A Building Analysis of the Worcester Gospel Church

A Major Qualifying Project
Submitted to the Faculty of
Worcester Polytechnic Institute in partial fulfillment of the requirements for the
Degree in Bachelor of Science
in
Architectural Engineering
and
Civil Engineering

Submitted by:
Cassie Graca
Aaron Kotilainen
Jason Strauss

May 6, 2020

Sponsoring Organization:
Worcester Chinese Gospel Church
Project Advisors:
Professor Steven Van Dessel
Professor Mingjiang Tao

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

Table of Contents

Abstract 5
Disclaimer 6
Capstone Statement. 7
Design and Professional Licensure Statement 9
Approach Taken 10
Professional Licensure Statement 11
1.0 Introduction 13
1.1 Project Timeline/Progress Report 16
1.2 Background. 23
1.2.1 Hammer Beam Truss 23
2.0 Goals and Objectives 25
3.0 Building Status 27
3.1 Plan Sets 27
3.2 Roof 28
3.3 Documentation of Pre-Existing Conditions 29
3.4 Temperature/Humidity Issues 30
3.5 Windows 33
4.0 Methodology 34
4.1 Structural Analysis 34
4.1.1 Determination of Loads 34
4.1.2 Roof 39
4.1.3 Hammer Beam Trusses 43
4.1.4 Floor 47
4.1.5 Walls 49
4.1.6 Determination of Vibration Thresholds 54
4.2 Geotechnical Analysis 57
4.2.1 Determination of Soil Conditions 57
4.2.2 Foundation 59
4.3 Envelope Analysis 61
4.3.1 Walls 61
4.3.2 Roof 62
4.3.3 Windows 62
4.4 Energy Analysis 63
4.4.1 Occupancy. 64
4.4.2 Walls 65
4.4.3 Roof 66
4.4.4 Windows 67
4.4.5 Heating Setpoints 67
4.5 HVAC Analysis 67
4.5.1 System Sizing 68
4.5.2 Heating Load 69
4.5.3 Cooling Load 69
4.5.4 Potential Heating Cooling System Options 70
4.5.5 Hot Water Baseboard Fuel Type Comparison 70
5.0 Results. 70
5.1 Structural Analysis 71
5.1.1 Determination of Loads 71
5.1.2 Roof 73
5.1.3 Hammer Beam Trusses 74
5.1.4 Floor 88
5.1.5 Walls 89
5.1.6 Determination of Vibration Thresholds 91
5.2 Geotechnical Analysis 92
5.2.1 Determination of Soil Conditions 93
5.2.2 Foundation 95
5.3 Envelope Analysis 95
5.3.1 Walls 95
5.3.2 Roof. 97
5.3.3 Windows 98
5.4 Energy Analysis 98
5.4.1 Walls 99
5.4.2 Roof. 101
5.4.3 Windows 102
5.4.4 Heating Setpoints 103
5.4.5 Overall Improvements 104
5.5 HVAC Analysis 106
5.5.1 Heating Load 106
5.5.2 Cooling Load 107
5.5.3 Hot Water Baseboard Fuel Type Comparison 107
5.5.4 Variable Air Volume Systems 108
5.5.5 Radiative Heaters 109
6.0 Recommendations 114
6.1 Structural Recommendations 114
6.1.1 Sub-Basement Concrete Reinforcement 114
6.1.2 Truss I-beam 115
6.1.3 Buttress Reinforcement 116
6.2 Envelope Recommendations 116
6.2.1 Potential Water Infiltration Sources 117
6.2.2 Fenestrations 117
6.2.3 Insulation 117
6.3 Renewable Technology Considerations. 118
6.4 Additional Recommendations 123
Works Cited 124
Appendix A: Temperature/Relative Humidity Data 126
Appendix B: Accelerometer Data 133
Appendix C: Load and Structural Calculations 134
Appendix D: Massachusetts State Archive Plans 173
Appendix E: Renovation Floor Plans. 177
Appendix F: Heating/Cooling Load Calculations 181
Appendix G: DesignBuilder Energy Analysis 184
Appendix H: Massachusetts DOT Church Pre-Construction Condition Survey 318
Appendix I: Massachusetts DOT Geotechnical Report 318
Appendix J: Roof Photos 318

Abstract

This Major Qualifying Project performed a complete building analysis of the Christian Gospel Church located at 43 Belmont Street in Worcester, Massachusetts. This project entailed a structural, vibration, energy, and envelope analysis of the building. Through findings based on site surveys, photographs, and archive plans, and the above analyses, recommendations were compiled to determine what issues are most pressing and improvements were suggested that could be implemented to make the building more viable in the long term.

Disclaimer

The findings in this report were produced as partial fulfillment for the degree of Bachelor of Science from Worcester Polytechnic Institute. While the findings in this report were produced in good faith, this MQP group (Cassie Graca, Aaron Kotilainen, Jason Strauss) is not responsible for any issues that could arise from the implementation of any recommendations. Any implementation of recommendations suggested by this report must first be verified and approved by a Professional Engineer and installed by qualified professionals.

Capstone Statement

The Christian Gospel Church leadership approached WPI Architectural Engineering faculty with concerns in architectural and structural performance of the church due to age and neglect. The primary focus of this project was to investigate the church structurally and architecturally by means of structural, vibration, envelope, energy, and HVAC analysis. This analysis allows a better understanding of the performance of the church and can therefore determine what required fixes are necessary.

Structural analysis was performed by analyzing all members under ASCE ${ }^{1}$, AISC 2, AWC 3, $\mathrm{ACI}^{4}, \mathrm{NCMA}^{5}$, and IBC^{6} specifications for adequacy with current codes. A detailed truss, and buttress analysis was performed to look for weak points in the truss and tension in the wall that could potentially cause failure. A vibration analysis was also performed by analyzing accelerometer data in order to determine the effect of traffic-induced vibrations on the structure of the church. Architectural and envelope analysis was undertaken to determine the building construction and the insulative properties of the envelope components. This was achieved by thorough site surveys and pre-construction plan analysis. Insulative properties were determined by using ASHRAE standards based on our observations of the building construction. Part of this envelope analysis was to determine the source of water infiltration and high humidity levels experienced in the church. This was achieved by installing relative humidity sensors inside of the envelope and attempting to make poke holes in order determine sources of potential water infiltration. An energy analysis was performed by creating a model of the building in the computer

[^0]software, DesignBuilder, to determine heating and cooling loads utilizing ASHRAE baseline and weather standards. Hand calculations following ASHRAE standards were also performed to verify the results of DesignBuilder. This data was then used to determine heating and cooling loads and determine potential heating and cooling options that could be implemented in the church. Parametric analysis within Designbuilder was performed to determine the efficacy of potential insulative improvements to the building envelope could be feasibly instituted in order to reduce energy consumption and improve heat loss in the building.

Design and Professional Licensure Statement

The analysis of the Worcester Gospel Church located at 43 Belmont Street in Worcester, MA involved many aspects. Presently there are many envelope issues that the church faces. For the past 11 months, temperature and humidity monitoring has been installed to gain a better understanding of the building environment to obtain a baseline of how the building is functioning. There are gaps and issues with the envelope (roof, windows), resulting in water infiltration and high humidity levels in the church and in spaces behind walls. Finding the source of potential water infiltration and providing suggestions on remedying these issues were a main concern that we analyzed to the best of this group's abilities. The church also faces significant heating and cooling issues annually. Due to the aging 110-year-old stone construction of the church and increasing energy costs, this group aimed to provide suggestions that could be made to improve the building envelope to decrease energy usage and improve heat loss. Additionally, this group aimed to provide suggestions on proper sizing and potential options for upgrading the buildings heating and requirements if a cooling system was to be installed in the future.

A complete structural and vibration analysis of the building was also performed. Due to the age of the church, it was possible that some of the members may not comply with modern building standards. Many of the structural members were likely sized by procedural codes during the building's construction, rather than using analysis to determine the best size. Additionally, computer aided analysis can provide more depth into exactly how specific structural members behave under stress. While there still is a lot of missing information in the building plans, church representatives will have a better understanding about the structural integrity of their church. With the I-290 highway and Route 9 directly adjacent to the church, there was some concern that the traffic-induced vibrations may have been affecting the structure of the church.

Approach Taken

Envelope concerns were addressed by performing an analysis of the existing walls by making poke holes. This was done to determine the existing wall construction, analyze moisture content behind the wall and to make vent holes in the towers for the masonry walls to breathe. A humidity sensor was installed in the air gap of the right towers wall to determine the moisture content in the wall.

Based on plans and pictures, analysis of the wall and roof were undertaken in order to identify potential sources of water infiltration and suggest methods to rectify moisture transport issues. Temperature/relative humidity sensors were installed throughout the church and took readings in regular intervals over a period of 11 months in order to determine environmental issues present in the church. Accelerometers were installed in the towers in 4 axes in order to determine the extent of seismic effects on the structure. Hammerbeam truss construction was analyzed using MATLAB as a structural analysis program. All primary structural members in the sanctuary were analyzed for bending, shear, and deflection. The walls were also analyzed at the buttress location for any tension that could potentially cause failure under a seismic event. A vibration analysis was performed by analyzing accelerometer data in order to determine the effect of traffic-induced vibrations on the structure of the church. A complete plan set of the building was created for the building in order to obtain dimensions of the building for both structural and energy analysis. Digital models of the building were created in DesignBuilder to determine ASHRAE standards for the building. This was done in order to determine heating and cooling loads. Hand calculations were performed to ASHRAE standards in order to verify the findings determined by DesignBuilder. From this information, the church will have a much better idea of the size of the mechanical system needed that could be implemented. Parametric analysis was performed to
determine potential insulative improvements to the building envelope could be feasibly instituted in order to improve energy consumption and reduce heat loss in the building.

Professional Licensure Statement

The formal process of acquiring professional engineering licensure is a critical aspect of the engineering fields. Engineers are highly respected members of the professional community and are expected to be highly competent within their fields and display inscrutable ethics. Due to the direct interaction of the public with projects that engineers may be involved with, public health and safety is of critical concern.

An engineer who achieves their PE license has worked in their field long enough to be considered an engineer who can be relied upon to make the right decisions and is held to a higher standard. The process of acquiring a PE license requires one to acquire a Bachelor of Science in an engineering field from an accredited institution. Then they must work under a Professional Engineer for 4 or 5 years depending on the field. Before the time requirement can start in the workplace one must take a "Fundamentals of Engineering" exam or the FE, which shows that the engineer has adequate skills in mathematics, physics, and other technical disciplines to start working to become a PE. After the work experience requirement has been achieved one can then take the Principles and Practice of Engineering (PE) exam which is specific to their chosen field. Once one has achieved that feat in order to maintain licensure, one must continually remain educated within their field by attending conferences.

By acquiring a PE license, it shows to the public that you are a competent and fully vetted member of the engineering field and can be trusted implicitly to make the right decisions to the client and the public at hand. It shows to the profession at hand that you have the experience and knowledge to be trusted in the field and can help lead new generations of engineers. To the
individual it proves that you have the determination and willingness to achieve a difficult milestone. ${ }^{7}$

[^1]
1.0 Introduction

The project that this MQP group selected involved a thorough energy, structural, and geotechnical analysis of the Christian Gospel Church, located at 43 Belmont Street in Worcester, MA. The church was built in 1910 as the "Swedish Lutheran Gethsemane Church" and originally served Lutherans of Swedish ancestry in the Worcester area. It was purchased by the Worcester Catholic Diocese in the 1950s and renamed, "Our Lady of Fatima". The church was designed by G. Adolf Johnson, a prominent Architect in the Worcester area around the turn of $20^{\text {th }}$ century who notably designed several buildings on Clark University's campus and other churches in the area. ${ }^{8}$ The church currently serves the Chinese population of Worcester. Church leadership approached the WPI Architectural Engineering department with issues the aging building is facing. Besides heating, cooling and energy consumption issues, there are problems with water infiltration into the building envelope and the worsening of fractures in the wall plaster.

[^2]

Figure 1: Postcard of the Church from circa 1920s ${ }^{9}$
The Church is adjacent to Route 290 in Worcester on an elevated position next to a retaining wall and adjacent to a bridge. Within the past 8 years, the highway was widened and there has been a significant increase in noticeable vibrations within the building when large vehicles drive by. The highway did not exist when the church was built. These vibrations may cause serviceability concerns. The Church is concerned that these constant vibrations are causing further damage to their structure and its envelope.

The primary concerns representatives of the church brought to this group's attention was that temperature and humidity levels were very high during the summer and low during the winter.

[^3]These issues raise numerous concerns with occupant comfort, energy consumption relating to the buildings insulation, heating and cooling costs, and required size of mechanical systems. Additional problems with the building envelope raise concerns regarding water infiltration and crumbling/cracking plaster. The foundation was an additional concern in which the installation of the highway's retaining wall and freezing effects in the voids of the foundation can potentially greatly expedite the failure of the foundation.

1.1 Project Timeline/Progress Report

In May 2019, our group positioned 9 temperature/humidity sensors inside the building and one outside to establish a baseline of humidity and temperature issues that were being experienced. Additionally, 4 accelerometers were installed in the two towers, all on different axes in order to quantify the vibrations that were being felt. Numerous visits were made to the church to obtain readings and check on the status of the sensors.

Over the first few weeks of A-term 2019 our group contacted several groups that may have existing documentation on the construction of the Church. We contacted the Worcester Catholic Diocese and were informed that they have no files on the church. The historical preservation group, Preservation Worcester, had no information but suggested that we contact the Worcester Historical Commission. We have yet to receive a response from them. We visited the Worcester Buildings Department on Thursday September $5^{\text {th }}, 2019$ and were able to find the original permitting listing and general information regarding the construction of the building in 1910. However, when the employee of the Building Department attempted to access these files, all information given on the permit was not cross referenceable. We were informed that this was most likely a clerical error that was made over 100 years ago and that any original documentation that the city may have had is now lost.

Figure 2: Original Building Permit Record from the Worcester Building Department

Figure 3: Original Building Permit Record from the Worcester Building Department

Throughout September and October 2019, this MQP group made several visits to the church in order to take measurements using tape measures and a theodolite in order to acquire heights that would otherwise be inaccessible. A theodolite is a precision-based surveying tool used to measure angles. By measuring the angle between the theodolite, and a point on the roof, and measuring the horizontal distance between the theodolite and the roof, the building height was calculated using trigonometry. From these calculations a massing model, using the architectural design software Revit, was created to better understand the geometries and construction of the church. The church also found partial floor plans that were provided by an architectural firm that remodeled the basement prior to the purchase of the church in the early 2010's. Questions about wall intersections and geometries were made more clear with the assistance of these plans and a more accurate model was able to be created.

One of the tasks in A-term was to determine a temporary heating solution that the church could be implemented over the winter for their congregants to be warm during Sunday services before a permanent heating solution could be determined. Representatives of the church presented an estimate from a local heating contracting company of what would be needed from a heating system in order to just heat the sanctuary. This estimate was roughly a 10 -ton system. It was tasked to verify this estimate and determine if the numbers were accurate. To ascertain the heating loads required, rough hand calculations were created using ASHRAE heat loss methods loss based off our measurements in order gain a better understanding of the heat loss of the building. These approximate heating load calculations placed heating load estimates at just under 20 tons for the sanctuary. The discrepancy between the estimate provided by the heating contractor and hand calculations confirmed the need to create a more detailed energy analysis of the Church. With this
information, church leaders have a better understanding of the size of the equipment needed to effectively condition the church.

Structural analysis also began in A-term with the determination of all dead, live, snow, wind, and seismic loads acting on the church. The determination of the building geometry has allowed us to gain a better understanding of how these loads are going to act. Unfortunately, applying these loads to determine the adequacy of members was very difficult without any detailed building plans. Seismic threshold calculations were also underway by using data that was acquired by the accelerometer sensors located in the towers. From there, data could be effectively analyzed to see maximum velocity from seismic forces that could result in long-term structural damage to the church.

Professor Van Dessel visited the church to help determine the roof construction, as well as determine locations to make inspection openings and to take wall samples. It was determined that in B-term that holes would be cut (covered with a floor register) for the air gap in the tower walls to dry out due to any moisture that may be collecting in the towers and to add a humidity sensor to determine the moisture content in the walls.

At the end of A-term, a brief presentation was given to a representative of the church, Jonas Chang. This presentation went over goals for the project, what was accomplished so far, as well as action points that could be implemented immediately.

In B-Term, a full DesignBuilder model was created in order to calculate heating and cooling loads. This model can be extrapolated using parametric analysis to determine the total efficiency of the building and suggest improvements that could be made to the building in order to improve energy consumption in order to effectively condition the space. A site visit was made to the church where wall samples from both towers were taken for analysis as well as allowing for
the tower walls to "breathe". These holes allow extra moisture trapped behind the walls to dry out more effectively with circulating air rather than being trapped, that will eventually penetrate the internal envelope which had been noted in the original site survey. In addition, these holes allowed us to view what the wall construction of the church is like.

Professor Van Dessel contacted Rob Para, an Architect, who is a member of Preservation Worcester, and is aware of the church and the issues it faces. Mr. Para contacted the Massachusetts State Archives in Boston to inquire if any plans were available. Our group was informed that plans did exist and thus visited the archives on November $15^{\text {th }}$, 2020. Pre-construction drawings of building elevations, transverse sections, first and second floor plans, as well as connection details as they relate to the truss and roof were acquired from this visit. This wealth of information was incredibly helpful in order to make proper determinations for creating an accurate section drawing to see how the building components interacted with each other. The State Archives provides a scanning and documentation service of all their plans on file. It is recommended that the church takes advantage of this service and preserves the information on their church.

Figure 4: Original Pre-Construction Drawings and Permit Listing from the Massachusetts Archive
Performing structural analysis at this point was difficult because very conservative guesses were made for the size of members that were far out of sight and reach. Many members were being analyzed as inadequate due to lack of information. Fortunately, with the building plans acquired from the Massachusetts State Archives, a full reanalysis was able to be performed with much greater confidence, and the results were much closer to what was expected. Roof members, floor members, and buttresses were analyzed by hand and with RISA, a structural analysis program, and a preliminary truss analysis was performed using RISA. One of the main complaints heard from the church elders that pertained to this project related to vibrations occurring in the building from traffic passing by. With the church's location on Route 9 and slightly raised above I-290 it was not surprising to hear this. Accelerometer sensors were placed in both towers to record data of the vibrations. There are two in the East tower and two in the West tower. All sensors were mounted on the wall of the towers. These accelerometers gathered data since May 2019 until February 2020.

The data obtained from the accelerometers is the acceleration of the vibrations being felt by the church over time. This data was imported into excel spreadsheet so that it could be converted appropriately. First, time was converted to frequency, 1/t, and acceleration to velocity through integration. This produced a velocity versus frequency graph which was used to determine the peak particle velocity (PPV).

The period over winter break was spent running multiple computer simulations utilizing parametric optimization in order to determine what practical changes could be implemented in the church to improve heat loss and energy consumption. Such improvements that were suggested were potentially adding insulation to the uninsulated roof deck, adding another layer of glass on the existing stained-glass windows in the sanctuary, and establishing appropriate heating and cooling set points and analyzing their overall effect on total annual energy consumption.

The beginning of 2020 was spent analyzing our results and compiling this report.

1.2 Background

In order to gain an understanding of the structural system of the church as well as the requirements of vibration analysis, background research was performed on these topics to become more knowledgeable on specific needs of the church.
1.2.1 Hammer Beam Truss

Figure 5: Hammer Beam Truss in the Church Sanctuary
One of the primary decorative and structural features of the church are the hammer beam Trusses that are used in the roof design of the sanctuary. This type of truss has been commonly used in open timbered roofs and are most commonly found in gothic churches and halls in Western Europe. The first recorded instance of a hammer beam truss being utilized into a building design was that in Westminster Palace (1397) and is very common in English buildings of the 15th century. These designs add ornamental qualities to the design of a building but allows for significant structural support on sloped roofs. The term "hammer beam" refers to the horizontal
beams at the foot of the principle members. While most of these trusses are very similar in design, it is nearly impossible to find two designs that are identical. ${ }^{10}$

Seen in Figure 6, the red members are the hammer beams, the blue members are the hammer posts, and the green members are the hammer braces. The braces are primarily responsible for transmitting the load from the roof into the walls and the posts and beams work to hold the truss together. The posts, typically under compression work to transmit some of the load from the upper braces onto the lower braces. The beams, typically under tension, work to keep the braces from separating. The primary upside to using hammer beam trusses is that they require shorter member sizes and hold aesthetic value. The primary downside to hammer beam trusses is that they submit potentially great seismic loads into the walls resulting in required reinforcement or large amounts of material used in the walls/buttress to resist the horizontal component reactions. In addition, all attaching joints must be strong enough to prevent the truss from racking due to wind pressure and seismic loads.

[^4]

Figure 6: Hammer Beam Truss Axial Forces and Primary Members ${ }^{11}$

2.0 Goals and Objectives

1. Analyze the structural integrity of the church and determine if there are any critical issues regarding the structure that need to be addressed immediately. Identify the extent of seismic effects on the church and if any long-term effects are being experienced by the building.
2. Identify sources of water infiltration that is contributing to the cracking of wall plaster and high humidity levels behind the walls and in the building itself.
3. Perform an energy analysis of the building to determine heating and cooling loads.
4. Determine the required size of heating and cooling systems to properly condition the building.

[^5]5. Recommend potential improvements to the building envelope to reduce heat loss and energy consumption.

3.0 Building Status

Before the church could be analyzed, observations had to be made through a comprehensive site survey and by referencing building plans. This was done to determine building construction and design to determine elements that should be analyzed moving forward and to better understand the most pressing issues facing the church.

3.1 Plan Sets

Obtaining any prior construction or repair plans could help gain insights to the building construction and connection details, that were not able to be discerned from site surveys was an important goal. Any plans that may have been filed with the City of Worcester or the Catholic Diocese have most likely been lost. However, thanks to the assistance of Rob Para, the original proposed building plans that were submitted to the State of Massachusetts in 1910 were able to be located. These plans are housed currently at the Massachusetts State Archive, 220 Morrisey Boulevard, Boston. An appointment is required in order to view any documents at the Archive. These original drawings include floor plans, sections, and other construction and connection details that made this analysis possible. It is recommended that the church requests digital copies of these plans for their own reference as well as for future repair work that may be undertaken in the near future. Photos of these plans are attached in Appendix D. The scanning process will cost approximately $\$ 500$ dollars due to the age of the plans and the need to be handled by a paper conservator. When the plans were reviewed, they were beginning to disintegrate and tear, so it is recommended that these scans occur sooner rather than later.

Plans were also obtained from the church directly that provided the renovation plans of the basement, prior to the purchase of the church in the early 2010s. These plans aided in determining building geometry, however the accuracy of these plans was questionable and should not be used as a master plan set. One of the goals of this project was to create a new master plan set for the
church. These drawings are attached in Appendix. Based on this groups site analysis, these drawings are believed to be the most accurate but should still be reviewed prior to being used as the basis of any major project.

One major fact to note here and noticed in Figure 1, was the existence of a bell tower on the right tower that has since been removed. It was brought to the attention of this group that Consigli Construction Group was tasked to reinforce this tower in the late 1990s which involved the removal of the bell chamber from the right tower. Communication with employees of Consigli determined that any existing plans relating to work performed on the towers are no longer available.

3.2 Roof

Based on visual inspection of the roof from ground level, there are many sections that have gaps or broken pieces of slate. The photos that were sent by Jonas Chang were very helpful to gain an insight of the roofs condition since an in-person roof inspection was not possible. See Appendix J. There are open holes due to missing and separating pieces of slate. There is also missing slate and flashing where the roof meets one of the towers.

Figure 7: Photos of the Church's Slate Roof provided by Jonas Chang

The parapets as well as flashing and counterflashing of the towers are suspect and should be investigated for more defects. The primary concern is with the condition of these components in the valleys where the towers and roof meet. All flashing on the roof should be updated to modern standards. Water entering through the flashing and counterflashing at these locations would immediately travel downward until it reached an interior finish and would ultimately result in water damage. A thorough inspection of the roof and timely replacement of failed components is critical to ensure no further damage to the building structure and envelope. A replacement roof whether it be slate, or a more affordable alternative is the first step to improve the church. This will also dramatically improve energy consumption because the actual envelope will be able to retain heat much more effectively. These issues with the roof are most likely causing most of the water infiltration due to over 100 years of freeze-thaw cycles and precipitation resulting in thermal hysteresis of the slate and breakdown of the original waterproofing methods.

3.3 Documentation of Pre-Existing Conditions

The Massachusetts Department of Transportation produced a pre-construction survey of the church that was produced prior to the widening of the bridge on Rt. 9 over I-290 at the intersection of the church in 2014. This report is attached in Appendix H. The photos and details in the report were documented from 2012 and provide a guide as to which cracks in interior plaster walls have widened or appeared in the past 8 years. The cracking of the plaster is of concern but is mostly a cosmetic issue. These cracks are most likely related to the high moisture content in the building. One of the goals of this project was to determine whether these issues were induced by traffic vibrations or vibrations originating from adjacent bridge construction combined with a failure of the building structure or envelope.

3.4 Temperature/Humidity Issues

Beginning in late April 2019, 9 temperature and relative humidity sensors were installed throughout the building to gain an understanding of thermal comfort and hygroscopic issues (See Figure 11 and Table 1). One additional temperature sensor was placed outside at the entrance to acquire a baseline outdoor temperature. These temperature sensors are the Onset HOBO U12-012 Temperature/Relative Humidity/Light/External Data Loggers (See Figure 8). Please see attached Appendix A for the recorded temperature information for various locations around the church.

Figure 8: Onset Hobo U12-013 Temperature/Relative Humidity/Light/External Channel Data Logger ${ }^{12}$
A comparison between the recorded outdoor temperatures from the outdoor sensor and the given ASHRAE weather data for Worcester, MA on a given year was also performed. The humidity data from this sensor was skewed, most likely because of the sensor being directly exposed to water giving false readings of the true relative humidity levels outside. Based on the graphical comparisons between the two data sets, the differences between the outside temperature/RH collected (Figure 10) and data collected annually by ASHRAE and averaged

[^6](Figure 9). It was determined that the cumulative weather data provided by ASHRAE would be a solid basis for the outdoor temperature and humidity factors to create an accurate digital model.

Figure 9: Annual ASHRAE Temperature Data for Worcester, Massachusetts from May to December Cumulatively

Figure 10: Recorded Temperature and Humidity Data from outside the Church from May to December 2019
ASHRAE codes state that a building should be conditioned around $40-60 \%$ RH in order to prevent mold growth. Excessive moisture levels can also lead to water being absorbed into the building envelope and can degrade internal components.

As displayed by the analysis of the Relative Humidity data (Table 2), the Sanctuary topped out at over 80% RH and the towers reached RH levels over 90%. The sanctuary experiences RH levels higher than 60%, on average 35% of the total time between May to December. This continued exposure to high humidity levels will degrade the building envelope. It is critical for the longevity of the building that issues with the building envelope be corrected and proper building conditioning through mechanical systems be instituted. This temperature/humidity data can be found in Appendix A.

Figure 11: Location Diagram of Temperature/Relative Humidity Sensors
Table 1: Location of Data Loggers

Logger	Location
1	Back of stage in Sanctuary
2	Under $1^{\text {st }}$ pew in center
3	Under pew on left side

4	On side of window
5	On Left Truss/Mezzanine Level
6	Center of Window/Mezzanine Level
7	Upstairs of Right Tower
8	Bell Tower
9	Upstairs of Left Tower
10	Outside Next to Ground Entrance

Table 2: Recorded Temperature/Humidity Data

May 1st to December 22, 2019	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$	$\# 8$	$\# 9$
Highest Recorded Temp. (F)	91.87	92.15	90.14	96.33	93.09	119.84	92.46	86.07	90.19
Lowest Recorded Temp. (F)	48.32	47.37	46.49	43.39	46.48	39.60	31.35	36.70	40.35
Highest Recorded \%RH	77.95	81.46	78.95	80.84	82.1	85.33	91.49	87.54	82.13
Lowest Recorded \%RH	29.4	38.35	28.58	26.67	31.53	10.86	58.38	63.84	48.72
\% of Time Humidity Over 60\%	26.96	61.82	30.38	39.71	23.89	24.14	99.89	99.95	64.22
\% of Time Humidity Lower Than 40\%	3.36	0.21	3.67	3.69	2.46	20.29	0.00	0.00	0.00

3.5 Windows

Figure 12: Examples of Broken Stained Glass in the Sanctuary
When initial site surveys were made to assess the condition of the church, it was observed that there was plastic wrap used on most of the stained-glass windows in the sanctuary. This is a commonly used, affordable method to control drafty windows in the winter, but is not the proper way to repair fenestration issues. On closer inspection of the stained-glass windows, there are portions of the stained-glass that are broken, missing, or have failing components (Figure 12). Due to warping of the window frames, openings in the windows no longer sit flush, allowing direct
openings to the outdoors. These holes are creating significant air and water infiltration points into the church that are also affecting comfort levels in the sanctuary. Fixing these cracks, and repair or replacement of warped window frames will eliminate much of the draft that is being experienced by members of the congregation during services. An analysis of these windows was performed and potential options that could be implemented to improve heat loss but still retaining the overall aesthetic of the building were considered.

4.0 Methodology

In order to analyze the church beyond visual observation, digital models were created using the computer programs, AutoCAD and Revit. These models were then analyzed using RISA, MATLAB, and DesignBuilder to determine if there are any structural, geotechnical, envelope, or energy related concerns with the Church that should be addressed. This section discusses the process under which this analysis was performed.

4.1 Structural Analysis

The structural analysis for the church was performed top down and specifically focused on areas most susceptible to failure. These areas primarily consisted of sections in the church's envelope that experience the greatest loads and eccentricity under the smallest cross-section. The materials of construction that go into the church are primarily hard pine or spruce wood (roof and floors) and granite and brick masonry (walls). Allowable stress design (ASD) typically used with wood, masonry, and geotechnical applications was used throughout this analysis process rather than load resistance factor design (LRFD) typically used with steel and concrete applications. All structural analysis calculations can be seen in appendix C.

4.1.1 Determination of Loads

In order to analyze all major structural members, dead load, live load, snow load, wind load, and seismic loads were calculated according to American Society of Civil Engineering
(ASCE) standards. Dead load in roof members was estimated based on the material used in the roof construction. All members experienced dead loads of overlapping 1/8" slate as well as their own respective self-weights of eastern spruce wood. The unit weight for eastern spruce wood was estimated using American Wood Council National Design Standards (AWC NDS). The purlins experienced an additional dead load corresponding to the weight of the chandeliers estimated to be about 100 lb , and the truss experienced additional dead loads corresponding to electrical components involved with lighting as well as plaster sheathing estimated to be 5 psf and 1.6 psf respectively applied uniformly over the top chord of the truss. The roof also contained uniform and concentrated live loads estimated using ASCE 7-10 Table 4-1. A profile for the roof members can be seen in Figure 14.

Deadloads for the floor joists were calculated from the deadloads of carpeting and decking. Uniform and concentrated live loads were estimated based on ASCE 7-10 table 4-1 for fixed seated assembly rooms. Loads on the girders were based on the reaction forces from the joists. Additional self-weight and MEP loads were added to the girders. The reason MEP was not added to the joists is because it was evident from visual inspection that all basement lighting and other electrical and ceiling components were attached directly to the girders.

Snow Loads were calculated using regional constants determined from the Massachusetts State Building Code (MSBC) as well as design specifications from ASCE. According to the MSBC, Worcester has a ground snow load of 50 psf . The church is under category B for urban area and the roof is fully exposed giving the church an exposure factor of 0.9 . The church is also heated so the thermal factor is 1.0 . The church can be considered to be at a risk category III corresponding to a high-risk assembly building. While the church doesn't often fill with people according to church representatives, any event in which the church was to fill up with more than

300 people would classify the church as high risk. The flat roof snow load can then be calculated using the factors above estimated at 35 psf . A slope factor based on roof insulation is then determined based on roof insulation from figure 7-2a ASCE 7-10 and is used to find the slope roof snow load of acting vertically.

Wind loads were determined using the directional procedure under ASCE specifications. This procedure is outlined in Table 3. Specific regional constants such as basic wind speeds for Worcester were determined from the MSBC. The church is assumed to be a rigid closed building and contain a gable roof of a 45° slope. In Table 3, under step 7 wind pressures were calculated using the equation

$$
q_{z}=0.00256 K_{z} K_{z t} K_{d} V^{2}(p s f)
$$

where q_{z} is the wind velocity pressure, K_{z} is the velocity pressure exposure coefficient, K_{zt} is the topographical factor, K_{D} is the wind directionality factor, and V is the basic wind speed. The wind velocity pressures were then used to determine the wind loads using the equation

$$
p=q G C_{p}-q_{t}\left(G C_{p i}\right)
$$

where p is the wind load in psf acting on the surface of the church, q is the wind velocity pressure, G is the gust-effect factor, C_{p} is the external pressure coefficient, q_{t} is the wind velocity pressure at the mean roof height (for enclosed buildings), and $\mathrm{GC}_{\mathrm{pi}}$ is the internal pressure coefficient. For additional details and notes on the various load parameters, see appendix C .

Step 1: Determine risk category of building or other structure, see Table 1.5-1

Step 2: Determine the basic wind speed, V, for the applicable risk category, see Figure $26.5-1 \mathrm{~A}, \mathrm{~B}$, or C

Step 3: Determine wind load parameters:
$>$ Wind directionality factor, K_{d}, see Section 26.6 and Table 26.6-1
> Exposure category, see Section 26.7
$>$ Topographic factor, $K_{z \text {, }}$, see Section 26.8 and Figure 26.8-1
> Gust-effect factor, G, see Section 26.9
> Enclosure classification, see Section 26.10
$>$ Internal pressure coefficient, $\left(G C_{p i}\right)$, see Section 26.11 and Table 26.11-1

Step 4: Determine velocity pressure exposure coefficient, K_{z} or K_{b}, see Table 27.3-1

Step 5: Determine velocity pressure q_{z} or q_{k}, see Eq. 27.3-1
Step 6: Determine external pressure coefficient, C_{p} or C_{N} :
$>$ Fig. 27.4-1 for walls and flat, gable, hip, monoslope, or mansard roofs
$>$ Fig. 27.4-2 for domed roofs
$>$ Fig. 27.4-3 for arched roofs
$>$ Fig. 27.4-4 for monoslope roof, open building
> Fig. 27.4-5 for pitched roof, open building
$>$ Fig. 27.4-6 for troughed roof, open building
$>$ Fig. 27.4-7 for along-ridge/valley wind load case for monoslope, pitched or troughed roof, open building

Step 7: Calculate wind pressure, p, on each building surface:
$>$ Eq. 27.4-1 for rigid buildings
$>$ Eq. 27.4-2 for flexible buildings
$>$ Eq. 27.4-3 for open buildings

The first step in seismic design was determining the risk-targeted maximum considered earthquake (MCEr) spectral response accelerations at short periods, Ss , and at 1 -second period, S1. These values were determined through ASCE 7-10 figures 22-1 through 22-6. The next step was to determine if there was an exemption factor, which there was not for the location of the church. The third step is the determination of the Seismic Design Category (SDC). The SDC
assigned to a structure is a classification based on the risk associated with its unacceptable performance, and the level of soil-modified seismic ground motion at its site determined based on a 1% risk of structural failure in 50 years. In order to determine the SDC, the following items needed to be determined. The first is soil classification class, which was found to be class D through a web soil survey. Soil classes are based on the soil's runoff potential. Soil class D consists of soils that are clay loam, silty clay loam, sandy clay, silty clay or clay. Another is the S_{ds} and $\mathrm{S}_{\mathrm{d} 1}$. These were found through ASCE 7-10 Tables 11.4-1 and 11.4-2. The church was found to be in Risk Category III based ASCE7-10 Table 1.5-1. Next, we had to determine the fundamental period, T, and Ts. This was done through ASCE 7-10 table 12.8-1 and table 12.8-2. The response modification coefficient, R , was then determined which was 1.5 , and the seismic importance factor, Ie, was 1.0. The final step was to determine the seismic base shear, V. This is found with the equation

$$
V=C_{s} W
$$

The base shear was determined over the height of the structure.

Figure 13: Location of Seismic Forces on Building Structure
The forces act differently on the separate stories of the building, as shown above in Figure 13. Once the shear was found, the seismic load effects were able to be determined, E and E_{M} using equation

$$
E=p Q_{E} \pm 0.2 S_{D S} D
$$

4.1.2 Roof

The roof of the church consists of three primary layers which all worked to distribute the load onto larger members with greater load capacity and ultimately onto the truss. These members were determined through visual inspection and confirmed with the Massachusetts State Archive plan photos. These three layers include a 1.125 in roof deck running north-south, 2×8 rafters spaced 16 in O.C. running east-west, and 8×10 purlins spaced 9.7 ft O.C. running north-south.

Figure 14: Roof Members
Governing load combinations were determined from ASCE section 2.4. Each load combination considered dead loads, live loads, snow loads, wind loads, and seismic loads. These load combinations were calculated on a spreadsheet, and all the combinations that yielded a possible maximum load based on uniform loads and concentrated loads were tested on RISA 2D analysis software to determine maximum moments, shear, and deflection. The maximum moments
and shear that resulted from RISA could then be used for bending stress and transverse shear stress considerations.

The 2D analysis was performed along the length of the member (perpendicular to the members that ran beneath). This presented a challenge due to the roof angle causing the decking and purlins to exhibit a 3D loading scenario along its length. In order to convert the 3D loading into 2D loading, equivalent component loads acting perpendicular and parallel to the plane of the members were used. These conversions and resulting loading scenarios are shown in Figures 1522. Only, the forces acting perpendicular to the members were used to test for flexural strength, but all forces acting on the member were used to determine reaction forces that will be passed on to the members that lie below. The rafters (and truss) were analyzed without the conversion of component forces, as the model was already in a 2D loading scenario along its length. The original plan photos show that angle section members were used in order to resist the purlins from sliding due to the component forces acting parallel to the plane of the member (see Figure 14). Details of these angle section members are unknown.

Figure 15: Original Loading Scenario on the Roof Deck

Figure 16: Adjusted Loading Scenario on the Roof Deck

Figure 17: 2D RISA Design Loading for Roof Deck

Figure 18: Rafter Loading Scenario

Figure 19: 2D RISA Design Loading for Rafters

Figure 20: Original Purlin Loading Scenario

$$
\mathrm{P}=339 \mathrm{lb}
$$

Figure 21: Adjusted Purlin Loading Scenario

Figure 22: 2D Design Loading for Purlins

Maximum allowable bending and shear stress was determined through the AWC NDS based on various factors such as load duration, temperature conditions, moisture conditions, member dimensions, type of wood used, and what the member is used for. The maximum allowable bending and shear stress can then be compared with the ultimate bending and shear stress the member experiences to determine member adequacy.

4.1.3 Hammer Beam Trusses

The truss was analyzed separately using a MATLAB structural analysis program, due to limitations with RISA 2D. Three different cases were analyzed based on different load combinations. The first of these combinations was primarily gravity governed and can be seen in Figure 23. The loads in this case were calculated from the total reaction forces of the purlins under
$\mathrm{D}+0.75 \mathrm{~L}+0.75(0.6 \mathrm{~W})+0.75 \mathrm{~S}$ loading conditions. Additional uniform deadloads from sheathing and mechanical, electrical, and plumbing (MEP) were added to the top chord of the truss. Selfweights for all truss members were also added to the model.

