# A Building Analysis of the Worcester Gospel Church

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Architectural Engineering

and

**Civil Engineering** 

Submitted by:

Cassie Graca

Aaron Kotilainen

Jason Strauss

May 6, 2020

Sponsoring Organization: Worcester Chinese Gospel Church Project Advisors: Professor Steven Van Dessel Professor Mingjiang Tao

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

## Table of Contents

| Abstract                                     | 5  |
|----------------------------------------------|----|
| Disclaimer                                   | 6  |
| Capstone Statement                           | 7  |
| Design and Professional Licensure Statement  | 9  |
| Approach Taken                               |    |
| Professional Licensure Statement             |    |
| 1.0 Introduction                             |    |
| 1.1 Project Timeline/Progress Report         |    |
| 1.2 Background                               | 23 |
| 1.2.1 Hammer Beam Truss                      | 23 |
| 2.0 Goals and Objectives                     | 25 |
| 3.0 Building Status                          |    |
| 3.1 Plan Sets                                |    |
| 3.2 Roof                                     |    |
| 3.3 Documentation of Pre-Existing Conditions |    |
| 3.4 Temperature/Humidity Issues              |    |
| 3.5 Windows                                  |    |
| 4.0 Methodology                              |    |
| 4.1 Structural Analysis                      |    |
| 4.1.1 Determination of Loads                 |    |
| 4.1.2 Roof                                   |    |
| 4.1.3 Hammer Beam Trusses                    | 43 |
| 4.1.4 Floor                                  | 47 |
| 4.1.5 Walls                                  |    |
| 4.1.6 Determination of Vibration Thresholds  | 54 |
| 4.2 Geotechnical Analysis                    |    |
| 4.2.1 Determination of Soil Conditions       | 57 |
| 4.2.2 Foundation                             | 59 |
| 4.3 Envelope Analysis                        | 61 |
| 4.3.1 Walls                                  | 61 |
| 4.3.2 Roof                                   |    |
| 4.3.3 Windows                                |    |

| 4.4 Energy Analysis                            | 63 |
|------------------------------------------------|----|
| 4.4.1 Occupancy                                | 64 |
| 4.4.2 Walls                                    | 65 |
| 4.4.3 Roof                                     | 66 |
| 4.4.4 Windows                                  | 67 |
| 4.4.5 Heating Setpoints                        | 67 |
| 4.5 HVAC Analysis                              | 67 |
| 4.5.1 System Sizing                            | 68 |
| 4.5.2 Heating Load                             | 69 |
| 4.5.3 Cooling Load                             | 69 |
| 4.5.4 Potential Heating Cooling System Options | 70 |
| 4.5.5 Hot Water Baseboard Fuel Type Comparison | 70 |
| 5.0 Results                                    | 70 |
| 5.1 Structural Analysis                        | 71 |
| 5.1.1 Determination of Loads                   | 71 |
| 5.1.2 Roof                                     | 73 |
| 5.1.3 Hammer Beam Trusses                      | 74 |
| 5.1.4 Floor                                    | 88 |
| 5.1.5 Walls                                    | 89 |
| 5.1.6 Determination of Vibration Thresholds    | 91 |
| 5.2 Geotechnical Analysis                      | 92 |
| 5.2.1 Determination of Soil Conditions         | 93 |
| 5.2.2 Foundation                               | 95 |
| 5.3 Envelope Analysis                          | 95 |
| 5.3.1 Walls                                    | 95 |
| 5.3.2 Roof                                     | 97 |
| 5.3.3 Windows                                  |    |
| 5.4 Energy Analysis                            |    |
| 5.4.1 Walls                                    |    |
| 5.4.2 Roof                                     |    |
| 5.4.3 Windows                                  |    |
| 5.4.4 Heating Setpoints                        |    |
| 5.4.5 Overall Improvements                     |    |

| 5.5 HVAC Analysis                                                      |     |
|------------------------------------------------------------------------|-----|
| 5.5.1 Heating Load                                                     |     |
| 5.5.2 Cooling Load                                                     |     |
| 5.5.3 Hot Water Baseboard Fuel Type Comparison                         |     |
| 5.5.4 Variable Air Volume Systems                                      |     |
| 5.5.5 Radiative Heaters                                                |     |
| 6.0 Recommendations                                                    |     |
| 6.1 Structural Recommendations                                         |     |
| 6.1.1 Sub-Basement Concrete Reinforcement                              |     |
| 6.1.2 Truss I-beam                                                     | 115 |
| 6.1.3 Buttress Reinforcement                                           | 116 |
| 6.2 Envelope Recommendations                                           | 116 |
| 6.2.1 Potential Water Infiltration Sources                             |     |
| 6.2.2 Fenestrations                                                    |     |
| 6.2.3 Insulation                                                       |     |
| 6.3 Renewable Technology Considerations                                |     |
| 6.4 Additional Recommendations                                         |     |
| Works Cited                                                            |     |
| Appendix A: Temperature/Relative Humidity Data                         |     |
| Appendix B: Accelerometer Data                                         |     |
| Appendix C: Load and Structural Calculations                           |     |
| Appendix D: Massachusetts State Archive Plans                          |     |
| Appendix E: Renovation Floor Plans                                     |     |
| Appendix F: Heating/Cooling Load Calculations                          |     |
| Appendix G: DesignBuilder Energy Analysis                              |     |
| Appendix H: Massachusetts DOT Church Pre-Construction Condition Survey |     |
| Appendix I: Massachusetts DOT Geotechnical Report                      |     |
| Appendix J: Roof Photos                                                |     |

## Abstract

This Major Qualifying Project performed a complete building analysis of the Christian Gospel Church located at 43 Belmont Street in Worcester, Massachusetts. This project entailed a structural, vibration, energy, and envelope analysis of the building. Through findings based on site surveys, photographs, and archive plans, and the above analyses, recommendations were compiled to determine what issues are most pressing and improvements were suggested that could be implemented to make the building more viable in the long term.

## Disclaimer

The findings in this report were produced as partial fulfillment for the degree of Bachelor of Science from Worcester Polytechnic Institute. While the findings in this report were produced in good faith, this MQP group (Cassie Graca, Aaron Kotilainen, Jason Strauss) is not responsible for any issues that could arise from the implementation of any recommendations. Any implementation of recommendations suggested by this report must first be verified and approved by a Professional Engineer and installed by qualified professionals.

#### **Capstone Statement**

The Christian Gospel Church leadership approached WPI Architectural Engineering faculty with concerns in architectural and structural performance of the church due to age and neglect. The primary focus of this project was to investigate the church structurally and architecturally by means of structural, vibration, envelope, energy, and HVAC analysis. This analysis allows a better understanding of the performance of the church and can therefore determine what required fixes are necessary.

Structural analysis was performed by analyzing all members under ASCE<sup>1</sup>, AISC<sup>2</sup>, AWC<sup>3</sup>, ACI<sup>4</sup>, NCMA<sup>5</sup>, and IBC<sup>6</sup> specifications for adequacy with current codes. A detailed truss, and buttress analysis was performed to look for weak points in the truss and tension in the wall that could potentially cause failure. A vibration analysis was also performed by analyzing accelerometer data in order to determine the effect of traffic-induced vibrations on the structure of the church. Architectural and envelope analysis was undertaken to determine the building construction and the insulative properties of the envelope components. This was achieved by thorough site surveys and pre-construction plan analysis. Insulative properties were determined by using ASHRAE standards based on our observations of the building construction. Part of this envelope analysis was to determine the source of water infiltration and high humidity levels experienced in the church. This was achieved by installing relative humidity sensors inside of the envelope and attempting to make poke holes in order determine sources of potential water infiltration. An energy analysis was performed by creating a model of the building in the computer

<sup>&</sup>lt;sup>1</sup> American Society of Civil Engineers

<sup>&</sup>lt;sup>2</sup> American Institute of Steel Construction

<sup>&</sup>lt;sup>3</sup> American Wood Council

<sup>&</sup>lt;sup>4</sup> American Concrete Institute

<sup>&</sup>lt;sup>5</sup> National Concrete Masonry Association

<sup>&</sup>lt;sup>6</sup> International Building Code

software, *DesignBuilder*, to determine heating and cooling loads utilizing ASHRAE baseline and weather standards. Hand calculations following ASHRAE standards were also performed to verify the results of *DesignBuilder*. This data was then used to determine heating and cooling loads and determine potential heating and cooling options that could be implemented in the church. Parametric analysis within *Designbuilder* was performed to determine the efficacy of potential insulative improvements to the building envelope could be feasibly instituted in order to reduce energy consumption and improve heat loss in the building.

## Design and Professional Licensure Statement

The analysis of the Worcester Gospel Church located at 43 Belmont Street in Worcester, MA involved many aspects. Presently there are many envelope issues that the church faces. For the past 11 months, temperature and humidity monitoring has been installed to gain a better understanding of the building environment to obtain a baseline of how the building is functioning. There are gaps and issues with the envelope (roof, windows), resulting in water infiltration and high humidity levels in the church and in spaces behind walls. Finding the source of potential water infiltration and providing suggestions on remedying these issues were a main concern that we analyzed to the best of this group's abilities. The church also faces significant heating and cooling issues annually. Due to the aging 110-year-old stone construction of the church and increasing energy costs, this group aimed to provide suggestions that could be made to improve the building envelope to decrease energy usage and improve heat loss. Additionally, this group aimed to provide suggestions on proper sizing and potential options for upgrading the buildings heating and requirements if a cooling system was to be installed in the future.

A complete structural and vibration analysis of the building was also performed. Due to the age of the church, it was possible that some of the members may not comply with modern building standards. Many of the structural members were likely sized by procedural codes during the building's construction, rather than using analysis to determine the best size. Additionally, computer aided analysis can provide more depth into exactly how specific structural members behave under stress. While there still is a lot of missing information in the building plans, church representatives will have a better understanding about the structural integrity of their church. With the I-290 highway and Route 9 directly adjacent to the church, there was some concern that the traffic-induced vibrations may have been affecting the structure of the church.

#### Approach Taken

Envelope concerns were addressed by performing an analysis of the existing walls by making poke holes. This was done to determine the existing wall construction, analyze moisture content behind the wall and to make vent holes in the towers for the masonry walls to breathe. A humidity sensor was installed in the air gap of the right towers wall to determine the moisture content in the wall.

Based on plans and pictures, analysis of the wall and roof were undertaken in order to identify potential sources of water infiltration and suggest methods to rectify moisture transport issues. Temperature/relative humidity sensors were installed throughout the church and took readings in regular intervals over a period of 11 months in order to determine environmental issues present in the church. Accelerometers were installed in the towers in 4 axes in order to determine the extent of seismic effects on the structure. Hammerbeam truss construction was analyzed using MATLAB as a structural analysis program. All primary structural members in the sanctuary were analyzed for bending, shear, and deflection. The walls were also analyzed at the buttress location for any tension that could potentially cause failure under a seismic event. A vibration analysis was performed by analyzing accelerometer data in order to determine the effect of traffic-induced vibrations on the structure of the church. A complete plan set of the building was created for the building in order to obtain dimensions of the building for both structural and energy analysis. Digital models of the building were created in *DesignBuilder* to determine ASHRAE standards for the building. This was done in order to determine heating and cooling loads. Hand calculations were performed to ASHRAE standards in order to verify the findings determined by DesignBuilder. From this information, the church will have a much better idea of the size of the mechanical system needed that could be implemented. Parametric analysis was performed to

determine potential insulative improvements to the building envelope could be feasibly instituted in order to improve energy consumption and reduce heat loss in the building.

#### **Professional Licensure Statement**

The formal process of acquiring professional engineering licensure is a critical aspect of the engineering fields. Engineers are highly respected members of the professional community and are expected to be highly competent within their fields and display inscrutable ethics. Due to the direct interaction of the public with projects that engineers may be involved with, public health and safety is of critical concern.

An engineer who achieves their PE license has worked in their field long enough to be considered an engineer who can be relied upon to make the right decisions and is held to a higher standard. The process of acquiring a PE license requires one to acquire a Bachelor of Science in an engineering field from an accredited institution. Then they must work under a Professional Engineer for 4 or 5 years depending on the field. Before the time requirement can start in the workplace one must take a "Fundamentals of Engineering" exam or the FE, which shows that the engineer has adequate skills in mathematics, physics, and other technical disciplines to start working to become a PE. After the work experience requirement has been achieved one can then take the Principles and Practice of Engineering (PE) exam which is specific to their chosen field. Once one has achieved that feat in order to maintain licensure, one must continually remain educated within their field by attending conferences.

By acquiring a PE license, it shows to the public that you are a competent and fully vetted member of the engineering field and can be trusted implicitly to make the right decisions to the client and the public at hand. It shows to the profession at hand that you have the experience and knowledge to be trusted in the field and can help lead new generations of engineers. To the individual it proves that you have the determination and willingness to achieve a difficult milestone.<sup>7</sup>

<sup>&</sup>lt;sup>7</sup> n.d. National Society of Professional Engineers. Accessed January 23, 2020. https://www.nspe.org/resources/licensure/why-get-licensed.

#### **1.0 Introduction**

The project that this MQP group selected involved a thorough energy, structural, and geotechnical analysis of the Christian Gospel Church, located at 43 Belmont Street in Worcester, MA. The church was built in 1910 as the "Swedish Lutheran Gethsemane Church" and originally served Lutherans of Swedish ancestry in the Worcester area. It was purchased by the Worcester Catholic Diocese in the 1950s and renamed, "Our Lady of Fatima". The church was designed by G. Adolf Johnson, a prominent Architect in the Worcester area around the turn of 20<sup>th</sup> century who notably designed several buildings on Clark University's campus and other churches in the area.<sup>8</sup> The church currently serves the Chinese population of Worcester. Church leadership approached the WPI Architectural Engineering department with issues the aging building is facing. Besides heating, cooling and energy consumption issues, there are problems with water infiltration into the building envelope and the worsening of fractures in the wall plaster.

<sup>&</sup>lt;sup>8</sup> "The Life of a Campus: 9 Essays on Clark Buildings Past and Present." Clark University. Accessed January 10, 2020. https://wordpress.clarku.edu/krwilson/files/2012/05/CLU\_ARCH-book.pdf.



Figure 1: Postcard of the Church from circa 1920s <sup>9</sup>

The Church is adjacent to Route 290 in Worcester on an elevated position next to a retaining wall and adjacent to a bridge. Within the past 8 years, the highway was widened and there has been a significant increase in noticeable vibrations within the building when large vehicles drive by. The highway did not exist when the church was built. These vibrations may cause serviceability concerns. The Church is concerned that these constant vibrations are causing further damage to their structure and its envelope.

The primary concerns representatives of the church brought to this group's attention was that temperature and humidity levels were very high during the summer and low during the winter.

<sup>&</sup>lt;sup>9</sup> 2020. Swedish Lutheran Gethsemane Church. Accessed February 5, 2020. https://www.cardcow.com/334173/swedish-lutheran-gethsemane-church-worcestermassachusetts/.

These issues raise numerous concerns with occupant comfort, energy consumption relating to the buildings insulation, heating and cooling costs, and required size of mechanical systems. Additional problems with the building envelope raise concerns regarding water infiltration and crumbling/cracking plaster. The foundation was an additional concern in which the installation of the highway's retaining wall and freezing effects in the voids of the foundation can potentially greatly expedite the failure of the foundation.

#### 1.1 Project Timeline/Progress Report

In May 2019, our group positioned 9 temperature/humidity sensors inside the building and one outside to establish a baseline of humidity and temperature issues that were being experienced. Additionally, 4 accelerometers were installed in the two towers, all on different axes in order to quantify the vibrations that were being felt. Numerous visits were made to the church to obtain readings and check on the status of the sensors.

Over the first few weeks of A-term 2019 our group contacted several groups that may have existing documentation on the construction of the Church. We contacted the Worcester Catholic Diocese and were informed that they have no files on the church. The historical preservation group, *Preservation Worcester*, had no information but suggested that we contact the Worcester Historical Commission. We have yet to receive a response from them. We visited the Worcester Buildings Department on Thursday September 5<sup>th</sup>, 2019 and were able to find the original permitting listing and general information regarding the construction of the building in 1910. However, when the employee of the Building Department attempted to access these files, all information given on the permit was not cross referenceable. We were informed that this was most likely a clerical error that was made over 100 years ago and that any original documentation that the city may have had is now lost.

|         |              |      |                         | Anna 12 Martin |
|---------|--------------|------|-------------------------|----------------|
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
| 111     |              | Sil  | Bellevel Herry          | Obernan        |
| 226 132 | linort Strut | 92 2 | Sneit Inizite here been | & Bey work     |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         | And Second   |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |
|         |              |      |                         |                |

Figure 2: Original Building Permit Record from the Worcester Building Department

| Property or Berland          |            |     |   |       |  |      |  |
|------------------------------|------------|-----|---|-------|--|------|--|
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
| Tenements                    |            | 3   | 3 | wood  |  |      |  |
| Moring of Cottay & Fundation | Alteration |     | X | Stone |  | 300  |  |
| Morring Scharge to standy    | Alteration | 212 | 2 | Wood  |  | 2011 |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
| Bulley House                 |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |
|                              |            |     |   |       |  |      |  |

Figure 3: Original Building Permit Record from the Worcester Building Department

Throughout September and October 2019, this MQP group made several visits to the church in order to take measurements using tape measures and a theodolite in order to acquire heights that would otherwise be inaccessible. A theodolite is a precision-based surveying tool used to measure angles. By measuring the angle between the theodolite, and a point on the roof, and measuring the horizontal distance between the theodolite and the roof, the building height was calculated using trigonometry. From these calculations a massing model, using the architectural design software *Revit*, was created to better understand the geometries and construction of the church. The church also found partial floor plans that were provided by an architectural firm that remodeled the basement prior to the purchase of the church in the early 2010's. Questions about wall intersections and geometries were made more clear with the assistance of these plans and a more accurate model was able to be created.

One of the tasks in A-term was to determine a temporary heating solution that the church could be implemented over the winter for their congregants to be warm during Sunday services before a permanent heating solution could be determined. Representatives of the church presented an estimate from a local heating contracting company of what would be needed from a heating system in order to just heat the sanctuary. This estimate was roughly a 10-ton system. It was tasked to verify this estimate and determine if the numbers were accurate. To ascertain the heating loads required, rough hand calculations were created using ASHRAE heat loss methods loss based off our measurements in order gain a better understanding of the heat loss of the building. These approximate heating load calculations placed heating load estimates at just under 20 tons for the sanctuary. The discrepancy between the estimate provided by the heating contractor and hand calculations confirmed the need to create a more detailed energy analysis of the Church. With this

information, church leaders have a better understanding of the size of the equipment needed to effectively condition the church.

Structural analysis also began in A-term with the determination of all dead, live, snow, wind, and seismic loads acting on the church. The determination of the building geometry has allowed us to gain a better understanding of how these loads are going to act. Unfortunately, applying these loads to determine the adequacy of members was very difficult without any detailed building plans. Seismic threshold calculations were also underway by using data that was acquired by the accelerometer sensors located in the towers. From there, data could be effectively analyzed to see maximum velocity from seismic forces that could result in long-term structural damage to the church.

Professor Van Dessel visited the church to help determine the roof construction, as well as determine locations to make inspection openings and to take wall samples. It was determined that in B-term that holes would be cut (covered with a floor register) for the air gap in the tower walls to dry out due to any moisture that may be collecting in the towers and to add a humidity sensor to determine the moisture content in the walls.

At the end of A-term, a brief presentation was given to a representative of the church, Jonas Chang. This presentation went over goals for the project, what was accomplished so far, as well as action points that could be implemented immediately.

In B-Term, a full *DesignBuilder* model was created in order to calculate heating and cooling loads. This model can be extrapolated using parametric analysis to determine the total efficiency of the building and suggest improvements that could be made to the building in order to improve energy consumption in order to effectively condition the space. A site visit was made to the church where wall samples from both towers were taken for analysis as well as allowing for

the tower walls to "breathe". These holes allow extra moisture trapped behind the walls to dry out more effectively with circulating air rather than being trapped, that will eventually penetrate the internal envelope which had been noted in the original site survey. In addition, these holes allowed us to view what the wall construction of the church is like.

Professor Van Dessel contacted Rob Para, an Architect, who is a member of *Preservation Worcester*, and is aware of the church and the issues it faces. Mr. Para contacted the Massachusetts State Archives in Boston to inquire if any plans were available. Our group was informed that plans did exist and thus visited the archives on November 15<sup>th</sup>, 2020. Pre-construction drawings of building elevations, transverse sections, first and second floor plans, as well as connection details as they relate to the truss and roof were acquired from this visit. This wealth of information was incredibly helpful in order to make proper determinations for creating an accurate section drawing to see how the building components interacted with each other. The State Archives provides a scanning and documentation service of all their plans on file. It is recommended that the church takes advantage of this service and preserves the information on their church.

HEATING AND VENTILATION. Hot yet dee 550 VENTING SPREAD OF FIRE. Not get day Fuller 9 Dela Tthe a



Figure 4: Original Pre-Construction Drawings and Permit Listing from the Massachusetts Archive

Performing structural analysis at this point was difficult because very conservative guesses were made for the size of members that were far out of sight and reach. Many members were being analyzed as inadequate due to lack of information. Fortunately, with the building plans acquired from the Massachusetts State Archives, a full reanalysis was able to be performed with much greater confidence, and the results were much closer to what was expected. Roof members, floor members, and buttresses were analyzed by hand and with *RISA*, a structural analysis program, and a preliminary truss analysis was performed using *RISA*. One of the main complaints heard from the church elders that pertained to this project related to vibrations occurring in the building from traffic passing by. With the church's location on Route 9 and slightly raised above I-290 it was not surprising to hear this. Accelerometer sensors were placed in both towers to record data of the vibrations. There are two in the East tower and two in the West tower. All sensors were mounted on the wall of the towers. These accelerometers gathered data since May 2019 until February 2020.

The data obtained from the accelerometers is the acceleration of the vibrations being felt by the church over time. This data was imported into excel spreadsheet so that it could be converted appropriately. First, time was converted to frequency, 1/t, and acceleration to velocity through integration. This produced a velocity versus frequency graph which was used to determine the peak particle velocity (PPV).

The period over winter break was spent running multiple computer simulations utilizing parametric optimization in order to determine what practical changes could be implemented in the church to improve heat loss and energy consumption. Such improvements that were suggested were potentially adding insulation to the uninsulated roof deck, adding another layer of glass on the existing stained-glass windows in the sanctuary, and establishing appropriate heating and cooling set points and analyzing their overall effect on total annual energy consumption.

The beginning of 2020 was spent analyzing our results and compiling this report.

#### 1.2 Background

In order to gain an understanding of the structural system of the church as well as the requirements of vibration analysis, background research was performed on these topics to become more knowledgeable on specific needs of the church.



1.2.1 Hammer Beam Truss

Figure 5: Hammer Beam Truss in the Church Sanctuary

One of the primary decorative and structural features of the church are the hammer beam Trusses that are used in the roof design of the sanctuary. This type of truss has been commonly used in open timbered roofs and are most commonly found in gothic churches and halls in Western Europe. The first recorded instance of a hammer beam truss being utilized into a building design was that in Westminster Palace (1397) and is very common in English buildings of the 15th century. These designs add ornamental qualities to the design of a building but allows for significant structural support on sloped roofs. The term "hammer beam" refers to the horizontal beams at the foot of the principle members. While most of these trusses are very similar in design, it is nearly impossible to find two designs that are identical.<sup>10</sup>

Seen in Figure 6, the red members are the hammer beams, the blue members are the hammer posts, and the green members are the hammer braces. The braces are primarily responsible for transmitting the load from the roof into the walls and the posts and beams work to hold the truss together. The posts, typically under compression work to transmit some of the load from the upper braces onto the lower braces. The beams, typically under tension, work to keep the braces from separating. The primary upside to using hammer beam trusses is that they require shorter member sizes and hold aesthetic value. The primary downside to hammer beam trusses is that they submit potentially great seismic loads into the walls resulting in required reinforcement or large amounts of material used in the walls/buttress to resist the horizontal component reactions. In addition, all attaching joints must be strong enough to prevent the truss from racking due to wind pressure and seismic loads.

<sup>&</sup>lt;sup>10</sup> Kidder, F.E. 2018. The Hammer-Beam Truss. Accessed January 2, 2020. https://chestofbooks.com/architecture/Construction-Superintendence/21-The-Hammer-Beam-Truss.html.



Figure 6: Hammer Beam Truss Axial Forces and Primary Members <sup>11</sup>

### 2.0 Goals and Objectives

- Analyze the structural integrity of the church and determine if there are any critical issues regarding the structure that need to be addressed immediately. Identify the extent of seismic effects on the church and if any long-term effects are being experienced by the building.
- 2. Identify sources of water infiltration that is contributing to the cracking of wall plaster and high humidity levels behind the walls and in the building itself.
- 3. Perform an energy analysis of the building to determine heating and cooling loads.
- Determine the required size of heating and cooling systems to properly condition the building.

<sup>&</sup>lt;sup>11</sup> Cochran, Brice. 2018. *Hammer Beam Truss Details*. <u>https://timberframehq.com/hammer-beam-truss-detail/</u>.

5. Recommend potential improvements to the building envelope to reduce heat loss and energy consumption.

#### 3.0 Building Status

Before the church could be analyzed, observations had to be made through a comprehensive site survey and by referencing building plans. This was done to determine building construction and design to determine elements that should be analyzed moving forward and to better understand the most pressing issues facing the church.

#### 3.1 Plan Sets

Obtaining any prior construction or repair plans could help gain insights to the building construction and connection details, that were not able to be discerned from site surveys was an important goal. Any plans that may have been filed with the City of Worcester or the Catholic Diocese have most likely been lost. However, thanks to the assistance of Rob Para, the original proposed building plans that were submitted to the State of Massachusetts in 1910 were able to be located. These plans are housed currently at the Massachusetts State Archive, 220 Morrisey Boulevard, Boston. An appointment is required in order to view any documents at the Archive. These original drawings include floor plans, sections, and other construction and connection details that made this analysis possible. It is recommended that the church requests digital copies of these plans for their own reference as well as for future repair work that may be undertaken in the near future. Photos of these plans are attached in Appendix D. The scanning process will cost approximately \$500 dollars due to the age of the plans and the need to be handled by a paper conservator. When the plans were reviewed, they were beginning to disintegrate and tear, so it is recommended that these scans occur sooner rather than later.

Plans were also obtained from the church directly that provided the renovation plans of the basement, prior to the purchase of the church in the early 2010s. These plans aided in determining building geometry, however the accuracy of these plans was questionable and should not be used as a master plan set. One of the goals of this project was to create a new master plan set for the

church. These drawings are attached in Appendix. Based on this groups site analysis, these drawings are believed to be the most accurate but should still be reviewed prior to being used as the basis of any major project.

One major fact to note here and noticed in Figure 1, was the existence of a bell tower on the right tower that has since been removed. It was brought to the attention of this group that Consigli Construction Group was tasked to reinforce this tower in the late 1990s which involved the removal of the bell chamber from the right tower. Communication with employees of Consigli determined that any existing plans relating to work performed on the towers are no longer available.

#### 3.2 Roof

Based on visual inspection of the roof from ground level, there are many sections that have gaps or broken pieces of slate. The photos that were sent by Jonas Chang were very helpful to gain an insight of the roofs condition since an in-person roof inspection was not possible. See Appendix J. There are open holes due to missing and separating pieces of slate. There is also missing slate and flashing where the roof meets one of the towers.



Figure 7: Photos of the Church's Slate Roof provided by Jonas Chang

The parapets as well as flashing and counterflashing of the towers are suspect and should be investigated for more defects. The primary concern is with the condition of these components in the valleys where the towers and roof meet. All flashing on the roof should be updated to modern standards. Water entering through the flashing and counterflashing at these locations would immediately travel downward until it reached an interior finish and would ultimately result in water damage. A thorough inspection of the roof and timely replacement of failed components is critical to ensure no further damage to the building structure and envelope. A replacement roof whether it be slate, or a more affordable alternative is the first step to improve the church. This will also dramatically improve energy consumption because the actual envelope will be able to retain heat much more effectively. These issues with the roof are most likely causing most of the water infiltration due to over 100 years of freeze-thaw cycles and precipitation resulting in thermal hysteresis of the slate and breakdown of the original waterproofing methods.

#### 3.3 Documentation of Pre-Existing Conditions

The Massachusetts Department of Transportation produced a pre-construction survey of the church that was produced prior to the widening of the bridge on Rt. 9 over I-290 at the intersection of the church in 2014. This report is attached in Appendix H. The photos and details in the report were documented from 2012 and provide a guide as to which cracks in interior plaster walls have widened or appeared in the past 8 years. The cracking of the plaster is of concern but is mostly a cosmetic issue. These cracks are most likely related to the high moisture content in the building. One of the goals of this project was to determine whether these issues were induced by traffic vibrations or vibrations originating from adjacent bridge construction combined with a failure of the building structure or envelope.

#### 3.4 Temperature/Humidity Issues

Beginning in late April 2019, 9 temperature and relative humidity sensors were installed throughout the building to gain an understanding of thermal comfort and hygroscopic issues (See Figure 11 and Table 1). One additional temperature sensor was placed outside at the entrance to acquire a baseline outdoor temperature. These temperature sensors are the Onset HOBO U12-012 Temperature/Relative Humidity/Light/External Data Loggers (See Figure 8). Please see attached Appendix A for the recorded temperature information for various locations around the church.



Figure 8: Onset Hobo U12-013 Temperature/Relative Humidity/Light/External Channel Data Logger <sup>12</sup>

A comparison between the recorded outdoor temperatures from the outdoor sensor and the given ASHRAE weather data for Worcester, MA on a given year was also performed. The humidity data from this sensor was skewed, most likely because of the sensor being directly exposed to water giving false readings of the true relative humidity levels outside. Based on the graphical comparisons between the two data sets, the differences between the outside temperature/RH collected (Figure 10) and data collected annually by ASHRAE and averaged

<sup>&</sup>lt;sup>12</sup> 2020. *HOBO U12 Temperature/Relative Humidity/Light/External Data Logger*. Accessed January 28, 2020. https://www.onsetcomp.com/products/data-loggers/u12-012.

(Figure 9). It was determined that the cumulative weather data provided by ASHRAE would be a solid basis for the outdoor temperature and humidity factors to create an accurate digital model.



Figure 9: Annual ASHRAE Temperature Data for Worcester, Massachusetts from May to December Cumulatively



Figure 10: Recorded Temperature and Humidity Data from outside the Church from May to December 2019

ASHRAE codes state that a building should be conditioned around 40-60% RH in order to prevent mold growth. Excessive moisture levels can also lead to water being absorbed into the building envelope and can degrade internal components.

As displayed by the analysis of the Relative Humidity data (Table 2), the Sanctuary topped out at over 80% RH and the towers reached RH levels over 90%. The sanctuary experiences RH levels higher than 60%, on average 35% of the total time between May to December. This continued exposure to high humidity levels will degrade the building envelope. It is critical for the longevity of the building that issues with the building envelope be corrected and proper building conditioning through mechanical systems be instituted. This temperature/humidity data can be found in Appendix A.



Figure 11: Location Diagram of Temperature/Relative Humidity Sensors

Table 1: Location of Data Loggers

| Logger | Location                            |
|--------|-------------------------------------|
| 1      | Back of stage in Sanctuary          |
| 2      | Under 1 <sup>st</sup> pew in center |
| 3      | Under pew on left side              |

| 4  | On side of window                |
|----|----------------------------------|
| 5  | On Left Truss/Mezzanine Level    |
| 6  | Center of Window/Mezzanine Level |
| 7  | Upstairs of Right Tower          |
| 8  | Bell Tower                       |
| 9  | Upstairs of Left Tower           |
| 10 | Outside Next to Ground Entrance  |

| May 1st to December 22, 2019      | #1    | #2    | #3    | #4    | #5    | #6     | #7    | #8    | #9    |
|-----------------------------------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
| Highest Recorded Temp. (F)        | 91.87 | 92.15 | 90.14 | 96.33 | 93.09 | 119.84 | 92.46 | 86.07 | 90.19 |
| Lowest Recorded Temp. (F)         | 48.32 | 47.37 | 46.49 | 43.39 | 46.48 | 39.60  | 31.35 | 36.70 | 40.35 |
| Highest Recorded %RH              | 77.95 | 81.46 | 78.95 | 80.84 | 82.1  | 85.33  | 91.49 | 87.54 | 82.13 |
| Lowest Recorded %RH               | 29.4  | 38.35 | 28.58 | 26.67 | 31.53 | 10.86  | 58.38 | 63.84 | 48.72 |
| % of Time Humidity Over 60%       | 26.96 | 61.82 | 30.38 | 39.71 | 23.89 | 24.14  | 99.89 | 99.95 | 64.22 |
| % of Time Humidity Lower Than 40% | 3.36  | 0.21  | 3.67  | 3.69  | 2.46  | 20.29  | 0.00  | 0.00  | 0.00  |

#### Table 2: Recorded Temperature/Humidity Data

#### 3.5 Windows



Figure 12: Examples of Broken Stained Glass in the Sanctuary

When initial site surveys were made to assess the condition of the church, it was observed that there was plastic wrap used on most of the stained-glass windows in the sanctuary. This is a commonly used, affordable method to control drafty windows in the winter, but is not the proper way to repair fenestration issues. On closer inspection of the stained-glass windows, there are portions of the stained-glass that are broken, missing, or have failing components (Figure 12). Due to warping of the window frames, openings in the windows no longer sit flush, allowing direct openings to the outdoors. These holes are creating significant air and water infiltration points into the church that are also affecting comfort levels in the sanctuary. Fixing these cracks, and repair or replacement of warped window frames will eliminate much of the draft that is being experienced by members of the congregation during services. An analysis of these windows was performed and potential options that could be implemented to improve heat loss but still retaining the overall aesthetic of the building were considered.

#### 4.0 Methodology

In order to analyze the church beyond visual observation, digital models were created using the computer programs, *AutoCAD* and *Revit*. These models were then analyzed using *RISA*, *MATLAB*, and *DesignBuilder* to determine if there are any structural, geotechnical, envelope, or energy related concerns with the Church that should be addressed. This section discusses the process under which this analysis was performed.

#### 4.1 Structural Analysis

The structural analysis for the church was performed top down and specifically focused on areas most susceptible to failure. These areas primarily consisted of sections in the church's envelope that experience the greatest loads and eccentricity under the smallest cross-section. The materials of construction that go into the church are primarily hard pine or spruce wood (roof and floors) and granite and brick masonry (walls). Allowable stress design (ASD) typically used with wood, masonry, and geotechnical applications was used throughout this analysis process rather than load resistance factor design (LRFD) typically used with steel and concrete applications. All structural analysis calculations can be seen in appendix C.

#### 4.1.1 Determination of Loads

In order to analyze all major structural members, dead load, live load, snow load, wind load, and seismic loads were calculated according to American Society of Civil Engineering (ASCE) standards. Dead load in roof members was estimated based on the material used in the roof construction. All members experienced dead loads of overlapping 1/8" slate as well as their own respective self-weights of eastern spruce wood. The unit weight for eastern spruce wood was estimated using American Wood Council National Design Standards (AWC NDS). The purlins experienced an additional dead load corresponding to the weight of the chandeliers estimated to be about 100 lb, and the truss experienced additional dead loads corresponding to electrical components involved with lighting as well as plaster sheathing estimated to be 5 psf and 1.6 psf respectively applied uniformly over the top chord of the truss. The roof also contained uniform and concentrated live loads estimated using ASCE 7-10 Table 4-1. A profile for the roof members can be seen in Figure 14.

Deadloads for the floor joists were calculated from the deadloads of carpeting and decking. Uniform and concentrated live loads were estimated based on ASCE 7-10 table 4-1 for fixed seated assembly rooms. Loads on the girders were based on the reaction forces from the joists. Additional self-weight and MEP loads were added to the girders. The reason MEP was not added to the joists is because it was evident from visual inspection that all basement lighting and other electrical and ceiling components were attached directly to the girders.

Snow Loads were calculated using regional constants determined from the Massachusetts State Building Code (MSBC) as well as design specifications from ASCE. According to the MSBC, Worcester has a ground snow load of 50 psf. The church is under category B for urban area and the roof is fully exposed giving the church an exposure factor of 0.9. The church is also heated so the thermal factor is 1.0. The church can be considered to be at a risk category III corresponding to a high-risk assembly building. While the church doesn't often fill with people according to church representatives, any event in which the church was to fill up with more than 300 people would classify the church as high risk. The flat roof snow load can then be calculated using the factors above estimated at 35 psf. A slope factor based on roof insulation is then determined based on roof insulation from figure 7-2a ASCE 7-10 and is used to find the slope roof snow load of acting vertically.

Wind loads were determined using the directional procedure under ASCE specifications. This procedure is outlined in Table 3. Specific regional constants such as basic wind speeds for Worcester were determined from the MSBC. The church is assumed to be a rigid closed building and contain a gable roof of a 45° slope. In Table 3, under step 7 wind pressures were calculated using the equation

$$q_z = 0.00256K_z K_{zt} K_d V^2 (psf)$$
 Equation 1

where  $q_z$  is the wind velocity pressure,  $K_z$  is the velocity pressure exposure coefficient,  $K_{zt}$  is the topographical factor,  $K_D$  is the wind directionality factor, and V is the basic wind speed. The wind velocity pressures were then used to determine the wind loads using the equation

$$p = qGC_p - q_t(GC_{pi})$$
 Equation 2

where p is the wind load in psf acting on the surface of the church, q is the wind velocity pressure, G is the gust-effect factor,  $C_p$  is the external pressure coefficient,  $q_t$  is the wind velocity pressure at the mean roof height (for enclosed buildings), and  $GC_{pi}$  is the internal pressure coefficient. For additional details and notes on the various load parameters, see appendix C.
| Table 3: Steps to Determine MWFRS | Wind Loads for Enclosed, | Partially Enclosed, | and Open Buildings o | f All Heights |
|-----------------------------------|--------------------------|---------------------|----------------------|---------------|
|                                   | (Taken from ASCE 7-10,   | , Table 27.2-1)     |                      |               |

| Step 1: Determine risk category of building or other structure, see Table 1.5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Step 2: Determine the basic wind speed, V, for the applicable risk category, see Figure 26.5-1A, B, or C                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| <ul> <li>Step 3: Determine wind load parameters:</li> <li>➢ Wind directionality factor, K<sub>d</sub>, see Section 26.6 and Table 26.6-1</li> <li>➢ Exposure category, see Section 26.7</li> <li>➢ Topographic factor, K<sub>27</sub>, see Section 26.8 and Figure 26.8-1</li> <li>➢ Gust-effect factor, G, see Section 26.9</li> <li>➢ Enclosure classification, see Section 26.10</li> <li>➢ Internal pressure coefficient, (GC<sub>pi</sub>), see Section 26.11 and Table 26.11-1</li> </ul>                                                      |  |  |  |  |
| <b>Step 4:</b> Determine velocity pressure exposure coefficient, $K_z$ or $K_h$ , see Table 27.3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| <b>Step 5:</b> Determine velocity pressure $q_z$ or $q_b$ , see Eq. 27.3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| <ul> <li>Step 6: Determine external pressure coefficient, C<sub>p</sub> or C<sub>N</sub>:</li> <li>Fig. 27.4-1 for walls and flat, gable, hip, monoslope, or mansard roofs</li> <li>Fig. 27.4-2 for domed roofs</li> <li>Fig. 27.4-3 for arched roofs</li> <li>Fig. 27.4-4 for monoslope roof, open building</li> <li>Fig. 27.4-5 for pitched roof, open building</li> <li>Fig. 27.4-6 for troughed roof, open building</li> <li>Fig. 27.4-7 for along-ridge/valley wind load case for monoslope, pitched or troughed roof, open building</li> </ul> |  |  |  |  |
| <ul> <li>Step 7: Calculate wind pressure, p, on each building surface:</li> <li>➢ Eq. 27.4-1 for rigid buildings</li> <li>➢ Eq. 27.4-2 for flexible buildings</li> <li>➢ Eq. 27.4-3 for open buildings</li> </ul>                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

The first step in seismic design was determining the risk-targeted maximum considered earthquake (MCEr) spectral response accelerations at short periods, Ss, and at 1-second period, S1. These values were determined through ASCE 7-10 figures 22-1 through 22-6. The next step was to determine if there was an exemption factor, which there was not for the location of the church. The third step is the determination of the Seismic Design Category (SDC). The SDC

assigned to a structure is a classification based on the risk associated with its unacceptable performance, and the level of soil-modified seismic ground motion at its site determined based on a 1% risk of structural failure in 50 years. In order to determine the SDC, the following items needed to be determined. The first is soil classification class, which was found to be class D through a web soil survey. Soil classes are based on the soil's runoff potential. Soil class D consists of soils that are clay loam, silty clay loam, sandy clay, silty clay or clay. Another is the S<sub>ds</sub> and S<sub>d1</sub>. These were found through ASCE 7-10 Tables 11.4-1 and 11.4-2. The church was found to be in Risk Category III based ASCE7-10 Table 1.5-1. Next, we had to determine the fundamental period, T, and Ts. This was done through ASCE 7-10 table 12.8-1 and table 12.8-2. The response modification coefficient, R, was then determined which was 1.5, and the seismic importance factor, Ie, was 1.0. The final step was to determine the seismic base shear, V. This is found with the equation

$$V = C_s W$$
 Equation 3

The base shear was determined over the height of the structure.



Figure 13: Location of Seismic Forces on Building Structure

The forces act differently on the separate stories of the building, as shown above in Figure 13. Once the shear was found, the seismic load effects were able to be determined, E and  $E_M$  using equation

$$E = pQ_E \pm 0.2S_{DS}D$$

#### 4.1.2 Roof

The roof of the church consists of three primary layers which all worked to distribute the load onto larger members with greater load capacity and ultimately onto the truss. These members were determined through visual inspection and confirmed with the Massachusetts State Archive plan photos. These three layers include a 1.125 in roof deck running north-south, 2x8 rafters spaced 16 in O.C. running east-west, and 8x10 purlins spaced 9.7 ft O.C. running north-south.





Governing load combinations were determined from ASCE section 2.4. Each load combination considered dead loads, live loads, snow loads, wind loads, and seismic loads. These load combinations were calculated on a spreadsheet, and all the combinations that yielded a possible maximum load based on uniform loads and concentrated loads were tested on *RISA 2D* analysis software to determine maximum moments, shear, and deflection. The maximum moments

Equation 4

and shear that resulted from *RISA* could then be used for bending stress and transverse shear stress considerations.

The 2D analysis was performed along the length of the member (perpendicular to the members that ran beneath). This presented a challenge due to the roof angle causing the decking and purlins to exhibit a 3D loading scenario along its length. In order to convert the 3D loading into 2D loading, equivalent component loads acting perpendicular and parallel to the plane of the members were used. These conversions and resulting loading scenarios are shown in Figures 15-22. Only, the forces acting perpendicular to the members were used to test for flexural strength, but all forces acting on the member were used to determine reaction forces that will be passed on to the members that lie below. The rafters (and truss) were analyzed without the conversion of component forces, as the model was already in a 2D loading scenario along its length. The original plan photos show that angle section members were used in order to resist the purlins from sliding due to the component forces acting parallel to the plane of the member (see Figure 14). Details of these angle section members are unknown.



Figure 15: Original Loading Scenario on the Roof Deck



Figure 17: 2D RISA Design Loading for Roof Deck



Figure 18: Rafter Loading Scenario



Figure 19: 2D RISA Design Loading for Rafters



Figure 20: Original Purlin Loading Scenario

```
P = 339 lb
```



Figure 22: 2D Design Loading for Purlins

Maximum allowable bending and shear stress was determined through the AWC NDS based on various factors such as load duration, temperature conditions, moisture conditions, member dimensions, type of wood used, and what the member is used for. The maximum allowable bending and shear stress can then be compared with the ultimate bending and shear stress the member experiences to determine member adequacy.

## 4.1.3 Hammer Beam Trusses

The truss was analyzed separately using a *MATLAB* structural analysis program, due to limitations with *RISA 2D*. Three different cases were analyzed based on different load combinations. The first of these combinations was primarily gravity governed and can be seen in Figure 23. The loads in this case were calculated from the total reaction forces of the purlins under

D + 0.75L + 0.75(0.6W) + 0.75S loading conditions. Additional uniform deadloads from sheathing and mechanical, electrical, and plumbing (MEP) were added to the top chord of the truss. Selfweights for all truss members were also added to the model.



Figure 23: Truss Case 1 Loading Scenario (Primarily Gravity Governed)

The second combination tested was primarily seismic governed and can be seen in Figure 24. The loads in this case were calculated from the total reaction forces of the purlins under D + 0.7E loading conditions. The same additional deadloads were added as in case one. Seismic loads were added at two discreet locations representing horizontal chords of a frame: at the base of the roof and the apex of the roof.



Figure 24: Truss Case 2 Loading Scenario (Primarily Laterally Governed)

The third combination tested was seismic and gravity governed and can be seen in Figure 25. The loads in this case were calculated from the total reaction forces of the purlins under D + 0.75L + 0.75(0.7E) + 0.75S loading conditions. The same additional deadloads were added as in cases one and two, and seismic loads were added at the same location as in case two.



Figure 25: Truss Case 3 Loading Scenario (Gravity and Laterally Governed)

Whereas the size of the decking, purlins, and rafters were mentioned in the archive plans, no detailed plans of the truss exist, and the size of the members was not discussed. Consequently, the size of the members was left for us to measure. Because most of the members were out of reach, many of the members had to be estimated using visual inspection. To create a virtual model for *MATLAB*, a series of nodes was created. All primary members were divided up based on the location of the nodes. The structural analysis algorithm automatically creates fixed-end connections at each node. For each pin connection, an additional node was added and an infinitely small member with infinite flexibility connected the nodes. Once all the members were created at each node, 131 members were used for the computation with 106 nodes. For each member, the cross-sectional area and the moment of inertia were also defined. Two pin supports were placed on the truss at the bottom-most joints. *MATLAB* also cannot receive distributed loads in the algorithm and so all distributed loads from self-weight, sheathing, and MEP were broken up into

equivalent couple point loads and moments. Upon running the program, all of the axial loads, shear forces, and bending moments, nodal displacements, and reaction forces were determined and used to test for adequacy of the members. The reaction forces were also used for the corresponding wall analysis.

### 4.1.4 Floor

Upon visual inspection, the floor that ran between the basement and the sanctuary contain girders that ran east-west at the same location where the trusses lie. These girders are covered by the drop-down ceiling in the basement. The girders run through the original basement ceiling and so it is impossible to see what is between the original ceiling and the floor of the sanctuary. The archive plans suggest that the floor in made up of 2x12 spruce joists running north-south spaced 16 in O.C. and 8x12 girders spaced 15.3 ft running east-west sitting on top of lally columns spaced approximately 11 ft.

Load combinations for dead and live loads were applied to the joists and girders, and each was analyzed at first based on gravity loads only. Both the girders and joists were tested for adequacy with shear, bending moment, and deflection using the same techniques as those used to analyze the roof members. In this case, the analysis was performed by hand due to the simplicity of the model.

In order to incorporate lateral loads into the floor analysis. A 2D frame model was created which included the girder, lally columns, and buttresses that ran beneath the floor. Similarly, to the truss analysis, three loading scenarios were created by three different load combinations. The first was gravity governed and used the combination D + L shown in Figure 26. The second was primarily laterally governed and used the combination D + 0.7E shown in Figure 27. The third was governed by both gravity and lateral loads and used the load combination D + 0.75L + 0.75(0.7E) + 0.75S shown in Figure 28. For lateral load analysis, seismic loads were used over wind loads

47

because seismic loads were at a greater magnitude than the wind loads and ASCE permits the use of the greater of the two. In the model, pin connections were used at each end of the lally columns, as they are not designed to resist moment. Reaction forces calculated from *RISA 2D* from the frame analysis was used as the influence of the floor in the wall analysis.



