 

All Claims 69,728 0.513 

Claims With Losses Above $100,000 3,184 0.245 

Claims With Losses Above $250,000 900 0.150 

Claims With Losses Above $500,000 251 0.127 

Claims With Losses Above $750,000 120 -0.027 

Claims With Losses Above $1,000,000 66 -0.062 

Table 6: Number of Claims and Kendall's Tau at different loss thresholds 

Having small and negative values of Kendall’s Tau indicates the data do not have a strong 

positive relationship with each other. This was surprising since the initial data analysis implied 

there was a relationship between losses and DCCE, particularly in the right tails, which is what 

this data had been limited to. Thus, the only threshold where copula modeling made sense was 

when investigating separating claim sizes at $100,000. 

The team then developed an LR function for the empirical data above this threshold, with a 

Kendall’s Tau of 0.25, which can be seen in figure 6. This graph was compared to the reference 

graphs provided in the background, and it was decided that the Normal Copula was the best fit. 
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Figure 7: LR Function for Workers' Compensation Losses over $100,000 

Once the team had selected the normal copula, they were able to simulate values using the 

process outlined in the background and methodology but with the normal copula. From these 

simulated values, a theoretical LR function was developed. The team expected the theoretical LR 

function to diverge from the LR function of independence, which would indicate some sort of 

dependence between the variables. However, the LR function the team created from the normal 

copula did not diverge from independence, as seen in figure 7. This indicated that the normal 

copula was a poor representation of the empirical data. Additionally, the team did not have 

sufficient information to determine which model would be a better fit for the data, so the team 

abandoned the idea of using a normal copula to model this data.  

 

Figure 8: LR Function for Simulated Values of the Normal Copula 
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The team believes this did not work out well because the Kendall's Tau value was too low, 

almost to the point where the normal copula was graphing two independent phenomena. As 

mentioned previously, splitting the data in any way resulted in the loss of significant amounts of 

data. There were also many values of DCCE, particularly some very large values, that were taken 

out because of the sole focus on large losses. By removing so many of these data points, the data 

structure was changed heavily and there was no longer a strong relationship in the right tails of 

the distribution. When looking to separate attritional losses from large losses, the choice of 

copula is made to represent the underlying structure and dependency measures of all the data. If 

the goal is to separate attritional and large losses while still preserving these values, one should 

consider using spliced or mixed distributions to better account for different patterns at different 

times in the data, rather than just removing data altogether. 

 