Figure 23: Truss Case 1 Loading Scenario (Primarily Gravity Governed)
The second combination tested was primarily seismic governed and can be seen in Figure 24. The loads in this case were calculated from the total reaction forces of the purlins under $\mathrm{D}+$ 0.7E loading conditions. The same additional deadloads were added as in case one. Seismic loads were added at two discreet locations representing horizontal chords of a frame: at the base of the roof and the apex of the roof.

Figure 24: Truss Case 2 Loading Scenario (Primarily Laterally Governed)
The third combination tested was seismic and gravity governed and can be seen in Figure 25. The loads in this case were calculated from the total reaction forces of the purlins under $\mathrm{D}+$ $0.75 \mathrm{~L}+0.75(0.7 \mathrm{E})+0.75 \mathrm{~S}$ loading conditions. The same additional deadloads were added as in cases one and two, and seismic loads were added at the same location as in case two.

Figure 25: Truss Case 3 Loading Scenario (Gravity and Laterally Governed)
Whereas the size of the decking, purlins, and rafters were mentioned in the archive plans, no detailed plans of the truss exist, and the size of the members was not discussed. Consequently, the size of the members was left for us to measure. Because most of the members were out of reach, many of the members had to be estimated using visual inspection. To create a virtual model for MATLAB, a series of nodes was created. All primary members were divided up based on the location of the nodes. The structural analysis algorithm automatically creates fixed-end connections at each node. For each pin connection, an additional node was added and an infinitely small member with infinite flexibility connected the nodes. Once all the members were created at each node, 131 members were used for the computation with 106 nodes. For each member, the cross-sectional area and the moment of inertia were also defined. Two pin supports were placed on the truss at the bottom-most joints. MATLAB also cannot receive distributed loads in the algorithm and so all distributed loads from self-weight, sheathing, and MEP were broken up into
equivalent couple point loads and moments. Upon running the program, all of the axial loads, shear forces, and bending moments, nodal displacements, and reaction forces were determined and used to test for adequacy of the members. The reaction forces were also used for the corresponding wall analysis.

4.1.4 Floor

Upon visual inspection, the floor that ran between the basement and the sanctuary contain girders that ran east-west at the same location where the trusses lie. These girders are covered by the drop-down ceiling in the basement. The girders run through the original basement ceiling and so it is impossible to see what is between the original ceiling and the floor of the sanctuary. The archive plans suggest that the floor in made up of 2×12 spruce joists running north-south spaced 16 in O.C. and 8×12 girders spaced 15.3 ft running east-west sitting on top of lally columns spaced approximately 11 ft .

Load combinations for dead and live loads were applied to the joists and girders, and each was analyzed at first based on gravity loads only. Both the girders and joists were tested for adequacy with shear, bending moment, and deflection using the same techniques as those used to analyze the roof members. In this case, the analysis was performed by hand due to the simplicity of the model.

In order to incorporate lateral loads into the floor analysis. A 2D frame model was created which included the girder, lally columns, and buttresses that ran beneath the floor. Similarly, to the truss analysis, three loading scenarios were created by three different load combinations. The first was gravity governed and used the combination $\mathrm{D}+\mathrm{L}$ shown in Figure 26. The second was primarily laterally governed and used the combination $\mathrm{D}+0.7 \mathrm{E}$ shown in Figure 27. The third was governed by both gravity and lateral loads and used the load combination $\mathrm{D}+0.75 \mathrm{~L}+0.75(0.7 \mathrm{E})$ +0.75 S shown in Figure 28. For lateral load analysis, seismic loads were used over wind loads
because seismic loads were at a greater magnitude than the wind loads and ASCE permits the use of the greater of the two. In the model, pin connections were used at each end of the lally columns, as they are not designed to resist moment. Reaction forces calculated from RISA $2 D$ from the frame analysis was used as the influence of the floor in the wall analysis.

Figure 26: Gravity Governed Frame ($D+L$)

Figure 27: Seismic Governed Frame (D + 0.7E)

Figure 28: Gravity + Seismic Governed Frame ($D+0.75 L+0.75(0.7 E)+0.75 S)$

4.1.5 Walls

The walls of the church where the sanctuary are estimated to consist of the granite masonry buttress varying from 3-2 ft thick based on the height from ground level, 16in of additional granite masonry on the exterior side of the wall, several inches of brick masonry, an unknown air gap and insulation and plaster finish on the interior of the wall. The walls were analyzed at the weakest points. These weakest points primarily consisted of the section of wall in which the buttress connected to the truss and girder. A picture of the buttress can be seen in Figure 29. At first, the buttress (rectangular section) was tested to resist all loads. This was highly conservative and resulted in large amounts of tension in the masonry. A revised T-section analysis was performed to also include a larger section of the wall. These sections can be seen in Figure 30. The amount of wall permitted to be used in the section is based on a shear lag principle in American Institute of Steel Construction (AISC) chapter 16, section I3-1a stating that the effective width of the wall permitted to be used in the T-section shall not exceed one-eighth the height of the wall, or onehalf the distance to the centerline of adjacent buttresses. This is because the further away from the buttress, the less the wall is resisting the load. In this case, one-eighth the height of the wall is 3.75
ft on either side of the buttress centerline. Consequently 7.5 ft of the wall can be considered to resist the buttress for the 30ft tall wall.

Figure 29: Church Buttress
Four primary external loads are exerted into the walls. Two of which are vertical and horizontal component loads exerted from the truss at point B in Figure 30 and the other two are the vertical and horizontal component loads exerted from the girder at point D in Figure 30. The unit weight of granite is about 169 pcf. Because the exterior is granite masonry, mortar can be factored into the weight and the unit weight of granite masonry can be estimated at about 150 pcf . For simplification, when calculating for the self-weight of the wall and external moments caused by asymmetry in the cross-section, it can be assumed that the cross-section is completely comprised of granite masonry. The footing on the other hand is referred to as bed stone in the archive plans and as a result will be assumed to be pure granite at 169 pcf .

Three points along the height of the wall were analyzed for tension and compression forces at the extreme fibers of the cross-section. Point C is located immediately above where the buttress changes from two to three feet thick, point E is at the base of the buttress, and point F is located at the base of the footing. These points can be seen in Figure 30. The reason these three specific points are used is because they represent the point at which the buttress experiences the greatest moment under each cross-section. At these three points, all forces acting vertically both internally as self-weight and externally carried over from the truss and girder are calculated to come up with a total load, P. Total moment, M, is calculated by all loads, internally by asymmetry and externally through the truss and girder, acting at a distance away from the centroid of the cross-section. The purpose of calculating the tension and compression of the extreme fibers at point C and point E is to determine the adequacy of the buttress to resist moment and axial loads, but the purpose of calculating compression and tension at point F is to determine the effective size of the footing and the ultimate loads acting on the footing to compare alongside bearing capacity.

Once P and M are calculated the maximum tension and compression stress can be calculated using the equation

$$
\sigma=\frac{P}{A} \pm \frac{M c}{I}
$$

where P is the total load acting on the buttress at a given point, A is the cross-section over which the load acts, M is the total moment acting on the cross-section due to eccentricities, c is the distance from the centroid of the cross-section to the extreme fiber under which the most extreme compression/tension is experienced, and I is the moment of inertia of the cross-section.

Figure 30: Buttress Dimensions and Locations Analyzed
Three different loading cases were used to analyze the walls. The first of these cases, referred to as the gravity case, correspond to the $\mathrm{D}+0.75 \mathrm{~L}+0.75(0.6 \mathrm{~W})+0.75 \mathrm{~S}$ combination acting on the truss and the $\mathrm{D}+\mathrm{L}$ combination acting on the girder. The second case, referred to as seismic case 1 , corresponds to the $\mathrm{D}+0.7 \mathrm{E}$ combination acting on the truss and girder forcing the wall to deflect away from the interior of the church. The third case, referred to as seismic case 2 , corresponds to the $\mathrm{D}+0.7 \mathrm{E}$ combination acting on the truss and girder forcing the wall to deflect towards the interior of the church. These cases are shown in Figure 31.

Figure 31: The Wall was Analyzed Under Three Loading Cases: A Gravity Case and Two Seismic Cases
In order to size reinforcement for the buttress, an interaction diagram can be created for the buttress acting in both compression and flexure. Several suggested values from National Concrete Masonry Association (NCMA) are used to estimate the yield strength and elastic modulus of the masonry and steel. These values are used with concrete masonry and are conservative for use with granite masonry. In this case, an entire interaction diagram does not need to be created because the axial load in the buttress will remain constant. Instead, eccentricity in the buttress will change based on how much steel is used and how far the neutral axis shifts. Equilibrium for the buttress is calculated since the tension in the section plus the axial load equals the compression block in the section. Assuming that steel will yield first, different amounts of steel can be tested, and the neutral axis can be found using iteration so that $\mathrm{T}+\mathrm{P}=\mathrm{C}$ holds true. Once the neutral axis is found, the nominal moment in the buttress can be found about the steel and can be compared with the ultimate moment the buttress experiences to find adequacy.

Reinforcement can be anchored to the existing wall by means of steel anchors or shear studs. These studs will create composite action and the steel section will be able to resist all of the tension preventing cracking. According to AISC I8.3a, the amount of sheer each stud can withstand is proportional to the surface area of the stud multiplied by the yield strength of the steel. This shear resistance can then be used with the reinforcement area of steel to determine the number of studs required for full composite action.

4.1.6 Determination of Vibration Thresholds

With I-290 and Route 9 both in proximity of the church, there was some concern that traffic induced vibrations may be affecting the church's structural integrity. In order to investigate the vibrations experienced by the church, accelerometers were placed on the walls of the towers.

Figure 32: Onset HOBO Pendant G Accelerometer ${ }^{13}$
These accelerometers measured the acceleration of the vibrations experienced by the church over periods of time. The accelerometers measured vibration levels in the church from May 2019 until January 2020. Throughout this time, the accelerometers performed measurements of the vibrations with intervals ranging from 1 second to 1 minute. There were two placed in Tower 1 (Right) on the North and East sides and there were two placed in Tower 2 (Left) on the South

[^7]and West sides. In the towers, the accelerometers were on the second level which is about 40 feet above ground level.

Figure 33: Accelerometer Installed on Wall of the Right Tower
Vibration threshold analysis is the primary way to detect the level of vibrations a building can withstand without damage. Vibration thresholds are not the same for every building. For comparison, the human body can perceive very low levels of vibrations. Roughly, the perception threshold for steady-state vibrations is $0.03 \mathrm{in} / \mathrm{s}$. Most vibrations become disturbing at 0.1-0.2 $\mathrm{in} / \mathrm{s}^{14}$.

There are three primary factors that are used when selecting the appropriate criteria to determine vibration thresholds. The first factor is building type and condition, which considers responsiveness/sensitivity to vibration input and fragility. The second factor is vibration type, which considers what types of vibrations the building might be experiencing. For example, short term vibrations or steady state/continuous vibrations. The final factor is the importance factor,

[^8]which indicates additional conservatism, cultural, or economic value of the structure being analyzed.

In addition to the three key factors to keep in mind, there are four primary industry standards that were considered in this report. The first is the British Standards Institute (1993) which can be used for any vibration source. This is best to use for unreinforced or light framed structures that are experiencing cosmetic damage. The peak particle velocity for this standard is $0.3 \mathrm{in} / \mathrm{s}$. The second is the Swiss Standards Association (1992), which can be used for any vibration source as well. This is best to use for historic and protected buildings that are experiencing any type of damage. The peak particle velocity for this standard is $0.24 \mathrm{in} / \mathrm{s}$. The third is Deutsches Institut fur Normung DIN 4150-3 (1999) which can be used for any vibration source. This standard is best to use for buildings of great intrinsic value that are experiencing any permanent effect that reduces serviceability. The peak particle velocity for this standard is $0.25 \mathrm{in} / \mathrm{s}$. The last is the USBM RI-8507 which is mainly for ground vibration and surface mine blasting. The source that is the best fit for the church is the Swiss Standards Association 640 312. The Swiss Standards Association is the best fit for the church because it has the four different classes of standards that are specified for different building types. Classes 1 and 2 include industrial/commercial size buildings. Class 3 includes residential buildings in brick or concrete, office buildings, schools, hospitals, churches, well designed. Lastly, class 4 includes historic buildings. With the church being built in 1910 and still containing original structural elements, it fits into either class 3 as a church or class 4 as a historic building. In the Swiss Standards Association, class 4 standards are for historic buildings which are especially fragile because of their age and material. This was the standard that was used for the church with it being over 100 years old. According to the Swiss

Standards Association class 4 standards, the church would experience damage if a vibration of $0.59 \mathrm{in} / \mathrm{s}$ occurred instantaneously or if a vibration of $0.24 \mathrm{in} / \mathrm{s}$ occurred continuously.

4.2 Geotechnical Analysis

It is important to analyze the foundation of the church against typical modes of failure such as through settlement and bearing capacity. This process was performed using data from a representative soil profile, which acts like a model used to represent soil conditions and properties at various depths to be used for analysis. The analysis for bearing capacity was performed using Terzaghi's method. Settlement calculations were performed using the classical method based on past maximum stress. All geotechnical calculations are shown in Appendix C.

4.2.1 Determination of Soil Conditions

The Massachusetts Department of Transportation performed a geotechnical analysis in 2008 prior to the renovation of the overpass over route I-290 adjacent to the church. This analysis was based on in-situ data received from boring logs as well as various laboratory tests. The location of the boring logs can be seen in Figure 34. The first boring hole, B-1, is located closest to the church and can best represent the soil conditions beneath the church. Estimates for friction angles and unit weights were then found based off the data obtained from B-1.

Figure 34: Boring Locations Obtained from Massachusetts DOT

4.2.2 Foundation

The footings are described as bed stone in the archive plans and so they are assumed to be made of pure granite. The footings underneath the lally columns as well as the footings underneath the buttresses were considered for analysis both structurally for shear and bending and geotechnically for bearing and settlement. The footings below the buttresses are assumed to be 6in wider in every direction than the buttress that runs above the footing, and the footings below the lally columns are measured to be $2.5 \mathrm{ft} \times 2.5 \mathrm{ft} \times 1.3 \mathrm{ft}$ by the archive plans. It is assumed that granite behaves is a similar way to concrete and so when analyzing the footings for bending and shear, it can be assumed that the footings will have the same cleavage and other failure mechanisms as concrete. Consequently, American Concrete Institute (ACI) specifications were used for analyzing the footings for shear and bending.

Based on the first-floor frame analysis, the maximum axial loads that go into the lally columns are 8071 lb . The lally columns are measured to be 3.5 in in diameter. Typically, a baseplate is used to connect the column to the footing but because the dimensions of the baseplate are unknown, it is assumed that the column connects directly to the baseplate. Based on the geometry of the footing, critical sections for one-way shear can be created based on a distance, d , from the column where d represents the depth of the footing. For two-way shear, distance $\mathrm{d} / 2$ from the column to the edge of the footing in all directions defines the shape of the critical section. If the shear stress for the critical section is greater than the allowable stress of the footing, then the footing will fail for shear.

To test for bearing capacity, Terzaghi's method is used. Three imperial based constants are determined as a function of the soil's friction angle and are used to determine the ultimate bearing capacity of the soil. Also, in this method is the confining pressure at the base of the footing and the depth of the ground water table. Because the confining pressure and depth of the footing is
different depending on which side of the footing is being analyzed, this value is determined based on the way in which the footing is expected to fail. Based on the eccentric load acting on the buttress, the foundation will also receive a triangular distributed load which will govern how the footing wants to rotate. Also due to the eccentric load, only the effective width of the footing based on the part of the footing in compression is used in Tarzaghi's method. The ground water table is estimated to be about 28.5 feet below the surface, which is well below the embedment depth of the footing. It should also be noted that different formulae exist for Terzaghi's method for different footing shapes. In this case, the buttress footing is continuous and the lally column footing is square. The resulting equation used to find the bearing capacity for continuous footings is

$$
q_{u l t}=c^{\prime} N_{c}+\sigma_{D}^{\prime} N_{q}+0.5 \gamma^{\prime} B N_{\gamma}
$$

and for square footings is

$$
q_{u l t}=1.3 c^{\prime} N_{c}+\sigma_{D}^{\prime} N_{q}+0.4 \gamma^{\prime} B N_{\gamma}
$$

where $\mathrm{qult}_{\mathrm{t}}$ is the ultimate bearing capacity, c^{\prime} is the effective cohesion, $\sigma^{\prime}{ }_{\mathrm{D}}$ is the vertical effective stress at depth $\mathrm{D}, \gamma^{\prime}$ is the effective unit weight of the soil, B is the footing width, and $\mathrm{N}_{\mathrm{c}}, \mathrm{N}_{\mathrm{q}}$, and N_{γ} are bearing capacity factors as a function of the friction angle.

4.3 Envelope Analysis

Figure 35: Section Drawing of the Worcester Gospel Church
Through site surveys, wall samples, and existing documentation our group was able to determine the construction of the church's envelope shown in Figure 35. These details were incorporated into all elements of this report and were necessary to determine structural performance, heating and cooling loads and energy analysis.

4.3.1 Walls

All walls in the sanctuary and basement are primarily solid. Locations of wall studs were not able to be determined based from site surveys as well as pre-construction plans. The preliminary architectural plans that were obtained from the Massachusetts State Archive guided this analysis assuming that the primary wall construction of the church is $15-16$ " masonry wall comprised of granite blocks (depending on block thickness), one course of brick (3 "), and then 1 "
of plaster on metal lathe. There are most likely studs where the metal lathe is attached, however the air gap space is minimal. These details of the envelope were analyzed and incorporated into the structural and energy analysis of the building.

In the process of removing the portions of wall from the towers for them to "dry out", wall construction of the towers was determined. It was found that (from the outside to inside) there is 15-16" of granite stone (depending on block thickness), one course of brick (3"), a 5" air gap, studs every 24 " O.C., and then 1 " of plaster on metal lathe.

In late November 2019, a temperature/relative humidity sensor was placed behind the wall in the right tower in the air gap of the wall through the hole that was created in order to quantify the moisture content inside of the walls.

4.3.2 Roof

An internal visual inspection of the roof from the 1st floor access door through the Woman's restroom was attempted to determine the overall roof construction. Initial plan drawings and U-value ratings were based on long-range observations and were most likely not accurate. However, based on initial observations and plans obtained from the Massachusetts State Archive, a much better idea of the roof construction was able to be ascertained. The roof was determined to be (from outside to inside) interlaid $1 / 8$ " slate shingles overlapped, 1.125 " roof decking, mounted $2 x 8$ rafters spaced $16^{\prime \prime}$ O.C. running east-west, 8×10 purlins spaced 9.7 ft O.C. running northsouth, and the hammer beam truss. These details were integrated into our energy and structural analysis.

4.3.3 Windows

The specifications of the stained-glass windows in the sanctuary are typical of stained glass produced around 1910. Typical U-values of these windows are consistent with modern 3 mm single pane, clear glass and our analysis followed these recommendations. Since we were unable to
perform exacting tests to determine the actual U-values and solar heat gain coefficients of the stained glass, ASHRAE standards for 3 mm clear glass was incorporated into energy analysis. Windows in the gym and basement are double glazed window systems and were incorporated into our analysis assuming such.

4.4 Energy Analysis

Figure 36: DesignBuilder Energy Model and ASHRAE Baseline Model
A digital model of the Church was created in the energy modeling software, DesignBuilder. DesignBuilder performs complex energy and building envelope heat loss/gain calculations based on user supplied building constructions and geometries and then establishes baselines from these criteria. A simplified model of the church was created with envelope constructions based on our observations and findings from the pre-construction plans. This software allows one to determine the heating/cooling loads of a building and the total amount of energy required to make the building comfortable based on its present condition. DesignBuilder requires a great deal of trial and error
to ensure that complex geometries do not cause a simulation to fail. The tops of the towers of the church were not included in the simulation due to geometric/mathematical errors they introduced in the software as displayed in Figure 36. With DesignBuilder, potential improvements (i.e. insulation, double paned windows) can be added to the building envelope and then the energy savings due to theorized improvements can be quantified and considered. Due to the size and complex geometry of the church, a heating or cooling analysis of the church took 3-4 hours of computation time while advanced parametric and pareto front optimizations that involved many variables required days of computational time.

One of the most important factors to establish the required heating and cooling load was to create an annual local weather data set. The outdoor temperature sensor placed outside the church was used as a baseline to confirm that the annual temperature information provided by ASHRAE is valid. The ASHRAE standards are more accurate and contain more points than any data set that could have created by establishing a new localized weather data set. Annual local weather data gathered at the Worcester Airport, located approximately 4 miles away, was used in the DesignBuilder analysis. By establishing digital models and utilizing local weather data, an energy analysis of the building can be created based on annual conditions, and a much more accurate heating and cooling model than would otherwise be possible by using hand calculation methods can be created. By utilizing all these factors, creating accurate heating/cooling load and energy consumption figures is much more obtainable, especially in a building with such complex geometry.

4.4.1 Occupancy

DesignBuilder provides the option to input schedules as to when the building is occupied and must be heated/cooled appropriately. Based on the information that was given by Jonas Chang based on the size of the congregation and time and size of afterschool activities, an occupancy
schedule of the church was created. This schedule assumes that the Sanctuary would be in use from 8am-3pm every Sunday. The basement would be partially utilized during weekday mornings for staff and primarily utilized weekday afternoons for after-school activities. The gym followed similar schedules to when there is activity in the church and during afterschool activities. These schedules determine when heating setback points are to be changed for optimal comfort, while reducing temperature in large portions of the building when they are not in use, but still active to provide adequate building conditioning. These occupancy factors also include a rough estimate of electricity that is used by lighting, computers, televisions, audio systems, etc, that contribute to the overall energy consumption of the building.

4.4.2 Walls

Figure 37: Determined Church Wall Construction

It was assumed in the preliminary estimates of the heating load required by the sanctuary that the walls were composed of 24 " of stone. Once a better understanding of the actual building
construction was established, a complete analysis was performed. The hand calculations of potential wall U-values were different compared to the DesignBuilder energy analysis. DesignBuilder includes the unique individual thermal properties of the church's building envelope elements (Figures 37 \& 38) built into its software rather than using the ASHRAE standards of generic stone in the hand calculations. The DesignBuilder analysis is likely more accurate and allows for more complex analysis based on comprehensive weather data and thermal bridging of envelope components.
4.4.3 Roof

Figure 38: DesignBuilder Energy Model and ASHRAE Baseline Model

The roof deck over the sanctuary is currently uninsulated and is enclosed in an attic space that is not visible or accessible to the congregation. Adding insulation to this space was one of the first aspects considered for potential building energy improvements. Such an improvement could
be implemented relatively easily compared to the other envelope suggestions in this report. A simulation was created by comparing the existing roof construction and comparing the differences if adding modern code compliant insulation was installed.

4.4.4 Windows

As discussed previously, the condition of the stained-glass windows in the sanctuary are responsible for a great deal of air infiltration as well as heat loss from the building. Repairing the windows will help greatly with these issues. Simulations were performed assuming that the windows were mechanically intact when in reality they are not. The windows were simulated by using values for 3 mm clear glass which is very similar to standards associated with stained glass. ${ }^{15}$ In this analysis, the windows in the sanctuary were simulated with double and triple glazed fenestrations to see their overall improvement to the building's energy consumption.

4.4.5 Heating Setpoints

By understanding the influence of overall heating and cooling setpoints of the building, a better understanding of maximizing comfort and energy savings. By modeling the current fuel oil boiler system, set point temperatures can be quantified to actual energy expended and the overall cost associated with these set points.

4.5 HVAC Analysis

When the church was constructed, the primary heating method of most buildings was coal, which was inexpensive and plentiful in the United States. Remnants of this heating method can be observed by the coal chute and sub-basement construction. Currently, the church's primary heating is provided by a hot water radiator and baseboard heater system fueled by oil. Hot water is pumped through pipe loops that run to baseboard heaters and radiators throughout the church and the cooled

[^9]water is returned to the boiler to be reheated. The gym has forced air, electric heaters installed that appear to be close to 30-40 years old. There has never been any form of cooling/air conditioning installed in the building as records indicate. As identified by the church, there are significant issues with retaining heat in the building. These analyses were performed assuming that the building envelope at present is intact. Current energy consumption is likely much higher due to the defects with the roof and windows. Before installation of a new heating/cooling system is to take place, correcting these issues should be the first step to making significant building improvements. Due to many unknown factors while performing this analysis, this information should be used as a baseline to understand the heating and cooling requirements of the church. Any design of a new heating or cooling system should first be fully vetted.

4.5.1 System Sizing

Calculations to determine the total amounts of heating and cooling required were reached by using hand calculations as well as the DesignBuilder simulation model. Hand calculations were performed to determine the R and U values of the building envelope components. These R and U values were then used to determine the heating load for an average Worcester winter temperature of 34.7 F with an internal operating temperature of 70 F based on the overall wall and window areas across the church. A similar method was utilized to determine maximum cooling loads at the peak temperature times during the summer. Hand calculations for summer cooling loads were performed with different variables to ensure that the overall sizing of the system would remain in the same range. It is assumed that the DesignBuilder analysis is more accurate due to the utilization of complex geometries and volumes of the church as well as its ability to integrate complex ASHRAE weather data into its analysis. Hand calculations were divided into three primary sections, based on volume: The Sanctuary, Gym, and Basement.

4.5.2 Heating Load

Hand heat loss calculations were performed assuming an average Worcester winter temperature of 34.7 F for the whole building divided into three zones. Initial estimates of the sanctuary heating load that were presented in A-term were calculated assuming the walls were made of $24 "$ stone and the roof was a standard uninsulated roof deck. This was done before the original proposed building plans were obtained from the Massachusetts State Archive.

DesignBuilder calculated the total heating design load of the church for worst case winter scenarios using ASHRAE weather data beyond the hand calculations utilizing an average Worcester winter temperature. Additional steady state heat loss calculations were performed that to confirm findings determined by hand calculations. Internal heating times were determined by the occupancy schedule defined, as well as internal operating temperatures of 68 F and a heating setback of 62 F . This analysis included areas of the church that were not included in the hand calculations and would be assumed to remain unconditioned in the future.

4.5.3 Cooling Load

Cooling loads were determined by hand calculations determined by average and peak summer temperatures and a general understanding of the shading that the building experiences from its surroundings and other buildings utilizing ASHRAE standards. The assumed summer internal operating temperature was 74F. DesignBuilder was utilized to verify these numbers, but a cooling system was not integrated into the computer simulation, as one does not currently exist in the Church, and the current digital model was made so that conditions were as true to life as possible. Peak summer cooling loads were calculated to also include occupancy of the church assuming a $255 \mathrm{BTU} / \mathrm{Hr}$ addition per person in the building and an estimate of electrically powered equipment in operation adding to the heat gain.

4.5.4 Potential Heating Cooling System Options

Based on the current boiler/hot water heating system that is presently installed provides heat through baseboards located throughout the building. There were several analyses that were performed in order to determine if a new type of HVAC system would result in overall lower energy consumption and as few annual discomfort hours as possible while the building is occupied. Because of the existing hot water heating system utilizing boilers, trying to undertake a complete overhaul and reinstallation of a new heating system would be expensive based on the buildings construction. Based on energy simulations in DesignBuilder and research there are a few heating/cooling systems that would result in lower energy consumption compared to fuel oil and improve overall efficiency within the building.

4.5.5 Hot Water Baseboard Fuel Type Comparison

By utilizing DesignBuilder to establish total amounts of fuel oil required to heat the building according to the occupancy schedule and heating setpoints specified, an analysis was performed to create a reasonable comparison between the current fuel oil consumption (given that the building was conditioned appropriately during off-hours) versus using natural gas using the same occupancy schedule. Since the church is in close proximity to several large-scale public buildings (UMass Memorial Hospital, Worcester Police Station) obtaining service from a natural gas line should be relatively easy.

5.0 Results

While performing all of the calculations for structural integrity, energy usage, and HVAC options, numerical data was gathered to determine the exact details of what was analyzed. Much of this data was generated through numerical analysis aided with various software packages such as RISA, MATLAB, and DesignBuilder. The results and observations regarding this data are summarized and discussed in this section.

5.1 Structural Analysis

The structural analysis was performed to determine the adequacy of all major structural members, both through strength and serviceability, as well as determine if there are any vibrationinduced consequences due to the adjacent roads and highways that are of any concern. The magnitude of all maximum stresses and deflection in all members were calculated and compared with their respective allowable magnitude to be used as a bases to determine adequacy.

5.1.1 Determination of Loads

All loads were determined with accordance to ASCE 7-10 standards. A summary of all of the gravity loads are presented in Table 4. Seismic loads are shown in Figure. Wind loads are shown in Figures Figur and Figure. These loads represent the design loads used to analyze all major structural members in the sanctuary.

Table 4: Gravity Loads

Load Type	Cause	Acting on	Magnitude
Dead	Slate	Roof	42 psf
Dead	Chandelier	Purlins	100 lb
Dead	MEP	Truss	5 psf
Dead	Roof Decking	Roof Decking	2.4 psf
Dead	Rafters	Rafters	2.84 plf
Dead	Purlins	Purlins	14.21 plf
Dead	Sheathing	Truss	1.683 psf
Live	Roof	Roof	20 psf
Live	Maintenance	Roof	300 lb
Live	Sanctuary	Joists	60 psf
Dead	Carpet	Joists	3 psf
Dead	Decking	Joists	2.4 psf
Dead	Joists	Joists	4.263 plf
Dead	Girders	Girders	17.05 plf
Dead	MEP	Girder	10 psf
Snow	Snow	Roof	24.5 psf

Figure 39: Seismic Loads Acting on Church

Figure 40: Wind Loads Acting on Church (Section View)

Figure 41: Wind Loads Acting on Church (Plan View)

5.1.2 Roof

A summary of the results for all members of the roof in the sanctuary are shown in

Table 5. Bending refers to bending stress/flexural stress, and shear refers to transverse shear stress. If the allowable bending stress, shear stress, compression, and deflection are greater than the ultimate bending stress, shear stress, compression, and deflection, then all members are adequate under strength and serviceability requirements under the assumed loading. In this case, all members are adequate.

Table 5: Comparison of Ultimate and Allowable Stress and Deflection Experienced by Roof Members

Members	Type	Ultimate Value	Allowable Value
Decking	Bending	287 psi	1787 psi
Decking	Compression Perpendicular to Axis	15.93 psi	425 psi
Decking	Deflection	0.006 in	0.27 in
Rafters	Bending	581 psi	1509 psi
Rafters	Shear	31.8 psi	31.8 psi
Rafters	Deflection	0.13 in	0.32 in
Purlins	Bending	749 psi	1656 psi
Purlins	Shear	41.97 psi	216 psi
Purlins	Deflection	0.374 in	0.51 in
Truss	Axial	323 psi	960 psi
Truss	Bending	1103 psi	1397 psi
Truss	Shear	98.8 psi	216 psi
Truss	Deflection	2.3 in	1.7 in

5.1.3 Hammer Beam Trusses

The hammer beam truss was analyzed under three different loading cases: gravity governed, lateral (seismic) governed, and gravity and lateral governed. The results from the MATLAB analysis are shown in the following figures. Figures Figure, Figure, and Figure summarize all of the axial loads in the truss for each case and represent the load path taken by the external forces coming from the purlins. Figures Figure, Figure, and Figure summarize all of the axial stresses in the truss for each case. Red refers to compression whereas blue refers to tension. Note that the colors used in the gravity case are proportioned with $15,000 \mathrm{lb}$ and 175 psi representing the maximum loads and stress possible whereas the lateral cases with greater loads are represented with $30,000 \mathrm{lb}$ and 300 psi representing the maximum loads possible.

The truss was also analyzed for deflection and is shown for each of the three cases in Figures Figure, Figure, and Figure. Under the gravity case, the truss deflects inwards and pushes out at its base. Under the lateral cases, the truss deflects to the side. It is important to note that the
deflection shown in these images are exaggerated for visual purposes. The true deflection is very small-less than an inch for most member nodes.

All reactions for the truss in each case were recorded and shown in Figures Figure, Figure , and Figure. These reactions represent the magnitude and direction of the forces that are required to resist the loads acting on the truss and are equal and opposite in direction to the loads the truss exerts onto the buttress. All of the numerical details for axial loads/stresses, shear, bending, and deflection for each member can be seen in a table in appendix C .

Table 6: Comparison of Ultimate and Allowable Stress and Deflection Experienced by Truss Members (Worst Case MembersSee Appendix D on Details for Members and Nodes)

Member	Type	Ultimate Value	Allowable Value
72 (Case 2)	Axial	323 psi	960 psi
36 (Case 2, Node 8)	Shear	98.8 psi	216 psi
35 (Case 2, Node 67)	Bending	1103 psi	1397 psi
39 (Case 2, Node 9)	Deflection	2.3 in	1.7 in

Figure 42: Member axial loads experienced under case 1 (primarily gravity governed)

Figure 43: Member axial stress experienced under case 1 (primarily gravity governed)

Figure 44: Member axial loads experienced under case 2 (primarily lateral governed)

Figure 46: Member axial loads experienced under case 3 (gravity and lateral governed)

Figure 47: Member axial stress experienced under case 3 (gravity and lateral governed)

Figure 48: Truss Deflection Under Case 1 Loading Conditions (Primarily Gravity Governed)

Figure 49: Truss Deflection Under Case 2 Loading Conditions (Primarily Laterally Governed)

Figure 50: Truss Deflection Under Case 3 Loading Conditions (Gravity and Laterally Governed)

Figure 51: Truss Reactions Under Case 1 Loading Conditions (Primarily Gravity Governed)

Figure 52: Truss Reactions Under Case 2 Loading Conditions (Primarily Laterally Governed)

Figure 53: Truss Reactions Under Case 3 Loading Conditions (Gravity and Lateral Governed)

The adequacy results for the truss are shown in Table 6. All of the members of the truss are acceptable for strength considerations. The ultimate axial stresses, bending stresses, and shear stresses for all members in all cases are below the maximum allowable axial stresses, bending stresses, and shear stresses. For serviceability considerations on the other hand, the maximum allowable deflection of 1.7 in is below the ultimate deflection of about 2.3 in under lateral case 2 . For comparison, the maximum deflection under the gravity case is 0.1 in . That means that during a major seismic event, under the most extreme circumstances, potential displacement in the roof can cause minor ceiling damage to the plaster, but the roof is in no danger of caving in. This effect though may be reduced as there is a gap between the truss and the ceiling.

Based on these results, the truss is very well designed to resist gravity loads whereas the truss is not well designed to resist lateral loads. This is likely due to the many vertical members called hammer beam posts which help to distribute the gravity loads from the upper braces to the lower braces. The lateral conditions can also create a lot of tension in some of the connections of the truss that are potentially not designed to take tension. It may be prudent to inspect the trusses and their supports at regular intervals.

5.1.4 Floor

A summary of the results for all members of the floor in between the sanctuary and basement are shown in Table 7. The members were analyzed in a very similar way to the roof members (see section 5.1.2). In this case, all members were adequate.

Table 7: Comparison of Ultimate and Allowable Stress and Deflection Experienced by Floor Members

Members	Type	Ultimate Value	Allowable Value
Joists	Bending	679 psi	1006 psi
Joists	Shear	44 psi	135 psi
Joists	Deflection	0.29 in	0.51 in
Girder	Bending	960 psi	1035 psi
Girder	Shear	78.1 psi	135 psi

Girder	Deflection	0.30 in	0.44 in

5.1.5 Walls

A summary of the results for the walls at the location of the buttresses are shown in Table
8. The maximum tension and compression refer to that experienced at the extreme fibers of the cross-section, which occurs at the most interior and most exterior parts of the cross-section.

Table 8: Maximum Tension and Compression Experienced by the Buttress within the Cross-Section at Critical Heights under Various Loading Scenarios

Case	Point	Maximum Compression (psi)	Maximum Tension (psi)
Gravity	C	61.57	0
Gravity	E	89.01	0
Gravity	F	50.86	0
Seismic 1	C	90.99	11.53
Seismic 1	E	145.10	21.72
Seismic 1	F	81.48	10.52
Seismic 2	C	46.45	27.29
Seismic 2	E	72.84	48.47
Seismic 2	F	53.17	23.89

According to the National Concrete Masonry Association (NCMA), normal type Portland cement mortar used in brick masonry found on the interior of the wall has an allowable tensile stress normal to the bed joints of 30 psi which is greater than the ultimate tensile stress of 21.72 psi under seismic case 1 . Consequently, if the assumptions that were made for the wall analysis are correct and if the brick is in good condition, no reinforcement is needed for the buttress. Unfortunately, conditions of the masonry are unknown and due to moisture and neglect it is possible that overtime the mortar bonding in the brick can rupture during a seismic event and cracking can occur. In this case, assuming poor masonry conditions, tensile reinforcement should be sized for the interior of the wall to prevent cracking.

Based on this analysis, it was found that any amount of steel will work when placed 52 inches from the left most end of the buttress. The reason for this is because the location of the
neutral axis is primarily governed by the location of the steel reinforcement and the buttress will not crack at all beyond the location of the neutral axis. The amount of compression the buttress is under prior to cracking is also far below the allowable yield stress of the masonry even with conservative assumptions. This allows the neutral axis to shift freely without the risk of the buttress to fail under compression. Reinforcement is still necessary though because if the cracking propagates all the way through the buttress, it will fail. Consequently, a small thin section of reinforcement is all that is necessary.

Based on the calculations found in appendix C, five $1 / 2$ in studs are required for full composite action which would put the spacing of the studs at 44 in between the basement floor and the base of the truss. The maximum spacing for shear studs based on AISC section I8.2d is 36 inches requiring 7 studs to be placed 33 inches.

When analyzing the buttress for reinforcement for seismic case 2, the exterior granite masonry is in tension where the maximum tension is about 48 psi. Normal type Portland cement used for concrete masonry has an allowable tensile stress parallel to the bed joints in running bond of 60 psi. Because the granite masonry is visually in good shape, no major evidence of cracking exists on the exterior, and the granite masonry has a cross-section for mortar placement that provides for more tensile resistance than concrete masonry, the granite masonry is adequate for tensile stresses under maximum seismic loading conditions.

5.1.6 Determination of Vibration Thresholds

With I-290 and Route 9 directly adjacent to the church, there were some concerns that the vibrations may have been affecting the structure. Mentioned previously in the methodology, we found that the church would experience damage if a vibration of $0.59 \mathrm{in} / \mathrm{s}$ occurred at an instant or if a vibration of $0.24 \mathrm{in} / \mathrm{s}$ occurred continuously according to the Swiss Standards Association 640 312. Based on the data from the accelerometers in the towers and shown in Table 9 below, the highest acceleration experienced by the church was 0.025 g and the highest velocity experienced by the church was $0.08 \mathrm{in} / \mathrm{s}$. This value does not approach the peak particle velocity of vibration the church can withstand. This means that the vibrations the church is experiencing daily is not an issue for the longevity of the structure. Although, the accelerometers that were used to obtain this data were only able to hold a limited amount of storage due to cost. There is a possibility that the true maximum acceleration may not have been recorded with these accelerometers.