Figure 26: Gravity Governed Frame (D + L)



Figure 27: Seismic Governed Frame (D + 0.7E)



Figure 28: Gravity + Seismic Governed Frame (D + 0.75L + 0.75(0.7E) + 0.75S)

#### 4.1.5 Walls

The walls of the church where the sanctuary are estimated to consist of the granite masonry buttress varying from 3-2 ft thick based on the height from ground level, 16in of additional granite masonry on the exterior side of the wall, several inches of brick masonry, an unknown air gap and insulation and plaster finish on the interior of the wall. The walls were analyzed at the weakest points. These weakest points primarily consisted of the section of wall in which the buttress connected to the truss and girder. A picture of the buttress can be seen in Figure 29. At first, the buttress (rectangular section) was tested to resist all loads. This was highly conservative and resulted in large amounts of tension in the masonry. A revised T-section analysis was performed to also include a larger section of the wall. These sections can be seen in Figure 30. The amount of wall permitted to be used in the section is based on a shear lag principle in American Institute of Steel Construction (AISC) chapter 16, section I3-1a stating that the effective width of the wall, permitted to be used in the T-section shall not exceed one-eighth the height of the wall, or one-half the distance to the centerline of adjacent buttresses. This is because the further away from the buttress, the less the wall is resisting the load. In this case, one-eighth the height of the wall is 3.75

ft on either side of the buttress centerline. Consequently 7.5 ft of the wall can be considered to resist the buttress for the 30ft tall wall.



Figure 29: Church Buttress

Four primary external loads are exerted into the walls. Two of which are vertical and horizontal component loads exerted from the truss at point B in Figure 30 and the other two are the vertical and horizontal component loads exerted from the girder at point D in Figure 30. The unit weight of granite is about 169 pcf. Because the exterior is granite masonry, mortar can be factored into the weight and the unit weight of granite masonry can be estimated at about 150 pcf. For simplification, when calculating for the self-weight of the wall and external moments caused by asymmetry in the cross-section, it can be assumed that the cross-section is completely comprised of granite masonry. The footing on the other hand is referred to as bed stone in the archive plans and as a result will be assumed to be pure granite at 169 pcf.

Three points along the height of the wall were analyzed for tension and compression forces at the extreme fibers of the cross-section. Point C is located immediately above where the buttress changes from two to three feet thick, point E is at the base of the buttress, and point F is located at the base of the footing. These points can be seen in Figure 30. The reason these three specific points are used is because they represent the point at which the buttress experiences the greatest moment under each cross-section. At these three points, all forces acting vertically both internally as self-weight and externally carried over from the truss and girder are calculated to come up with a total load, P. Total moment, M, is calculated by all loads, internally by asymmetry and externally through the truss and girder, acting at a distance away from the centroid of the cross-section. The purpose of calculating the tension and compression of the extreme fibers at point C and point E is to determine the adequacy of the buttress to resist moment and axial loads, but the purpose of calculating compression and tension at point F is to determine the effective size of the footing and the ultimate loads acting on the footing to compare alongside bearing capacity.

Once P and M are calculated the maximum tension and compression stress can be calculated using the equation

$$\sigma = \frac{P}{A} \pm \frac{Mc}{I}$$
 Equation 5

where P is the total load acting on the buttress at a given point, A is the cross-section over which the load acts, M is the total moment acting on the cross-section due to eccentricities, c is the distance from the centroid of the cross-section to the extreme fiber under which the most extreme compression/tension is experienced, and I is the moment of inertia of the cross-section.



Figure 30: Buttress Dimensions and Locations Analyzed

Three different loading cases were used to analyze the walls. The first of these cases, referred to as the gravity case, correspond to the D + 0.75L + 0.75(0.6W) + 0.75S combination acting on the truss and the D + L combination acting on the girder. The second case, referred to as seismic case 1, corresponds to the D + 0.7E combination acting on the truss and girder forcing the wall to deflect away from the interior of the church. The third case, referred to as seismic case 2, corresponds to the D + 0.7E combination acting on the truss and girder forcing the wall to deflect away from the interior of the church. The third case, referred to as seismic case 2, corresponds to the D + 0.7E combination acting on the truss and girder forcing the wall to deflect towards the interior of the church. These cases are shown in Figure 31.



Figure 31: The Wall was Analyzed Under Three Loading Cases: A Gravity Case and Two Seismic Cases

In order to size reinforcement for the buttress, an interaction diagram can be created for the buttress acting in both compression and flexure. Several suggested values from National Concrete Masonry Association (NCMA) are used to estimate the yield strength and elastic modulus of the masonry and steel. These values are used with concrete masonry and are conservative for use with granite masonry. In this case, an entire interaction diagram does not need to be created because the axial load in the buttress will remain constant. Instead, eccentricity in the buttress will change based on how much steel is used and how far the neutral axis shifts. Equilibrium for the buttress is calculated since the tension in the section plus the axial load equals the compression block in the section. Assuming that steel will yield first, different amounts of steel can be tested, and the neutral axis can be found using iteration so that T + P = C holds true. Once the neutral axis is found, the nominal moment in the buttress can be found about the steel and can be compared with the ultimate moment the buttress experiences to find adequacy.

Reinforcement can be anchored to the existing wall by means of steel anchors or shear studs. These studs will create composite action and the steel section will be able to resist all of the tension preventing cracking. According to AISC I8.3a, the amount of sheer each stud can withstand is proportional to the surface area of the stud multiplied by the yield strength of the steel. This shear resistance can then be used with the reinforcement area of steel to determine the number of studs required for full composite action.

## 4.1.6 Determination of Vibration Thresholds

With I-290 and Route 9 both in proximity of the church, there was some concern that traffic induced vibrations may be affecting the church's structural integrity. In order to investigate the vibrations experienced by the church, accelerometers were placed on the walls of the towers.



Figure 32: Onset HOBO Pendant G Accelerometer<sup>13</sup>

These accelerometers measured the acceleration of the vibrations experienced by the church over periods of time. The accelerometers measured vibration levels in the church from May 2019 until January 2020. Throughout this time, the accelerometers performed measurements of the vibrations with intervals ranging from 1 second to 1 minute. There were two placed in Tower 1 (Right) on the North and East sides and there were two placed in Tower 2 (Left) on the South

<sup>&</sup>lt;sup>13</sup> https://www.onsetcomp.com/products/data-loggers/ua-004-64

and West sides. In the towers, the accelerometers were on the second level which is about 40 feet above ground level.



Figure 33: Accelerometer Installed on Wall of the Right Tower

Vibration threshold analysis is the primary way to detect the level of vibrations a building can withstand without damage. Vibration thresholds are not the same for every building. For comparison, the human body can perceive very low levels of vibrations. Roughly, the perception threshold for steady-state vibrations is 0.03 in/s. Most vibrations become disturbing at 0.1-0.2  $in/s^{14}$ .

There are three primary factors that are used when selecting the appropriate criteria to determine vibration thresholds. The first factor is building type and condition, which considers responsiveness/sensitivity to vibration input and fragility. The second factor is vibration type, which considers what types of vibrations the building might be experiencing. For example, short term vibrations or steady state/continuous vibrations. The final factor is the importance factor,

<sup>&</sup>lt;sup>14</sup> Zeigler, John M. 2019. Vibration Standards. Accessed 2 13, 2020. https://vibrationdamage.com/Vibration\_standards.htm.

which indicates additional conservatism, cultural, or economic value of the structure being analyzed.

In addition to the three key factors to keep in mind, there are four primary industry standards that were considered in this report. The first is the British Standards Institute (1993) which can be used for any vibration source. This is best to use for unreinforced or light framed structures that are experiencing cosmetic damage. The peak particle velocity for this standard is 0.3 in/s. The second is the Swiss Standards Association (1992), which can be used for any vibration source as well. This is best to use for historic and protected buildings that are experiencing any type of damage. The peak particle velocity for this standard is 0.24 in/s. The third is Deutsches Institut fur Normung DIN 4150-3 (1999) which can be used for any vibration source. This standard is best to use for buildings of great intrinsic value that are experiencing any permanent effect that reduces serviceability. The peak particle velocity for this standard is 0.25 in/s. The last is the USBM RI-8507 which is mainly for ground vibration and surface mine blasting. The source that is the best fit for the church is the Swiss Standards Association 640 312. The Swiss Standards Association is the best fit for the church because it has the four different classes of standards that are specified for different building types. Classes 1 and 2 include industrial/commercial size buildings. Class 3 includes residential buildings in brick or concrete, office buildings, schools, hospitals, churches, well designed. Lastly, class 4 includes historic buildings. With the church being built in 1910 and still containing original structural elements, it fits into either class 3 as a church or class 4 as a historic building. In the Swiss Standards Association, class 4 standards are for historic buildings which are especially fragile because of their age and material. This was the standard that was used for the church with it being over 100 years old. According to the Swiss

Standards Association class 4 standards, the church would experience damage if a vibration of 0.59 in/s occurred instantaneously or if a vibration of 0.24 in/s occurred continuously.

### 4.2 Geotechnical Analysis

It is important to analyze the foundation of the church against typical modes of failure such as through settlement and bearing capacity. This process was performed using data from a representative soil profile, which acts like a model used to represent soil conditions and properties at various depths to be used for analysis. The analysis for bearing capacity was performed using Terzaghi's method. Settlement calculations were performed using the classical method based on past maximum stress. All geotechnical calculations are shown in Appendix C.

## 4.2.1 Determination of Soil Conditions

The Massachusetts Department of Transportation performed a geotechnical analysis in 2008 prior to the renovation of the overpass over route I-290 adjacent to the church. This analysis was based on in-situ data received from boring logs as well as various laboratory tests. The location of the boring logs can be seen in Figure 34. The first boring hole, B-1, is located closest to the church and can best represent the soil conditions beneath the church. Estimates for friction angles and unit weights were then found based off the data obtained from B-1.



Figure 34: Boring Locations Obtained from Massachusetts DOT

#### 4.2.2 Foundation

The footings are described as bed stone in the archive plans and so they are assumed to be made of pure granite. The footings underneath the lally columns as well as the footings underneath the buttresses were considered for analysis both structurally for shear and bending and geotechnically for bearing and settlement. The footings below the buttresses are assumed to be 6in wider in every direction than the buttress that runs above the footing, and the footings below the lally columns are measured to be 2.5 ft x 2.5 ft x 1.3 ft by the archive plans. It is assumed that granite behaves is a similar way to concrete and so when analyzing the footings for bending and shear, it can be assumed that the footings will have the same cleavage and other failure mechanisms as concrete. Consequently, American Concrete Institute (ACI) specifications were used for analyzing the footings for shear and bending.

Based on the first-floor frame analysis, the maximum axial loads that go into the lally columns are 8071 lb. The lally columns are measured to be 3.5 in in diameter. Typically, a baseplate is used to connect the column to the footing but because the dimensions of the baseplate are unknown, it is assumed that the column connects directly to the baseplate. Based on the geometry of the footing, critical sections for one-way shear can be created based on a distance, d, from the column where d represents the depth of the footing. For two-way shear, distance d/2 from the column to the edge of the footing in all directions defines the shape of the critical section. If the shear stress for the critical section is greater than the allowable stress of the footing, then the footing will fail for shear.

To test for bearing capacity, Terzaghi's method is used. Three imperial based constants are determined as a function of the soil's friction angle and are used to determine the ultimate bearing capacity of the soil. Also, in this method is the confining pressure at the base of the footing and the depth of the ground water table. Because the confining pressure and depth of the footing is different depending on which side of the footing is being analyzed, this value is determined based on the way in which the footing is expected to fail. Based on the eccentric load acting on the buttress, the foundation will also receive a triangular distributed load which will govern how the footing wants to rotate. Also due to the eccentric load, only the effective width of the footing based on the part of the footing in compression is used in Tarzaghi's method. The ground water table is estimated to be about 28.5 feet below the surface, which is well below the embedment depth of the footing. It should also be noted that different formulae exist for Terzaghi's method for different footing shapes. In this case, the buttress footing is continuous and the lally column footing is square. The resulting equation used to find the bearing capacity for continuous footings is

$$q_{ult} = c'N_c + \sigma'_D N_q + 0.5\gamma' B N_\gamma$$
 Equation 6

and for square footings is

$$q_{ult} = 1.3c'N_c + \sigma'_D N_a + 0.4\gamma' B N_{\gamma}$$
 Equation 7

where  $q_{ult}$  is the ultimate bearing capacity, c' is the effective cohesion,  $\sigma'_D$  is the vertical effective stress at depth D,  $\gamma'$  is the effective unit weight of the soil, B is the footing width, and N<sub>c</sub>, N<sub>q</sub>, and N<sub> $\gamma$ </sub> are bearing capacity factors as a function of the friction angle.

## 4.3 Envelope Analysis



Figure 35: Section Drawing of the Worcester Gospel Church

Through site surveys, wall samples, and existing documentation our group was able to determine the construction of the church's envelope shown in Figure 35. These details were incorporated into all elements of this report and were necessary to determine structural performance, heating and cooling loads and energy analysis.

## 4.3.1 Walls

All walls in the sanctuary and basement are primarily solid. Locations of wall studs were not able to be determined based from site surveys as well as pre-construction plans. The preliminary architectural plans that were obtained from the Massachusetts State Archive guided this analysis assuming that the primary wall construction of the church is 15-16" masonry wall comprised of granite blocks (depending on block thickness), one course of brick (3"), and then 1" of plaster on metal lathe. There are most likely studs where the metal lathe is attached, however the air gap space is minimal. These details of the envelope were analyzed and incorporated into the structural and energy analysis of the building.

In the process of removing the portions of wall from the towers for them to "dry out", wall construction of the towers was determined. It was found that (from the outside to inside) there is 15-16" of granite stone (depending on block thickness), one course of brick (3"), a 5" air gap, studs every 24" O.C., and then 1" of plaster on metal lathe.

In late November 2019, a temperature/relative humidity sensor was placed behind the wall in the right tower in the air gap of the wall through the hole that was created in order to quantify the moisture content inside of the walls.

## 4.3.2 Roof

An internal visual inspection of the roof from the 1st floor access door through the Woman's restroom was attempted to determine the overall roof construction. Initial plan drawings and U-value ratings were based on long-range observations and were most likely not accurate. However, based on initial observations and plans obtained from the Massachusetts State Archive, a much better idea of the roof construction was able to be ascertained. The roof was determined to be (from outside to inside) interlaid 1/8" slate shingles overlapped, 1.125" roof decking, mounted 2x8 rafters spaced 16" O.C. running east-west, 8x10 purlins spaced 9.7 ft O.C. running north-south, and the hammer beam truss. These details were integrated into our energy and structural analysis.

#### 4.3.3 Windows

The specifications of the stained-glass windows in the sanctuary are typical of stained glass produced around 1910. Typical U-values of these windows are consistent with modern 3mm single pane, clear glass and our analysis followed these recommendations. Since we were unable to perform exacting tests to determine the actual U-values and solar heat gain coefficients of the stained glass, ASHRAE standards for 3mm clear glass was incorporated into energy analysis. Windows in the gym and basement are double glazed window systems and were incorporated into our analysis assuming such.

# 4.4 Energy Analysis

Figure 36: DesignBuilder Energy Model and ASHRAE Baseline Model

A digital model of the Church was created in the energy modeling software, *DesignBuilder*. *DesignBuilder* performs complex energy and building envelope heat loss/gain calculations based on user supplied building constructions and geometries and then establishes baselines from these criteria. A simplified model of the church was created with envelope constructions based on our observations and findings from the pre-construction plans. This software allows one to determine the heating/cooling loads of a building and the total amount of energy required to make the building comfortable based on its present condition. *DesignBuilder* requires a great deal of trial and error to ensure that complex geometries do not cause a simulation to fail. The tops of the towers of the church were not included in the simulation due to geometric/mathematical errors they introduced in the software as displayed in Figure 36. With *DesignBuilder*, potential improvements (i.e. insulation, double paned windows) can be added to the building envelope and then the energy savings due to theorized improvements can be quantified and considered. Due to the size and complex geometry of the church, a heating or cooling analysis of the church took 3-4 hours of computation time while advanced parametric and pareto front optimizations that involved many variables required days of computational time.

One of the most important factors to establish the required heating and cooling load was to create an annual local weather data set. The outdoor temperature sensor placed outside the church was used as a baseline to confirm that the annual temperature information provided by ASHRAE is valid. The ASHRAE standards are more accurate and contain more points than any data set that could have created by establishing a new localized weather data set. Annual local weather data gathered at the Worcester Airport, located approximately 4 miles away, was used in the *DesignBuilder* analysis. By establishing digital models and utilizing local weather data, an energy analysis of the building can be created based on annual conditions, and a much more accurate heating and cooling model than would otherwise be possible by using hand calculation methods can be created. By utilizing all these factors, creating accurate heating/cooling load and energy consumption figures is much more obtainable, especially in a building with such complex geometry.

#### 4.4.1 Occupancy

*DesignBuilder* provides the option to input schedules as to when the building is occupied and must be heated/cooled appropriately. Based on the information that was given by Jonas Chang based on the size of the congregation and time and size of afterschool activities, an occupancy

64

schedule of the church was created. This schedule assumes that the Sanctuary would be in use from 8am-3pm every Sunday. The basement would be partially utilized during weekday mornings for staff and primarily utilized weekday afternoons for after-school activities. The gym followed similar schedules to when there is activity in the church and during afterschool activities. These schedules determine when heating setback points are to be changed for optimal comfort, while reducing temperature in large portions of the building when they are not in use, but still active to provide adequate building conditioning. These occupancy factors also include a rough estimate of electricity that is used by lighting, computers, televisions, audio systems, etc, that contribute to the overall energy consumption of the building.

4.4.2 Walls



Figure 37: Determined Church Wall Construction

It was assumed in the preliminary estimates of the heating load required by the sanctuary that the walls were composed of 24" of stone. Once a better understanding of the actual building

construction was established, a complete analysis was performed. The hand calculations of potential wall U-values were different compared to the *DesignBuilder* energy analysis. *DesignBuilder* includes the unique individual thermal properties of the church's building envelope elements (Figures 37 & 38) built into its software rather than using the ASHRAE standards of generic stone in the hand calculations. The *DesignBuilder* analysis is likely more accurate and allows for more complex analysis based on comprehensive weather data and thermal bridging of envelope components.

4.4.3 Roof



Figure 38: DesignBuilder Energy Model and ASHRAE Baseline Model

The roof deck over the sanctuary is currently uninsulated and is enclosed in an attic space that is not visible or accessible to the congregation. Adding insulation to this space was one of the first aspects considered for potential building energy improvements. Such an improvement could be implemented relatively easily compared to the other envelope suggestions in this report. A simulation was created by comparing the existing roof construction and comparing the differences if adding modern code compliant insulation was installed.

#### 4.4.4 Windows

As discussed previously, the condition of the stained-glass windows in the sanctuary are responsible for a great deal of air infiltration as well as heat loss from the building. Repairing the windows will help greatly with these issues. Simulations were performed assuming that the windows were mechanically intact when in reality they are not. The windows were simulated by using values for 3mm clear glass which is very similar to standards associated with stained glass.<sup>15</sup> In this analysis, the windows in the sanctuary were simulated with double and triple glazed fenestrations to see their overall improvement to the building's energy consumption.

## 4.4.5 Heating Setpoints

By understanding the influence of overall heating and cooling setpoints of the building, a better understanding of maximizing comfort and energy savings. By modeling the current fuel oil boiler system, set point temperatures can be quantified to actual energy expended and the overall cost associated with these set points.

#### 4.5 HVAC Analysis

When the church was constructed, the primary heating method of most buildings was coal, which was inexpensive and plentiful in the United States. Remnants of this heating method can be observed by the coal chute and sub-basement construction. Currently, the church's primary heating is provided by a hot water radiator and baseboard heater system fueled by oil. Hot water is pumped through pipe loops that run to baseboard heaters and radiators throughout the church and the cooled

<sup>&</sup>lt;sup>15</sup> "Protective Glazing Study." National Preservation Center, March 1996. https://www.ncptt.nps.gov/wp-content/uploads/1996-06.pdf.

water is returned to the boiler to be reheated. The gym has forced air, electric heaters installed that appear to be close to 30-40 years old. There has never been any form of cooling/air conditioning installed in the building as records indicate. As identified by the church, there are significant issues with retaining heat in the building. These analyses were performed assuming that the building envelope at present is intact. Current energy consumption is likely much higher due to the defects with the roof and windows. Before installation of a new heating/cooling system is to take place, correcting these issues should be the first step to making significant building improvements. Due to many unknown factors while performing this analysis, this information should be used as a baseline to understand the heating and cooling requirements of the church. Any design of a new heating or cooling system should first be fully vetted.

## 4.5.1 System Sizing

Calculations to determine the total amounts of heating and cooling required were reached by using hand calculations as well as the *DesignBuilder* simulation model. Hand calculations were performed to determine the R and U values of the building envelope components. These R and U values were then used to determine the heating load for an average Worcester winter temperature of 34.7F with an internal operating temperature of 70F based on the overall wall and window areas across the church. A similar method was utilized to determine maximum cooling loads at the peak temperature times during the summer. Hand calculations for summer cooling loads were performed with different variables to ensure that the overall sizing of the system would remain in the same range. It is assumed that the *DesignBuilder* analysis is more accurate due to the utilization of complex geometries and volumes of the church as well as its ability to integrate complex ASHRAE weather data into its analysis. Hand calculations were divided into three primary sections, based on volume: The Sanctuary, Gym, and Basement.

#### 4.5.2 Heating Load

Hand heat loss calculations were performed assuming an average Worcester winter temperature of 34.7F for the whole building divided into three zones. Initial estimates of the sanctuary heating load that were presented in A-term were calculated assuming the walls were made of 24" stone and the roof was a standard uninsulated roof deck. This was done before the original proposed building plans were obtained from the Massachusetts State Archive.

*DesignBuilder* calculated the total heating design load of the church for worst case winter scenarios using ASHRAE weather data beyond the hand calculations utilizing an average Worcester winter temperature. Additional steady state heat loss calculations were performed that to confirm findings determined by hand calculations. Internal heating times were determined by the occupancy schedule defined, as well as internal operating temperatures of 68F and a heating setback of 62F. This analysis included areas of the church that were not included in the hand calculations and would be assumed to remain unconditioned in the future.

#### 4.5.3 Cooling Load

Cooling loads were determined by hand calculations determined by average and peak summer temperatures and a general understanding of the shading that the building experiences from its surroundings and other buildings utilizing ASHRAE standards. The assumed summer internal operating temperature was 74F. *DesignBuilder* was utilized to verify these numbers, but a cooling system was not integrated into the computer simulation, as one does not currently exist in the Church, and the current digital model was made so that conditions were as true to life as possible. Peak summer cooling loads were calculated to also include occupancy of the church assuming a 255 BTU/Hr addition per person in the building and an estimate of electrically powered equipment in operation adding to the heat gain.

#### 4.5.4 Potential Heating Cooling System Options

Based on the current boiler/hot water heating system that is presently installed provides heat through baseboards located throughout the building. There were several analyses that were performed in order to determine if a new type of HVAC system would result in overall lower energy consumption and as few annual discomfort hours as possible while the building is occupied. Because of the existing hot water heating system utilizing boilers, trying to undertake a complete overhaul and reinstallation of a new heating system would be expensive based on the buildings construction. Based on energy simulations in *DesignBuilder* and research there are a few heating/cooling systems that would result in lower energy consumption compared to fuel oil and improve overall efficiency within the building.

#### 4.5.5 Hot Water Baseboard Fuel Type Comparison

By utilizing *DesignBuilder* to establish total amounts of fuel oil required to heat the building according to the occupancy schedule and heating setpoints specified, an analysis was performed to create a reasonable comparison between the current fuel oil consumption (given that the building was conditioned appropriately during off-hours) versus using natural gas using the same occupancy schedule. Since the church is in close proximity to several large-scale public buildings (UMass Memorial Hospital, Worcester Police Station) obtaining service from a natural gas line should be relatively easy.

# 5.0 Results

While performing all of the calculations for structural integrity, energy usage, and HVAC options, numerical data was gathered to determine the exact details of what was analyzed. Much of this data was generated through numerical analysis aided with various software packages such as *RISA*, *MATLAB*, *and DesignBuilder*. The results and observations regarding this data are summarized and discussed in this section.

### 5.1 Structural Analysis

The structural analysis was performed to determine the adequacy of all major structural members, both through strength and serviceability, as well as determine if there are any vibration-induced consequences due to the adjacent roads and highways that are of any concern. The magnitude of all maximum stresses and deflection in all members were calculated and compared with their respective allowable magnitude to be used as a bases to determine adequacy.

### 5.1.1 Determination of Loads

All loads were determined with accordance to ASCE 7-10 standards. A summary of all of the gravity loads are presented in Table 4. Seismic loads are shown in Figure. Wind loads are shown in Figures Figur and Figure. These loads represent the design loads used to analyze all major structural members in the sanctuary.

| Load Type | Cause        | Acting on    | Magnitude |
|-----------|--------------|--------------|-----------|
| Dead      | Slate        | Roof         | 42 psf    |
| Dead      | Chandelier   | Purlins      | 100 lb    |
| Dead      | MEP          | Truss        | 5 psf     |
| Dead      | Roof Decking | Roof Decking | 2.4 psf   |
| Dead      | Rafters      | Rafters      | 2.84 plf  |
| Dead      | Purlins      | Purlins      | 14.21 plf |
| Dead      | Sheathing    | Truss        | 1.683 psf |
| Live      | Roof         | Roof         | 20 psf    |
| Live      | Maintenance  | Roof         | 300 lb    |
| Live      | Sanctuary    | Joists       | 60 psf    |
| Dead      | Carpet       | Joists       | 3 psf     |
| Dead      | Decking      | Joists       | 2.4 psf   |
| Dead      | Joists       | Joists       | 4.263 plf |
| Dead      | Girders      | Girders      | 17.05 plf |
| Dead      | MEP          | Girder       | 10 psf    |
| Snow      | Snow         | Roof         | 24.5 psf  |

#### Table 4: Gravity Loads



Figure 39: Seismic Loads Acting on Church



Figure 40: Wind Loads Acting on Church (Section View)


Figure 41: Wind Loads Acting on Church (Plan View)

# 5.1.2 Roof

A summary of the results for all members of the roof in the sanctuary are shown in

Table 5. Bending refers to bending stress/flexural stress, and shear refers to transverse shear stress. If the allowable bending stress, shear stress, compression, and deflection are greater than the ultimate bending stress, shear stress, compression, and deflection, then all members are adequate under strength and serviceability requirements under the assumed loading. In this case, all members are adequate.

| Members | Туре                                 | Ultimate Value | Allowable Value |
|---------|--------------------------------------|----------------|-----------------|
| Decking | Bending                              | 287 psi        | 1787 psi        |
| Decking | Compression<br>Perpendicular to Axis | 15.93 psi      | 425 psi         |
| Decking | Deflection                           | 0.006 in       | 0.27 in         |
| Rafters | Bending                              | 581 psi        | 1509 psi        |
| Rafters | Shear                                | 31.8 psi       | 31.8 psi        |
| Rafters | Deflection                           | 0.13 in        | 0.32 in         |
| Purlins | Bending                              | 749 psi        | 1656 psi        |
| Purlins | Shear                                | 41.97 psi      | 216 psi         |
| Purlins | Deflection                           | 0.374 in       | 0.51 in         |
| Truss   | Axial                                | 323 psi        | 960 psi         |
| Truss   | Bending                              | 1103 psi       | 1397 psi        |
| Truss   | Shear                                | 98.8 psi       | 216 psi         |
| Truss   | Deflection                           | 2.3 in         | 1.7 in          |

Table 5: Comparison of Ultimate and Allowable Stress and Deflection Experienced by Roof Members

#### 5.1.3 Hammer Beam Trusses

The hammer beam truss was analyzed under three different loading cases: gravity governed, lateral (seismic) governed, and gravity and lateral governed. The results from the MATLAB analysis are shown in the following figures. Figures Figure , Figure, and Figure summarize all of the axial loads in the truss for each case and represent the load path taken by the external forces coming from the purlins. Figures Figure , Figure, and Figure summarize all of the axial stresses in the truss for each case. Red refers to compression whereas blue refers to tension. Note that the colors used in the gravity case are proportioned with 15,000 lb and 175 psi representing the maximum loads and stress possible whereas the lateral cases with greater loads are represented with 30,000 lb and 300 psi representing the maximum loads possible.

The truss was also analyzed for deflection and is shown for each of the three cases in Figures Figure, Figure, and Figure. Under the gravity case, the truss deflects inwards and pushes out at its base. Under the lateral cases, the truss deflects to the side. It is important to note that the

deflection shown in these images are exaggerated for visual purposes. The true deflection is very small—less than an inch for most member nodes.

All reactions for the truss in each case were recorded and shown in Figures Figure, Figure, and Figure. These reactions represent the magnitude and direction of the forces that are required to resist the loads acting on the truss and are equal and opposite in direction to the loads the truss exerts onto the buttress. All of the numerical details for axial loads/stresses, shear, bending, and deflection for each member can be seen in a table in appendix C.

Table 6: Comparison of Ultimate and Allowable Stress and Deflection Experienced by Truss Members (Worst Case Members—See Appendix D on Details for Members and Nodes)

| Member               | Туре       | Ultimate Value | Allowable Value |
|----------------------|------------|----------------|-----------------|
| 72 (Case 2)          | Axial      | 323 psi        | 960 psi         |
| 36 (Case 2, Node 8)  | Shear      | 98.8 psi       | 216 psi         |
| 35 (Case 2, Node 67) | Bending    | 1103 psi       | 1397 psi        |
| 39 (Case 2, Node 9)  | Deflection | 2.3 in         | 1.7 in          |



Figure 42: Member axial loads experienced under case 1 (primarily gravity governed)



Figure 43: Member axial stress experienced under case 1 (primarily gravity governed)



Figure 44: Member axial loads experienced under case 2 (primarily lateral governed)



Figure 45: Member axial stress experienced under case 2 (primarily lateral governed)



Figure 46: Member axial loads experienced under case 3 (gravity and lateral governed)



Figure 47: Member axial stress experienced under case 3 (gravity and lateral governed)



Figure 48: Truss Deflection Under Case 1 Loading Conditions (Primarily Gravity Governed)



Figure 49: Truss Deflection Under Case 2 Loading Conditions (Primarily Laterally Governed)



Figure 50: Truss Deflection Under Case 3 Loading Conditions (Gravity and Laterally Governed)



Figure 51: Truss Reactions Under Case 1 Loading Conditions (Primarily Gravity Governed)



Figure 52: Truss Reactions Under Case 2 Loading Conditions (Primarily Laterally Governed)



Figure 53: Truss Reactions Under Case 3 Loading Conditions (Gravity and Lateral Governed)

The adequacy results for the truss are shown in Table 6. All of the members of the truss are acceptable for strength considerations. The ultimate axial stresses, bending stresses, and shear stresses for all members in all cases are below the maximum allowable axial stresses, bending stresses, and shear stresses. For serviceability considerations on the other hand, the maximum allowable deflection of 1.7 in is below the ultimate deflection of about 2.3 in under lateral case 2. For comparison, the maximum deflection under the gravity case is 0.1 in. That means that during a major seismic event, under the most extreme circumstances, potential displacement in the roof can cause minor ceiling damage to the plaster, but the roof is in no danger of caving in. This effect though may be reduced as there is a gap between the truss and the ceiling.

Based on these results, the truss is very well designed to resist gravity loads whereas the truss is not well designed to resist lateral loads. This is likely due to the many vertical members called hammer beam posts which help to distribute the gravity loads from the upper braces to the lower braces. The lateral conditions can also create a lot of tension in some of the connections of the truss that are potentially not designed to take tension. It may be prudent to inspect the trusses and their supports at regular intervals.

# 5.1.4 Floor

A summary of the results for all members of the floor in between the sanctuary and basement are shown in Table 7. The members were analyzed in a very similar way to the roof members (see section 5.1.2). In this case, all members were adequate.

| Members | Туре       | Ultimate Value | Allowable Value |
|---------|------------|----------------|-----------------|
| Joists  | Bending    | 679 psi        | 1006 psi        |
| Joists  | Shear      | 44 psi         | 135 psi         |
| Joists  | Deflection | 0.29 in        | 0.51 in         |
| Girder  | Bending    | 960 psi        | 1035 psi        |
| Girder  | Shear      | 78.1 psi       | 135 psi         |

Table 7: Comparison of Ultimate and Allowable Stress and Deflection Experienced by Floor Members

| Girder Deflection 0.30 in 0.44 in |
|-----------------------------------|
|-----------------------------------|

## 5.1.5 Walls

A summary of the results for the walls at the location of the buttresses are shown in Table 8. The maximum tension and compression refer to that experienced at the extreme fibers of the cross-section, which occurs at the most interior and most exterior parts of the cross-section.

| Case      | Point | Maximum Compression (psi) | Maximum Tension (psi) |
|-----------|-------|---------------------------|-----------------------|
| Gravity   | С     | 61.57                     | 0                     |
| Gravity   | Е     | 89.01                     | 0                     |
| Gravity   | F     | 50.86                     | 0                     |
| Seismic 1 | С     | 90.99                     | 11.53                 |
| Seismic 1 | E     | 145.10                    | 21.72                 |
| Seismic 1 | F     | 81.48                     | 10.52                 |
| Seismic 2 | С     | 46.45                     | 27.29                 |
| Seismic 2 | E     | 72.84                     | 48.47                 |
| Seismic 2 | F     | 53.17                     | 23.89                 |

 Table 8: Maximum Tension and Compression Experienced by the Buttress within the Cross-Section at Critical Heights under

 Various Loading Scenarios

According to the National Concrete Masonry Association (NCMA), normal type Portland cement mortar used in brick masonry found on the interior of the wall has an allowable tensile stress normal to the bed joints of 30 psi which is greater than the ultimate tensile stress of 21.72 psi under seismic case 1. Consequently, if the assumptions that were made for the wall analysis are correct and if the brick is in good condition, no reinforcement is needed for the buttress. Unfortunately, conditions of the masonry are unknown and due to moisture and neglect it is possible that overtime the mortar bonding in the brick can rupture during a seismic event and cracking can occur. In this case, assuming poor masonry conditions, tensile reinforcement should be sized for the interior of the wall to prevent cracking.

Based on this analysis, it was found that any amount of steel will work when placed 52 inches from the left most end of the buttress. The reason for this is because the location of the

neutral axis is primarily governed by the location of the steel reinforcement and the buttress will not crack at all beyond the location of the neutral axis. The amount of compression the buttress is under prior to cracking is also far below the allowable yield stress of the masonry even with conservative assumptions. This allows the neutral axis to shift freely without the risk of the buttress to fail under compression. Reinforcement is still necessary though because if the cracking propagates all the way through the buttress, it will fail. Consequently, a small thin section of reinforcement is all that is necessary.

Based on the calculations found in appendix C, five <sup>1</sup>/<sub>2</sub> in studs are required for full composite action which would put the spacing of the studs at 44 in between the basement floor and the base of the truss. The maximum spacing for shear studs based on AISC section I8.2d is 36 inches requiring 7 studs to be placed 33 inches.

When analyzing the buttress for reinforcement for seismic case 2, the exterior granite masonry is in tension where the maximum tension is about 48 psi. Normal type Portland cement used for concrete masonry has an allowable tensile stress parallel to the bed joints in running bond of 60 psi. Because the granite masonry is visually in good shape, no major evidence of cracking exists on the exterior, and the granite masonry has a cross-section for mortar placement that provides for more tensile resistance than concrete masonry, the granite masonry is adequate for tensile stresses under maximum seismic loading conditions.

### 5.1.6 Determination of Vibration Thresholds

With I-290 and Route 9 directly adjacent to the church, there were some concerns that the vibrations may have been affecting the structure. Mentioned previously in the methodology, we found that the church would experience damage if a vibration of 0.59 in/s occurred at an instant or if a vibration of 0.24 in/s occurred continuously according to the Swiss Standards Association 640 312. Based on the data from the accelerometers in the towers and shown in Table 9 below, the highest acceleration experienced by the church was 0.025 g and the highest velocity experienced by the church was 0.08 in/s. This value does not approach the peak particle velocity of vibration the church can withstand. This means that the vibrations the church is experiencing daily is not an issue for the longevity of the structure. Although, the accelerometers that were used to obtain this data were only able to hold a limited amount of storage due to cost. There is a possibility that the true maximum acceleration may not have been recorded with these accelerometers.

For comparison, in terms of seismic loads, the peak ground acceleration for a structure to even experience very light damage is 0.039 g. With our data being within the range of the seismic data, it confirms that our accelerometer data is accurate. Also, the PPV for the church to experience physical damage, such as hairline cracking, is 0.75 in/s. This value is also much above the highest velocity experienced by the church. Our group was then able to determine that the cracks in the plaster of the church are from the moisture issues rather than vibrations.



Figure 54: Site Plan Showing the Close Proximity of the Church, I-290 and Route 9

| Table 9: | Max    | Values  | Experienced | bv  | Accelerometers                          |
|----------|--------|---------|-------------|-----|-----------------------------------------|
| 10010 01 | 111017 | v aracs | Experiencea | ~ y | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| Accelerometer | Max Acceleration (g) | Max Velocity (in/s) |
|---------------|----------------------|---------------------|
| Tower 1 East  | 0.025                | 0.08                |
| Tower 1 North | 0.025                | 0.08                |
| Tower 2 South | 0.023                | 0.074               |
| Tower 2 West  | 0.022                | 0.07                |

# 5.2 Geotechnical Analysis

There were some initial concerns geotechnically with the church and its proximity to the retaining wall and the highway. The retaining wall is of little concern to the church as most of the influence in failure caused by the soil is vertical rather than horizontal. That means that the retaining wall will cause little concern on the church but potential settlement in the church can cause extra horizontal forces that should have been considered when constructing the retaining wall.

Besides the retaining wall concern, other results from the geotechnical analysis such as bearing capacity, and settlement will be addressed in this section.

## 5.2.1 Determination of Soil Conditions

Based on the soil classification from the Massachusetts DOT overpass project, it was found that all soil that exists below the foundation is fine sand with a unit weight of about 120pcf and a friction angle of 34 degrees. A representative soil profile was created to show the layers of soil as well as each layer's unit weight and friction angle. This profile is shown in Figure. One consequence of fine sand is that any settlement experienced by the columns are immediate shortterm settlement and no long-term settlement exists. No major evidence of cracking in the walls also suggest that there is no evidence of long-term differential settlement and as a result when sizing the footings, they only need to be tested against bearing capacity failure.



Figure 55: Design Soil Profile Estimated for the Christian Gospel Church Based on Boring Log Data from the Massachusetts Department of Transportation

## 5.2.2 Foundation

Upon testing the foundation for bending and shear below the buttresses, it was found that these footings are only slightly larger than the buttresses themselves, and any critical sections for shear and moment exist outside of the footings. This means that there is no risk of failure of the footings due to structural causes. The footings below the lally columns were of the same depth as the buttress footings despite only carrying about 10% of the load the buttresses carry. That means that the footings were sized very conservatively for structural failure.

To test the footings for failure due to geotechnical limitations, the factor of safety was compared with the required factor of safety. This comparison is shown in Table 10. For all the footings under all loading conditions, the footings were acceptable for bearing capacity.

| Table 10: Comparisor | n of ultimate | and allowable stress | s experienced by | / the footings |
|----------------------|---------------|----------------------|------------------|----------------|
|----------------------|---------------|----------------------|------------------|----------------|

| Footing Location (Loading Type) | Factor of Safety | <b>Required Factor of Safety</b> |
|---------------------------------|------------------|----------------------------------|
| Buttress (Gravity)              | 3.14             | 1.6                              |
| Buttress (Seismic 1)            | 1.83             | 1.6                              |
| Buttress (Seismic 2)            | 3.75             | 1.6                              |
| Lally                           | 10.46            | 1.6                              |

### 5.3 Envelope Analysis

Envelope Analysis was performed through a combination of methods (*DesignBuilder* model and hand calculations). These analyses were possible through production of thorough digital models that were produced from site surveys and documentation obtained from the Massachusetts State Archive.

# 5.3.1 Walls

Using ASHRAE calculation methods, the U-Value of the church walls are estimated to be: 0.328 BTU/h\*ft^2\*F. The U-value of the tower walls with air gaps are estimated to be 0.409 BTU/h\*ft^2\*F.

It was assumed in the preliminary estimates of the heating load required by the sanctuary performed in the fall of 2019, that the walls were just 24" of stone. The actual wall construction is displayed in Figure 56. The hand calculations of potential wall U-values were different compared to the *DesignBuilder* energy analysis. *DesignBuilder* includes the unique individual thermal properties of the church's building envelope elements. built into its software rather than using the assumption of full generic stone in the hand calculations. The *DesignBuilder* analysis is likely far more accurate and allows for more complex analysis based on comprehensive weather data and thermal bridging.



Based on the findings from the Relative Humidity sensor placed inside of the wall, it was found that the relative humidity levels behind the plaster was nearly at 100% as displayed by the graph in Figure 57. This reveals that the air gap in the tower is completely saturated. As discussed previously in the report, it is most likely that the leading cause of water infiltration is due to the issues with the roof and its waterproofing components. Developing a way of drying out the towers is critical in order to maintain the integrity of the building and the air holes that were cut will hopefully improve this situation until the roof can be repaired. This saturation can be visualized when viewing the walls on the mezzanine level by viewing the water staining and cracks in the plaster.



Figure 57: Temperature and Humidity Readings Inside the Right Tower Wall from November to December 2019

#### 5.3.2 Roof

The U-Value of the roof is estimated to be between 0.237 and 0.274 BTU/h\*ft^2\*F based on its construction and positioning of the purlins. This U-Value assumes that the envelope of the roof is complete and does not have any defects. However, due to the holes and separation in the roof and weakening of the wood envelope, it is likely that the actual U-Value of the roof is much higher and significantly contributes to the overall heat loss of the building.

### 5.3.3 Windows

The U-Values used for the windows was 1.078 BTU/h\*ft^2\*F. The accepted ASHRAE standard for stained glass is 1.09 BTU/h\*ft^2\*F. During site surveys of the building, it was observed that there were many portions of stained glass that have cracks, holes, missing components, and are failing due to warping. These issues with the windows are another factor contributing to the discomfort that is being felt inside the sanctuary during services. Since there are open holes, air infiltration is prevalent and causing drafts, exacerbating heat loss, and causing excess humidity throughout the church. It should also be noted that the primary component of stained-glass windows is lead, which is used as a barrier between colors on stained glass. For safety reasons, it is recommended that patrons should not touch the windows due to health concerns and barriers to prevent access be established.

The windows throughout the gym and basement have been upgraded to double hung, double paned windows and appear to have no issues. It was estimated that the U-Value of these windows was 0.50 BTU/h\*ft^2\*F.

#### 5.4 Energy Analysis

The building as currently standing (assuming an intact envelope) is within national energy consumption guidelines. Based on this analysis with the assumed occupancy settings, the building is estimated of having an annual energy consumption of 781,909 kBTU between heating and electricity consumption. 565,966 kBTUs are utilized for heating needs annually. This comparison is shown in Figure 58.



Figure 58: ASHRAE Baseline vs. Existing Building Energy Consumption Comparison

## 5.4.1 Walls

Based on the *DesignBuilder* and hand calculation analysis, most heat loss in the church is due to the granite massing walls. Unfortunately, due to the orientation of the church, most thermal mass effects due to sun exposure is experienced by the front of the building due to the sun path. This design choice was most likely done intentionally so that the sun would shine through the front facing stained glass windows during services. The high-rise apartment building across Belmont Street also blocks most of the sun path annually.

Adding insulation inside of the walls is not an option due to the construction of the building (i.e. no large air gaps in the walls to add blown-in insulation). However, an analysis was performed to quantify improvements by adding varying ratings of insulation on the inner surface of the church to see the improvement in heat loss (Figure 59). Adding a layer of R-20 or R-30 Insulation to the inner surface of the walls would result in approximately 147,000 BTU/Hr improvement to the

buildings heat loss issue. This would result in a 26% improvement of the buildings energy consumption.



Figure 59: Existing Wall Construction vs. Proposed Wall Insulation Improvement Comparisons

Any improvements that could be made to insulate the walls would make a significant difference in annual heat loss and fuel consumption. Improvements to the insulative properties of the wall should be investigated as this will create the most noticeable improvements. However, if a similar solution is implemented, it is important to consider additional condensation effects that may occur by adding another layer of insulation on the existing wall. Any modifications to the wall envelope should be first vetted by an engineer experienced with building enclosure improvements as this would be a significant undertaking.

### 5.4.2 Roof

The roof deck over the sanctuary is currently uninsulated and in an attic space that is not visible or accessible to the congregation. Adding insulation to this space was one of the first things considered for potential building improvements. Such an improvement could be implemented relatively easily compared to the other envelope suggestions in this report. A simulation was created by comparing the existing roof construction and comparing the differences if adding roof code compliant insulation was installed (Figure 60). By installing R-30, R-35, or R-40 batt insulation in the roof deck would result in an approximate improvement of 47,000 BTU/Hr or an 8.3% improvement to the buildings energy consumption.



Figure 60: Existing Roof Construction Energy Consumption vs. Proposed Roof Insulation Improvements Comparisons

The most pressing issues with the roof are external due to gaps in the slate and issues with the waterproofing methods, leading to water infiltration and exacerbated heat loss. The simulation that was performed assumed that the roof's envelope is intact and will retain heat appropriately. Unfortunately, this is not the case with its current condition and its current insulative properties are unknown. It could be assumed that performing necessary roof repairs and adding insulation would result in a much greater overall energy improvement than 8.3%. It should be considered if the church is going to be reroofed, either with slate or a more cost friendly solution, to consider the addition of insulation in the roof deck at the same time to minimize labor costs.

## 5.4.3 Windows

It was found that a double-glazed window system of 3mm clear glass with a 13mm air gap of air or argon would result in the best energy savings over triple glazed systems if instituted in the church (Figure 61). Adding a secondary 3mm layer of glass with an air gap would result in a 17,000 BTU/Hr or a 3% improvement in annual energy consumption, while an argon filled double pane window system would result in an 19,000 BTU/Hr or a 3.4% improvement.



Figure 61: Existing Window Energy Consumption vs. Proposed Window Improvements Comparisons

While these improvements may not appear to be significant, the actual condition of the windows is akin to having them partially open all the time. Repairing the windows, independent of adding another layer of glass, will dramatically improve the overall discomfort that is felt in the sanctuary by reducing drafts and heat loss.

## 5.4.4 Heating Setpoints

Adjusting the church's heating setback to 60F from 63F results in an annual energy savings of 30,000 BTU or a 5% reduction in heat needed (Figure 62). Identifying ideal heating setback and cooling setback temperatures combined with a thorough occupancy study will result in improved occupant comfort and long-term energy savings.



Figure 62: Heating Setback Energy Consumption Comparison



# 5.4.5 Overall Improvements

Figure 63: Overall Building Insulation Improvements Compared to Baseline Energy Consumption

Implementing all the envelope suggestions above would result in an approximate 42.7% reduction in overall energy needed to heat the building. A visual representation of the energy improvements suggested in this report is seen in Figure 63. Having the roof and windows properly repaired would bring the building up to the baseline established by *DesignBuilder*. These repairs combined with these suggested improvements would result in a greater energy reduction than postulated by this report.

## 5.5 HVAC Analysis

One of the primary goals of this project was to obtain values so that the church leadership would have a better understanding of the heating and cooling loads needed to properly condition their building. Potential heating and cooling systems and system improvements that could be feasibly implemented have been suggested.

### 5.5.1 Heating Load

Hand calculations assuming average Worcester winter temperatures resulted in the total heating load of the church in the winter of 499,311 BTU/Hr equating to a 41.6-ton system. The sanctuary with roof included was calculated having a heat loss of 230,893 BTU/Hr, equating to a 19.2-ton system. The initial 10-ton system estimate for the sanctuary that was provided by the heating contractor would have resulted in a vastly undersized system and the same heating issues repeating. The gym was calculated as having a heat loss of 70,879 BTU/Hr which equates to 5.9 tons. The entire basement, including the slab floor, was calculated as having a total heat loss of 197,540 BTU/Hr equating to 16.46 tons.