For comparison, in terms of seismic loads, the peak ground acceleration for a structure to even experience very light damage is 0.039 g . With our data being within the range of the seismic data, it confirms that our accelerometer data is accurate. Also, the PPV for the church to experience physical damage, such as hairline cracking, is $0.75 \mathrm{in} / \mathrm{s}$. This value is also much above the highest velocity experienced by the church. Our group was then able to determine that the cracks in the plaster of the church are from the moisture issues rather than vibrations.

Figure 54: Site Plan Showing the Close Proximity of the Church, I-290 and Route 9
Table 9: Max Values Experienced by Accelerometers

Accelerometer	Max Acceleration (g)	Max Velocity (in/s)
Tower 1 East	0.025	0.08
Tower 1 North	0.025	0.08
Tower 2 South	0.023	0.074
Tower 2 West	0.022	0.07

5.2 Geotechnical Analysis

There were some initial concerns geotechnically with the church and its proximity to the retaining wall and the highway. The retaining wall is of little concern to the church as most of the influence in failure caused by the soil is vertical rather than horizontal. That means that the retaining wall will cause little concern on the church but potential settlement in the church can cause extra horizontal forces that should have been considered when constructing the retaining wall.

Besides the retaining wall concern, other results from the geotechnical analysis such as bearing capacity, and settlement will be addressed in this section.

5.2.1 Determination of Soil Conditions

Based on the soil classification from the Massachusetts DOT overpass project, it was found that all soil that exists below the foundation is fine sand with a unit weight of about 120pcf and a friction angle of 34 degrees. A representative soil profile was created to show the layers of soil as well as each layer's unit weight and friction angle. This profile is shown in Figure. One consequence of fine sand is that any settlement experienced by the columns are immediate shortterm settlement and no long-term settlement exists. No major evidence of cracking in the walls also suggest that there is no evidence of long-term differential settlement and as a result when sizing the footings, they only need to be tested against bearing capacity failure.

Figure 55: Design Soil Profile Estimated for the Christian Gospel Church Based on Boring Log Data from the Massachusetts Department of Transportation

5.2.2 Foundation

Upon testing the foundation for bending and shear below the buttresses, it was found that these footings are only slightly larger than the buttresses themselves, and any critical sections for shear and moment exist outside of the footings. This means that there is no risk of failure of the footings due to structural causes. The footings below the lally columns were of the same depth as the buttress footings despite only carrying about 10% of the load the buttresses carry. That means that the footings were sized very conservatively for structural failure.

To test the footings for failure due to geotechnical limitations, the factor of safety was compared with the required factor of safety. This comparison is shown in Table 10. For all the footings under all loading conditions, the footings were acceptable for bearing capacity.

Table 10: Comparison of ultimate and allowable stress experienced by the footings

Footing Location (Loading Type)	Factor of Safety	Required Factor of Safety
Buttress (Gravity)	3.14	1.6
Buttress (Seismic 1)	1.83	1.6
Buttress (Seismic 2)	3.75	1.6
Lally	10.46	1.6

5.3 Envelope Analysis

Envelope Analysis was performed through a combination of methods (DesignBuilder model and hand calculations). These analyses were possible through production of thorough digital models that were produced from site surveys and documentation obtained from the Massachusetts State Archive.

5.3.1 Walls

Using ASHRAE calculation methods, the U-Value of the church walls are estimated to be: $0.328 \mathrm{BTU} / \mathrm{h}^{*} \mathrm{ft}^{\wedge} 2 * \mathrm{~F}$. The U-value of the tower walls with air gaps are estimated to be 0.409 $\mathrm{BTU} / \mathrm{h} * \mathrm{ft}^{\wedge} 2 * \mathrm{~F}$.

It was assumed in the preliminary estimates of the heating load required by the sanctuary performed in the fall of 2019 , that the walls were just 24 " of stone. The actual wall construction is displayed in Figure 56. The hand calculations of potential wall U-values were different compared to the DesignBuilder energy analysis. DesignBuilder includes the unique individual thermal properties of the church's building envelope elements. built into its software rather than using the assumption of full generic stone in the hand calculations. The DesignBuilder analysis is likely far more accurate and allows for more complex analysis based on comprehensive weather data and thermal bridging.

Based on the findings from the Relative Humidity sensor placed inside of the wall, it was found that the relative humidity levels behind the plaster was nearly at 100% as displayed by the graph in Figure 57. This reveals that the air gap in the tower is completely saturated. As discussed previously in the report, it is most likely that the leading cause of water infiltration is due to the issues with the roof and its waterproofing components. Developing a way of drying out the towers is critical in order to maintain the integrity of the building and the air holes that were cut will hopefully improve this situation until the roof can be repaired. This saturation can be visualized when viewing the walls on the mezzanine level by viewing the water staining and cracks in the plaster.

Figure 57: Temperature and Humidity Readings Inside the Right Tower Wall from November to December 2019

5.3.2 Roof

The U-Value of the roof is estimated to be between 0.237 and $0.274 \mathrm{BTU} / \mathrm{h}^{*} \mathrm{ft} \wedge 2 * \mathrm{~F}$ based on its construction and positioning of the purlins. This U -Value assumes that the envelope of the roof is complete and does not have any defects. However, due to the holes and separation in the
roof and weakening of the wood envelope, it is likely that the actual U -Value of the roof is much higher and significantly contributes to the overall heat loss of the building.

5.3.3 Windows

The U-Values used for the windows was $1.078 \mathrm{BTU} / \mathrm{h}^{*} \mathrm{ft}^{\wedge} 2^{*} \mathrm{~F}$. The accepted ASHRAE standard for stained glass is $1.09 \mathrm{BTU} / \mathrm{h}^{*} \mathrm{ft} \wedge 2 * \mathrm{~F}$. During site surveys of the building, it was observed that there were many portions of stained glass that have cracks, holes, missing components, and are failing due to warping. These issues with the windows are another factor contributing to the discomfort that is being felt inside the sanctuary during services. Since there are open holes, air infiltration is prevalent and causing drafts, exacerbating heat loss, and causing excess humidity throughout the church. It should also be noted that the primary component of stained-glass windows is lead, which is used as a barrier between colors on stained glass. For safety reasons, it is recommended that patrons should not touch the windows due to health concerns and barriers to prevent access be established.

The windows throughout the gym and basement have been upgraded to double hung, double paned windows and appear to have no issues. It was estimated that the U-Value of these windows was $0.50 \mathrm{BTU} / \mathrm{h}^{* f t}{ }^{\wedge} 2 * \mathrm{~F}$.

5.4 Energy Analysis

The building as currently standing (assuming an intact envelope) is within national energy consumption guidelines. Based on this analysis with the assumed occupancy settings, the building is estimated of having an annual energy consumption of $781,909 \mathrm{kBTU}$ between heating and electricity consumption. $565,966 \mathrm{kBTUs}$ are utilized for heating needs annually. This comparison is shown in Figure 58.

Figure 58: ASHRAE Baseline vs. Existing Building Energy Consumption Comparison

5.4.1 Walls

Based on the DesignBuilder and hand calculation analysis, most heat loss in the church is due to the granite massing walls. Unfortunately, due to the orientation of the church, most thermal mass effects due to sun exposure is experienced by the front of the building due to the sun path. This design choice was most likely done intentionally so that the sun would shine through the front facing stained glass windows during services. The high-rise apartment building across Belmont Street also blocks most of the sun path annually.

Adding insulation inside of the walls is not an option due to the construction of the building (i.e. no large air gaps in the walls to add blown-in insulation). However, an analysis was performed to quantify improvements by adding varying ratings of insulation on the inner surface of the church to see the improvement in heat loss (Figure 59). Adding a layer of R-20 or R-30 Insulation to the inner surface of the walls would result in approximately $147,000 \mathrm{BTU} / \mathrm{Hr}$ improvement to the
buildings heat loss issue. This would result in a 26% improvement of the buildings energy consumption.

Figure 59: Existing Wall Construction vs. Proposed Wall Insulation Improvement Comparisons
Any improvements that could be made to insulate the walls would make a significant difference in annual heat loss and fuel consumption. Improvements to the insulative properties of the wall should be investigated as this will create the most noticeable improvements. However, if a similar solution is implemented, it is important to consider additional condensation effects that may occur by adding another layer of insulation on the existing wall. Any modifications to the wall envelope should be first vetted by an engineer experienced with building enclosure improvements as this would be a significant undertaking.

5.4.2 Roof

The roof deck over the sanctuary is currently uninsulated and in an attic space that is not visible or accessible to the congregation. Adding insulation to this space was one of the first things considered for potential building improvements. Such an improvement could be implemented relatively easily compared to the other envelope suggestions in this report. A simulation was created by comparing the existing roof construction and comparing the differences if adding roof code compliant insulation was installed (Figure 60). By installing R-30, R-35, or R-40 batt insulation in the roof deck would result in an approximate improvement of $47,000 \mathrm{BTU} / \mathrm{Hr}$ or an 8.3% improvement to the buildings energy consumption.

The most pressing issues with the roof are external due to gaps in the slate and issues with the waterproofing methods, leading to water infiltration and exacerbated heat loss. The simulation that was performed assumed that the roof's envelope is intact and will retain heat appropriately. Unfortunately, this is not the case with its current condition and its current insulative properties are unknown. It could be assumed that performing necessary roof repairs and adding insulation would result in a much greater overall energy improvement than 8.3%. It should be considered if the church is going to be reroofed, either with slate or a more cost friendly solution, to consider the addition of insulation in the roof deck at the same time to minimize labor costs.

5.4.3 Windows

It was found that a double-glazed window system of 3 mm clear glass with a 13 mm air gap of air or argon would result in the best energy savings over triple glazed systems if instituted in the church (Figure 61). Adding a secondary 3 mm layer of glass with an air gap would result in a $17,000 \mathrm{BTU} / \mathrm{Hr}$ or a 3% improvement in annual energy consumption, while an argon filled double pane window system would result in an $19,000 \mathrm{BTU} / \mathrm{Hr}$ or a 3.4% improvement.

Glazing type

Figure 61: Existing Window Energy Consumption vs. Proposed Window Improvements Comparisons
While these improvements may not appear to be significant, the actual condition of the windows is akin to having them partially open all the time. Repairing the windows, independent of adding another layer of glass, will dramatically improve the overall discomfort that is felt in the sanctuary by reducing drafts and heat loss.

5.4.4 Heating Setpoints

Adjusting the church's heating setback to 60 F from 63 F results in an annual energy savings of 30,000 BTU or a 5% reduction in heat needed (Figure 62). Identifying ideal heating setback and cooling setback temperatures combined with a thorough occupancy study will result in improved occupant comfort and long-term energy savings.

Figure 62: Heating Setback Energy Consumption Comparison

5.4.5 Overall Improvements

Figure 63: Overall Building Insulation Improvements Compared to Baseline Energy Consumption

Implementing all the envelope suggestions above would result in an approximate 42.7\% reduction in overall energy needed to heat the building. A visual representation of the energy improvements suggested in this report is seen in Figure 63. Having the roof and windows properly repaired would bring the building up to the baseline established by DesignBuilder. These repairs combined with these suggested improvements would result in a greater energy reduction than postulated by this report.

5.5 HVAC Analysis

One of the primary goals of this project was to obtain values so that the church leadership would have a better understanding of the heating and cooling loads needed to properly condition their building. Potential heating and cooling systems and system improvements that could be feasibly implemented have been suggested.

5.5.1 Heating Load

Hand calculations assuming average Worcester winter temperatures resulted in the total heating load of the church in the winter of $499,311 \mathrm{BTU} / \mathrm{Hr}$ equating to a 41.6 -ton system. The sanctuary with roof included was calculated having a heat loss of $230,893 \mathrm{BTU} / \mathrm{Hr}$, equating to a 19.2-ton system. The initial 10 -ton system estimate for the sanctuary that was provided by the heating contractor would have resulted in a vastly undersized system and the same heating issues repeating. The gym was calculated as having a heat loss of $70,879 \mathrm{BTU} / \mathrm{Hr}$ which equates to 5.9 tons. The entire basement, including the slab floor, was calculated as having a total heat loss of $197,540 \mathrm{BTU} / \mathrm{Hr}$ equating to 16.46 tons.

DesignBuilder calculated the total heating design load of the church for worst case winter scenarios using ASHRAE weather data beyond the conservative hand calculations. Internal heating times were determined by the occupancy schedule defined, as well as internal operating temperatures of 68 F and a heating setback of 62 F . The total design heating capacity of the building in worst case scenarios is $1,026,570 \mathrm{BTU} / \mathrm{Hr}$ or 85.45 tons. This number included areas of the church that were not included in the hand calculations and would be assumed to remain unconditioned in the future. The sanctuary calculated at these conditions was found to have a heat loss of $301,160 \mathrm{BTU} / \mathrm{Hr}$ equating to 25 tons. The basement was found to have a total heat loss of 414,420 BTU/Hr equating to 34.5 tons. The Gym was determined to have a heat loss of 203,080 BTU/Hr equating to 16.9 tons. These combined three zones at worst case weather scenarios results
in a total system size of 76.4 tons. The total required tonnage of a new heating system required is most likely between the hand calculations and the worst-case scenarios. The total system size should be approximately 50-60 tons to appropriately heat the entire church appropriately during the winter.

5.5.2 Cooling Load

Based on hand calculations and an ASHRAE ComCheck format, the total cooling load of the church is between 364,603 BTU/Hr (average summer temperatures) and 431,097 BTU (peak summer temperatures with occupancy). These numbers translate to 30.4 tons and 35.9 tons respectively. The sanctuary was calculated to have a cooling load of $190,329 \mathrm{BTU} / \mathrm{Hr}$ or 15.7 tons (average summer temperatures) and $227,994 \mathrm{BTU} / \mathrm{Hr}$ or 19 tons (peak summer temperatures with occupancy). The basement was calculated to have a cooling load of $82,326 \mathrm{BTU} / \mathrm{Hr}$ or 6.7 tons (average summer temperatures) and 139,336 or 11.6 tons (peak summer temperatures with occupancy). The gym was calculated to have a cooling load of $63,767 \mathrm{BTU} / \mathrm{Hr}$ or 5.3 tons (average summer temperatures) and $91,948 \mathrm{BTU} / \mathrm{Hr}$ or 7.7 tons (peak summer temperatures with occupancy).

5.5.3 Hot Water Baseboard Fuel Type Comparison

It was determined by using DesignBuilder that the building as standing without any envelope improvements would require approximately $565,907 \mathrm{kBTU}$ of fuel annually to heat. If one gallon of fuel oil contains 139,000 BTUs, the overall consumption of the church would be 4,071 gallons of fuel oil annually. Based on current market trends and the 2019-2020 national average of $\$ 2.95$ per gallon results in an overall annual fuel oil cost of $\$ 12,009.45$.

If the boilers in the church were upgraded to use natural gas instead of fuel oil, given that the average cost in Massachusetts of natural gas is $\$ 13.98$ per 1000 cubic feet of natural gas. There are approximately one million BTUs in 1000-cubic feet of natural gas. This would require 565.907
$1000-\mathrm{cu} . \mathrm{ft}$ units of natural gas annually to appropriately heat the church. This would cost the church $\$ 7,911$ dollars yearly in order to heat utilizing natural gas. The conversion to natural gas would result in an annual cost savings of $\$ 4,098.45$ yearly for the same amount of heat or a 34% reduction in heating costs.

If envelope improvements suggested in the energy analysis section were implemented, it would result in a 42.7% reduction in the overall amount of fuel required to heat the building. This would be $241,642 \mathrm{kBTUs}$ annually compared to $565,907 \mathrm{kBTUs}$ annually prior to any improvements. This would equate to 1,738 gallons of fuel oil annually or an annual cost of $\$ 5,128$. If the hot water baseboard system was upgraded to natural gas, the overall heating with envelope improvements would require $241.641000-\mathrm{cu}$. ft units of natural gas or an annual cost of $\$ 3,378$.

5.5.4 Variable Air Volume Systems

One of the primary findings in the cooling analysis was that in-wall air conditioning units would be the most efficient, however, because of the building's construction and important aesthetic value, this solution would not be feasible due to the need to make holes in the building's granite walls. A ducted VAV system would be feasible and provide heating and cooling to all areas of the church. Ducts containing hot/cold air could either be installed in the floor between the basement and first floor and vented appropriately to each zone of the church. The ducts could also be run through the Sanctuary ceiling supported by the trusses, although that would dramatically alter the aesthetics of the building. Retrofitting such a system into the existing building would be difficult but possible. A VAV system operates on the principle of variable air volume and not constant air volume like other forced air systems (Figure 64). VAV systems vary air flow with a constant temperature resulting in lower energy costs due to the reduction of the need of fans and results in more precise temperatures and less long-term wear of the system. A VAV system also offers additional passive dehumidification which is a major feature that the church requires now
without any envelope repairs. It is estimated that an installation of a VAV system compared to the existing fuel oil system would result in approximately a 22,000 BTU reduction in total energy based purely on the efficiency of the system alone compared to baseboard heating.

Figure 64: Example Diagram of a VAV System ${ }^{16}$

5.5.5 Radiative Heaters

One potential solution has been implemented in medieval churches in Europe involves the installation of infrared heaters in the sanctuary (Figure 65). Radiative heaters are very energy efficient as they directly reach occupants and surroundings due to the use of shortwave infrared heat and does not transfer heat to objects that may not necessarily need to be.

It would be possible to supplement the existing baseboard heating system with these ceiling/wall mounted radiative heaters. The existing baseboards could be used to condition the space in the winter at a stationary temperature to ensure proper humidity levels during the winter,

[^10]but then utilize the radiative heaters when Sunday services are taking place. These heaters can then be left off at all other times resulting in lower overall energy costs but still warming the sanctuary.

Figure 65: Example of Radiative Heaters Installed in a Medieval Church ${ }^{17}$
There are many radiative heating options that operate either on electricity or natural gas. It would most likely be advantageous to convert the heat energy source of the church from fuel oil to natural gas and utilize a few methods of heating/cooling different areas of the church which would result in greater efficiency and greater cost savings.

[^11]

Figure 66: Tansun Sorrento Triple Infrared Quartz Heater ${ }^{18}$
Tansun infrared heaters (Figure 66) that have been utilized in similar churches have a 6 kW output approximately. This equates to $20,470 \mathrm{BTU} / \mathrm{Hr}$. If the sanctuary requires $301,160 \mathrm{BTU} / \mathrm{Hr}$ to heat, this will require 15 infrared heaters positioned around the sanctuary. A potential placement of these heaters is suggested in Figure 67. This option is certainly feasible and would detract minimally from any aesthetic value of the church. These heaters are designed to be installed at

[^12]higher ceiling heights and could be installed at the tops of walls to ensure maximum range of coverage.

Figure 67: Suggested Placement of Infrared Heaters in the Sanctuary

Since these Tansun units are powered electrically, it would be advantageous to install any forms of green energy production to offset any utility costs or to appropriately size additional systems with these considerations in mind. Additionally, this brand would need to have a separate electrical service installed throughout the sanctuary since they operate at 220 volts. The current condition of the buildings electrical system requires addressing before an addition of another 220 V service.

6.0 Recommendations

After analyzing the church, there are several recommendations that should be considered for structural and energy improvements. All suggestions should be discussed with a Professional Engineer and if decided to be implemented, installed by a certified contractor. These recommendations are based off of visual observations taken from many church visits as well as observations from the results of the analysis.

6.1 Structural Recommendations

Based on the structural analysis of the church, the building is structurally worthy and there are no immediate issues with the trusses, walls, roof and other load bearing members. Based on the computer analysis of the truss, diagrams have been provided for key areas of the truss to observe for any defects or changes in crack size or location. These defects could occur during a seismic event and combined with the high moisture content (relative humidity) in the church could cause issues in the future in the event of an earthquake or other significant seismic event.

6.1.1 Sub-Basement Concrete Reinforcement

The main concern structurally remains with the coal chute area located in the sub-basement next to the boilers. On inspection of this area it was observed that the concrete slabs and supporting steel members have corroded significantly. Since this area has ground directly exposed above, caution must be exercised if a cherry picker, scissor lift, or any significant weight is placed on this area. There is a potential that extra weight on this portion of the ground could cause this coal chute area to cave in.

Figure 68: Corrosion in Steel Reinforcement in the Sub-Basement Area

6.1.2 Truss I-beam

Figure 69: I-Beams as shown in the Archive Plans
From the review of section plans retrieved from the Massachusetts State Archives, it was determined that there are steel I-beams encased by wood located at the base of every truss. It is uncertain whether these I-beams are either encased with molding or embedded in wood. Due to the high humidity levels that the church has experienced as well as its age, it is recommended that a few test holes be made to inspect these I-beam members for rust and structural integrity. The shifting of these I-beam members is also causing cracking in the drywall. The holes should also be used to inspect if these cracks persist through the masonry behind the drywall and determine if there are any other underlying issues.

Figure 70: Cracking in drywall where the truss connects to the buttress

6.1.3 Buttress Reinforcement

During a seismic event, the interior brick may be responsible for providing tensile reinforcement. This brick layer should be inspected and if it is in poor condition, either the masonry should be repointed, or tensile reinforcement should be considered. A thin $1 \mathrm{in}^{2}$ section of steel with $1 / 2$ in studs spaced 33 inches from the basement floor to the base of the truss should provide the necessary reinforcement. See Appendix C and the structural analysis section for more details.

6.2 Envelope Recommendations

A roof inspection is an immediate priority. In order to determine the extent of water infiltration coming from the roof level, an inspection from roof level was needed for this report, but this could not be accomplished since this group was unable to obtain access to a cherry picker or scissor lift. However, based on the photos sent by Jonas Chang and the observable damage, it is assumed that the condition of the roof is a major issue. These issues need to be addressed and repaired in order to prevent any further damage via water transport through the roof and the effects of annual heating and cooling cycles.

6.2.1 Potential Water Infiltration Sources

- Where the Towers meet the roof there may be an issue with the flashing/counterflashing allowing water to travel down the towers internally and make its way into the plaster. Over 100 years of weathering has most likely made these waterproofing systems not nearly as effective as originally intended. These areas of the roof should be thoroughly investigated by a roof inspection.
- There may be an issue with moisture transport occurring through the masonry construction of the granite walls. It is possible that water is being absorbed through the aggregate and being retained in the brick next to the plaster in the wall envelope. This moisture then leaches out due to heating and cooling cycles. The building should be inspected by a professional stonemason to verify the status of the masonry and determine if repointing is necessary.

6.2.2 Fenestrations

There are several stained-glass windows in the sanctuary that are broken/cracked and have warped frames. These openings are creating significant air changes in the sanctuary and creating a great deal of heat loss as can be directly felt as drafts while people are seated during church services. Correcting this issue will dramatically help with heat loss and the discomfort felt in the sanctuary. Installing another layer of glass over the existing stained glass in the sanctuary will dramatically improve the heat loss in the church. It was determined through analysis via DesignBuilder that adding another layer of clear glass, much like a double paned window, would reduce the energy needed by almost 20,000 BTUs.

6.2.3 Insulation

Installation of insulation on top of the granite walls would be a significant undertaking. However, based on the amount of heat being lost by the walls it is a worthwhile avenue to
investigate in order to reduce energy consumption. Adding insulation to the roof deck is an option that is much more obtainable and would help dramatically with heat retention in the sanctuary.

6.3 Renewable Technology Considerations

The position of the towers of the church are directly obstructing the annual sun path. Additionally, the high-rise apartment building across Belmont Street is significantly taller than the church and contributes to blocking the sun path. This is shown in Figure 71. These obstructions will accumulate shadows on potential solar panels that could be installed on the roof and result in minimal energy being produced in the winter months when the sun is at its lowest. Due to the offset of the back wall between the church and the gym annex, shadows would be thrown over much of the roof during half of the year, making a potential installation of PV panels not
advantageous from an electricity production and a maximization of return on investment (Figure
72).

Figure 71: Google Earth Image of Belmont Street and the High-Rise Apartment Building Across the Street from the Church

Figure 72: Simulated Sun Path in DesignBuilder
However, one consideration to keep in mind would be to add a solar parking area that have become more common in past years (Figure 73). Since the church offers their property for parking during the weekdays, it would be possible to add solar collectors to the parking areas and shield cars from sun and weather. The potential cost of this project could be offset by raising parking costs to commuters and could also be done slowly and expand as necessary and find an ideal place to place a potential solar field.

Figure 73: Example of a Solar Parking Lot ${ }^{19}$
Based on Google Earth calculations there is approximately 17,800 square feet in the top parking lot (Figure 74). The rear parking lots sun path is blocked by the building itself. An average of a 15% efficient solar panel would produce 15 watts per square feet resulting in a power production of 267 kW . Such power production would be enough to power the radiative heaters suggested in previous sections.

[^13]

Figure 74: Existing Parking Lot Behind the Church

6.4 Additional Recommendations

During a site survey investigating the roof construction via access through the ladies first floor bathroom, it was noticed that the electrical service located there is not up to code. When a light was turned on at the higher level above the ladder, there was significant amounts of smoke and a burning electrical smell. The electrical system at hand represents a fire hazard and should be addressed soon. As improvements are made to the building, upgrading the existing electrical system is critical.

Works Cited

2011. 2012 International Building Code. 7th printing. International Code Council. https://codes.iccsafe.org/content/IBC2012/preface.

ASHRAE. 2019. ASHRAE. Accessed January 21, 2020.
https://ashrae.iwrapper.com/ViewOnline/Standard_15-2019.
Cochran, Brice. 2018. Hammer Beam Truss Details. https://timberframehq.com/hammer-beam-trussdetail/.
2019. Hammer Beam Truss Detail. June 26. Accessed October 23, 2019.
https://timberframehq.com/hammer-beam-truss-detail/.
2020. HOBO U12 Temperature/Relative Humidity/Light/External Data Logger. Accessed January 28, 2020. https://www.onsetcomp.com/products/data-loggers/u12-012.

Kidder, F.E. 2018. The Hammer-Beam Truss. Accessed January 2, 2020. https://chestofbooks.com/architecture/Construction-Superintendence/21-The-Hammer-BeamTruss.html.
2015. Massachusetts State Building Code. 9th ed. https://up.codes/viewer/massachusetts/ibc-2015.
2013. Minimum Design Loads for Buildings and Other Structures. ASCE 7-10. 3rd printing. Reston, Virginia: American Society of Civil Engineers. www.pubs.asce.org.
2016. National Design Specification for Wood Construction. 2015 Ed. Leesburg, Virginia: American Wood Council. https://www.awc.org/codes-standards/publications/nds-2015.
n.d. National Society of Professional Engineers. Accessed January 23, 2020. https://www.nspe.org/resources/licensure/why-get-licensed.
2009. Natitional Concrete Masonry Association. TEK 14-7B Structural. Herndon, Virginia. https://ncma.org/resource/allowable-stress-design-of-concrete-masonry/.
"Protective Glazing Study." National Preservation Center, March 1996. https://www.ncptt.nps.gov/wp-content/uploads/1996-06.pdf.
2020. Swedish Lutheran Gethsemane Church. Accessed February 5, 2020. https://www.cardcow.com/334173/swedish-lutheran-gethsemane-church-worcestermassachusetts/.
2020. Tansun. Accessed January 14, 2020. https://www.tansun.com/gb_en/blog/what-is-the-best-method-for-heating-a-church.html.
2020. Tansun. Accessed February 20, 2020. https://www.tansun.com/gb_en/infrared-heaters/sorrento/sorrento-triple.html.
n.d. The Life of a Campus: 9 Essays on Clark Buildings Past and Present. Clark University. https://wordpress.clarku.edu/krwilson/files/2012/05/CLU_ARCH-book.pdf.

University, Drexel. 2005. Adventure Works Products Page. Accessed February 25, 2020. http://www.pages.drexel.edu/~ea38/AE390/A5/products.htm.

Zeigler, John M. 2019. Vibration Standards. Accessed 2 13, 2020. https://vibrationdamage.com/Vibration_standards.htm.

Appendix A: Temperature/Relative Humidity Data

ASHRAE Climatic Design for Worcester, MA

Morthly Climmic Design Conditions														
		Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperatures, Degree-Days and Degree-Hours	Tavg	8.8	4.25.88	$\begin{aligned} & -2.7 \\ & 5.37 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 5.35 \end{aligned}$	$\begin{gathered} 7.6 \\ 4.65 \end{gathered}$	$\begin{aligned} & 13.3 \\ & 4.28 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 3.86 \end{aligned}$	$\begin{aligned} & 21.1 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 20.3 \\ & 3.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.2 \\ & 3.87 \end{aligned}$	$\begin{aligned} & 10.1 \\ & \end{aligned}$	4.7	-1.0
	Sd													
	HDD10.0	1755	439	356	272	101	15	1	0	0	3	55	171	343
	HDD183	3726	697	559	526	323	166	48	9	17	86	258	409	600
	CDD10.0	1322	1	0	6	28	118	248	343	321	188	57	12	2
	CDD18.3	252	0	0	0	1	10	46	93	79	21	1	0	0
	CDH233	1596	0	0	3	20	94	321	604	450	99	4	0	0
	CDH26.7	352	0	0	1	4	17	74	143	98	15	0	0	θ
Monthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures	0.4\%	DB	$\begin{aligned} & 13.3 \\ & 11.1 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 21.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 26.3 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 29.1 \\ & 19.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.8 \\ & 22.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 32.0 \\ & 23.7 \end{aligned}$	$\begin{aligned} & 31.2 \\ & 23.3 \end{aligned}$	28.7	23.7	19.9	16.2
		MCWB									21.0	16.6	15.5	13.6
	2\%	DB	$\begin{array}{r}9.6 \\ 7.3 \\ \hline\end{array}$	9.76.6	15.69.9	$\begin{aligned} & 21.3 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 17.2 \end{aligned}$	$\begin{aligned} & 28.9 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 29.8 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 21.9 \end{aligned}$	$\begin{array}{r} 26.0 \\ 19.7 \\ \hline \end{array}$	$\begin{aligned} & 21.2 \\ & 16.1 \end{aligned}$	16.8	12.1
		MCWB											13.7	12.1 9.6
	5\%	DB	6.34.3	$\begin{aligned} & 7.3 \\ & 4.6 \end{aligned}$	$\begin{gathered} 12.0 \\ 7.7 \end{gathered}$	$\begin{aligned} & 179 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 26.9 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 28.3 \\ & 21.3 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 18.9 \\ & 14.4 \end{aligned}$	14.4	9.2
		MCWB											11.7	6.7
	10\%	DB	$\begin{aligned} & 3.5 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.9 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.1 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 9.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.9 \\ & 14.3 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 20.4 \end{aligned}$	$\begin{aligned} & 25.9 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 22.3 \\ & 17.8 \end{aligned}$	$\begin{aligned} & 16.9 \\ & 13.1 \\ & \hline \end{aligned}$	$\begin{gathered} 12.4 \\ 9.8 \end{gathered}$	6.76.43.7
		MCWB												
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures	0.4\%	WB	$\begin{aligned} & 12.2 \\ & 12.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.7 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 19.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.8 \\ & 23.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.2 \\ & 26.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.8 \\ & 28.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.7 \\ & 29.5 \end{aligned}$	$\begin{aligned} & 24.8 \\ & 29.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.5 \\ & 26.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.6 \\ & 21.7 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 18.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 139 \\ & 15,7 \end{aligned}$
		MCDB												
	2\%	WB	$\begin{aligned} & 7.8 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 7.4 \\ 8.9 \end{array} \end{aligned}$	$\begin{aligned} & 11.3 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 19.2 \end{aligned}$	$\begin{aligned} & 18.7 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 23.6 \\ & 28.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.2 \\ & 26.9 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 17.2 \\ & 19.6 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 16.0 \end{aligned}$	10.2
		MCDB												
	5\%	WB	$\begin{aligned} & 4.5 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 16.9 \\ & 21.5 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 21.2 \\ & 25.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.0 \\ & 22.6 \\ & 26.5 \end{aligned}$	2.2	$\begin{aligned} & 20.1 \\ & 22.8 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.3 \\ & 14.0 \end{aligned}$	7.1
		MCDB												8.8
	10\%	WB	$\begin{aligned} & 1.7 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 19.4 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 23.5 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 25.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.3 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 18.9 \\ & 21.5 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 16.3 \end{aligned}$	10.212.0	4.36.0
		MCDB												
Mean Daily Temperature Range		MDBR	7.7	8.0	8.7	9.5	10.0	9.4	9.0	8.6	8.6	8.7	7.8	7.5
	5\% DB	MCDBR	$\begin{gathered} 10.7 \\ 9.7 \end{gathered}$	$\begin{aligned} & 9.9 \\ & 7.9 \end{aligned}$	$\begin{gathered} 12.9 \\ 8.7 \end{gathered}$	$\begin{aligned} & 13.8 \\ & 7.9 \end{aligned}$	$\begin{gathered} 13.2 \\ 7.1 \end{gathered}$	$\begin{aligned} & 11.3 \\ & 6.3 \end{aligned}$	$\begin{gathered} 10.5 \\ 5.2 \end{gathered}$	$\begin{gathered} 10.0 \\ 4.7 \end{gathered}$	$\begin{aligned} & 9.8 \\ & 5.3 \end{aligned}$	$\begin{gathered} 10.6 \\ 6.8 \end{gathered}$	$\begin{gathered} 10.5 \\ 18.6 \end{gathered}$	10.59.0
		MCWBR												
	$5 \% \text { WB }$	MCDBR	$\begin{aligned} & 10.7 \\ & 10.2 \end{aligned}$	$\begin{array}{r} 9.3 \\ 8.4 \\ \hline \end{array}$	$\begin{gathered} 12.3 \\ 9.5 \\ \hline \end{gathered}$	$\begin{array}{r} 12.6 \\ 8.7 \\ \hline \end{array}$	$\begin{gathered} 11.7 \\ 7.2 \end{gathered}$	$\begin{array}{r} 10.1 \\ 6.4 \\ \hline \end{array}$	$\begin{aligned} & 9.6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 5.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.4 \\ & 6.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.8 \\ & 8.6 \\ & \hline \end{aligned}$	9.49.0
		MCWBR												

Sensor \#1: Sanctuary-Back of Stage

Highest Temp Recorded: 91.87F
Lowest Temp Recorded: 48.32F

Highest RH Recorded: 77.95\%
Lowest RH Recorded: 29.4\%

Sensor \#2- Under 1st Pew-Center Aisle

Highest Temp Recorded: 92.15F Lowest Temp Recorded: 8.54C

Highest RH Recorded: 81.46\%
Lowest RH Recorded: 38.35\%

Sensor \#3: Under Pew- Left Side

Highest Temp Recorded:32.30C
Lowest Temp Recorded: 8.05C

Highest RH Recorded: 78.95\% Lowest RH Recorded: 28.58\%

Sensor \#4: On Stained Glass- Left Side

Highest Temp Recorded:35.74C
Lowest Temp Recorded: 6.33C

Highest RH Recorded: 80.84\%
Lowest RH Recorded: 26.67\%

Sensor \#5: Left Side Truss- Mezzanine

Highest Temp Recorded: 33.94C
Lowest Temp Recorded: 8.1C

Highest RH Recorded: 82.1\%
Lowest RH Recorded: 31.53\%

Sensor \#6: On Stained Glass- Center Mezzanine

Highest Temp Recorded: 48.8C
Lowest Temp Recorded: 4.22C

Highest RH Recorded: 85.33\%
Lowest RH Recorded: 10.86\%

Sensor \#7: Tower 1 Attic

Highest Temp Recorded: 33.57C
Lowest Temp Recorded: - 0.359 C

Highest RH Recorded: 91.49\%
Lowest RH Recorded: 58.38\%

Sensor \#8: Tower \#1- North Side

Highest Temp Recorded:30.04C Lowest Temp Recorded: 2.61C

Highest RH Recorded: 87.54\%
Lowest RH Recorded: 63.84\%

Sensor \#9: Tower \#2- West Side

Highest Temp Recorded: 32.33C Lowest Temp Recorded: 4.64C

Highest RH Recorded: 82.13\%
Lowest RH Recorded: 48.72\%

Sensor \#10: Outside Entrance

Highest Temp Recorded: 35.08C Lowest Temp Recorded: -5.54C

Highest RH Recorded: 100\%
Lowest RH Recorded: 1\%

Appendix B: Accelerometer Data

Appendix C: Load and Structural Calculations

	Height Measurements \quad MQP	1
O	$\theta=90^{\circ}-74^{\circ} 00^{\prime} 20^{\prime \prime}=15,99^{\circ}$ $\begin{aligned} & H=\tan \theta\left(x=115^{\prime} 3^{\prime \prime}\right)=33.035^{\prime} \\ & H+T H=H_{\text {tot }}=H+64^{\prime \prime}=38.37^{\prime} \end{aligned}$ Gym Apex Gym Wall height $\begin{aligned} & \theta=5.756^{\circ} \quad x=116^{\prime} 1^{\prime \prime} \\ & H=11.70^{\circ} \quad T H=64^{\prime \prime} \\ & H_{\text {tot }}=17.03^{\prime} \end{aligned}$ $\begin{aligned} & \theta=26.12^{\circ} \quad x=45.7^{\prime} \\ & H=22.41^{\prime} \quad \mathrm{TH}=61.75^{\prime \prime} \\ & H_{\text {tot }}=27.56^{\prime} \end{aligned}$	
(0		
	Charch Apex height $\begin{aligned} & \theta=36.8^{\circ} \quad x=68.82^{\prime} \\ & H=51.48^{\prime} \quad \mathrm{TH}=61.25^{\prime \prime} \\ & H_{\text {tot }}=56.63^{\prime} \end{aligned}$ Gym Secondary Apex $\begin{aligned} & \theta=35.306^{\circ} \quad x=37.6^{\prime} \\ & H=26.63^{\prime} \quad \text { TH=61.75" } \\ & H_{\text {tot }}=31.77^{\prime} \end{aligned}$	
$\frac{\text { aex - wall }}{\text { Wall leagin }}$	$\begin{aligned} & \frac{\text { Church Roof Slope }}{\frac{56.63^{\prime}-27.56^{\prime}}{29^{\prime}}} \quad \frac{\text { Gym Roof Slope }}{\frac{38.37^{\prime}-17.03^{\prime}}{21.06^{\prime}}} \leftarrow \frac{\text { apex-wall neight }}{\text { wall length }} \\ & =1.00 \therefore 45^{\circ} \text { slope } \\ & =1.01 \approx 1.00 \therefore .45^{\circ} \text { slope } \end{aligned}$ Gym Secondary Apex base height (assuming equivelent slope) $\frac{31.77^{\prime}-h}{8.54^{\prime}}=1.01 \quad h=23.1^{\prime}$	

Dead Loads + Live Ldads
Roof from bottom to top: Truss, purlins, rafters, decking, slate

	Wind Loads ${ }^{\text {W }}$ L ${ }^{\text {L }}$
	Risk Category III. \Rightarrow High risk assembly structure (≥ 300 capacity) (ASCE $7-10$ Table 1.5-1) \rightarrow Wind importance factor $\left(I_{\omega}\right)=1.0 \quad$ (Table 1.5-2) $V_{\text {ult }}=134 \mathrm{mph}$ (MSBC Table 1604.11) Directionality Factor $\left(K_{d}\right)=0.85 \Rightarrow$ buildings (ASCE 7-10 Table 26.6-1) Surface Roughness Category $B \Rightarrow$ urban area Mean Roof Height (h) (Sanctuary) $=42.1 \mathrm{ft}$ Mean Roof Height (h) (Gymnasiuin) $=22.7 \mathrm{ft}$ For mean roof height greater than 30 ff , exposure B applies surfare roughness prevails in upwind direction at a distance greater than 2600 ft or 20 times building height, whichever greater $20 \mathrm{~h}=20(56.63 \mathrm{ft})=1133 \mathrm{ft} \therefore 2600 \mathrm{ft}$ governs \Rightarrow In this case, surface roughness corresponds to other buildings, and according to google maps, any distance of 2600 ft from the church will result in another building \therefore exposure category B For wind speed up effects, there exists a retaining wall where the highway is but this wall is obstructed upwind by the wall on the other side of the highway. Any other wind speed up effects can be considered negligible $k_{z f}=1.0 \Rightarrow$ no wind speedup effects $G=0.85 \Rightarrow$ Rigid Structure Enclosure Classification: Enclosed $\longrightarrow G C_{p_{i}}= \pm 0.18 \quad(\text { Table } 26.11-1)$ for $z=17.3 \mathrm{ft}$ (Gym wall height), $k_{z}=0.593$ for $z=27.56 \mathrm{ft}$ (Sanctuary wall height), $k_{z}=0.680 \quad\binom{$ Table }{$27.3-1}$ for $z=38.37 \mathrm{ft}$ (Gym apex), $k_{z}=0.750$ for $z=56.63 \mathrm{ft}$ (Apex), $k_{z}=0.837$ $\begin{aligned} & q_{z}(17.3 \mathrm{ft})=0.00256 k_{2} k_{2} k_{d} V^{2}=0.00256(0.593)(1.0)(0.85)(134 \mathrm{mph})^{2}=23.17 \mathrm{psf} \\ & q_{z}(27.56 \mathrm{ft})=0.00256(0.680)(1.0)(0.85)(134 \mathrm{mph})^{2}=26.57 \mathrm{psf} \\ & q_{z}(38.37 \mathrm{ft})=0.00256(0.750)(1.0)(0.85)(134 \mathrm{mph})^{2}=29.30 \mathrm{psf} \\ & q_{z}(56.63 \mathrm{ft})=0.00256(0.837)(1.0)(0.85)(134 \mathrm{mh})^{2}-3270 \mathrm{pf} \end{aligned}$

Wind Loads

	Roof Analysis \| Rafters	20
?	$\left.\begin{array}{l}D L=44.4 \mathrm{psf}+2.84 \mathrm{plf} \\ S L=24.5 \mathrm{psf} \\ L_{r}=20 \mathrm{psf} \text { or } 300 \mathrm{lb}\end{array}\right\} \begin{aligned} & \text { acting } \\ & \text { vertically }\end{aligned}$ with 16 in spacing, $\omega L=14.5 p s f,-28.5 p s f\}$ acting normal $\omega L=10.253$ psf, -20.15 psf ξ vertical $W L=10.253$ psf, -20.15 psf shorizontal $\begin{aligned} & D L=62.04 \mathrm{plf} \\ & S L=32.67 \mathrm{plf} \\ & L_{r}=26.67 \mathrm{plf} \text { or } 300 \mathrm{lb} \\ & W L=13.67 \mathrm{plf},-26.87 \mathrm{plf} \downarrow \\ & W L=13.67 \mathrm{plf},-26.87 \mathrm{plf} \rightarrow \end{aligned}$ Governing load combinations (1) $94.71 \mathrm{plf}+016(D+S)$ (2) 92.69 plf (vertical) +6.15 plf $($ horizontal $)(D+0.75 \mathrm{~L}+0.75(0.6 \mathrm{~W})+0.75 \mathrm{~S})$ (3) $68.19 \mathrm{plf}+225 \mathrm{lb}($ vertical $)+6.15 \mathrm{plf}($ horizontal $)(D+0.75 \mathrm{~L}+0.75(0.6 \mathrm{w})+0.75 \mathrm{Lr})$ (4) $62.04 \mathrm{plf}+300 \mathrm{lb}$ (vertical) ($D+L_{r}$) (1) $M_{\text {max }}=789.51 \mathrm{lb}-\mathrm{ft}=9474.121 \mathrm{lb}-\mathrm{in}$ $V_{\text {max }}=325.19 \mathrm{lb}$ $\delta_{\max }=0.112 \mathrm{in}$ $\begin{aligned} \text { (2) } M_{\max } & =823.93 \mathrm{lb}-\mathrm{ft}=9887.16 \mathrm{lb}-\mathrm{in} \\ V_{\max } & =339.37 \mathrm{lb} \\ S_{\text {max }} & =0.117 \mathrm{in} \end{aligned}$ (3) $M_{\text {max }}=1005.95 \mathrm{lb}-\mathrm{ft}=12071.34 \mathrm{lb}-\mathrm{in}$ $V_{\text {max }}=334.79 \mathrm{lb}$ $\delta_{\max }=0.132 \mathrm{in}$ width $(b)=2$ in $\operatorname{depth}(d)=\sin$ length $(L)=116.54 \mathrm{in}$ $\begin{array}{ll} F_{b}^{\prime}=1509 p s i & f_{b}=581 p s i \\ \delta_{\text {allow }}=0.32 \text { in } & \delta=0.13 \mathrm{in} \quad F S=2.6 \\ F_{v^{\prime}}=168.8 p s i \quad f_{v}=31.8 p s i \quad F S=5.3 \end{array}$	

	Roof Analysis Purlins	1
7	$D+L_{r}$ from center rafter $=601.21 \mathrm{lb}+100 \mathrm{lb}$, case (1) assuming $D+L_{r}$ Load from all other rafters $=301.21 \mathrm{~b}\}$ is worst case $D+S$ from center rafter $=459.91 \mathrm{~b}+100 \mathrm{lb}$) case (3) assuming $D+S$ Load from all other rafters $=459.91 \mathrm{~b} \quad$ is worst case Center rafter load $=450.11 \mathrm{~b}+1001 \mathrm{~b} \downarrow+29,1 \mathrm{bb} \rightarrow$ < case (3) assuming All other rafters $=450.1 \mathrm{lb} \downarrow+29.91 b \rightarrow \quad 0+0.75 L+0.75(0.6 \omega)+0.755$ Center rafter load $=556.11 \mathrm{~b}+100 \mathrm{1b}+29.91 \mathrm{~b} \rightarrow\{$ case (4) assuming All other rafters $=331.11 \mathrm{~b} \downarrow+29.9 \mathrm{~b} \rightarrow \quad\}_{0}+0.75 \mathrm{~L}+0.75(0.6 \mathrm{w})+0.75 \mathrm{~L}$ Additional sheathing dead load $=1.638$ psf $\rightarrow 15.90$ plf (971 ft spacing) Self weight dead load $=14.21$ plf Due to 45° angle, $F_{1}=\sin 45^{\circ}\left(D, L_{r}, S, w\right)$ (1) $($ center $=495.81 \mathrm{~b})+($ All other $=213.01 \mathrm{~b})+(21.29 \mathrm{plf})$ (3) $($ center $=395.91 \mathrm{~b})+($ All other $=325.21 \mathrm{~b})+(21.29$ plf $)$ (3) $($ center $=410.11 \mathrm{~b})+($ All other $=339.41 \mathrm{~b})+(21.29 \mathrm{plf})$ (4) $($ center $=485.11 \mathrm{~b})+($ All other $=255.31 \mathrm{~b})+(21.29 \mathrm{plf})$ (1) $M_{\text {max }}=6357.4 \mathrm{lb}-\mathrm{ft}=76289 \mathrm{lb}-$-in $V_{\text {max }}=1591.5 \mathrm{lb}$ $\delta_{\max }=0.276 \mathrm{in}$ (2) $M_{\text {max }}=80 \mathrm{1V} .3 \mathrm{lb}-\mathrm{ft}=96136 \mathrm{lb}-\mathrm{in}$ $v_{\text {max }}=2148.216$ $\delta_{\text {max }}=0.360 \mathrm{in}$	

	Buttress Sanctuary Seismic (Case 1)	28
	Pure granite $=169 \mathrm{lb} / \mathrm{ft}^{3}$ Assume weight $\approx 150^{11} / \mathrm{ft}^{3}$ with mortar and voids weight above point C 8 ft $\left(1500^{16} / \mathrm{f}^{3}\right)(2 \mathrm{ft})(2 \mathrm{ft})(2 \mathrm{ft})+\left(150^{16} / \mathrm{f}^{3}\right)\left(\frac{1}{2}\right)(2 \mathrm{f})$ $(4 \mathrm{ft}+2 \mathrm{ft})(2 \mathrm{ft})+\left(150 \mathrm{~b} / \mathrm{ft}^{3}\right)(14 \mathrm{f})(4 \mathrm{ft})(2 \mathrm{ft})$ $=1200 \mathrm{lb}+1800 \mathrm{lb}+16800 \mathrm{lb}=19800 \mathrm{lb}$ $P_{\text {total }}=19800 \mathrm{lb}+18,593 \mathrm{lb}=38,393 \mathrm{lb}$ $0 @_{C}, M_{0}=(995416)(10 \mathrm{ft})-(1859316)(2 \mathrm{ft})$ $-(12001 \mathrm{lb})(1 \mathrm{ff})-(18001 \mathrm{~b})(0.5 \mathrm{ft})$ $M_{0}=60254 \mathrm{lb}-\mathrm{ft}$ $\sigma_{\text {tension }}=\frac{p}{A} \cdot \frac{6 M_{0}}{B L^{2}}=\frac{38,39316}{(2 f f)(4 f t)}-\frac{6(60,2541 \mathrm{~b}-\mathrm{ff})}{(2 f f)(4 \mathrm{ft})^{2}}$ $@ C \sigma_{\text {tension }}=6499 \mathrm{ps} f=45.1 \mathrm{psi}$ $\sigma_{\text {compression }}=\frac{p}{A}+\frac{6 M_{0}}{B L^{2}}=\frac{38,3931 \mathrm{~b}}{(2 \mathrm{ff})(4 \mathrm{ft})}+\frac{6(60,254 \mathrm{lb}-\mathrm{ft})}{(2 \mathrm{ft})(4 \mathrm{ft})^{2}}$ @C $\sigma_{\text {compression }}=16,097$ ps $f=112$ psi Above is based on worst case seismic event Weight above point E $(1980016)+\left(15016 / f^{3}\right)(1 f f)(4 f f+5 f t)\left(\frac{1}{2}\right)(2 f t)$ $+\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right)(5 \mathrm{ft})(11 \mathrm{ft})(2 \mathrm{ft})$ $=198001 \mathrm{~b}+1350 \mathrm{lb}+16500 \mathrm{lb}=37650 \mathrm{lb}$ $P_{\text {total }}=37650 \mathrm{lb}+18593 \mathrm{lb}+15121 \mathrm{lb}=57,755 \mathrm{lb}$ $9 M_{0}=(9954 \mathrm{lb})(22 \mathrm{ff})+(7531 \mathrm{~b})(10.5 \mathrm{ff})-(185931 \mathrm{l})$ $(2.5 f t)-(15121 b)(2.5 f t)-(12001 b)(1.5 f t)$ $-(18001 \mathrm{lb})(1 \mathrm{ff})-(168001 \mathrm{lb})(0.5 \mathrm{ft})-(135016)$ $(0.25 \mathrm{ft})=164,295 \mathrm{lb}-\mathrm{ft}$	

	Foundation-Buttress Sanctuary $^{\text {S }}$ (Seismic	34
	$\bar{x}=3.64 \mathrm{ft} I_{x}=81.49 \mathrm{ft}^{4}$ $P_{\text {tatal }}=96341 \mathrm{lb}+18593 \mathrm{lb}+15121 \mathrm{~b}=116446 \mathrm{lb}$ $9 M_{0}=(995416)(24 \mathrm{ft})+(7531 \mathrm{~b})(12.58 \mathrm{ft})-(185931 \mathrm{l})(1.86 \mathrm{ff})$ $\begin{aligned} & -(15121 \mathrm{~b})(1.86 \mathrm{ft})-(690081 \mathrm{~b})(0.86 \mathrm{ft})-(50521 \mathrm{~b})(0.86 \mathrm{ft}) \\ & +(600 \mathrm{lb})(0.80 \mathrm{ft}) \end{aligned}$ $\begin{aligned} & +(6001 \mathrm{l})(0.80 \mathrm{ft})+(84001 \mathrm{lb})(1.14 \mathrm{ft})+(750 \mathrm{lb})(1.39 \mathrm{ft}) \\ & +(105031 \mathrm{lb})(1.64 \mathrm{ft}) \end{aligned}$ $+(10503 \mathrm{lb})(1.64 \mathrm{ff})+(20231 \mathrm{~b})(2.14 \mathrm{ft})=179930 \mathrm{lb}-\mathrm{ff}$ $\begin{aligned} \sigma_{\text {tension }} & =\frac{P}{A}-\frac{M_{0} C}{I}=\frac{1164461 \mathrm{~b}}{31.5 \mathrm{ft}^{2}}-\frac{(179930 \mathrm{lb}-\mathrm{f})(2.36 \mathrm{ft})}{81.49 \mathrm{ff}} \\ & =151405)^{4} \end{aligned}$ $=1514$ ps $f=10.52 \mathrm{psi}$ \therefore Eccentricity is beyond kern distance $\begin{aligned} \sigma_{\text {compression }} & =\frac{p}{A}+\frac{M_{0} \mathrm{C}}{I}=\frac{11644.61 \mathrm{~b}}{31.5 \mathrm{ft}^{+}}+\frac{(179930 \mathrm{lb}-\mathrm{ff})(3.64 \mathrm{ff})}{81.49 \mathrm{ft}^{4}} \\ & =11734 \mathrm{psf}=81.48 \mathrm{psi} \end{aligned}$ \therefore Effective width of foundation is 5.32 ft \therefore Effective width of foundation is 4.14 ft $\left.\left\{\begin{array}{l} P_{1}=4954 \mathrm{lb} \\ P_{2}=753 \mathrm{lb} \\ P_{3}=18593 \mathrm{lb} \\ P_{4}=1512 \mathrm{lb} \end{array}\right\} \begin{array}{ll} \text { seismic } & \begin{array}{l} P_{1}=-38781 \mathrm{lb} \\ P_{2}=-1025 \mathrm{~b} \end{array} \\ \text { one } & \begin{array}{l} P_{3}=59181 \mathrm{~b} \\ P_{4}=1450 \mathrm{lb} \end{array} \end{array}\right\} \begin{aligned} & \text { seismic } \\ & \text { case } \\ & \text { two } \end{aligned}$	

Appendix D: Massachusetts State Archive Plans

Appendix E: Renovation Floor Plans

Appendix F: Heating/Cooling Load Calculations

Appendix G: DesignBuilder Energy Analysis

Table of Contents
Program Version: EnergyPlus, Version 8.9.0-40101eaafd, YMD=2019.12.26 10:45

Tabular Output Report in Format: HTML

Building: Building

Environment: MQP WORCESTER GOSPEL CHURCH (01-01:31-12) ** WORCESTER MA USA TMY2-94746 WMO\#=725095

Simulation Timestamp: 2019-12-26 10:47:47

Table of Contents

Report: Annual Building Utility Performance Summary
For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Values gathered over $\mathbf{8 7 6 0 . 0 0}$ hours

Site and Source Energy

	Total Energy $[\mathrm{kBtu}]$	Energy Per Total Building Area $[\mathrm{kBtu} / \mathrm{ft2}]$	Energy Per Conditioned Building Area [kBtu/ft2]
Total Site Energy	781896.00	21.63	22.48
Net Site Energy	781896.00	21.63	22.48
Total Source Energy	1278240.02	35.36	36.74
Net Source Energy	1278240.02	35.36	36.74

Site to Source Energy Conversion Factors

	Site $=>$ Source Conversion Factor
Electricity	3.167
Natural Gas	1.084
District Cooling	1.056
District Heating	3.613
Steam	0.250
Gasoline	1.050
Diesel	1.050
Coal	1.050
Fuel Oil \#1	1.050
Fuel Oil \#2	1.050
Propane	1.050
Other Fuel 1	1.000
Other Fuel 2	1.000

Building Area

	Area [ft2]
Total Building Area	36151.86
Net Conditioned Building Area	34787.98
Unconditioned Building Area	1363.88

End Uses

	Electricity [kBtu]	Natural Gas [kBtu]	Additional Fuel [kBtu]	District Cooling [kBtu]	District Heating [kBtu]	Water [gal]
Heating	45.85	0.00	565906.76	0.00	0.00	0.00
Cooling	0.00	0.00	0.00	0.00	0.00	0.00
Interior Lighting	0.00	0.00	0.00	0.00	0.00	0.00
Exterior Lighting	0.00	0.00	0.00	0.00	0.00	0.00
Interior Equipment	215626.78	0.00	0.00	0.00	0.00	0.00
Exterior Equipment	0.00	0.00	0.00	0.00	0.00	0.00
Fans	0.00	0.00	0.00	0.00	0.00	0.00
Pumps	316.61	0.00	0.00	0.00	0.00	0.00
Heat Rejection	0.00	0.00	0.00	0.00	0.00	0.00
Humidification	0.00	0.00	0.00	0.00	0.00	0.00
Heat Recovery	0.00	0.00	0.00	0.00	0.00	0.00
Water Systems	0.00	0.00	0.00	0.00	0.00	0.00
Refrigeration	0.00	0.00	0.00	0.00	0.00	0.00
Generators	0.00	0.00	0.00	0.00	0.00	0.00
Total End Uses	215989.24	0.00	565906.76	0.00	0.00	0.00

Note: Additional fuel appears to be the principal heating source based on energy usage.

End Uses By Subcategory

	Subcategory	Electricity $[\mathrm{kBtu}]$	Natural Gas $[\mathrm{kBtu}]$	Additional Fuel $[\mathrm{kBtu}]$	District Cooling $[\mathrm{kBtu}]$	District Heating $[\mathrm{kBtu}]$	Water $[\mathrm{gal}]$
Heating	Boiler	0.00	0.00	565906.76	0.00	0.00	0.00

	Boiler Parasitic	45.85	0.00	0.00	0.00	0.00	0.00
Cooling	General	0.00	0.00	0.00	0.00	0.00	0.00
Interior Lighting	General	0.00	0.00	0.00	0.00	0.00	0.00
Exterior Lighting	General	0.00	0.00	0.00	0.00	0.00	0.00
Interior Equipment	General	215626.78	0.00	0.00	0.00	0.00	0.00
Exterior Equipment	General	0.00	0.00	0.00	0.00	0.00	0.00
Fans	Ventilation (simple)	0.00	0.00	0.00	0.00	0.00	0.00
Pumps	General	316.61	0.00	0.00	0.00	0.00	0.00
Heat Rejection	General	0.00	0.00	0.00	0.00	0.00	0.00
Humidification	General	0.00	0.00	0.00	0.00	0.00	0.00
Heat Recovery	General	0.00	0.00	0.00	0.00	0.00	0.00
Water Systems	General	0.00	0.00	0.00	0.00	0.00	0.00
Refrigeration	General	0.00	0.00	0.00	0.00	0.00	0.00
Generators	General	0.00	0.00	0.00	0.00	0.00	0.00

Normalized Metrics

Utility Use Per Conditioned Floor Area

	Electricity Intensity $[\mathrm{kBtu} / \mathrm{ft2}]$	Natural Gas Intensity $[\mathrm{kBtu} / \mathrm{ft2}]$	Additional Fuel Intensity $[\mathrm{kBtu} / \mathrm{ft2}]$	District Cooling Intensity $[\mathrm{kBtu} / \mathrm{ft2]}$	District Heating Intensity $[\mathrm{kBtu} / \mathrm{ft2]}$	Water Intensity [gal/ft2]
Lighting	0.00	0.00	0.00	0.00	0.00	0.00
HVAC	0.01	0.00	16.27	0.00	0.00	0.00
Other	6.20	0.00	0.00	0.00	0.00	0.00

Total	6.21	0.00	16.27	0.00	0.00

Utility Use Per Total Floor Area

	Electricity Intensity [kBtu/ft2]	Natural Gas Intensity [kBtu/ft2]	Additional Fuel Intensity [kBtu/ft2]	District Cooling Intensity [kBtu/ft2]	District Heating Intensity [kBtu/ft2]	Water Intensity [gal/ft2]
Lighting	0.00	0.00	0.00	0.00	0.00	0.00
HVAC	0.01	0.00	15.65	0.00	0.00	0.00
Other	5.96	0.00	0.00	0.00	0.00	0.00
Total	5.97	0.00	15.65	0.00	0.00	0.00

Electric Loads Satisfied

	Electricity [kBtu]	Percent Electricity [\%]
Fuel-Fired Power Generation	0.000	0.00
High Temperature Geothermal*	0.000	0.00
Photovoltaic Power	0.000	0.00
Wower Conversion	0.000	0.00
Net Decrease in On-Site Storage	0.000	0.00
Total On-Site Electric Sources	0.000	0.00
	0.000	0.00
Electricity Coming From Utility	215989.240	
Surplus Electricity Going To Utility		0.000
Net Electricity From Utility	215989.240	100.00
		0.00

Total On-Site and Utility Electric Sources	215989.240	100.00
Total Electricity End Uses	215989.240	100.00

On-Site Thermal Sources

	Heat [kBtu]	Percent Heat [\%]
Water-Side Heat Recovery	0.00	
Air to Air Heat Recovery for Cooling	0.00	
Air to Air Heat Recovery for Heating	0.00	
High-Temperature Geothermal*	0.00	
Solar Water Thermal	0.00	
Solar Air Thermal	0.00	
Total On-Site Thermal Sources	0.00	

Water Source Summary

	Water [gal]	Percent Water [\%]
Rainwater Collection	0.00	-
Condensate Collection	0.00	-
Groundwater Well	0.00	-
Total On Site Water Sources	0.00	-
	-	-

Change in Storage	0.00	-
Water Supplied by Utility	0.00	-
-	-	-
Total On Site, Change in Storage, and Utility Water Sources	0.00	-
Total Water End Uses	0.00	-

Setpoint Not Met Criteria

	Degrees [deltaF]
Tolerance for Zone Heating Setpoint Not Met Time	2.00
Tolerance for Zone Cooling Setpoint Not Met Time	2.00

Comfort and Setpoint Not Met Summary

	Facility [Hours]
Time Setpoint Not Met During Occupied Heating	105.83
Time Setpoint Not Met During Occupied Cooling	0.00
Time Not Comfortable Based on Simple ASHRAE 55-2004	1524.00

Note 1: An asterisk $\left({ }^{*}\right)$ indicates that the feature is not yet implemented.

Table of Contents

Top
Annual Building Utility Performance Summary
Input Verification and Results Summary
Demand End Use Components Summary
Component Sizing Summary
Adaptive Comfort Summary

Climatic Data Summary

Envelope Summary
Lighting Summary
Equipment Summary
HVAC Sizing Summary
System Summary
Outdoor Air Summary
Object Count Summary
Sensible Heat Gain Summary
Standard 62.1 Summary
LEED Summary

Life-Cycle Cost Report

| Entire Facility |

Table of Contents

Report: Input Verification and Results Summary
For: Entire Facility

Timestamp: 2019-12-26 10:47:47
General

		Value
Program Version and Build	EnergyPlus, Version 8.9.0-40101eaafd, YMD=2019.12.26 10:45	
RunPeriod	MQP WORCESTER GOSPEL CHURCH (01-01:31-12)	
Weather File	WORCESTER MA USA TMY2-94746 WMO\#=725095	
Latitude [deg]		42.27
Longitude [deg]		-71.9
Elevation [ft]		987.58
Time Zone		-5.0
North Axis Angle [deg]		0.00
Rotation for Appendix G [deg]		0.00
Hours Simulated [hrs]		8760.00

ENVELOPE

Window-Wall Ratio

	Total	North (315 to 45 deg)	East (45 to 135 deg)	South (135 to 225 deg)	West (225 to 315 deg)
Gross Wall Area [ft2]	16155.05	3456.29	4659.51	3451.93	4587.32
Above Ground Wall Area [ft2]	16155.05	3456.29	4659.51	3451.93	4587.32
Window Opening Area [ft2]	1526.72	114.24	543.54	303.36	565.57
Gross Window-Wall Ratio [\%]	9.45	3.31	11.67	8.79	12.33
Above Ground Window-Wall Ratio [\%]	9.45	3.31	11.67	8.79	12.33

Conditioned Window-Wall Ratio

	Total	North (315 to 45 deg)	East (45 to 135 deg)	South (135 to 225 deg)	West (225 to 315 deg)
Gross Wall Area [ft2]	15257.42	2749.11	4659.51	3261.47	4587.32
Above Ground Wall Area [ft2]	15257.42	2749.11	4659.51	3261.47	4587.32
Window Opening Area [ft2]	1526.72	114.24	543.54	303.36	565.57
Gross Window-Wall Ratio [\%]	10.01	4.16	11.67	9.30	12.33
Above Ground Window-Wall Ratio [\%]	10.01	4.16	11.67	9.30	12.33

Skylight-Roof Ratio

	Total
Gross Roof Area [ft2]	12853.41
Skylight Area [ft2]	0.00
Skylight-Roof Ratio [\%]	0.00

PERFORMANCE
Zone Summary

	Area [ft2]	Conditi oned (Y/N)	Par t of Tot al Flo or Are a (Y/ N)	Volum e [ft3]	Multipl iers	Above Groun Gross Wall Area [ft2]	Undergr ound Gross Wall Area [ft2]	Wind ow Glass Area [ft2]	Open ing Area [ft2]	$\begin{array}{r} \text { Light } \\ \text { ing } \\ {[\mathrm{Btu} /} \\ \mathrm{h}- \\ \mathrm{ft} 2] \end{array}$	$\begin{array}{r} \text { Peop } \\ \text { le } \\ \text { [ft2 } \\ \text { per } \\ \text { pers } \\ \text { on] } \end{array}$	Plug and Proc ess [Btu/ hft2]
GYM:ZONE3	$\begin{array}{r} 5947 . \\ 27 \end{array}$	Yes	Yes	$\begin{array}{r} 67651 . \\ 14 \end{array}$	1.00	$\begin{array}{r} 2409 . \\ 34 \end{array}$	0.00	$\begin{array}{r} 194 . \\ 17 \end{array}$	$\begin{array}{r} 194.1 \\ 7 \end{array}$	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
GYM:ZONE1	$\begin{array}{r} 141.1 \\ 1 \end{array}$	Yes	Yes	$\begin{array}{r} 1764.0 \\ 1 \end{array}$	1.00	$\begin{array}{r} 420.0 \\ 4 \end{array}$	0.00	$\begin{array}{r} 23.4 \\ 9 \end{array}$	23.49	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
GYM:ZONE2	63.83	Yes	Yes	797.93	1.00	$\begin{array}{r} 213.1 \\ 5 \end{array}$	0.00	5.57	5.57	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
CHURCHROOF:ZONE1	$\begin{array}{r} 867.3 \\ 8 \end{array}$	No	Yes	$\begin{array}{r} 13043 . \\ 81 \end{array}$	1.00	$\begin{array}{r} 707.1 \\ 7 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$		$\begin{array}{r} 0.00 \\ 00 \end{array}$
CHURCHROOF:ZONE4	$\begin{array}{r} 248.2 \\ 5 \end{array}$	No	Yes	$\begin{array}{r} 1713.0 \\ 2 \end{array}$	1.00	95.23	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$		$\begin{array}{r} 0.00 \\ 00 \end{array}$
CHURCHROOF:ZONE2	$\begin{array}{r} 248.2 \\ 5 \end{array}$	No	Yes	$\begin{array}{r} 1713.0 \\ 2 \end{array}$	1.00	95.23	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$		$\begin{array}{r} 0.00 \\ 00 \end{array}$
FIRSTFLOOR:ZONE3	$\begin{array}{r} 322.6 \\ 8 \end{array}$	Yes	Yes	$\begin{array}{r} 6295.5 \\ 6 \end{array}$	1.00	$\begin{array}{r} 790.5 \\ 0 \end{array}$	0.00	$\begin{array}{r} 40.4 \\ 0 \end{array}$	40.40	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 50.0 \\ 0 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
FIRSTFLOOR:ZONE4	$\begin{array}{r} 324.0 \\ 3 \end{array}$	Yes	Yes	$\begin{array}{r} 6321.0 \\ 0 \end{array}$	1.00	$\begin{array}{r} 799.8 \\ 2 \end{array}$	0.00	$\begin{array}{r} 40.4 \\ 4 \end{array}$	40.44	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 50.0 \\ 0 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$

FIRSTFLOOR:ZONE2	$\begin{array}{r} 9178 . \\ 84 \end{array}$	Yes	Yes	$\begin{array}{r} 16324 \\ 3.84 \end{array}$	1.00	$\begin{array}{r} 4162 . \\ 38 \end{array}$	0.00	$\begin{array}{r} 645 . \\ 87 \end{array}$	$\begin{array}{r} 645.8 \\ 7 \end{array}$	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 50.0 \\ 0 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
FIRSTFLOOR:ZONE6	$\begin{array}{r} 244.8 \\ 2 \end{array}$	Yes	Yes	$\begin{array}{r} 4774.3 \\ 0 \end{array}$	1.00	$\begin{array}{r} 389.1 \\ 9 \end{array}$	0.00	$\begin{array}{r} 31.4 \\ 9 \end{array}$	36.09	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 50.0 \\ 0 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
FIRSTFLOOR:ZONE7	$\begin{array}{r} 244.8 \\ 2 \end{array}$	Yes	Yes	$\begin{array}{r} 4774.3 \\ 0 \end{array}$	1.00	$\begin{array}{r} 480.8 \\ 2 \end{array}$	0.00	$\begin{array}{r} 31.4 \\ 9 \end{array}$	36.08	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 50.0 \\ 0 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
FIRSTFLOOR:ZONE1	$\begin{array}{r} 114.8 \\ 0 \end{array}$	Yes	Yes	$\begin{array}{r} 2238.7 \\ 2 \end{array}$	1.00	3.78	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 50.0 \\ 0 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE1	$\begin{array}{r} 782.3 \\ 0 \end{array}$	Yes	Yes	$\begin{array}{r} 4364.7 \\ 5 \end{array}$	1.00	$\begin{array}{r} 443.6 \\ 6 \end{array}$	0.00	$\begin{array}{r} 79.2 \\ 5 \end{array}$	79.25	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE2	$\begin{array}{r} 424.5 \\ 6 \end{array}$	Yes	Yes	$\begin{array}{r} 2368.8 \\ 0 \end{array}$	1.00	$\begin{array}{r} 374.9 \\ 5 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE3	$\begin{array}{r} 509.7 \\ 1 \end{array}$	Yes	Yes	$\begin{array}{r} 2843.8 \\ 6 \end{array}$	1.00	$\begin{array}{r} 273.1 \\ 5 \end{array}$	0.00	$\begin{array}{r} 35.9 \\ 9 \end{array}$	35.99	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE4	$\begin{array}{r} 8398 . \\ 23 \end{array}$	Yes	Yes	$\begin{array}{r} 46857 . \\ 00 \end{array}$	1.00	$\begin{array}{r} 971.1 \\ 9 \end{array}$	0.00	$\begin{array}{r} 95.6 \\ 4 \end{array}$	95.64	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE5	$\begin{array}{r} 207.9 \\ 9 \end{array}$	Yes	Yes	$\begin{array}{r} 1160.4 \\ 8 \end{array}$	1.00	$\begin{array}{r} 117.7 \\ 3 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE6	$\begin{array}{r} 354.3 \\ 8 \end{array}$	Yes	Yes	$\begin{array}{r} 1977.2 \\ 5 \end{array}$	1.00	$\begin{array}{r} 190.2 \\ 7 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE7	$\begin{array}{r} 651.1 \\ 3 \end{array}$	Yes	Yes	$\begin{array}{r} 3632.9 \\ 2 \end{array}$	1.00	$\begin{array}{r} 241.0 \\ 4 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE8	$\begin{array}{r} 1541 . \\ 77 \end{array}$	Yes	Yes	$\begin{array}{r} 8602.1 \\ 5 \end{array}$	1.00	$\begin{array}{r} 452.7 \\ 2 \end{array}$	0.00	$\begin{array}{r} 53.2 \\ 0 \end{array}$	53.20	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE9	$\begin{array}{r} 454.9 \\ 1 \end{array}$	Yes	Yes	$\begin{array}{r} 2538.1 \\ 4 \end{array}$	1.00	$\begin{array}{r} 133.5 \\ 8 \end{array}$	0.00	$\begin{array}{r} 26.6 \\ 5 \end{array}$	26.65	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE10	$\begin{array}{r} 280.4 \\ 6 \end{array}$	Yes	Yes	$\begin{array}{r} 1564.8 \\ 0 \end{array}$	1.00	66.96	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE11	$\begin{array}{r} 796.9 \\ 6 \end{array}$	Yes	Yes	$\begin{array}{r} 4446.5 \\ 3 \end{array}$	1.00	$\begin{array}{r} 208.6 \\ 8 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	2.37
BASEMENTXABOVEGRA DE:ZONE12	$\begin{array}{r} 161.7 \\ 2 \end{array}$	Yes	Yes	902.28	1.00	$\begin{array}{r} 202.8 \\ 4 \end{array}$	0.00	8.98	8.98	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$

BASEMENTXABOVEGRA DE:ZONE13	$\begin{array}{r} 964.3 \\ 2 \end{array}$	Yes	Yes	$\begin{array}{r} 5380.3 \\ 1 \end{array}$	1.00	$\begin{array}{r} 298.8 \\ 9 \end{array}$	0.00	$\begin{array}{r} 40.3 \\ 2 \end{array}$	40.32	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE14	$\begin{array}{r} 601.2 \\ 6 \end{array}$	Yes	Yes	$\begin{array}{r} 3354.6 \\ 6 \end{array}$	1.00	$\begin{array}{r} 443.0 \\ 3 \end{array}$	0.00	$\begin{array}{r} 15.4 \\ 0 \end{array}$	15.40	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE15	$\begin{array}{r} 575.7 \\ 3 \end{array}$	Yes	Yes	$\begin{array}{r} 3212.2 \\ 4 \end{array}$	1.00	$\begin{array}{r} 430.5 \\ 6 \end{array}$	0.00	$\begin{array}{r} 19.1 \\ 6 \end{array}$	19.16	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
BASEMENTXABOVEGRA DE:ZONE16	$\begin{array}{r} 1500 . \\ 33 \end{array}$	Yes	Yes	$\begin{array}{r} 8370.9 \\ 2 \end{array}$	1.00	$\begin{array}{r} 739.1 \\ 6 \end{array}$	0.00	$\begin{array}{r} 130 . \\ 02 \end{array}$	$\begin{array}{r} 130.0 \\ 2 \end{array}$	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 200 . \\ 02 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
Total	$\begin{array}{r} 36151 \\ .86 \end{array}$			$\begin{array}{r} 37590 \\ 7.72 \end{array}$		$\begin{array}{r} 16155 \\ .05 \end{array}$	0.00	$\begin{array}{r} 1517 \\ .54 \end{array}$	$\begin{array}{r} 1526 . \\ 72 \end{array}$	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 109 . \\ 43 \end{array}$	$\begin{array}{r} 2.28 \\ 75 \end{array}$
Conditioned Total	$\begin{array}{r} 34787 \\ .98 \end{array}$			$\begin{array}{r} 35943 \\ 7.87 \end{array}$		$\begin{array}{r} 15257 \\ .42 \end{array}$	0.00	$\begin{array}{r} 1517 \\ .54 \end{array}$	$\begin{array}{r} 1526 . \\ 72 \end{array}$	$\begin{array}{r} 0.00 \\ 00 \end{array}$	$\begin{array}{r} 105 . \\ 30 \end{array}$	$\begin{array}{r} 2.37 \\ 72 \end{array}$
Unconditioned Total	$\begin{array}{r} 1363 . \\ 88 \end{array}$			$\begin{array}{r} 16469 . \\ 86 \end{array}$		$\begin{array}{r} 897.6 \\ 3 \end{array}$	0.00	0.00	0.00	$\begin{array}{r} 0.00 \\ 00 \end{array}$		$\begin{array}{r} 0.00 \\ 00 \end{array}$
Not Part of Total	0.00			0.00		0.00	0.00	0.00	0.00			

Table of Contents
Report: Demand End Use Components Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

End Uses

	Electricity $[\mathrm{kBtuh}]$	Natural Gas $[\mathrm{kBtuh}]$	Fuel Oil \#1 $[\mathrm{kBtuh}]$	District Cooling $[\mathrm{kBtuh}]$	Steam $[\mathrm{kBBtuh}]$	Water [gal/min]
Time of Peak	18 -FEB-09:09	-	$03-F E B-09: 20$	-	-	-
Heating	0.02	0.00	1140.64	0.00	0.00	0.00
Cooling	0.00	0.00	0.00	0.00	0.00	0.00
Interior Lighting	0.00	0.00	0.00	0.00	0.00	0.00

Exterior Lighting	0.00	0.00	0.00	0.00	0.00	0.00
Interior Equipment	78.62	0.00	0.00	0.00	0.00	0.00
Equipment Equior\|	0.00	0.00	0.00	0.00	0.00	0.00
Fans	0.00	0.00	0.00	0.00	0.00	0.00
Pumps	0.14	0.00	0.00	0.00	0.00	0.00
Heat Rejection	0.00	0.00	0.00	0.00	0.00	0.00
Humidification	0.00	0.00	0.00	0.00	0.00	0.00
Heat Recovery	0.00	0.00	0.00	0.00	0.00	0.00
Water Systems	0.00	0.00	0.00	0.00	0.00	0.00
Refrigeration	0.00	0.00	0.00	0.00	0.00	0.00
Generators	0.00	0.00	0.00	0.00	0.00	0.00
Total End Uses	78.78					

End Uses By Subcategory

	Subcategory	Electricity [kBtuh]	Natural Gas [kBtuh]	Fuel Oil \#1 [kBtuh]	District Cooling [kBtuh]	Steam [kBtuh]	Water [gal/min]
Heating	Boiler	0.00	0.00	1140.64	0.00	0.00	0.00
	Boiler Parasitic	0.02	0.00	0.00	0.00	0.00	0.00
Cooling	General	0.00	0.00	0.00	0.00	0.00	0.00
Interior Lighting	General	0.00	0.00	0.00	0.00	0.00	0.00
Exterior Lighting	General	0.00	0.00	0.00	0.00	0.00	0.00

Interior Equipment	General	78.62	0.00	0.00	0.00	0.00	0.00
Exterior Equipment	General	0.00	0.00	0.00	0.00	0.00	0.00
Fans	Ventilation (simple)	0.00	0.00	0.00	0.00	0.00	0.00
Pumps	General	0.14	0.00	0.00	0.00	0.00	0.00
Heat Rejection	General	0.00	0.00	0.00	0.00	0.00	0.00
Humidification	General	0.00	0.00	0.00	0.00	0.00	0.00
Heat Recovery	General	0.00	0.00	0.00	0.00	0.00	0.00
Water Systems	General	0.00	0.00	0.00	0.00	0.00	0.00
Refrigeration	General	0.00	0.00	0.00	0.00	0.00	0.00
Generators	General	0.00	0.00	0.00	0.00	0.00	0.00