*DesignBuilder* calculated the total heating design load of the church for worst case winter scenarios using ASHRAE weather data beyond the conservative hand calculations. Internal heating times were determined by the occupancy schedule defined, as well as internal operating temperatures of 68F and a heating setback of 62F. The total design heating capacity of the building in worst case scenarios is 1,026,570 BTU/Hr or 85.45 tons. This number included areas of the church that were not included in the hand calculations and would be assumed to remain unconditioned in the future. The sanctuary calculated at these conditions was found to have a heat loss of 301,160 BTU/Hr equating to 25 tons. The basement was found to have a total heat loss of 414,420 BTU/Hr equating to 34.5 tons. The Gym was determined to have a heat loss of 203,080 BTU/Hr equating to 16.9 tons. These combined three zones at worst case weather scenarios results

in a total system size of 76.4 tons. The total required tonnage of a new heating system required is most likely between the hand calculations and the worst-case scenarios. The total system size should be approximately 50-60 tons to appropriately heat the entire church appropriately during the winter.

### 5.5.2 Cooling Load

Based on hand calculations and an ASHRAE ComCheck format, the total cooling load of the church is between 364,603 BTU/Hr (average summer temperatures) and 431,097 BTU (peak summer temperatures with occupancy). These numbers translate to 30.4 tons and 35.9 tons respectively. The sanctuary was calculated to have a cooling load of 190,329 BTU/Hr or 15.7 tons (average summer temperatures) and 227,994 BTU/Hr or 19 tons (peak summer temperatures with occupancy). The basement was calculated to have a cooling load of 82,326 BTU/Hr or 6.7 tons (average summer temperatures) and 139,336 or 11.6 tons (peak summer temperatures with occupancy). The gym was calculated to have a cooling load of 63,767 BTU/Hr or 5.3 tons (average summer temperatures) and 91,948 BTU/Hr or 7.7 tons (peak summer temperatures with occupancy).

## 5.5.3 Hot Water Baseboard Fuel Type Comparison

It was determined by using *DesignBuilder* that the building as standing without any envelope improvements would require approximately 565,907 kBTU of fuel annually to heat. If one gallon of fuel oil contains 139,000 BTUs, the overall consumption of the church would be 4,071 gallons of fuel oil annually. Based on current market trends and the 2019-2020 national average of \$2.95 per gallon results in an overall annual fuel oil cost of \$12,009.45.

If the boilers in the church were upgraded to use natural gas instead of fuel oil, given that the average cost in Massachusetts of natural gas is \$13.98 per 1000 cubic feet of natural gas. There are approximately one million BTUs in 1000-cubic feet of natural gas. This would require 565.907 1000-cu. ft units of natural gas annually to appropriately heat the church. This would cost the church \$7,911 dollars yearly in order to heat utilizing natural gas. The conversion to natural gas would result in an annual cost savings of \$4,098.45 yearly for the same amount of heat or a 34% reduction in heating costs.

If envelope improvements suggested in the energy analysis section were implemented, it would result in a 42.7% reduction in the overall amount of fuel required to heat the building. This would be 241,642 kBTUs annually compared to 565,907 kBTUs annually prior to any improvements. This would equate to 1,738 gallons of fuel oil annually or an annual cost of \$5,128. If the hot water baseboard system was upgraded to natural gas, the overall heating with envelope improvements would require 241.64 1000-cu. ft units of natural gas or an annual cost of \$3,378.

## 5.5.4 Variable Air Volume Systems

One of the primary findings in the cooling analysis was that in-wall air conditioning units would be the most efficient, however, because of the building's construction and important aesthetic value, this solution would not be feasible due to the need to make holes in the building's granite walls. A ducted VAV system would be feasible and provide heating and cooling to all areas of the church. Ducts containing hot/cold air could either be installed in the floor between the basement and first floor and vented appropriately to each zone of the church. The ducts could also be run through the Sanctuary ceiling supported by the trusses, although that would dramatically alter the aesthetics of the building. Retrofitting such a system into the existing building would be difficult but possible. A VAV system operates on the principle of variable air volume and not constant air volume like other forced air systems (Figure 64). VAV systems vary air flow with a constant temperature resulting in lower energy costs due to the reduction of the need of fans and results in more precise temperatures and less long-term wear of the system. A VAV system also offers additional passive dehumidification which is a major feature that the church requires now
without any envelope repairs. It is estimated that an installation of a VAV system compared to the existing fuel oil system would result in approximately a 22,000 BTU reduction in total energy based purely on the efficiency of the system alone compared to baseboard heating.



Figure 64: Example Diagram of a VAV System<sup>16</sup>

### 5.5.5 Radiative Heaters

One potential solution has been implemented in medieval churches in Europe involves the installation of infrared heaters in the sanctuary (Figure 65). Radiative heaters are very energy efficient as they directly reach occupants and surroundings due to the use of shortwave infrared heat and does not transfer heat to objects that may not necessarily need to be.

It would be possible to supplement the existing baseboard heating system with these ceiling/wall mounted radiative heaters. The existing baseboards could be used to condition the space in the winter at a stationary temperature to ensure proper humidity levels during the winter,

<sup>&</sup>lt;sup>16</sup> University, Drexel. 2005. Adventure Works Products Page. Accessed February 25, 2020. http://www.pages.drexel.edu/~ea38/AE390/A5/products.htm.

but then utilize the radiative heaters when Sunday services are taking place. These heaters can then be left off at all other times resulting in lower overall energy costs but still warming the sanctuary.



Figure 65: Example of Radiative Heaters Installed in a Medieval Church <sup>17</sup>

There are many radiative heating options that operate either on electricity or natural gas. It would most likely be advantageous to convert the heat energy source of the church from fuel oil to natural gas and utilize a few methods of heating/cooling different areas of the church which would result in greater efficiency and greater cost savings.

<sup>&</sup>lt;sup>17</sup> 2020. Tansun. Accessed January 14, 2020. https://www.tansun.com/gb\_en/blog/what-is-the-bestmethod-for-heating-a-church.html.



Figure 66: Tansun Sorrento Triple Infrared Quartz Heater <sup>18</sup>

*Tansun* infrared heaters (Figure 66) that have been utilized in similar churches have a 6kW output approximately. This equates to 20,470 BTU/Hr. If the sanctuary requires 301,160 BTU/Hr to heat, this will require 15 infrared heaters positioned around the sanctuary. A potential placement of these heaters is suggested in Figure 67. This option is certainly feasible and would detract minimally from any aesthetic value of the church. These heaters are designed to be installed at

<sup>&</sup>lt;sup>18</sup> 2020. Tansun. Accessed February 20, 2020. https://www.tansun.com/gb\_en/infraredheaters/sorrento/sorrento-triple.html.

higher ceiling heights and could be installed at the tops of walls to ensure maximum range of coverage.



Figure 67: Suggested Placement of Infrared Heaters in the Sanctuary

Since these *Tansun* units are powered electrically, it would be advantageous to install any forms of green energy production to offset any utility costs or to appropriately size additional systems with these considerations in mind. Additionally, this brand would need to have a separate electrical service installed throughout the sanctuary since they operate at 220 volts. The current condition of the buildings electrical system requires addressing before an addition of another 220V service.

## 6.0 Recommendations

After analyzing the church, there are several recommendations that should be considered for structural and energy improvements. All suggestions should be discussed with a Professional Engineer and if decided to be implemented, installed by a certified contractor. These recommendations are based off of visual observations taken from many church visits as well as observations from the results of the analysis.

### **6.1 Structural Recommendations**

Based on the structural analysis of the church, the building is structurally worthy and there are no immediate issues with the trusses, walls, roof and other load bearing members. Based on the computer analysis of the truss, diagrams have been provided for key areas of the truss to observe for any defects or changes in crack size or location. These defects could occur during a seismic event and combined with the high moisture content (relative humidity) in the church could cause issues in the future in the event of an earthquake or other significant seismic event.

#### 6.1.1 Sub-Basement Concrete Reinforcement

The main concern structurally remains with the coal chute area located in the sub-basement next to the boilers. On inspection of this area it was observed that the concrete slabs and supporting steel members have corroded significantly. Since this area has ground directly exposed above, caution must be exercised if a cherry picker, scissor lift, or any significant weight is placed on this area. There is a potential that extra weight on this portion of the ground could cause this coal chute area to cave in.



Figure 68: Corrosion in Steel Reinforcement in the Sub-Basement Area

#### 6.1.2 Truss I-beam



Figure 69: I-Beams as shown in the Archive Plans

From the review of section plans retrieved from the Massachusetts State Archives, it was determined that there are steel I-beams encased by wood located at the base of every truss. It is uncertain whether these I-beams are either encased with molding or embedded in wood. Due to the high humidity levels that the church has experienced as well as its age, it is recommended that a few test holes be made to inspect these I-beam members for rust and structural integrity. The shifting of these I-beam members is also causing cracking in the drywall. The holes should also be used to inspect if these cracks persist through the masonry behind the drywall and determine if there are any other underlying issues.



Figure 70: Cracking in drywall where the truss connects to the buttress

#### 6.1.3 Buttress Reinforcement

During a seismic event, the interior brick may be responsible for providing tensile reinforcement. This brick layer should be inspected and if it is in poor condition, either the masonry should be repointed, or tensile reinforcement should be considered. A thin 1in<sup>2</sup> section of steel with 1/2in studs spaced 33 inches from the basement floor to the base of the truss should provide the necessary reinforcement. See Appendix C and the structural analysis section for more details.

#### **6.2 Envelope Recommendations**

A roof inspection is an immediate priority. In order to determine the extent of water infiltration coming from the roof level, an inspection from roof level was needed for this report, but this could not be accomplished since this group was unable to obtain access to a cherry picker or scissor lift. However, based on the photos sent by Jonas Chang and the observable damage, it is assumed that the condition of the roof is a major issue. These issues need to be addressed and repaired in order to prevent any further damage via water transport through the roof and the effects of annual heating and cooling cycles.

#### 6.2.1 Potential Water Infiltration Sources

- Where the Towers meet the roof there may be an issue with the flashing/counterflashing allowing water to travel down the towers internally and make its way into the plaster. Over 100 years of weathering has most likely made these waterproofing systems not nearly as effective as originally intended. These areas of the roof should be thoroughly investigated by a roof inspection.
- There may be an issue with moisture transport occurring through the masonry construction of the granite walls. It is possible that water is being absorbed through the aggregate and being retained in the brick next to the plaster in the wall envelope. This moisture then leaches out due to heating and cooling cycles. The building should be inspected by a professional stonemason to verify the status of the masonry and determine if repointing is necessary.

#### 6.2.2 Fenestrations

There are several stained-glass windows in the sanctuary that are broken/cracked and have warped frames. These openings are creating significant air changes in the sanctuary and creating a great deal of heat loss as can be directly felt as drafts while people are seated during church services. Correcting this issue will dramatically help with heat loss and the discomfort felt in the sanctuary. Installing another layer of glass over the existing stained glass in the sanctuary will dramatically improve the heat loss in the church. It was determined through analysis via *DesignBuilder* that adding another layer of clear glass, much like a double paned window, would reduce the energy needed by almost 20,000 BTUs.

#### 6.2.3 Insulation

Installation of insulation on top of the granite walls would be a significant undertaking. However, based on the amount of heat being lost by the walls it is a worthwhile avenue to investigate in order to reduce energy consumption. Adding insulation to the roof deck is an option that is much more obtainable and would help dramatically with heat retention in the sanctuary.

#### 6.3 Renewable Technology Considerations

The position of the towers of the church are directly obstructing the annual sun path. Additionally, the high-rise apartment building across Belmont Street is significantly taller than the church and contributes to blocking the sun path. This is shown in Figure 71. These obstructions will accumulate shadows on potential solar panels that could be installed on the roof and result in minimal energy being produced in the winter months when the sun is at its lowest. Due to the offset of the back wall between the church and the gym annex, shadows would be thrown over much of the roof during half of the year, making a potential installation of PV panels not advantageous from an electricity production and a maximization of return on investment (Figure 72).



Figure 71: Google Earth Image of Belmont Street and the High-Rise Apartment Building Across the Street from the Church



Figure 72: Simulated Sun Path in DesignBuilder

However, one consideration to keep in mind would be to add a solar parking area that have become more common in past years (Figure 73). Since the church offers their property for parking during the weekdays, it would be possible to add solar collectors to the parking areas and shield cars from sun and weather. The potential cost of this project could be offset by raising parking costs to commuters and could also be done slowly and expand as necessary and find an ideal place to place a potential solar field.



Figure 73: Example of a Solar Parking Lot<sup>19</sup>

Based on *Google Earth* calculations there is approximately 17,800 square feet in the top parking lot (Figure 74). The rear parking lots sun path is blocked by the building itself. An average of a 15% efficient solar panel would produce 15 watts per square feet resulting in a power production of 267 kW. Such power production would be enough to power the radiative heaters suggested in previous sections.

<sup>&</sup>lt;sup>19</sup> https://solarips.com/2019/09/solar-carports-and-canopies-a-practical-solution/



Figure 74: Existing Parking Lot Behind the Church

### 6.4 Additional Recommendations

During a site survey investigating the roof construction via access through the ladies first floor bathroom, it was noticed that the electrical service located there is not up to code. When a light was turned on at the higher level above the ladder, there was significant amounts of smoke and a burning electrical smell. The electrical system at hand represents a fire hazard and should be addressed soon. As improvements are made to the building, upgrading the existing electrical system is critical.

## Works Cited

- 2011. 2012 International Building Code. 7th printing. International Code Council. https://codes.iccsafe.org/content/IBC2012/preface.
- ASHRAE. 2019. ASHRAE. Accessed January 21, 2020. https://ashrae.iwrapper.com/ViewOnline/Standard\_15-2019.
- Cochran, Brice. 2018. Hammer Beam Truss Details. https://timberframehq.com/hammer-beam-truss-detail/.
- 2019. *Hammer Beam Truss Detail.* June 26. Accessed October 23, 2019. https://timberframehq.com/hammer-beam-truss-detail/.
- 2020. *HOBO U12 Temperature/Relative Humidity/Light/External Data Logger*. Accessed January 28, 2020. https://www.onsetcomp.com/products/data-loggers/u12-012.
- Kidder, F.E. 2018. *The Hammer-Beam Truss.* Accessed January 2, 2020. https://chestofbooks.com/architecture/Construction-Superintendence/21-The-Hammer-Beam-Truss.html.
- 2015. Massachusetts State Building Code. 9th ed. https://up.codes/viewer/massachusetts/ibc-2015.
- 2013. *Minimum Design Loads for Buildings and Other Structures*. ASCE 7-10. 3rd printing. Reston, Virginia: American Society of Civil Engineers. www.pubs.asce.org.
- 2016. *National Design Specification for Wood Construction.* 2015 Ed. Leesburg, Virginia: American Wood Council. https://www.awc.org/codes-standards/publications/nds-2015.
- n.d. National Society of Professional Engineers. Accessed January 23, 2020. https://www.nspe.org/resources/licensure/why-get-licensed.
- 2009. *Natitional Concrete Masonry Association*. TEK 14-7B Structural. Herndon, Virginia. https://ncma.org/resource/allowable-stress-design-of-concrete-masonry/.

"Protective Glazing Study." National Preservation Center, March 1996. https://www.ncptt.nps.gov/wp-content/uploads/1996-06.pdf.

- 2020. Swedish Lutheran Gethsemane Church. Accessed February 5, 2020. https://www.cardcow.com/334173/swedish-lutheran-gethsemane-church-worcestermassachusetts/.
- 2020. *Tansun*. Accessed January 14, 2020. https://www.tansun.com/gb\_en/blog/what-is-the-best-method-for-heating-a-church.html.
- 2020. *Tansun*. Accessed February 20, 2020. https://www.tansun.com/gb\_en/infrared-heaters/sorrento/sorrento-triple.html.
- n.d. *The Life of a Campus: 9 Essays on Clark Buildings Past and Present.* Clark University. https://wordpress.clarku.edu/krwilson/files/2012/05/CLU\_ARCH-book.pdf.

University, Drexel. 2005. Adventure Works Products Page. Accessed February 25, 2020. http://www.pages.drexel.edu/~ea38/AE390/A5/products.htm.

Zeigler, John M. 2019. *Vibration Standards*. Accessed 2 13, 2020. https://vibrationdamage.com/Vibration\_standards.htm.

## Appendix A: Temperature/Relative Humidity Data

# ASHRAE Climatic Design for Worcester, MA

| 2009 ASHRAE Handbook - Foundame      | entals (SI)                  |            |                |          |                |           |             |       |       |              |            |            |                 |                |                            |
|--------------------------------------|------------------------------|------------|----------------|----------|----------------|-----------|-------------|-------|-------|--------------|------------|------------|-----------------|----------------|----------------------------|
|                                      |                              | 5          | WORCESTER R    | GION     | AL ARPT, M     | A, USA (W | MO: 72509   | 5)    |       |              |            |            |                 |                |                            |
| Lat:4                                | 2.27N                        | Lo         | ng:71.88W      | E        | lev:310        |           | StdP: 97.66 | 5     | T     | ime zone:-5. | .00        |            |                 | Period:82-06   | i                          |
| Annual Heating and Humidification D  | esign Conditions             |            |                |          |                |           |             |       |       |              |            |            |                 |                |                            |
|                                      | Heating DB                   |            |                | Humid    | ification DP/M | ICDB and  | HR          |       | 0     | oldest mont  | th WS/MCI  | DB         | MOWS DOW        | D to 99 6% DI  | 2                          |
| Coldest Month                        | Heating DD                   |            | 9              | 9.6%     |                |           | 99%         |       | 0.    | 496          | 1          | 96         | MCWSPC W        | 0 10 33.070 D1 | 1                          |
|                                      | 99.6%                        | 99%        | DP             | HR       | MCDB           | DP        | HR          | MCDB  | WS    | MCDB         | WS         | MCDB       | MCWS            | PCWD           |                            |
| 1                                    | -16.9                        | -14.3      | -25.5          | 0.4      | -14.8          | -22.8     | 0.5         | -12.5 | 13.6  | -7.2         | 12.4       | -4.9       | 6.0             | 280            |                            |
| Annual Cooling, Dehumidification, an | d Enthalpy Design Conditions |            |                |          |                |           |             |       |       |              |            |            |                 |                |                            |
|                                      | Hottest Month                |            | Co             | oling Dl | B/MCWB         |           |             |       |       | Evaporatio   | on WB/MCI  | DB         |                 | MCW            | PCWD to 0.4% DB            |
| Hottest Month                        | DB Range                     |            | 0.4%           |          | 1%             | 1         | 196         | 0.4   | 4%    | 1            | 96         |            | 2%              |                |                            |
|                                      |                              | DB         | MCWB           | DB       | MCWB           | DB        | MCWB        | WB    | MCDB  | WB           | MCDB       | WB         | MCDB            | MCWS           | PCWD                       |
| 7                                    | 9.0                          | 29.8       | 21.8           | 28.4     | 21.1           | 26.9      | 20.2        | 23.4  | 27.7  | 22.5         | 26.4       | 21.6       | 25.2            | 4.6            | 270                        |
|                                      | Dehumidifica                 | ation DP/M | CDB and HR     |          |                |           |             |       |       |              | Enth       | alpy/MCDE  | 3               |                |                            |
|                                      | 0.4%                         |            |                | 1%       |                |           | 2%          |       | 0.    | 496          | 1          | %          | 1               | 196            | Hours 8 to 4 and 12.8/20.6 |
| DP                                   | HR                           | MCDB       | DP             | HR       | MCDB           | DP        | HR          | MCDB  | Enth  | MCDB         | Enth       | MCDB       | Enth            | MCDB           |                            |
| 22.1                                 | 17.4                         | 25.6       | 21.2           | 16.5     | 24.6           | 20.3      | 15.6        | 23.7  | 71.2  | 27.8         | 67.5       | 26.4       | 64.1            | 25.0           | 752                        |
| Extreme Annual Design Conditions     |                              |            |                |          |                |           |             |       |       |              |            |            |                 |                |                            |
| Eute                                 | ama Annual IVS               |            |                |          | Extreme        | Annual DB |             |       |       |              | n-Year Ret | urn Period | Values of Extre | me DB          |                            |
| Ext                                  | CHE AMBRE WO                 |            | Extreme Max WB |          | Mean           | Standard  | deviation   | n=5   | years | n=10         | years      | n=)        | 0 years         |                | n=50 years                 |
| 1%                                   | 2.5%                         | 5%         |                | Min      | Max            | Min       | Max         | Min   | Max   | Min          | Max        | Min        | Max             | Min            | Max                        |
| 11.5                                 | 10.2                         | 8.7        | 29.4           | -20.0    | 32.2           | 2.4       | 1.2         | -21.7 | 33.0  | -23.1        | 33.7       | -24.5      | 34.4            | -26.2          | 35.3                       |

| Monthly Climatic Design Conditions                                |         |        |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------------------------------------------------------|---------|--------|------|------|------|------|------|------|------|------|------|------|------|------|
|                                                                   |         | Annual | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|                                                                   | Tavg    | 8.8    | -4.2 | -2.7 | 1.4  | 7.6  | 13.3 | 18.3 | 21.1 | 20.3 | 16.2 | 10.1 | 4.7  | -1.0 |
|                                                                   | Sd      |        | 5.88 | 5.37 | 5.35 | 4.65 | 4.28 | 3.86 | 2.93 | 3.20 | 3.87 | 4.32 | 4.92 | 5.44 |
|                                                                   | HDD10.0 | 1755   | 439  | 356  | 272  | 101  | 15   | 1    | 0    | 0    | 3    | 55   | 171  | 343  |
| T D D ID U                                                        | HDD18.3 | 3726   | 697  | 589  | 526  | 323  | 166  | 48   | 9    | 17   | 86   | 258  | 409  | 600  |
| Temperatures, Degree-Days and Degree-Hours                        | CDD10.0 | 1322   | 1    | 0    | 6    | 28   | 118  | 248  | 343  | 321  | 188  | 57   | 12   | 2    |
|                                                                   | CDD18.3 | 252    | 0    | 0    | 0    | 1    | 10   | 46   | 93   | 79   | 21   | 1    | 0    | 0    |
|                                                                   | CDH23.3 | 1596   | 0    | 0    | 3    | 20   | 94   | 321  | 604  | 450  | 99   | 4    | 0    | 0    |
|                                                                   | CDH26.7 | 352    | 0    | 0    | 1    | 4    | 17   | 74   | 143  | 98   | 15   | 0    | 0    | 0    |
|                                                                   |         | DB     | 13.3 | 13.0 | 21.0 | 26.3 | 29.1 | 30.8 | 32.0 | 31.2 | 28.7 | 23.7 | 19.9 | 16.2 |
|                                                                   | 0.4%    | MCWB   | 11.1 | 9.0  | 13.0 | 15.5 | 19.2 | 22.3 | 23.7 | 23.3 | 21.0 | 16.6 | 15.5 | 13.6 |
|                                                                   |         | DB     | 9.6  | 9.7  | 15.6 | 21.3 | 26.1 | 28.9 | 29.8 | 29.2 | 26.0 | 21.2 | 16.8 | 12.1 |
|                                                                   | 2%      | MCWB   | 7.3  | 6.6  | 9.9  | 12.8 | 17.2 | 21.0 | 22.4 | 21.9 | 19.7 | 16.1 | 13.7 | 9.6  |
| Monthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures |         | DB     | 6.3  | 7.3  | 12.0 | 17.9 | 23.4 | 26.9 | 28.3 | 27.5 | 24.0 | 18.9 | 14.4 | 9.2  |
|                                                                   | 276     | MCWB   | 4.3  | 4.6  | 7.7  | 11.0 | 15.8 | 19.9 | 21.3 | 21.0 | 18.6 | 14.4 | 11.7 | 6.7  |
|                                                                   | 100/    | DB     | 3.5  | 4.9  | 9.1  | 15.0 | 20.9 | 25.0 | 26.7 | 25.9 | 22.3 | 16.9 | 12.4 | 6.4  |
|                                                                   | 10%     | MCWB   | 1.6  | 2.2  | 5.4  | 9.3  | 14.3 | 18.6 | 20.4 | 20.0 | 17.8 | 13.1 | 9.8  | 3.7  |
|                                                                   |         | WB     | 12.2 | 10.5 | 14.3 | 16.8 | 21.2 | 23.8 | 24.7 | 24.8 | 22.5 | 19.6 | 17.0 | 13.9 |
|                                                                   | 0.4%    | MCDB   | 12.8 | 11.7 | 19.1 | 23.9 | 26.3 | 28.9 | 29.5 | 29.1 | 26.6 | 21.7 | 18.4 | 15.7 |
|                                                                   |         | WB     | 7.8  | 7.4  | 11.3 | 14.4 | 18.7 | 22.4 | 23.6 | 23.2 | 21.1 | 17.2 | 14.4 | 10.2 |
|                                                                   | 2%      | MCDB   | 9.0  | 8.9  | 14.2 | 19.2 | 23.6 | 26.8 | 28.0 | 26.9 | 23.9 | 19.6 | 16.0 | 11.7 |
| Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures |         | WB     | 4.5  | 4.7  | 8.3  | 12.5 | 16.9 | 21.2 | 22.6 | 22.2 | 20.1 | 15.4 | 12.3 | 7.1  |
|                                                                   | 5%      | MCDB   | 6.2  | 6.8  | 11.3 | 16.0 | 21.5 | 25.1 | 26.5 | 25.7 | 22.8 | 18.2 | 14.0 | 8.8  |
|                                                                   | 100/    | WB     | 1.7  | 2.4  | 5.7  | 10.5 | 15.4 | 20.0 | 21.6 | 21.3 | 18.9 | 13.7 | 10.2 | 4.3  |
|                                                                   | 10%     | MCDB   | 3.4  | 4.5  | 8.8  | 14.1 | 19.4 | 23.5 | 25.3 | 24.5 | 21.5 | 16.3 | 12.0 | 6.0  |
|                                                                   |         | MDBR   | 7.7  | 8.0  | 8.7  | 9.5  | 10.0 | 9.4  | 9.0  | 8.6  | 8.6  | 8.7  | 7.8  | 7.5  |
|                                                                   |         | MCDBR  | 10.7 | 9.9  | 12.9 | 13.8 | 13.2 | 11.3 | 10.5 | 10.0 | 9.8  | 10.6 | 10.5 | 10.5 |
| Mean Daily Temperature Range                                      | 5% DB   | MCWBR  | 9.7  | 7.9  | 8.7  | 7.9  | 7.1  | 6.3  | 5.2  | 4.7  | 5.3  | 6.8  | 8.6  | 9.0  |
|                                                                   |         | MCDBR  | 10.7 | 9.3  | 12.3 | 12.6 | 11.7 | 10.1 | 9.6  | 9.0  | 8.8  | 9.4  | 9.8  | 9.4  |
|                                                                   | 2% WB   | MCWBR  | 10.2 | 8.4  | 9.5  | 8.7  | 7.2  | 6.4  | 5.3  | 4.8  | 5.3  | 6.8  | 8.6  | 9.0  |







Highest Temp Recorded: 92.15F Lowest Temp Recorded: 8.54C

Highest RH Recorded: 81.46% Lowest RH Recorded: 38.35%



Highest Temp Recorded:35.74C Lowest Temp Recorded: 6.33C

Highest RH Recorded: 80.84% Lowest RH Recorded: 26.67%



Highest Temp Recorded: 48.8C Lowest Temp Recorded: 4.22C Highest RH Recorded: 85.33% Lowest RH Recorded: 10.86%



Highest Temp Recorded: 33.57C Lowest Temp Recorded: -0.359C

Highest RH Recorded: 91.49% Lowest RH Recorded: 58.38%



Highest Temp Recorded:30.04C Lowest Temp Recorded: 2.61C

Highest RH Recorded: 87.54% Lowest RH Recorded: 63.84%



Highest Temp Recorded: 32.33C Lowest Temp Recorded: 4.64C Highest RH Recorded: 82.13% Lowest RH Recorded: 48.72%



Highest Temp Recorded: 35.08C Lowest Temp Recorded: -5.54C Highest RH Recorded: 100% Lowest RH Recorded: 1% Appendix B: Accelerometer Data

## Appendix C: Load and Structural Calculations

|                           | Height Measurements MQP                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0                         | $\Theta = 90^{\circ} - 74^{\circ}00' 20'' = 15.99^{\circ}$ $H = \tan \Theta (x = 115'3'') = 33.035'$ $H = H_{+} TH = H_{+ot} = H_{+} 64'' = 38.37'$ $Gym Apex$ $TH$                                                                                                                                                                                                                                                                                                       |   |
| 0                         | $\frac{G_{YM} \text{ Uall height}}{\Theta = 5.756^{\circ} \text{ x=116'1''}}$ $H = 11.70^{\circ} \text{ TH = 64''}$ $H_{tot} = 17.03^{\circ}$ $A = 22.41^{\circ} \text{ TH = 61.75''}$ $H_{tot} = 27.56^{\circ}$ $A = 45.7^{\circ}$ $B = 17^{\circ}57^{\circ}46^{\circ''} = \frac{\sin(17^{\circ}57^{\circ}40^{\circ'})}{29^{\circ}} = \frac{\sin A}{45.7^{\circ}}$ $B = 29^{\circ}$ $A = 29.07^{\circ}$ $C = 132.964^{\circ}$ $C = \frac{\sin B}{6} = C = 68.82^{\circ}$ |   |
|                           | Church Apex heightGym Secondary Apex $\Theta = 36.8^{\circ} \times = 68.82^{\circ}$ $\Theta = 35.306^{\circ}$ $H = 51.48^{\circ} \text{ TH} = 61.75^{\circ}$ $H = 26.63^{\circ} \text{ TH} = 61.75^{\circ}$ $H_{tot} = 56.63^{\circ}$ $H_{tot} = 31.77^{\circ}$                                                                                                                                                                                                           |   |
| apex -uall<br>wall length | <u>Church Roof Slope</u><br><u>56.63' - 27.56'</u><br>29'<br>= 1.00 45° slope<br><u>Gym Roof Slope</u><br><u>38.37' - 17.03'</u><br>21.06'<br>= 1.01≈1.00 45° slope                                                                                                                                                                                                                                                                                                       |   |
| <i>Q</i>                  | <u>Gym Secondary Apex base height</u> (assuming equivelent slope)<br><u>31.77'-h</u> =1101 h=23.1'<br>18.54'                                                                                                                                                                                                                                                                                                                                                              |   |



|            | Dead Loads + Live Loods                                                                                                                                                                      | Floor                                                                 | 3     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|
|            | Between 1st floor and basement                                                                                                                                                               | floor and bakeranne-                                                  |       |
| 0          |                                                                                                                                                                                              |                                                                       |       |
|            | From top to bottom: carpet -> decking -> joists -                                                                                                                                            | >girders > drop ceiling                                               |       |
|            | LL (sanctuary)=60psf (with fixed seating)                                                                                                                                                    | or 30016                                                              |       |
|            | DL (carpet + pad)=3psf                                                                                                                                                                       | to being                                                              |       |
|            | DL (decking)=2.4psf                                                                                                                                                                          | A E shit whit                                                         |       |
|            | DL (joists)=4.263 plt (2x12 spruce)                                                                                                                                                          |                                                                       |       |
|            | OL (MEP)=100sf (typ)                                                                                                                                                                         |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       |       |
| $\bigcirc$ | Note: Upon reviewing, the dead load due to sl<br>but will serve as a very conservative esti-<br>purpose-especially with potential difference<br>original archive plans and what may be activ | ate is quite high<br>mate for this<br>es between the<br>ually present |       |
|            | - ill (bathrooms + romaines - collaboration)=icon                                                                                                                                            | or sooth                                                              |       |
|            | Pitt I and a fait a free of the                                                                                                                                                              |                                                                       | -<br> |
|            | Dr. (Dr. Eng) = Report + content with the line                                                                                                                                               | Lateladatin for                                                       |       |
|            | a and the second of the second of the                                                                                                                                                        |                                                                       |       |
|            | THE CALE TO REPORT NO.                                                                                                                                                                       |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       |       |
| -          |                                                                                                                                                                                              |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       |       |
| Q.         |                                                                                                                                                                                              |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       |       |
|            |                                                                                                                                                                                              |                                                                       | 1     |

4 Seismic Loads Step1 So and S. Ss = 20% g = 0.2g ASCE 7-10 Figures S,= 70/0 g= 0.07g) 22-1 + 22-2 Step 2 Not exempt > 2012 IBC 1613.1 Step 3 Stismic Design Category (SDC) a) Soil Classification (Urban Land) Site Class D > Web Soil Survey 6) Sps and So, → ASCE 7-10 Table 11.4-1 + 11.4-2 Sos = (3) (Fa) (Ss) Fa= 1.6 Soi = (3) (Fv) (S.) Fv = 2.4 = (2/3)(2.4)(0.079) = (2/3)(1,6)(0.29) Soi= Dillizg Sos= 0.2139 C) Risk Category > ASCE 7-10 Table 1.5-1 Risk Caregory I III d) SDC (0.25) -B SDC (15) -B Step 4 Analysis Procedure (ELF Permitted) (ELF Permitted) a) Determine fundamental period, T Ta= Cehn\* Ce= 0.016 (0.0466)<sup>a</sup> } Table 12.8-2 ASCE Cu= 1.4 > Table 12.8-1 ASCE Ta= (0.016) (0.0466) ~ T= CoTa Ta= OIN N= # of shories = 0.1(3) Ta= 0.3 T= 1.0 (0.3) T= 0.48s b) Determine Ts  $T_s = \frac{S_{01}}{S_{0s}} = \frac{0.1129}{0.2139} = 0.535$ Step 5 Determine R, Response Modification Coefficient Bearing Wall - Ordinary plain masonry shear walls B=112 Step 4 Determine Seismic Importance Factor, Ie Ic= 1.00

|     | Seismic Loads                                                                                                                                                                                                                                                                              | 5 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0.  | Step 7 Determine Seismic Base Shear, V<br>$V = C_s W$ .<br>$C_s = \frac{Sos}{\binom{R}{T_e}} = \frac{0.2130}{\binom{115}{1}} = 0.142$<br>V = 0.142(bb2k) $W = 113.98 pstV = 94.15 kipsStep 8 Distribute V over the neight of the structure$                                                | 1 |
|     | $T \leq 0.55$ so $k=1$<br>$F_{v} = C_{vx}V$ where $C_{vx} = \frac{W_{x}h_{x}^{k}}{\sum_{i=1}^{n} w_{i}h_{i}^{k}}$                                                                                                                                                                          |   |
|     | Wx         Nx <sup>k</sup> Wx hx <sup>k</sup> Cux         Fx         Eshry shear           Level 1         331 kips         30'         9930         0.5         47.08k         47.08           Level 2         331 kips         30'         9930         0.5         47.08k         94.15 |   |
|     | Step 9 Redondancy Factor, p W=662 k<br>p=10 -> 12.3.4.1                                                                                                                                                                                                                                    |   |
|     |                                                                                                                                                                                                                                                                                            |   |
|     |                                                                                                                                                                                                                                                                                            |   |
|     |                                                                                                                                                                                                                                                                                            |   |
|     |                                                                                                                                                                                                                                                                                            |   |
|     |                                                                                                                                                                                                                                                                                            |   |
|     |                                                                                                                                                                                                                                                                                            |   |
| . 0 |                                                                                                                                                                                                                                                                                            | 4 |
|     |                                                                                                                                                                                                                                                                                            |   |

| -              | Seismic Loads F                  | inal Results                        | 6 |
|----------------|----------------------------------|-------------------------------------|---|
|                | Re- do of Sanctuary              | 지구 모양님은 가장님을 같은 것이 있다.              | 1 |
| 0              | Total DL = 388,938 16<br>= 389 K |                                     |   |
|                | Step 7<br>V=C.W                  |                                     | ŧ |
|                | = 0,142 (389 k)<br>= 55,24 k     |                                     |   |
|                | Step 8 Distribute V aver         | r height of structure               |   |
|                | T = 0.55 50 K = 1                | $\frac{321W}{543W} = \frac{2D}{35}$ |   |
|                | Fx = Cvx V                       | \$ (Frood) 14'                      |   |
|                | R=1.5<br>2 b= 2.5                | 29'                                 |   |
|                | Co = 1.25                        | 18'                                 |   |
|                |                                  | 121 } 0 151                         |   |
|                |                                  |                                     |   |
| 0              | П.04 м                           |                                     |   |
|                | 8.72 W                           |                                     |   |
|                | 2.54 %                           |                                     |   |
|                | Level Wx hx" Wxhx                | Cux Fx Story Per Section            |   |
|                | 2 172 K 23' 3956                 | 0.56 30.9K 43.6K 8.72K              |   |
|                | 1 112-1 15 1360                  |                                     |   |
|                |                                  |                                     |   |
|                |                                  |                                     |   |
|                |                                  |                                     |   |
| $ $ $\bigcirc$ | 日本日本日本                           |                                     |   |
|                |                                  |                                     |   |
|                |                                  |                                     |   |

|   | Snow Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | For Worcester, MA ground snow load Pg=50psf MBC* Table 1604,11<br>Adapted with IBC<br>Terrain Category B (urban area)<br>Roof is fully exposed => Exposure factor (Ce)=0.9<br>ASCE 7-10 Table 7-2                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|   | Thermal factor (C+)=1.0 ⇒ heated structure (Table 7-3)<br>Risk Catagory III ⇒ high risk assembly building (Table 1.5-1)<br>L→Snow Importance Factor (Is)=1.1 (Table 1.5-2)<br>Flat roof snow load (pr)=0.7CeC+IsPg≥35psf<br>pr=0.7(0.9)(1.0)(1.1)(50psf)≥35psf<br>MBC* Table 1604.11<br>Pr=34.7 psf=35psf ⇒ Pr=35psf<br>For C+≤1.0, roof is considered warm<br>Assuming the roof is not insulated, Stope factor (Cs)=0.7<br>(Figure 7-2a ASCE 7-10)<br>Sloped roof snow load (ps)=Cspr=(0.7)(35psf)=24.5psf<br>Note that this load acts vertically and not on the<br>plane of the roof<br>*MBC: Massachusetts State Building Codes |   |
| 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |

|   | Wind Loads                                                                                                                                                                                                                                                                                                                                                                                                     | 8   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0 | Risk Category II.⇒High risk assembly structure (≥300 capacity)<br>(ASCE 7-10 Table 1.5-1)<br>Wind importance factor (IW)=1.0 (Table 1.5-2)                                                                                                                                                                                                                                                                     |     |
|   | Vull= 134 mob (MSBC Table 1604.11)                                                                                                                                                                                                                                                                                                                                                                             |     |
|   | Directionality Factor (Kd)=0.85 = buildings (ASCE 7-10 Table 26.6-1)                                                                                                                                                                                                                                                                                                                                           |     |
|   | Surface Roughness Category B =>urban area                                                                                                                                                                                                                                                                                                                                                                      | •   |
|   | Mean Roof Height (h) (Sanctuary) = 42.1ft<br>Mean Roof Height (h) (Gymnasium) = 27.7ft                                                                                                                                                                                                                                                                                                                         | •   |
|   | For mean roof height greater than 30ft, exposure B applies<br>surface roughness prevails in upwind direction at a distance<br>greater than 2600 ft or 20 times building height, whichever greater<br>20 h = 20(56.63ft) = 1133ft : 2600 ft governs<br>> In this case, surface roughness corresponds to other buildings,<br>and according to google maps, any distance of 2600ft from                           |     |
|   | i exposure aitegory B                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 0 | For wind speed up effects, there exists a retaining wall where<br>the highway is but this wall is obstructed upwind by the wall<br>on the other side of the highway. Any other wind speed up<br>effects can be considered negligible<br>$k_{zf}=1.0 \Rightarrow no$ wind speedup effects<br>$G=0.85 \Rightarrow Rigid$ Structure<br>Enclosure Classification: Enclosed<br>$w GC_{pi}=\pm 0.18$ (Table 26.11-1) |     |
|   | for $z = 17.3ft$ (Gym wall height), $k_z = 0.593$<br>for $z = 27.56ft$ (Sanctuary wall height), $k_z = 0.680$ (Table<br>for $z = 38.37ft$ (Gym apex), $k_z = 0.750$<br>for $z = 56.63ft$ (Apex), $k_z = 0.837$                                                                                                                                                                                                 |     |
| Q | $(2(17.544) = 0.00256K_{2}K_{2}FK_{d}V^{2} = 0.00256(0.593)(1.0)(0.85)(134_{mph})^{2} = 23.176$<br>$(2z(27.5674) = 0.00256(0.680)(1.0)(0.85)(134_{mph})^{2} = 26.57psf$<br>$(2z(38.3774) = 0.00256(0.750)(1.0)(0.85)(134_{mph})^{2} = 29.30psf$<br>$(2z(56.6374) = 0.00256(0.937)(1.0)(0.85)(134_{mph})^{2} = 32.70psf$                                                                                        | psf |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |     |



| ALL DE LE DE | A.                                                                                                                                                                                                                                                                                                  |                                                                                                                        |                                                                                                                            |                       | MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS Wind I           | oads                                               |                                                           |                                                              | Iob No:                                                                                                                       |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATT                                                                                                                                                                                                                                                                                                 | DT I                                                                                                                   |                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ASCE 7-10           | 0403                                               |                                                           |                                                              | Designer:                                                                                                                     | Jason Strauss      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VV F                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                            | Enclosed              | & Partially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enclosed Bui        | Idinas of Ali                                      | Heights                                                   |                                                              | Checker:                                                                                                                      | Prof. Tao, Van Des |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                        | Notes:                                                                                                                     | Sanctuary E           | ast-West Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rection             |                                                    |                                                           |                                                              | Date:                                                                                                                         | 10/20/2019         |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Basic Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eters                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                            | 10                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Table 1 F 1                                                                                                                   | 1                  |
| Basic Wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y<br>ineed V                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                                                                            | 134 mph               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Figure 26 9                                                                                                                   | 5-1A               |
| Wind Directi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onality Far                                                                                                                                                                                                                                                                                         | tor K.                                                                                                                 |                                                                                                                            | 0.85                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Table 26.6                                                                                                                    | -1                 |
| Exposure Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tepory                                                                                                                                                                                                                                                                                              | 101,113                                                                                                                |                                                                                                                            | R                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Section 26                                                                                                                    | 7                  |
| Topographic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Factor, K.,                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                                            | 1.00                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Section 26                                                                                                                    | .8                 |
| Gust Effect F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | actor. G or                                                                                                                                                                                                                                                                                         | G,                                                                                                                     |                                                                                                                            | 0.850                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Section 26                                                                                                                    | .9                 |
| Enclosure Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | assification                                                                                                                                                                                                                                                                                        | ) ~(                                                                                                                   |                                                                                                                            | Enclosed              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Section 26                                                                                                                    | .10                |
| Internal Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sure Coeff                                                                                                                                                                                                                                                                                          | icient. GC.                                                                                                            |                                                                                                                            | +/-0.18               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Table 26.1                                                                                                                    | 1-1                |
| Terrain Exoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sure Const                                                                                                                                                                                                                                                                                          | tant. α                                                                                                                |                                                                                                                            | 7.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Table 26.9                                                                                                                    | -1                 |
| Terrain Expo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sure Const                                                                                                                                                                                                                                                                                          | tant, z <sub>g</sub>                                                                                                   |                                                                                                                            | 1,200 ft              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Table 26.9                                                                                                                    | -1                 |
| Wall Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re Coefficio                                                                                                                                                                                                                                                                                        | ents                                                                                                                   |                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Windward V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vall Width,                                                                                                                                                                                                                                                                                         | в                                                                                                                      |                                                                                                                            | 95 ft                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Side Wall W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ídth, L                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                            | 58 ft                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| L/B Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                            | 0.62                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Windward V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vall Coeffic                                                                                                                                                                                                                                                                                        | ient, C <sub>p</sub>                                                                                                   |                                                                                                                            | 0.80                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Figure 27.4                                                                                                                   | 4-1                |
| Leeward Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Il Coefficie                                                                                                                                                                                                                                                                                        | nt, C <sub>p</sub>                                                                                                     |                                                                                                                            | -0.50                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Figure 27.4                                                                                                                   | 4-1                |
| Side Wall Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | efficient, C                                                                                                                                                                                                                                                                                        | p                                                                                                                      |                                                                                                                            | -0.70                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Figure 27.4                                                                                                                   | 4-1                |
| Roof Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re Coefficie                                                                                                                                                                                                                                                                                        | <u>ents</u>                                                                                                            |                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Roof Slope,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ð                                                                                                                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                            | 45.0°                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Median Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f Height, h                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                                            | 42 ft                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Velocity Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ssure Expo                                                                                                                                                                                                                                                                                          | sure Coef., k                                                                                                          | 6                                                                                                                          | 0.77                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Table 27.3                                                                                                                    | -1                 |
| Velocity Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ssure, q <sub>h</sub>                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                            | 30.2 psf              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              | Equation 2                                                                                                                    | 27.3-1             |
| h/L Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                            | 0.72                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Windward R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oof Area                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                                                                            | O ft <sup>2</sup>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                    |                                                           |                                                              |                                                                                                                               |                    |
| Roof Area W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lithin 21 ft                                                                                                                                                                                                                                                                                        | of WW Edge                                                                                                             | 9                                                                                                                          | 0 ft <sup>2</sup>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 1                                                  | ī                                                         |                                                              |                                                                                                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location                                                                                                                                                                                                                                                                                            |                                                                                                                        | Min/Max                                                                                                                    | O ft                  | 21 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m Windward<br>42 ft | 1 Edge<br>84 ft                                    |                                                           |                                                              |                                                                                                                               |                    |
| Windwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rd Roof Co                                                                                                                                                                                                                                                                                          | efficient                                                                                                              | Min                                                                                                                        | 0.00                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                | 0.00                                               |                                                           |                                                              | Figure 27.                                                                                                                    | 4-1                |
| Norr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nal to Ridge                                                                                                                                                                                                                                                                                        | e, C <sub>p</sub>                                                                                                      | Max                                                                                                                        | 0.36                  | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.36                | 0.36                                               |                                                           |                                                              |                                                                                                                               |                    |
| Leewar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Roof Coe                                                                                                                                                                                                                                                                                          | fficient                                                                                                               | Min                                                                                                                        | -0.60                 | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.60               | -0.60                                              |                                                           |                                                              |                                                                                                                               |                    |
| Norr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nal to Ridge                                                                                                                                                                                                                                                                                        | e, C <sub>p</sub>                                                                                                      | Мах                                                                                                                        | -0.60                 | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.60               | -0.60                                              |                                                           |                                                              |                                                                                                                               |                    |
| Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Coefficie                                                                                                                                                                                                                                                                                        | ent                                                                                                                    | Min                                                                                                                        | -1.08                 | -1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.59               | -0.48                                              |                                                           |                                                              |                                                                                                                               |                    |
| Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | llel to Ridge                                                                                                                                                                                                                                                                                       | e, C <sub>p</sub>                                                                                                      | Max                                                                                                                        | -0.18                 | -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.18               | -0.18                                              |                                                           |                                                              |                                                                                                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     | mmary (Add                                                                                                             | Internal Pr                                                                                                                | essure q,GC           | C <sub>pi</sub> or q <sub>b</sub> GC <sub>pi</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as Necessar         | <u>v)</u>                                          |                                                           |                                                              | ĩ                                                                                                                             |                    |
| Structure Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | essure Sur                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                   |                                                    | Roof                                                      |                                                              | 1                                                                                                                             |                    |
| Structure Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ressure Sun                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                                            | W                     | alis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Normal                                             | to Ridge                                                  | Parallel I                                                   | Int                                                                                                                           | ernal              |
| Structure Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K,                                                                                                                                                                                                                                                                                                  | q,                                                                                                                     | ww                                                                                                                         | W<br>LW               | alis<br>WW + LW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Side                | Normal<br>WW                                       | to Ridge                                                  | Parallel<br>Ridge                                            | Int<br>Positive                                                                                                               | Negative           |
| Structure Pr<br>Height, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K <sub>z</sub><br>0.57                                                                                                                                                                                                                                                                              | q ,<br>22.5 psf                                                                                                        | WW<br>15.3 psf                                                                                                             | Wi<br>LW              | alls<br>WW + LW<br>28.1 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Side                | Normal<br>WW                                       | to Ridge<br>L.W                                           | Parallel<br>To Ridge                                         | Int<br>Positive<br>5.4 psf                                                                                                    | Negative           |
| Structure Po<br>Height, z<br>O ft<br>3 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>к sure Sur</u><br>К <sub>г</sub><br>0.57<br>0.57                                                                                                                                                                                                                                                 | q ,<br>22.5 psf<br>22.5 psf                                                                                            | WW<br>15.3 psf<br>15.3 psf                                                                                                 | LW                    | alls<br>WW + LW<br>28.1 psf<br>28.1 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Side                | Normal<br>WW<br>Min:                               | to Ridge<br>t.W<br>Min:                                   | Parollel<br>to Ridge<br>Min:                                 | Int<br>Positive<br>5.4 psf<br>5.4 psf                                                                                         | Negative           |
| Structure Pr<br>Height, z<br>O ft<br>3 ft<br>6 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | к <sub>z</sub><br>К <sub>z</sub><br>0.57<br>0.57<br>0.57                                                                                                                                                                                                                                            | q ,<br>22.5 psf<br>22.5 psf<br>22.5 psf                                                                                | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                                                     | Wi<br>LW              | alls<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Side                | Normal<br>WW<br>Min:<br>0.0 psf                    | to Ridge<br>(.W<br>Min:<br>-15.4 psf                      | Parallel<br>to Ridge<br>Min:<br>-21.6 psf                    | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf                                                                              | Negative           |
| Structure Pr<br>Height, z<br>0 ft<br>3 ft<br>6 ft<br>8 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K,<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                                                                                                                                                                                                          | 9 ,<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf                                                        | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                                         | Wi<br>LW              | alls<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Side                | Normal<br>WW<br>Min:<br>0.0 psf                    | to Ridge<br>LW<br>Min:<br>-15.4 psf                       | Parallel<br>to Ridge<br>Mn:<br>-21.6 psf                     | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf                                                                   | Negative           |
| Structure Pr<br>Height, z<br>O ft<br>3 ft<br>6 ft<br>8 ft<br>11 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K <sub>z</sub><br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                                                                                                                                                                                      | <i>q</i> ,<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf                                     | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                             | Wi<br>LW              | alls<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Side                | Normal<br>WW<br>Min:<br>0.0 psf                    | to Ridge<br>1.W<br>Min:<br>-15.4 psf                      | Parallei<br>to Ridge<br>Min:<br>-21.6 psf                    | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf                                                        | Negative           |
| Structure Pr           Height, z           0 ft           3 ft           6 ft           8 ft           11 ft           14 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K ,<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                                                                                                                                                                                         | <i>q</i> ,<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf                         | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                 | 2W<br>2W<br>-12.8 psf | alis<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Side<br>-17.9 psf   | Normal<br>WW<br>Min:<br>0.0 psf                    | to Ridge<br>to Ridge<br>t.W<br>Min:<br>-15.4 psf          | Parallel<br>to Ridge<br>Mm:<br>-27.6 psf                     | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf                                             | -5.4 psf           |
| Structure Pr           Height, z           0 ft           3 ft           6 ft           8 ft           11 ft           14 ft           17 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K <sub>z</sub><br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                                                                                                                                                                      | <i>q</i> ,<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>23.1 psf             | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.7 psf                         | W/<br>LW<br>-12.8 psf | alis<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Side<br>-17.9 psf   | Normal<br>WW<br>Min:<br>0.0 psf                    | to Ridge<br>t.W<br>Min:<br>-15.4 psf                      | Parallel<br>to Ridge<br>NMn:<br>-24.6 psf                    | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf                                  | -5.4 psf           |
| Structure Pr           Height, z           0 ft           3 ft           6 ft           8 ft           11 ft           14 ft           17 ft           19 ft           22 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | κ         κ           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.52         0.62                             | <i>q</i> ,<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>23.1 psf<br>23.1 psf<br>24.1 psf | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.7 psf<br>16.4 psf                         | W4<br>LW<br>-12.8 psf | alis<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.2 psf<br>29.2 psf<br>20.2 psf<br>2 | Side<br>-17.9 psf   | Normal<br>WW<br>Min:<br>0.0 psf                    | Min:<br>-15.4 psf                                         | Parallel<br>to Ridge<br>Nrn:<br>-21.6 psf                    | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf                       | -5.4 psf           |
| Structure Pr           Height, z           0 ft           3 ft           6 ft           8 ft           11 ft           14 ft           17 ft           19 ft           22 ft           5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | κ         κ           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.57         0.57           0.56         0.62           0.64         0.64 | <i>q</i> ,<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>23.1 psf<br>24.1 psf<br>25.0 pcf | WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.7 psf<br>16.4 psf<br>17.0 psf<br>17.6 psf | W/<br>LW<br>-12.8 psf | alis<br>WW + LW<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.1 psf<br>28.2 psf<br>29.2 psf<br>29.9 psf<br>29.0 psf<br>29.4 pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Side<br>-17.9 psf   | Normal<br>WW<br>Min:<br>0.0 psf<br>Max:<br>9.1 psf | to Ridge<br>t.W<br>Min:<br>-15.4 psf<br>Max:<br>-15.4 psf | Parallei<br>to Ridge<br>Nfn:<br>-21.6 psf<br>Mak:<br>-46 psf | Int<br>Positive<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf<br>5.4 psf | -5.4 psf           |

Page 1 of 1

| Time N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATE                                                                                                                                                                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       | MWF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>RS Wind</b> L<br>ASCE 7-10                                                                  | oads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |                                                              | Job No:<br>Designer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jason Stra                                                            | uss            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAT                                                                                                                                                                                                                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes:                                                                                                                                                                                                                                                                                                                | <i>Enclosed</i><br>Gym East-V                                                                                                                                                                         | & Partially E<br>Vest Directio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nclosed Bui<br>n                                                                               | ldings of Ali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heights                                                          |                                                              | Checker:<br>Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prof. Tao,<br>10/20/201                                               | Van Dess<br>.9 |
| Basic Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | neters                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Risk Categor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rv                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 01                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 1.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                     |                |
| Basic Wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Speed, V                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 134 mph                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Figure 26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-1A                                                                  |                |
| Wind Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tionality Fac                                                                                                                                                                                                                                                                                                            | tor, Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-1                                                                   |                |
| Exposure Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ategory                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | в                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Section 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7                                                                   |                |
| Topographic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c Factor, K.                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Section 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.8                                                                   |                |
| Gust Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factor, G or                                                                                                                                                                                                                                                                                                             | G,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       | 0.850                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Section 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.9                                                                   |                |
| Enclosure C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lassification                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       | Enclosed                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Section 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.10                                                                  |                |
| Internal Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ssure Coeff                                                                                                                                                                                                                                                                                                              | icient, GC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       | +/-0.18                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11-1                                                                  |                |
| Terrain Expo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | osure Const                                                                                                                                                                                                                                                                                                              | ant, α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                       | 7.0                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                    |                |
| Terrain Expo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | osure Const                                                                                                                                                                                                                                                                                                              | ant, z <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       | 1,200 ft                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                    |                |
| Wall Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure Coefficie                                                                                                                                                                                                                                                                                                            | <u>ents</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Windward V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wall Width,                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       | 61 ft                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Side Wall W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vidth, L                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 42 ft                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| L/B Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 0.69                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Windward V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wall Coeffic                                                                                                                                                                                                                                                                                                             | ient, C <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       | 0.80                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Figure 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4-1                                                                  |                |
| Leeward Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all Coefficie                                                                                                                                                                                                                                                                                                            | nt, C <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       | -0.50                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Figure 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4-1                                                                  |                |
| Side Wall Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oefficient, C                                                                                                                                                                                                                                                                                                            | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       | -0.70                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Figure 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4-1                                                                  |                |
| Roof Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure Coeffici                                                                                                                                                                                                                                                                                                             | ents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Roof Slope,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | θ                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 45.0*                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Median Roc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of Height, h                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       | 28 ft                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                |
| Velocity Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essure Expo                                                                                                                                                                                                                                                                                                              | sure Coef., I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (n                                                                                                                                                                                                                                                                                                                    | 0.68                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-1                                                                   |                |
| Velocity Pre<br>Velocity Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essure Expo<br>essure, q <sub>h</sub>                                                                                                                                                                                                                                                                                    | sure Coef., H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (n                                                                                                                                                                                                                                                                                                                    | 0.68<br>26.8 psf                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.3<br>Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1                                                         |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | essure Expo<br>essure, q <sub>h</sub>                                                                                                                                                                                                                                                                                    | sure Coef., H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | κ <sub>n</sub>                                                                                                                                                                                                                                                                                                        | 0.68<br>26.8 psf<br>0.66                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.3<br>Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1                                                         |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | essure Expo<br>essure, q <sub>h</sub><br>Roof Area                                                                                                                                                                                                                                                                       | sure Coef., H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (n                                                                                                                                                                                                                                                                                                                    | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup>                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.:<br>Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1                                                         |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward &<br>Roof Area V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft                                                                                                                                                                                                                                                       | sure Coef., H<br>of WW Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6n<br>e                                                                                                                                                                                                                                                                                                               | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup>                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                |                                                              | Table 27.:<br>Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1                                                         |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward B<br>Roof Area V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Within 14 ft</u><br><i>Location</i>                                                                                                                                                                                                                             | sure Coef., H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>Min/Max                                                                                                                                                                                                                                                                                                          | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>Horiz i                                                                                                                         | Distance From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Windward                                                                                     | d Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ]                                                                |                                                              | Table 27.3<br>Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1                                                         |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward F<br>Roof Area V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Within 14 ft</u><br>Location                                                                                                                                                                                                                                    | of WW Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e<br>Min/Max                                                                                                                                                                                                                                                                                                          | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br><i>Horiz I</i><br>0 ft                                                                                                          | Distance From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Windward<br>28 ft                                                                            | d Edge<br>55 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.:<br>Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1                                                         |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward F<br>Roof Area V<br>Windwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Within 14 ft</u><br><i>Location</i><br>ard Roof Co                                                                                                                                                                                                              | of WW Edge<br>efficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e<br>Min/Max<br>Min                                                                                                                                                                                                                                                                                                   | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0 ft<br>0.00                                                                                                            | Distance From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Windward<br>28 ft<br>0.00                                                                    | <i>d Edge</i><br>55 ft<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                              | Table 27.3<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>.4-1                                                 |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward F<br>Roof Area V<br>Windwa<br>Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Co<br>mal to Ridg                                                                                                                                                                                                      | of WW Edge<br>efficient<br>e, Cp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a<br>Min/Max<br>Min<br>Max                                                                                                                                                                                                                                                                                            | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br><i>Horiz I</i><br>0 ft<br>0.00<br>0.37                                                                                          | Distance Fro<br>14 ft<br>0.00<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m Windward<br>28 ft<br>0.00<br>0.37                                                            | <i>f Edge</i><br>55 ft<br>0.00<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                              | Table 27.<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-1<br>27.3-1<br>.4-1                                                 |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward f<br>Roof Area V<br>Windwa<br>Nor<br>Leewaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Co<br>mal to Ridg<br>rd Roof Coe                                                                                                                                                                                       | of WW Edge<br>efficient<br>e, Cp<br>ifficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>Min/Mox<br>Min<br>Max<br>Min                                                                                                                                                                                                                                                                                     | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60                                                                                                   | Distance From<br>14 ft<br>0.00<br>0.37<br>-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60                                                   | <i>d Edge</i><br>55 ft<br>0.00<br>0.37<br>-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>.4-1                                                 |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward B<br>Roof Area V<br>Windwa<br>Nori<br>Leewar<br>Nori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Within 14 ft</u><br><i>Location</i><br>ard Roof Co<br>rmal to Ridg<br>rd Roof Coe<br>rmal to Ridg                                                                                                                                                               | of WW Edge<br>efficient<br>e, C <sub>p</sub><br>fficient<br>e, C <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>Min/Mox<br>Min<br>Max<br>Min<br>Max                                                                                                                                                                                                                                                                              | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60                                                                                          | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60                                          | <i>d Edge</i><br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                              | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>.4-1                                                 |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward B<br>Roof Area V<br>Windwa<br>Norn<br>Leewar<br>Norn<br>Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Within 14 ft</u><br><i>Location</i><br>ard Roof Co<br>rmal to Ridg<br>of Roof Coe<br>frmal to Ridg                                                                                                                                                              | of WW Edge<br>efficient<br>e, C <sub>p</sub><br>fficient<br>e, C <sub>p</sub><br>ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e<br>Min/Mox<br>Min<br>Max<br>Min<br>Max<br>Min                                                                                                                                                                                                                                                                       | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03                                                                                 | Distance From<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56                                 | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                              | Table 27.<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-1<br>27.3-1<br>.4-1                                                 |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windwa<br>Nori<br>Leewa<br>Nori<br>Ro<br>Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Co<br>mal to Ridg<br>rd Roof Coe<br>mal to Ridg<br>oof Coefficie<br>allel to Ridg                                                                                                                                      | of WW Edge<br>efficient<br>e, Cp<br>fficient<br>e, Cp<br>ent<br>e, Cp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Max                                                                                                                                                                                                                                                                       | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br><i>Horiz</i><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18                                                        | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18                        | <i>J Edge</i><br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.43<br>-0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                              | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>4-1                                                  |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windwa<br>Nori<br>Leewar<br>Nori<br>Rc<br>Pare<br>Structure P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Althin 14 ft<br/>Location</u><br>ard Roof Coe<br>mal to Ridg<br>ord Roof Coefficie<br>allel to Ridg<br>Pressure Sur                                                                                                                                             | of WW Edg<br>of WW Edg<br>efficient<br>$e, C_p$<br>ifficient<br>$e, C_p$<br>ant<br>$e, C_p$<br>mmary (Ada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max                                                                                                                                                                                                                                                                | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br><i>Horiz i</i><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q.Gi                                       | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>C <sub>p1</sub> or q <sub>h</sub> GC <sub>p1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessai         | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                              | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>4-1                                                  |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward<br>Nori<br>Leewar<br>Nori<br>Ro<br>Pare<br>Structure P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br><u>Nithin 14 ft</u><br><i>Location</i><br>ard Roof Co-<br>mal to Ridg<br>rd Roof Coe<br>mal to Ridg<br>poof Coefficie<br>allel to Ridg<br><b>Pressure Sur</b>                                                                                                      | sure Coef., I<br>of WW Edge<br>efficient<br>$e, C_p$<br>fficient<br>$e, C_p$<br>ent<br>$e, C_p$<br>mmary (Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max                                                                                                                                                                                                                                                                | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q.G                                                          | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>C <sub>pt</sub> or q <sub>h</sub> GC <sub>pt</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Windwar<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar          | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.43<br>-0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Roof                                                             |                                                              | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>4-1                                                  | _              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Norri<br>Leewar<br>Norri<br>Ro<br>Para<br>Structure P<br>Height, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Co-<br>mal to Ridg<br>rd Roof Coe<br>mal to Ridg<br>coof Coefficie<br>allel to Ridg<br>Pressure Sure<br>K.                                                                                                             | sure Coef., F<br>of WW Edge<br>efficient<br>e, $C_p$<br>fflcient<br>e, $C_p$<br>ent<br>e, $C_p$<br>mmary (Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max                                                                                                                                                                                                                                                                | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gt                                                         | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>C <sub>pl</sub> or q <sub>h</sub> GC <sub>pl</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Windwara<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar         | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.18<br>-0.01<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.03<br>-0.02<br>-0.03<br>-0.02<br>-0.03<br>-0.03<br>-0.04<br>-0.04<br>-0.04<br>-0.18<br>-0.02<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.55<br>-0.55<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0. | Roof<br>to Ridge                                                 | Paraliei                                                     | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>4-1                                                  | _              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Norr<br>Leewar<br>Norr<br>Roof<br>Pare<br>Structure P<br>Height, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Lacation</i><br>ard Roof Co-<br>rmal to Ridg<br>rd Roof Coe<br>rmal to Ridg<br>Doof Coefficie<br>allel to Ridg<br>Pressure Sure<br>K r                                                                                                          | of WW Edge<br>efficient<br>e, C <sub>p</sub><br>fficient<br>e, C <sub>p</sub><br>ent<br>e, C <sub>p</sub><br>ent<br>e, C <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Hinternal Pr<br>WWW                                                                                                                                                                                                                                         | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br><i>Horiz</i> 1<br><i>0 ft</i><br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,GH<br><i>W</i>                                         | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>C <sub>p1</sub> or q <sub>b</sub> GC <sub>p2</sub><br>alls<br>WW + LW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m Windwara<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>ww<br>Normal<br>WW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roof<br>to Ridge<br>LW                                           | Parallei<br>to Ridge                                         | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>.4-1<br><u>ternal</u><br><u>Negativo</u>             | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward<br>Norn<br>Leewar<br>Norn<br>Ro<br>Ro<br>Pare<br>Structure P<br>Height, z<br>Oft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Coo<br>mal to Ridg<br>rd Roof Cooffici<br>allel to Ridg<br>Pressure Sure<br>K,<br>0,57                                                                                                                                 | of WW Edge<br>efficient<br>e, C <sub>p</sub><br>ffficient<br>e, C <sub>p</sub><br>ent<br>e, C <sub>p</sub><br>ent<br>e, C <sub>p</sub><br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>WW<br>15.3 psf                                                                                                                                                                                                                               | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gl              | Distance Fro)<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>C <sub>pl</sub> or q <sub>h</sub> GC <sub>pl</sub><br>difs<br>WW + LW<br>26.6 psf<br>-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side          | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.43<br>-0.18<br>ww<br>ww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Roof<br>to Ridge<br>LW                                           | Paraliei<br>to Ridge                                         | Table 27.:<br>Equation<br>Figure 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1<br>27.3-1<br>.4-1<br><u>ternal</u><br><u>Negative</u>             |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward V<br>Norr<br>Roof Area V<br>Norr | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Coo<br>mal to Ridg<br>ord Roof Coo<br>f Coefficie<br>allel to Ridg<br>Pressure Sur<br>K <sub>x</sub><br>0.57<br>0.57                                                                                                   | sure Coef., I<br>of WW Edge<br>efficient<br>$e, C_p$<br>efficient<br>$e, C_p$<br>ent<br>$e, C_p$<br>mmary (Adc<br>$q_z$<br>22.5 psf<br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>WW<br>15.3 psf<br>15.3 psf                                                                                                                                                                                                                   | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gft<br><i>W</i><br><i>LW</i>                   | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>C <sub>p1</sub> or q <sub>h</sub> GC <sub>p3</sub><br>alls<br>WW + LW<br>26.6 psf<br>26.6 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar         | <i>d Edge</i><br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br><u>vy</u><br><u>Normal</u><br><u>WW</u><br>Min:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roof<br>to Ridge<br>LW<br>Min:                                   | Paraliei<br>to Ridge<br>Mai:                                 | Table 27.:<br>Equation<br>Figure 27<br>Positive<br>4.8 psf<br>4.8 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-1<br>27.3-1<br>.4-1                                                 | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Norri<br>Leewar<br>Norri<br>Rc<br>Pare<br>Structure P<br>Helght, z<br>0 ft<br>2 ft<br>3 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Althin 14 ft<br><i>Location</i><br>ard Roof Coe<br>mal to Ridg<br>of Coefficie<br>allel to Ridg<br>Pressure Sur<br>K,<br>0.57<br>0.57                                                                                                                              | sure Coef., I<br>of WW Edg<br>efficient<br>$e, C_p$<br>fficient<br>$e, C_p$<br>ant<br>$e, C_p$<br>mmary (Adc<br>$q_z$<br>22.5 psf<br>22.5 psf<br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A Min/Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>WW<br>15.3 psf<br>15.3 psf                                                                                                                                                                                                                                    | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gl<br><i>W</i><br><i>LW</i>           | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>C <sub>p1</sub> or q <sub>L</sub> GC <sub>p1</sub><br>ails<br>WW + LW<br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m Windwar<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side  | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>ww<br>Normal<br>WW<br>Min:<br>0.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf                      | Paraliei<br>to Ridge<br>Mn:<br>-24.3 tof                     | Table 27.:<br>Equation<br>Figure 27<br>Positive<br>4.8 psf<br>4.8 psf<br>4.8 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-1<br>27.3-1<br>.4-1<br>.≥ Negative                                  |                |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Norri<br>Leewar<br>Norri<br>Ro<br>Para<br>Structure P<br>Helght, z<br>0 ft<br>2 ft<br>3 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Coe<br>mal to Ridg<br>rd Roof Coefficie<br>allel to Ridg<br><b>Pressure Sur</b><br><b>K</b> ,<br>0.57<br>0.57<br>0.57                                                                                                  | sure Coef., I<br>of WW Edge<br>efficient<br>$e, C_p$<br>fficient<br>$e, C_p$<br>ant<br>$e, C_p$<br>mmary (Add<br>$q_z$<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>UNW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                                                                                                                                                             | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gf<br>&                  | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>C <sub>p1</sub> or q <sub>h</sub> GC <sub>p1</sub><br>WW + LW<br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Windwar<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessa<br>Side   | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>-0.18<br>WW<br>Normal<br>WW<br>Nin:<br>0.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf                      | Paraliei /<br>to Ridge<br>Mn:<br>-28.3 psf                   | Table 27.3<br>Equation<br>Figure 27<br>Positive<br>4.8 psf<br>4.8 psf<br>4.8 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-1<br>27.3-1<br>4-1<br>Negative                                      | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward Roof Area V<br>Windward Windward<br>Norn<br>Leewar<br>Norn<br>Roc<br>Para<br>Structure P<br>Height, z<br>O ft<br>2 ft<br>5 ft<br>7 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Lacation</i><br>ard Roof Co-<br>rmal to Ridg<br>of Coefficie<br>allel to Ridg<br><b>Pressure Sure</b><br><b>K</b> ,<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                                     | of WW Edge<br>efficient<br>e, C <sub>p</sub><br>fficient<br>e, C <sub>p</sub><br>ent<br>e, C <sub>p</sub><br>ent<br>e, C <sub>p</sub><br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf<br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>US.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                                                                                                                                            | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br><i>Horiz I</i><br><i>0 ft</i><br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gl                                | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>C <sub>pt</sub> or q <sub>h</sub> GC <sub>pt</sub><br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf<br>26.6 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Windwara<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>WW<br>Normal<br>WW<br>Min:<br>0.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf                      | Parallel<br>to Ridge<br>M(n:<br>-28.3 psf                    | Table 27.:<br>Equation<br>Figure 27<br>Positive<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-1<br>27.3-1<br>4-1<br><u>ternal</u><br><u>Negativa</u>              | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward V<br>Norn<br>Leewar<br>Norn<br>Ro<br>Pare<br>Structure P<br>Height, z<br>0 ft<br>2 ft<br>3 ft<br>7 ft<br>9 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Co<br>mal to Ridg<br>of Coefficie<br>allel to Ridg<br><b>Pressure Sur</b><br><i>K</i> ,<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                                | sure Coef., I<br>of WW Edge<br>efficient<br>e, C <sub>p</sub><br>ffficient<br>e, C <sub>p</sub><br>mmary (Add<br>q z<br>22.5 psf<br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                                                                                                                                        | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 .00<br>0.37<br>-0.60<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gt<br><i>W</i> | Distance Fro)<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>Cpt or qhGCpt<br>26.6 psf<br>26.6 p | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side          | <i>d Edge</i><br>55 ft<br>0.00<br>0.37<br>-0.00<br>-0.043<br>-0.18<br><i>Normal</i><br><i>WW</i><br>Min:<br>0.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf                      | Parallel<br>to Ridge<br>Mn:<br>-28.3 psf                     | Table 27.<br>Equation<br>Figure 27<br>Positive<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1<br>27.3-1<br>.4-1<br><u>ternal</u><br><u>Negative</u><br>-4.8 psf | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Windward V<br>Windward V<br>Norn<br>Leewar<br>Norn<br>Ro<br>Para<br>Structure P<br>Height, z<br>O ft<br>2 ft<br>3 ft<br>7 ft<br>9 ft<br>10 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Co-<br>mal to Ridg<br>of Coefficie<br>allel to Ridg<br>Pressure Sur<br><i>K</i> ,<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                                              | sure Coef., I<br>of WW Edg<br>efficient<br>e, C,<br>e, C,<br>fficient<br>e, C,<br>e, C,<br>ent<br>e, C,<br>ent<br>e, C,<br>ent<br>e, C,<br>ent<br>e, C,<br>ent<br>e, C,<br>ent<br>e, C,<br>ficient<br>e, C,<br>ent<br>e, C,<br>ficient<br>e, C,<br>ent<br>e, C,<br>ficient<br>e, C,<br>ent<br>e, C,<br>ficient<br>e, C,<br>ent<br>e, C,<br>ficient<br>e, C,<br>fic | A Min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>WW<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf<br>15.3 psf                                                                                                                                              | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gt<br><i>W</i><br><i>LW</i>               | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>Cpt or qLGCpt<br>26.6 psf<br>26.6 psf   | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side | <i>d Edge</i><br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br><i>ww</i><br><i>Normal</i><br><i>ww</i><br>Min:<br>0.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf                      | Parallei<br>To Ridge<br>M(n:<br>-24.3 psf                    | Table 27.<br>Equation<br>Figure 27<br>Figure 27<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf<br>4.8 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-1<br>27.3-1<br>.4-1<br><u>kernal</u><br><u>Negativo</u><br>-4.8 psf | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Windward I<br>Norr<br>Rc<br>Para<br>Structure P<br>Height, z<br>0 ft<br>2 ft<br>3 ft<br>5 ft<br>7 ft<br>9 ft<br>10 ft<br>12 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Within 14 ft<br><i>Location</i><br>ard Roof Coo<br>mal to Ridg<br>ord Roof Coo<br>foo f Coefficie<br>allel to Ridg<br>of Coefficie<br>allel to Ridg<br><b>ressure Sur</b><br><i>K</i> <sub>z</sub><br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57 | sure Coef., I<br>of WW Edg<br>efficient<br>e, C <sub>p</sub><br>fficient<br>e, C <sub>p</sub><br>ant<br>e, C <sub>p</sub><br>$q_{z}$<br>22.5 psf<br>22.5 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A min/Max<br>Min/Max<br>Min<br>Max<br>Min<br>Max<br>Internal Pr<br>WW<br>15.3 psf<br>15.3 psf                                                                                                 | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>essure q,Gl<br><i>W</i><br><i>LW</i>       | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>Cpt or qLGCgi<br>26.6 psf<br>26.6 ps | m Windward<br>28 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessan<br>Side | / Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br>WW<br>Normal<br>WW<br>Min:<br>0.0 psf<br>Max:<br>8.4 ccf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf                      | Parallel<br>to Ridge<br>Mn:<br>-24.3 bsf<br>Max:             | Table 27.<br>Equation<br>Figure 27<br>Figure 27<br>4.8 psf<br>4.8 psf4.8 psf<br>4.8 psf     | 3-1<br>27.3-1<br>.4-1<br><u>≥ Negative</u><br>-4.8 psf                | 2              |
| Velocity Pre<br>Velocity Pre<br>h/L Ratio<br>Windward I<br>Roof Area V<br>Windward Norr<br>Rec<br>Pare<br>Structure P<br>Helght, z<br>O ft<br>2 ft<br>3 ft<br>5 ft<br>7 ft<br>10 ft<br>12 ft<br>14 ft<br>16 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | essure Expo<br>essure, q <sub>h</sub><br>Roof Area<br>Althin 14 ft<br><i>Location</i><br>ard Roof Coe<br>mal to Ridg<br>of Coefficie<br>allel to Ridg<br><b>Pressure Sur</b><br><b>K</b> <sub>x</sub><br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57<br>0.57                                                    | sure Coef., I           of WW Edg           efficient           e, Cp.           fficient           e, Cp.           mmary (Adc           q z           22.5 psf           22.7 psf           22.7 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A min/Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Min<br>Max<br>Hinternal Pr<br>15.3 psf<br>15.3 psf | 0.68<br>26.8 psf<br>0.66<br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft <sup>2</sup><br>0 ft<br>0.00<br>0.37<br>-0.60<br>-0.60<br>-1.03<br>-0.18<br>essure q,GI<br><i>W</i><br><i>LW</i>           | Distance Fro<br>14 ft<br>0.00<br>0.37<br>-0.60<br>-1.03<br>-0.18<br>Cpt or qLGCpt<br>26.6 psf<br>26.6 psf<br>26.8 ps | m Windwar<br>28 ft<br>0.00<br>-0.60<br>-0.60<br>-0.56<br>-0.18<br>as Necessar<br>Side          | d Edge<br>55 ft<br>0.00<br>0.37<br>-0.60<br>-0.43<br>-0.18<br><b>V</b><br><b>Normal</b><br><b>WW</b><br>Min:<br>0.0 psf<br>Max:<br>8.4 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roof<br>to Ridge<br>LW<br>Min:<br>-13.6 psf<br>Max:<br>-13.6 psf | Parallel<br>to Ridge<br>Nfn:<br>-28.3 psf<br>Max:<br>-41 psf | Table 27.:<br>Equation<br>Figure 27<br>Figure 27<br>4.8 psf<br>4.8 ps | 3-1<br>27.3-1<br>4-1<br>• Negative<br>                                | 2              |

Page 1 of 1


|    | Wind Loads East-West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|    | Use ASCE 7-10 Table 27.6-2 to confirm answers<br>Windward roof pressure<br>V=130mph Exposure C h=40ft $\Rightarrow$ p=-69psf, 20psf<br>V=140mph Exposure C h=40ft $\Rightarrow$ p=-8.0psf, 23.1psf<br>V=130mph Exposure C h=50ft $\Rightarrow$ p=-7.2psf, 20.9psf<br>V=140mph Exposure C h=50ft $\Rightarrow$ p=-8.4psf, 23.1psf<br>Leeward roof pressure<br>V=130mph Exposure C h=40ft $\Rightarrow$ p=-26.5psf, -12.7psf<br>V=140mph Exposure C h=40ft $\Rightarrow$ p=-30.7psf, -14.7psf<br>V=130mph Exposure C h=50ft $\Rightarrow$ p=-27.8psf, -13.3psf<br>V=140mph Exposure C h=50ft $\Rightarrow$ P=-32.2psf, -15.4psf |                  |
| 0  | to convert Exposure C values to exposure B values, multiply<br>values by adjustment factor. (0.729 for h=40ft and 0.741 for h=5<br>windward roof pressure<br>Exposure B V=130mph h=40ft $\Rightarrow$ p=-5.03, 14.58 > -5.35, 15.48<br>Exposure B V=140mph h=40ft $\Rightarrow$ p=-5.83, 16.84<br>Exposure B V=130mph h=50ft $\Rightarrow$ p=-5.34, 15.49<br>Exposure B V=140mph h=50ft $\Rightarrow$ p=-6.22, 17.12<br>Leeward roof pressure<br>Exposure B V=130mph h=40ft $\Rightarrow$ p=-19.32, -9.26 > -20.54, -9.84<br>Exposure B V=140mph h=40ft $\Rightarrow$ p=-22.38 -10.22                                         | o <del>(</del> ) |
| Q. | Exposure B $V=130$ mph $h=50ft \Longrightarrow p=-22.38, -10.72$<br>Exposure B $V=130$ mph $h=50ft \Longrightarrow p=-23.86, -11.41$<br>Linearly interpolate to find values for $V=134$ mph $h=42.1ft$<br>Uindward $p=-5.42, 15.62$ These values are slightly greater<br>Leeward $p=-20.82, -9.97$ than the manuel calculations but<br>the manuel calculations have an $h/L$<br>reduction factor that is not accounted<br>for in the table-when $h/L$ is<br>assumed to have the greatest factor,<br>manuel values match the table                                                                                             |                  |



|          |                                  |                           |                                  |                                  |                   | MWF                                                | RS Wind I   | oads          |              |           | Job No:                       |               |           |
|----------|----------------------------------|---------------------------|----------------------------------|----------------------------------|-------------------|----------------------------------------------------|-------------|---------------|--------------|-----------|-------------------------------|---------------|-----------|
| )        |                                  | ATT                       | TC                               | ASCE 7-10                        |                   |                                                    |             | Designer:     | lason Straus | 5         |                               |               |           |
|          |                                  | A A A                     |                                  |                                  | Enclosed          | i & Portially                                      | Enclosed Bu | ildings of Al | l Heights    |           | Checker:                      | Prof. Tao, Va | on Dessel |
|          |                                  |                           |                                  | Notes:                           | Sanctuary         | North-South                                        | Direction   |               |              |           | Date:                         | 10/21/2019    |           |
|          |                                  |                           |                                  |                                  |                   |                                                    |             |               |              |           |                               |               |           |
|          | Basic Paran                      | neters                    |                                  |                                  |                   |                                                    |             |               |              |           | Table 1 E 1                   |               |           |
|          | Risk Catego                      | ry<br>Speed V             |                                  |                                  | 124 mph           |                                                    |             |               |              |           | Figure 26 5                   | 14            |           |
|          | Mind Diroc                       | speeu, v<br>tionality Ear | etor K.                          |                                  | 0.85              |                                                    |             |               |              |           | Table 26.6-1                  |               |           |
|          | Exposure C                       | atogory                   |                                  |                                  | B.05              |                                                    |             |               |              |           | Section 26.7                  | ,             |           |
|          | Topographi                       | c Eactor, K.              |                                  |                                  | 1.00              |                                                    |             |               |              |           | Section 26.8                  |               |           |
|          | Gust Effect                      | Factor, G o               | r Ge                             |                                  | 0.850             |                                                    |             |               |              |           | Section 26.9                  | )             |           |
|          | Enclosure C                      | lassification             | 1                                |                                  | Enclosed          |                                                    |             |               |              |           | Section 26.1                  | .0            |           |
|          | Internal Pre                     | ssure Coeff               | ficient, GC <sub>ni</sub>        |                                  | +/-0.18           |                                                    |             |               |              |           | Table 26.11-                  | -1            |           |
|          | Terrain Exp                      | osure Const               | tant, α                          |                                  | 7.0               |                                                    |             |               |              |           | Table 26.9-1                  | L             |           |
|          | Terrain Exp                      | osure Const               | tant, z <sub>e</sub>             |                                  | 1,200 ft          |                                                    |             |               |              |           | Table 26.9-1                  | L             |           |
|          | Wall Press                       | ure Coeffici              | ents                             |                                  |                   |                                                    |             |               |              |           |                               |               |           |
|          | Windward '                       | Wall Width,               | В                                |                                  | 58 ft             |                                                    |             |               |              |           |                               |               |           |
|          | Side Wall W                      | √idth, L                  |                                  |                                  | 95 ft             |                                                    |             |               |              |           |                               |               |           |
|          | L/B Ratio                        |                           |                                  |                                  | 1.62              |                                                    |             |               |              |           |                               |               |           |
|          | Windward                         | Wall Coeffic              | ient, C <sub>p</sub>             |                                  | 0.80              |                                                    |             |               |              |           | Figure 27.4-                  | 1             |           |
|          | Leeward W                        | all Coefficie             | nt, Cp                           |                                  | -0.38             |                                                    |             |               |              |           | Figure 27.4-                  | 1             |           |
|          | Side Wall C                      | oefficient, C             | -p                               |                                  | -0.70             |                                                    |             |               |              |           | Figure 27.4-                  | 1             |           |
|          | Roof Press                       | ure Coeffici              | ents                             |                                  |                   |                                                    |             |               |              |           |                               |               |           |
|          | Roof Slope,                      | 0                         |                                  |                                  | 0.0*              |                                                    |             |               |              |           |                               |               |           |
|          | Median Roof Height, h            |                           |                                  | ,                                | 42 ft             |                                                    |             |               |              |           | Table 27.2.1                  |               |           |
| 2-107 Ta | Velocity Pro                     | issure Expo:              | sure coer., r                    | h                                | 0.77<br>20.2 pcf  |                                                    |             |               |              |           | Fountion 27                   | 21            |           |
| (°       | b/l Patio                        | 2ssure, q <sub>h</sub>    |                                  |                                  | 50.2 psi          |                                                    |             |               |              |           | Equation 27                   | .J-1          |           |
|          | Windward                         | Roof Area                 |                                  |                                  | 0.45              |                                                    |             |               |              |           |                               |               |           |
|          | Roof Area \                      | Mithin 21 ft              | of WW Edg                        | a                                | O ft <sup>2</sup> |                                                    |             |               |              |           |                               |               |           |
|          |                                  | Location                  |                                  | Adin /Aday                       | Horiz             | Distance Fro                                       | m Windwar   | d Edge        | ]            |           |                               |               |           |
|          |                                  | Locution                  |                                  | IVINI IVIUA                      | 0 ft              | 21 ft                                              | 42 ft       | 84 ft         |              |           |                               |               |           |
|          | Windwa                           | ard Roof Cor              | efficient                        | Min                              | -0.90             | -0.90                                              | -0.50       | -0.30         |              |           | Figure 27.4-                  | 1             |           |
|          | Nor                              | mai to Ridge              | e, C <sub>p</sub>                | Max                              | -0.18             | -0.18                                              | -0.18       | -0.18         |              |           |                               |               |           |
|          | Leewa                            | rd Roof Coe               | fficient                         | Min                              | -0.90             | -0.90                                              | -0.50       | -0.30         |              |           |                               |               |           |
|          | Nor                              | mal to Ridge              | e, Cp                            | Max                              | -0.18             | -0.18                                              | -0.18       | -0.18         |              |           |                               |               |           |
|          | Ro                               | oof Coefficie             | ent                              | Min                              | -0.90             | -0.90                                              | -0.50       | -0.30         |              |           |                               |               |           |
|          | Para                             | allel to Ridge            | e, C <sub>p</sub>                | Max                              | -0.18             | -0.18                                              | -0.18       | -0.18         | 1            |           |                               |               |           |
|          | Structure P                      | ressure Sur               | mmary (Add                       | Internal Pr                      | essure q,G        | C <sub>ei</sub> or g <sub>b</sub> GC <sub>ei</sub> | as Necessa  | ry)           |              |           |                               |               |           |
|          |                                  |                           |                                  |                                  |                   |                                                    |             |               | Roof         |           | ]                             |               |           |
|          | Height 7                         | ĸ                         | 0                                |                                  | W                 | alls                                               |             | Normal        | to Ridge     | Parallel  | Inte                          | rnal          |           |
|          | riciging 2                       |                           | 47                               | ww                               | LW                | WW+LW                                              | Side        | ww            | LW           | to Ridge  | Positive                      | Negative      |           |
|          | Oft                              | 0.57                      | 22.5 psf                         | 15.3 psf                         |                   | 24.9 psf                                           |             |               |              |           | 5.4 pst                       |               |           |
|          | 6 ft                             | 0.57                      | 22.5 psf                         | 15.3 psf                         |                   | 24.9 pst                                           |             | Min:          | Min:         | Min:      | 5.4 pst                       |               |           |
|          | 11 ft                            | 0.57                      | 22.5 pst                         | 15.3 pst                         |                   | 24.9 pst                                           |             | -23.1 pst     | -23.1 ps     | -23.1 psr | 5.4 pst                       |               |           |
|          | 1/11                             | 0.60                      | 23.3 psf                         | 15.8 pst                         |                   | 25.4 psr<br>26.8 ncf                               |             |               |              |           | 5.4 pst                       |               |           |
|          | 23 IL<br>28 ft                   | 0.69                      | 25.5 pst                         | 18.3 nef                         | -9.6 psf          | 27.9 pcf                                           | -17.9 nsf   |               |              |           | 5.4 psf                       | -5.4 psf      |           |
|          | 1 4010                           | 0.73                      | 28.4 pst                         | 19.3 psf                         | 210 631           | 28.9 psf                                           | 1.15 p3     |               |              |           | 5.4 psf                       |               |           |
|          | 34 ft                            |                           | 1                                |                                  |                   | 20.0                                               |             | Max           | May          | Max       | 5 A nef                       |               |           |
|          | 34 ft<br>40 ft                   | 0.76                      | 29.6 psf                         | 20.2 psf                         |                   | 29.8 psr                                           |             | IVIAA.        | Trium        | iniux.    | 1 J.4 P31                     |               |           |
|          | 34 ft<br>40 ft<br>45 ft          | 0.76                      | 29.6 psf<br>30.8 psf             | 20.2 psf<br>20.9 psf             |                   | 29.8 psr<br>30.6 psf                               |             | -4.6 psf      | -4.6 psf     | -4.6 psf  | 5.4 psf                       |               |           |
|          | 34 ft<br>40 ft<br>45 ft<br>51 ft | 0.76<br>0.79<br>0.82      | 29.6 psf<br>30.8 psf<br>31.8 psf | 20.2 psf<br>20.9 psf<br>21.7 psf |                   | 29.8 psr<br>30.6 psf<br>31.3 psf                   |             | -4.6 psf      | -4.6 psf     | -4.6 psf  | 5.4 psf<br>5.4 psf<br>5.4 psf |               |           |

.