Table of Contents

Report: Component Sizing Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

ZoneHVAC:Baseboard:RadiantConvective:Water

	Design Size Maximum Water Flow Rate [gal/min]	U-Factor times Area [Btu/h-F]
GYM:ZONE3 WATER RADIATOR	20.26	2708.46
GYM:ZONE1 WATER RADIATOR	1.47	190.83
GYM:ZONE2 WATER RADIATOR	0.772107	97.62
FIRSTFLOOR:ZONE3 WATER RADIATOR	3.41	450.03

FIRSTFLOOR:ZONE4 WATER RADIATOR	3.51	463.11
FIRSTFLOOR:ZONE2 WATER RADIATOR	31.27	4184.36
FIRSTFLOOR:ZONE6 WATER RADIATOR	1.77	230.30
FIRSTFLOOR:ZONE7 WATER RADIATOR	2.03	264.99
FIRSTFLOOR:ZONE1 WATER RADIATOR	0.598264	74.59
BASEMENTXABOVEGRADE:ZONE1 WATER RADIATOR	2.79	367.23
BASEMENTXABOVEGRADE:ZONE2 WATER RADIATOR	1.86	242.70
BASEMENTXABOVEGRADE:ZONE3 WATER RADIATOR	1.75	228.00
BASEMENTXABOVEGRADE:ZONE4 WATER RADIATOR	15.21	2031.67
BASEMENTXABOVEGRADE:ZONE5 WATER RADIATOR	0.699907	88.04
BASEMENTXABOVEGRADE:ZONE6 WATER RADIATOR	1.13	145.85
BASEMENTXABOVEGRADE:ZONE7 WATER RADIATOR	1.68	218.90
BASEMENTXABOVEGRADE:ZONE8 WATER RADIATOR	3.82	504.85
BASEMENTXABOVEGRADE:ZONE9 WATER RADIATOR	1.23	158.69
BASEMENTXABOVEGRADE:ZONE10 WATER RADIATOR	0.680585	85.48
BASEMENTXABOVEGRADE:ZONE11 WATER RADIATOR	1.77	231.29
BASEMENTXABOVEGRADE:ZONE12 WATER RADIATOR	0.901499	114.82
BASEMENTXABOVEGRADE:ZONE13 WATER RADIATOR	2.36	310.13

$\left.\begin{array}{|r|r|r|}\hline \text { BASEMENTXABOVEGRADE:ZONE14 WATER } \\ \text { RADIATOR }\end{array}\right)$

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

PlantLoop

	Maximum Loop Flow Rate [ft3/min]	Plant Loop Volume [ft3]
HW LOOP	14.74	29.49

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

Pump:VariableSpeed

	Design Flow Rate [ft3/min]	Design Power Consumption [Btu/h]
HW LOOP SUPPLY PUMP	14.74	676.34

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

Boiler:HotWater

	Design Size Nominal Capacity [Btu/h]	Design Size Design Water Flow Rate [gal/min]
BOILER	996952.59	110.29

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

Table of Contents

Report: Adaptive Comfort Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Time Not Meeting the Adaptive Comfort Models during Occupied Hours

ASHRAE55 90\%	ASHRAE55 80\%	CEN15251 Category I Acceptability Limits [Hours]	CEN15251 Category Acceptability Limits [Hours]	CEN15251 Category Acceptability Limits [Hours]
II Acceptability Limits				
[Hours]				
III Acceptability Limits				
[Hours]				

Table of Contents

Report: Climatic Data Summary
For: Entire Facility

Timestamp: 2019-12-26 10:47:47

SizingPeriod:DesignDay

	Maximum Dry Bulb [F]	Daily Temperature Range [deltaF]	Humidity Value	Humidity Type	Wind Speed $[\mathrm{ft} / \mathrm{min}]$	Wind Direction
SUMMER DESIGN DAY IN MQP WORCESTER GOSPEL CHURCH (O1-O1:31-12) JUL	85.82	15.84	71.24	Wetbulb $[\mathrm{F}]$	0.00	0.00
WINTER DESIGN DAY IN MQP WORCESTER GOSPEL CHURCH (O1-O1:31-12)	1.94	0.00	1.94	Wetbulb $[\mathrm{F}]$	2677.30	0.00

Weather Statistics File

Table of Contents
Report: Envelope Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Opaque Exterior

	Constructio n	Reflecta nce	$\mathrm{U}-$ Fact or with Film [Btu/ $\mathrm{h}-$ ft2- $\mathrm{F}]$	U- Fact or no Film [Btu/ h-ft2F]	Gross Area [ft2]	Net Area [ft2]	Azimu th [deg]	$\begin{array}{r} \text { Tilt } \\ \text { [deg } \\] \end{array}$	Cardin al Directi on
GYM:ZONE3_WALL_2_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 373.7 \\ 9 \end{array}$	$\begin{array}{r} 327.0 \\ 7 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
GYM:ZONE3_WALL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 526.3 \\ 0 \end{array}$	$\begin{array}{r} 470.3 \\ 0 \end{array}$	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
GYM:ZONE3_WALL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 861.9 \\ 6 \end{array}$	$\begin{array}{r} 765.5 \\ 7 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
GYM:ZONE3_WALL_7_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 131.8 \\ 9 \end{array}$	$\begin{array}{r} 109.0 \\ 7 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
GYMROOF:ZONE1_WALL_1_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 443.1 \\ 5 \end{array}$	$\begin{array}{r} 443.1 \\ 5 \end{array}$	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
GYMROOF:ZONE1_WALL_7_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	72.26	72.26	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
GYMROOF:ZONE1_ROOF_0_0_0	COPY OF CHURCH ROOF	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 747.0 \\ 6 \end{array}$	$\begin{array}{r} 747.0 \\ 6 \end{array}$	90.00	$\begin{array}{r} 45.0 \\ 0 \end{array}$	

	UNINSULA TED								
GYMROOF:ZONE1_ROOF_0_0_1	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 1203 . \\ 54 \end{array}$	$\begin{array}{r} 1203 . \\ 54 \end{array}$	90.00	45.0 0	
GYMROOF:ZONE1_ROOF_4_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 2052 . \\ 79 \end{array}$	$\begin{array}{r} 2052 . \\ 79 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
GYMROOF:ZONE1_ROOF_5_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 150.8 \\ 8 \end{array}$	$\begin{array}{r} 150.8 \\ 8 \end{array}$	0.00	45.0 0	
GYMROOF:ZONE1_ROOF_6_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 150.8 \\ 8 \end{array}$	$\begin{array}{r} 150.8 \\ 8 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
GYM:ZONE1_WALL_2_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 212.5 \\ 2 \end{array}$	$\begin{array}{r} 189.0 \\ 3 \end{array}$	90.00	90.0 0	E
GYM:ZONE1_WALL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 103.7 \\ 6 \end{array}$	$\begin{array}{r} 103.7 \\ 6 \end{array}$	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
GYM:ZONE1_WALL_5_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 103.7 \\ 6 \end{array}$	$\begin{array}{r} 103.7 \\ 6 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
GYM:ZONE2_WALL_2_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 143.7 \\ 6 \end{array}$	$\begin{array}{r} 138.1 \\ 9 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
GYM:ZONE2_WALL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	69.38	69.38	0.00	90.0 0	N

GYM:ZONE2_ROOF_1_0_0	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES ROOF } \\ \text { INS } \\ \text { ENTIRELY } \\ \text { ABOVE } \\ \text { DECK R- } \\ \text { 19.9C.I. } \\ \text { (3.5C.I.) U- } \\ .048 \\ \text { (.273) } \end{array}$	0.30	$\begin{array}{r} 0.04 \\ 8 \end{array}$	$\begin{array}{r} 0.05 \\ 0 \end{array}$	63.83	63.83	$\begin{array}{r} 180.0 \\ 0 \end{array}$	0.00	
CHURCHROOF:ZONE1_WALL_1_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 387.0 \\ 7 \end{array}$	$\begin{array}{r} 387.0 \\ 7 \end{array}$	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
CHURCHROOF:ZONE1_WALL_1_0_1	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 320.1 \\ 1 \end{array}$	$\begin{array}{r} 320.1 \\ 1 \end{array}$	0.00	90.0 0	N
CHURCHROOF:ZONE1_EXTFLOOR_2_0_	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES } \\ \text { EXTERNAL } \\ \text { FLOOR } \\ \text { STEEL- } \\ \text { JOIST R- } \\ 30.1(5.3) \\ \mathrm{U}-.038 \\ (.214) \end{array}$	0.30	$\begin{array}{r} 0.03 \\ 8 \end{array}$	$\begin{array}{r} 0.04 \\ 0 \end{array}$	7.20	7.20	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
CHURCHROOF:ZONE1_EXTFLOOR_2_0_	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES } \\ \text { EXTERNAL } \\ \text { FLOOR } \\ \text { STEEL- } \\ \text { JOIST R- } \\ 30.1(5.3) \\ \mathrm{U}-.038 \\ (.214) \end{array}$	0.30	$\begin{array}{r} 0.03 \\ 8 \end{array}$	$\begin{array}{r} 0.04 \\ 0 \end{array}$	7.20	7.20	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
CHURCHROOF:ZONE1_ROOF_0_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 613.3 \\ 3 \end{array}$	$\begin{array}{r} 613.3 \\ 3 \end{array}$	90.00	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
CHURCHROOF:ZONE1_ROOF_3_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 613.3 \\ 3 \end{array}$	$\begin{array}{r} 613.3 \\ 3 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 45.0 \\ 0 \end{array}$	

CHURCHROOF:ZONE4_WALL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	95.23	95.23	180.0 0	90.0 0	S
CHURCHROOF:ZONE4_ROOF_0_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 351.0 \\ 8 \end{array}$	$\begin{array}{r} 351.0 \\ 8 \end{array}$	90.00	45.0 0	
CHURCHROOF:ZONE2_WALL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	95.23	95.23	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
CHURCHROOF:ZONE2_ROOF_3_0_0	COPY OF CHURCH ROOF UNINSULA TED	0.40	$\begin{array}{r} 0.22 \\ 6 \end{array}$	$\begin{array}{r} 0.27 \\ 4 \end{array}$	$\begin{array}{r} 351.0 \\ 8 \end{array}$	$\begin{array}{r} 351.0 \\ 8 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
FIRSTFLOOR:ZONE3_WALL_3_1_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	91.02	91.02	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
FIRSTFLOOR:ZONE3_WALL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 351.2 \\ 1 \end{array}$	$\begin{array}{r} 330.9 \\ 9 \end{array}$	$\begin{array}{r} 269.5 \\ 2 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE3_WALL_5_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 348.2 \\ 7 \end{array}$	$\begin{array}{r} 291.8 \\ 4 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE3_ROOF_6_2_0	$\begin{array}{r} \text { PITCHED } \\ \text { ROOF - } \\ \text { UNINSULA } \\ \text { TED - } \\ \text { HEAVYWEI } \\ \text { GHT } \\ \text { (DATA } \\ \text { MODIFIED } \\ \text { WHEN } \\ \text { LOADED } \\ \text { TO FILE) } \end{array}$	0.30	$\begin{array}{r} 0.52 \\ 0 \end{array}$	$\begin{array}{r} 0.87 \\ 5 \end{array}$	61.66	61.66	$\begin{array}{r} 180.0 \\ 0 \end{array}$	0.00	
FIRSTFLOOR:ZONE4_WALL_3_1_0	COPY OF COPY OF	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	97.53	97.53	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N

	CHURCH WALL								
FIRSTFLOOR:ZONE4_WALL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 351.1 \\ 5 \end{array}$	$\begin{array}{r} 330.9 \\ 3 \end{array}$	90.00	90.0 0	E
FIRSTFLOOR:ZONE4_WALL_5_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 351.1 \\ 5 \end{array}$	$\begin{array}{r} 290.4 \\ 8 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE4_ROOF_0_2_0	$\begin{array}{r} \text { PITCHED } \\ \text { ROOF - } \\ \text { UNINSULA } \\ \text { TED - } \\ \text { HEAVYWEI } \\ \text { GHT } \\ \text { (DATA } \\ \text { MODIFIED } \\ \text { WHEN } \\ \text { LOADED } \end{array}$	0.30	$\begin{array}{r} 0.52 \\ 0 \end{array}$	$\begin{array}{r} 0.87 \\ 5 \end{array}$	81.01	81.01	$\begin{array}{r} 180.0 \\ 0 \end{array}$	0.00	
FIRSTFLOOR:ZONE2_WALL_13_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	78.01	78.01	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
FIRSTFLOOR:ZONE2_WALL_14_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 391.9 \\ 9 \end{array}$	$\begin{array}{r} 303.0 \\ 2 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2_WALL_15_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	91.00	91.00	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2_WALL_16_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 856.1 \\ 3 \end{array}$	$\begin{array}{r} 733.4 \\ 9 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2_WALL_19_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 626.9 \\ 9 \end{array}$	$\begin{array}{r} 577.8 \\ 1 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S

FIRSTFLOOR:ZONE2_WALL_22_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 856.1 \\ 3 \end{array}$	$\begin{array}{r} 733.4 \\ 9 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2_WALL_23_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	78.01	78.01	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2_WALL_24_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 391.9 \\ 9 \end{array}$	$\begin{array}{r} 303.0 \\ 2 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2_WALL_25_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	78.01	78.01	0.00	90.0 0	N
CHURCHROOF:ZONE3_WALL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 714.1 \\ 4 \end{array}$	$\begin{array}{r} 540.6 \\ 7 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
CHURCHROOF:ZONE3_EXTFLOOR_1_0_	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES } \\ \text { EXTERNAL } \\ \text { FLOOR } \\ \text { STEEL- } \\ \text { JOIST R- } \\ 30.1(5.3) \\ \text { U-. } 038 \\ (.214) \end{array}$	0.30	$\begin{array}{r} 0.03 \\ 8 \end{array}$	$\begin{array}{r} 0.04 \\ 0 \end{array}$	51.19	51.19	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
CHURCHROOF:ZONE3_EXTFLOOR_1_0_	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES } \\ \text { EXTERNAL } \\ \text { FLOOR } \\ \text { STEEL- } \\ \text { JOIST R- } \\ 30.1(5.3) \\ \text { U-.O38 } \\ (.214) \end{array}$	0.30	$\begin{array}{r} 0.03 \\ 8 \end{array}$	$\begin{array}{r} 0.04 \\ 0 \end{array}$	21.95	21.95	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
FIRSTFLOOR:ZONE2_ROOF_36_3_0	PITCHED ROOF UNINSULA TED HEAVYWEI GHT (DATA	0.30	$\begin{array}{r} 0.52 \\ 0 \end{array}$	$\begin{array}{r} 0.87 \\ 5 \end{array}$	70.36	70.36	$\begin{array}{r} 180.0 \\ 0 \end{array}$	0.00	

	$\begin{array}{r} \text { MODIFIED } \\ \text { WHEN } \\ \text { LOADED } \\ \text { TO FILE) } \end{array}$								
FIRSTFLOOR:ZONE2_ROOF_36_3_1	PITCHED ROOF - UNINSULA TED - HEAVYWEI GHT (DATA MODIFIED WHEN LOADED TO FILE)	0.30	$\begin{array}{r} 0.52 \\ 0 \end{array}$	$\begin{array}{r} 0.87 \\ 5 \end{array}$	70.36	70.36	$\begin{array}{r} 180.0 \\ 0 \end{array}$	0.00	
CHURCHROOF:ZONE3_ROOF_0_0_0	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES ROOF } \\ \text { INS } \\ \text { ENTIRELY } \\ \text { ABOVE } \\ \text { DECK R- } \\ \text { 19.9C.I. } \\ \text { (3.5C.I.) U- } \\ .048 \\ \text { (.273) } \end{array}$	0.30	$\begin{array}{r} 0.04 \\ 8 \end{array}$	$\begin{array}{r} 0.05 \\ 0 \end{array}$	$\begin{array}{r} 414.0 \\ 5 \end{array}$	$\begin{array}{r} 414.0 \\ 5 \end{array}$	90.00	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
CHURCHROOF:ZONE3_ROOF_0_0_1	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES ROOF } \\ \text { INS } \\ \text { ENTIRELY } \\ \text { ABOVE } \\ \text { DECK R- } \\ \text { 19.9C.I. } \\ \text { (3.5C.I.) U- } \\ .048 \\ (.273) \end{array}$	0.30	$\begin{array}{r} 0.04 \\ 8 \end{array}$	$\begin{array}{r} 0.05 \\ 0 \end{array}$	$\begin{array}{r} 2722 . \\ 07 \end{array}$	$\begin{array}{r} 2722 . \\ 07 \end{array}$	90.00	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
CHURCHROOF:ZONE3_ROOF_4_0_0	$\begin{array}{r} \text { CZ5 NON- } \\ \text { RES ROOF } \\ \text { INS } \\ \text { ENTIRELY } \\ \text { ABOVE } \\ \text { DECK R- } \\ \text { 19.9C.I. } \\ \text { (3.5C.I.) U- } \\ .048 \\ (.273) \end{array}$	0.30	$\begin{array}{r} 0.04 \\ 8 \end{array}$	$\begin{array}{r} 0.05 \\ 0 \end{array}$	$\begin{array}{r} 1249 . \\ 03 \end{array}$	$\begin{array}{r} 1249 . \\ 03 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 45.0 \\ 0 \end{array}$	
CHURCHROOF:ZONE3_ROOF_4_0_1	CZ5 NONRES ROOF INS	0.30	$\begin{array}{r} 0.04 \\ 8 \end{array}$	$\begin{array}{r} 0.05 \\ 0 \end{array}$	$\begin{array}{r} 1887 . \\ 09 \end{array}$	$\begin{array}{r} 1887 . \\ 09 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 45.0 \\ 0 \end{array}$	

	$\begin{array}{r} \text { ENTIRELY } \\ \text { ABOVE } \\ \text { DECK R- } \\ \text { 19.9C.I. } \\ \text { (3.5C.I.) U- } \\ .048 \\ (.273) \end{array}$								
FIRSTFLOOR:ZONE6_WALL_1_2_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	24.50	24.50	0.00	90.0 0	N
FIRSTFLOOR:ZONE6_WALL_1_2_1	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	83.86	83.86	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
FIRSTFLOOR:ZONE6_WALL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 280.8 \\ 3 \end{array}$	$\begin{array}{r} 244.7 \\ 4 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE7_WALL_1_3_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	90.01	90.01	0.00	90.0 0	N
FIRSTFLOOR:ZONE7_WALL_1_3_1	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 109.9 \\ 8 \end{array}$	$\begin{array}{r} 109.9 \\ 8 \end{array}$	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
FIRSTFLOOR:ZONE7_WALL_2_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 280.8 \\ 3 \end{array}$	$\begin{array}{r} 244.7 \\ 4 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE1_WALL_1_2_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	3.78	3.78	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE1_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 248.7 \\ 2 \end{array}$	$\begin{array}{r} 182.7 \\ 3 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE1_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	81.99	68.73	0.00	90.0 0	N

BASEMENTXBELOWGRADE:ZONE10_WA LL_2_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	84.94	84.94	90.00	90.0 0	E
BASEMENTXBELOWGRADE:ZONE10_WA LL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	28.00	28.00	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE10_EXT FLOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 391.1 \\ 5 \end{array}$	$\begin{array}{r} 391.1 \\ 5 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE2_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 141.4 \\ 2 \end{array}$	$\begin{array}{r} 118.6 \\ 1 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE2_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	69.04	69.04	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE2_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	69.04	69.04	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE9_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	48.29	48.29	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXBELOWGRADE:ZONE9_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	23.58	23.58	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE9_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	23.58	23.58	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE9_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	71.17	71.17	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

BASEMENTXBELOWGRADE:ZONE9_EXTF LOOR_0_0_1	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 141.1 \\ 1 \end{array}$	$\begin{array}{r} 141.1 \\ 1 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE3_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 203.6 \\ 2 \end{array}$	$\begin{array}{r} 167.6 \\ 3 \end{array}$	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE11_WA LL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	69.54	69.54	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE11_EXT FLOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 254.8 \\ 5 \end{array}$	$\begin{array}{r} 254.8 \\ 5 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE4_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	53.48	53.48	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXABOVEGRADE:ZONE4_WALL _15_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	35.77	35.77	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXABOVEGRADE:ZONE4_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	35.77	35.77	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXABOVEGRADE:ZONE4_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 365.1 \\ 8 \end{array}$	$\begin{array}{r} 282.4 \\ 9 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE4_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	33.27	33.27	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXABOVEGRADE:ZONE4_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 167.2 \\ 0 \end{array}$	$\begin{array}{r} 135.3 \\ 0 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE4_WALL _25_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	33.27	33.27	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N

BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 124.7 \\ 1 \end{array}$	$\begin{array}{r} 109.6 \\ 7 \end{array}$	90.00	90.0 0	E
BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	11.36	11.36	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	57.10	57.10	90.00	90.0 0	E
BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	11.36	11.36	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	18.26	18.26	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	12.22	12.22	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE2_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	12.22	12.22	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	80.41	80.41	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_1	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	77.41	77.41	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
$\begin{array}{r} \text { BASEMENTXBELOWGRADE:ZONE2_EXTF } \\ \text { LOOR_0_0_2 } \end{array}$	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	77.41	77.41	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

	$\begin{array}{r} \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$								
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_3	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	73.30	73.30	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_4	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 998.7 \\ 1 \end{array}$	$\begin{array}{r} 998.7 \\ 1 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_5	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \\ \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 181.0 \\ 5 \end{array}$	$\begin{array}{r} 181.0 \\ 5 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_6	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 2014 . \\ 96 \end{array}$	$\begin{array}{r} 2014 . \\ 96 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXBELOWGRADE:ZONE2_EXTF LOOR_0_0_7	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 695.8 \\ 7 \end{array}$	$\begin{array}{r} 695.8 \\ 7 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE5_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	87.76	87.76	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXBELOWGRADE:ZONE8_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	29.97	29.97	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXBELOWGRADE:ZONE8_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 104.0 \\ 0 \end{array}$	$\begin{array}{r} 104.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

	UNINSULA TED								
BASEMENTXABOVEGRADE:ZONE6_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	95.66	95.66	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE6_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	46.17	46.17	0.00	90.0 0	N
BASEMENTXBELOWGRADE:ZONE7_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	32.67	32.67	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXBELOWGRADE:ZONE7_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	15.77	15.77	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE7_EXTF LOOR_0_0_0	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \\ \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 177.1 \\ 9 \end{array}$	$\begin{array}{r} 177.1 \\ 9 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE7_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 119.7 \\ 9 \end{array}$	$\begin{array}{r} 119.7 \\ 9 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE7_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	59.89	59.89	0.00	90.0 0	N
BASEMENTXBELOWGRADE:ZONE6_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	40.91	40.91	90.00	90.0 0	E
BASEMENTXBELOWGRADE:ZONE6_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	20.45	20.45	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE6_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 325.5 \\ 7 \end{array}$	$\begin{array}{r} 325.5 \\ 7 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

	UNINSULA TED								
BASEMENTXABOVEGRADE:ZONE8_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 337.4 \\ 8 \end{array}$	$\begin{array}{r} 284.2 \\ 8 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE16_WA LL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 115.2 \\ 5 \end{array}$	$\begin{array}{r} 115.2 \\ 5 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE16_EXT FLOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 770.8 \\ 9 \end{array}$	$\begin{array}{r} 770.8 \\ 9 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE9_WALL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	99.57	72.92	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE15_WA LL_5_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	34.00	34.00	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE15_EXT FLOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 227.4 \\ 6 \end{array}$	$\begin{array}{r} 227.4 \\ 6 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE10_WAL L_5_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	49.91	49.91	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE13_WA LL_5_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	17.04	17.04	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE13_EXT FLOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 140.2 \\ 3 \end{array}$	$\begin{array}{r} 140.2 \\ 3 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

BASEMENTXABOVEGRADE:ZONE11_WAL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	35.77	35.77	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE11_WAL L_5_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 119.7 \\ 9 \end{array}$	$\begin{array}{r} 119.7 \\ 9 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE12_WA LL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	12.22	12.22	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE12_WA LL_5_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	40.91	40.91	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE12_EXT FLOOR_0_0_0	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \\ \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 398.4 \\ 8 \end{array}$	$\begin{array}{r} 398.4 \\ 8 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE12_WAL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	64.60	55.62	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE12_WAL L_4_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	86.60	86.60	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE14_WA LL_3_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	22.06	22.06	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE14_WA LL_4_0_0	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	29.57	29.57	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE14_EXT FLOOR_0_0_0	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \\ \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	80.86	80.86	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

BASEMENTXABOVEGRADE:ZONE13_WAL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 222.8 \\ 0 \end{array}$	$\begin{array}{r} 182.4 \\ 9 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE4_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	76.09	76.09	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE4_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 482.1 \\ 6 \end{array}$	$\begin{array}{r} 482.1 \\ 6 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE14_WAL L_2_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 149.7 \\ 3 \end{array}$	$\begin{array}{r} 134.3 \\ 3 \end{array}$	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXABOVEGRADE:ZONE14_WAL L_3_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	41.59	41.59	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE14_WAL L_6_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 138.9 \\ 2 \end{array}$	$\begin{array}{r} 122.2 \\ 7 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE5_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	51.13	51.13	90.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	E
BASEMENTXBELOWGRADE:ZONE5_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	14.20	14.20	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE5_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	47.44	47.44	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE5_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 300.6 \\ 3 \end{array}$	$\begin{array}{r} 300.6 \\ 3 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

BASEMENTXABOVEGRADE:ZONE15_WAL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	38.81	38.81	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE15_WAL L_5_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 149.7 \\ 4 \end{array}$	$\begin{array}{r} 130.5 \\ 8 \end{array}$	$\begin{array}{r} 269.5 \\ 2 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXABOVEGRADE:ZONE15_WAL L_6_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 132.4 \\ 0 \end{array}$	$\begin{array}{r} 115.7 \\ 4 \end{array}$	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE3_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	13.26	13.26	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE3_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	51.14	51.14	$\begin{array}{r} 269.5 \\ 2 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE3_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	45.21	45.21	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE3_EXTF LOOR_0_0_0	SOLID BASEMENT GROUND FLOOR UNINSULA TED	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 287.8 \\ 7 \end{array}$	$\begin{array}{r} 287.8 \\ 7 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXABOVEGRADE:ZONE16_WAL	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	33.27	33.27	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXABOVEGRADE:ZONE16_WAL L_5_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 167.2 \\ 0 \end{array}$	$\begin{array}{r} 134.6 \\ 0 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXABOVEGRADE:ZONE16_WAL L_6_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	38.81	38.81	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXABOVEGRADE:ZONE16_WAL L_7_0_0	COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 311.7 \\ 0 \end{array}$	$\begin{array}{r} 214.2 \\ 8 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W

BASEMENTXBELOWGRADE:ZONE1_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	11.36	11.36	0.00	$\begin{array}{r} 90.0 \\ 0 \end{array}$	N
BASEMENTXBELOWGRADE:ZONE1_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	57.10	57.10	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE1_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	13.26	13.26	$\begin{array}{r} 180.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	S
BASEMENTXBELOWGRADE:ZONE1_WALL	COPY OF COPY OF CHURCH WALL	0.40	$\begin{array}{r} 0.44 \\ 0 \end{array}$	$\begin{array}{r} 0.70 \\ 4 \end{array}$	$\begin{array}{r} 106.4 \\ 5 \end{array}$	$\begin{array}{r} 106.4 \\ 5 \end{array}$	$\begin{array}{r} 270.0 \\ 0 \end{array}$	$\begin{array}{r} 90.0 \\ 0 \end{array}$	W
BASEMENTXBELOWGRADE:ZONE1_EXTF LOOR_0_0_0	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \\ \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 427.2 \\ 1 \end{array}$	$\begin{array}{r} 427.2 \\ 1 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	
BASEMENTXBELOWGRADE:ZONE1_EXTF LOOR_0_0_1	$\begin{array}{r} \text { SOLID } \\ \text { BASEMENT } \\ \text { GROUND } \\ \text { FLOOR } \\ \text { UNINSULA } \\ \text { TED } \end{array}$	0.40	$\begin{array}{r} 0.19 \\ 1 \end{array}$	$\begin{array}{r} 0.24 \\ 2 \end{array}$	$\begin{array}{r} 322.9 \\ 6 \end{array}$	$\begin{array}{r} 322.9 \\ 6 \end{array}$	0.00	$\begin{array}{r} 180 . \\ 00 \end{array}$	

Exterior Fenestration

							$\begin{aligned} & 2- \\ & \text { F] } \end{aligned}$								
GYM:ZONE3_WALL_2_ 0_0_0_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ 3 . \\ 3 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 23 \\ .3 \\ 6 \end{array}$	$\begin{array}{r} 23 . \\ 36 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	GYM:ZONE3_WAL L_2_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
GYM:ZONE3_WALL_2_ $0 _0 _1 _0 _0 _W I N$	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ 3 . \\ 3 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 23 \\ .3 \\ 6 \end{array}$	$\begin{array}{r} 23 . \\ 36 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	GYM:ZONE3_WAL L_2_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
$\begin{array}{r} \text { GYM:ZONE3_WALL_3_ } \\ \text { 0_0_0_0_3_WIN } \end{array}$	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 4 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 14 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 14 . \\ 00 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL L_3_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
GYM:ZONE3_WALL_3_- 0_0_1_0_2_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 4 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 14 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 14 . \\ 00 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL L_3_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
GYM:ZONE3_WALL_3_ 0_0_2_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 4 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 14 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 14 . \\ 00 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL L_3_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
GYM:ZONE3_WALL_3_- 0_0_3_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 4 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 14 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 14 . \\ 00 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL L_3_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
GYM:ZONE3_WALL_4_- 0_0_1_0_2_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ 2 . \\ 8 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 22 \\ .8 \\ 8 \end{array}$	$\begin{array}{r} 22 . \\ 88 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL L_4_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
GYM:ZONE3_WALL_4_- 0_0_2_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ 2 . \\ 8 \\ 8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 22 \\ .8 \\ 8 \end{array}$	$\begin{array}{r} 22 . \\ 88 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
GYM:ZONE3_WALL_4- 0_0_3_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ 2 . \\ 8 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 22 \\ .8 \\ 8 \end{array}$	$\begin{array}{r} 22 . \\ 88 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	GYM:ZONE3_WAL	27 0. 00	9 0 0 0	W
GYM:ZONE3_WALL_7-7 0_0_0_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	2.	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 22 \\ .8 \\ 2 \end{array}$	$\begin{array}{r} 22 . \\ 82 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		N 0	GYM:ZONE3_WAL L_7_0_0	90 .0 0	9 0.	E

								1					0	
FIRSTFLOOR:ZONE3_ WALL_4_0_0_8_0_0_ WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 51 \end{array}$	$\begin{array}{r} 0.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE3_ WALL_4_0_0_9_0_0-	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{\|r\|} 0 . \\ 3 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 30 \end{gathered}$	$\begin{array}{r} 0.3 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_11_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 11 \end{array}$	$\begin{array}{r} 0.1 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_12_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{aligned} & 4 . \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 4 . \\ & 77 \end{aligned}$	$\begin{array}{r} 4.7 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_13_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 5 \\ 8 \end{array}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 58 \end{array}$	$\begin{array}{r} 0.5 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_14_0_1 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 7 \\ 3 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 73 \end{array}$	$\begin{array}{r} 0.7 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_15_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 2 \end{array}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 82 \end{gathered}$	$\begin{array}{r} 0.8 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_16_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_17_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 7 \\ 9 \end{gathered}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 \\ 79 \end{gathered}$	$\begin{array}{r} 0.7 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE3 WALL_4_0_0_18_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{aligned} & 0 . \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 0 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 \\ 67 \end{gathered}$	$\begin{array}{r} 0.6 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E3_WALL_4_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	0.	W

								1 9						0	
FIRSTFLOOR:ZONE4 WALL_4_0_0_8_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 51 \end{gathered}$	$\begin{array}{r} 0.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_9_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 3 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 30 \end{gathered}$	$\begin{array}{r} 0.3 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_11_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 1 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 11 \end{gathered}$	$\begin{array}{r} 0.1 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_12_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{aligned} & 4 . \\ & 7 \\ & 7 \end{aligned}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 4 . \\ & 77 \end{aligned}$	$\begin{array}{r} 4.7 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_13_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 5 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 58 \end{array}$	$\begin{array}{r} 0.5 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_14_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{aligned} & 0 . \\ & 7 \\ & 3 \end{aligned}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 0 . \\ & 73 \end{aligned}$	$\begin{array}{r} 0.7 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_15_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 2 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 82 \end{gathered}$	$\begin{array}{r} 0.8 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_16_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 4 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_17_0_1_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 7 \\ 9 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 79 \end{gathered}$	$\begin{array}{r} 0.7 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	90 .0 0	9 0. 0 0	E
FIRSTFLOOR:ZONE4 WALL_4_0_0_18_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 7 \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 67 \end{gathered}$	$\begin{array}{r} 0.6 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_4_0_0	90 .0 0	9 0.	E

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE4 WALL_5_0_0_19_0_2_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 51 \end{array}$	$\begin{array}{r} 0.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E4_WALL_5_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE4 WALL_5_0_0_20_0_2-	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 3 \\ 0 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 30 \end{gathered}$	$\begin{array}{r} 0.3 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E4_WALL_5_0_0	18 0 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2 WALL_14_0_0_0_0_0- WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 86 \end{array}$	$\begin{array}{r} 0.8 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_14_0_0_1_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 \\ 8 . \\ 9 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 38 \\ .9 \\ 4 \end{array}$	$\begin{array}{r} 38 . \\ 94 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_14_0_0_2_0_0_ WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 6 . \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 6 . \\ 11 \end{array}$	$\begin{array}{r} 6.1 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_14_0_0_3_0_0_ WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 2 \\ 3 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 7 . \\ 23 \end{gathered}$	$\begin{array}{r} 7.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0. 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_14_0_0_4_0_0_	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 . \\ 6 \\ 5 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 7 . \\ & 65 \end{aligned}$	$\begin{array}{r} 7.6 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_14_0_0_5_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 5 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 7 . \\ 59 \end{array}$	$\begin{array}{r} 7.5 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2_ WALL_14_0_0_6_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 6 . \\ 9 \\ 8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 6 . \\ 98 \end{array}$	$\begin{array}{r} 6.9 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_14_0_0_7_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 5 . \\ 8 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 5 . \\ 86 \end{array}$	$\begin{array}{r} 5.8 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_14_0_0	27 0. 00	$\begin{aligned} & 9 \\ & 0 . \end{aligned}$	W

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_16_0_0_7_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 2 . \\ 7 \\ 2 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 72 \end{array}$	$\begin{array}{r} 2.7 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_8_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 0 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 04 \end{array}$	$\begin{array}{r} 2.0 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_9_0_0 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 2 \\ 3 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 1 . \\ 23 \end{array}$	$\begin{array}{r} 1.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_10_0_0 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 3 \\ 7 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 37 \end{gathered}$	$\begin{array}{r} 0.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_11_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 42 \end{array}$	$\begin{array}{r} 0.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_12_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 8 . \\ 5 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 18 \\ .5 \\ 6 \end{array}$	$\begin{array}{r} 18 . \\ 56 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_13_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 51 \end{array}$	$\begin{array}{r} 2.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_14_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 0 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 06 \end{gathered}$	$\begin{array}{r} 3.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_15_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 3 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 37 \end{gathered}$	$\begin{array}{r} 3.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_16_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 42 \end{array}$	$\begin{array}{r} 3.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{aligned} & 9 \\ & 0 . \end{aligned}$	W

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_16_0_0_17_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 1 \\ 9 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 19 \end{array}$	$\begin{array}{r} 3.1 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_18_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 7 \\ 2 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 72 \end{array}$	$\begin{array}{r} 2.7 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_19_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 0 \\ 4 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 04 \end{array}$	$\begin{array}{r} 2.0 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_20_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 2 \\ 3 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 1 . \\ 23 \end{gathered}$	$\begin{array}{r} 1.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_21_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 3 \\ 7 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 0 . \\ & 37 \end{aligned}$	$\begin{array}{r} 0.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_22_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 2 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 42 \end{gathered}$	$\begin{array}{r} 0.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_23_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 8 . \\ 5 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 18 \\ .5 \\ 6 \end{array}$	$\begin{array}{r} 18 . \\ 56 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_24_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 51 \end{array}$	$\begin{array}{r} 2.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_25_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 0 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 06 \end{array}$	$\begin{array}{r} 3.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	W
FIRSTFLOOR:ZONE2 WALL_16_0_0_26_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 3 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 37 \end{gathered}$	$\begin{array}{r} 3.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_16_0_0	27 0. 00	$\begin{aligned} & 9 \\ & 0 . \end{aligned}$	W

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_19_0_0_5_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_6_0_0 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 7 \\ 8 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 78 \end{gathered}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_7_0_0 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 66 \end{gathered}$	$\begin{array}{r} 0.6 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_8_0_0 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 49 \end{array}$	$\begin{array}{r} 0.4 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_9_0_0 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 29 \end{array}$	$\begin{array}{r} 0.2 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_12_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 51 \end{array}$	$\begin{array}{r} 4.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_13_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 5 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 65 \end{gathered}$	$\begin{array}{r} 0.6 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_14_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{\|c} 0 . \\ 7 \\ 8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 78 \end{array}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_15_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_16_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \end{gathered}$	S

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_19_0_0_17_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 7 \\ 8 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 78 \end{gathered}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_18_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 66 \end{gathered}$	$\begin{array}{r} 0.6 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_19_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 49 \end{array}$	$\begin{array}{r} 0.4 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_20_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 29 \end{array}$	$\begin{array}{r} 0.2 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_23_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 51 \end{array}$	$\begin{array}{r} 4.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_24_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 5 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 65 \end{gathered}$	$\begin{array}{r} 0.6 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_25_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{\|c} 0 . \\ 7 \\ 8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 78 \end{gathered}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_26_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_27_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_28_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 7 \\ 8 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 0 . \\ & 78 \end{aligned}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \end{gathered}$	S

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_19_0_0_29_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 66 \end{array}$	$\begin{array}{r} 0.6 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_30_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 49 \end{array}$	$\begin{array}{r} 0.4 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_31_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 29 \end{gathered}$	$\begin{array}{r} 0.2 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_34_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 51 \end{array}$	$\begin{array}{r} 4.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_35_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 5 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 65 \end{array}$	$\begin{array}{r} 0.6 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_36_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 7 \\ 8 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 78 \end{gathered}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_37_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_38_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_39_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 7 \\ 8 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 78 \end{gathered}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_40_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 66 \end{gathered}$	$\begin{array}{r} 0.6 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \end{gathered}$	S