,

15

Page 1 of 1

| Г | -                                    |                           |                       |               |                   | MWF           | RS Wind I   | oads           | 1.5          |           | Job No:                |          |
|---|--------------------------------------|---------------------------|-----------------------|---------------|-------------------|---------------|-------------|----------------|--------------|-----------|------------------------|----------|
|   |                                      | SA7T                      | <b>DI</b>             |               |                   |               | ASCE 7-10   |                |              |           | Designer: Jason Straus | s        |
|   |                                      | V V L                     |                       |               | Enclosed          | & Partially   | Enclosed Bu | ildings of All | Heights      |           | Checker: Prof. Tao, Va | n Dessel |
| L |                                      |                           |                       | Notes:        | Gym North         | -South Direc  | tion        |                |              |           | Date: 10/21/2019       |          |
|   | Davis Dava                           |                           |                       |               |                   |               |             |                |              |           |                        |          |
| Ŀ | Basic Paras                          | neters                    |                       |               | 19                |               |             |                |              |           | Table 1 5-1            |          |
|   | Risk Catego                          | Frond M                   |                       |               | 124 mph           |               |             |                |              |           | Figure 26 5-14         |          |
|   | Mind Direc                           | Speeu, v                  | stor K                |               | 0.95              |               |             |                |              |           | Table 26.6.1           |          |
|   | Evenceure C                          |                           | LLUI, Ng              |               | 0.05              |               |             |                |              |           | Section 26.7           |          |
|   | Tapageneti                           | a Costor K                |                       |               | 1.00              |               |             |                |              |           | Section 26.8           |          |
|   | Cust Effort                          | Cractor, N <sub>21</sub>  | t<br>n C              |               | 1.00              |               |             |                |              |           | Section 26.0           |          |
|   | Enclosure (                          | Tactification             | n Of                  |               | Enclosed          |               |             |                |              |           | Section 26.10          |          |
|   | Enclosure C                          | adssnuctuor               | ii<br>Ficiant CC      |               | ±/ 0.19           |               |             |                |              |           | Table 26 11-1          |          |
|   | Torrain Eve                          | essure Coeri              | tant a                |               | 70.10             |               |             |                |              |           | Table 26.9-1           |          |
| L | Terrain Exp                          | osure Consi               | tant, a               |               | 1 200 0           |               |             |                |              |           | Table 26.9-1           |          |
|   | Terrain Exp                          | osure Consi               | tant, z <sub>g</sub>  |               | 1,200 ft          |               |             |                |              |           | 14016 20.3-1           |          |
|   | Wall Press                           | ure Coeffici              | ents                  |               |                   |               |             |                |              |           |                        |          |
| L | Windward                             | Wall Width,               | В                     |               | 42 ft             |               |             |                |              |           |                        |          |
| L | Side Wall V                          | /idth, L                  |                       |               | 61 ft             |               |             |                |              |           |                        |          |
| L | L/B Ratio                            |                           |                       |               | 1.45              |               |             |                |              |           | Figure 07.4.4          |          |
| L | Windward                             | Wall Coeffic              | cient, C <sub>p</sub> |               | 0.80              |               |             |                |              |           | Figure 27.4-1          |          |
|   | Leeward W                            | all Coefficie             | ent, C <sub>p</sub>   |               | -0.41             |               |             |                |              |           | Figure 27.4-1          |          |
|   | Side Wall C                          | oefficient, C             | -p                    |               | -0.70             |               |             |                |              |           | Figure 27.4-1          |          |
| L | Roof Press                           | ure Coeffici              | ents                  |               |                   |               |             |                |              |           |                        |          |
| L | Roof Slope,                          | θ                         |                       |               | 0.0°              |               |             |                |              |           |                        |          |
| L | Median Ro                            | Median Roof Height, h     |                       |               | 28 ft             |               |             |                |              |           |                        |          |
| L | Velocity Pressure Exposure Coef., Kn |                           |                       | 0.68          |                   |               |             |                | Table 27.3-1 |           |                        |          |
| L | Velocity Pre                         | essure, q <sub>h</sub>    |                       |               | 26.8 psf          |               |             |                |              |           | Equation 27.3-1        |          |
| L | h/L Ratio                            |                           |                       |               | 0.45              |               |             |                |              |           |                        |          |
| L | Windward                             | Roof Area                 |                       |               | O ft²             |               |             |                |              |           |                        |          |
| L | Roof Area \                          | Within 14 ft              | of WW Edge            | 3             | 0 ft <sup>2</sup> |               |             |                |              |           |                        |          |
|   |                                      | Location                  |                       | Min/Max       | Horiz l           | Distance Fro  | m Windwar   | d Edge         |              |           |                        |          |
|   |                                      |                           |                       |               | Oft               | 14 ft         | 28 ft       | 55 ft          |              |           |                        |          |
| L | Windwa                               | ard Roof Co<br>malte Bidg | efficient             | Min           | -0.90             | -0.90         | -0.50       | -0.30          |              |           | Figure 27.4-1          |          |
| L | Nor                                  | mar to Riog               | e, c <sub>p</sub>     | Мах           | -0.18             | -0.18         | -0.18       | -0.18          |              |           |                        |          |
| L | Leewa                                | ra Roof Coe               | erricient             | win           | -0.90             | -0.90         | -0.50       | -0.30          |              |           |                        |          |
| L | Nor                                  | mai to Ridg               | e, C <sub>p</sub>     | Max           | -0.18             | -0.18         | -0.18       | -0.18          |              |           |                        |          |
| L | R                                    | of Coefficie              | ent                   | Min           | -0.90             | -0.90         | -0.50       | -0.30          |              |           |                        |          |
|   | Para                                 | allel to Ridg             | e, C <sub>p</sub>     | Max           | -0.18             | -0.18         | -0.18       | -0.18          |              |           |                        |          |
|   | Structure I                          | ressure Sur               | mmanı (Adı            | i internal Pr | essure a Gr       | or n.GC .     | as Necessar | rv)            |              |           |                        |          |
|   | Junetale r                           | 1.3301C 301               |                       | - HISSINGI FI |                   | opi of Ghoopi |             |                | Roof         |           |                        |          |
| L | Haisht -                             | ×                         |                       |               | W                 | alls          |             | Normal         | to Ridge     | Parallel  | Internal               |          |
|   | rieigin, z                           | ~2                        | 42                    | ww            | LW                | WW+LW         | Side        | ww             | LW           | to Ridge  | Positive Negative      |          |
| L | Oft                                  | 0.57                      | 22.5 psf              | 15.3 psf      |                   | 24.6 psf      |             |                |              |           | 4.8 psf                |          |
|   | 4 ft                                 | 0.57                      | 22.5 psf              | 15.3 psf      |                   | 24.6 psf      |             | Min:           | Min:         | Min:      | 4.8 psf                |          |
| L | 8 ft                                 | 0.57                      | 22.5 psf              | 15.3 psf      |                   | 24.6 psf      |             | -20.5 psf      | -20.5 psf    | -20.5 psf | 4.8 psf                |          |
|   | 12 ft                                | 0.57                      | 22.5 psf              | 15.3 psf      |                   | 24.6 psf      |             | ×              |              |           | 4.8 psf                |          |
|   | 15 ft                                | 0.58                      | 22.6 psf              | 15.4 psf      |                   | 24.7 psf      |             |                |              |           | 4.8 psf                |          |
| L | 19 ft                                | 0.62                      | 24.1 psf              | 16.4 psf      | -9.3 psf          | 25.7 psf      | -15.9 psf   |                |              |           | 4.8 psf -4.8 psf       |          |
| 1 | 23 ft                                | 0.65                      | 25.4 pst              | 17.3 psf      |                   | 26.6 psf      |             |                |              |           | 4.8 pst                |          |
|   | 27 ft                                | 0.68                      | 26.5 psf              | 18.0 psf      |                   | 27.3 psf      |             | Max:           | Max:         | Max;      | 4.8 pst                |          |
|   |                                      | 0.71                      | 27.6 psf              | 18.7 psf      |                   | 28.1 pst      |             | -4,1 pst       | -4.1 pst     | -4.1 psr  | 4.8 psr                |          |
|   | 3111                                 | 0 ===                     | 007 -                 | 10 1 1        |                   | 00            |             |                |              |           | 10                     |          |
|   | 31 ft                                | 0.73                      | 28.5 psf              | 19.4 psf      |                   | 28.7 psf      |             |                |              |           | 4.8 psf                |          |

Page 1 of 1





|    | Roof Analysis Decking                                                                                                                                                                                                                                                                                                                | 19 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| O. | DL=44.4psf<br>SL=24.5psf<br>LL=20psf or 30016 deting or 45°(DL,SL,LL)=F1<br>acting DL=31.40psf<br>Vertically SL=17.32psf<br>LL=14.14psf or 212.1316 normal<br>wL=14.5psf, -28.5psf deting normal to the root                                                                                                                         |    |
|    | $\frac{Governing Load Combinations (see excel spreadsheet)}{0.50.915psf + 01b (0+0.75L+0.75(0.6w)+0.75S)} \\ 37.925psf + 159.101b (0+0.75L+0.75(0.6w)+0.75Lr) \\ 31.4psf + 212.131b (0+Lr) \\ \hline M_{max} = 9.561b-ft = 114.771b-in \\ Smax = 0in - negligible \\ \hline M_{max} = 47.21b-ft = 566.821b-in \\ \hline \end{array}$ |    |
|    | <sup>o</sup> max = 0.005in<br>③ M <sub>max</sub> = 60.51b-ft = 726.251b-in → gauerns<br>S <sub>max</sub> = 0.006in → governs                                                                                                                                                                                                         |    |
| 0. | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                 |    |
|    | width (b)=12in depth (d)=1.125in length (L)=96in (assumed)                                                                                                                                                                                                                                                                           |    |
|    | $F_{b} = 1787 \text{ psi}$ $f_{b} = 287 \text{ psi}$ FS = 6.23<br>Solver = 0.22in Second: FS = 0.23                                                                                                                                                                                                                                  |    |
|    | Fc1=425psi fc1=15.93psi FS=27                                                                                                                                                                                                                                                                                                        |    |
|    |                                                                                                                                                                                                                                                                                                                                      |    |
| Q. |                                                                                                                                                                                                                                                                                                                                      |    |
|    |                                                                                                                                                                                                                                                                                                                                      | 1  |

|             | Roof Analysis Rafters                                                                                                                                                                                                                                                                                                                                                   | 20. |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>IO</b> . | $\begin{array}{l} DL = 44.4psf + 2.84plf \\ SL = 24.5psf \\ Lr = 20psf or 3001b \\ \end{array} \begin{array}{l} with 16in spacing, \\ DL = 62.04plf \\ Uertically \\ SL = 32.67plf \\ Lr = 26.67plf or 3001b \\ \end{array} \\ wL = 14.5psf, -28.5psf } acting normal \\ wL = 10.253psf, -20.15psf } vertical \\ wL = 10.253psf, -20.15psf } horizontal \\ \end{array}$ |     |
|             | Governing load combinations<br>() 94.71p1f+01b (D+S)<br>() 92.69p1f (vertical) + 6.15p1f (horizontal) (D+0.75L+0.75(0.6w)+0.75S)<br>() 68.19p1f+2251b (vertical) + 6.15p1f (horizontal) (D+0.75L+0.75(0.6w)+0.75Lr)<br>() 62.04p1f+3001b (vertical) (D+1r)                                                                                                              | )   |
|             |                                                                                                                                                                                                                                                                                                                                                                         |     |
|             | $\begin{array}{l} \overline{O}_{max} = 0.117 \text{ in} \\ \hline 3 \\ M_{max} = 1005.951 \text{ b-ff} = 12071.341 \text{ b-in} \\ V_{max} = 334.791 \text{ b} \\ \overline{S}_{max} = 0.132 \text{ in} \\ \hline 4 \\ M_{max} = 1032.161 \text{ b-ff} = 12,385.921 \text{ b-in} \\ V_{max} = 319.071 \text{ b} \end{array}$                                            |     |
|             | $S_{max} = 0.132 in$ $C_{D} = 1.25 \qquad C_{F} = 1.2 (for b=2in, d=Sin) \qquad C_{i} = 1.0$ $C_{+} = 1.0 \qquad (NDS \ UA) \qquad C_{r} = 1.15 (for rafters)$ $C_{L} = 1.0 \qquad (NDS \ U.3.9)$ $C_{fu} = 1.0 \qquad (NDS \ U.3.9)$                                                                                                                                   |     |
| , Č,        | width (b) = $2in depth(d) = 8in length(L) = 116.54in$<br>Fb' = 1509 psi fb = 581 psi FS = 2.6<br>Sallow = 0.32 in S = 0.13 in FS = 2.5<br>Fv' = 168.8 psi fv = 31.8 psi FS = 5.3                                                                                                                                                                                        |     |
|             |                                                                                                                                                                                                                                                                                                                                                                         |     |

|    | Roof Analysis                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Purlins                                                                                    | 21      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------|
| 0  | D+Lr from center rafte<br>Load from all other ro<br>D+S from center rat<br>Load from all other r                                                                                                                                                                                                       | r = 601.2 + 1001b case  flors = 301.21b case is the flors = 301.21b case is the flore set is the flore se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) assuming D+Lr<br>worst case<br>worst case                                              |         |
|    | Center rafter 100d=<br>All other rafters=45<br>Center rafter 100d=5<br>All other rafters=33<br>Additional sheathing<br>Self weight dead load                                                                                                                                                           | $450.11b + 1001b + 29.91b \rightarrow \\0.11b + 29.91b \rightarrow \\56.11b + 1001b + 29.91b \rightarrow \\.11b + 29.91b \rightarrow \\.11b + 29.91b \rightarrow \\.10b + 29.91b \rightarrow $ | Case ③ assuming<br>D+0.75L+0.75(0.64)+0.755<br>Case ④ assuming<br>D+0.75L+0.75(0.64)+0.75L |         |
| 0  | $ \begin{array}{c} \hline (Center = 495.8 \text{ lb}) + (All \\ \hline (Center = 395.9 \text{ lb}) + (All \\ \hline \hline (Center = 395.9 \text{ lb}) + (All \\ \hline \hline (Center = 410.11 \text{ lb}) + (All \\ \hline \hline (Center = 485.11 \text{ lb}) + (All \\ \hline \hline \end{array} $ | $Sin 45^{\circ} (D_1 L_{11} S, w)$<br>other = 213.01b) + (21.29 pl)<br>other = 325.21b) + (21.29 pl)<br>other = 339.41b) + (21.29 pl)<br>other = 255.31b) + (21.29 pl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p(f) = (0.75)(245)                                                                         | 43)<br> |
|    | $ \begin{array}{c} 0 & M_{max} = 6357.4 \ \text{Ib-} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                            | 76289 lb-in<br>96136 lb-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | > yur /                                                                                    | •       |
|    | <ul> <li>Mmax = 8322.41b-A = 1</li> <li>Vmax = 2233.21b</li> <li>Smax = 0.374in</li> <li>Mmax = 7083.21b-A =</li> </ul>                                                                                                                                                                                | 9986916-in<br>governing<br>D+0.75L+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g load combination $0.75(0.6 \text{ W}) + 0.755$                                           |         |
| Q. | $V_{max} = 1816.0$ lb<br>$S_{max} = 0.313$ in<br>$C_{b} = 1.6$ (wind) $C_{c} = 1.0$<br>$C_{n} = 1.0$ $C_{F} = 1.0$ (C<br>$C_{+} = 1.0$ $C_{fa} = 1.0$ (C<br>$C_{i} = 1.0$ $C_{r} = 1.15$                                                                                                               | F <sub>b</sub> '= 1656 psi<br>Fv'= 216 psi<br>4D) Sallow= 0.51 in<br>4D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fb=749.0psi FS=2.21<br>Fu=41.87psi FS=5.16<br>S=0.374in FS=1.36                            |         |





|   | Floor Analysis                                                                                                                                                               | Sanctuary                                                                                                                                 | Joists                                                   | 25 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----|
| 6 | Loads<br>Dead load = 3psf + 2.4psf<br>Selfweight dead load =<br>LL = 60 psf or 30016                                                                                         | 16 in s<br>=5.4psf<br>4.263p1f<br>15.71 5                                                                                                 | pacing<br>in length                                      |    |
|   | Governing load combin<br>0165.4psf (not including<br>05.4psf+3001b (not ind                                                                                                  | utions<br>self weight)(D+Lunito<br>uding self weight)(D+                                                                                  | rm)<br>L concentrated)                                   |    |
|   | () 65.4psf (16in) $(\frac{1}{12} + \frac{1}{12})$<br>() 5.4psf (16in) $(\frac{1}{12} + \frac{1}{12})$<br>() Mmon = $\frac{\omega L^2}{2}$ (91.46 plf)                        | (h)+4.263p1F=91.46p1<br>+4.263p1F+30016=11.6                                                                                              | 1F<br>5plf+ 30016                                        |    |
|   | $V_{max} = \frac{\omega L}{2} = \frac{(91.46 \text{ plf})}{(91.46 \text{ plf})}$<br>$S_{max} = \frac{5\omega L^4}{384\text{EL}} = \frac{5(91.46 \text{ plf})}{384\text{EL}}$ | $\frac{(15\sqrt{12}+1)}{2} = 2217 \text{ lb-f}$ $\frac{(15\sqrt{12}+1)}{2} = 705 \text{ lb}$ $\frac{(15\sqrt{12}+1)}{2} = 705 \text{ lb}$ | (1 = 32,606  lb - in wally                               |    |
| 0 | 2 Mmax = 149816-A = 17,9<br>Vmax = 23916<br>Smax = 0.13410                                                                                                                   | 7616-in Scenario (                                                                                                                        | B will govern                                            | 5  |
|   | $C_{0}=1.0$ (live) $C_{F}=1.0$<br>$C_{n}=1.0$ $C_{fu}=1.0$<br>$C_{+}=1.0$ $C_{i}=1.0$                                                                                        | Fb=1006.25psi Fb=<br>Fv=135.00psi fu<br>Sallow=0.51in 8=0.                                                                                | = 679.29 psi FS = 1.48<br>= 44.06 psi FS = 3.06<br>29 in |    |
|   | C <sub>L</sub> = 1.0 C <sub>r</sub> =1.15                                                                                                                                    | JOISTS are adequ                                                                                                                          | uate                                                     |    |
|   |                                                                                                                                                                              |                                                                                                                                           |                                                          | -  |
|   | The Correction of the                                                                                                                                                        |                                                                                                                                           |                                                          | M  |
| 9 | Civilian Diana                                                                                                                                                               | constant a sub                                                                                                                            |                                                          |    |
|   |                                                                                                                                                                              |                                                                                                                                           | I and the                                                |    |

| 1          | Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysis        | Sanctuary         |                | Girder               |        | 26 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|----------------|----------------------|--------|----|
|            | Loads<br>Deadloo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ad = 70516 (sp  | aced 16in) + 10ps | f+17.05plf     |                      |        |    |
| $\Box$     | liveload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carry ou        | er from MEP       | Self<br>weight |                      |        | 0  |
|            | Load co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mbinortion      |                   |                |                      |        |    |
|            | D+L =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10psf(155/12ft) | )+17.05plf+2051   | o (spaced li   | $Sin) = 17 [p]F_{t}$ | 70516  |    |
|            | Mmax=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | spacing         |                   |                |                      |        |    |
|            | Vmm=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00011           | 184,267 lb-in     |                |                      | ++++++ |    |
|            | Smax = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ). 299 in       | Fb=1035psi fi     | = 960          |                      |        |    |
|            | $C_D = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CF=1.0          | Fu'= 135psi Fu    | = 78.1051 F    | 5=1.08               |        |    |
|            | $C_n = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cfu=1.0         | Sallou=0.442 in   | 8=0.290:-      | 5-1175               |        |    |
|            | $C_{+} = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C;=1.0          |                   | 0-0.2771       |                      |        |    |
|            | C1=1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cr=1.15         |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   | 11 C           |                      |        |    |
| $\bigcirc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            | EI 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                   |                |                      |        | 1  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        | -  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
| 1 m        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |
| ~          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   | 1. A.          |                      |        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | man had been      |                |                      |        | -  |
|            | and the second s |                 |                   |                |                      |        | 1. |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                |                      |        |    |



















Foundation - Lally Sanctuary Structural 36  
Foundation - Lally Note: Plans called for bedstone facting  

$$\frac{1}{2}$$
 (1)  
 $\frac{1}{2}$  (1)  
 $\frac{1}{$ 

| <u>.</u> 2 | Foundation - Lally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sanctuary                                                                                                                                                                                                  | Bearing Capacity                                       | 37 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----|
| Ö          | $2' \int \frac{1}{2' \cdot c'} \frac{1}{2' \cdot$ | $\phi = 34^{\circ} \rightarrow N_{c} = 52.6, N_{\ell} = 36.5,$ $q_{u4} = 1.3 C' N_{c} + \sigma'_{p} N_{\ell} + 0.48' BN$ $q_{u4} = 1.3(0)(52.6) + (120 pcf)(2)$ $+ 0.4(120 pcf)(2.5f4)(39.6)$ $FS = 10.46$ | Nx=39.6<br>Nx<br>(ff)(36.5)<br>)= 13512 psf = 93.83psi |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                        |    |
| 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                        |    |
| 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                        |    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                        | 1  |

|   | Buttress Reinforcement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sanctuary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Seismic (case 1)                                                                                                                                                                                                                 | 38 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0 | According to National C<br>type portland coment mo<br>interior of the wall has<br>bed joints of 30psi wh<br>of 21.72psi. Theoretically,<br>52in possible<br>moistar<br>masohr<br>Cracking<br>fim = 1500<br>using As<br>-ehsur<br>Em = 900<br>Em, max = 1<br>C                                                                                                                                                                                                                                                                                                                                                                                                   | oncreté Masonry Associa<br>ortar used in brick masc<br>an allouable tensile stra<br>ich is greater than the<br>no reinforcement is nee.<br>poor conditions of the<br>e and neglect, lets as<br>y is beyond the modu<br>g occurs.<br>Dipsi (NCMA) - conservativ<br>SD, fm = 0.45 fm = 675 psi<br>res behavior of puttress<br>f'm (NCMA) = 1,350,000 ps<br>f'm (NCMA) = 1,350,000 ps<br>m = 675 psi<br>m = 675 ps | ation (NCMA), normal<br>omry found on the<br>ess normal to the<br>ultimate tensile stress<br>ded, but due to<br>masonry due to<br>sume the brick<br>itus of rupture and<br>e for granite masonry<br>s is elastic (stage 2)<br>si |    |
| 0 | $E_{s} = \frac{1}{2}$ $P = 107255.1b (total load of d = 52 in from left end buttress width = 2ft (2u buttress depth = 3ft (36)$ $Choose Ast = 1in^{2} => T = Fsi C = P_{t}T = 107,255.1b + 24,000$ $Through iteration, neutral C = 0.000825$ $d - 18.193in = \frac{6m}{13.193in} = \frac{0.000825}{33.807 in}$ $\therefore For Iin^{2} steel, steel$ $F_{m} = E_{m}E_{m} = 1350000psi(0.00)$ $C = \frac{1}{2}(19.193in)(24in)(60)$ $M_{n} = C (d - \frac{18.193in}{3}) = 1312551b$ $M_{u} = 174347 1b - ft \le 50244111$ $Iin^{2} steel is odequate for is adequate with d = 52in$ $Purposes, as masonry is due to eccentricity. Const to keep cracking from p$ | 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -in=5024411b-ft<br>any amount of steel<br>needed for strength<br>the reinforcement is<br>outtress.                                                                                                                               |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |    |

|    | Buttress Reinforcement Sanctuary Seismic (case 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | One way to reinforce the interior masonry without major construction<br>is to install a thin section of steel to the exterior of the brick<br>face along the height of the wall (from the truss to floor) using<br>sheer studs or steel anchors to create composite action.<br>p steel section (AISC - section I8.3a)<br>$Q_{nv} = \frac{1}{D_v} F_u Asa = \frac{1}{2.31} (60 ksi) (0.196 in^3) = 5.09 k/stud$<br>for grade 60 steel, $F_u = 60 ksi$<br>$40^v = 2.31$ for ASD<br>for lin <sup>2</sup> steel section, number of studs = AsFs = lin <sup>2</sup> (24000psi)<br>$D_v = 2.31$ for ASD<br>for lin <sup>2</sup> steel section, number of studs = AsFs = lin <sup>2</sup> (24000psi)<br>$Spacing = \frac{2274 (10^w/A1)}{54} = 36 inches (I8.2d)$<br>44 in \$36 inheight of wall below trues<br>requirements do not<br>$10^v = 10^{-2} studs are required spaced 33 inches$<br>Note: for seismic case 2, the exterior granite masonry is in tension<br>where O max is 48.47psi. Normal type portland cement used for<br>concrete masonry has an allowable tensile stress parallel to the<br>bed joints in running band of 60 psi. Granite masonry is a<br>cross-section of martar placement that provides for more tensile<br>strength than concrete masonry is deguate for tensile stresses<br>also in goad shape and no evidence of major cracking already<br>exists, the granite masonry is a deguate for tensile stresses |    |
| Ŷ. | under maximum seismic loading conditions;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

## Appendix D: Massachusetts State Archive Plans









## Appendix E: Renovation Floor Plans





## SUMMARY OF CODE COMPLIANCE, IEBC(2009)

occupancy: (no change of occupancy), A3 assembly (religious worship) section 404 alteration-level 2, space reconfiguration, no structural change work area 2921 of ( total basement area 7647sf), see calculation below

work area 2921 sf ( total basement area 7647sf), see calculation below section 702 special use and occupancy (not applicable) section 703 referring to building elements and materials; constrution type V(2), combustable and not protected, fire rating not required at interior partitions; specifically in vertical opening and stair well; there shall be no work involved in vertical opening/shaft and stair well, see plan section 703.4(section 602) referring to interior finish in exit corridor; work area is less than 50% of the floor, finish section 705.4(Section 602) reterring to interior finish in exit corridor; work area is less than 50% of the floor, finish section 606 structural (no structural alteration) section 607 energy conservation (not new construction, not applicable) section 704.2.2 referring to sprinkler system; work area is less than 50% of the floor area, thus sprinker is not required. (section 705 referring to maintein current level)

~

(section 604, similar to section 705) (section 606, similar to section 706) section 707 referring to section 706) section 707 referring to section 706) section 707 referring to structure, there is no structural alteration involved in this work.

section 708, section 709 and section 710 shall design and build by electrician and HVAC contractor section 7011, referring to energy conservation, this is not a new construction, thus it's not applicable.

141


# Appendix F: Heating/Cooling Load Calculations





## Appendix G: DesignBuilder Energy Analysis

#### Table of Contents

#### Program Version: EnergyPlus, Version 8.9.0-40101eaafd, YMD=2019.12.26 10:45

Tabular Output Report in Format: HTML

Building: Building

#### Environment: MQP WORCESTER GOSPEL CHURCH (01-01:31-12) \*\* WORCESTER MA USA TMY2-94746 WMO#=725095

Simulation Timestamp: 2019-12-26 10:47:47

#### Table of Contents

### Report: Annual Building Utility Performance Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Values gathered over 8760.00 hours

#### Site and Source Energy

|                        | Total Energy<br>[kBtu] | Energy Per Total Building Area<br>[kBtu/ft2] | Energy Per Conditioned Building Area<br>[kBtu/ft2] |
|------------------------|------------------------|----------------------------------------------|----------------------------------------------------|
| Total Site Energy      | 781896.00              | 21.63                                        | 22.48                                              |
| Net Site Energy        | 781896.00              | 21.63                                        | 22.48                                              |
| Total Source<br>Energy | 1278240.02             | 35.36                                        | 36.74                                              |
| Net Source<br>Energy   | 1278240.02             | 35.36                                        | 36.74                                              |

#### Site to Source Energy Conversion Factors

|                  | Site=>Source Conversion Factor |
|------------------|--------------------------------|
| Electricity      | 3.167                          |
| Natural Gas      | 1.084                          |
| District Cooling | 1.056                          |
| District Heating | 3.613                          |
| Steam            | 0.250                          |
| Gasoline         | 1.050                          |
| Diesel           | 1.050                          |
| Coal             | 1.050                          |
| Fuel Oil #1      | 1.050                          |
| Fuel Oil #2      | 1.050                          |
| Propane          | 1.050                          |
| Other Fuel 1     | 1.000                          |
| Other Fuel 2     | 1.000                          |

### **Building Area**

|                            | Area [ft2]   |
|----------------------------|--------------|
| Total Building A           | rea 36151.86 |
| Net Conditioned Building A | rea 34787.98 |
| Unconditioned Building A   | rea 1363.88  |

### **End Uses**

|                       | Electricity<br>[kBtu] | Natural Gas<br>[kBtu] | Additional Fuel<br>[kBtu] | District Cooling<br>[kBtu] | District Heating<br>[kBtu] | Water<br>[gal] |
|-----------------------|-----------------------|-----------------------|---------------------------|----------------------------|----------------------------|----------------|
| Heating               | 45.85                 | 0.00                  | 565906.76                 | 0.00                       | 0.00                       | 0.00           |
| Cooling               | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Interior Lighting     | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Exterior Lighting     | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Interior<br>Equipment | 215626.78             | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Exterior<br>Equipment | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Fans                  | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Pumps                 | 316.61                | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Heat Rejection        | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Humidification        | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Heat Recovery         | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Water Systems         | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Refrigeration         | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
| Generators            | 0.00                  | 0.00                  | 0.00                      | 0.00                       | 0.00                       | 0.00           |
|                       |                       |                       |                           |                            |                            |                |
| Total End Uses        | 215989.24             | 0.00                  | 565906.76                 | 0.00                       | 0.00                       | 0.00           |

Note: Additional fuel appears to be the principal heating source based on energy usage.

### End Uses By Subcategory

|         | Subcategory | Electricity<br>[kBtu] | Natural Gas<br>[kBtu] | Additional Fuel<br>[kBtu] | District<br>Cooling<br>[kBtu] | District<br>Heating<br>[kBtu] | Water<br>[gal] |
|---------|-------------|-----------------------|-----------------------|---------------------------|-------------------------------|-------------------------------|----------------|
| Heating | Boiler      | 0.00                  | 0.00                  | 565906.76                 | 0.00                          | 0.00                          | 0.00           |

|                       | Boiler Parasitic        | 45.85     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|-----------------------|-------------------------|-----------|------|------|------|------|------|
| Cooling               | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Interior Lighting     | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Exterior<br>Lighting  | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Interior<br>Equipment | General                 | 215626.78 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Exterior<br>Equipment | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Fans                  | Ventilation<br>(simple) | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Pumps                 | General                 | 316.61    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Heat Rejection        | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Humidification        | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Heat Recovery         | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Water Systems         | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Refrigeration         | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Generators            | General                 | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

### **Normalized Metrics**

### Utility Use Per Conditioned Floor Area

|          | Electricity<br>Intensity<br>[kBtu/ft2] | Natural Gas<br>Intensity<br>[kBtu/ft2] | Additional Fuel<br>Intensity<br>[kBtu/ft2] | District Cooling<br>Intensity<br>[kBtu/ft2] | District Heating<br>Intensity<br>[kBtu/ft2] | Water<br>Intensity<br>[gal/ft2] |
|----------|----------------------------------------|----------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------|
| Lighting | 0.00                                   | 0.00                                   | 0.00                                       | 0.00                                        | 0.00                                        | 0.00                            |
| HVAC     | 0.01                                   | 0.00                                   | 16.27                                      | 0.00                                        | 0.00                                        | 0.00                            |
| Other    | 6.20                                   | 0.00                                   | 0.00                                       | 0.00                                        | 0.00                                        | 0.00                            |

| Total | 6.21 | 0.00 | 16.27 | 0.00 | 0.00 | 0.00 |
|-------|------|------|-------|------|------|------|
|       |      |      |       |      |      |      |

### **Utility Use Per Total Floor Area**

|          | Electricity<br>Intensity<br>[kBtu/ft2] | Natural Gas<br>Intensity<br>[kBtu/ft2] | Additional Fuel<br>Intensity<br>[kBtu/ft2] | District Cooling<br>Intensity<br>[kBtu/ft2] | District Heating<br>Intensity<br>[kBtu/ft2] | Water<br>Intensity<br>[gal/ft2] |
|----------|----------------------------------------|----------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------|
| Lighting | 0.00                                   | 0.00                                   | 0.00                                       | 0.00                                        | 0.00                                        | 0.00                            |
| HVAC     | 0.01                                   | 0.00                                   | 15.65                                      | 0.00                                        | 0.00                                        | 0.00                            |
| Other    | 5.96                                   | 0.00                                   | 0.00                                       | 0.00                                        | 0.00                                        | 0.00                            |
| Total    | 5.97                                   | 0.00                                   | 15.65                                      | 0.00                                        | 0.00                                        | 0.00                            |

### **Electric Loads Satisfied**

|                                      | Electricity [kBtu] | Percent Electricity [%] |
|--------------------------------------|--------------------|-------------------------|
| Fuel-Fired Power Generation          | 0.000              | 0.00                    |
| High Temperature Geothermal*         | 0.000              | 0.00                    |
| Photovoltaic Power                   | 0.000              | 0.00                    |
| Wind Power                           | 0.000              | 0.00                    |
| Power Conversion                     | 0.000              | 0.00                    |
| Net Decrease in On-Site Storage      | 0.000              | 0.00                    |
| Total On-Site Electric Sources       | 0.000              | 0.00                    |
|                                      |                    |                         |
| Electricity Coming From Utility      | 215989.240         | 100.00                  |
| Surplus Electricity Going To Utility | 0.000              | 0.00                    |
| Net Electricity From Utility         | 215989.240         | 100.00                  |

| Total On-Site and Utility Electric Sources | 215989.240 | 100.00 |
|--------------------------------------------|------------|--------|
| Total Electricity End Uses                 | 215989.240 | 100.00 |

### **On-Site Thermal Sources**

|                                      | Heat [kBtu] | Percent Heat [%] |
|--------------------------------------|-------------|------------------|
| Water-Side Heat Recovery             | 0.00        |                  |
| Air to Air Heat Recovery for Cooling | 0.00        |                  |
| Air to Air Heat Recovery for Heating | 0.00        |                  |
| High-Temperature Geothermal*         | 0.00        |                  |
| Solar Water Thermal                  | 0.00        |                  |
| Solar Air Thermal                    | 0.00        |                  |
| Total On-Site Thermal Sources        | 0.00        |                  |

### Water Source Summary

|                            | Water [gal] | Percent Water [%] |
|----------------------------|-------------|-------------------|
| Rainwater Collection       | on 0.00     | -                 |
| Condensate Collection      | on 0.00     | -                 |
| Groundwater We             | ell 0.00    | -                 |
| Total On Site Water Source | es 0.00     | -                 |
|                            |             | -                 |
| Initial Storag             | ge 0.00     | -                 |
| Final Storag               | ge 0.00     | -                 |

| - | 0.00 | Change in Storage                                           |
|---|------|-------------------------------------------------------------|
| - | -    | -                                                           |
| - | 0.00 | Water Supplied by Utility                                   |
| - | -    | -                                                           |
| - | 0.00 | Total On Site, Change in Storage, and Utility Water Sources |
| - | 0.00 | Total Water End Uses                                        |

### Setpoint Not Met Criteria

|                                                  | Degrees [deltaF] |
|--------------------------------------------------|------------------|
| Tolerance for Zone Heating Setpoint Not Met Time | 2.00             |
| Tolerance for Zone Cooling Setpoint Not Met Time | 2.00             |

### **Comfort and Setpoint Not Met Summary**

|                                                     | Facility [Hours] |
|-----------------------------------------------------|------------------|
| Time Setpoint Not Met During Occupied Heating       | 105.83           |
| Time Setpoint Not Met During Occupied Cooling       | 0.00             |
| Time Not Comfortable Based on Simple ASHRAE 55-2004 | 1524.00          |

Note 1: An asterisk (\*) indicates that the feature is not yet implemented.

### **Table of Contents**

TopAnnual Building Utility Performance SummaryInput Verification and Results SummaryDemand End Use Components SummaryComponent Sizing SummaryAdaptive Comfort Summary

Climatic Data Summary Envelope Summary Lighting Summary Equipment Summary HVAC Sizing Summary System Summary Outdoor Air Summary Object Count Summary Sensible Heat Gain Summary Standard 62.1 Summary LEED Summary

### Life-Cycle Cost Report

Entire Facility

#### Table of Contents

#### Report: Input Verification and Results Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

#### General

|                               | Value                                                      |
|-------------------------------|------------------------------------------------------------|
| Program Version and Build     | EnergyPlus, Version 8.9.0-40101eaafd, YMD=2019.12.26 10:45 |
| RunPeriod                     | MQP WORCESTER GOSPEL CHURCH (01-01:31-12)                  |
| Weather File                  | WORCESTER MA USA TMY2-94746 WMO#=725095                    |
| Latitude [deg]                | 42.27                                                      |
| Longitude [deg]               | -71.9                                                      |
| Elevation [ft]                | 987.58                                                     |
| Time Zone                     | -5.0                                                       |
| North Axis Angle [deg]        | 0.00                                                       |
| Rotation for Appendix G [deg] | 0.00                                                       |
| Hours Simulated [hrs]         | 8760.00                                                    |

### ENVELOPE

#### Window-Wall Ratio

|                                       | Total    | North (315 to 45<br>deg) | East (45 to 135<br>deg) | South (135 to 225 deg) | West (225 to 315 deg) |
|---------------------------------------|----------|--------------------------|-------------------------|------------------------|-----------------------|
| Gross Wall Area [ft2]                 | 16155.05 | 3456.29                  | 4659.51                 | 3451.93                | 4587.32               |
| Above Ground Wall Area<br>[ft2]       | 16155.05 | 3456.29                  | 4659.51                 | 3451.93                | 4587.32               |
| Window Opening Area [ft2]             | 1526.72  | 114.24                   | 543.54                  | 303.36                 | 565.57                |
| Gross Window-Wall Ratio<br>[%]        | 9.45     | 3.31                     | 11.67                   | 8.79                   | 12.33                 |
| Above Ground Window-Wall<br>Ratio [%] | 9.45     | 3.31                     | 11.67                   | 8.79                   | 12.33                 |

### **Conditioned Window-Wall Ratio**

|                                       | Total    | North (315 to 45 deg) | East (45 to 135<br>deg) | South (135 to 225 deg) | West (225 to 315 deg) |
|---------------------------------------|----------|-----------------------|-------------------------|------------------------|-----------------------|
| Gross Wall Area [ft2]                 | 15257.42 | 2749.11               | 4659.51                 | 3261.47                | 4587.32               |
| Above Ground Wall Area<br>[ft2]       | 15257.42 | 2749.11               | 4659.51                 | 3261.47                | 4587.32               |
| Window Opening Area [ft2]             | 1526.72  | 114.24                | 543.54                  | 303.36                 | 565.57                |
| Gross Window-Wall Ratio<br>[%]        | 10.01    | 4.16                  | 11.67                   | 9.30                   | 12.33                 |
| Above Ground Window-Wall<br>Ratio [%] | 10.01    | 4.16                  | 11.67                   | 9.30                   | 12.33                 |

### Skylight-Roof Ratio

|                         | Total    |
|-------------------------|----------|
| Gross Roof Area [ft2]   | 12853.41 |
| Skylight Area [ft2]     | 0.00     |
| Skylight-Roof Ratio [%] | 0.00     |

### PERFORMANCE

### **Zone Summary**

|                  | Area<br>[ft2] | Conditi<br>oned<br>(Y/N) | Par<br>t of<br>Tot<br>al<br>Flo<br>or<br>Are<br>a<br>(Y/<br>N) | Volum<br>e [ft3] | Multipl<br>iers | Above<br>Groun<br>d<br>Gross<br>Wall<br>Area<br>[ft2] | Undergr<br>ound<br>Gross<br>Wall<br>Area<br>[ft2] | Wind<br>ow<br>Glass<br>Area<br>[ft2] | Open<br>ing<br>Area<br>[ft2] | Light<br>ing<br>[Btu/<br>h-<br>ft2] | Peop<br>le<br>[ft2<br>per<br>on] | Plug<br>and<br>Proc<br>ess<br>[Btu/<br>h-<br>ft2] |
|------------------|---------------|--------------------------|----------------------------------------------------------------|------------------|-----------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------|------------------------------|-------------------------------------|----------------------------------|---------------------------------------------------|
| GYM:ZONE3        | 5947.<br>27   | Yes                      | Yes                                                            | 67651.<br>14     | 1.00            | 2409.<br>34                                           | 0.00                                              | 194.<br>17                           | 194.1<br>7                   | 0.00                                | 200.<br>02                       | 2.37<br>72                                        |
| GYM:ZONE1        | 141.1<br>1    | Yes                      | Yes                                                            | 1764.0<br>1      | 1.00            | 420.0<br>4                                            | 0.00                                              | 23.4<br>9                            | 23.49                        | 0.00<br>00                          | 200.<br>02                       | 2.37<br>72                                        |
| GYM:ZONE2        | 63.83         | Yes                      | Yes                                                            | 797.93           | 1.00            | 213.1<br>5                                            | 0.00                                              | 5.57                                 | 5.57                         | 0.00<br>00                          | 200.<br>02                       | 2.37<br>72                                        |
| CHURCHROOF:ZONE1 | 867.3<br>8    | No                       | Yes                                                            | 13043.<br>81     | 1.00            | 707.1<br>7                                            | 0.00                                              | 0.00                                 | 0.00                         | 0.00                                |                                  | 0.00                                              |
| CHURCHROOF:ZONE4 | 248.2<br>5    | No                       | Yes                                                            | 1713.0<br>2      | 1.00            | 95.23                                                 | 0.00                                              | 0.00                                 | 0.00                         | 0.00                                |                                  | 0.00                                              |
| CHURCHROOF:ZONE2 | 248.2<br>5    | No                       | Yes                                                            | 1713.0<br>2      | 1.00            | 95.23                                                 | 0.00                                              | 0.00                                 | 0.00                         | 0.00                                |                                  | 0.00                                              |
| FIRSTFLOOR:ZONE3 | 322.6<br>8    | Yes                      | Yes                                                            | 6295.5<br>6      | 1.00            | 790.5<br>0                                            | 0.00                                              | 40.4<br>0                            | 40.40                        | 0.00                                | 50.0<br>0                        | 2.37<br>72                                        |
| FIRSTFLOOR:ZONE4 | 324.0<br>3    | Yes                      | Yes                                                            | 6321.0<br>0      | 1.00            | 799.8<br>2                                            | 0.00                                              | 40.4<br>4                            | 40.44                        | 0.00                                | 50.0<br>0                        | 2.37<br>72                                        |

| FIRSTFLOOR:ZONE2               | 9178.<br>84 | Yes | Yes | 16324<br>3.84 | 1.00 | 4162.<br>38 | 0.00 | 645.<br>87 | 645.8<br>7 | 0.00<br>00 | 50.0<br>0  | 2.37<br>72 |
|--------------------------------|-------------|-----|-----|---------------|------|-------------|------|------------|------------|------------|------------|------------|
| FIRSTFLOOR:ZONE6               | 244.8<br>2  | Yes | Yes | 4774.3<br>0   | 1.00 | 389.1<br>9  | 0.00 | 31.4<br>9  | 36.09      | 0.00<br>00 | 50.0<br>0  | 2.37<br>72 |
| FIRSTFLOOR:ZONE7               | 244.8<br>2  | Yes | Yes | 4774.3<br>0   | 1.00 | 480.8<br>2  | 0.00 | 31.4<br>9  | 36.08      | 0.00<br>00 | 50.0<br>0  | 2.37<br>72 |
| FIRSTFLOOR:ZONE1               | 114.8<br>0  | Yes | Yes | 2238.7<br>2   | 1.00 | 3.78        | 0.00 | 0.00       | 0.00       | 0.00<br>00 | 50.0<br>0  | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE1  | 782.3<br>0  | Yes | Yes | 4364.7<br>5   | 1.00 | 443.6<br>6  | 0.00 | 79.2<br>5  | 79.25      | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE2  | 424.5<br>6  | Yes | Yes | 2368.8<br>0   | 1.00 | 374.9<br>5  | 0.00 | 0.00       | 0.00       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE3  | 509.7<br>1  | Yes | Yes | 2843.8<br>6   | 1.00 | 273.1<br>5  | 0.00 | 35.9<br>9  | 35.99      | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE4  | 8398.<br>23 | Yes | Yes | 46857.<br>00  | 1.00 | 971.1<br>9  | 0.00 | 95.6<br>4  | 95.64      | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE5  | 207.9<br>9  | Yes | Yes | 1160.4<br>8   | 1.00 | 117.7<br>3  | 0.00 | 0.00       | 0.00       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE6  | 354.3<br>8  | Yes | Yes | 1977.2<br>5   | 1.00 | 190.2<br>7  | 0.00 | 0.00       | 0.00       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE7  | 651.1<br>3  | Yes | Yes | 3632.9<br>2   | 1.00 | 241.0<br>4  | 0.00 | 0.00       | 0.00       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE8  | 1541.<br>77 | Yes | Yes | 8602.1<br>5   | 1.00 | 452.7<br>2  | 0.00 | 53.2<br>0  | 53.20      | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE9  | 454.9<br>1  | Yes | Yes | 2538.1<br>4   | 1.00 | 133.5<br>8  | 0.00 | 26.6<br>5  | 26.65      | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE10 | 280.4<br>6  | Yes | Yes | 1564.8<br>0   | 1.00 | 66.96       | 0.00 | 0.00       | 0.00       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE11 | 796.9<br>6  | Yes | Yes | 4446.5<br>3   | 1.00 | 208.6<br>8  | 0.00 | 0.00       | 0.00       | 0.00       | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE12 | 161.7<br>2  | Yes | Yes | 902.28        | 1.00 | 202.8<br>4  | 0.00 | 8.98       | 8.98       | 0.00       | 200.<br>02 | 2.37<br>72 |

| BASEMENTXABOVEGRA<br>DE:ZONE13 | 964.3<br>2   | Yes | Yes | 5380.3<br>1   | 1.00 | 298.8<br>9   | 0.00 | 40.3<br>2   | 40.32       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
|--------------------------------|--------------|-----|-----|---------------|------|--------------|------|-------------|-------------|------------|------------|------------|
| BASEMENTXABOVEGRA<br>DE:ZONE14 | 601.2<br>6   | Yes | Yes | 3354.6<br>6   | 1.00 | 443.0<br>3   | 0.00 | 15.4<br>0   | 15.40       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE15 | 575.7<br>3   | Yes | Yes | 3212.2<br>4   | 1.00 | 430.5<br>6   | 0.00 | 19.1<br>6   | 19.16       | 0.00<br>00 | 200.<br>02 | 2.37<br>72 |
| BASEMENTXABOVEGRA<br>DE:ZONE16 | 1500.<br>33  | Yes | Yes | 8370.9<br>2   | 1.00 | 739.1<br>6   | 0.00 | 130.<br>02  | 130.0<br>2  | 0.00       | 200.<br>02 | 2.37<br>72 |
| Total                          | 36151<br>.86 |     |     | 37590<br>7.72 |      | 16155<br>.05 | 0.00 | 1517<br>.54 | 1526.<br>72 | 0.00<br>00 | 109.<br>43 | 2.28<br>75 |
| Conditioned Total              | 34787<br>.98 |     |     | 35943<br>7.87 |      | 15257<br>.42 | 0.00 | 1517<br>.54 | 1526.<br>72 | 0.00       | 105.<br>30 | 2.37<br>72 |
| Unconditioned Total            | 1363.<br>88  |     |     | 16469.<br>86  |      | 897.6<br>3   | 0.00 | 0.00        | 0.00        | 0.00<br>00 |            | 0.00       |
| Not Part of Total              | 0.00         |     |     | 0.00          |      | 0.00         | 0.00 | 0.00        | 0.00        |            |            |            |

### Table of Contents

### Report: Demand End Use Components Summary

### For: Entire Facility

### Timestamp: 2019-12-26 10:47:47

### **End Uses**

|                   | Electricity<br>[kBtuh] | Natural Gas<br>[kBtuh] | Fuel Oil #1<br>[kBtuh] | District Cooling<br>[kBtuh] | Steam<br>[kBtuh] | Water<br>[gal/min] |
|-------------------|------------------------|------------------------|------------------------|-----------------------------|------------------|--------------------|
| Time of Peak      | 18-FEB-09:09           | -                      | 03-FEB-09:20           | -                           | -                | -                  |
| Heating           | 0.02                   | 0.00                   | 1140.64                | 0.00                        | 0.00             | 0.00               |
| Cooling           | 0.00                   | 0.00                   | 0.00                   | 0.00                        | 0.00             | 0.00               |
| Interior Lighting | 0.00                   | 0.00                   | 0.00                   | 0.00                        | 0.00             | 0.00               |

| Exterior Lighting     | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
|-----------------------|-------|------|---------|------|------|------|
| Interior<br>Equipment | 78.62 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Exterior<br>Equipment | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Fans                  | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Pumps                 | 0.14  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Heat Rejection        | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Humidification        | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Heat Recovery         | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Water Systems         | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Refrigeration         | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Generators            | 0.00  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
|                       |       |      |         |      |      |      |
| Total End Uses        | 78.78 | 0.00 | 1140.64 | 0.00 | 0.00 | 0.00 |

### End Uses By Subcategory

|                      | Subcategory      | Electricity<br>[kBtuh] | Natural Gas<br>[kBtuh] | Fuel Oil #1<br>[kBtuh] | District<br>Cooling<br>[kBtuh] | Steam<br>[kBtuh] | Water<br>[gal/min] |
|----------------------|------------------|------------------------|------------------------|------------------------|--------------------------------|------------------|--------------------|
| Heating              | Boiler           | 0.00                   | 0.00                   | 1140.64                | 0.00                           | 0.00             | 0.00               |
|                      | Boiler Parasitic | 0.02                   | 0.00                   | 0.00                   | 0.00                           | 0.00             | 0.00               |
| Cooling              | General          | 0.00                   | 0.00                   | 0.00                   | 0.00                           | 0.00             | 0.00               |
| Interior Lighting    | General          | 0.00                   | 0.00                   | 0.00                   | 0.00                           | 0.00             | 0.00               |
| Exterior<br>Lighting | General          | 0.00                   | 0.00                   | 0.00                   | 0.00                           | 0.00             | 0.00               |

| Interior<br>Equipment | General                 | 78.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|-----------------------|-------------------------|-------|------|------|------|------|------|
| Exterior<br>Equipment | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Fans                  | Ventilation<br>(simple) | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Pumps                 | General                 | 0.14  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Heat Rejection        | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Humidification        | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Heat Recovery         | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Water Systems         | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Refrigeration         | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Generators            | General                 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

### Table of Contents

Report: Component Sizing Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

### ZoneHVAC:Baseboard:RadiantConvective:Water

|                                 | Design Size Maximum Water Flow<br>Rate [gal/min] | U-Factor times Area<br>[Btu/h-F] |
|---------------------------------|--------------------------------------------------|----------------------------------|
| GYM:ZONE3 WATER RADIATOR        | 20.26                                            | 2708.46                          |
| GYM:ZONE1 WATER RADIATOR        | 1.47                                             | 190.83                           |
| GYM:ZONE2 WATER RADIATOR        | 0.772107                                         | 97.62                            |
| FIRSTFLOOR:ZONE3 WATER RADIATOR | 3.41                                             | 450.03                           |

| FIRSTFLOOR:ZONE4 WATER RADIATOR              | 3.51     | 463.11  |
|----------------------------------------------|----------|---------|
| FIRSTFLOOR:ZONE2 WATER RADIATOR              | 31.27    | 4184.36 |
| FIRSTFLOOR:ZONE6 WATER RADIATOR              | 1.77     | 230.30  |
| FIRSTFLOOR:ZONE7 WATER RADIATOR              | 2.03     | 264.99  |
| FIRSTFLOOR:ZONE1 WATER RADIATOR              | 0.598264 | 74.59   |
| BASEMENTXABOVEGRADE:ZONE1 WATER<br>RADIATOR  | 2.79     | 367.23  |
| BASEMENTXABOVEGRADE:ZONE2 WATER<br>RADIATOR  | 1.86     | 242.70  |
| BASEMENTXABOVEGRADE:ZONE3 WATER<br>RADIATOR  | 1.75     | 228.00  |
| BASEMENTXABOVEGRADE:ZONE4 WATER<br>RADIATOR  | 15.21    | 2031.67 |
| BASEMENTXABOVEGRADE:ZONE5 WATER<br>RADIATOR  | 0.699907 | 88.04   |
| BASEMENTXABOVEGRADE:ZONE6 WATER<br>RADIATOR  | 1.13     | 145.85  |
| BASEMENTXABOVEGRADE:ZONE7 WATER<br>RADIATOR  | 1.68     | 218.90  |
| BASEMENTXABOVEGRADE:ZONE8 WATER<br>RADIATOR  | 3.82     | 504.85  |
| BASEMENTXABOVEGRADE:ZONE9 WATER<br>RADIATOR  | 1.23     | 158.69  |
| BASEMENTXABOVEGRADE:ZONE10 WATER<br>RADIATOR | 0.680585 | 85.48   |
| BASEMENTXABOVEGRADE:ZONE11 WATER<br>RADIATOR | 1.77     | 231.29  |
| BASEMENTXABOVEGRADE:ZONE12 WATER<br>RADIATOR | 0.901499 | 114.82  |
| BASEMENTXABOVEGRADE:ZONE13 WATER<br>RADIATOR | 2.36     | 310.13  |

| BASEMENTXABOVEGRADE:ZONE14 WATER<br>RADIATOR | 2.32 | 304.41 |
|----------------------------------------------|------|--------|
| BASEMENTXABOVEGRADE:ZONE15 WATER<br>RADIATOR | 2.26 | 295.98 |
| BASEMENTXABOVEGRADE:ZONE16 WATER<br>RADIATOR | 4.75 | 630.32 |

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

### PlantLoop

|         | Maximum Loop Flow Rate [ft3/min] | Plant Loop Volume [ft3] |
|---------|----------------------------------|-------------------------|
| HW LOOP | 14.74                            | 29.49                   |

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

### Pump:VariableSpeed

|                     | Design Flow Rate [ft3/min] | Design Power Consumption [Btu/h] |
|---------------------|----------------------------|----------------------------------|
| HW LOOP SUPPLY PUMP | 14.74                      | 676.34                           |

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

#### Boiler:HotWater

|        | Design Size Nominal Capacity [Btu/h] | Design Size Design Water Flow Rate [gal/min] |
|--------|--------------------------------------|----------------------------------------------|
| BOILER | 996952.59                            | 110.29                                       |

User-Specified values were used. Design Size values were used if no User-Specified values were provided.