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_19_0_0_41_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 49 \end{array}$	$\begin{array}{r} 0.4 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_42_0_3 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 29 \end{gathered}$	$\begin{array}{r} 0.2 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_45_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 51 \end{array}$	$\begin{array}{r} 4.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_46_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 5 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 65 \end{gathered}$	$\begin{array}{r} 0.6 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_47_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 7 \\ 8 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 78 \end{array}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_48_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_49_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 84 \end{gathered}$	$\begin{array}{r} 0.8 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_50_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{\|c} 0 . \\ 7 \\ 8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 78 \end{array}$	$\begin{array}{r} 0.7 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_51_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 66 \end{gathered}$	$\begin{array}{r} 0.6 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_19_0_0_52_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 4 \\ 9 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 0 . \\ & 49 \end{aligned}$	$\begin{array}{r} 0.4 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	18 0 00	$\begin{gathered} 9 \\ 0 . \end{gathered}$	S

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_19_0_0_53_0_4 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 29 \end{gathered}$	$\begin{array}{r} 0.2 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_19_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
FIRSTFLOOR:ZONE2 WALL_22_0_0_0_0_0_	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 0 . \\ & 42 \end{aligned}$	$\begin{array}{r} 0.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_1_0_0- WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 8 . \\ 5 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 18 \\ .5 \\ 6 \end{array}$	$\begin{array}{r} 18 . \\ 56 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_2_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 51 \end{array}$	$\begin{array}{r} 2.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_3_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 0 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 06 \end{gathered}$	$\begin{array}{r} 3.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_4_0_0_	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 3 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 37 \end{gathered}$	$\begin{array}{r} 3.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2_ WALL_22_0_0_5_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 42 \end{array}$	$\begin{array}{r} 3.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_6_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 19 \end{array}$	$\begin{array}{r} 3.1 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2_ WALL_22_0_0_7_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 7 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 72 \end{array}$	$\begin{array}{r} 2.7 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_8_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 0 \\ 4 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 04 \end{array}$	$\begin{array}{r} 2.0 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	N 0	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	9 0	E

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_22_0_0_9_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 2 \\ 3 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 1 . \\ 23 \end{array}$	$\begin{array}{r} 1.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_10_0_0 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 3 \\ 7 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 37 \end{gathered}$	$\begin{array}{r} 0.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_11_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 . \\ 4 \\ 2 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 42 \end{gathered}$	$\begin{array}{r} 0.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_12_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 8 . \\ 5 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 18 \\ .5 \\ 6 \end{array}$	$\begin{array}{r} 18 . \\ 56 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_13_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 51 \end{array}$	$\begin{array}{r} 2.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_14_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 0 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 06 \end{array}$	$\begin{array}{r} 3.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_15_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 3 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 37 \end{gathered}$	$\begin{array}{r} 3.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_16_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 4 \\ 2 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 42 \end{array}$	$\begin{array}{r} 3.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_17_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 1 \\ 9 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 19 \end{array}$	$\begin{array}{r} 3.1 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_18_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 2 . \\ 7 \\ 2 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 72 \end{array}$	$\begin{array}{r} 2.7 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	0	E

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_22_0_0_19_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 0 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 04 \end{array}$	$\begin{array}{r} 2.0 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_20_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 2 \\ 3 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 1 . \\ 23 \end{array}$	$\begin{array}{r} 1.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_21_0_1 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 3 \\ 7 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 37 \end{gathered}$	$\begin{array}{r} 0.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_22_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 42 \end{gathered}$	$\begin{array}{r} 0.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_23_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 8 . \\ 5 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 18 \\ .5 \\ 6 \end{array}$	$\begin{array}{r} 18 . \\ 56 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_24_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 51 \end{array}$	$\begin{array}{r} 2.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_25_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 0 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 3 . \\ 06 \end{gathered}$	$\begin{array}{r} 3.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_26_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 3 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 37 \end{array}$	$\begin{array}{r} 3.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_27_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 42 \end{array}$	$\begin{array}{r} 3.4 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_28_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 19 \end{array}$	$\begin{array}{r} 3.1 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	N 0	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	9 0	E

								$\begin{aligned} & 1 \\ & 9 \end{aligned}$					0 0	
FIRSTFLOOR:ZONE2 WALL_22_0_0_29_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 2 . \\ 7 \\ 2 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 72 \end{array}$	$\begin{array}{r} 2.7 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_30_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 0 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 04 \end{array}$	$\begin{array}{r} 2.0 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_31_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 2 \\ 3 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 1 . \\ 23 \end{array}$	$\begin{array}{r} 1.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_22_0_0_32_0_2 _WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 3 \\ 7 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 37 \end{gathered}$	$\begin{array}{r} 0.3 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_22_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_24_0_0_0_0_0_ WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 6 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 86 \end{array}$	$\begin{array}{r} 0.8 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_24_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_24_0_0_1_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 \\ 8 . \\ 9 \\ 4 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 38 \\ .9 \\ 4 \end{array}$	$\begin{array}{r} 38 . \\ 94 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_24_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_24_0_0_2_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 6 . \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 6 . \\ 11 \end{gathered}$	$\begin{array}{r} 6.1 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_24_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_24_0_0_3_0_0_ WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 2 \\ 3 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 7 . \\ 23 \end{gathered}$	$\begin{array}{r} 7.2 \\ 3 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_24_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2_ WALL_24_0_0_4_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 . \\ 6 \\ 5 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 7 . \\ & 65 \end{aligned}$	$\begin{array}{r} 7.6 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{gathered} N \\ 0 \end{gathered}$	FIRSTFLOOR:ZON E2_WALL_24_0_0	90 .0 0	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE2 WALL_24_0_0_5_0_0_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 . \\ 5 \\ 9 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 7 . \\ 59 \end{array}$	$\begin{array}{r} 7.5 \\ 9 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	N 0	FIRSTFLOOR:ZON E2_WALL_24_0_0	90 .0 0	9 0	E

								1						0 0	
CHURCHROOF:ZONE3 WALL_3_0_0_5_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 5 \\ 2 \\ 5 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 5 . \\ 25 \end{array}$	$\begin{array}{r} 5.2 \\ 5 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_6_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 9 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 98 \end{array}$	$\begin{array}{r} 4.9 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
$\begin{aligned} & \text { CHURCHROOF:ZONE3_ } \\ & \text { WALL_3_0_0_7_0_0_ } \\ & \text { WIN } \end{aligned}$	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 3 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 30 \end{array}$	$\begin{array}{r} 4.3 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_8_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 2 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 3 . \\ & 27 \end{aligned}$	$\begin{array}{r} 3.2 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_9_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 00 \end{array}$	$\begin{array}{r} 2.0 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_10_0_0_	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 6 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 0 . \\ & 61 \end{aligned}$	$\begin{array}{r} 0.6 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_11_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 5 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 58 \end{gathered}$	$\begin{array}{r} 0.5 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_12_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ 5 . \\ 1 \\ 2 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 25 \\ .1 \\ 2 \end{array}$	$\begin{array}{r} 25 . \\ 12 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_13_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 2 \\ 1 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 21 \end{array}$	$\begin{array}{r} 3.2 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_14_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 9 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 98 \end{array}$	$\begin{array}{r} 3.9 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \end{gathered}$	S

								1							0 0	
CHURCHROOF:ZONE3 WALL_3_0_0_25_0_2_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 9 \\ 8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 98 \end{array}$	$\begin{array}{r} 3.9 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_26_0_2 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 4 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 44 \end{array}$	$\begin{array}{r} 4.4 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_27_0_2 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 5 \\ 4 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 4 . \\ 54 \end{array}$	$\begin{array}{r} 4.5 \\ 4 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_28_0_2_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 4 . \\ 2 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 4 . \\ & 27 \end{aligned}$	$\begin{array}{r} 4.2 \\ 7 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_29_0_2_ WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 3 . \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 3 . \\ 66 \end{array}$	$\begin{array}{r} 3.6 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_30_0_2 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 2 . \\ 7 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 2 . \\ 76 \end{array}$	$\begin{array}{r} 2.7 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_31_0_2 WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 6 \\ 8 \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 1 . \\ 68 \end{gathered}$	$\begin{array}{r} 1.6 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
CHURCHROOF:ZONE3 WALL_3_0_0_32_0_2 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 0 \\ 5 \\ 1 \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0 . \\ 51 \end{array}$	$\begin{array}{r} 0.5 \\ 1 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	CHURCHROOF:ZO NE3_WALL_3_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 9 \\ 0 . \\ 0 \\ 0 \end{array}$	S
FIRSTFLOOR:ZONE6 WALL_3_0_0_0_0_1- WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 5 . \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 2 . \\ 3 \\ 0 \end{array}$	$\begin{array}{r} 0 . \\ 55 \end{array}$	$\begin{array}{r} 18 \\ .0 \\ 4 \end{array}$	$\begin{array}{r} 18 . \\ 04 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	FIRSTFLOOR:ZON E6_WALL_3_0_0	27 0. 00	9 0 0 0	W
FIRSTFLOOR:ZONE6 WALL_3_0_0_1_0_0 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 5 . \end{gathered}$	$\begin{array}{r} 2 . \\ 3 \\ 0 \end{array}$	$\begin{array}{r} 0 . \\ 55 \end{array}$	$\begin{array}{r} 18 \\ .0 \\ 4 \end{array}$	$\begin{array}{r} 18 . \\ 04 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	N 0	FIRSTFLOOR:ZON E6_WALL_3_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	9	W

		$\begin{aligned} & 1 \\ & 9 \end{aligned}$						1							0 0	
FIRSTFLOOR:ZONE7_ WALL_2_0_0_0_0_1 WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 5 . \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 2 . \\ 3 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 55 \end{gathered}$	$\begin{array}{r} 18 \\ .0 \\ 4 \end{array}$	$\begin{array}{r} 18 . \\ 04 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	FIRSTFLOOR:ZON E7_WALL_2_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
FIRSTFLOOR:ZONE7 WALL_2_0_0_1_0_0_ WiN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 5 . \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 2 . \\ 3 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 55 \end{gathered}$	$\begin{array}{r} 18 \\ .0 \\ 4 \end{array}$	$\begin{array}{r} 18 . \\ 04 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{array}{r} 1.67 \\ 3 \end{array}$	$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	FIRSTFLOOR:ZON E7_WALL_2_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE1_WALL_3 0_0_0_0_3_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 6 . \\ 5 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 16 \\ .5 \\ 0 \end{array}$	$\begin{array}{r} 16 . \\ 50 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE1_ WALL_3_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE1_WALL_3 0_0_1_0_2_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 6 . \\ 5 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 16 \\ .5 \\ 0 \end{array}$	$\begin{array}{r} 16 . \\ 50 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE1_ WALL_3_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE1_WALL_3 0_0_2_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 6 . \\ 5 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 16 \\ .5 \\ 0 \end{array}$	$\begin{array}{r} 16 . \\ 50 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE1_ WALL_3_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE1_WALL_3 0_0_3_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 6 . \\ 5 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 16 \\ .5 \\ 0 \end{array}$	$\begin{array}{r} 16 . \\ 50 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE1 WALL_3_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE1_WALL_4 0_0_0_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 3 . \\ 2 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 13 \\ .2 \\ 6 \end{array}$	$\begin{array}{r} 13 . \\ 26 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE1_ WALL_4_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
BASEMENTXABOVEGR ADE:ZONE3_WALL_3 0_0_0_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 2 \\ 1 . \\ 0 \\ 7 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 21 \\ .0 \\ 7 \end{array}$	$\begin{gathered} 21 . \\ 07 \end{gathered}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE3 WALL_3_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
BASEMENTXABOVEGR ADE:ZONE3_WALL_3 0_0_1_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 1 \\ 4 . \\ 9 \\ 2 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 14 \\ .9 \\ 2 \end{array}$	$\begin{array}{r} 14 . \\ 92 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE3 WALL_3_0_0	$\begin{gathered} 0 . \\ 00 \end{gathered}$	9 0. 0 0	N
BASEMENTXABOVEGR ADE:ZONE4_WALL_22 _0_0_0_0_4_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 5 . \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 15 \\ .9 \\ 3 \end{array}$	$\begin{array}{r} 15 . \\ 93 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$			N	BASEMENTXABOV EGRADE:ZONE4 WALL_22_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \end{gathered}$	E

		$\begin{aligned} & 3 \\ & 3 \end{aligned}$						1						0	
BASEMENTXABOVEGR ADE:ZONE9_WALL_5 0_0_1_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 3 . \\ 3 \\ 3 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 13 \\ .3 \\ 3 \end{array}$	$\begin{array}{r} 13 . \\ 33 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \\ 1 \\ 9 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	BASEMENTXABOV EGRADE:ZONE9 WALL_5_0_0	$\begin{gathered} 27 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	W
BASEMENTXABOVEGR ADE:ZONE12_WALL_3 _O_0_0_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 8 . \\ 9 \\ 8 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 8 . \\ 98 \end{array}$	$\begin{array}{r} 8.9 \\ 8 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE12 WALL_3_0_0	0. 00	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	N
BASEMENTXABOVEGR ADE:ZONE13_WALL_5 _0_0_0_0_4_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 8 . \\ 0 \\ 6 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 8 . \\ 06 \end{array}$	$\begin{array}{r} 8.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE13 WALL_5_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
BASEMENTXABOVEGR ADE:ZONE13_WALL_5 _0_0_1_0_3_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 8 . \\ 0 \\ 6 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 8 . \\ 06 \end{array}$	$\begin{array}{r} 8.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	BASEMENTXABOV EGRADE:ZONE13 WALL_5_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
BASEMENTXABOVEGR ADE:ZONE13_WALL_5 _0_0_2_0_2_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 8 . \\ 0 \\ 6 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 8 . \\ 06 \end{gathered}$	$\begin{array}{r} 8.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE13 WALL_5_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
BASEMENTXABOVEGR ADE:ZONE13_WALL_5 _0_0_3_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{gathered} 8 . \\ 0 \\ 6 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 8 . \\ 06 \end{array}$	$\begin{array}{r} 8.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	BASEMENTXABOV EGRADE:ZONE13 WALL_5_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
BASEMENTXABOVEGR ADE:ZONE13_WALL_5 _0_0_4_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 8 . \\ 0 \\ 6 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 8 . \\ 06 \end{array}$	$\begin{array}{r} 8.0 \\ 6 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE13 WALL_5_0_0	$\begin{gathered} 18 \\ 0 . \\ 00 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	S
$\begin{array}{r} \text { BASEMENTXABOVEGR } \\ \text { ADE:ZONE14_WALL_2 } \\ \text { _0_0_0_0_1_WIN } \end{array}$	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 8 . \\ 8 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 8 . \\ & 80 \end{aligned}$	$\begin{array}{r} 8.8 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	BASEMENTXABOV EGRADE:ZONE14 WALL_2_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE14_WALL_2 _0_0_1_0_0_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 6 . \\ 6 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{aligned} & 6 . \\ & 60 \end{aligned}$	$\begin{array}{r} 6.6 \\ 0 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{gathered} 0 . \\ 8 \\ 1 \\ 9 \end{gathered}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		$\begin{gathered} \mathrm{N} \\ \mathrm{o} \end{gathered}$	BASEMENTXABOV EGRADE:ZONE14 WALL_2_0_0	$\begin{array}{r} 90 \\ .0 \\ 0 \end{array}$	$\begin{gathered} 9 \\ 0 . \\ 0 \\ 0 \end{gathered}$	E
BASEMENTXABOVEGR ADE:ZONE15_WALL_5 _0_0_0_0_1_WIN	$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 5 \\ 2 \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 7 . \\ 52 \end{gathered}$	$\begin{array}{r} 7.5 \\ 2 \end{array}$	$\begin{array}{r} 1 . \\ 01 \\ 7 \end{array}$	$\begin{array}{r} 0 . \\ 8 \end{array}$	$\begin{array}{r} 0.88 \\ 1 \end{array}$		N	BASEMENTXABOV EGRADE:ZONE15 WALL_5_0_0	$\begin{gathered} 26 \\ 9 . \\ 52 \end{gathered}$	$\begin{gathered} 9 \\ 0 . \end{gathered}$	W

Interior Fenestration

	Construction	Area of One Opening [ft2]	Area of Openings [ft2]	Glass U-Factor $[B t u / h-f t 2-F] ~$	Glass SHGC	Glass Visible Transmittance	Parent Surface
Total or Average			0.00	-	-		

Exterior Door

	Construc tion	$\mathrm{U}-$ Fact or with Film [Btu/ $\mathrm{h}-$ $\mathrm{ft2}-$ $\mathrm{F}]$	U- Fact or no Film [Btu/ h-ft2$\mathrm{F}]$	$\begin{array}{r} \text { Gro } \\ \text { ss } \\ \text { Are } \\ \mathrm{a} \\ \text { [ft2 } \\] \end{array}$	Parent Surface
GYM:ZONE3_WALL_4_0_0_0_0_3_DOOR	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-. } 7 \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{gathered} 27 . \\ 77 \end{gathered}$	GYM:ZONE3_WALL_4_0_0

FIRSTFLOOR:ZONE3_WALL_5_0_0_22_0_0_D	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-.7 } \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 36 . \\ 25 \end{array}$	FIRSTFLOOR:ZONE3_WALL_5_0_0
FIRSTFLOOR:ZONE4_WALL_5_0_0_22_0_0_D	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-. } \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 40 . \\ 45 \end{array}$	FIRSTFLOOR:ZONE4_WALL_5_0_0
BASEMENTXABOVEGRADE:ZONE2_WALL_2_0_- $0 _0 _0 _D O O R$	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-. } 7 \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 22 . \\ 80 \end{array}$	BASEMENTXABOVEGRADE:ZONE2_ WALL_2_0_0
BASEMENTXABOVEGRADE:ZONE4_WALL_22_0 _0_2_0_2_DOOR	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-.7 } \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 18 . \\ 96 \end{array}$	BASEMENTXABOVEGRADE:ZONE4_- WALL_22_0_0
BASEMENTXBELOWGRADE:ZONE2_WALL_2_0_- $0 _0 _0 _D O O R$	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-.7 } \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 15 . \\ 04 \end{array}$	BASEMENTXBELOWGRADE:ZONE2_ WALL_2_0_0
BASEMENTXABOVEGRADE:ZONE14_WALL_6_0 _0_0_0_0_DOOR	CZ5 NON- RES OPAQUE DOOR SWINGI	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 16 . \\ 65 \end{array}$	BASEMENTXABOVEGRADE:ZONE14- WALL_6_0_0

	$\begin{aligned} & \text { NG U-. } 7 \\ & (3.975) \end{aligned}$				
BASEMENTXABOVEGRADE:ZONE15_WALL_6_0 _0_0_0_0_DOOR	$\begin{array}{r} \text { CZ5 } \\ \text { NON- } \\ \text { RES } \\ \text { OPAQUE } \\ \text { DOOR } \\ \text { SWINGI } \\ \text { NG U-. } 7 \\ (3.975) \end{array}$	$\begin{array}{r} 0.72 \\ 9 \end{array}$	$\begin{array}{r} 1.91 \\ 9 \end{array}$	$\begin{array}{r} 16 . \\ 65 \end{array}$	BASEMENTXABOVEGRADE:ZONE15_ WALL_6_0_0

Table of Contents

Report: Lighting Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Interior Lighting

	Zon e	Lighti ng Power Densi ty [Btu/ h-ft2]	$\begin{array}{r} \text { Zon } \\ \mathrm{e} \\ \text { Are } \\ \mathrm{a} \\ \text { [ft2 } \\] \end{array}$	Total Powe [Btu/ h]	End Use Subcateg ory	Sched ule Name	Schedule d Hours/W eek [hr]	$\begin{array}{r} \text { Hours/W } \\ \text { eek > } \\ 1 \%[h r] \end{array}$	Full Load Hours/W eek [hr]	Retur n Air Fracti on	Conditio ned (Y/N)	Consumpt ion [kWh]
Interi or Lighti ng Total		$\begin{array}{r} 0.000 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00								0.00

Daylighting

Zone	Control Name	Daylighting Method	Control Type	Fraction Controlled	Lighting Installed in Zone [Btu/h]	Lighting Controlled $[B t u / h]$	
None							

Exterior Lighting

	Total Watts	Astronomical Clock/Schedule	Schedule Name	Scheduled Hours/Week $[\mathrm{hr}]$	Hours/Week $>1 \%[\mathrm{hr}]$	Full Load Hours/Week $[\mathrm{hr}]$	Consumption $[\mathrm{kWh}]$
Exterior Lighting Total	0.00						0.00

Table of Contents

Report: Equipment Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Central Plant

	Type	Nominal Capacity $[B t u / h]$	Nominal Efficiency [Btuh/Btuh]	IPLV in SI Units [Btuh/Btuh]	IPLV in IP Units [Btu/W-h]
BOILER	Boiler:HotWater	996952.59	0.89		

Cooling Coils

DX Cooling Coils

	DX Cooling Coil Type	Standard Rated Net Cooling Capacity [ton]	Standard Rated Net COP [Btuh/Btuh]	EER $[B t u / W-h]$	SEER $[B t u / W-h]$	IEER [Btu/W-h]
None						

DX Cooling Coil ASHRAE 127 Standard Ratings Report

	$\begin{array}{r} \text { DX } \\ \text { Cooling } \\ \text { Coil } \\ \text { Type } \end{array}$	Rated Net Cooling Capacity Test A [ton]	Rated Electric Power Test A [W]	Rated Net Cooling Capacity Test B [ton]	Rated Electric Power Test B [W]	Rated Net Cooling Capacity Test C [ton]	Rated Electric Power Test C [W]	Rated Net Cooling Capacity Test D [ton]	Rated Electric Power Test D [W]
None									

DX Heating Coils

	DX Heating Coil Type	High Temperature Heating (net) Rating Capacity [Btu/h]	Low Temperature Heating (net) Rating Capacity [Btu/h]	HSPF [Btu/W-h]	Region Number
None					

Heating Coils

	Type	Design Coil Load [Btu/h]	Nominal Total Capacity [Btu/h]	Nominal Efficiency [Btuh/Btuh]
None				

Fans

| None | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Pumps

| | | | Control | Head
 [psi] | Water Flow
 [gal/min] | Electric
 Power
 [W] | Power Per
 Water Flow
 Rate [W-
 min/gal] |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | Motor
 Efficiency
 [Btuh/Btuh] |
| ---: |
| HW LOOP
 SUPPLY
 PUMP |
| Pump:VariableSpeed |

Service Water Heating

Type	Storage Volume $[\mathrm{ft} 3]$	Input $[\mathrm{Btu} / \mathrm{h}]$	Thermal Efficiency $[B t u h / B t u h]$	Recovery Efficiency [Btuh/Btuh] $]$	Energy Factor	
None						

Table of Contents

Report: HVAC Sizing Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Zone Sensible Cooling

			$\begin{array}{r} \mathrm{a} \\ {[\mathrm{Bt}} \\ \mathrm{u} / \mathrm{h} \\ - \\ \mathrm{ft} 2 \\] \end{array}$	$\begin{aligned} & {[\mathrm{ft} 3 /} \\ & \mathrm{min}] \end{aligned}$				Load [F]		er/lbAi r]		er/lbAi r]	$\begin{aligned} & {[\mathrm{ft} 3 /} \\ & \mathrm{min}] \end{aligned}$	AS [Bt u/h]
GYM:ZONE3	$\begin{array}{r} 2814 \\ 6.39 \end{array}$	$\begin{array}{r} 323 \\ 68.3 \\ 5 \end{array}$	$\begin{array}{r} 5.4 \\ 4 \end{array}$	$\begin{array}{r} 953 . \\ 607 \end{array}$	$\begin{array}{r} 109 \\ 6.64 \\ 8 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 20: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.45	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 505 . \\ 660 \end{array}$	0.0 0
GYM:ZONE1	$\begin{array}{r} 1165 \\ .83 \end{array}$	$\begin{array}{r} 134 \\ 0.70 \end{array}$	$\begin{array}{r} 9.5 \\ 0 \end{array}$	$\begin{array}{r} 39.4 \\ 99 \end{array}$	$\begin{array}{r} 45.4 \\ 23 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 09: 00: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	77.11	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 11.9 \\ 98 \end{array}$	0.0 0
GYM:ZONE2	$\begin{array}{r} 403 . \\ 56 \end{array}$	$\begin{array}{r} 464 . \\ 10 \end{array}$	$\begin{array}{r} 7.2 \\ 7 \end{array}$	$\begin{array}{r} 13.6 \\ 73 \end{array}$	$\begin{array}{r} 15.7 \\ 24 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 50: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	83.81	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 5.42 \\ 7 \end{array}$	0.0 0

						CEST ER GOSP EL CHUR CH $(01-$ $O 1: 31$ $-12)$ JUL								
FIRSTFLOOR:ZO NE3	$\begin{array}{r} 4165 \\ .52 \end{array}$	$\begin{array}{r} 479 \\ 0.35 \end{array}$	$\begin{array}{r} 14 . \\ 85 \end{array}$	$\begin{array}{r} 141 . \\ 129 \end{array}$	$\begin{array}{r} 162 . \\ 298 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 15: 30: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	85.34	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 51.6 \\ 35 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE4	$\begin{array}{r} 3932 \\ .15 \end{array}$	$\begin{array}{r} 452 \\ 1.97 \end{array}$	$\begin{array}{r} 13 . \\ 96 \end{array}$	$\begin{array}{r} 133 . \\ 222 \end{array}$	$\begin{array}{r} 153 . \\ 205 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ 01: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 14: 00: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	85.82	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 51.8 \\ 51 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE2	$\begin{gathered} 4741 \\ 0.60 \end{gathered}$	$\begin{array}{r} 545 \\ 22.1 \\ 9 \end{array}$	$\begin{array}{r} 5.9 \\ 4 \end{array}$	$\begin{array}{r} 1606 \\ .284 \end{array}$	$\begin{array}{r} 184 \\ 7.22 \\ 7 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 20: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.45	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 146 \\ 8.77 \\ 0 \end{array}$	0.0 0

						$\begin{array}{r} \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ \text { (O1-12) } \\ \text { O1:31 } \\ \text { JUL } \end{array}$								
$\begin{array}{r} \text { FIRSTFLOOR:ZO } \\ \text { NE6 } \end{array}$	$\begin{array}{r} 2917 \\ .18 \end{array}$	$\begin{array}{r} 335 \\ 4.76 \end{array}$	$\begin{array}{r} 13 . \\ 70 \end{array}$	$\begin{array}{r} 98.8 \\ 35 \end{array}$	$\begin{array}{r} 113 . \\ 660 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 20: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.45	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 39.1 \\ 76 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE7	$\begin{array}{r} 2162 \\ .95 \end{array}$	$\begin{array}{r} 248 \\ 7.39 \end{array}$	$\begin{array}{r} 10 . \\ 16 \end{array}$	$\begin{array}{r} 73.2 \\ 81 \end{array}$	$\begin{array}{r} 84.2 \\ 74 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 09: 00: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	77.11	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 39.1 \\ 76 \end{array}$	0.0 0

FIRSTFLOOR:ZO NE1	$\begin{array}{r} 1237 \\ .68 \end{array}$	$\begin{array}{r} 142 \\ 3.33 \end{array}$	$\begin{array}{r} 12 . \\ 40 \end{array}$	$\begin{array}{r} 41.9 \\ 33 \end{array}$	$\begin{array}{r} 48.2 \\ 23 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 18: 30: \\ 00 \end{array}$	84.99	84.99	0.0137	80.83	0.0137	$\begin{array}{r} 18.3 \\ 70 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 4246 \\ .25 \end{array}$	$\begin{array}{r} 488 \\ 3.18 \end{array}$	$\begin{array}{r} 6.2 \\ 4 \end{array}$	$\begin{array}{r} 143 . \\ 864 \end{array}$	$\begin{array}{r} 165 . \\ 444 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 09: 40: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	78.90	0.0137	$\begin{array}{r} 66.5 \\ 14 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 2	$\begin{array}{\|r} 737 . \\ 31 \end{array}$	$\begin{array}{r} 847 . \\ 91 \end{array}$	$\begin{array}{r} 2.0 \\ 0 \end{array}$	$\begin{array}{r} 24.9 \\ 80 \end{array}$	$\begin{array}{r} 36.0 \\ 98 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 10: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.66	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 36.0 \\ 98 \end{array}$	0.0 0

						$\begin{array}{r} \text { CHUR } \\ \text { CH } \\ (01- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$								
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 393 . \\ 56 \end{array}$	$\begin{array}{r} 452 . \\ 59 \end{array}$	$\begin{array}{r} 1.2 \\ 8 \end{array}$	$\begin{array}{r} 13.3 \\ 34 \end{array}$	$\begin{array}{r} 30.1 \\ 31 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 30: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.24	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 30.1 \\ 31 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 7	$\begin{array}{r} 622 . \\ 33 \end{array}$	$\begin{array}{r} 715 . \\ 68 \end{array}$	$\begin{array}{r} 1.1 \\ 0 \end{array}$	$\begin{array}{r} 21.0 \\ 85 \end{array}$	$\begin{array}{r} 55.3 \\ 62 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 15: 40: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	85.19	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 55.3 \\ 62 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 5428 \\ .93 \end{array}$	$\begin{array}{r} 624 \\ 3.27 \end{array}$	$\begin{array}{r} 4.0 \\ 5 \end{array}$	$\begin{array}{r} 183 . \\ 934 \end{array}$	$\begin{array}{r} 211 . \\ 524 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \end{array}$	$\begin{array}{r} 7 / 31 \\ 17: 20: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	83.07	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 131 . \\ 087 \end{array}$	0.0 0

						$\begin{array}{r} \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (\mathrm{O} 1- \\ 01: 31 \\ -12) \\ \mathrm{JUL} \end{array}$								
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 2628 \\ .17 \end{array}$	$\begin{array}{r} 302 \\ 2.40 \end{array}$	$\begin{array}{r} 6.6 \\ 4 \end{array}$	$\begin{array}{r} 89.0 \\ 43 \end{array}$	$\begin{array}{r} 102 . \\ 400 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ 01: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 17: 20 \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	83.07	0.0137 1	$\begin{array}{r} 38.6 \\ 78 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 10	$\begin{array}{r} 321 . \\ 24 \end{array}$	$\begin{array}{r} 369 . \\ 42 \end{array}$	$\begin{array}{r} 1.3 \\ 2 \end{array}$	$\begin{array}{r} 10.8 \\ 84 \end{array}$	$\begin{array}{r} 23.8 \\ 46 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 40 \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.02	0.0137 1	$\begin{array}{r} 23.8 \\ 46 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 11	$\begin{array}{r} 851 . \\ 36 \end{array}$	$\begin{array}{r} 979 . \\ 06 \end{array}$	$\begin{array}{r} 1.2 \\ 3 \end{array}$	$\begin{array}{r} 28.8 \\ 44 \end{array}$	$\begin{array}{r} 67.7 \\ 60 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \end{array}$	$\begin{array}{r} 7 / 31 \\ 16: 10: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	84.66	$\begin{array}{\|r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 67.7 \\ 60 \end{array}$	0.0 0

						$\begin{array}{r} \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ \text { (O1- } \\ \text { O1:31 } \\ -12) \\ \text { JUL } \end{array}$								
BASEMENTXABO VEGRADE:ZONE 12	$\begin{array}{r} 302 . \\ 19 \end{array}$	$\begin{array}{r} 347 . \\ 52 \end{array}$	$\begin{array}{r} 2.1 \\ 5 \end{array}$	$\begin{array}{r} 10.2 \\ 38 \end{array}$	$\begin{array}{r} 13.7 \\ 50 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ 01: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 18: 30: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	80.83	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 13.7 \\ 50 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 13	$\begin{array}{r} 3085 \\ .72 \end{array}$	$\begin{array}{r} 354 \\ 8.58 \end{array}$	$\begin{array}{r} 3.6 \\ 8 \end{array}$	$\begin{array}{r} 104 . \\ 545 \end{array}$	$\begin{array}{r} 120 . \\ 227 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 13: 40: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	85.56	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 81.9 \\ 90 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$

BASEMENTXABO VEGRADE:ZONE 14	$\begin{array}{r} 1633 \\ .62 \end{array}$	$\begin{array}{r} 187 \\ 8.66 \end{array}$	$\begin{array}{r} 3.1 \\ 2 \end{array}$	$\begin{array}{r} 55.3 \\ 47 \end{array}$	$\begin{array}{r} 63.6 \\ 49 \end{array}$	$\begin{array}{\|r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 10: 50: \\ 00 \end{array}$	84.99	84.99	0.0137 1	81.78	0.0137 1	$\begin{array}{r} 51.1 \\ 21 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 15	$\begin{array}{r} 2287 \\ .09 \end{array}$	$\begin{array}{r} 263 \\ 0.15 \end{array}$	$\begin{array}{r} 4.5 \\ 7 \end{array}$	$\begin{array}{r} 77.4 \\ 87 \end{array}$	$\begin{array}{r} 89.1 \\ 10 \end{array}$	$\begin{array}{r} \text { SUMM } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \\ \text { JUL } \end{array}$	$\begin{array}{r} 7 / 31 \\ 17: 00: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	83.60	0.0137 1	$\begin{array}{r} 48.9 \\ 51 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 16	$\begin{array}{r} 1260 \\ 4.08 \end{array}$	$\begin{array}{r} 144 \\ 94.6 \\ 9 \end{array}$	$\begin{array}{r} 9.6 \\ 6 \end{array}$	$\begin{array}{r} 427 . \\ 030 \end{array}$	$\begin{array}{r} 491 . \\ 084 \end{array}$	SUMM ER DESI GN DAY IN MQP WOR CEST ER GOSP EL CHUR CH $(01-$ $01: 31$	$\begin{array}{r} 7 / 31 \\ 17: 10: \\ 00 \end{array}$	84.99	84.99	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	83.34	$\begin{array}{r} 0.0137 \\ 1 \end{array}$	$\begin{array}{r} 127 . \\ 564 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$

The Design Load is the zone sensible load only. It does not include any system effects or ventilation loads.
Zone Sensible Heating

	Calc ulate d Desi gn Load [Btu/ h]	$\begin{array}{r} \text { User } \\ \text { Desi } \\ \text { gn } \\ \text { Load } \\ \text { [Btu/ } \\ \text { h] } \end{array}$	Us er De sig n Lo ad per Are a [Bt u/h ft2	$\begin{array}{r} \text { Calc } \\ \text { ulate } \\ \mathrm{d} \\ \text { Desi } \\ \text { gn } \\ \text { Air } \\ \text { Flow } \\ \text { [ft3/ } \\ \mathrm{min}] \end{array}$	$\begin{array}{r} \text { User } \\ \text { Desi } \\ \text { gn } \\ \text { Air } \\ \text { Flo } \\ \mathrm{w} \\ {[\mathrm{ft} 3 /} \\ \mathrm{min} \\] \end{array}$	Desig n Day Name	Date/T ime Of Peak \{TIME STAMP \}	Ther mosta t Setpoi nt Temp eratur e at Peak Load [F]	$\begin{array}{r} \text { Indoo } \\ \mathrm{r} \\ \text { Temp } \\ \text { eratur } \\ \mathrm{e} \text { at } \\ \text { Peak } \\ \text { Load } \\ {[\mathrm{F}]} \end{array}$	Indoor Humidi ty Ratio at Peak Load [lbWat er/lbAi r]	Outdo or Temp eratur e at Peak Load [F]	Outdo or Humidi ty Ratio at Peak Load [IbWat er/lbAi r]	Mini mu m Out door Air Flo w Rat e [ft3/ min]	$\begin{array}{r} \mathrm{He} \\ \text { at } \\ \text { Gai } \\ \mathrm{n} \\ \text { Rat } \\ \mathrm{e} \\ \text { fro } \\ \mathrm{m} \\ \mathrm{DO} \\ \mathrm{AS} \\ \text { [Bt } \\ \mathrm{u} / \mathrm{h} \end{array}$
GYM:ZONE3	$\begin{array}{r} 1459 \\ 64.9 \\ 4 \end{array}$	$\begin{array}{r} 1824 \\ 56.1 \\ 8 \end{array}$	$\begin{array}{r} 30 . \\ 68 \end{array}$	$\begin{array}{r} 2568 \\ .568 \end{array}$	$\begin{array}{r} 321 \\ 0.71 \\ 0 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 3 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 505 . \\ 660 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
GYM:ZONE1	$\begin{array}{r} 1060 \\ 1.52 \end{array}$	$\begin{array}{r} 1325 \\ 1.90 \end{array}$	$\begin{array}{r} 93 . \\ 91 \end{array}$	$\begin{array}{r} 186 . \\ 557 \end{array}$	$\begin{array}{r} 233 . \\ 196 \end{array}$	WINT ER DESI GN DAY IN MQP WOR CEST ER GOSP	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 3 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 11.9 \\ 98 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$

						EL CHUR CH $(01-$ $01: 31$ $-12)$								
GYM:ZONE2	$\begin{array}{r} 5563 \\ .45 \end{array}$	$\begin{array}{r} 6954 \\ .31 \end{array}$	$\begin{array}{r} 10 \\ 8.9 \\ 5 \end{array}$	$\begin{array}{r} 97.9 \\ 01 \end{array}$	$\begin{array}{r} 122 . \\ 376 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 3 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 5.42 \\ 7 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE3	$\begin{array}{r} 2455 \\ 4.57 \end{array}$	$\begin{array}{r} 3069 \\ 3.21 \end{array}$	$\begin{array}{r} 95 . \\ 12 \end{array}$	$\begin{array}{r} 432 . \\ 091 \end{array}$	$\begin{array}{r} 540 . \\ 113 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ \hline \end{array}$	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 7 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 51.6 \\ 35 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE4	$\begin{array}{r} 2525 \\ 8.35 \end{array}$	$\begin{array}{r} 3157 \\ 2.94 \end{array}$	$\begin{array}{r} 97 . \\ 44 \end{array}$	$\begin{array}{r} 444 . \\ 475 \end{array}$	$\begin{array}{r} 555 . \\ 594 \end{array}$	WINT ER DESI GN DAY IN MQP WOR CEST ER	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 7 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 51.8 \\ 51 \end{array}$	0.0 0

						$\begin{array}{r} \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \mathrm{CH} \\ (01- \\ \mathrm{O} 1: 31 \\ -12) \end{array}$								
FIRSTFLOOR:ZO NE2	$\begin{array}{r} 2252 \\ 99.7 \\ 1 \end{array}$	$\begin{array}{r} 2816 \\ 24.6 \\ 4 \end{array}$	$\begin{array}{r} 30 . \\ 68 \end{array}$	$\begin{array}{r} 3964 \\ .634 \end{array}$	$\begin{array}{r} 495 \\ 5.79 \\ 2 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ 01: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 146 \\ 8.77 \\ 0 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE6	$\begin{array}{r} 1272 \\ 8.80 \end{array}$	$\begin{array}{r} 1591 \\ 1.00 \end{array}$	$\begin{array}{r} 64 . \\ 99 \end{array}$	$\begin{array}{r} 223 . \\ 991 \end{array}$	$\begin{array}{r} 279 . \\ 988 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 7 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 39.1 \\ 76 \end{array}$	0.0 0
FIRSTFLOOR:ZO NE7	$\begin{aligned} & 1459 \\ & 7.24 \end{aligned}$	$\begin{array}{r} 1824 \\ 6.56 \end{array}$	$\begin{array}{r} 74 . \\ 53 \end{array}$	$\begin{array}{r} 256 . \\ 870 \end{array}$	$\begin{gathered} 321 . \\ 087 \end{gathered}$	WINT ER DESI GN DAY IN MQP WOR CEST	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 7 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 39.1 \\ 76 \end{array}$	0.0 0

						$\begin{array}{r} \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ 01: 31 \\ -12) \end{array}$								
FIRSTFLOOR:ZO NE1	$\begin{array}{r} 4310 \\ .81 \end{array}$	$\begin{array}{\|r} 5388 \\ .51 \end{array}$	$\begin{array}{r} 46 . \\ 94 \end{array}$	$\begin{array}{r} 75.8 \\ 58 \end{array}$	$\begin{array}{r} 94.8 \\ 22 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ 01: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 06: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 7 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 18.3 \\ 70 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 1	$\begin{array}{r} 2010 \\ 0.10 \end{array}$	$\begin{array}{r} 2512 \\ 5.12 \end{array}$	$\begin{array}{r} 32 . \\ 12 \end{array}$	$\begin{array}{r} 353 . \\ 705 \end{array}$	$\begin{array}{r} 442 . \\ 131 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \mathrm{EL} \\ \text { CHUR } \\ \mathrm{CH} \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 66.5 \\ 14 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 2	$\begin{array}{r} 1339 \\ 6.92 \end{array}$	$\begin{array}{r} 1674 \\ 6.14 \end{array}$	$\begin{array}{r} 39 . \\ 44 \end{array}$	$\begin{array}{r} 235 . \\ 748 \end{array}$	$\begin{array}{r} 294 . \\ 684 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 36.0 \\ 98 \end{array}$	0.0 0

						CEST ER GOSP EL CHUR CH $(01-$ $01: 31$ $-12)$								
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 1260 \\ 4.99 \end{array}$	$\begin{array}{r} 1575 \\ 6.23 \end{array}$	$\begin{array}{r} 30 . \\ 91 \end{array}$	$\begin{array}{r} 221 . \\ 812 \end{array}$	$\begin{array}{r} 277 . \\ 265 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \mathrm{CH} \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ \hline \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 43.3 \\ 37 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 4	$\begin{array}{r} 1095 \\ 84.7 \\ 6 \end{array}$	$\begin{array}{r} 1369 \\ 80.9 \\ 6 \end{array}$	$\begin{array}{r} 16 . \\ 31 \end{array}$	$\begin{array}{r} 1928 \\ .380 \end{array}$	$\begin{array}{r} 241 \\ 0.47 \\ 5 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ \hline 12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 714 . \\ 050 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 5043 \\ .21 \end{array}$	$\begin{array}{r} 6304 \\ .01 \end{array}$	$\begin{array}{r} 30 . \\ 31 \end{array}$	$\begin{array}{r} 88.7 \\ 46 \end{array}$	$\begin{array}{r} 110 . \\ 933 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 17.6 \\ 84 \end{array}$	0.0 0

						$\begin{array}{r} \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ 01: 31 \\ -12) \end{array}$								
BASEMENTXABO VEGRADE:ZONE 6	$\begin{array}{r} 8173 \\ .92 \end{array}$	$\begin{aligned} & 1021 \\ & 7.40 \end{aligned}$	$\begin{array}{r} 28 . \\ 83 \end{array}$	$\begin{array}{r} 143 . \\ 838 \end{array}$	$\begin{gathered} 179 . \\ 797 \end{gathered}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \mathrm{EL} \\ \text { CHUR } \\ \mathrm{CH} \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ -12 \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 30.1 \\ 31 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 7	$\begin{array}{r} 1211 \\ 4.52 \end{array}$	$\begin{array}{r} 1514 \\ 3.15 \end{array}$	$\begin{array}{r} 23 . \\ 26 \end{array}$	$\begin{array}{r} 213 . \\ 181 \end{array}$	$\begin{array}{r} 266 . \\ 476 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 55.3 \\ 62 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 2750 \\ 3.28 \end{array}$	$\begin{array}{\|r\|} 3437 \\ 9.11 \end{array}$	$\begin{array}{r} 22 . \\ 30 \end{array}$	$\begin{array}{r} 483 . \\ 980 \end{array}$	604. 974	WINT ER DESI GN DAY IN	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{gathered} 131 . \\ 087 \end{gathered}$	0.0 0

						$\begin{array}{r} \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \mathrm{CH} \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ -12) \end{array}$								
BASEMENTXABO VEGRADE:ZONE	$\begin{array}{r} 8867 \\ .52 \end{array}$	$\begin{array}{r} 1108 \\ 4.40 \end{array}$	$\begin{array}{r} 24 . \\ 37 \end{array}$	$\begin{array}{r} 156 . \\ 043 \end{array}$	$\begin{array}{r} 195 . \\ 054 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (O 1- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 38.6 \\ 78 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 10	$\begin{array}{r} 4903 \\ .98 \end{array}$	$\begin{array}{r} 6129 \\ .97 \end{array}$	$\begin{array}{r} 21 . \\ 86 \end{array}$	$\begin{array}{r} 86.2 \\ 96 \end{array}$	$\begin{array}{r} 107 . \\ 870 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (\mathrm{O} 1- \\ \mathrm{O} 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 23.8 \\ 46 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 11	$\begin{array}{r} 1278 \\ 2.47 \end{array}$	$\begin{gathered} 1597 \\ 8.09 \end{gathered}$	$\begin{array}{r} 20 . \\ 05 \end{array}$	$\begin{array}{r} 224 . \\ 935 \end{array}$	$\begin{array}{r} 281 . \\ 169 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DA } \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 67.7 \\ 60 \end{array}$	0.0 0

						IN MQP WOR CEST ER GOSP EL CHUR CH $(01-$ $01: 31$ $-12)$								
BASEMENTXABO VEGRADE:ZONE 12	$\begin{array}{r} 6495 \\ .78 \end{array}$	$\begin{array}{r} 8119 \\ .73 \end{array}$	$\begin{array}{r} 50 . \\ 21 \end{array}$	$\begin{gathered} 114 . \\ 307 \end{gathered}$	$\begin{array}{r} 142 . \\ 884 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 13.7 \\ 50 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 13	$\begin{array}{r} 1702 \\ 7.55 \end{array}$	$\begin{array}{r\|r} 2128 \\ 4.43 \end{array}$	$\begin{array}{r} 22 . \\ 07 \end{array}$	$\begin{array}{r} 299 . \\ 636 \end{array}$	$\begin{array}{r} 374 . \\ 545 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 81.9 \\ 90 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$
BASEMENTXABO VEGRADE:ZONE 14	$\begin{array}{r} 1671 \\ 9.54 \end{array}$	$\begin{array}{r} 2089 \\ 9.42 \end{array}$	$\begin{array}{r} 34 . \\ 76 \end{array}$	$\begin{array}{r} 294 . \\ 216 \end{array}$	$\begin{array}{r} 367 . \\ 770 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 51.1 \\ 21 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$

						DAY IN MQP WOR CEST ER GOSP EL CHUR CH $(O 1-$ $O 1: 31$ $-12)$								
BASEMENTXABO VEGRADE:ZONE 15	$\begin{array}{r} 1626 \\ 5.68 \end{array}$	$\begin{array}{r} 2033 \\ 2.09 \end{array}$	$\begin{array}{r} 35 . \\ 32 \end{array}$	$\begin{array}{r} 286 . \\ 230 \end{array}$	$\begin{array}{r} 357 . \\ 787 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \text { MQP } \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (01- \\ O 1: 31 \\ -12) \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 48.9 \\ 51 \end{array}$	0.0 0
BASEMENTXABO VEGRADE:ZONE 16	$\begin{array}{r} 3425 \\ 0.04 \end{array}$	$\begin{array}{r} 4281 \\ 2.55 \end{array}$	$\begin{array}{r} 28 . \\ 54 \end{array}$	$\begin{gathered} 602 . \\ 703 \end{gathered}$	$\begin{array}{r} 753 . \\ 379 \end{array}$	$\begin{array}{r} \text { WINT } \\ \text { ER } \\ \text { DESI } \\ \text { GN } \\ \text { DAY } \\ \text { IN } \\ \mathrm{MQP} \\ \text { WOR } \\ \text { CEST } \\ \text { ER } \\ \text { GOSP } \\ \text { EL } \\ \text { CHUR } \\ \text { CH } \\ (\mathrm{O} 1- \\ \mathrm{O}: 31 \\ \hline \end{array}$	$\begin{array}{r} 1 / 15 \\ 24: 00: \\ 00 \end{array}$	68.00	68.00	$\begin{array}{r} 0.0009 \\ 8 \end{array}$	1.94	$\begin{array}{r} 0.0009 \\ 0 \end{array}$	$\begin{array}{r} 127 . \\ 564 \end{array}$	0.0 0

The Design Load is the zone sensible load only. It does not include any system effects or ventilation loads.
System Design Air Flow Rates

	Calculated cooling [ft3/min]	User cooling [ft3/min]	Calculated heating [ft3/min]	User heating [ft3/min]	Adjusted cooling [ft3/min]	Adjusted heating [ft3/min]	Adjusted main [ft3/min]	Calculated Heating Air Flow Ratio \qquad	User Heating Air Flow Ratio []
None									

Plant Loop Coincident Design Fluid Flow Rate Adjustments

	Previous Design Volume Flow Rate [ft3/min]	Algorith m Volume Flow Rate [ft3/min]	Coinciden t Design Volume Flow Rate [ft3/min]	Coinciden t Size Adjusted	Peak Sizing Perio d Name	Peak Day into Period \{TIMESTAMP\}[day	Peak Hour Of Day \{TIMESTAMP\}[hr	Peak Step Start Minute \{TIMESTAMP\}[min]
Non e								

Coil Sizing Summary

Table of Contents

Report: System Summary
For: Entire Facility
Timestamp: 2019-12-26 10:47:47

Economizer

	High Limit Shutoff Control	Minimum Outdoor Air $[\mathrm{ft3} / \mathrm{min}]$	Maximum Outdoor Air $[\mathrm{ft3} / \mathrm{min}]$	Return Air Temp Limit	Return Air Enthalpy Limit	Outdoor Air	Outdoor Air		
Temperature Limit									
Enthalpy Limit									
[F]								\quad	[F]
---:									

Demand Controlled Ventilation using Controller:MechanicalVentilation

	Controller:MechanicalVe ntilation Name	Outdo or Air Per Person [ft3/mi nperson]	Outdo or Air Per Area [ft3/mi n -ft2]	Outdo or Air Per Zone [ft3/mi $\mathrm{n}]$	Outdo or Air ACH [ACH]	Outdo or Air Metho d	Outdo or Air Sched ule Name	Air Distributio n Effectiven ess in Cooling Mode	Air Distributio n Effectiven ess in Heating Mode	Air Distributio n Effectiven ess Schedule Name
Non e										

Time Not Comfortable Based on Simple ASHRAE 55-2004

	Winter Clothes [hr]	Summer Clothes [hr]	Summer or Winter Clothes [hr]
GYM:ZONE3	1510.17	1524.00	1510.17
GYM:ZONE1	1523.33	1524.00	1523.33
GYM:ZONE2	1523.17	1524.00	1523.17
FIRSTFLOOR:ZONE3	1479.33	1524.00	1479.33
FIRSTFLOOR:ZONE4	1477.17	1524.00	1477.17
FIRSTFLOOR:ZONE2	1428.67	1523.33	1428.67
FIRSTFLOOR:ZONE6	1491.17	1524.00	1491.17
FIRSTFLOOR:ZONE7	1497.83	1524.00	1497.83
FIRSTFLOOR:ZONE1	1478.17	1524.00	1478.17
BASEMENTXABOVEGRADE:ZONE1	1510.50	1524.00	1510.50
BASEMENTXABOVEGRADE:ZONE2	1524.00	1524.00	1524.00
BASEMENTXABOVEGRADE:ZONE3	1524.00	1524.00	1524.00
BASEMENTXABOVEGRADE:ZONE4	1488.67	1524.00	1488.67
BASEMENTXABOVEGRADE:ZONE5	1524.00	1524.00	1524.00
BASEMENTXABOVEGRADE:ZONE6	1524.00	1524.00	1524.00

BASEMENTXABOVEGRADE:ZONE7	1517.83	1524.00	1517.83
BASEMENTXABOVEGRADE:ZONE8	1506.67	1524.00	1506.67
BASEMENTXABOVEGRADE:ZONE9	1507.00	1524.00	1507.00
BASEMENTXABOVEGRADE:ZONE10	1518.50	1524.00	1518.50
BASEMENTXABOVEGRADE:ZONE11	1505.50	1524.00	1505.50
BASEMENTXABOVEGRADE:ZONE12	1524.00	1524.00	1524.00
BASEMENTXABOVEGRADE:ZONE13	1448.17	1524.00	1448.17
BASEMENTXABOVEGRADE:ZONE14	1511.00	1524.00	1511.00
BASEMENTXABOVEGRADE:ZONE15	1514.67	1524.00	1514.67
BASEMENTXABOVEGRADE:ZONE16	1486.00	1524.00	1486.00
CHURCHROOF:ZONE1	0.00	0.00	0.00
CHURCHROOF:ZONE4	0.00	0.00	0.00
CHURCHROOF:ZONE2	1524.00	0.00	1524.00
Facility			

Aggregated over the RunPeriods for Weather
Time Setpoint Not Met

	During Heating [hr]	During Cooling [hr]	During Occupied Heating [hr]	During Occupied Cooling [hr]
GYM:ZONE3	273.00	210.50	90.83	0.00
GYM:ZONE1	162.50	173.83	57.33	0.00
GYM:ZONE2	242.00	134.83	96.50	0.00
FIRSTFLOOR:ZONE3	8.33	195.83	0.00	0.00
FIRSTFLOOR:ZONE4	7.50	203.83	0.00	0.00
FIRSTFLOOR:ZONE2	48.00	216.00	0.00	0.00

FIRSTFLOOR:ZONE6	25.17	166.17	0.00	0.00
FIRSTFLOOR:ZONE7	19.50	149.83	0.00	0.00
FIRSTFLOOR:ZONE1	145.00	153.50	0.00	0.00
BASEMENTXABOVEGRADE:ZONE1	36.50	264.67	0.00	0.00
BASEMENTXABOVEGRADE:ZONE2	36.00	137.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE3	50.50	149.00	0.00	0.00
BASEMENTXABOVEGRADE:ZONE4	91.33	176.00	0.00	0.00
BASEMENTXABOVEGRADE:ZONE5	78.17	134.33	0.00	0.00
BASEMENTXABOVEGRADE:ZONE6	77.50	113.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE7	76.67	123.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE8	66.17	183.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE9	66.17	208.50	0.00	0.00
BASEMENTXABOVEGRADE:ZONE10	126.50	126.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE11	90.83	134.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE12	28.17	146.00	0.00	0.00
BASEMENTXABOVEGRADE:ZONE13	37.33	222.83	0.00	0.00
BASEMENTXABOVEGRADE:ZONE14	23.50	176.50	0.00	0.00
BASEMENTXABOVEGRADE:ZONE15	23.00	172.17	0.00	0.00
BASEMENTXABOVEGRADE:ZONE16	31.67	293.00	0.00	0.00
CHURCHROOF:ZONE1	0.00	0.00	0.00	0.00
CHURCHROOF:ZONE4	0.00	0.00	0.00	0.00
CHURCHROOF:ZONE2	0.00	0.00	0.00	0.00
Facility	423.83	345.83	105.83	0.00

Aggregated over the RunPeriods for Weather

Table of Contents

Report: Outdoor Air Summary

For: Entire Facility
Timestamp: 2019-12-26 10:47:47
Average Outdoor Air During Occupied Hours

	Average Number of Occupant	Nominal Number of Occupant		Mechanica Ventilation [ACH]	Infiltratio n [ACH]	$\begin{array}{r} \text { AFN } \\ \text { Infiltratio } \\ \mathrm{n}[\mathrm{ACH}] \end{array}$	Simple Ventilatio n [ACH]
GYM:ZONE3	29.73	29.73	67651.14	0.000	0.315	0.000	0.000
GYM:ZONE1	0.71	0.71	1764.01	0.000	0.314	0.000	0.073
GYM:ZONE2	0.32	0.32	797.93	0.000	0.314	0.000	0.054
FIRSTFLOOR:ZONE3	6.45	6.45	6295.56	0.000	0.309	0.000	0.011
FIRSTFLOOR:ZONE4	6.48	6.48	6321.00	0.000	0.309	0.000	0.017
FIRSTFLOOR:ZONE2	183.56	183.56	$\begin{array}{r} 163243.8 \\ 4 \end{array}$	0.000	0.313	0.000	0.098
FIRSTFLOOR:ZONE6	4.90	4.90	4774.30	0.000	0.310	0.000	0.002
FIRSTFLOOR:ZONE7	4.90	4.90	4774.30	0.000	0.309	0.000	0.000
FIRSTFLOOR:ZONE1	2.30	2.30	2238.72	0.000	0.311	0.000	0.001
BASEMENTXABOVEGRADE:ZONE1	3.91	3.91	4364.75	0.000	0.516	0.000	0.000
BASEMENTXABOVEGRADE:ZONE2	2.12	2.12	2368.80	0.000	0.514	0.000	0.000
BASEMENTXABOVEGRADE:ZONE3	2.55	2.55	2843.86	0.000	0.516	0.000	0.000
BASEMENTXABOVEGRADE:ZONE4	41.99	41.99	46857.00	0.000	0.519	0.000	0.017
BASEMENTXABOVEGRADE:ZONE5	1.04	1.04	1160.48	0.000	0.516	0.000	0.000
BASEMENTXABOVEGRADE:ZONE6	1.77	1.77	1977.25	0.000	0.516	0.000	0.000

BASEMENTXABOVEGRADE:ZONE7	3.26	3.26	3632.92	0.000	0.516	0.000	0.000
BASEMENTXABOVEGRADE:ZONE8	7.71	7.71	8602.15	0.000	0.518	0.000	0.002
BASEMENTXABOVEGRADE:ZONE9	2.27	2.27	2538.14	0.000	0.518	0.000	0.002
BASEMENTXABOVEGRADE:ZONE1	1.40	1.40	1564.80	0.000	0.518	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1	3.98	3.98	4446.53	0.000	0.517	0.000	0.001
BASEMENTXABOVEGRADE:ZONE1 2	0.81	0.81	902.28	0.000	0.513	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1	4.82	4.82	5380.31	0.000	0.520	0.000	0.058
BASEMENTXABOVEGRADE:ZONE1 4	3.01	3.01	3354.66	0.000	0.515	0.000	0.002
BASEMENTXABOVEGRADE:ZONE1 5	2.88	2.88	3212.24	0.000	0.514	0.000	0.002
BASEMENTXABOVEGRADE:ZONE1 6	7.50	7.50	8370.92	0.000	0.517	0.000	0.015

Values shown for a single zone without multipliers

Minimum Outdoor Air During Occupied Hours

	Average Number of Occupant s	Nominal Number of Occupant s	Zone Volume [ft3]	Mechanica I Ventilation $[\mathrm{ACH}]$	Infiltratio $\mathrm{n}[\mathrm{ACH}]$	AFN Infiltratio $\mathrm{n}[\mathrm{ACH}]$	Simple Ventilatio $\mathrm{n}[\mathrm{ACH}]$
GYM:ZONE3	29.73	29.73	67651.14	0.000	0.005	0.000	0.000
GYM:ZONE1	0.71	0.71	1764.01	0.000	0.005	0.000	0.000
GYM:ZONE2	0.32	0.32	797.93	0.000	0.005	0.000	0.000
FIRSTFLOOR:ZONE3	6.45	6.45	6295.56	0.000	0.005	0.000	0.000
FIRSTFLOOR:ZONE4	6.48	6.48	6321.00	0.000	0.005	0.000	0.000

FIRSTFLOOR:ZONE2	183.56	183.56	163243.8 4	0.000	0.005	0.000	0.000
FIRSTFLOOR:ZONE6	4.90	4.90	4774.30	0.000	0.005	0.000	0.000
FIRSTFLOOR:ZONE7	4.90	4.90	4774.30	0.000	0.005	0.000	0.000
FIRSTFLOOR:ZONE1	2.30	2.30	2238.72	0.000	0.005	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1	3.91	3.91	4364.75	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE2	2.12	2.12	2368.80	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE3	2.55	2.55	2843.86	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE4	41.99	41.99	46857.00	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE5	1.04	1.04	1160.48	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE6	1.77	1.77	1977.25	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE7	3.26	3.26	3632.92	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE8	7.71	7.71	8602.15	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE9	2.27	2.27	2538.14	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1	1.40	1.40	1564.80	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1	3.98	3.98	4446.53	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1 2	0.81	0.81	902.28	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1 3	4.82	4.82	5380.31	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1 4	3.01	3.01	3354.66	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1	2.88	2.88	3212.24	0.000	0.008	0.000	0.000
BASEMENTXABOVEGRADE:ZONE1 6	7.50	7.50	8370.92	0.000	0.008	0.000	0.000

Values shown for a single zone without multipliers

Table of Contents
Report: Object Count Summary
For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Surfaces by Class

	Total	Outdoors
Wall	336	110
Floor	139	29
Roof	128	18
Internal Mass	0	0
Building Detached Shading	0	0
Fixed Detached Shading	0	0
Window	299	299
Door	8	8
Glass Door	0	0
Shading	0	0
Overhang	0	0
Fin	0	0
Tubular Daylighting Device Dome	0	0
Tubular Daylighting Device Diffuser	0	0

HVAC

	Count
HVAC Air Loops	0
Conditioned Zones	25
Unconditioned Zones	3
Supply Plenums	0
Return Plenums	0

Input Fields

	Count
IDF Objects	0
Defaulted Fields	0
Fields with Defaults	0
Autosized Fields	0
Autosizable Fields	0
Autocalculated Fields	0
Autocalculatable Fields	0

Table of Contents

Report: Sensible Heat Gain Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Annual Building Sensible Heat Gain Components

	$\begin{array}{r} \text { HVA } \\ \mathrm{C} \\ \text { Zon } \\ \mathrm{e} \text { Eq } \\ \& \\ \text { Othe } \\ \mathrm{r} \\ \text { Sens } \\ \text { ible } \\ \text { Air } \\ \text { Heat } \\ \text { ing } \\ {[\mathrm{kBt}} \\ \mathrm{u}] \end{array}$	HV AC Zo ne Eq \& Ot her Se nsi ble Air Co oli ng [to n- hrs $]$	$\begin{gathered} \mathrm{HV} \\ \mathrm{AC} \\ \mathrm{Ter} \\ \mathrm{mi} \\ \mathrm{nal} \\ \mathrm{Uni} \\ \mathrm{t} \\ \mathrm{Se} \\ \mathrm{nsi} \\ \mathrm{ble} \\ \mathrm{Air} \\ \mathrm{He} \\ \mathrm{ati} \\ \mathrm{ng} \\ {[\mathrm{kB}} \\ \mathrm{tu} \end{gathered}$	HV Ter mi nal Uni Se nsi ble Air Co olin $\underset{\text { [to }}{\mathrm{g}}$ n- hrs	HV AC In pu t He ate d Su rfa ce He ati ng [k Bt $\mathrm{u}]$	$\begin{array}{r} \mathrm{HV} \\ \mathrm{AC} \\ \mathrm{In} \\ \mathrm{pu} \\ \mathrm{t} \\ \mathrm{Co} \\ \mathrm{ole} \\ \mathrm{~d} \\ \mathrm{Su} \end{array}$ pu rfa ce Co oli ng [to n- hrs]	$\begin{array}{r} \text { Peo } \\ \text { ple } \\ \text { Sens } \\ \text { ible } \\ \text { Heat } \\ \text { Addi } \\ \text { tion } \\ {[\mathrm{kBt}} \\ \mathrm{u}] \end{array}$	Lig hts Se nsi ble He at Ad diti on [kB $\mathrm{tu}]$	Equi pme nt Sens ible Heat Addi tion [kBt u]	Win dow Heat Addi tion [kBt u]	Int erz one Air Tra nsf er Hea t Add itio n $[k B$ $\mathrm{tu}]$	$\begin{array}{r} \text { Infil } \\ \text { trati } \\ \text { on } \\ \text { Hea } \\ \mathrm{t} \\ \text { Add } \\ \text { ition } \\ {[\mathrm{kBt}} \\ \mathrm{u}] \end{array}$	$\begin{array}{r} \text { Opa } \\ \text { que } \\ \text { Surf } \\ \text { ace } \\ \text { Con } \\ \text { duct } \\ \text { ion } \\ \text { and } \\ \text { Oth } \\ \text { er } \\ \text { Hea } \\ \mathrm{t} \\ \text { Addi } \\ \text { tion } \\ {[\mathrm{kBt}} \\ \mathrm{u}] \end{array}$	$\begin{array}{r} \text { Equi } \\ \text { pme } \\ \mathrm{nt} \\ \text { Sen } \\ \text { sibl } \\ \mathrm{e} \\ \mathrm{Hea} \\ \mathrm{t} \\ \mathrm{Re} \\ \mathrm{mov} \\ \mathrm{al} \\ {[\mathrm{kBt}} \\ \mathrm{u}] \end{array}$	Win dow Hea t Re mov al [kBt $\mathrm{u}]$	Int erz one Air Tra nsf er Hea t Re mo val [kB tu]	Infil trati on Hea t Re mov al [kBt $\mathrm{u}]$	
GYM:ZONE3	$\begin{array}{r} 150 \\ 452 . \\ 201 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 152 \\ 66.6 \\ 34 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 368 \\ 63.0 \\ 44 \end{array}$	$\begin{array}{r} 243 \\ 34.2 \\ 26 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 347 \\ .22 \\ 7 \end{array}$	$\begin{array}{r} 0.20 \\ 6 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 130 \\ 26 . \\ 71 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 627 \\ 01 . \\ 84 \end{array}$	$\begin{array}{r} 151 \\ 534 . \\ 78 \end{array}$			
GYM:ZONE1	$\begin{array}{r} 110 \\ 75.4 \\ 03 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 364 . \\ 727 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 874 . \\ 666 \end{array}$	$\begin{array}{r} 389 \\ 5.97 \\ 8 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 21 . \\ 862 \end{array}$	$\begin{array}{r} 0.11 \\ 5 \end{array}$	0.00 0	$\begin{array}{r} 152 \\ 5.7 \\ 4 \end{array}$	0.0 00	$\begin{array}{r} 182 \\ 6.3 \\ 8 \end{array}$	$\begin{array}{r} 128 \\ 80.5 \\ 2 \end{array}$			
GYM:ZONE2	$\begin{array}{r} 632 \\ 5.43 \\ 1 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 165 . \\ 989 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 395 . \\ 643 \end{array}$	$\begin{array}{r} 715 . \\ 999 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{gathered} 12 . \\ 787 \end{gathered}$	$\begin{array}{r} 0.00 \\ 9 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 377 \\ .27 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 767 \\ .08 \end{array}$	$\begin{array}{r} - \\ 647 \\ 1.49 \end{array}$			
FIRSTFLOOR: ZONE3	$\begin{array}{r} 741 \\ 2.77 \\ 6 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 368 \\ 6.65 \\ 4 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 200 \\ 0.08 \\ 3 \end{array}$	$\begin{array}{r} 807 \\ 5.59 \\ 5 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 62 . \\ 228 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 249 \\ 6.9 \\ 2 \end{array}$	0.0 00	$\begin{array}{r} 439 \\ 1.2 \\ 6 \end{array}$	$\begin{array}{r} 143 \\ 49.1 \\ 6 \end{array}$			
FIRSTFLOOR: ZONE4	$\begin{array}{r} 750 \\ 5.85 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 370 \\ 2.22 \\ 9 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 200 \\ 8.45 \\ 0 \end{array}$	$\begin{array}{r} 815 \\ 7.15 \\ 6 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{gathered} 59 . \\ 198 \end{gathered}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	0.00 0	$\begin{array}{r} 239 \\ 8.3 \\ 6 \end{array}$	0.0 00	$\begin{array}{r} 449 \\ 8.7 \\ 6 \end{array}$	$\begin{array}{r} 145 \\ 35.7 \\ 7 \end{array}$			
FIRSTFLOOR: ZONE2	$\begin{array}{r} 755 \\ 62.3 \\ 09 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 986 \\ 37.4 \\ 13 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 568 \\ 93.3 \\ 27 \end{array}$	$\begin{array}{r} 117 \\ 843 . \\ 864 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 839 \\ .49 \\ 4 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 455 \\ 64 . \\ 41 \end{array}$	0.0 00	$\begin{array}{r} 136 \\ 002 \\ .67 \end{array}$	$\begin{array}{r} 168 \\ 209 . \\ 33 \end{array}$			
FIRSTFLOOR: ZONE6	$\begin{array}{r} 458 \\ 3.35 \\ 4 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	0. 00 0	$\begin{array}{r} 276 \\ 9.76 \\ 6 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 151 \\ 7.49 \\ 7 \end{array}$	$\begin{array}{r} 460 \\ 8.51 \\ 2 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 55 . \\ 831 \end{array}$	$\begin{array}{r} 0.03 \\ 7 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	198	$\begin{array}{r} 0.0 \\ 00 \end{array}$	356	$\begin{array}{r} 798 \\ 1.43 \end{array}$			

															3.6 8		9.8 5	
FIRSTFLOOR: ZONE7	$\begin{array}{r} 514 \\ 6.10 \\ 3 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 279 \\ 2.55 \\ 8 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 151 \\ 7.49 \\ 7 \end{array}$	$\begin{array}{r} 479 \\ 0.38 \\ 5 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 69 . \\ 778 \end{array}$	0.07 6	0.00 0	$\begin{array}{r} 179 \\ 0.5 \\ 2 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 347 \\ 7.1 \\ 5 \end{array}$	$\begin{array}{r} 904 \\ 8.66 \end{array}$			
FIRSTFLOOR: ZONE1	$\begin{array}{r} 188 \\ 8.51 \\ 0 \end{array}$	$\begin{array}{\|c\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 127 \\ 7.36 \\ 6 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 711 . \\ 571 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 28 . \\ 514 \end{array}$	$\begin{array}{r} 0.00 \\ 9 \end{array}$	0.00 0	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 195 \\ 1.3 \\ 2 \end{array}$	$\begin{array}{r} 195 \\ 4.64 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE1	$\begin{array}{r} 776 \\ 8.66 \\ 9 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 222 \\ 3.77 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 484 \\ 8.93 \\ 6 \end{array}$	$\begin{array}{r} 108 \\ 43.0 \\ 37 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 65 . \\ 053 \end{array}$	$\begin{array}{r} 0.14 \\ 7 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 481 \\ 0.1 \\ 3 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 603 \\ 7.0 \\ 1 \end{array}$	$\begin{array}{r} 149 \\ 02.3 \\ 3 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE2	$\begin{array}{r} 542 \\ 4.05 \\ 4 \end{array}$	$\begin{array}{\|c\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 122 \\ 7.51 \\ 8 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 263 \\ 1.57 \\ 1 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 81 . \\ 784 \end{array}$	$\begin{array}{r} 0.03 \\ 3 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 276 \\ 5.1 \\ 1 \end{array}$	$\begin{array}{r} 659 \\ 9.82 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE3	$\begin{array}{r} 524 \\ 5.65 \\ 8 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 145 \\ 8.66 \\ 3 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 315 \\ 9.33 \\ 0 \end{array}$	$\begin{array}{r} 266 \\ 9.77 \\ 7 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 75 . \\ 368 \end{array}$	$\begin{array}{r} 0.07 \\ 9 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} - \\ 225 \\ 0.6 \\ 9 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 349 \\ 6.0 \\ 4 \end{array}$	$\begin{array}{r} 686 \\ 2.07 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE4	$\begin{array}{r} 464 \\ 96.1 \\ 38 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 232 \\ 56.3 \\ 67 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 520 \\ 54.8 \\ 33 \end{array}$	$\begin{array}{r} 156 \\ 26.5 \\ 05 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 902 \\ .06 \\ 6 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 595 \\ 9.1 \\ 4 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 637 \\ 16 . \\ 94 \end{array}$	$\begin{array}{r} - \\ 686 \\ 59.8 \\ 2 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE5	$\begin{array}{r} 223 \\ 7.89 \\ 2 \end{array}$	$\begin{array}{\|c\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 595 . \\ 463 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 128 \\ 9.20 \\ 6 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 38 . \\ 201 \end{array}$	$\begin{array}{r} 0.00 \\ 8 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 143 \\ 8.7 \\ 3 \end{array}$	$\begin{array}{r} 272 \\ 2.03 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE6	$\begin{array}{r} 364 \\ 4.15 \\ 5 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 101 \\ 4.56 \\ 2 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 219 \\ 6.58 \\ 7 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 71 . \\ 266 \end{array}$	$\begin{array}{r} 0.02 \\ 8 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 237 \\ 0.6 \\ 9 \end{array}$	$\begin{array}{r} 455 \\ 5.88 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE7	$\begin{array}{r} 521 \\ 8.62 \\ 7 \end{array}$	$\begin{array}{\|r\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 185 \\ 4.69 \\ 3 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 403 \\ 5.91 \\ 7 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 118 \\ .98 \\ 9 \end{array}$	$\begin{array}{r} 0.02 \\ 5 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 434 \\ 0.5 \\ 1 \end{array}$	$\begin{array}{r} 688 \\ 7.71 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE8	$\begin{array}{r} 113 \\ 77.3 \\ 67 \end{array}$	$\begin{array}{\|r\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 431 \\ 4.61 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 955 \\ 6.39 \\ 0 \end{array}$	$\begin{array}{r} 889 \\ 4.79 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 156 \\ .98 \\ 2 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	358	$\begin{array}{r} 0.0 \\ 00 \end{array}$	118	188			

															7.7 7		$\begin{array}{r} 56 . \\ 35 \end{array}$	$\begin{array}{r} 56.0 \\ 2 \end{array}$
BASEMENTXA BOVEGRADE: ZONE9	$\begin{array}{r} 358 \\ 1.49 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 127 \\ 6.81 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 281 \\ 9.69 \\ 5 \end{array}$	$\begin{array}{r} 442 \\ 6.49 \\ 6 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 41 . \\ 572 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	0.00 0	$\begin{array}{r} 181 \\ 8.5 \\ 3 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 358 \\ 8.3 \\ 8 \end{array}$	$\begin{array}{r} 673 \\ 9.15 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE10	$\begin{array}{r} 228 \\ 5.70 \\ 6 \end{array}$	$\begin{array}{\|c\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 790 . \\ 351 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 173 \\ 8.38 \\ 3 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 46 . \\ 275 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	0.00 0	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 206 \\ 5.0 \\ 4 \end{array}$	$\begin{array}{r} 279 \\ 5.67 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE11	$\begin{array}{r} 555 \\ 7.38 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 225 \\ 0.93 \\ 2 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 493 \\ 9.78 \\ 2 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 128 \\ .05 \\ 3 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 555 \\ 0.9 \\ 5 \end{array}$	$\begin{array}{r} 732 \\ 5.19 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE12	$\begin{array}{r} 249 \\ 8.88 \\ 0 \end{array}$	$\begin{array}{\|c\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 470 . \\ 839 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 100 \\ 2.36 \\ 4 \end{array}$	$\begin{array}{r} 693 . \\ 930 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{gathered} 31 . \\ 898 \end{gathered}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} - \\ 535 \\ .12 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 104 \\ 5.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 311 \\ 7.79 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE13	$\begin{array}{r} 586 \\ 9.93 \\ 7 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 263 \\ 7.12 \\ 4 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 597 \\ 7.14 \\ 3 \end{array}$	$\begin{array}{r} 936 \\ 9.47 \\ 9 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 75 . \\ 052 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 271 \\ 4.9 \\ 7 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} - \\ 786 \\ 9.2 \\ 8 \end{array}$	$\begin{array}{r} 133 \\ 44.4 \\ 9 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE14	$\begin{array}{r} 603 \\ 9.76 \\ 8 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 172 \\ 5.50 \\ 1 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 372 \\ 6.78 \\ 9 \end{array}$	$\begin{array}{r} 272 \\ 4.38 \\ 1 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{gathered} 86 . \\ 157 \end{gathered}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	859	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} - \\ 404 \\ 2.9 \\ 2 \end{array}$	$\begin{array}{r} 940 \\ 0.11 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE15	$\begin{array}{r} 585 \\ 7.87 \\ 0 \end{array}$	$\begin{array}{\|c\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 165 \\ 3.90 \\ 8 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 356 \\ 8.57 \\ 1 \end{array}$	$\begin{array}{r} 332 \\ 2.23 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 80 . \\ 841 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 111 \\ 5.7 \\ 1 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} - \\ 385 \\ 5.3 \\ 1 \end{array}$	$\begin{array}{r} - \\ 951 \\ 2.41 \end{array}$			
BASEMENTXA BOVEGRADE: ZONE16	$\begin{array}{r} 120 \\ 13.6 \\ 62 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 423 \\ 1.90 \\ 2 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 929 \\ 9.50 \\ 7 \end{array}$	$\begin{array}{r} 211 \\ 44.1 \\ 37 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 95 . \\ 469 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 828 \\ 4.8 \\ 4 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	119 08. 65	$\begin{array}{r} 265 \\ 91.1 \\ 8 \end{array}$			
$\begin{array}{r} \text { CHURCHROOF } \\ \text { :ZONE1 } \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{\|r\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 141 \\ 9.2 \\ 80 \end{array}$	$\begin{array}{r} 761 \\ 6.49 \\ 8 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 903 \\ 5.7 \\ 8 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$			
$\begin{array}{r} \text { CHURCHROOF } \\ \text { :ZONE4 } \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{\|r\|} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	0 00 0	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	0.0 00	$\begin{array}{r} 84 . \\ 372 \end{array}$	$\begin{array}{r} 174 \\ 3.91 \\ 2 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	182	$\begin{array}{r} 0.00 \\ 0 \end{array}$

																	8.2 8	
CHURCHROOF :ZONE2	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 136 \\ .26 \\ 1 \end{array}$	$\begin{array}{r} 169 \\ 1.15 \\ 4 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 182 \\ 7.4 \\ 1 \end{array}$	$\begin{array}{r} 0.00 \\ 0 \end{array}$			
Total Facility	$\begin{array}{r} 401 \\ 069 . \\ 191 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 0 . \\ 00 \\ 0 \end{array}$	$\begin{array}{r} 179 \\ 646 . \\ 347 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 215 \\ 626 . \\ 783 \end{array}$	$\begin{array}{r} 252 \\ 136 . \\ 476 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 523 \\ 1.8 \\ 55 \end{array}$	$\begin{array}{r} 110 \\ 52.3 \\ 35 \end{array}$	0.00 0	$\begin{array}{r} 101 \\ 100 \\ .06 \end{array}$	$\begin{array}{r} 0.0 \\ 00 \end{array}$	$\begin{array}{r} 367 \\ 824 \\ .70 \end{array}$	$\begin{array}{r} 595 \\ 837 . \\ 45 \end{array}$			