#### Table of Contents

#### Report: Adaptive Comfort Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

### Time Not Meeting the Adaptive Comfort Models during Occupied Hours

| ASHRAE55 90%         | ASHRAE55 80%         | CEN15251 Category I  | CEN15251 Category       | CEN15251 Category        |
|----------------------|----------------------|----------------------|-------------------------|--------------------------|
| Acceptability Limits | Acceptability Limits | Acceptability Limits | II Acceptability Limits | III Acceptability Limits |
| [Hours]              | [Hours]              | [Hours]              | [Hours]                 | [Hours]                  |
|                      |                      |                      |                         |                          |

### Table of Contents

### Report: Climatic Data Summary

### For: Entire Facility

### Timestamp: 2019-12-26 10:47:47

### SizingPeriod:DesignDay

|                                                                          | Maximum<br>Dry Bulb [F] | Daily Temperature<br>Range [deltaF] | Humidity<br>Value | Humidity<br>Type | Wind<br>Speed<br>[ft/min] | Wind<br>Direction |
|--------------------------------------------------------------------------|-------------------------|-------------------------------------|-------------------|------------------|---------------------------|-------------------|
| SUMMER DESIGN DAY IN MQP<br>WORCESTER GOSPEL CHURCH<br>(01-01:31-12) JUL | 85.82                   | 15.84                               | 71.24             | Wetbulb<br>[F]   | 0.00                      | 0.00              |
| WINTER DESIGN DAY IN MQP<br>WORCESTER GOSPEL CHURCH<br>(01-01:31-12)     | 1.94                    | 0.00                                | 1.94              | Wetbulb<br>[F]   | 2677.30                   | 0.00              |

#### Weather Statistics File

|      | Value |
|------|-------|
| None |       |

### Table of Contents

Report: Envelope Summary

### For: Entire Facility

### Timestamp: 2019-12-26 10:47:47

### **Opaque Exterior**

|                          | Constructio<br>n                     | Reflecta<br>nce | U-<br>Fact<br>or<br>with<br>Film<br>[Btu/<br>h-<br>ft2-<br>F] | U-<br>Fact<br>or no<br>Film<br>[Btu/<br>h-<br>ft2-<br>F] | Gross<br>Area<br>[ft2] | Net<br>Area<br>[ft2] | Azimu<br>th<br>[deg] | Tilt<br>[deg<br>] | Cardin<br>al<br>Directi<br>on |
|--------------------------|--------------------------------------|-----------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------|----------------------|----------------------|-------------------|-------------------------------|
| GYM:ZONE3_WALL_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL | 0.40            | 0.44<br>0                                                     | 0.70<br>4                                                | 373.7<br>9             | 327.0<br>7           | 90.00                | 90.0<br>0         | E                             |
| GYM:ZONE3_WALL_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL | 0.40            | 0.44<br>0                                                     | 0.70<br>4                                                | 526.3<br>0             | 470.3<br>0           | 0.00                 | 90.0<br>0         | N                             |
| GYM:ZONE3_WALL_4_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL | 0.40            | 0.44<br>0                                                     | 0.70<br>4                                                | 861.9<br>6             | 765.5<br>7           | 270.0<br>0           | 90.0<br>0         | W                             |
| GYM:ZONE3_WALL_7_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL | 0.40            | 0.44<br>0                                                     | 0.70<br>4                                                | 131.8<br>9             | 109.0<br>7           | 90.00                | 90.0<br>0         | E                             |
| GYMROOF:ZONE1_WALL_1_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL | 0.40            | 0.44<br>0                                                     | 0.70<br>4                                                | 443.1<br>5             | 443.1<br>5           | 0.00                 | 90.0<br>0         | N                             |
| GYMROOF:ZONE1_WALL_7_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL | 0.40            | 0.44<br>0                                                     | 0.70<br>4                                                | 72.26                  | 72.26                | 90.00                | 90.0<br>0         | E                             |
| GYMROOF:ZONE1_ROOF_0_0_0 | COPY OF<br>CHURCH<br>ROOF            | 0.40            | 0.22<br>6                                                     | 0.27<br>4                                                | 747.0<br>6             | 747.0<br>6           | 90.00                | 45.0<br>0         |                               |

|                          | UNINSULA<br>TED                              |      |           |           |             |             |            |           |   |
|--------------------------|----------------------------------------------|------|-----------|-----------|-------------|-------------|------------|-----------|---|
| GYMROOF:ZONE1_ROOF_0_0_1 | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED | 0.40 | 0.22<br>6 | 0.27<br>4 | 1203.<br>54 | 1203.<br>54 | 90.00      | 45.0<br>0 |   |
| GYMROOF:ZONE1_ROOF_4_0_0 | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED | 0.40 | 0.22<br>6 | 0.27<br>4 | 2052.<br>79 | 2052.<br>79 | 270.0<br>0 | 45.0<br>0 |   |
| GYMROOF:ZONE1_ROOF_5_0_0 | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED | 0.40 | 0.22<br>6 | 0.27<br>4 | 150.8<br>8  | 150.8<br>8  | 0.00       | 45.0<br>0 |   |
| GYMROOF:ZONE1_ROOF_6_0_0 | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED | 0.40 | 0.22<br>6 | 0.27<br>4 | 150.8<br>8  | 150.8<br>8  | 180.0<br>0 | 45.0<br>0 |   |
| GYM:ZONE1_WALL_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL         | 0.40 | 0.44<br>0 | 0.70<br>4 | 212.5<br>2  | 189.0<br>3  | 90.00      | 90.0<br>0 | E |
| GYM:ZONE1_WALL_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL         | 0.40 | 0.44<br>0 | 0.70<br>4 | 103.7<br>6  | 103.7<br>6  | 0.00       | 90.0<br>0 | N |
| GYM:ZONE1_WALL_5_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL         | 0.40 | 0.44<br>0 | 0.70<br>4 | 103.7<br>6  | 103.7<br>6  | 180.0<br>0 | 90.0<br>0 | S |
| GYM:ZONE2_WALL_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL         | 0.40 | 0.44<br>0 | 0.70<br>4 | 143.7<br>6  | 138.1<br>9  | 90.00      | 90.0<br>0 | E |
| GYM:ZONE2_WALL_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL         | 0.40 | 0.44<br>0 | 0.70<br>4 | 69.38       | 69.38       | 0.00       | 90.0<br>0 | N |

| GYM:ZONE2_ROOF_1_0_0                | CZ5 NON-<br>RES ROOF<br>INS<br>ENTIRELY<br>ABOVE<br>DECK R-<br>19.9C.I.<br>(3.5C.I.) U-<br>.048<br>(.273) | 0.30 | 0.04<br>8 | 0.05      | 63.83      | 63.83      | 180.0<br>0 | 0.00       |   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| CHURCHROOF:ZONE1_WALL_1_0_0         | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                      | 0.40 | 0.44<br>0 | 0.70<br>4 | 387.0<br>7 | 387.0<br>7 | 0.00       | 90.0<br>0  | N |
| CHURCHROOF:ZONE1_WALL_1_0_1         | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                      | 0.40 | 0.44<br>0 | 0.70<br>4 | 320.1<br>1 | 320.1<br>1 | 0.00       | 90.0<br>0  | N |
| CHURCHROOF:ZONE1_EXTFLOOR_2_0_<br>0 | CZ5 NON-<br>RES<br>EXTERNAL<br>FLOOR<br>STEEL-<br>JOIST R-<br>30.1 (5.3)<br>U038<br>(.214)                | 0.30 | 0.03<br>8 | 0.04      | 7.20       | 7.20       | 0.00       | 180.<br>00 |   |
| CHURCHROOF:ZONE1_EXTFLOOR_2_0_<br>1 | CZ5 NON-<br>RES<br>EXTERNAL<br>FLOOR<br>STEEL-<br>JOIST R-<br>30.1 (5.3)<br>U038<br>(.214)                | 0.30 | 0.03<br>8 | 0.04      | 7.20       | 7.20       | 0.00       | 180.<br>00 |   |
| CHURCHROOF:ZONE1_ROOF_0_0_0         | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED                                                              | 0.40 | 0.22<br>6 | 0.27<br>4 | 613.3<br>3 | 613.3<br>3 | 90.00      | 45.0<br>0  |   |
| CHURCHROOF:ZONE1_ROOF_3_0_0         | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED                                                              | 0.40 | 0.22<br>6 | 0.27<br>4 | 613.3<br>3 | 613.3<br>3 | 270.0<br>0 | 45.0<br>0  |   |

| CHURCHROOF:ZONE4_WALL_3_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 95.23      | 95.23      | 180.0<br>0 | 90.0<br>0 | S |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|------|-----------|-----------|------------|------------|------------|-----------|---|
| CHURCHROOF:ZONE4_ROOF_0_0_0 | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED                                                                 | 0.40 | 0.22<br>6 | 0.27<br>4 | 351.0<br>8 | 351.0<br>8 | 90.00      | 45.0<br>0 |   |
| CHURCHROOF:ZONE2_WALL_4_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 95.23      | 95.23      | 180.0<br>0 | 90.0<br>0 | S |
| CHURCHROOF:ZONE2_ROOF_3_0_0 | COPY OF<br>CHURCH<br>ROOF<br>UNINSULA<br>TED                                                                 | 0.40 | 0.22<br>6 | 0.27<br>4 | 351.0<br>8 | 351.0<br>8 | 270.0<br>0 | 45.0<br>0 |   |
| FIRSTFLOOR:ZONE3_WALL_3_1_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 91.02      | 91.02      | 0.00       | 90.0<br>0 | N |
| FIRSTFLOOR:ZONE3_WALL_4_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 351.2<br>1 | 330.9<br>9 | 269.5<br>2 | 90.0<br>0 | W |
| FIRSTFLOOR:ZONE3_WALL_5_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 348.2<br>7 | 291.8<br>4 | 180.0<br>0 | 90.0<br>0 | S |
| FIRSTFLOOR:ZONE3_ROOF_6_2_0 | PITCHED<br>ROOF -<br>UNINSULA<br>TED -<br>HEAVYWEI<br>GHT<br>(DATA<br>MODIFIED<br>WHEN<br>LOADED<br>TO FILE) | 0.30 | 0.52<br>0 | 0.87      | 61.66      | 61.66      | 180.0<br>0 | 0.00      |   |
| FIRSTFLOOR:ZONE4_WALL_3_1_0 | COPY OF<br>COPY OF                                                                                           | 0.40 | 0.44<br>0 | 0.70<br>4 | 97.53      | 97.53      | 0.00       | 90.0<br>0 | Ν |

|                              | CHURCH<br>WALL                                                                                               |      |           |           |            |            |            |           |   |
|------------------------------|--------------------------------------------------------------------------------------------------------------|------|-----------|-----------|------------|------------|------------|-----------|---|
| FIRSTFLOOR:ZONE4_WALL_4_0_0  | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 351.1<br>5 | 330.9<br>3 | 90.00      | 90.0<br>0 | E |
| FIRSTFLOOR:ZONE4_WALL_5_0_0  | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 351.1<br>5 | 290.4<br>8 | 180.0<br>0 | 90.0<br>0 | S |
| FIRSTFLOOR:ZONE4_ROOF_0_2_0  | PITCHED<br>ROOF -<br>UNINSULA<br>TED -<br>HEAVYWEI<br>GHT<br>(DATA<br>MODIFIED<br>WHEN<br>LOADED<br>TO FILE) | 0.30 | 0.52<br>0 | 0.87      | 81.01      | 81.01      | 180.0<br>0 | 0.00      |   |
| FIRSTFLOOR:ZONE2_WALL_13_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 78.01      | 78.01      | 0.00       | 90.0<br>0 | N |
| FIRSTFLOOR:ZONE2_WALL_14_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 391.9<br>9 | 303.0<br>2 | 270.0<br>0 | 90.0<br>0 | W |
| FIRSTFLOOR:ZONE2_WALL_15_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 91.00      | 91.00      | 180.0<br>0 | 90.0<br>0 | S |
| FIRSTFLOOR:ZONE2_WALL_16_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 856.1<br>3 | 733.4<br>9 | 270.0<br>0 | 90.0<br>0 | W |
| FIRSTFLOOR:ZONE2_WALL_19_0_0 | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                                         | 0.40 | 0.44<br>0 | 0.70<br>4 | 626.9<br>9 | 577.8<br>1 | 180.0<br>0 | 90.0<br>0 | S |

| FIRSTFLOOR:ZONE2_WALL_22_0_0        | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 856.1<br>3 | 733.4<br>9 | 90.00      | 90.0<br>0  | E |
|-------------------------------------|--------------------------------------------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| FIRSTFLOOR:ZONE2_WALL_23_0_0        | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 78.01      | 78.01      | 180.0<br>0 | 90.0<br>0  | S |
| FIRSTFLOOR:ZONE2_WALL_24_0_0        | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 391.9<br>9 | 303.0<br>2 | 90.00      | 90.0<br>0  | E |
| FIRSTFLOOR:ZONE2_WALL_25_0_0        | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 78.01      | 78.01      | 0.00       | 90.0<br>0  | N |
| CHURCHROOF:ZONE3_WALL_3_0_0         | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 714.1<br>4 | 540.6<br>7 | 180.0<br>0 | 90.0<br>0  | S |
| CHURCHROOF:ZONE3_EXTFLOOR_1_0_<br>0 | CZ5 NON-<br>RES<br>EXTERNAL<br>FLOOR<br>STEEL-<br>JOIST R-<br>30.1 (5.3)<br>U038<br>(.214) | 0.30 | 0.03<br>8 | 0.04      | 51.19      | 51.19      | 0.00       | 180.<br>00 |   |
| CHURCHROOF:ZONE3_EXTFLOOR_1_0_<br>1 | CZ5 NON-<br>RES<br>EXTERNAL<br>FLOOR<br>STEEL-<br>JOIST R-<br>30.1 (5.3)<br>U038<br>(.214) | 0.30 | 0.03<br>8 | 0.04      | 21.95      | 21.95      | 0.00       | 180.<br>00 |   |
| FIRSTFLOOR:ZONE2_ROOF_36_3_0        | PITCHED<br>ROOF -<br>UNINSULA<br>TED -<br>HEAVYWEI<br>GHT<br>(DATA                         | 0.30 | 0.52<br>0 | 0.87<br>5 | 70.36      | 70.36      | 180.0<br>0 | 0.00       |   |

|                              | MODIFIED<br>WHEN<br>LOADED<br>TO FILE)                                                                       |      |           |           |             |             |            |           |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------|------|-----------|-----------|-------------|-------------|------------|-----------|--|
| FIRSTFLOOR:ZONE2_ROOF_36_3_1 | PITCHED<br>ROOF -<br>UNINSULA<br>TED -<br>HEAVYWEI<br>GHT<br>(DATA<br>MODIFIED<br>WHEN<br>LOADED<br>TO FILE) | 0.30 | 0.52<br>0 | 0.87      | 70.36       | 70.36       | 180.0<br>0 | 0.00      |  |
| CHURCHROOF:ZONE3_ROOF_0_0_0  | CZ5 NON-<br>RES ROOF<br>INS<br>ENTIRELY<br>ABOVE<br>DECK R-<br>19.9C.I.<br>(3.5C.I.) U-<br>.048<br>(.273)    | 0.30 | 0.04<br>8 | 0.05<br>0 | 414.0       | 414.0       | 90.00      | 45.0<br>0 |  |
| CHURCHROOF:ZONE3_ROOF_0_0_1  | CZ5 NON-<br>RES ROOF<br>INS<br>ENTIRELY<br>ABOVE<br>DECK R-<br>19.9C.I.<br>(3.5C.I.) U-<br>.048<br>(.273)    | 0.30 | 0.04<br>8 | 0.05<br>0 | 2722.<br>07 | 2722.<br>07 | 90.00      | 45.0<br>0 |  |
| CHURCHROOF:ZONE3_ROOF_4_0_0  | CZ5 NON-<br>RES ROOF<br>INS<br>ENTIRELY<br>ABOVE<br>DECK R-<br>19.9C.I.<br>(3.5C.I.) U-<br>.048<br>(.273)    | 0.30 | 0.04      | 0.05      | 1249.<br>03 | 1249.<br>03 | 270.0<br>0 | 45.0<br>0 |  |
| CHURCHROOF:ZONE3_ROOF_4_0_1  | CZ5 NON-<br>RES ROOF<br>INS                                                                                  | 0.30 | 0.04<br>8 | 0.05<br>0 | 1887.<br>09 | 1887.<br>09 | 270.0<br>0 | 45.0<br>0 |  |

|                                          | ENTIRELY<br>ABOVE<br>DECK R-<br>19.9C.I.<br>(3.5C.I.) U-<br>.048<br>(.273) |      |           |           |            |            |            |           |   |
|------------------------------------------|----------------------------------------------------------------------------|------|-----------|-----------|------------|------------|------------|-----------|---|
| FIRSTFLOOR:ZONE6_WALL_1_2_0              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 24.50      | 24.50      | 0.00       | 90.0<br>0 | N |
| FIRSTFLOOR:ZONE6_WALL_1_2_1              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 83.86      | 83.86      | 0.00       | 90.0<br>0 | N |
| FIRSTFLOOR:ZONE6_WALL_3_0_0              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 280.8<br>3 | 244.7<br>4 | 270.0<br>0 | 90.0<br>0 | W |
| FIRSTFLOOR:ZONE7_WALL_1_3_0              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 90.01      | 90.01      | 0.00       | 90.0<br>0 | N |
| FIRSTFLOOR:ZONE7_WALL_1_3_1              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 109.9<br>8 | 109.9<br>8 | 0.00       | 90.0<br>0 | N |
| FIRSTFLOOR:ZONE7_WALL_2_0_0              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 280.8<br>3 | 244.7<br>4 | 90.00      | 90.0<br>0 | E |
| FIRSTFLOOR:ZONE1_WALL_1_2_0              | COPY OF<br>COPY OF<br>CHURCH<br>WALL                                       | 0.40 | 0.44<br>0 | 0.70<br>4 | 3.78       | 3.78       | 0.00       | 90.0<br>0 | N |
| BASEMENTXABOVEGRADE:ZONE1_WALL _3_0_0    | COPY OF<br>CHURCH<br>WALL                                                  | 0.40 | 0.44<br>0 | 0.70<br>4 | 248.7<br>2 | 182.7<br>3 | 90.00      | 90.0<br>0 | E |
| BASEMENTXABOVEGRADE:ZONE1_WALL<br>_4_0_0 | COPY OF<br>CHURCH<br>WALL                                                  | 0.40 | 0.44<br>0 | 0.70<br>4 | 81.99      | 68.73      | 0.00       | 90.0<br>0 | Ν |

| BASEMENTXBELOWGRADE:ZONE10_WA<br>LL_2_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 84.94      | 84.94      | 90.00      | 90.0<br>0  | E |
|---------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXBELOWGRADE:ZONE10_WA<br>LL_3_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 28.00      | 28.00      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE10_EXT<br>FLOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 391.1<br>5 | 391.1<br>5 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE2_WALL _2_0_0       | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 141.4<br>2 | 118.6<br>1 | 90.00      | 90.0<br>0  | E |
| BASEMENTXABOVEGRADE:ZONE2_WALL<br>_3_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 69.04      | 69.04      | 0.00       | 90.0<br>0  | N |
| BASEMENTXABOVEGRADE:ZONE2_WALL<br>_8_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 69.04      | 69.04      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE9_WALL<br>_2_0_0    | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 48.29      | 48.29      | 90.00      | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE9_WALL<br>_3_0_0    | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 23.58      | 23.58      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE9_WALL<br>_8_0_0    | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 23.58      | 23.58      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE9_EXTF<br>LOOR_0_0  | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 71.17      | 71.17      | 0.00       | 180.<br>00 |   |

| BASEMENTXBELOWGRADE:ZONE9_EXTF<br>LOOR_0_0_1  | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 141.1<br>1 | 141.1<br>1 | 0.00       | 180.<br>00 |   |
|-----------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXABOVEGRADE:ZONE3_WALL<br>_3_0_0      | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 203.6<br>2 | 167.6<br>3 | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE11_WA<br>LL_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 69.54      | 69.54      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE11_EXT<br>FLOOR_0_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 254.8<br>5 | 254.8<br>5 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE4_WALL _12_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 53.48      | 53.48      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXABOVEGRADE:ZONE4_WALL<br>_15_0_0     | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 35.77      | 35.77      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXABOVEGRADE:ZONE4_WALL<br>_19_0_0     | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 35.77      | 35.77      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXABOVEGRADE:ZONE4_WALL _22_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 365.1<br>8 | 282.4<br>9 | 90.00      | 90.0<br>0  | E |
| BASEMENTXABOVEGRADE:ZONE4_WALL _23_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 33.27      | 33.27      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXABOVEGRADE:ZONE4_WALL _24_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 167.2<br>0 | 135.3<br>0 | 90.00      | 90.0<br>0  | E |
| BASEMENTXABOVEGRADE:ZONE4_WALL _25_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 33.27      | 33.27      | 0.00       | 90.0<br>0  | N |

| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 124.7<br>1 | 109.6<br>7 | 90.00      | 90.0<br>0  | E |
|----------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 11.36      | 11.36      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_4_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 57.10      | 57.10      | 90.00      | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_5_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 11.36      | 11.36      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_21_0_0    | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 18.26      | 18.26      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_24_0_0    | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 12.22      | 12.22      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE2_WALL<br>_28_0_0    | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 12.22      | 12.22      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0   | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 80.41      | 80.41      | 0.00       | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_1 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 77.41      | 77.41      | 0.00       | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_2 | SOLID<br>BASEMENT<br>GROUND                             | 0.40 | 0.19<br>1 | 0.24<br>2 | 77.41      | 77.41      | 0.00       | 180.<br>00 |   |

|                                              | FLOOR<br>UNINSULA<br>TED                                |      |           |           |             |             |       |            |   |
|----------------------------------------------|---------------------------------------------------------|------|-----------|-----------|-------------|-------------|-------|------------|---|
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_3 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 73.30       | 73.30       | 0.00  | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_4 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 998.7<br>1  | 998.7<br>1  | 0.00  | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_5 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 181.0<br>5  | 181.0<br>5  | 0.00  | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_6 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 2014.<br>96 | 2014.<br>96 | 0.00  | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE2_EXTF<br>LOOR_0_0_7 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 695.8<br>7  | 695.8<br>7  | 0.00  | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE5_WALL _2_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 87.76       | 87.76       | 90.00 | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE8_WALL<br>_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 29.97       | 29.97       | 90.00 | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE8_EXTF<br>LOOR_0_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR                    | 0.40 | 0.19<br>1 | 0.24<br>2 | 104.0<br>0  | 104.0<br>0  | 0.00  | 180.<br>00 |   |

|                                              | UNINSULA<br>TED                                         |      |           |           |            |            |       |            |   |
|----------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|-------|------------|---|
| BASEMENTXABOVEGRADE:ZONE6_WALL _2_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 95.66      | 95.66      | 90.00 | 90.0<br>0  | E |
| BASEMENTXABOVEGRADE:ZONE6_WALL<br>_3_0_0     | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 46.17      | 46.17      | 0.00  | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE7_WALL<br>_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 32.67      | 32.67      | 90.00 | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE7_WALL<br>_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 15.77      | 15.77      | 0.00  | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE7_EXTF<br>LOOR_0_0   | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 177.1<br>9 | 177.1<br>9 | 0.00  | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE7_WALL _2_0_0        | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 119.7<br>9 | 119.7<br>9 | 90.00 | 90.0<br>0  | E |
| BASEMENTXABOVEGRADE:ZONE7_WALL<br>_3_0_0     | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 59.89      | 59.89      | 0.00  | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE6_WALL<br>_2_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 40.91      | 40.91      | 90.00 | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE6_WALL<br>_3_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 20.45      | 20.45      | 0.00  | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE6_EXTF<br>LOOR_0_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR                    | 0.40 | 0.19<br>1 | 0.24<br>2 | 325.5<br>7 | 325.5<br>7 | 0.00  | 180.<br>00 |   |

|                                             | UNINSULA<br>TED                                         |      |           |           |            |            |            |            |   |
|---------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXABOVEGRADE:ZONE8_WALL _4_0_0       | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 337.4<br>8 | 284.2<br>8 | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE16_WA<br>LL_4_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 115.2<br>5 | 115.2<br>5 | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE16_EXT<br>FLOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 770.8<br>9 | 770.8<br>9 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE9_WALL<br>_5_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 99.57      | 72.92      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE15_WA<br>LL_5_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 34.00      | 34.00      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE15_EXT<br>FLOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 227.4<br>6 | 227.4<br>6 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE10_WAL<br>L_5_0_0   | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 49.91      | 49.91      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE13_WA<br>LL_5_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 17.04      | 17.04      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE13_EXT<br>FLOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 140.2<br>3 | 140.2<br>3 | 0.00       | 180.<br>00 |   |

| BASEMENTXABOVEGRADE:ZONE11_WAL<br>L_4_0_0   | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 35.77      | 35.77      | 0.00       | 90.0<br>0  | N |
|---------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXABOVEGRADE:ZONE11_WAL<br>L_5_0_0   | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 119.7<br>9 | 119.7<br>9 | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE12_WA<br>LL_4_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 12.22      | 12.22      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE12_WA<br>LL_5_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 40.91      | 40.91      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE12_EXT<br>FLOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24      | 398.4<br>8 | 398.4<br>8 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE12_WAL<br>L_3_0_0   | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 64.60      | 55.62      | 0.00       | 90.0<br>0  | N |
| BASEMENTXABOVEGRADE:ZONE12_WAL<br>L_4_0_0   | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 86.60      | 86.60      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE14_WA<br>LL_3_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 22.06      | 22.06      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE14_WA<br>LL_4_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 29.57      | 29.57      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE14_EXT<br>FLOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 80.86      | 80.86      | 0.00       | 180.<br>00 |   |

| BASEMENTXABOVEGRADE:ZONE13_WAL<br>L_5_0_0  | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 222.8<br>0 | 182.4<br>9 | 180.0<br>0 | 90.0<br>0  | S |
|--------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXBELOWGRADE:ZONE4_WALL<br>_5_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 76.09      | 76.09      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE4_EXTF<br>LOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 482.1<br>6 | 482.1<br>6 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE14_WAL<br>L_2_0_0  | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 149.7<br>3 | 134.3<br>3 | 90.00      | 90.0<br>0  | E |
| BASEMENTXABOVEGRADE:ZONE14_WAL<br>L_3_0_0  | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 41.59      | 41.59      | 0.00       | 90.0<br>0  | N |
| BASEMENTXABOVEGRADE:ZONE14_WAL<br>L_6_0_0  | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 138.9<br>2 | 122.2<br>7 | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE5_WALL<br>_2_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 51.13      | 51.13      | 90.00      | 90.0<br>0  | E |
| BASEMENTXBELOWGRADE:ZONE5_WALL<br>_3_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 14.20      | 14.20      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE5_WALL<br>_6_0_0   | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 47.44      | 47.44      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE5_EXTF<br>LOOR_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 300.6<br>3 | 300.6<br>3 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE15_WAL<br>L_4_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 38.81      | 38.81      | 0.00       | 90.0<br>0  | N |
|----------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXABOVEGRADE:ZONE15_WAL<br>L_5_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 149.7<br>4 | 130.5<br>8 | 269.5<br>2 | 90.0<br>0  | W |
| BASEMENTXABOVEGRADE:ZONE15_WAL<br>L_6_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 132.4<br>0 | 115.7<br>4 | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE3_WALL<br>_4_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 13.26      | 13.26      | 0.00       | 90.0<br>0  | N |
| BASEMENTXBELOWGRADE:ZONE3_WALL<br>_5_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 51.14      | 51.14      | 269.5<br>2 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE3_WALL<br>_6_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 45.21      | 45.21      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE3_EXTF<br>LOOR_0_0_0 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 287.8<br>7 | 287.8<br>7 | 0.00       | 180.<br>00 |   |
| BASEMENTXABOVEGRADE:ZONE16_WAL<br>L_4_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 33.27      | 33.27      | 0.00       | 90.0<br>0  | N |
| BASEMENTXABOVEGRADE:ZONE16_WAL<br>L_5_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 167.2<br>0 | 134.6<br>0 | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXABOVEGRADE:ZONE16_WAL<br>L_6_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 38.81      | 38.81      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXABOVEGRADE:ZONE16_WAL<br>L_7_0_0    | COPY OF<br>CHURCH<br>WALL                               | 0.40 | 0.44<br>0 | 0.70<br>4 | 311.7<br>0 | 214.2<br>8 | 270.0<br>0 | 90.0<br>0  | W |

| BASEMENTXBELOWGRADE:ZONE1_WALL<br>_4_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 11.36      | 11.36      | 0.00       | 90.0<br>0  | N |
|----------------------------------------------|---------------------------------------------------------|------|-----------|-----------|------------|------------|------------|------------|---|
| BASEMENTXBELOWGRADE:ZONE1_WALL<br>_5_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 57.10      | 57.10      | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE1_WALL<br>_6_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 13.26      | 13.26      | 180.0<br>0 | 90.0<br>0  | S |
| BASEMENTXBELOWGRADE:ZONE1_WALL<br>_7_0_0     | COPY OF<br>COPY OF<br>CHURCH<br>WALL                    | 0.40 | 0.44<br>0 | 0.70<br>4 | 106.4<br>5 | 106.4<br>5 | 270.0<br>0 | 90.0<br>0  | W |
| BASEMENTXBELOWGRADE:ZONE1_EXTF<br>LOOR_0_0   | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24<br>2 | 427.2<br>1 | 427.2<br>1 | 0.00       | 180.<br>00 |   |
| BASEMENTXBELOWGRADE:ZONE1_EXTF<br>LOOR_0_0_1 | SOLID<br>BASEMENT<br>GROUND<br>FLOOR<br>UNINSULA<br>TED | 0.40 | 0.19<br>1 | 0.24      | 322.9<br>6 | 322.9<br>6 | 0.00       | 180.<br>00 |   |

## **Exterior Fenestration**

|  | Con<br>stru<br>ctio<br>n | GI F<br>a ;<br>ss n<br>A ;<br>re A<br>a ;<br>[f ;<br>t2 [f<br>] 2 | r Di<br>a vi<br>e de<br>r Ar<br>e ea<br>[ft<br>] | Ar<br>ea<br>of<br>On<br>e<br>Op<br>eni<br>ng<br>[ft<br>2] | Are<br>a<br>of<br>Mul<br>tipli<br>ed<br>Op<br>eni<br>ngs<br>[ft2<br>] | Gl<br>as<br>U-<br>Fa<br>ct<br>or<br>[B<br>tu<br>/h<br>ft | GI<br>a<br>SS<br>S<br>H<br>G<br>C | Glass<br>Visibl<br>e<br>Tran<br>smitt<br>ance | Fra<br>me<br>Con<br>duct<br>ance<br>[Btu<br>/h-<br>ft2-<br>F] | Divi<br>der<br>Con<br>duct<br>ance<br>[Btu<br>/h-<br>ft2-<br>F] | Sh<br>ad<br>Co<br>nt<br>rol | Parent Surface | Azi<br>m<br>ut<br>[d<br>eg<br>] | Ti<br>lt<br>[d<br>g] | Ca<br>rdi<br>nal<br>Dir<br>ect<br>ion |
|--|--------------------------|-------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------|---------------------------------|----------------------|---------------------------------------|
|--|--------------------------|-------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------|---------------------------------|----------------------|---------------------------------------|

|                                    |          |                   |              |          |               |           | 2-<br>F]      |                   |           |  |        |                          |                |                   |   |
|------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|--------------------------|----------------|-------------------|---|
| GYM:ZONE3_WALL_2_<br>0_0_0_0_1_WIN | 100<br>1 | 2<br>3.<br>3<br>6 | 0.<br>0<br>0 | 0.<br>00 | 23<br>.3<br>6 | 23.<br>36 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | GYM:ZONE3_WAL<br>L_2_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| GYM:ZONE3_WALL_2_<br>0_0_1_0_0_WIN | 100<br>1 | 2<br>3.<br>3<br>6 | 0.<br>0<br>0 | 0.<br>00 | 23<br>.3<br>6 | 23.<br>36 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | GYM:ZONE3_WAL<br>L_2_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| GYM:ZONE3_WALL_3_<br>0_0_0_0_3_WIN | 100<br>1 | 1<br>4.<br>0<br>0 | 0.<br>0<br>0 | 0.<br>00 | 14<br>.0<br>0 | 14.<br>00 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | GYM:ZONE3_WAL<br>L_3_0_0 | 0.<br>00       | 9<br>0.<br>0<br>0 | Ν |
| GYM:ZONE3_WALL_3_<br>0_0_1_0_2_WIN | 100<br>1 | 1<br>4.<br>0<br>0 | 0.<br>0<br>0 | 0.<br>00 | 14<br>.0<br>0 | 14.<br>00 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | GYM:ZONE3_WAL<br>L_3_0_0 | 0.<br>00       | 9<br>0.<br>0<br>0 | N |
| GYM:ZONE3_WALL_3_<br>0_0_2_0_1_WIN | 100<br>1 | 1<br>4.<br>0<br>0 | 0.<br>0<br>0 | 0.<br>00 | 14<br>.0<br>0 | 14.<br>00 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | GYM:ZONE3_WAL<br>L_3_0_0 | 0.<br>00       | 9<br>0.<br>0<br>0 | Ν |
| GYM:ZONE3_WALL_3_<br>0_0_3_0_0_WIN | 100<br>1 | 1<br>4.<br>0<br>0 | 0.<br>0<br>0 | 0.<br>00 | 14<br>.0<br>0 | 14.<br>00 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | GYM:ZONE3_WAL<br>L_3_0_0 | 0.<br>00       | 9<br>0.<br>0<br>0 | Ν |
| GYM:ZONE3_WALL_4_<br>0_0_1_0_2_WIN | 100<br>1 | 2<br>2.<br>8<br>8 | 0.<br>0<br>0 | 0.<br>00 | 22<br>.8<br>8 | 22.<br>88 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | GYM:ZONE3_WAL<br>L_4_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| GYM:ZONE3_WALL_4_<br>0_0_2_0_1_WIN | 100<br>1 | 2<br>2.<br>8<br>8 | 0.<br>0<br>0 | 0.<br>00 | 22<br>.8<br>8 | 22.<br>88 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | GYM:ZONE3_WAL<br>L_4_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| GYM:ZONE3_WALL_4_<br>0_0_3_0_0_WIN | 100<br>1 | 2<br>2.<br>8<br>8 | 0.<br>0<br>0 | 0.<br>00 | 22<br>.8<br>8 | 22.<br>88 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | GYM:ZONE3_WAL<br>L_4_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| GYM:ZONE3_WALL_7_<br>0_0_0_0_0_WIN | 100<br>1 | 2<br>2.           | 0.<br>0<br>0 | 0.<br>00 | 22<br>.8<br>2 | 22.<br>82 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | GYM:ZONE3_WAL<br>L_7_0_0 | 90<br>.0<br>0  | 9<br>0.           | E |

|                                         |                      |     |                   |              |          |               |           |               |                   |           | <br> |        |                                 |                |                   |   |
|-----------------------------------------|----------------------|-----|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|------|--------|---------------------------------|----------------|-------------------|---|
|                                         |                      |     | 8<br>2            |              |          |               |           |               | 1<br>9            |           |      |        |                                 |                | 0<br>0            |   |
| GYM:ZONE1_WALL_<br>0_0_0_0_0_W          | 2_ 10<br>IN          | 03  | 2<br>3.<br>4<br>9 | 0.<br>0<br>0 | 0.<br>00 | 23<br>.4<br>9 | 23.<br>49 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | GYM:ZONE1_WAL<br>L_2_0_0        | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| GYM:ZONE2_WALL_<br>0_0_0_0_0_W          | 2_ 10<br>IN          | 0   | 5.<br>5<br>7      | 0.<br>0<br>0 | 0.<br>00 | 5.<br>57      | 5.5<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | GYM:ZONE2_WAL<br>L_2_0_0        | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_0_0_W     | 3_ 10<br>D_ 10<br>IN | 0   | ).<br>1<br>1      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11      | 0.1       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_1_0_<br>W | 3_ 10<br>D_ 10<br>IN | 0   | 1.<br>7<br>7      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>77      | 4.7<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_2_0_<br>W | 3_ 10<br>0_ 10<br>IN | 0 ( | ).<br>5<br>8      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58      | 0.5<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_3_0_<br>W | 3_ 10<br>0_ 10<br>IN | 0 ( | ).<br>7<br>3      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73      | 0.7<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_4_0_<br>W | 3_<br>0_ 10<br>IN    | 0 ( | ).<br>8<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>82      | 0.8<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_5_0_<br>W | 3_ 10<br>0_ 10<br>IN | 0 0 | ).<br>8<br>4      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84      | 0.8<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_6_0_<br>W | 3_ 10<br>0_ 10<br>IN | 0 ( | ).<br>7<br>9      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79      | 0.7<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE<br>WALL_4_0_0_7_0_<br>W | 3_ 10<br>D_ 10<br>IN | 0 0 | ).<br>6<br>7      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67      | 0.6<br>7  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |      | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.           | W |

|                                 |                       |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|---------------------------------|-----------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZC<br>WALL_4_0_0_8_  | 0NE3_<br>_0_0_<br>WIN | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_9_  | 0NE3_<br>_0_0_<br>WIN | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_11  | 0NE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_12  | 0NE3_<br>_0_1_<br>WIN | 100<br>1 | 4.<br>7<br>7 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>77 | 4.7<br>7 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_13_ | 0NE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_14_ | 0NE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_15_ | 0NE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>8<br>2 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>82 | 0.8<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_16  | 0NE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_17_ | ONE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZC<br>WALL_4_0_0_18  | ONE3_<br>_0_1_<br>WIN | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.           | W |

|   |                                                |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|---|------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| V | FIRSTFLOOR:ZONE3_<br>/ALL_4_0_0_19_0_1_<br>WIN | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| N | FIRSTFLOOR:ZONE3_<br>/ALL_4_0_0_20_0_1_<br>WIN | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_4_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_0_0_1_<br>WIN  | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| 1 | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_1_0_1_<br>WIN  | 100<br>1 | 4.<br>7<br>6 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>76 | 4.7<br>6 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| , | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_2_0_1_<br>WIN  | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| , | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_3_0_1_<br>WIN  | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| , | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_4_0_1_<br>WIN  | 100<br>1 | 0.<br>8<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>81 | 0.8<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| , | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_5_0_1_<br>WIN  | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_6_0_1_<br>WIN  | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| , | FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_7_0_1_<br>WIN  | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_8_0_1_<br>WIN  | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_9_0_1_<br>WIN  | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_11_0_2_<br>WIN | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_12_0_2_<br>WIN | 100<br>1 | 4.<br>7<br>6 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>76 | 4.7<br>6 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_13_0_2_<br>WIN | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_14_0_2_<br>WIN | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_15_0_2_<br>WIN | 100<br>1 | 0.<br>8<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>81 | 0.8<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_16_0_2_<br>WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_17_0_2_<br>WIN | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_18_0_2_<br>WIN | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                   |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|---------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_19_0_2_<br>WIN    | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE3_<br>WALL_5_0_0_20_0_2_<br>WIN    | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E3_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_0_0_0_<br>WIN     | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_1_0_0_<br>WIN     | 100<br>1 | 4.<br>7<br>7 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>77 | 4.7<br>7 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_2_0_0_<br>WIN     | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_3_0_0_<br>WIN     | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_4_0_0_<br>WIN     | 100<br>1 | 0.<br>8<br>2 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>82 | 0.8<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_5_0_0_<br>WIN     | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_6_0_0_<br>WIN     | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| <br>FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_7_0_0_<br>WIN | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.           | E |

|                                                |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |               | 0<br>0            |   |
|------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|---------------|-------------------|---|
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_8_0_0_<br>WIN  | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_9_0_0_<br>WIN  | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_11_0_1_<br>WIN | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_12_0_1_<br>WIN | 100<br>1 | 4.<br>7<br>7 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>77 | 4.7<br>7 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_13_0_1_<br>WIN | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_14_0_1_<br>WIN | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_15_0_1_<br>WIN | 100<br>1 | 0.<br>8<br>2 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>82 | 0.8<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_16_0_1_<br>WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_17_0_1_<br>WIN | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE4_<br>WALL_4_0_0_18_0_1_<br>WIN | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0 | 9<br>0.           | E |

|   |                                                |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|---|------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| V | FIRSTFLOOR:ZONE4_<br>VALL_4_0_0_19_0_1_<br>WIN | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE4_<br>VALL_4_0_0_20_0_1_<br>WIN | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_4_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_0_0_1_<br>WIN  | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_1_0_1_<br>WIN  | 100<br>1 | 4.<br>7<br>7 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>77 | 4.7<br>7 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_2_0_1_<br>WIN  | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_3_0_1_<br>WIN  | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_4_0_1_<br>WIN  | 100<br>1 | 0.<br>8<br>2 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>82 | 0.8<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_5_0_1_<br>WIN  | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_6_0_1_<br>WIN  | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_7_0_1_<br>WIN  | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_8_0_1_<br>WIN  | 100<br>1 | 0.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51 | 0.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_9_0_1_<br>WIN  | 100<br>1 | 0.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30 | 0.3<br>0 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_11_0_2_<br>WIN | 100<br>1 | 0.<br>1<br>1 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>11 | 0.1      | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_12_0_2_<br>WIN | 100<br>1 | 4.<br>7<br>7 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>77 | 4.7<br>7 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_13_0_2_<br>WIN | 100<br>1 | 0.<br>5<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58 | 0.5<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_14_0_2_<br>WIN | 100<br>1 | 0.<br>7<br>3 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>73 | 0.7<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_15_0_2_<br>WIN | 100<br>1 | 0.<br>8<br>2 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>82 | 0.8<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_16_0_2_<br>WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_17_0_2_<br>WIN | 100<br>1 | 0.<br>7<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79 | 0.7<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_18_0_2_<br>WIN | 100<br>1 | 0.<br>6<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>67 | 0.6<br>7 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_19_0_2_<br>WIN | 100<br>1 | 0.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51      | 0.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0  | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE4_<br>WALL_5_0_0_20_0_2_<br>WIN | 100<br>1 | 0.<br>3<br>0      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>30      | 0.3<br>0  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E4_WALL_5_0_0  | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_0_0_0_<br>WIN | 100<br>1 | 0.<br>8<br>6      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>86      | 0.8<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_1_0_0_<br>WIN | 100<br>1 | 3<br>8.<br>9<br>4 | 0.<br>0<br>0 | 0.<br>00 | 38<br>.9<br>4 | 38.<br>94 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_2_0_0_<br>WIN | 100<br>1 | 6.<br>1<br>1      | 0.<br>0<br>0 | 0.<br>00 | 6.<br>11      | 6.1<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_3_0_0_<br>WIN | 100<br>1 | 7.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>23      | 7.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_4_0_0_<br>WIN | 100<br>1 | 7.<br>6<br>5      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>65      | 7.6<br>5  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_5_0_0_<br>WIN | 100<br>1 | 7.<br>5<br>9      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>59      | 7.5<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_6_0_0_<br>WIN | 100<br>1 | 6.<br>9<br>8      | 0.<br>0<br>0 | 0.<br>00 | 6.<br>98      | 6.9<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_7_0_0_<br>WIN | 100<br>1 | 5.<br>8<br>6      | 0.<br>0<br>0 | 0.<br>00 | 5.<br>86      | 5.8<br>6  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.           | W |

|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_8_0_0_<br>WIN  | 100<br>1 | 4.<br>3<br>6      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>36      | 4.3<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_9_0_0_<br>WIN  | 100<br>1 | 2.<br>6<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>61      | 2.6<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_14_0_0_10_0_0<br>_WIN | 100<br>1 | 0.<br>7<br>9      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79      | 0.7<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_14_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_0_0_0_<br>WIN  | 100<br>1 | 0.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>42      | 0.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_1_0_0_<br>WIN  | 100<br>1 | 1<br>8.<br>5<br>6 | 0.<br>0<br>0 | 0.<br>00 | 18<br>.5<br>6 | 18.<br>56 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_2_0_0_<br>WIN  | 100<br>1 | 2.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>51      | 2.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_3_0_0_<br>WIN  | 100<br>1 | 3.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>06      | 3.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_4_0_0_<br>WIN  | 100<br>1 | 3.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>37      | 3.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_5_0_0_<br>WIN  | 100<br>1 | 3.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>42      | 3.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_6_0_0_<br>WIN  | 100<br>1 | 3.<br>1<br>9      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>19      | 3.1<br>9  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.           | W |

|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_7_0_0_<br>WIN  | 100<br>1 | 2.<br>7<br>2      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>72      | 2.7<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_8_0_0_<br>WIN  | 100<br>1 | 2.<br>0<br>4      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>04      | 2.0<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_9_0_0_<br>WIN  | 100<br>1 | 1.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>23      | 1.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_10_0_0<br>_WIN | 100<br>1 | 0.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>37      | 0.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_11_0_1<br>_WIN | 100<br>1 | 0.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>42      | 0.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_12_0_1<br>_WIN | 100<br>1 | 1<br>8.<br>5<br>6 | 0.<br>0<br>0 | 0.<br>00 | 18<br>.5<br>6 | 18.<br>56 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_13_0_1<br>_WIN | 100<br>1 | 2.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>51      | 2.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_14_0_1<br>_WIN | 100<br>1 | 3.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>06      | 3.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_15_0_1<br>_WIN | 100<br>1 | 3.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>37      | 3.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_16_0_1<br>_WIN | 100<br>1 | 3.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>42      | 3.4<br>2  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.           | W |

|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_17_0_1<br>_WIN | 100<br>1 | 3.<br>1<br>9      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>19      | 3.1<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_18_0_1<br>_WIN | 100<br>1 | 2.<br>7<br>2      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>72      | 2.7<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_19_0_1<br>_WIN | 100<br>1 | 2.<br>0<br>4      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>04      | 2.0<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_20_0_1<br>_WIN | 100<br>1 | 1.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>23      | 1.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_21_0_1<br>_WIN | 100<br>1 | 0.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>37      | 0.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_22_0_2<br>_WIN | 100<br>1 | 0.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>42      | 0.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_23_0_2<br>_WIN | 100<br>1 | 1<br>8.<br>5<br>6 | 0.<br>0<br>0 | 0.<br>00 | 18<br>.5<br>6 | 18.<br>56 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_24_0_2<br>_WIN | 100<br>1 | 2.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>51      | 2.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_25_0_2<br>_WIN | 100<br>1 | 3.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>06      | 3.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_26_0_2<br>_WIN | 100<br>1 | 3.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>37      | 3.3<br>7  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.           | W |

| - |                                                 |          |              |              |          |          |          |               |                   |           |  |        |                                  |                |                   |   |
|---|-------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
|   |                                                 |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|   | FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_27_0_2<br>_WIN | 100<br>1 | 3.<br>4<br>2 | 0.<br>0<br>0 | 0.<br>00 | 3.<br>42 | 3.4<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_28_0_2<br>_WIN | 100<br>1 | 3.<br>1<br>9 | 0.<br>0<br>0 | 0.<br>00 | 3.<br>19 | 3.1<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_29_0_2<br>_WIN | 100<br>1 | 2.<br>7<br>2 | 0.<br>0<br>0 | 0.<br>00 | 2.<br>72 | 2.7<br>2 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_30_0_2<br>_WIN | 100<br>1 | 2.<br>0<br>4 | 0.<br>0<br>0 | 0.<br>00 | 2.<br>04 | 2.0<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_31_0_2<br>_WIN | 100<br>1 | 1.<br>2<br>3 | 0.<br>0<br>0 | 0.<br>00 | 1.<br>23 | 1.2<br>3 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE2_<br>WALL_16_0_0_32_0_2<br>_WIN | 100<br>1 | 0.<br>3<br>7 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>37 | 0.3<br>7 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_16_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_1_0_0_<br>WIN  | 100<br>1 | 4.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>51 | 4.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_2_0_0_<br>WIN  | 100<br>1 | 0.<br>6<br>5 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>65 | 0.6<br>5 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_3_0_0_<br>WIN  | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
|   | FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_4_0_0_<br>WIN  | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                 |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_5_0_0_<br>WIN  | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_6_0_0_<br>WIN  | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_7_0_0_<br>WIN  | 100<br>1 | 0.<br>6<br>6 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>66 | 0.6<br>6 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_8_0_0_<br>WIN  | 100<br>1 | 0.<br>4<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>49 | 0.4<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_9_0_0_<br>WIN  | 100<br>1 | 0.<br>2<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>29 | 0.2<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_12_0_1<br>_WIN | 100<br>1 | 4.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>51 | 4.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_13_0_1<br>_WIN | 100<br>1 | 0.<br>6<br>5 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>65 | 0.6<br>5 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_14_0_1<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_15_0_1<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_16_0_1<br>WIN  | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                 |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_17_0_1<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_18_0_1<br>_WIN | 100<br>1 | 0.<br>6<br>6 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>66 | 0.6<br>6 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_19_0_1<br>_WIN | 100<br>1 | 0.<br>4<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>49 | 0.4<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_20_0_1<br>_WIN | 100<br>1 | 0.<br>2<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>29 | 0.2<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_23_0_2<br>_WIN | 100<br>1 | 4.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>51 | 4.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_24_0_2<br>_WIN | 100<br>1 | 0.<br>6<br>5 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>65 | 0.6<br>5 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_25_0_2<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_26_0_2<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_27_0_2<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_28_0_2<br>WIN  | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                 |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_29_0_2<br>_WIN | 100<br>1 | 0.<br>6<br>6 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>66 | 0.6<br>6 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_30_0_2<br>_WIN | 100<br>1 | 0.<br>4<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>49 | 0.4<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_31_0_2<br>WIN  | 100<br>1 | 0.<br>2<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>29 | 0.2<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_34_0_3<br>_WIN | 100<br>1 | 4.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>51 | 4.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_35_0_3<br>_WIN | 100<br>1 | 0.<br>6<br>5 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>65 | 0.6<br>5 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_36_0_3<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_37_0_3<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_38_0_3<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_39_0_3<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_40_0_3<br>WIN  | 100<br>1 | 0.<br>6<br>6 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>66 | 0.6<br>6 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                 |          |              |              |          |          |          |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|-------------------------------------------------|----------|--------------|--------------|----------|----------|----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_41_0_3<br>_WIN | 100<br>1 | 0.<br>4<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>49 | 0.4<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_42_0_3<br>_WIN | 100<br>1 | 0.<br>2<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>29 | 0.2<br>9 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_45_0_4<br>_WIN | 100<br>1 | 4.<br>5<br>1 | 0.<br>0<br>0 | 0.<br>00 | 4.<br>51 | 4.5<br>1 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_46_0_4<br>_WIN | 100<br>1 | 0.<br>6<br>5 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>65 | 0.6<br>5 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_47_0_4<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_48_0_4<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_49_0_4<br>_WIN | 100<br>1 | 0.<br>8<br>4 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>84 | 0.8<br>4 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_50_0_4<br>_WIN | 100<br>1 | 0.<br>7<br>8 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>78 | 0.7<br>8 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_51_0_4<br>_WIN | 100<br>1 | 0.<br>6<br>6 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>66 | 0.6<br>6 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE2_<br>WALL_19_0_0_52_0_4<br>_WIN | 100<br>1 | 0.<br>4<br>9 | 0.<br>0<br>0 | 0.<br>00 | 0.<br>49 | 0.4<br>9 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|   |                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |                | 0<br>0            |   |
|---|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|----------------|-------------------|---|
| V | FIRSTFLOOR:ZONE2_<br>/ALL_19_0_0_53_0_4<br>_WIN | 100<br>1 | 0.<br>2<br>9      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>29      | 0.2<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_19_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_0_0_0_<br>WIN  | 100<br>1 | 0.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>42      | 0.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_1_0_0_<br>WIN  | 100<br>1 | 1<br>8.<br>5<br>6 | 0.<br>0<br>0 | 0.<br>00 | 18<br>.5<br>6 | 18.<br>56 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_2_0_0_<br>WIN  | 100<br>1 | 2.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>51      | 2.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_3_0_0_<br>WIN  | 100<br>1 | 3.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>06      | 3.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_4_0_0_<br>WIN  | 100<br>1 | 3.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>37      | 3.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_5_0_0_<br>WIN  | 100<br>1 | 3.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>42      | 3.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_6_0_0_<br>WIN  | 100<br>1 | 3.<br>1<br>9      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>19      | 3.1<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_7_0_0_<br>WIN  | 100<br>1 | 2.<br>7<br>2      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>72      | 2.7<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88      |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| V | FIRSTFLOOR:ZONE2_<br>/ALL_22_0_0_8_0_0_<br>WIN  | 100<br>1 | 2.<br>0<br>4      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>04      | 2.0<br>4  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.           | E |

|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |               | 0<br>0            |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|---------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_9_0_0_<br>WIN  | 100<br>1 | 1.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>23      | 1.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_10_0_0<br>_WIN | 100<br>1 | 0.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>37      | 0.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_11_0_1<br>_WIN | 100<br>1 | 0.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>42      | 0.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_12_0_1<br>_WIN | 100<br>1 | 1<br>8.<br>5<br>6 | 0.<br>0<br>0 | 0.<br>00 | 18<br>.5<br>6 | 18.<br>56 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_13_0_1<br>_WIN | 100<br>1 | 2.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>51      | 2.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_14_0_1<br>_WIN | 100<br>1 | 3.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>06      | 3.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_15_0_1<br>_WIN | 100<br>1 | 3.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>37      | 3.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_16_0_1<br>_WIN | 100<br>1 | 3.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>42      | 3.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_17_0_1<br>_WIN | 100<br>1 | 3.<br>1<br>9      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>19      | 3.1<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_18_0_1<br>WIN  | 100<br>1 | 2.<br>7<br>2      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>72      | 2.7<br>2  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.           | E |

|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |               | 0<br>0            |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|---------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_19_0_1<br>_WIN | 100<br>1 | 2.<br>0<br>4      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>04      | 2.0<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_20_0_1<br>_WIN | 100<br>1 | 1.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>23      | 1.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_21_0_1<br>_WIN | 100<br>1 | 0.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>37      | 0.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_22_0_2<br>_WIN | 100<br>1 | 0.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>42      | 0.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_23_0_2<br>_WIN | 100<br>1 | 1<br>8.<br>5<br>6 | 0.<br>0<br>0 | 0.<br>00 | 18<br>.5<br>6 | 18.<br>56 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_24_0_2<br>_WIN | 100<br>1 | 2.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>51      | 2.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_25_0_2<br>_WIN | 100<br>1 | 3.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>06      | 3.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_26_0_2<br>_WIN | 100<br>1 | 3.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>37      | 3.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_27_0_2<br>_WIN | 100<br>1 | 3.<br>4<br>2      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>42      | 3.4<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_28_0_2<br>WIN  | 100<br>1 | 3.<br>1<br>9      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>19      | 3.1<br>9  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.           | E |

|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                  |               | 0<br>0            |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|----------------------------------|---------------|-------------------|---|
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_29_0_2<br>_WIN | 100<br>1 | 2.<br>7<br>2      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>72      | 2.7<br>2  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_30_0_2<br>_WIN | 100<br>1 | 2.<br>0<br>4      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>04      | 2.0<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_31_0_2<br>_WIN | 100<br>1 | 1.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>23      | 1.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_22_0_0_32_0_2<br>_WIN | 100<br>1 | 0.<br>3<br>7      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>37      | 0.3<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_0_0_0_<br>WIN  | 100<br>1 | 0.<br>8<br>6      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>86      | 0.8<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_1_0_0_<br>WIN  | 100<br>1 | 3<br>8.<br>9<br>4 | 0.<br>0<br>0 | 0.<br>00 | 38<br>.9<br>4 | 38.<br>94 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_2_0_0_<br>WIN  | 100<br>1 | 6.<br>1<br>1      | 0.<br>0<br>0 | 0.<br>00 | 6.<br>11      | 6.1<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_3_0_0_<br>WIN  | 100<br>1 | 7.<br>2<br>3      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>23      | 7.2<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_4_0_0_<br>WIN  | 100<br>1 | 7.<br>6<br>5      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>65      | 7.6<br>5  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_5_0_0_<br>WIN  | 100<br>1 | 7.<br>5<br>9      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>59      | 7.5<br>9  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0 | 9<br>0.           | E |

|                                                 |          | 1                 |              |          |               |           |               |                   |           | 1 |        |                                  |                |                   |   |
|-------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|---|--------|----------------------------------|----------------|-------------------|---|
|                                                 |          |                   |              |          |               |           |               | 1<br>9            |           |   |        |                                  |                | 0<br>0            |   |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_6_0_0_<br>WIN  | 100<br>1 | 6.<br>9<br>8      | 0.<br>0<br>0 | 0.<br>00 | 6.<br>98      | 6.9<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_7_0_0_<br>WIN  | 100<br>1 | 5.<br>8<br>6      | 0.<br>0<br>0 | 0.<br>00 | 5.<br>86      | 5.8<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>O | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_8_0_0_<br>WIN  | 100<br>1 | 4.<br>3<br>6      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>36      | 4.3<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_9_0_0_<br>WIN  | 100<br>1 | 2.<br>6<br>1      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>61      | 2.6<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| FIRSTFLOOR:ZONE2_<br>WALL_24_0_0_10_0_0<br>_WIN | 100<br>1 | 0.<br>7<br>9      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>79      | 0.7<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>o | FIRSTFLOOR:ZON<br>E2_WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_0_0_0_<br>WIN   | 100<br>1 | 0.<br>6<br>9      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>69      | 0.6<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0  | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_1_0_0_<br>WIN   | 100<br>1 | 2<br>9.<br>8<br>1 | 0.<br>0<br>0 | 0.<br>00 | 29<br>.8<br>1 | 29.<br>81 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>O | CHURCHROOF:ZO<br>NE3_WALL_3_0_0  | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_2_0_0_<br>WIN   | 100<br>1 | 3.<br>5<br>3      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>53      | 3.5<br>3  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>O | CHURCHROOF:ZO<br>NE3_WALL_3_0_0  | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_3_0_0_<br>WIN   | 100<br>1 | 4.<br>4<br>9      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>49      | 4.4<br>9  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |   | N<br>O | CHURCHROOF:ZO<br>NE3_WALL_3_0_0  | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_4_0_0_<br>WIN   | 100<br>1 | 5.<br>0<br>8      | 0.<br>0<br>0 | 0.<br>00 | 5.<br>08      | 5.0<br>8  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |   | N<br>O | CHURCHROOF:ZO<br>NE3_WALL_3_0_0  | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_5_0_0_<br>WIN  | 100<br>1 | 5.<br>2<br>5      | 0.<br>0<br>0 | 0.<br>00 | 5.<br>25      | 5.2<br>5  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_6_0_0_<br>WIN  | 100<br>1 | 4.<br>9<br>8      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>98      | 4.9<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_7_0_0_<br>WIN  | 100<br>1 | 4.<br>3<br>0      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>30      | 4.3<br>0  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_8_0_0_<br>WIN  | 100<br>1 | 3.<br>2<br>7      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>27      | 3.2<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_9_0_0_<br>WIN  | 100<br>1 | 2.<br>0<br>0      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>00      | 2.0<br>0  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_10_0_0_<br>WIN | 100<br>1 | 0.<br>6<br>1      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>61      | 0.6<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_11_0_1_<br>WIN | 100<br>1 | 0.<br>5<br>8      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58      | 0.5<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_12_0_1_<br>WIN | 100<br>1 | 2<br>5.<br>1<br>2 | 0.<br>0<br>0 | 0.<br>00 | 25<br>.1<br>2 | 25.<br>12 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_13_0_1_<br>WIN | 100<br>1 | 3.<br>2<br>1      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>21      | 3.2<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_14_0_1_<br>WIN | 100<br>1 | 3.<br>9<br>8      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>98      | 3.9<br>8  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                |          |                   |              |          |               |           |               | 1<br>9            |           |  |        |                                 |                | 0<br>0            |   |
|------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|---------------------------------|----------------|-------------------|---|
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_15_0_1_<br>WIN | 100<br>1 | 4.<br>4<br>4      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>44      | 4.4<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_16_0_1_<br>WIN | 100<br>1 | 4.<br>5<br>4      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>54      | 4.5<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_17_0_1_<br>WIN | 100<br>1 | 4.<br>2<br>7      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>27      | 4.2<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_18_0_1_<br>WIN | 100<br>1 | 3.<br>6<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>66      | 3.6<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_19_0_1_<br>WIN | 100<br>1 | 2.<br>7<br>6      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>76      | 2.7<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_20_0_1_<br>WIN | 100<br>1 | 1.<br>6<br>8      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>68      | 1.6<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_21_0_1_<br>WIN | 100<br>1 | 0.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51      | 0.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_22_0_2_<br>WIN | 100<br>1 | 0.<br>5<br>8      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>58      | 0.5<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_23_0_2_<br>WIN | 100<br>1 | 2<br>5.<br>1<br>2 | 0.<br>0<br>0 | 0.<br>00 | 25<br>.1<br>2 | 25.<br>12 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_24_0_2_<br>WIN | 100<br>1 | 3.<br>2<br>1      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>21      | 3.2<br>1  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.           | S |

|                                                |          |                   |              |          |               |           |               | 1<br>9            |           |           |           |        |                                 |                | 0<br>0            |   |
|------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|-----------|-----------|--------|---------------------------------|----------------|-------------------|---|
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_25_0_2_<br>WIN | 100<br>1 | 3.<br>9<br>8      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>98      | 3.9<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_26_0_2_<br>WIN | 100<br>1 | 4.<br>4<br>4      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>44      | 4.4<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_27_0_2_<br>WIN | 100<br>1 | 4.<br>5<br>4      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>54      | 4.5<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_28_0_2_<br>WIN | 100<br>1 | 4.<br>2<br>7      | 0.<br>0<br>0 | 0.<br>00 | 4.<br>27      | 4.2<br>7  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_29_0_2_<br>WIN | 100<br>1 | 3.<br>6<br>6      | 0.<br>0<br>0 | 0.<br>00 | 3.<br>66      | 3.6<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_30_0_2_<br>WIN | 100<br>1 | 2.<br>7<br>6      | 0.<br>0<br>0 | 0.<br>00 | 2.<br>76      | 2.7<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_31_0_2_<br>WIN | 100<br>1 | 1.<br>6<br>8      | 0.<br>0<br>0 | 0.<br>00 | 1.<br>68      | 1.6<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| CHURCHROOF:ZONE3_<br>WALL_3_0_0_32_0_2_<br>WIN | 100<br>1 | 0.<br>5<br>1      | 0.<br>0<br>0 | 0.<br>00 | 0.<br>51      | 0.5<br>1  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | CHURCHROOF:ZO<br>NE3_WALL_3_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| FIRSTFLOOR:ZONE6_<br>WALL_3_0_0_0_0_1_<br>WIN  | 100<br>1 | 1<br>5.<br>1<br>9 | 2.<br>3<br>0 | 0.<br>55 | 18<br>.0<br>4 | 18.<br>04 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 | 1.67<br>3 | 1.67<br>3 | N<br>o | FIRSTFLOOR:ZON<br>E6_WALL_3_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| FIRSTFLOOR:ZONE6_<br>WALL_3_0_0_1_0_0_<br>WIN  | 100<br>1 | 1<br>5.           | 2.<br>3<br>0 | 0.<br>55 | 18<br>.0<br>4 | 18.<br>04 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 | 1.67<br>3 | 1.67<br>3 | N<br>o | FIRSTFLOOR:ZON<br>E6_WALL_3_0_0 | 27<br>0.<br>00 | 9<br>0.           | W |

| - |                                                         |          |                   |              |          |               |           |               |                   |           |           |           |        |                                               |               |                   |   |
|---|---------------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|-----------|-----------|--------|-----------------------------------------------|---------------|-------------------|---|
|   |                                                         |          | 1<br>9            |              |          |               |           |               | 1<br>9            |           |           |           |        |                                               |               | 0<br>0            |   |
|   | FIRSTFLOOR:ZONE7_<br>WALL_2_0_0_0_0_1_<br>WIN           | 100<br>1 | 1<br>5.<br>1<br>9 | 2.<br>3<br>0 | 0.<br>55 | 18<br>.0<br>4 | 18.<br>04 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 | 1.67<br>3 | 1.67<br>3 | N<br>o | FIRSTFLOOR:ZON<br>E7_WALL_2_0_0               | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
|   | FIRSTFLOOR:ZONE7_<br>WALL_2_0_0_1_0_0_<br>WIN           | 100<br>1 | 1<br>5.<br>1<br>9 | 2.<br>3<br>0 | 0.<br>55 | 18<br>.0<br>4 | 18.<br>04 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 | 1.67<br>3 | 1.67<br>3 | N<br>o | FIRSTFLOOR:ZON<br>E7_WALL_2_0_0               | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
|   | BASEMENTXABOVEGR<br>ADE:ZONE1_WALL_3_<br>0_0_0_0_3_WIN  | 100<br>1 | 1<br>6.<br>5<br>0 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.5<br>0 | 16.<br>50 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE1_<br>WALL_3_0_0  | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
|   | BASEMENTXABOVEGR<br>ADE:ZONE1_WALL_3_<br>0_0_1_0_2_WIN  | 100<br>1 | 1<br>6.<br>5<br>0 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.5<br>0 | 16.<br>50 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE1_<br>WALL_3_0_0  | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
|   | BASEMENTXABOVEGR<br>ADE:ZONE1_WALL_3_<br>0_0_2_0_1_WIN  | 100<br>1 | 1<br>6.<br>5<br>0 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.5<br>0 | 16.<br>50 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE1_<br>WALL_3_0_0  | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
|   | BASEMENTXABOVEGR<br>ADE:ZONE1_WALL_3_<br>0_0_3_0_0_WIN  | 100<br>1 | 1<br>6.<br>5<br>0 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.5<br>0 | 16.<br>50 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE1_<br>WALL_3_0_0  | 90<br>.0<br>0 | 9<br>0.<br>0<br>0 | E |
|   | BASEMENTXABOVEGR<br>ADE:ZONE1_WALL_4_<br>0_0_0_0_0_WIN  | 100<br>1 | 1<br>3.<br>2<br>6 | 0.<br>0<br>0 | 0.<br>00 | 13<br>.2<br>6 | 13.<br>26 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE1_<br>WALL_4_0_0  | 0.<br>00      | 9<br>0.<br>0<br>0 | N |
|   | BASEMENTXABOVEGR<br>ADE:ZONE3_WALL_3_<br>0_0_0_0_1_WIN  | 100<br>1 | 2<br>1.<br>0<br>7 | 0.<br>0<br>0 | 0.<br>00 | 21<br>.0<br>7 | 21.<br>07 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE3_<br>WALL_3_0_0  | 0.<br>00      | 9<br>0.<br>0<br>0 | N |
|   | BASEMENTXABOVEGR<br>ADE:ZONE3_WALL_3_<br>0_0_1_0_0_WIN  | 100<br>1 | 1<br>4.<br>9<br>2 | 0.<br>0<br>0 | 0.<br>00 | 14<br>.9<br>2 | 14.<br>92 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |           |           | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE3_<br>WALL_3_0_0  | 0.<br>00      | 9<br>0.<br>0<br>0 | N |
|   | BASEMENTXABOVEGR<br>ADE:ZONE4_WALL_22<br>_0_0_0_0_4_WIN | 100<br>1 | 1<br>5.           | 0.<br>0<br>0 | 0.<br>00 | 15<br>.9<br>3 | 15.<br>93 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |           |           | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE4_<br>WALL_22_0_0 | 90<br>.0<br>0 | 9<br>0.           | E |

|   |                                                         |          | 9<br>3            |              |          |               |           |               | 1<br>9            |           |  |        |                                               |                | 0<br>0            |   |
|---|---------------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|-----------------------------------------------|----------------|-------------------|---|
| , | BASEMENTXABOVEGR<br>ADE:ZONE4_WALL_22<br>_0_0_1_0_3_WIN | 100<br>1 | 1<br>5.<br>9<br>3 | 0.<br>0<br>0 | 0.<br>00 | 15<br>.9<br>3 | 15.<br>93 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE4_<br>WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| , | BASEMENTXABOVEGR<br>ADE:ZONE4_WALL_22<br>_0_0_3_0_1_WIN | 100<br>1 | 1<br>5.<br>9<br>3 | 0.<br>0<br>0 | 0.<br>00 | 15<br>.9<br>3 | 15.<br>93 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE4_<br>WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| , | BASEMENTXABOVEGR<br>ADE:ZONE4_WALL_22<br>_0_0_4_0_0_WIN | 100<br>1 | 1<br>5.<br>9<br>3 | 0.<br>0<br>0 | 0.<br>00 | 15<br>.9<br>3 | 15.<br>93 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE4_<br>WALL_22_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| , | BASEMENTXABOVEGR<br>ADE:ZONE4_WALL_24<br>_0_0_0_0_1_WIN | 100<br>1 | 1<br>5.<br>9<br>5 | 0.<br>0<br>0 | 0.<br>00 | 15<br>.9<br>5 | 15.<br>95 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE4_<br>WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| , | BASEMENTXABOVEGR<br>ADE:ZONE4_WALL_24<br>_0_0_1_0_0_WIN | 100<br>1 | 1<br>5.<br>9<br>5 | 0.<br>0<br>0 | 0.<br>00 | 15<br>.9<br>5 | 15.<br>95 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE4_<br>WALL_24_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
|   | BASEMENTXABOVEGR<br>ADE:ZONE8_WALL_4_<br>0_0_0_3_WIN    | 100<br>1 | 1<br>3.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 13<br>.3<br>0 | 13.<br>30 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE8_<br>WALL_4_0_0  | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | BASEMENTXABOVEGR<br>ADE:ZONE8_WALL_4_<br>0_0_1_0_2_WIN  | 100<br>1 | 1<br>3.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 13<br>.3<br>0 | 13.<br>30 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE8_<br>WALL_4_0_0  | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | BASEMENTXABOVEGR<br>ADE:ZONE8_WALL_4_<br>0_0_2_0_1_WIN  | 100<br>1 | 1<br>3.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 13<br>.3<br>0 | 13.<br>30 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE8_<br>WALL_4_0_0  | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| , | BASEMENTXABOVEGR<br>ADE:ZONE8_WALL_4_<br>0_0_3_0_0_WIN  | 100<br>1 | 1<br>3.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 13<br>.3<br>0 | 13.<br>30 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE8_<br>WALL_4_0_0  | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|   | BASEMENTXABOVEGR<br>ADE:ZONE9_WALL_5_<br>0_0_0_0_1_WIN  | 100<br>1 | 1<br>3.           | 0.<br>0<br>0 | 0.<br>00 | 13<br>.3<br>3 | 13.<br>33 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>O | BASEMENTXABOV<br>EGRADE:ZONE9_<br>WALL_5_0_0  | 27<br>0.<br>00 | 9<br>0.           | W |

|                                                         |          | 3<br>3            |              |          |               |           |               | 1<br>9            |           |  |        |                                               |                | 0<br>0            |   |
|---------------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------|---------------|-------------------|-----------|--|--------|-----------------------------------------------|----------------|-------------------|---|
| BASEMENTXABOVEGR<br>ADE:ZONE9_WALL_5_<br>0_0_1_0_0_WIN  | 100<br>1 | 1<br>3.<br>3<br>3 | 0.<br>0<br>0 | 0.<br>00 | 13<br>.3<br>3 | 13.<br>33 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE9_<br>WALL_5_0_0  | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| BASEMENTXABOVEGR<br>ADE:ZONE12_WALL_3<br>_0_0_0_0_0_WIN | 100<br>1 | 8.<br>9<br>8      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>98      | 8.9<br>8  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE12_<br>WALL_3_0_0 | 0.<br>00       | 9<br>0.<br>0<br>0 | N |
| BASEMENTXABOVEGR<br>ADE:ZONE13_WALL_5<br>_0_0_0_0_4_WIN | 100<br>1 | 8.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>06      | 8.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE13_<br>WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| BASEMENTXABOVEGR<br>ADE:ZONE13_WALL_5<br>_0_0_1_0_3_WIN | 100<br>1 | 8.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>06      | 8.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE13_<br>WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| BASEMENTXABOVEGR<br>ADE:ZONE13_WALL_5<br>_0_0_2_0_2_WIN | 100<br>1 | 8.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>06      | 8.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE13_<br>WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| BASEMENTXABOVEGR<br>ADE:ZONE13_WALL_5<br>_0_0_3_0_1_WIN | 100<br>1 | 8.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>06      | 8.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE13_<br>WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| BASEMENTXABOVEGR<br>ADE:ZONE13_WALL_5<br>_0_0_4_0_0_WIN | 100<br>1 | 8.<br>0<br>6      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>06      | 8.0<br>6  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE13_<br>WALL_5_0_0 | 18<br>0.<br>00 | 9<br>0.<br>0<br>0 | S |
| BASEMENTXABOVEGR<br>ADE:ZONE14_WALL_2<br>_0_0_0_0_1_WIN | 100<br>1 | 8.<br>8<br>0      | 0.<br>0<br>0 | 0.<br>00 | 8.<br>80      | 8.8<br>0  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE14_<br>WALL_2_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| BASEMENTXABOVEGR<br>ADE:ZONE14_WALL_2<br>_0_0_1_0_0_WIN | 100<br>1 | 6.<br>6<br>0      | 0.<br>0<br>0 | 0.<br>00 | 6.<br>60      | 6.6<br>0  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE14_<br>WALL_2_0_0 | 90<br>.0<br>0  | 9<br>0.<br>0<br>0 | E |
| BASEMENTXABOVEGR<br>ADE:ZONE15_WALL_5<br>_0_0_0_0_1_WIN | 100<br>1 | 7.<br>5<br>2      | 0.<br>0<br>0 | 0.<br>00 | 7.<br>52      | 7.5<br>2  | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE15_<br>WALL_5_0_0 | 26<br>9.<br>52 | 9<br>0.           | W |

|        |                                                       |          |                   |              |          |               |                 |               | 1<br>9            |           |  |        |                                               |                | 0<br>0            |   |
|--------|-------------------------------------------------------|----------|-------------------|--------------|----------|---------------|-----------------|---------------|-------------------|-----------|--|--------|-----------------------------------------------|----------------|-------------------|---|
| B<br>A | ASEMENTXABOVEGR<br>DE:ZONE15_WALL_5<br>_0_0_1_0_0_WIN | 100<br>1 | 1<br>1.<br>6<br>4 | 0.<br>0<br>0 | 0.<br>00 | 11<br>.6<br>4 | 11.<br>64       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE15_<br>WALL_5_0_0 | 26<br>9.<br>52 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_5<br>_0_0_0_0_1_WIN | 100<br>1 | 1<br>6.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.3<br>0 | 16.<br>30       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_5_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B<br>A | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_5<br>_0_0_1_0_0_WIN | 100<br>1 | 1<br>6.<br>3<br>0 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.3<br>0 | 16.<br>30       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_5_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_7<br>_0_0_0_0_5_WIN | 100<br>1 | 1<br>6.<br>2<br>4 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.2<br>4 | 16.<br>24       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_7_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_7<br>_0_0_1_0_4_WIN | 100<br>1 | 1<br>6.<br>2<br>4 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.2<br>4 | 16.<br>24       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_7_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_7<br>_0_0_2_0_3_WIN | 100<br>1 | 1<br>6.<br>2<br>4 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.2<br>4 | 16.<br>24       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_7_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_7<br>_0_0_3_0_2_WIN | 100<br>1 | 1<br>6.<br>2<br>4 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.2<br>4 | 16.<br>24       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_7_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_7<br>_0_0_4_0_1_WIN | 100<br>1 | 1<br>6.<br>2<br>4 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.2<br>4 | 16.<br>24       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_7_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
| B      | ASEMENTXABOVEGR<br>DE:ZONE16_WALL_7<br>_0_0_5_0_0_WIN | 100<br>1 | 1<br>6.<br>2<br>4 | 0.<br>0<br>0 | 0.<br>00 | 16<br>.2<br>4 | 16.<br>24       | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  | N<br>o | BASEMENTXABOV<br>EGRADE:ZONE16_<br>WALL_7_0_0 | 27<br>0.<br>00 | 9<br>0.<br>0<br>0 | W |
|        | Total or Average                                      |          |                   |              |          |               | 15<br>26.<br>72 | 1.<br>01<br>7 | 0.<br>8           | 0.88<br>1 |  |        |                                               |                |                   |   |

|                               |  |  |                 |               | 1<br>9            |           |  |  |  |  |
|-------------------------------|--|--|-----------------|---------------|-------------------|-----------|--|--|--|--|
| North Total or Average        |  |  | 11<br>4.2<br>4  | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  |  |  |  |
| Non-North Total or<br>Average |  |  | 14<br>12.<br>48 | 1.<br>01<br>7 | 0.<br>8<br>1<br>9 | 0.88<br>1 |  |  |  |  |

### **Interior Fenestration**

|                     | Construction | Area of One<br>Opening [ft2] | Area of<br>Openings<br>[ft2] | Glass U-Factor<br>[Btu/h-ft2-F] | Glass<br>SHGC | Glass Visible<br>Transmittance | Parent<br>Surface |
|---------------------|--------------|------------------------------|------------------------------|---------------------------------|---------------|--------------------------------|-------------------|
| Total or<br>Average |              |                              | 0.00                         | -                               | -             | -                              |                   |

## **Exterior Door**

|                                 | Construc<br>tion                                                   | U-<br>Fact<br>or<br>with<br>Film<br>[Btu/<br>h-<br>ft2-<br>F] | U-<br>Fact<br>or no<br>Film<br>[Btu/<br>h-<br>ft2-<br>F] | Gro<br>ss<br>Are<br>a<br>[ft2<br>] | Parent Surface       |
|---------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------|----------------------|
| GYM:ZONE3_WALL_4_0_0_0_0_3_DOOR | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI<br>NG U7<br>(3.975) | 0.72<br>9                                                     | 1.91<br>9                                                | 27.<br>77                          | GYM:ZONE3_WALL_4_0_0 |

| FIRSTFLOOR:ZONE3_WALL_5_0_0_22_0_0_D<br>OOR          | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI                     | 0.72<br>9 | 1.91<br>9 | 36.<br>25 | FIRSTFLOOR:ZONE3_WALL_5_0_0               |
|------------------------------------------------------|--------------------------------------------------------------------|-----------|-----------|-----------|-------------------------------------------|
|                                                      | NG U7<br>(3.975)                                                   |           |           |           |                                           |
| FIRSTFLOOR:ZONE4_WALL_5_0_0_22_0_0_D<br>OOR          | NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI<br>NG U7<br>(3.975)        | 0.72<br>9 | 1.91<br>9 | 40.<br>45 | FIRSTFLOOR:ZONE4_WALL_5_0_0               |
| BASEMENTXABOVEGRADE:ZONE2_WALL_2_0_<br>0_0_0_0DOOR   | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI<br>NG U7<br>(3.975) | 0.72<br>9 | 1.91<br>9 | 22.<br>80 | BASEMENTXABOVEGRADE:ZONE2_<br>WALL_2_0_0  |
| BASEMENTXABOVEGRADE:ZONE4_WALL_22_0<br>_0_2_0_2_DOOR | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI<br>NG U7<br>(3.975) | 0.72      | 1.91<br>9 | 18.<br>96 | BASEMENTXABOVEGRADE:ZONE4_<br>WALL_22_0_0 |
| BASEMENTXBELOWGRADE:ZONE2_WALL_2_0_<br>0_0_0_0DOOR   | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI<br>NG U7<br>(3.975) | 0.72<br>9 | 1.91<br>9 | 15.<br>04 | BASEMENTXBELOWGRADE:ZONE2_<br>WALL_2_0_0  |
| BASEMENTXABOVEGRADE:ZONE14_WALL_6_0<br>_0_0_0_0DOOR  | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI                     | 0.72<br>9 | 1.91<br>9 | 16.<br>65 | BASEMENTXABOVEGRADE:ZONE14_<br>WALL_6_0_0 |

|                                                     | NG U7<br>(3.975)                                                   |           |           |           |                                           |
|-----------------------------------------------------|--------------------------------------------------------------------|-----------|-----------|-----------|-------------------------------------------|
| BASEMENTXABOVEGRADE:ZONE15_WALL_6_0<br>_0_0_0_0DOOR | CZ5<br>NON-<br>RES<br>OPAQUE<br>DOOR<br>SWINGI<br>NG U7<br>(3.975) | 0.72<br>9 | 1.91<br>9 | 16.<br>65 | BASEMENTXABOVEGRADE:ZONE15_<br>WALL_6_0_0 |

### Table of Contents

Report: Lighting Summary

# For: Entire Facility

Timestamp: 2019-12-26 10:47:47

# **Interior Lighting**

|                                       | Zon<br>e | Lighti<br>ng<br>Power<br>Densi<br>ty<br>[Btu/<br>h-ft2] | Zon<br>e<br>Are<br>a<br>[ft2<br>] | Total<br>Powe<br>r<br>[Btu/<br>h] | End Use<br>Subcateg<br>ory | Sched<br>ule<br>Name | Schedule<br>d<br>Hours/W<br>eek [hr] | Hours/W<br>eek ><br>1% [hr] | Full Load<br>Hours/W<br>eek [hr] | Retur<br>n Air<br>Fracti<br>on | Conditio<br>ned<br>(Y/N) | Consumpt<br>ion [kWh] |
|---------------------------------------|----------|---------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------|----------------------|--------------------------------------|-----------------------------|----------------------------------|--------------------------------|--------------------------|-----------------------|
| Interi<br>or<br>Lighti<br>ng<br>Total |          | 0.000                                                   | 0.0<br>0                          | 0.00                              |                            |                      |                                      |                             |                                  |                                |                          | 0.00                  |

# Daylighting

|      | Zone | Control<br>Name | Daylighting<br>Method | Control<br>Type | Fraction<br>Controlled | Lighting Installed in<br>Zone [Btu/h] | Lighting Controlled<br>[Btu/h] |
|------|------|-----------------|-----------------------|-----------------|------------------------|---------------------------------------|--------------------------------|
| None |      |                 |                       |                 |                        |                                       |                                |

# **Exterior Lighting**

|                               | Total<br>Watts | Astronomical<br>Clock/Schedule | Schedule<br>Name | Scheduled<br>Hours/Week<br>[hr] | Hours/Week<br>> 1% [hr] | Full Load<br>Hours/Week<br>[hr] | Consumption<br>[kWh] |
|-------------------------------|----------------|--------------------------------|------------------|---------------------------------|-------------------------|---------------------------------|----------------------|
| Exterior<br>Lighting<br>Total | 0.00           |                                |                  |                                 |                         |                                 | 0.00                 |

# Table of Contents

## Report: Equipment Summary

# For: Entire Facility

## Timestamp: 2019-12-26 10:47:47

#### **Central Plant**

|        | Туре            | Nominal Capacity<br>[Btu/h] | Nominal Efficiency<br>[Btuh/Btuh] | IPLV in SI Units<br>[Btuh/Btuh] | IPLV in IP Units<br>[Btu/W-h] |
|--------|-----------------|-----------------------------|-----------------------------------|---------------------------------|-------------------------------|
| BOILER | Boiler:HotWater | 996952.59                   | 0.89                              |                                 |                               |

#### **Cooling Coils**

|      | Туре | Design<br>Coil Load<br>[Btu/h] | Nominal<br>Total<br>Capacity<br>[Btu/h] | Nominal<br>Sensible<br>Capacity<br>[Btu/h] | Nominal<br>Latent<br>Capacity<br>[Btu/h] | Nominal<br>Sensible<br>Heat Ratio | Nominal<br>Efficiency<br>[Btuh/Btuh] | Nominal<br>Coil UA<br>Value<br>[Btu/h-F] | Nominal<br>Coil<br>Surface<br>Area [ft2] |
|------|------|--------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|
| None |      |                                |                                         |                                            |                                          |                                   |                                      |                                          |                                          |

### **DX Cooling Coils**
|      | DX Cooling | Standard Rated Net     | Standard Rated Net COP | EER       | SEER      | IEER      |
|------|------------|------------------------|------------------------|-----------|-----------|-----------|
|      | Coil Type  | Cooling Capacity [ton] | [Btuh/Btuh]            | [Btu/W-h] | [Btu/W-h] | [Btu/W-h] |
| None |            |                        |                        |           |           |           |

# DX Cooling Coil ASHRAE 127 Standard Ratings Report

|      | DX<br>Cooling<br>Coil<br>Type | Rated Net<br>Cooling<br>Capacity<br>Test A [ton] | Rated<br>Electric<br>Power<br>Test A<br>[W] | Rated Net<br>Cooling<br>Capacity<br>Test B [ton] | Rated<br>Electric<br>Power<br>Test B<br>[W] | Rated Net<br>Cooling<br>Capacity<br>Test C [ton] | Rated<br>Electric<br>Power<br>Test C<br>[W] | Rated Net<br>Cooling<br>Capacity<br>Test D<br>[ton] | Rated<br>Electric<br>Power<br>Test D<br>[W] |
|------|-------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| None |                               |                                                  |                                             |                                                  |                                             |                                                  |                                             |                                                     |                                             |

### **DX Heating Coils**

|      | DX Heating | High Temperature Heating (net) | Low Temperature Heating (net) | HSPF      | Region |
|------|------------|--------------------------------|-------------------------------|-----------|--------|
|      | Coil Type  | Rating Capacity [Btu/h]        | Rating Capacity [Btu/h]       | [Btu/W-h] | Number |
| None |            |                                |                               |           |        |

### **Heating Coils**

|      | Туре | Design Coil Load [Btu/h] | Nominal Total Capacity [Btu/h] | Nominal Efficiency [Btuh/Btuh] |
|------|------|--------------------------|--------------------------------|--------------------------------|
| None |      |                          |                                |                                |

#### Fans

| Туре | Total<br>Efficiency<br>[Btuh/Btuh] | Delta<br>Pressure<br>[psi] | Max Air<br>Flow Rate<br>[ft3/min] | Rated<br>Electric<br>Power<br>[W] | Rated<br>Power Per<br>Max Air<br>Flow Rate<br>[W-min/ft3] | Motor<br>Heat In<br>Air<br>Fraction | End<br>Use | Design<br>Day<br>Name for<br>Fan<br>Sizing<br>Peak | Date/Time<br>for Fan<br>Sizing Peak |
|------|------------------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------------|-------------------------------------|------------|----------------------------------------------------|-------------------------------------|
|------|------------------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------------|-------------------------------------|------------|----------------------------------------------------|-------------------------------------|

| None |  |  |  |  |  |
|------|--|--|--|--|--|
|      |  |  |  |  |  |

#### Pumps

|                           | Туре               | Control      | Head<br>[psi] | Water Flow<br>[gal/min] | Electric<br>Power<br>[W] | Power Per<br>Water Flow<br>Rate [W-<br>min/gal] | Motor<br>Efficiency<br>[Btuh/Btuh] |
|---------------------------|--------------------|--------------|---------------|-------------------------|--------------------------|-------------------------------------------------|------------------------------------|
| HW LOOP<br>SUPPLY<br>PUMP | Pump:VariableSpeed | Intermittent | 2.90          | 110.292138              | 198.22                   | 1.80                                            | 0.90                               |

#### Service Water Heating

|      | Туре | Storage Volume<br>[ft3] | Input<br>[Btu/h] | Thermal Efficiency<br>[Btuh/Btuh] | Recovery Efficiency<br>[Btuh/Btuh] | Energy<br>Factor |
|------|------|-------------------------|------------------|-----------------------------------|------------------------------------|------------------|
| None |      |                         |                  |                                   |                                    |                  |

### Table of Contents

Report: HVAC Sizing Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

### Zone Sensible Cooling

| UsererCalcDesiDesiDate/TmostarHumididDesiDeulategnDesimostarHumidiDesignsigdAirDesipeakSetpoieraturRatiofgnLoanDesiFlonDate/TmostarHumidiLoaddLognwNameStepoieraturRatiof[Btu[BtuadAir[ft3/-StAMPTempPeakPeak(Btu/h]perFlowmin]-ee[F][IbWat | or or<br>emp Humidi<br>ratur ty<br>e at Ratio<br>Peak at<br>Load Peak<br>[F] Load | or mu<br>idi m G<br>ty Out<br>tio door R<br>at Air<br>ak Flo f<br>ad w | at<br>Gai<br>n<br>Rat<br>fro<br>m |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
| /h] / <sup>···</sup> per Flow min] e at [F] [lbWat Are Peak                                                                                                                                                                                 | [F] Load                                                                          | ad w                                                                   | m                                 |
|                                                                                                                                                                                                                                             | [IbWat                                                                            | 'at Rate [                                                             | DO                                |

|           |              |                  | a<br>[Bt<br>u/h<br>ft2<br>] | [ft3/<br>min] |                  |                                                                                                                                 |                      | Load<br>[F] |       | er/lbAi<br>r] |       | er/lbAi<br>r] | [ft3/<br>min] | AS<br>[Bt<br>u/h<br>] |
|-----------|--------------|------------------|-----------------------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------|---------------|-------|---------------|---------------|-----------------------|
| GYM:ZONE3 | 2814<br>6.39 | 323<br>68.3<br>5 | 5.4                         | 953.<br>607   | 109<br>6.64<br>8 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>16:20:<br>00 | 84.99       | 84.99 | 0.0137        | 84.45 | 0.0137        | 505.<br>660   | 0.0 0                 |
| GYM:ZONE1 | 1165<br>.83  | 134<br>0.70      | 9.5<br>0                    | 39.4<br>99    | 45.4<br>23       | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>09:00:<br>00 | 84.99       | 84.99 | 0.0137        | 77.11 | 0.0137        | 11.9<br>98    | 0.0<br>0              |
| GYM:ZONE2 | 403.<br>56   | 464.<br>10       | 7.2<br>7                    | 13.6<br>73    | 15.7<br>24       | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR                                                                             | 7/31<br>16:50:<br>00 | 84.99       | 84.99 | 0.0137<br>1   | 83.81 | 0.0137        | 5.42<br>7     | 0.0                   |

|                      |              |                  |           |              |                  | CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)<br>JUL                                                          |                      |       |       |             |       |             |                  |          |
|----------------------|--------------|------------------|-----------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|-------|-------------|------------------|----------|
| FIRSTFLOOR:ZO<br>NE3 | 4165<br>.52  | 479<br>0.35      | 14.<br>85 | 141.<br>129  | 162.<br>298      | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>15:30:<br>00 | 84.99 | 84.99 | 0.0137      | 85.34 | 0.0137      | 51.6<br>35       | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE4 | 3932<br>.15  | 452<br>1.97      | 13.<br>96 | 133.<br>222  | 153.<br>205      | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>14:00:<br>00 | 84.99 | 84.99 | 0.0137      | 85.82 | 0.0137      | 51.8<br>51       | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE2 | 4741<br>0.60 | 545<br>22.1<br>9 | 5.9<br>4  | 1606<br>.284 | 184<br>7.22<br>7 | SUMM<br>ER<br>DESI<br>GN                                                                                                        | 7/31<br>16:20:<br>00 | 84.99 | 84.99 | 0.0137<br>1 | 84.45 | 0.0137<br>1 | 146<br>8.77<br>0 | 0.0      |

|                      |             |             |           |            |             | DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)<br>JUL                               |                      |       |       |        |       |        |            |          |
|----------------------|-------------|-------------|-----------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|--------|-------|--------|------------|----------|
| FIRSTFLOOR:ZO<br>NE6 | 2917<br>.18 | 335<br>4.76 | 13.<br>70 | 98.8<br>35 | 113.<br>660 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>16:20:<br>00 | 84.99 | 84.99 | 0.0137 | 84.45 | 0.0137 | 39.1<br>76 | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE7 | 2162<br>.95 | 248<br>7.39 | 10.<br>16 | 73.2<br>81 | 84.2<br>74  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>09:00:<br>00 | 84.99 | 84.99 | 0.0137 | 77.11 | 0.0137 | 39.1<br>76 | 0.0<br>0 |

| FIRSTFLOOR:ZO<br>NE1              | 1237<br>.68 | 142<br>3.33 | 12.<br>40 | 41.9<br>33  | 48.2<br>23  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>18:30:<br>00 | 84.99 | 84.99 | 0.0137 | 80.83 | 0.0137 | 18.3<br>70 | 0.0<br>0 |
|-----------------------------------|-------------|-------------|-----------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|--------|-------|--------|------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>1 | 4246<br>.25 | 488<br>3.18 | 6.2<br>4  | 143.<br>864 | 165.<br>444 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)<br>JUL   | 7/31<br>09:40:<br>00 | 84.99 | 84.99 | 0.0137 | 78.90 | 0.0137 | 66.5<br>14 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>2 | 737.<br>31  | 847.<br>91  | 2.0 0     | 24.9<br>80  | 36.0<br>98  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>CHUR<br>(O1-<br>01:31        | 7/31<br>16:10:<br>00 | 84.99 | 84.99 | 0.0137 | 84.66 | 0.0137 | 36.0<br>98 | 0.0<br>0 |

|                                   |              |                  |          |             |             | -12)<br>JUL                                                                                                                                     |                      |       |       |             |       |        |             |          |
|-----------------------------------|--------------|------------------|----------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|-------|--------|-------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>3 | 480.<br>43   | 552.<br>49       | 1.0 8    | 16.2<br>77  | 43.3<br>37  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>UR<br>CH<br>UR<br>(01-<br>01:31<br>-12)<br>JUL | 7/31<br>15:50:<br>00 | 84.99 | 84.99 | 0.0137      | 85.03 | 0.0137 | 43.3<br>37  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>4 | 1086<br>2.27 | 124<br>91.6<br>1 | 1.4 9    | 368.<br>017 | 714.<br>050 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL                 | 7/31<br>16:30:<br>00 | 84.99 | 84.99 | 0.0137      | 84.24 | 0.0137 | 714.<br>050 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>5 | 411.<br>25   | 472.<br>93       | 2.2<br>7 | 13.9<br>33  | 17.6<br>84  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL                                                                 | 7/31<br>16:40:<br>00 | 84.99 | 84.99 | 0.0137<br>1 | 84.02 | 0.0137 | 17.6<br>84  | 0.0<br>0 |

|                                   |             |             |          |             |             | CHUR<br>CH<br>(01-<br>01:31<br>-12)<br>JUL                                                                                      |                      |       |       |        |       |        |             |          |
|-----------------------------------|-------------|-------------|----------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|--------|-------|--------|-------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>6 | 393.<br>56  | 452.<br>59  | 1.2 8    | 13.3<br>34  | 30.1<br>31  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>16:30:<br>00 | 84.99 | 84.99 | 0.0137 | 84.24 | 0.0137 | 30.1<br>31  | 0.0 0    |
| BASEMENTXABO<br>VEGRADE:ZONE<br>7 | 622.<br>33  | 715.<br>68  | 1.1<br>0 | 21.0<br>85  | 55.3<br>62  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(01-<br>01:31<br>-12)<br>JUL   | 7/31<br>15:40:<br>00 | 84.99 | 84.99 | 0.0137 | 85.19 | 0.0137 | 55.3<br>62  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>8 | 5428<br>.93 | 624<br>3.27 | 4.0<br>5 | 183.<br>934 | 211.<br>524 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR                                                                             | 7/31<br>17:20:<br>00 | 84.99 | 84.99 | 0.0137 | 83.07 | 0.0137 | 131.<br>087 | 0.0      |

|                                    |             |             |          |            |             | CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)<br>JUL                                                          |                      |       |       |             |       |             |            |          |
|------------------------------------|-------------|-------------|----------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|-------|-------------|------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>9  | 2628<br>.17 | 302<br>2.40 | 6.6<br>4 | 89.0<br>43 | 102.<br>400 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>17:20:<br>00 | 84.99 | 84.99 | 0.0137      | 83.07 | 0.0137      | 38.6<br>78 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>10 | 321.<br>24  | 369.<br>42  | 1.3 2    | 10.8<br>84 | 23.8<br>46  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>16:40:<br>00 | 84.99 | 84.99 | 0.0137      | 84.02 | 0.0137      | 23.8<br>46 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>11 | 851.<br>36  | 979.<br>06  | 1.2<br>3 | 28.8<br>44 | 67.7<br>60  | SUMM<br>ER<br>DESI<br>GN                                                                                                        | 7/31<br>16:10:<br>00 | 84.99 | 84.99 | 0.0137<br>1 | 84.66 | 0.0137<br>1 | 67.7<br>60 | 0.0      |

|                                    |             |             |     |             |             | DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)<br>JUL                               |                      |       |       |        |       |        |            |          |
|------------------------------------|-------------|-------------|-----|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|--------|-------|--------|------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>12 | 302.<br>19  | 347.<br>52  | 2.1 | 10.2<br>38  | 13.7<br>50  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>18:30:<br>00 | 84.99 | 84.99 | 0.0137 | 80.83 | 0.0137 | 13.7<br>50 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>13 | 3085<br>.72 | 354<br>8.58 | 3.6 | 104.<br>545 | 120.<br>227 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>13:40:<br>00 | 84.99 | 84.99 | 0.0137 | 85.56 | 0.0137 | 81.9<br>90 | 0.0<br>0 |

| BASEMENTXABO<br>VEGRADE:ZONE<br>14 | 1633<br>.62  | 187<br>8.66      | 3.1<br>2 | 55.3<br>47  | 63.6<br>49  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)<br>JUL | 7/31<br>10:50:<br>00 | 84.99 | 84.99 | 0.0137 | 81.78 | 0.0137 | 51.1<br>21  | 0.0<br>0 |
|------------------------------------|--------------|------------------|----------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|--------|-------|--------|-------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>15 | 2287         | 263<br>0.15      | 4.5<br>7 | 77.4<br>87  | 89.1<br>10  | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)<br>JUL   | 7/31<br>17:00:<br>00 | 84.99 | 84.99 | 0.0137 | 83.60 | 0.0137 | 48.9<br>51  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>16 | 1260<br>4.08 | 144<br>94.6<br>9 | 9.6      | 427.<br>030 | 491.<br>084 | SUMM<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>CH<br>CHUR<br>(O1-<br>O1:31  | 7/31<br>17:10:<br>00 | 84.99 | 84.99 | 0.0137 | 83.34 | 0.0137 | 127.<br>564 | 0.0<br>0 |

|  | -12)<br>JUL |  |  |  |  |
|--|-------------|--|--|--|--|
|  |             |  |  |  |  |

The Design Load is the zone sensible load only. It does not include any system effects or ventilation loads.