Peak Cooling Sensible Heat Gain Components

	Time of Peak \{TIM ESTA MP\}	$\begin{gathered} \mathrm{HV} \\ \mathrm{AC} \\ \mathrm{Zo} \\ \text { ne } \\ \mathrm{Eq} \\ \text { \& } \\ \mathrm{Ot} \\ \text { her } \\ \mathrm{Se} \\ \text { nsi } \\ \text { ble } \\ \text { Air } \\ \mathrm{He} \\ \text { ati } \\ \text { ng } \\ \text { [Bt } \\ \mathrm{u} / \\ \mathrm{h}] \end{gathered}$	HV AC Zo ne Eq Ot her Se nsi ble Air Co oli ng [to n]	$\begin{gathered} \text { HV } \\ \text { AC } \\ \text { Ter } \\ \text { mi } \\ \text { nal } \\ \text { Uni } \end{gathered}$ Se ns ble Air He at ng $[\mathrm{Bt}$ u / h		$\begin{array}{r} \text { HV } \\ \text { AC } \\ \text { Ter } \\ \text { mi } \\ \text { nal } \\ \text { Uni } \\ \mathrm{t} \\ \mathrm{Se} \\ \mathrm{nsi} \\ \text { ble } \\ \text { Air } \\ \mathrm{Co} \\ \text { olin } \\ \mathrm{g} \\ \text { [to } \\ \mathrm{n}] \end{array}$	HV AC In pu t He at ed Su rfa ce He ati ng [Bt u/ h]	$\begin{array}{r} \mathrm{HV} \\ \mathrm{AC} \\ \mathrm{In} \\ \mathrm{pu} \\ \mathrm{t} \\ \mathrm{Co} \\ \text { ole } \\ \mathrm{d} \\ \mathrm{Su} \\ \mathrm{rfa} \\ \mathrm{ce} \\ \mathrm{Co} \\ \mathrm{oli} \\ \mathrm{ng} \\ \text { [to } \\ \mathrm{n}] \end{array}$	op			Equi pm ent Sen sibl e Hea t Add ition [Btu /h]	Wi ow He at Ad diti on [Bt u/ h]	$\begin{array}{r} \text { Int } \\ \text { erz } \\ \text { one } \\ \text { Air } \\ \text { Tra } \\ \text { nsf } \\ \text { er } \\ \text { He } \\ \text { at } \\ \text { Add } \\ \text { itio } \\ \text { n } \\ {[B t} \\ \mathrm{u} / \mathrm{h} \\ \text {] } \end{array}$		$\begin{array}{r} \text { Opa } \\ \text { que } \\ \text { Surf } \\ \text { ace } \\ \text { Con } \\ \text { duct } \\ \text { ion } \\ \text { and } \\ \text { Oth } \\ \text { er } \\ \text { Hea } \\ \text { t } \\ \text { Addi } \\ \text { tion } \\ \text { [Btu } \\ \text { /h] } \end{array}$	$\begin{array}{r} \text { Equi } \\ \text { pm } \\ \text { ent } \\ \text { Sen } \\ \text { sibl } \\ \mathrm{e} \\ \mathrm{Hea} \\ \mathrm{t} \\ \mathrm{Re} \\ \mathrm{mov} \\ \mathrm{al} \\ {[\mathrm{Btu}} \\ / \mathrm{h}] \end{array}$	Wi nd ow He at Re mo val [Bt u/h]	Int erz one Air Tra nsf er He at Re mo val [Bt u/h]		$\begin{array}{r} \text { Opa } \\ \text { que } \\ \text { Surf } \\ \text { ace } \\ \text { Con } \\ \text { duct } \\ \text { ion } \\ \text { and } \\ \text { Oth } \\ \text { er } \\ \text { Hea } \\ \text { t } \\ \text { Rem } \\ \text { oval } \\ {[B t u} \\ / h] \end{array}$
GYM:ZONE3		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$				$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00						
GYM:ZONE1		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$				$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00						
GYM:ZONE2		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$				$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00						
FIRSTFLOOR: ZONE3		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$				$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00						
FIRSTFLOOR: ZONE4		$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	0.			$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.00			

FIRSTFLOOR: ZONE2		$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0		0.0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0		. 0	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
FIRSTFLOOR: ZONE6		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0	0.0		$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
FIRSTFLOOR: ZONE7		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r\|} \hline 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0		$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00			
FIRSTFLOOR: ZONE1		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00						
BASEMENTXA BOVEGRADE: ZONE1		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0		$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE2		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\left\lvert\, \begin{array}{r} 0.0 \\ 0 \end{array}\right.$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE3		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE4		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0			$\begin{array}{r} 0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE5		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\left\lvert\, \begin{array}{r} 0.0 \\ 0 \end{array}\right.$		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0			$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE6		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0			$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE7		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$			$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0			$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00
BASEMENTXA BOVEGRADE: ZONE8		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\left\lvert\, \begin{array}{r} 0.0 \\ 0 \end{array}\right.$		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\left.\begin{array}{r} 0.0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0				0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$		0.00
BASEMENTXA BOVEGRADE: ZONE9		$\begin{array}{r} 0.0 \\ 0 \end{array}$	0		$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.		0	0.00	0.0 0	$\begin{array}{\|r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.00

| BASEMENTXA BOVEGRADE: ZONE10 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| :---: |
| BASEMENTXA BOVEGRADE: ZONE11 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| BASEMENTXA BOVEGRADE: ZONE12 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| BASEMENTXA BOVEGRADE: ZONE13 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| BASEMENTXA BOVEGRADE: ZONE14 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| BASEMENTXA BOVEGRADE: ZONE15 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| BASEMENTXA BOVEGRADE: ZONE16 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| CHURCHROO F:ZONE1 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| CHURCHROO F:ZONE4 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| CHURCHROO
 F:ZONE2 | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |
| Total Facility | - | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 |

Peak Heating Sensible Heat Gain Components

	Time of Peak \{TIM	$\begin{array}{r} \text { HVA } \\ \text { C } \\ \text { Zon } \\ \mathrm{e} \\ \mathrm{Eq} \\ \& \end{array}$	HV AC Zo ne Eq 8	HV AC Ter mi nal Uni	HV AC Ter mi nal Uni	$\begin{array}{r} \mathrm{HV} \\ \mathrm{AC} \\ \mathrm{In} \\ \mathrm{pu} \\ \mathrm{t} \\ \mathrm{He} \end{array}$	$\begin{array}{r} \mathrm{HV} \\ \mathrm{AC} \\ \mathrm{In} \\ \mathrm{pu} \\ \mathrm{t} \\ \mathrm{Co} \end{array}$	$\begin{array}{\|r\|} \mathrm{Pe} \\ \mathrm{opl} \\ \mathrm{e} \\ \mathrm{Se} \\ \mathrm{nsi} \\ \mathrm{ble} \end{array}$	Lig hts Se nsi ble He	Equ ipm ent Sen sibl e	ow He at Ad			Infil trati on Hea t Add	Opa que Surf ace Con duct	Equ ipm ent Sen sibl e	Wi nd ow He at Re	Int erz one Air Tra nsf	$\begin{array}{r} \text { Infil } \\ \text { trati } \\ \text { on } \\ \text { Hea } \\ \mathrm{t} \\ \mathrm{Re} \end{array}$	Opa que Surf ace Con duct

	$\begin{aligned} & \text { ESTA } \\ & \text { MP\} } \end{aligned}$	Oth er Sen sibl e Air Hea ting [Btu /h]	$\begin{array}{r} \text { Ot } \\ \text { her } \\ \mathrm{Se} \\ \mathrm{nsi} \\ \text { ble } \\ \text { Air } \\ \mathrm{Co} \\ \text { oli } \\ \text { ng } \\ \text { [to } \end{array}$ $\mathrm{n}]$	$\begin{array}{r} \mathrm{t} \\ \mathrm{Se} \\ \mathrm{nsi} \\ \text { ble } \\ \text { Air } \\ \mathrm{He} \\ \text { ati } \\ \mathrm{ng} \\ {[\mathrm{Bt}} \\ \mathrm{u} / \mathrm{h} \\] \end{array}$	t Se nsi ble Air Co ol ng Cto n	at ed Su rfa ce He ati ng [Bt u/ h]	ole Su rfa ce Co oli ng [to n]	He at Ad diti on [Bt u/ h]	at Ad diti on [Bt u/ h]	Hea t Add itio n [Btu /h]	diti on [Bt u/ h]	er He at Ad diti on [Bt u/h]	$\begin{array}{r} \text { itio } \\ \mathrm{n} \\ {[\mathrm{Bt}} \\ \mathrm{u} / \mathrm{h} \end{array}$]	ion and Oth er Hea t Addi tion [Btu /h]	Hea t Re mov al [Btu /h]	mo val [Bt u/h]	$\begin{array}{r} \mathrm{er} \\ \mathrm{He} \\ \mathrm{at} \\ \mathrm{Re} \\ \mathrm{mo} \\ \mathrm{val} \\ {[\mathrm{Bt}} \\ \mathrm{u} / \mathrm{h} \\ \mathrm{l} \end{array}$	$\begin{gathered} \text { mo } \\ \text { val } \\ {[\mathrm{Bt}} \\ \mathrm{u} / \mathrm{h} \\ \mathrm{l} \end{gathered}$	$\begin{array}{r} \text { ion } \\ \text { and } \\ \text { Oth } \\ \text { er } \\ \text { Hea } \\ \mathrm{t} \\ \mathrm{Re} \\ \mathrm{mov} \\ \mathrm{al} \\ {[\mathrm{Btu}} \\ \text { /h] } \end{array}$
GYM:ZONE3	$\begin{array}{r} 02- \\ \text { FEB- } \\ 09: 0 \\ 1 \end{array}$	$\begin{array}{r} 174 \\ 451 \\ .13 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 424 \\ 1.2 \\ 8 \end{array}$	$\begin{array}{r} 55 \\ 10 . \\ 57 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 861 \\ 9.4 \end{array}$	$\begin{array}{r} 175 \\ 583 . \\ 6 \end{array}$
GYM:ZONE1	$\begin{array}{r} 02- \\ \text { FEB- } \\ 09: 0 \\ 1 \end{array}$	$\begin{array}{r} 124 \\ 99 . \\ 96 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 100 \\ .63 \end{array}$	$\begin{array}{r} 33 \\ 07 . \\ 44 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	258	$\begin{array}{r} 156 \\ 49.9 \end{array}$
GYM:ZONE2	$\begin{array}{r} 02- \\ \text { FEB- } \\ 09: 0 \\ 1 \end{array}$	$\begin{array}{r} 668 \\ 6.4 \\ 7 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 45 . \\ 52 \end{array}$	$\begin{array}{r} 31 . \\ 14 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 105 \\ .8 \end{array}$	$\begin{gathered} 665 \\ 7.4 \end{gathered}$
FIRSTFLOOR: ZONE3	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 311 \\ 47 . \\ 97 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 39 \\ 9.1 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 425 \\ .3 \end{array}$	$\begin{array}{r} - \\ 303 \\ 23.5 \end{array}$					
FIRSTFLOOR: ZONE4	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 320 \\ 63 . \\ 99 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 39 \\ 5.8 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 427 \\ .3 \end{array}$	$\begin{array}{r} 312 \\ 40.9 \end{array}$					
FIRSTFLOOR: ZONE2	$\begin{array}{r} 03- \\ \text { FEB- } \\ \text { 00:0 } \\ 1 \end{array}$	$\begin{array}{r} 277 \\ 896 \\ .57 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 74 \\ 96 . \\ 1 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 125 \\ 68 . \\ 5 \end{array}$	$\begin{array}{r} 257 \\ 832 . \\ 0 \end{array}$					
FIRSTFLOOR: ZONE6	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 157 \\ 41 . \\ 00 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 35 \\ 1.0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 410 \\ .1 \end{array}$	$\begin{array}{r} 149 \\ 79.9 \end{array}$					
FIRSTFLOOR: ZONE7	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 182 \\ 39 . \\ 08 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	0.0 0	$\begin{array}{r} - \\ 31 \\ 2.4 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 370 \\ .4 \end{array}$	$\begin{array}{r} 175 \\ 56.4 \end{array}$					

| FIRSTFLOOR: ZONE1 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 508 \\ 7.3 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | 0.0 0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 258 \\ .9 \end{array}$ | $\begin{array}{r} - \\ 482 \\ 8.4 \end{array}$ |
| :---: |
| BASEMENTXA BOVEGRADE: ZONE1 | $\begin{array}{r} \text { 03- } \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 240 \\ 30 . \\ 96 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | 0.0 0 | $\begin{array}{r} 10 \\ 23 . \\ 5 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 795 \\ .4 \end{array}$ | $\begin{array}{r} - \\ 222 \\ 12.0 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE2 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 161 \\ 57 . \\ 68 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 412 \\ 3 \end{array}$ | $\begin{array}{r} - \\ 157 \\ 45.4 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE3 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 151 \\ 15 . \\ 44 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 46 \\ 7.1 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 503 \\ .6 \end{array}$ | $\begin{array}{r} - \\ 141 \\ 44.7 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE4 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 130 \\ 886 \\ .23 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 12 \\ 30 . \\ 2 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 812 \end{array}$ | $\begin{array}{r} 121 \\ 530 . \\ 9 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE5 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 601 \\ 8.2 \\ 1 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 210 \\ .5 \end{array}$ | $\begin{array}{r} 580 \\ 7.7 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE6 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 978 \\ 7.6 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 348 \\ .3 \end{array}$ | $\begin{array}{r} - \\ 943 \\ 9.3 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE7 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 147 \\ 57 . \\ 94 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0 . \\ 00 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | - 550 .2 | $\begin{array}{r} 142 \\ 07.7 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE8 | $\begin{array}{r} \text { 03- } \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 322 \\ 94 . \\ 25 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} - \\ 79 \\ 8.5 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 171 \\ 8.0 \end{array}$ | $\begin{array}{r} 297 \\ 77.7 \end{array}$ |
| BASEMENTXA BOVEGRADE: ZONE9 | $\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$ | $\begin{array}{r} 104 \\ 07 . \\ 22 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{gathered} 0 . \\ 00 \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.00 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 39 \\ 6.0 \end{array}$ | 0.0 0 | $\begin{array}{r} 510 \\ .2 \end{array}$ | 950 1.0 |

BASEMENTXA BOVEGRADE: ZONE10	$\begin{gathered} \text { 03- } \\ \text { FEB- } \\ 00: 0 \end{gathered}$	$\begin{array}{r} 577 \\ 0.7 \\ 6 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 304 \\ .1 \end{array}$	$\begin{array}{r} 546 \\ 6.6 \end{array}$					
BASEMENTXA BOVEGRADE: ZONE11	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 154 \\ 80 . \\ 92 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 703 \\ .6 \end{array}$	$\begin{array}{r} 147 \\ 77.3 \end{array}$					
BASEMENTXA BOVEGRADE: ZONE12	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 790 \\ 2.1 \\ 5 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 10 \\ 3.4 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 153 \\ .1 \end{array}$	$\begin{array}{r} 764 \\ 5.7 \end{array}$					
BASEMENTXA BOVEGRADE: ZONE13	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 200 \\ 92 . \\ 19 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 59 \\ 2.3 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 106 \\ 2.3 \end{array}$	$\begin{array}{r} 184 \\ 37.6 \end{array}$					
BASEMENTXA BOVEGRADE: ZONE14	$\begin{gathered} 03- \\ \text { FEB- } \\ 00: 0 \end{gathered}$	$\begin{array}{r} 205 \\ 16 . \\ 25 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 16 \\ 3.1 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 496 \\ .7 \end{array}$	$\begin{array}{r} 198 \\ 56.4 \end{array}$					
BASEMENTXA BOVEGRADE: ZONE15	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 199 \\ 61 . \\ 68 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 20 \\ 1.6 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} - \\ 471 \\ .6 \end{array}$	$\begin{array}{r} 192 \\ 88.5 \end{array}$					
BASEMENTXA BOVEGRADE: ZONE16	$\begin{array}{r} 03- \\ \text { FEB- } \\ 00: 0 \\ 1 \end{array}$	$\begin{array}{r} 416 \\ 48 . \\ 94 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 15 \\ 03 . \\ 4 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 133 \\ 3.0 \end{array}$	$\begin{array}{r} 388 \\ 12.5 \end{array}$					
CHURCHROO F:ZONE1	-	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00											
CHURCHROO F:ZONE4	-	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00											
CHURCHROO F:ZONE2	-	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.00								
Total Facility	$\begin{array}{r} 03- \\ \text { FEB- } \\ \text { 09:0 } \\ 1 \end{array}$	$\begin{array}{r} 771 \\ 505 \\ .83 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{gathered} 0 . \\ 00 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 413 \\ 4.8 \\ 2 \end{array}$	$\begin{array}{r} 83 \\ 71 . \\ 68 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 450 \\ .92 \end{array}$	0.00	0.0 0	$\begin{array}{r} - \\ 70 \\ 3.4 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 911 \\ 65 . \\ 4 \end{array}$	$\begin{array}{r} 692 \\ 594 . \\ 4 \end{array}$

Table of Contents

Report: Standard 62.1 Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

System Ventilation Requirements for Cooling

	Zone Primar y Air Flow -Vpzsum [ft3/mi n]	System Populati on - Ps	Sum of Zone Populati on - Pzsum	Occupa nt Diversi ty - D	Uncorrec ted Outdoor Air Intake Airflow - Vou [ft3/min]	Syste m Primar y Airflow - Vps [ft3/mi n]	Avera ge Outdo or Air Fracti on - Xs	System Ventilati on Efficien cy - Ev	Outdo or Air Intake Flow - Vot [ft3/mi n]	Perce nt Outdo or Air \%OA	Environm ent Name of Peak System Populatio n - Ps	$\begin{array}{\|r\|} \text { Date } \\ \text { and } \\ \text { Time of } \\ \text { Last } \\ \text { Peak } \\ \text { System } \\ \text { Populati } \\ \text { on }- \text { Ps } \end{array}$
Non e												

System Ventilation Requirements for Heating

Zone Ventilation Parameters

	AirLoop Name	People Outdoor Air Rate - Rp [ft3/minperson]	Zone Population - Pz	Area Outdoor Air Rate - Ra [ft3/min$\mathrm{ft} 2]$	Zone Floor Area - Az [ft2]	Breathing Zone Outdoor Airflow Vbz [ft3/min]	Cooling Zone Air Distribution Effectiveness - Ez-clg	Cooling Zone Outdoor Airflow -Voz-clg [ft3/min]	Heating Zone Air Distribution Effectiveness - Ez-htg	Heating Zone Outdoor Airflow -Voz-htg [ft3/min]
None										

System Ventilation Parameters

	People Outdoor Air Rate - Rp [ft3/minperson]	Sum of Zone Population -Pz-sum	Area Outdoor Air Rate - Ra [ft3/min-ft2]	Sum of Zone Floor Area - Az-sum [ft2]	Breathing Zone Outdoor Airflow - Vbz [ft3/min]	Cooling Zone Outdoor Airflow - Voz$\mathrm{clg}[\mathrm{ft} 3 / \mathrm{min}]$	Heating Zone Outdoor Airflow - Vozhtg [ft3/min]
None							

Zone Ventilation Calculations for Cooling Design

	AirLo op Name	$\begin{array}{r} \text { Box } \\ \text { Typ } \\ \text { e } \end{array}$	Zone Primar y Airflow - Vpz [ft3/mi n]	Zone Dischar ge Airflow - Vdz [ft3/mi n]	Minimu m Zone Primar y Airflow - Vpzmin [ft3/mi n]	Zone Outdo or Airflow Coolin $\mathrm{g}-$ Voz-clg $[\mathrm{ft} 3 / \mathrm{mi}$ $\mathrm{n}]$	Primar y Outdo or Air Fracti on - Zpz	Prima ry Air Fracti on Ep	Secondar y Recirculati on FractionEr	Supply Air Fractio n- Fa	Mixed Air Fracti on Fb	Outdo or Air Fracti on Fc	Zone Ventilati on Efficienc y - Evz
Non e													

System Ventilation Calculations for Cooling Design

| None | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Zone Ventilation Calculations for Heating Design

System Ventilation Calculations for Heating Design

	Sum of Zone Primary Airflow - Vpz-sum $[\mathrm{ft} 3 / \mathrm{min}]$	System Primary Airflow - Vps $[\mathrm{ft3} 3 / \mathrm{min}]$	Sum of Zone Discharge Airflow - Vdz-sum $[\mathrm{ft3} / \mathrm{min}]$	Sum of Min Zone Primary Airflow - Vpz-min [ft3/min]	Zone Outdoor Airflow Heating - Voz-htg $[\mathrm{ft3} / \mathrm{min}]$	Zone Efficiency - Evz-min
None						

Table of Contents

Report: LEED Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47
Sec1.1A-General Information
\qquad

Weather File	MQP WORCESTER GOSPEL CHURCH (O1-O1:31-12) ** WORCESTER MA USA TMY2-94746
	WMO\# $=725095$
Total gross floor area	
$[\mathrm{ft2}]$	36151.86
Principal Heating	Additional Fuel
Source	

EAp2-1. Space Usage Type

	Space Area [ft2]	Regularly Occupied Area [ft2]	Unconditioned Area [ft2]	Typical Hours/Week in Operation [hr/wk]
GYM:ZONE3	5947.27	5947.27	0.00	29.23
GYM:ZONE1	141.11	141.11	0.00	29.23
GYM:ZONE2	63.83	63.83	0.00	29.23
FIRSTFLOOR:ZONE3	322.68	322.68	0.00	29.23
FIRSTFLOOR:ZONE4	324.03	324.03	0.00	29.23
FIRSTFLOOR:ZONE2	9178.84	9178.84	0.00	29.23
FIRSTFLOOR:ZONE6	244.82	244.82	0.00	29.23
FIRSTFLOOR:ZONE7	244.82	244.82	0.00	29.23
FIRSTFLOOR:ZONE1	114.80	114.80	0.00	29.23
BASEMENTXABOVEGRADE:ZONE1	782.30	782.30	0.00	29.23
BASEMENTXABOVEGRADE:ZONE2	424.56	424.56	0.00	29.23
BASEMENTXABOVEGRADE:ZONE3	509.71	509.71	0.00	29.23
BASEMENTXABOVEGRADE:ZONE4	8398.23	8398.23	0.00	29.23
BASEMENTXABOVEGRADE:ZONE5	207.99	207.99	0.00	29.23
BASEMENTXABOVEGRADE:ZONE6	354.38	354.38	0.00	29.23

BASEMENTXABOVEGRADE:ZONE7	651.13	651.13	0.00	29.23
BASEMENTXABOVEGRADE:ZONE8	1541.77	1541.77	0.00	29.23
BASEMENTXABOVEGRADE:ZONE9	454.91	454.91	0.00	29.23
BASEMENTXABOVEGRADE:ZONE10	280.46	280.46	0.00	29.23
BASEMENTXABOVEGRADE:ZONE11	796.96	796.96	0.00	29.23
BASEMENTXABOVEGRADE:ZONE12	161.72	161.72	0.00	29.23
BASEMENTXABOVEGRADE:ZONE13	964.32	964.32	0.00	29.23
BASEMENTXABOVEGRADE:ZONE14	601.26	601.26	0.00	29.23
BASEMENTXABOVEGRADE:ZONE15	575.73	575.73	0.00	29.23
BASEMENTXABOVEGRADE:ZONE16	1500.33	1500.33	0.00	29.23
CHURCHROOF:ZONE1	867.38	0.00	867.38	0.00
CHURCHROOF:ZONE4	248.25	0.00	248.25	0.00
CHURCHROOF:ZONE2	248.25	0.00	248.25	0.00
Totals	36151.86	34787.98	1363.88	

EAp2-2. Advisory Messages

	Data
Number of hours heating loads not met	105.83
Number of hours cooling loads not met	0.00
Number of hours not met	105.83

EAp2-3. Energy Type Summary

	Utility Rate	Virtual Rate [\$/unit energy]	Units of Energy	Units of Demand

None				

EAp2-4/5. Performance Rating Method Compliance

	Electric Energy Use [kWh]	Electric Demand [W]	Natural Gas Energy Use [therm	Natural Gas Deman d [Btu/h]	Additional Fuel Use [kBtu]	Additional Fuel Demand [Btu/h]	District Coolin g Use [ton- hrs]	District Cooling Deman d [ton]	District Heatin g Use [kBtu]	District Heating Deman d [Btu/h]
Heating -Boiler	0.00	0.00	0.00	0.00	565906.7 6	1139827.0 1	0.00	0.00	0.00	0.00
Heating -Boiler Parasitic	13.43	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cooling -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interior Lighting -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Exterior Lighting -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interior Equipment -General	$\begin{array}{r} 63151.8 \\ 5 \end{array}$	$\begin{array}{r} 23025.1 \\ 1 \end{array}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Exterior Equipment -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fans -Ventilation (simple)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pumps -- Not Subdivided	92.73	198.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Heat Rejection -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Humidificatio n -- Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heat Recovery -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water Systems -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Refrigeration -- Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Generators -Not Subdivided	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EAp2-6. Energy Use Summary

	Process Subtotal [kBtu]	Total Energy Use [kBtu]
Electricity	215626.78	215989.24
Natural Gas	0.00	0.00
Additional	0.00	565906.76
Total	215626.78	781896.00

EAp2-7. Energy Cost Summary

	Process Subtotal [\$]	Total Energy Cost [\$]

Electricity	0.00	
Natural Gas	0.00	
Additional	0.00	
Total	0.00	

Process energy cost based on ratio of process to total energy.

L-1. Renewable Energy Source Summary

	Rated Capacity [kW]	Annual Energy Generated [kBtu]
Photovoltaic	0.00	0.00
Wind	0.00	0.00

EAp2-17a. Energy Use Intensity - Electricity

	Electricty [kWh/ft2]
Interior Lighting (All)	0.00
Space Heating	0.00
Space Cooling	0.00
Fans (All)	0.00
Service Water Heating	0.00
Receptacle Equipment	1.75
Miscellaneous (All)	1.75
Subtotal	1.75

[^14]| | Natural Gas [kWh/ft2] |
| ---: | ---: |
| Space Heating | 0.00 |
| Service Water Heating | 0.00 |
| Miscellaneous (All) | 0.00 |
| Subtotal | 0.00 |

EAp2-17c. Energy Use Intensity - Additional

	Additional [kBtu/ft2]
Subtotal	15.63
Miscellaneous	15.63

EAp2-18. End Use Percentage

	Percent [\%]
Interior Lighting (All)	0.00
Space Heating	72.38
Space Cooling	0.00
Fans (All)	0.00
Service Water Heating	0.00
Receptacle Equipment	27.58
Miscellaneous	0.04

Schedules-Equivalent Full Load Hours (Schedule Type=Fraction)

	Equivalent Full Load Hours of Operation Per Year $[\mathrm{hr}]$	Hours > 1\% $[\mathrm{hr}]$
WINTER HEATING (NORTHERN HEMISPHERE)		1560.

Schedules-SetPoints (Schedule Type=Temperature)

FIRSTFLOOR:ZONE4 HEATING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE4 DUAL SP	January	-58.0	365	-58.0	365
FIRSTFLOOR:ZONE4 COOLING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE4 DUAL SP	July	75.99	365	84.99	365
FIRSTFLOOR:ZONE2 HEATING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE2 DUAL SP	January	-58.0	365	-58.0	365
FIRSTFLOOR:ZONE2 COOLING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE2 DUAL SP	July	75.99	365	84.99	365
FIRSTFLOOR:ZONE6 HEATING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE6 DUAL SP	January	-58.0	365	-58.0	365
FIRSTFLOOR:ZONE6 COOLING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE6 DUAL SP	July	75.99	365	84.99	365
FIRSTFLOOR:ZONE7 HEATING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE7 DUAL SP	January	-58.0	365	-58.0	365
FIRSTFLOOR:ZONE7 COOLING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE7 DUAL SP	July	75.99	365	84.99	365
FIRSTFLOOR:ZONE1 HEATING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE1 DUAL SP	January	-58.0	365	-58.0	365
FIRSTFLOOR:ZONE1 COOLING SETPOINT SCHEDULE	FIRSTFLOOR:ZONE1 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 1 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 1 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 1 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 1 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 2 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 2 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 2 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 2 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 3 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 3 DUAL SP	January	-58.0	365	-58.0	365

BASEMENTXABOVEGRADE:ZONE 3 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 3 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 4 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 4 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 4 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 4 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 5 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 5 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 5 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 5 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 6 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 6 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 6 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 6 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 7 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 7 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 7 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 7 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 8 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 8 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 8 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 8 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 9 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 9 DUAL SP	January	-58.0	365	-58.0	365

BASEMENTXABOVEGRADE:ZONE 9 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 9 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 10 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 10 DUAL SP	January	-58.0	365	-58.0	365
$\begin{array}{r} \text { BASEMENTXABOVEGRADE:ZONE } \\ 10 \text { COOLING SETPOINT } \\ \text { SCHEDULE } \end{array}$	BASEMENTXABOVEGRADE:ZONE 10 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 11 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 11 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 11 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 11 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 12 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 12 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 12 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 12 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 13 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 13 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 13 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 13 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 14 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 14 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 14 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 14 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 15 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 15 DUAL SP	January	-58.0	365	-58.0	365

BASEMENTXABOVEGRADE:ZONE 15 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 15 DUAL SP	July	75.99	365	84.99	365
BASEMENTXABOVEGRADE:ZONE 16 HEATING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 16 DUAL SP	January	-58.0	365	-58.0	365
BASEMENTXABOVEGRADE:ZONE 16 COOLING SETPOINT SCHEDULE	BASEMENTXABOVEGRADE:ZONE 16 DUAL SP	July	75.99	365	84.99	365

Table of Contents

Report: Life-Cycle Cost Report

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Life-Cycle Cost Parameters

	Value
Name	LIFE-CYCLE COST ANALYSIS EXAMPLE 1
Discounting Convention	EndOfYear
Inflation Approach	ConstantDollar
Real Discount Rate	-- N/A --
Nominal Discount Rate	- N/A --
Inflation	January 2011
Base Date	January 2013
Service Date	25
Length of Study Period in Years	
Tax rate	

Depreciation Method	None

Use Price Escalation

	RESIDENTIAL-ELEC
Resource	Electricity
Start Date	January 2010
1	0.979000
2	1.013800
3	1.012700
4	1.009600
5	1.017700
6	1.027900
7	1.034400
8	1.032700
9	1.038200
10	1.045400
11	1.049400
12	1.056400
13	1.058700
14	1.054900
15	1.056600
16	1.063000
17	1.070700

18	1.085700
19	1.095300
20	1.106300
21	1.116500
22	1.122700
23	1.129200
24	1.134900
25	1.141400

Use Adjustment

	ELECADJUSTMENT
	Electricity
January 2013	1.000000
January 2014	1.002200
January 2015	1.002300
January 2016	1.002400
January 2017	1.002500
January 2018	1.002600
January 2019	1.002700
January 2020	1.000000
January 2021	1.000000
January 2022	1.000000
January 2023	1.000000

January 2024	1.000000
January 2025	1.000000
January 2026	1.000000
January 2027	1.000000
January 2028	1.000000
January 2029	1.000000
January 2030	1.000000
January 2031	1.000000
January 2032	1.000000
January 2033	1.000000
January 2034	1.000000
January 2035	1.000000

Cash Flow for Recurring and Nonrecurring Costs (Without Escalation)

	ANNUALMAINT	ESTIMATEDSALVAGE
	Recurring	Nonrecurring
January 2011	0.00	0.00
January 2012	0.00	0.00
January 2013	2000.00	0.00
January 2014	2000.00	0.00
January 2015	2000.00	0.00
January 2016	2000.00	0.00
January 2017	2000.00	0.00

January 2018	2000.00	0.00
January 2019	2000.00	0.00
January 2020	2000.00	0.00
January 2021	2000.00	0.00
January 2022	2000.00	0.00
January 2023	2000.00	0.00
January 2024	2000.00	0.00
January 2025	2000.00	0.00
January 2026	2000.00	0.00
January 2027	2000.00	0.00
January 2028	2000.00	0.00
January 2029	2000.00	0.00
January 2030	2000.00	0.00
January 2031	2000.00	-2000.0
January 2032	2000.00	0.00
January 2033	2000.00	0.00
January 2034	2000.00	0.00
January 2035	2000.00	0.00

Energy and Water Cost Cash Flows (Without Escalation)

January 2011	
January 2012	
January 2013	

January 2014
January 2015
January 2016
January 2017
January 2018
January 2019
January 2020
January 2021
January 2022
January 2023
January 2024
January 2025
January 2026
January 2027
January 2028
January 2029
January 2030
January 2031
January 2032
January 2033
January 2034
January 2035

Capital Cash Flow by Category (Without Escalation)

	Construction	Salvage	OtherCapital	Total
January 2011	0.00	0.00	0.00	0.00
January 2012	0.00	0.00	0.00	0.00
January 2013	0.00	0.00	0.00	0.00
January 2014	0.00	0.00	0.00	0.00
January 2015	0.00	0.00	0.00	0.00
January 2016	0.00	0.00	0.00	0.00
January 2017	0.00	0.00	0.00	0.00
January 2018	0.00	0.00	0.00	0.00
January 2019	0.00	0.00	0.00	0.00
January 2020	0.00	0.00	0.00	0.00
January 2021	0.00	0.00	0.00	0.00
January 2022	0.00	0.00	0.00	0.00
January 2023	0.00	0.00	0.00	0.00
January 2024	0.00	0.00	0.00	0.00
January 2025	0.00	0.00	0.00	0.00
January 2026	0.00	0.00	0.00	0.00
January 2027	0.00	0.00	0.00	0.00
January 2028	0.00	0.00	0.00	0.00
January 2029	0.00	0.00	0.00	0.00
January 2030	0.00	0.00	0.00	0.00
January 2031	0.00	-2000.0	0.00	-2000.0
January 2032	0.00	0.00	0.00	0.00
January 2033	0.00	0.00	0.00	0.00

January 2034	0.00	0.00	0.00	0.00
January 2035	0.00	0.00	0.00	0.00

Operating Cash Flow by Category (Without Escalation)

	Energ y	Wate	Maintenan ce	Repa ir	Operati on	Replaceme nt	MinorOverh aul	MajorOverh aul	OtherOperatio nal	Total
Januar 2011	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Januar 2012	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Januar 2013	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$
Januar 2014	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$
Januar 2015	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$
Januar 2016	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$
Januar 2017	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$
Januar 2018	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$
Januar 2019	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{array}{r} 2000.0 \\ 0 \end{array}$

Januar y 2020	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	2000.0 0
Januar y 2021	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	2000.0
0										

Januar y 2032	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	2000.0 0
Januar y 2033	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	2000.0 0
Januar y 2034	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	2000.0 0
Januar y 2035	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	2000.0 0

Monthly Total Cash Flow (Without Escalation)

	January	February	March	April	May	June	July	August	September	October	November	December
2011	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2012	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2013	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2014	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2015	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2016	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2017	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2018	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2019	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2020	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2021	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2022	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2023	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2024	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2025	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2026	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2027	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2028	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2029	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2030	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2031	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2032	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2033	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2034	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2035	2000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Present Value for Recurring, Nonrecurring and Energy Costs (Before Tax)

	Category	Kind	Cost	Present Value	Present Value Factor
ANNUALMAINT	Maintenance	Recurring	2000.00	31230.01	15.6150
ESTIMATEDSALVAGE	Salvage	Nonrecurring	-2000.0	-1088.3	0.5442
TOTAL				30141.67	

Present Value by Category

	Present Value
Construction	0.00
Salvage	-1088.3

Other Capital	0.00
Energy	0.00
Water	0.00
Maintenance	31230.01
Repair	0.00
Operation	0.00
Replacement	0.00
Minor Overhaul	0.00
Major Overhaul	0.00
Other Operational	0.00
Total Energy	0.00
Total Operation	31230.01
Total Capital	-1088.3
Grand Total	30141.67

Present Value by Year

	Total Cost	Present Value of Costs
January 2011	0.00	0.00
January 2012	0.00	0.00
January 2013	2000.00	1833.49
January 2014	2000.00	1781.12
January 2015	2000.00	1730.25
January 2016	2000.00	1680.83

January 2017	2000.00	1632.83
January 2018	2000.00	1586.20
January 2019	2000.00	1540.89
January 2020	2000.00	1496.88
January 2021	2000.00	1454.13
January 2022	2000.00	1412.60
January 2023	2000.00	1372.26
January 2024	2000.00	1333.07
January 2025	2000.00	1294.99
January 2026	2000.00	1258.01
January 2027	2000.00	1222.08
January 2028	2000.00	1187.18
January 2029	2000.00	1153.27
January 2030	2000.00	1120.33
January 2031	0.00	0.00
January 2032	2000.00	1057.25
January 2033	2000.00	1027.06
January 2034	2000.00	997.72
January 2035	2000.00	969.23
TOTAL		30141.67

Appendix H: Massachusetts DOT Church Pre-Construction Condition Survey

Appendix I: Massachusetts DOT Geotechnical Report

Appendix J: Roof Photos

[^0]: ${ }^{1}$ American Society of Civil Engineers
 ${ }^{2}$ American Institute of Steel Construction
 ${ }^{3}$ American Wood Council
 ${ }^{4}$ American Concrete Institute
 ${ }^{5}$ National Concrete Masonry Association
 ${ }^{6}$ International Building Code

[^1]: ${ }^{7}$ n.d. National Society of Professional Engineers. Accessed January 23, 2020. https://www.nspe.org/resources/licensure/why-get-licensed.

[^2]: 8 "The Life of a Campus: 9 Essays on Clark Buildings Past and Present." Clark University. Accessed January 10, 2020. https://wordpress.clarku.edu/krwilson/files/2012/05/CLU_ARCH-book.pdf.

[^3]: ${ }^{9}$ 2020. Swedish Lutheran Gethsemane Church. Accessed February 5, 2020. https://www.cardcow.com/334173/swedish-lutheran-gethsemane-church-worcestermassachusetts/.

[^4]: ${ }^{10}$ Kidder, F.E. 2018. The Hammer-Beam Truss. Accessed January 2, 2020.
 https://chestofbooks.com/architecture/Construction-Superintendence/21-The-Hammer-BeamTruss.html.

[^5]: ${ }^{11}$ Cochran, Brice. 2018. Hammer Beam Truss Details. https://timberframehq.com/hammer-beam-trussdetail/.

[^6]: ${ }^{12}$ 2020. HOBO U12 Temperature/Relative Humidity/Light/External Data Logger. Accessed January 28, 2020. https://www.onsetcomp.com/products/data-loggers/u12-012.

[^7]: ${ }^{13}$ https://www.onsetcomp.com/products/data-loggers/ua-004-64

[^8]: ${ }^{14}$ Zeigler, John M. 2019. Vibration Standards. Accessed 2 13, 2020.
 https://vibrationdamage.com/Vibration_standards.htm.

[^9]: 15 "Protective Glazing Study." National Preservation Center, March 1996. https://www.ncptt.nps.gov/wp-content/uploads/1996-06.pdf.

[^10]: ${ }^{16}$ University, Drexel. 2005. Adventure Works Products Page. Accessed February 25, 2020. http://www.pages.drexel.edu/~ea38/AE390/A5/products.htm.

[^11]: ${ }^{17}$ 2020. Tansun. Accessed January 14, 2020. https://www.tansun.com/gb_en/blog/what-is-the-best-method-for-heating-a-church.html.

[^12]: ${ }^{18}$ 2020. Tansun. Accessed February 20, 2020. https://www.tansun.com/gb_en/infrared-heaters/sorrento/sorrento-triple.html.

[^13]: ${ }^{19}$ https://solarips.com/2019/09/solar-carports-and-canopies-a-practical-solution/

[^14]: EAp2-17b. Energy Use Intensity - Natural Gas