# Zone Sensible Heating

|           | Calc<br>ulate<br>d<br>Desi<br>gn<br>Load<br>[Btu/<br>h] | User<br>Desi<br>gn<br>Load<br>[Btu/<br>h] | Us<br>er<br>De<br>sig<br>n<br>Lo<br>ad<br>per<br>Are<br>a<br>[Bt<br>u/h<br>-<br>ft2<br>] | Calc<br>ulate<br>d<br>Desi<br>gn<br>Air<br>Flow<br>[ft3/<br>min] | User<br>Desi<br>gn<br>Air<br>Flo<br>w<br>[ft3/<br>min<br>] | Desig<br>n Day<br>Name                                                                                                               | Date/T<br>ime Of<br>Peak<br>{TIME<br>STAMP<br>} | Ther<br>mosta<br>t<br>Setpoi<br>nt<br>Temp<br>eratur<br>e at<br>Peak<br>Load<br>[F] | Indoo<br>r<br>Temp<br>eratur<br>e at<br>Peak<br>Load<br>[F] | Indoor<br>Humidi<br>ty<br>Ratio<br>at<br>Peak<br>Load<br>[IbWat<br>er/IbAi<br>r] | Outdo<br>or<br>Temp<br>eratur<br>e at<br>Peak<br>Load<br>[F] | Outdo<br>or<br>Humidi<br>ty<br>Ratio<br>at<br>Peak<br>Load<br>[IbWat<br>er/IbAi<br>r] | Mini<br>mu<br>Mout<br>door<br>Air<br>Flo<br>w<br>Rat<br>e<br>[ft3/<br>min<br>] | He<br>at<br>Gai<br>n<br>Rat<br>e<br>fro<br>m<br>DO<br>AS<br>[Bt<br>u/h<br>] |
|-----------|---------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| GYM:ZONE3 | 1459<br>64.9<br>4                                       | 1824<br>56.1<br>8                         | 30.<br>68                                                                                | 2568                                                             | 321<br>0.71<br>0                                           | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12) | 1/15<br>06:00:<br>00                            | 68.00                                                                               | 68.00                                                       | 0.0009                                                                           | 1.94                                                         | 0.0009<br>0                                                                           | 505.<br>660                                                                    | 0.0<br>0                                                                    |
| GYM:ZONE1 | 1060<br>1.52                                            | 1325<br>1.90                              | 93.<br>91                                                                                | 186.<br>557                                                      | 233.<br>196                                                | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP                                                            | 1/15<br>06:00:<br>00                            | 68.00                                                                               | 68.00                                                       | 0.0009                                                                           | 1.94                                                         | 0.0009<br>0                                                                           | 11.9<br>98                                                                     | 0.0<br>0                                                                    |

|                      |              |              |                |             |             | EL<br>CHUR<br>CH<br>(01-<br>01:31<br>-12)                                                                                            |                      |       |       |             |      |             |            |          |
|----------------------|--------------|--------------|----------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|------------|----------|
| GYM:ZONE2            | 5563<br>.45  | 6954<br>.31  | 10<br>8.9<br>5 | 97.9<br>01  | 122.<br>376 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>CHUR<br>CH<br>(01-<br>01:31<br>-12) | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009      | 1.94 | 0.0009<br>0 | 5.42       | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE3 | 2455<br>4.57 | 3069<br>3.21 | 95.<br>12      | 432.<br>091 | 540.<br>113 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)     | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009<br>7 | 1.94 | 0.0009<br>0 | 51.6<br>35 | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE4 | 2525<br>8.35 | 3157<br>2.94 | 97.<br>44      | 444.<br>475 | 555.<br>594 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER                                                                    | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009<br>7 | 1.94 | 0.0009<br>0 | 51.8<br>51 | 0.0<br>0 |

|                      |                   |                   |           |              |                  | GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)                                                                                  |                      |       |       |             |      |             |                  |          |
|----------------------|-------------------|-------------------|-----------|--------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|------------------|----------|
| FIRSTFLOOR:ZO<br>NE2 | 2252<br>99.7<br>1 | 2816<br>24.6<br>4 | 30.<br>68 | 3964<br>.634 | 495<br>5.79<br>2 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>UR<br>CH<br>(01-<br>01:31<br>-12) | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 146<br>8.77<br>0 | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE6 | 1272<br>8.80      | 1591<br>1.00      | 64.<br>99 | 223.<br>991  | 279.<br>988      | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>CHUR<br>(O1-<br>01:31<br>-12)     | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009<br>7 | 1.94 | 0.0009<br>0 | 39.1<br>76       | 0.0<br>0 |
| FIRSTFLOOR:ZO<br>NE7 | 1459<br>7.24      | 1824<br>6.56      | 74.<br>53 | 256.<br>870  | 321.<br>087      | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST                                                                        | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009<br>7 | 1.94 | 0.0009<br>0 | 39.1<br>76       | 0.0<br>0 |

|                                   |              |              |           |             |             | ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)                                                                              |                      |       |       |             |      |             |            |          |
|-----------------------------------|--------------|--------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|------------|----------|
| FIRSTFLOOR:ZO<br>NE1              | 4310<br>.81  | 5388         | 46.<br>94 | 75.8<br>58  | 94.8<br>22  | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>UR<br>CHUR<br>(O1-<br>01:31<br>-12) | 1/15<br>06:00:<br>00 | 68.00 | 68.00 | 0.0009<br>7 | 1.94 | 0.0009<br>0 | 18.3<br>70 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>1 | 2010<br>0.10 | 2512<br>5.12 | 32.<br>12 | 353.<br>705 | 442.<br>131 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)             | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 66.5<br>14 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>2 | 1339<br>6.92 | 1674<br>6.14 | 39.<br>44 | 235.<br>748 | 294.<br>684 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR                                                                                  | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 36.0<br>98 | 0.0<br>0 |

|                                   |                   |                   |           |              |                  | CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)                                                                  |                      |       |       |             |      |             |             |          |
|-----------------------------------|-------------------|-------------------|-----------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|-------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>3 | 1260<br>4.99      | 1575<br>6.23      | 30.<br>91 | 221.<br>812  | 277.<br>265      | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)         | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 43.3<br>37  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>4 | 1095<br>84.7<br>6 | 1369<br>80.9<br>6 | 16.<br>31 | 1928<br>.380 | 241<br>0.47<br>5 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12) | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 714.<br>050 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>5 | 5043<br>.21       | 6304<br>.01       | 30.<br>31 | 88.7<br>46   | 110.<br>933      | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP                                                                                     | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 17.6<br>84  | 0.0<br>0 |

|                                   |              |              |           |             |             | WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)                                                              |                      |       |       |             |      |             |             |          |
|-----------------------------------|--------------|--------------|-----------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|-------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>6 | 8173<br>.92  | 1021<br>7.40 | 28.<br>83 | 143.<br>838 | 179.<br>797 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12)    | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 30.1<br>31  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>7 | 1211<br>4.52 | 1514<br>3.15 | 23.<br>26 | 213.<br>181 | 266.<br>476 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>UR<br>CH<br>U(01-<br>01:31<br>-12) | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 55.3<br>62  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>8 | 2750<br>3.28 | 3437<br>9.11 | 22.<br>30 | 483.<br>980 | 604.<br>974 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN                                                                                               | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 131.<br>087 | 0.0<br>0 |

|                                    |              |              |           |             |             | MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(01-<br>01:31<br>-12)                                                        |                      |       |       |             |      |             |            |          |
|------------------------------------|--------------|--------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>9  | 8867         | 1108<br>4.40 | 24.<br>37 | 156.<br>043 | 195.<br>054 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12) | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 38.6<br>78 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>10 | 4903<br>.98  | 6129<br>.97  | 21.<br>86 | 86.2<br>96  | 107.<br>870 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)               | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 23.8<br>46 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>11 | 1278<br>2.47 | 1597<br>8.09 | 20.<br>05 | 224.<br>935 | 281.<br>169 | WINT<br>ER<br>DESI<br>GN<br>DAY                                                                                                      | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 67.7<br>60 | 0.0<br>0 |

|                                    |              |              |           |             |             | IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)                                                  |                      |       |       |             |      |             |            |          |
|------------------------------------|--------------|--------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>12 | 6495<br>.78  | 8119<br>.73  | 50. 21    | 114.<br>307 | 142.<br>884 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>CHUR<br>CH<br>(01-<br>01:31<br>-12) | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 13.7<br>50 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>13 | 1702<br>7.55 | 2128<br>4.43 | 22.<br>07 | 299.<br>636 | 374.<br>545 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)               | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 81.9<br>90 | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>14 | 1671<br>9.54 | 2089<br>9.42 | 34.<br>76 | 294.<br>216 | 367.<br>770 | WINT<br>ER<br>DESI<br>GN                                                                                                             | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 51.1<br>21 | 0.0<br>0 |

|                                    |              |              |           |             |             | DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)                               |                      |       |       |             |      |             |             |          |
|------------------------------------|--------------|--------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|-------------|------|-------------|-------------|----------|
| BASEMENTXABO<br>VEGRADE:ZONE<br>15 | 1626<br>5.68 | 2033<br>2.09 | 35.<br>32 | 286.<br>230 | 357.<br>787 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CHUR<br>(O1-<br>01:31<br>-12) | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 48.9<br>51  | 0.0<br>0 |
| BASEMENTXABO<br>VEGRADE:ZONE<br>16 | 3425<br>0.04 | 4281<br>2.55 | 28.<br>54 | 602.<br>703 | 753.<br>379 | WINT<br>ER<br>DESI<br>GN<br>DAY<br>IN<br>MQP<br>WOR<br>CEST<br>ER<br>GOSP<br>EL<br>CHUR<br>CH<br>(O1-<br>01:31<br>-12)   | 1/15<br>24:00:<br>00 | 68.00 | 68.00 | 0.0009<br>8 | 1.94 | 0.0009<br>0 | 127.<br>564 | 0.0<br>0 |

The Design Load is the zone sensible load only. It does not include any system effects or ventilation loads.

# System Design Air Flow Rates

|      | Calculated<br>cooling<br>[ft3/min] | User<br>cooling<br>[ft3/min] | Calculated<br>heating<br>[ft3/min] | User<br>heating<br>[ft3/min] | Adjusted<br>cooling<br>[ft3/min] | Adjusted<br>heating<br>[ft3/min] | Adjusted<br>main<br>[ft3/min] | Calculated<br>Heating Air<br>Flow Ratio<br>[] | User<br>Heating<br>Air Flow<br>Ratio [] |
|------|------------------------------------|------------------------------|------------------------------------|------------------------------|----------------------------------|----------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------|
| None |                                    |                              |                                    |                              |                                  |                                  |                               |                                               |                                         |

# Plant Loop Coincident Design Fluid Flow Rate Adjustments

|          | Previous<br>Design<br>Volume<br>Flow<br>Rate<br>[ft3/min<br>] | Algorith<br>m<br>Volume<br>Flow<br>Rate<br>[ft3/min] | Coinciden<br>t Design<br>Volume<br>Flow Rate<br>[ft3/min] | Coinciden<br>t Size<br>Adjusted | Peak<br>Sizing<br>Perio<br>d<br>Name | Peak Day into<br>Period<br>{TIMESTAMP}[day<br>] | Peak Hour Of<br>Day<br>{TIMESTAMP}[hr<br>] | Peak Step Start<br>Minute<br>{TIMESTAMP}[min<br>] |
|----------|---------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| Non<br>e |                                                               |                                                      |                                                           |                                 |                                      |                                                 |                                            |                                                   |

### **Coil Sizing Summary**

| C<br>o<br>il<br>T<br>y | H<br>V<br>A<br>C<br>T<br>y | H<br>V<br>A<br>C<br>N<br>a | C oi<br>I Fi<br>al G<br>r<br>o<br>s<br>s<br>T | C<br>oi<br>Fi<br>al<br>G<br>r<br>o<br>s<br>S<br>S | C<br>oi<br>Fi<br>al<br>R<br>ef<br>er<br>e<br>r<br>c | C<br>oi<br>Fi<br>al<br>R<br>ef<br>er<br>e<br>r<br>c | C<br>o<br>il<br>U<br>v<br>a<br>u<br>e<br>T<br>i | D<br>e<br>si<br>g<br>n<br>D<br>a<br>y<br>N<br>a<br>m<br>e | D<br>at<br>e/<br>Ti<br>m<br>e<br>at<br>S<br>e<br>ns<br>ibl<br>e | D<br>e<br>s<br>i<br>g<br>n<br>D<br>a<br>y<br>N<br>a<br>m | D<br>at<br>e/<br>Ti<br>m<br>e<br>at<br>Ai<br>r<br>Fl<br>o<br>w | C oi I T o t al C a p a ci | C oi<br>I S e<br>si<br>bl<br>e<br>C a<br>p | C<br>oi<br>I<br>Ai<br>V<br>ol<br>u<br>m<br>e<br>Fl<br>o | C<br>oi<br>I<br>E<br>n<br>t<br>e<br>ri<br>n<br>g<br>A<br>ir | C<br>oi<br>E<br>n<br>t<br>e<br>ri<br>n<br>g<br>A<br>ir | Coil<br>Ent<br>erin<br>g<br>Air<br>Hu<br>mid<br>ity<br>Rati<br>o at<br>Ide<br>al | C<br>o<br>il<br>L<br>e<br>a<br>vi<br>n<br>g<br>A<br>ir<br>D | C<br>oi<br>L<br>e<br>a<br>vi<br>n<br>g<br>A<br>ir<br>W | C<br>oi<br>L<br>e<br>a<br>vi<br>n<br>g<br>Ai<br>r<br>H | O<br>u<br>t<br>d<br>o<br>r<br>A<br>ir<br>D<br>r<br>y | Out<br>doo<br>r<br>Air<br>Hu<br>mid<br>ity<br>Rati<br>o at<br>Ide<br>al | O<br>u<br>t<br>d<br>o<br>o<br>r<br>A<br>ir<br>W<br>e<br>t | O<br>ut<br>d<br>oo<br>r<br>Ai<br>r<br>FI<br>o<br>w<br>Pe<br>rc | Z o n e A ir D r y b u I | Zon<br>e<br>Air<br>Hu<br>mid<br>ity<br>Rati<br>o at<br>Ide<br>al<br>Loa<br>ds | Z<br>o<br>n<br>e<br>Ai<br>r<br>R<br>el<br>at<br>iv<br>e<br>H | Z<br>o<br>n<br>e<br>S<br>e<br>n<br>si<br>bl<br>e<br>H<br>e | Z<br>o<br>n<br>e<br>L<br>a<br>t<br>e<br>n<br>t<br>H<br>e | C<br>oil<br>T<br>ot<br>al<br>C<br>a<br>p<br>ac<br>it<br>y<br>at | C<br>oil<br>S<br>e<br>ns<br>ibl<br>e<br>C<br>a<br>p<br>ac<br>it |
|------------------------|----------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| С                      | H                          | Н                          | G                                             | G                                                 | R                                                   | R                                                   | a<br>I                                          | a                                                         | at                                                              | D                                                        | at                                                             | al                         | si<br>bl                                   | ol                                                      | e<br>ri                                                     | e<br>ri                                                | mid                                                                              | vi                                                          | vi                                                     | vi                                                     | r<br>A                                               | mid                                                                     | r<br>A                                                    | r<br>Fl                                                        | D                        | Rati                                                                          | R                                                            | n<br>ci                                                    | t                                                        | a                                                               | e                                                               |
| 0                      | V                          | V                          | 0                                             | 0                                                 | er                                                  | er                                                  |                                                 | y<br>N                                                    | S                                                               | a<br>v                                                   | Ai                                                             | a                          | P                                          | m                                                       | n                                                           | n                                                      | ity                                                                              | п<br>а                                                      | п<br>а                                                 | п<br>а                                                 | ir                                                   | Rati                                                                    | ir                                                        | 0                                                              | ı<br>V                   | o at                                                                          | at                                                           | 51<br>hl                                                   | e<br>n                                                   | р<br>ас                                                         | a                                                               |
| il                     | C                          | A<br>C                     | s                                             | s                                                 | e                                                   | e                                                   | e                                               | a                                                         | е                                                               | N                                                        | r                                                              | p                          | C                                          | e                                                       | q                                                           | q                                                      | Rati                                                                             | A                                                           | A                                                      | Ai                                                     | D                                                    | o at                                                                    | W                                                         | w                                                              | ,<br>b                   | al                                                                            | iv                                                           | e                                                          | t                                                        | it                                                              | p                                                               |
| T                      | Т                          | N                          | S                                             | s                                                 | n                                                   | n                                                   | Т                                               | m                                                         | ns<br>ibl                                                       | а                                                        | H                                                              | a                          | а                                          | Fl                                                      | Ă                                                           | Ă                                                      | o at                                                                             | ir                                                          | ir                                                     | r                                                      | r                                                    | Ide                                                                     | е                                                         | Pe                                                             | и                        | Loa                                                                           | е                                                            | Н                                                          | Н                                                        | у                                                               | ac                                                              |
| y y                    | y                          | а                          | Т                                             | S                                                 | С                                                   | С                                                   | i                                               | е                                                         | וטו                                                             | m                                                        | W                                                              | ci                         | р                                          | 0                                                       | ir                                                          | ir                                                     | al                                                                               | D                                                           | W                                                      | Н                                                      | у                                                    | al                                                                      | t                                                         | rc                                                             | Ι                        | ds                                                                            | Н                                                            | е                                                          | е                                                        | at                                                              | it                                                              |
| p                      | p                          | m                          | 0                                             | е                                                 | е                                                   | е                                                   | m                                               | а                                                         | Id                                                              | е                                                        | Τd                                                             | t                          | а                                          | W                                                       | D                                                           | W                                                      | Loa                                                                              | r                                                           | е                                                      | u                                                      | b                                                    | Loa                                                                     | b                                                         | en                                                             | b                        | Pea                                                                           | u                                                            | а                                                          | а                                                        | R                                                               | У                                                               |
|                        | e                          | е                          | t                                             | n                                                 | Ai                                                  | PI                                                  | е                                               | t                                                         | e                                                               | а                                                        | e                                                              | У                          | Cİ                                         | R                                                       | r                                                           | е                                                      | ds                                                                               | У                                                           | t                                                      | m                                                      | ul                                                   | ds                                                                      | ul                                                        | ta                                                             | а                        | k                                                                             | m                                                            | t                                                          | t                                                        | at                                                              | at                                                              |
|                        |                            |                            | al                                            | Sİ                                                | r                                                   | а                                                   | S                                               | S                                                         | al                                                              | t                                                        | al                                                             | а                          | t                                          | at                                                      | y                                                           | t                                                      | Pea                                                                              | b                                                           | b                                                      | id                                                     | b                                                    | Pea                                                                     | b                                                         | ge                                                             | t                        | [lb                                                                           | id                                                           | G                                                          | G                                                        | in                                                              | R                                                               |
|                        |                            |                            | С                                             | bl                                                | V                                                   | nt                                                  | А                                               | е                                                         | L                                                               | Α                                                        | L                                                              | t                          | У                                          | е                                                       | b                                                           | b                                                      | k                                                                                | u                                                           | ul                                                     | it                                                     | а                                                    | k                                                                       | а                                                         | at                                                             | Ι                        | Wat                                                                           | it                                                           | ai                                                         | а                                                        | g                                                               | at                                                              |
|                        |                            |                            | а                                             | е                                                 | ol                                                  | FI                                                  | r                                               | n                                                         | 0                                                               | ir                                                       | 0                                                              | Ι                          | а                                          | at                                                      | ul                                                          | ul                                                     | Гlb                                                                              | 1                                                           | b                                                      | У                                                      | t                                                    | [lb                                                                     | t                                                         | Id                                                             | d                        | er/l                                                                          | У                                                            | n                                                          | i                                                        | С                                                               | in                                                              |
|                        |                            |                            | р                                             | С                                                 | u                                                   | ui                                                  | е                                               | Sİ                                                        | а                                                               | F                                                        | а                                                              | d                          | t                                          | I                                                       | b                                                           | b                                                      | Wat                                                                              | b                                                           | а                                                      | R                                                      | I                                                    | Wat                                                                     | I                                                         | ea                                                             | e                        | bDr                                                                           | at                                                           | а                                                          | n                                                        | 0                                                               | g                                                               |
|                        |                            |                            | а                                             | а                                                 | m                                                   | d                                                   | а                                               | bl                                                        | ds                                                              |                                                          | ds                                                             | е                          | Ι                                          | d                                                       | а                                                           | а                                                      | er/l                                                                             | а                                                           | t                                                      | at                                                     | d                                                    | er/l                                                                    | d                                                         |                                                                | al                       | yAir                                                                          | Ι                                                            | t                                                          | а                                                        | n                                                               | С                                                               |
|                        |                            |                            | ci                                            | р                                                 | е                                                   | V                                                   | V                                               | е                                                         | Р                                                               | 0                                                        | Р                                                              | al                         | d                                          | е                                                       | t                                                           | t                                                      | bDr                                                                              | t                                                           | I                                                      | i0                                                     | е                                                    | bDr                                                                     | е                                                         | Lo                                                             | L                        | ]                                                                             | d                                                            | Ι                                                          | t                                                        | di                                                              | 0                                                               |
|                        |                            |                            | t                                             | а                                                 | FI                                                  | ol                                                  | а                                               | Ι                                                         |                                                                 | W                                                        | ·                                                              | L                          | е                                          | al                                                      | I                                                           | Ι                                                      |                                                                                  | Ι                                                           | d                                                      | at                                                     | al                                                   |                                                                         | al                                                        | ad                                                             | 0                        |                                                                               | е                                                            | d                                                          | I                                                        | ti                                                              | n                                                               |

|                  | y [<br>B t u /<br>h ] | city<br>[Btu/h] | o w R<br>at e [f<br>t3 / m<br>in ] | umeFlowRate[ft3/min] | u e [ B t u / h - F ] | d<br>al<br>b<br>a<br>d<br>s<br>P<br>e<br>a<br>k | e<br>ak | I<br>d<br>e<br>a<br>l<br>L<br>o<br>a<br>d<br>s<br>P<br>e<br>a<br>k | e<br>ak | O a d<br>S P e a k<br>[B t<br>u /<br>h] | al L o a d s P e a k [ B t u / h ] | L o a d s P e a k [ft] / m in ] | d e al L o a d s P e a k [ F ] | d e al L o a d s P e a k [ F ] | yAir<br>] | d e al L o a d s P e a k [ F ] | e al L o a d s P e a k [ F ] | I d e al L o a d s P e a k [ F ] | L o a d s P e a k [ F ] | yAir<br>] | L o a d s P e a k [ F ] | s<br>Pe<br>ak<br>[<br>%<br>] | a<br>d<br>s<br>P<br>e<br>a<br>k<br>[<br>F<br>] | al L o a d s P e a k [ % ] | e al L o a d s P e a k [B t u / h] | d e a l L o a d s P e a k [B t u / h] | o ns<br>[B<br>tu /h<br>] | di<br>ti<br>ns<br>[B<br>tu<br>/h<br>] |
|------------------|-----------------------|-----------------|------------------------------------|----------------------|-----------------------|-------------------------------------------------|---------|--------------------------------------------------------------------|---------|-----------------------------------------|------------------------------------|---------------------------------|--------------------------------|--------------------------------|-----------|--------------------------------|------------------------------|----------------------------------|-------------------------|-----------|-------------------------|------------------------------|------------------------------------------------|----------------------------|------------------------------------|---------------------------------------|--------------------------|---------------------------------------|
| N<br>o<br>n<br>e |                       |                 |                                    |                      |                       |                                                 |         |                                                                    |         |                                         |                                    |                                 |                                |                                |           |                                |                              |                                  |                         |           |                         |                              |                                                |                            |                                    |                                       |                          |                                       |

#### Table of Contents

Report: System Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

#### Economizer

|      | High Limit | Minimum     | Maximum     | Return Air | Return Air | Outdoor Air       | Outdoor Air    |
|------|------------|-------------|-------------|------------|------------|-------------------|----------------|
|      | Shutoff    | Outdoor Air | Outdoor Air | Temp       | Enthalpy   | Temperature Limit | Enthalpy Limit |
|      | Control    | [ft3/min]   | [ft3/min]   | Limit      | Limit      | [F]               | [F]            |
| None |            |             |             |            |            |                   |                |

#### Demand Controlled Ventilation using Controller:MechanicalVentilation

|          | Controller:MechanicalVe<br>ntilation Name | Outdo<br>or Air<br>Per<br>Person<br>[ft3/mi<br>n-<br>person<br>] | Outdo<br>or Air<br>Per<br>Area<br>[ft3/mi<br>n-ft2] | Outdo<br>or Air<br>Per<br>Zone<br>[ft3/mi<br>n] | Outdo<br>or Air<br>ACH<br>[ACH] | Outdo<br>or Air<br>Metho<br>d | Outdo<br>or Air<br>Sched<br>ule<br>Name | Air<br>Distributio<br>n<br>Effectiven<br>ess in<br>Cooling<br>Mode | Air<br>Distributio<br>n<br>Effectiven<br>ess in<br>Heating<br>Mode | Air<br>Distributio<br>n<br>Effectiven<br>ess<br>Schedule<br>Name |
|----------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|---------------------------------|-------------------------------|-----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| Non<br>e |                                           |                                                                  |                                                     |                                                 |                                 |                               |                                         |                                                                    |                                                                    |                                                                  |

### Time Not Comfortable Based on Simple ASHRAE 55-2004

|                           | Winter Clothes [hr] | Summer Clothes [hr] | Summer or Winter Clothes [hr] |
|---------------------------|---------------------|---------------------|-------------------------------|
| GYM:ZONE3                 | 1510.17             | 1524.00             | 1510.17                       |
| GYM:ZONE1                 | 1523.33             | 1524.00             | 1523.33                       |
| GYM:ZONE2                 | 1523.17             | 1524.00             | 1523.17                       |
| FIRSTFLOOR:ZONE3          | 1479.33             | 1524.00             | 1479.33                       |
| FIRSTFLOOR:ZONE4          | 1477.17             | 1524.00             | 1477.17                       |
| FIRSTFLOOR:ZONE2          | 1428.67             | 1523.33             | 1428.67                       |
| FIRSTFLOOR:ZONE6          | 1491.17             | 1524.00             | 1491.17                       |
| FIRSTFLOOR:ZONE7          | 1497.83             | 1524.00             | 1497.83                       |
| FIRSTFLOOR:ZONE1          | 1478.17             | 1524.00             | 1478.17                       |
| BASEMENTXABOVEGRADE:ZONE1 | 1510.50             | 1524.00             | 1510.50                       |
| BASEMENTXABOVEGRADE:ZONE2 | 1524.00             | 1524.00             | 1524.00                       |
| BASEMENTXABOVEGRADE:ZONE3 | 1524.00             | 1524.00             | 1524.00                       |
| BASEMENTXABOVEGRADE:ZONE4 | 1488.67             | 1524.00             | 1488.67                       |
| BASEMENTXABOVEGRADE:ZONE5 | 1524.00             | 1524.00             | 1524.00                       |
| BASEMENTXABOVEGRADE:ZONE6 | 1524.00             | 1524.00             | 1524.00                       |

| BASEMENTXABOVEGRADE:ZONE7  | 1517.83 | 1524.00 | 1517.83 |
|----------------------------|---------|---------|---------|
| BASEMENTXABOVEGRADE:ZONE8  | 1506.67 | 1524.00 | 1506.67 |
| BASEMENTXABOVEGRADE:ZONE9  | 1507.00 | 1524.00 | 1507.00 |
| BASEMENTXABOVEGRADE:ZONE10 | 1518.50 | 1524.00 | 1518.50 |
| BASEMENTXABOVEGRADE:ZONE11 | 1505.50 | 1524.00 | 1505.50 |
| BASEMENTXABOVEGRADE:ZONE12 | 1524.00 | 1524.00 | 1524.00 |
| BASEMENTXABOVEGRADE:ZONE13 | 1448.17 | 1524.00 | 1448.17 |
| BASEMENTXABOVEGRADE:ZONE14 | 1511.00 | 1524.00 | 1511.00 |
| BASEMENTXABOVEGRADE:ZONE15 | 1514.67 | 1524.00 | 1514.67 |
| BASEMENTXABOVEGRADE:ZONE16 | 1486.00 | 1524.00 | 1486.00 |
| CHURCHROOF:ZONE1           | 0.00    | 0.00    | 0.00    |
| CHURCHROOF: ZONE4          | 0.00    | 0.00    | 0.00    |
| CHURCHROOF:ZONE2           | 0.00    | 0.00    | 0.00    |
| Facility                   | 1524.00 | 1524.00 | 1524.00 |

Aggregated over the RunPeriods for Weather

### **Time Setpoint Not Met**

|                  | During Heating<br>[hr] | During Cooling<br>[hr] | During Occupied<br>Heating [hr] | During Occupied<br>Cooling [hr] |
|------------------|------------------------|------------------------|---------------------------------|---------------------------------|
| GYM:ZONE3        | 273.00                 | 210.50                 | 90.83                           | 0.00                            |
| GYM:ZONE1        | 162.50                 | 173.83                 | 57.33                           | 0.00                            |
| GYM:ZONE2        | 242.00                 | 134.83                 | 96.50                           | 0.00                            |
| FIRSTFLOOR:ZONE3 | 8.33                   | 195.83                 | 0.00                            | 0.00                            |
| FIRSTFLOOR:ZONE4 | 7.50                   | 203.83                 | 0.00                            | 0.00                            |
| FIRSTFLOOR:ZONE2 | 48.00                  | 216.00                 | 0.00                            | 0.00                            |

| FIRSTFLOOR:ZONE6           | 25.17  | 166.17 | 0.00   | 0.00 |
|----------------------------|--------|--------|--------|------|
| FIRSTFLOOR:ZONE7           | 19.50  | 149.83 | 0.00   | 0.00 |
| FIRSTFLOOR:ZONE1           | 145.00 | 153.50 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE1  | 36.50  | 264.67 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE2  | 36.00  | 137.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE3  | 50.50  | 149.00 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE4  | 91.33  | 176.00 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE5  | 78.17  | 134.33 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE6  | 77.50  | 113.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE7  | 76.67  | 123.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE8  | 66.17  | 183.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE9  | 66.17  | 208.50 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE10 | 126.50 | 126.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE11 | 90.83  | 134.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE12 | 28.17  | 146.00 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE13 | 37.33  | 222.83 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE14 | 23.50  | 176.50 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE15 | 23.00  | 172.17 | 0.00   | 0.00 |
| BASEMENTXABOVEGRADE:ZONE16 | 31.67  | 293.00 | 0.00   | 0.00 |
| CHURCHROOF:ZONE1           | 0.00   | 0.00   | 0.00   | 0.00 |
| CHURCHROOF: ZONE4          | 0.00   | 0.00   | 0.00   | 0.00 |
| CHURCHROOF:ZONE2           | 0.00   | 0.00   | 0.00   | 0.00 |
| Facility                   | 423.83 | 345.83 | 105.83 | 0.00 |

Aggregated over the RunPeriods for Weather

#### Table of Contents

Report: Outdoor Air Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

### Average Outdoor Air During Occupied Hours

|                           | Average<br>Number<br>of<br>Occupant<br>S | Nominal<br>Number<br>of<br>Occupant<br>S | Zone<br>Volume<br>[ft3] | Mechanica<br>l<br>Ventilation<br>[ACH] | Infiltratio<br>n [ACH] | AFN<br>Infiltratio<br>n [ACH] | Simple<br>Ventilatio<br>n [ACH] |
|---------------------------|------------------------------------------|------------------------------------------|-------------------------|----------------------------------------|------------------------|-------------------------------|---------------------------------|
| GYM:ZONE3                 | 29.73                                    | 29.73                                    | 67651.14                | 0.000                                  | 0.315                  | 0.000                         | 0.000                           |
| GYM:ZONE1                 | 0.71                                     | 0.71                                     | 1764.01                 | 0.000                                  | 0.314                  | 0.000                         | 0.073                           |
| GYM:ZONE2                 | 0.32                                     | 0.32                                     | 797.93                  | 0.000                                  | 0.314                  | 0.000                         | 0.054                           |
| FIRSTFLOOR:ZONE3          | 6.45                                     | 6.45                                     | 6295.56                 | 0.000                                  | 0.309                  | 0.000                         | 0.011                           |
| FIRSTFLOOR:ZONE4          | 6.48                                     | 6.48                                     | 6321.00                 | 0.000                                  | 0.309                  | 0.000                         | 0.017                           |
| FIRSTFLOOR:ZONE2          | 183.56                                   | 183.56                                   | 163243.8<br>4           | 0.000                                  | 0.313                  | 0.000                         | 0.098                           |
| FIRSTFLOOR:ZONE6          | 4.90                                     | 4.90                                     | 4774.30                 | 0.000                                  | 0.310                  | 0.000                         | 0.002                           |
| FIRSTFLOOR:ZONE7          | 4.90                                     | 4.90                                     | 4774.30                 | 0.000                                  | 0.309                  | 0.000                         | 0.000                           |
| FIRSTFLOOR:ZONE1          | 2.30                                     | 2.30                                     | 2238.72                 | 0.000                                  | 0.311                  | 0.000                         | 0.001                           |
| BASEMENTXABOVEGRADE:ZONE1 | 3.91                                     | 3.91                                     | 4364.75                 | 0.000                                  | 0.516                  | 0.000                         | 0.000                           |
| BASEMENTXABOVEGRADE:ZONE2 | 2.12                                     | 2.12                                     | 2368.80                 | 0.000                                  | 0.514                  | 0.000                         | 0.000                           |
| BASEMENTXABOVEGRADE:ZONE3 | 2.55                                     | 2.55                                     | 2843.86                 | 0.000                                  | 0.516                  | 0.000                         | 0.000                           |
| BASEMENTXABOVEGRADE:ZONE4 | 41.99                                    | 41.99                                    | 46857.00                | 0.000                                  | 0.519                  | 0.000                         | 0.017                           |
| BASEMENTXABOVEGRADE:ZONE5 | 1.04                                     | 1.04                                     | 1160.48                 | 0.000                                  | 0.516                  | 0.000                         | 0.000                           |
| BASEMENTXABOVEGRADE:ZONE6 | 1.77                                     | 1.77                                     | 1977.25                 | 0.000                                  | 0.516                  | 0.000                         | 0.000                           |

| BASEMENTXABOVEGRADE:ZONE7      | 3.26 | 3.26 | 3632.92 | 0.000 | 0.516 | 0.000 | 0.000 |
|--------------------------------|------|------|---------|-------|-------|-------|-------|
| BASEMENTXABOVEGRADE:ZONE8      | 7.71 | 7.71 | 8602.15 | 0.000 | 0.518 | 0.000 | 0.002 |
| BASEMENTXABOVEGRADE:ZONE9      | 2.27 | 2.27 | 2538.14 | 0.000 | 0.518 | 0.000 | 0.002 |
| BASEMENTXABOVEGRADE:ZONE1<br>0 | 1.40 | 1.40 | 1564.80 | 0.000 | 0.518 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>1 | 3.98 | 3.98 | 4446.53 | 0.000 | 0.517 | 0.000 | 0.001 |
| BASEMENTXABOVEGRADE:ZONE1 2    | 0.81 | 0.81 | 902.28  | 0.000 | 0.513 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>3 | 4.82 | 4.82 | 5380.31 | 0.000 | 0.520 | 0.000 | 0.058 |
| BASEMENTXABOVEGRADE:ZONE1<br>4 | 3.01 | 3.01 | 3354.66 | 0.000 | 0.515 | 0.000 | 0.002 |
| BASEMENTXABOVEGRADE:ZONE1<br>5 | 2.88 | 2.88 | 3212.24 | 0.000 | 0.514 | 0.000 | 0.002 |
| BASEMENTXABOVEGRADE:ZONE1 6    | 7.50 | 7.50 | 8370.92 | 0.000 | 0.517 | 0.000 | 0.015 |

Values shown for a single zone without multipliers

# Minimum Outdoor Air During Occupied Hours

|                  | Average<br>Number<br>of<br>Occupant<br>s | Nominal<br>Number<br>of<br>Occupant<br>s | Zone<br>Volume<br>[ft3] | Mechanica<br>I<br>Ventilation<br>[ACH] | Infiltratio<br>n [ACH] | AFN<br>Infiltratio<br>n [ACH] | Simple<br>Ventilatio<br>n [ACH] |
|------------------|------------------------------------------|------------------------------------------|-------------------------|----------------------------------------|------------------------|-------------------------------|---------------------------------|
| GYM:ZONE3        | 29.73                                    | 29.73                                    | 67651.14                | 0.000                                  | 0.005                  | 0.000                         | 0.000                           |
| GYM:ZONE1        | 0.71                                     | 0.71                                     | 1764.01                 | 0.000                                  | 0.005                  | 0.000                         | 0.000                           |
| GYM:ZONE2        | 0.32                                     | 0.32                                     | 797.93                  | 0.000                                  | 0.005                  | 0.000                         | 0.000                           |
| FIRSTFLOOR:ZONE3 | 6.45                                     | 6.45                                     | 6295.56                 | 0.000                                  | 0.005                  | 0.000                         | 0.000                           |
| FIRSTFLOOR:ZONE4 | 6.48                                     | 6.48                                     | 6321.00                 | 0.000                                  | 0.005                  | 0.000                         | 0.000                           |

| FIRSTFLOOR:ZONE2               | 183.56 | 183.56 | 163243.8<br>4 | 0.000 | 0.005 | 0.000 | 0.000 |
|--------------------------------|--------|--------|---------------|-------|-------|-------|-------|
| FIRSTFLOOR:ZONE6               | 4.90   | 4.90   | 4774.30       | 0.000 | 0.005 | 0.000 | 0.000 |
| FIRSTFLOOR:ZONE7               | 4.90   | 4.90   | 4774.30       | 0.000 | 0.005 | 0.000 | 0.000 |
| FIRSTFLOOR:ZONE1               | 2.30   | 2.30   | 2238.72       | 0.000 | 0.005 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1      | 3.91   | 3.91   | 4364.75       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE2      | 2.12   | 2.12   | 2368.80       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE3      | 2.55   | 2.55   | 2843.86       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE4      | 41.99  | 41.99  | 46857.00      | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE5      | 1.04   | 1.04   | 1160.48       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE6      | 1.77   | 1.77   | 1977.25       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE7      | 3.26   | 3.26   | 3632.92       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE8      | 7.71   | 7.71   | 8602.15       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE9      | 2.27   | 2.27   | 2538.14       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>0 | 1.40   | 1.40   | 1564.80       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>1 | 3.98   | 3.98   | 4446.53       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1 2    | 0.81   | 0.81   | 902.28        | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>3 | 4.82   | 4.82   | 5380.31       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>4 | 3.01   | 3.01   | 3354.66       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1<br>5 | 2.88   | 2.88   | 3212.24       | 0.000 | 0.008 | 0.000 | 0.000 |
| BASEMENTXABOVEGRADE:ZONE1 6    | 7.50   | 7.50   | 8370.92       | 0.000 | 0.008 | 0.000 | 0.000 |

Values shown for a single zone without multipliers

#### Table of Contents

# Report: Object Count Summary

### For: Entire Facility

Timestamp: 2019-12-26 10:47:47

### Surfaces by Class

|                                     | Total | Outdoors |
|-------------------------------------|-------|----------|
| Wall                                | 336   | 110      |
| Floor                               | 139   | 29       |
| Roof                                | 128   | 18       |
| Internal Mass                       | 0     | 0        |
| Building Detached Shading           | 0     | 0        |
| Fixed Detached Shading              | 0     | 0        |
| Window                              | 299   | 299      |
| Door                                | 8     | 8        |
| Glass Door                          | 0     | 0        |
| Shading                             | 0     | 0        |
| Overhang                            | 0     | 0        |
| Fin                                 | 0     | 0        |
| Tubular Daylighting Device Dome     | 0     | 0        |
| Tubular Daylighting Device Diffuser | 0     | 0        |

#### HVAC

|                     | Count |  |
|---------------------|-------|--|
| HVAC Air Loops      | 0     |  |
| Conditioned Zones   | 25    |  |
| Unconditioned Zones | 3     |  |
| Supply Plenums      | 0     |  |
| Return Plenums      | 0     |  |

## **Input Fields**

|                         | Count |
|-------------------------|-------|
| IDF Objects             | 0     |
| Defaulted Fields        | 0     |
| Fields with Defaults    | 0     |
| Autosized Fields        | 0     |
| Autosizable Fields      | 0     |
| Autocalculated Fields   | 0     |
| Autocalculatable Fields | 0     |

#### Table of Contents

Report: Sensible Heat Gain Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

#### Annual Building Sensible Heat Gain Components

|                      | HVA<br>C<br>Zon<br>e Eq<br>&<br>Othe<br>r<br>Sens<br>ible<br>Air<br>Heat<br>ing<br>[kBt<br>u] | HV<br>AC<br>Zo<br>ne<br>Eq<br>&<br>Ot<br>her<br>Se<br>nsi<br>ble<br>Air<br>Co<br>oli<br>ng<br>[to<br>n-<br>hrs<br>] | HV<br>AC<br>Ter<br>mi<br>Uni<br>t<br>Se<br>nsi<br>ble<br>Air<br>He<br>ati<br>ng<br>[kB<br>tu] | HV<br>AC<br>Ter<br>mi<br>Uni<br>t<br>Se<br>nsi<br>ble<br>Air<br>Co<br>olin<br>g<br>[to<br>n-<br>hrs<br>] | HV<br>AC<br>In<br>pu<br>t<br>He<br>ate<br>d<br>Su<br>rfa<br>ce<br>He<br>ati<br>ng<br>[k<br>Bt<br>u] | HV<br>AC<br>In<br>pu<br>t<br>Co<br>ole<br>d<br>Su<br>rfa<br>ce<br>Co<br>oli<br>ng<br>[to<br>n-<br>hrs<br>] | Peo<br>ple<br>Sens<br>ible<br>Heat<br>Addi<br>tion<br>[kBt<br>u] | Lig<br>hts<br>Se<br>nsi<br>ble<br>Ad<br>diti<br>on<br>[kB<br>tu] | Equi<br>pme<br>nt<br>Sens<br>ible<br>Heat<br>Addi<br>tion<br>[kBt<br>u] | Win<br>dow<br>Heat<br>Addi<br>tion<br>[kBt<br>u] | Int<br>erz<br>one<br>Air<br>Tra<br>nsf<br>er<br>Hea<br>t<br>Add<br>itio<br>n<br>[kB<br>tu] | Infil<br>trati<br>on<br>Hea<br>t<br>Add<br>ition<br>[kBt<br>u] | Opa<br>que<br>Surf<br>ace<br>Con<br>duct<br>ion<br>and<br>Oth<br>er<br>Hea<br>t<br>Addi<br>tion<br>[kBt<br>u] | Equi<br>pme<br>nt<br>Sen<br>sibl<br>e<br>Hea<br>t<br>Re<br>mov<br>al<br>[kBt<br>u] | Win<br>dow<br>Hea<br>t<br>Re<br>mov<br>al<br>[kBt<br>u] | Int<br>erz<br>one<br>Air<br>Tra<br>nsf<br>er<br>Hea<br>t<br>Re<br>mo<br>val<br>[kB<br>tu] | Infil<br>trati<br>on<br>Hea<br>t<br>Re<br>mov<br>al<br>[kBt<br>u] | Opa<br>que<br>Surf<br>ace<br>Con<br>duct<br>ion<br>and<br>Oth<br>er<br>Hea<br>t<br>Rem<br>oval<br>[kBt<br>u] |
|----------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| GYM:ZONE3            | 150<br>452.<br>201                                                                            | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 152<br>66.6<br>34                                                | 0.0<br>00                                                        | 368<br>63.0<br>44                                                       | 243<br>34.2<br>26                                | 0.0<br>00                                                                                  | 347<br>.22<br>7                                                | 0.20<br>6                                                                                                     | 0.00                                                                               | -<br>130<br>26.<br>71                                   | 0.0<br>00                                                                                 | -<br>627<br>01.<br>84                                             | -<br>151<br>534.<br>78                                                                                       |
| GYM:ZONE1            | 110<br>75.4<br>03                                                                             | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 364.<br>727                                                      | 0.0<br>00                                                        | 874.<br>666                                                             | 389<br>5.97<br>8                                 | 0.0<br>00                                                                                  | 21.<br>862                                                     | 0.11<br>5                                                                                                     | 0.00                                                                               | -<br>152<br>5.7<br>4                                    | 0.0<br>00                                                                                 | -<br>182<br>6.3<br>8                                              | -<br>128<br>80.5<br>2                                                                                        |
| GYM:ZONE2            | 632<br>5.43<br>1                                                                              | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 165.<br>989                                                      | 0.0<br>00                                                        | 395.<br>643                                                             | 715.<br>999                                      | 0.0<br>00                                                                                  | 12.<br>787                                                     | 0.00<br>9                                                                                                     | 0.00                                                                               | -<br>377<br>.27                                         | 0.0<br>00                                                                                 | -<br>767<br>.08                                                   | -<br>647<br>1.49                                                                                             |
| FIRSTFLOOR:<br>ZONE3 | 741<br>2.77<br>6                                                                              | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 368<br>6.65<br>4                                                 | 0.0<br>00                                                        | 200<br>0.08<br>3                                                        | 807<br>5.59<br>5                                 | 0.0<br>00                                                                                  | 62.<br>228                                                     | 0.00                                                                                                          | 0.00                                                                               | -<br>249<br>6.9<br>2                                    | 0.0<br>00                                                                                 | -<br>439<br>1.2<br>6                                              | -<br>143<br>49.1<br>6                                                                                        |
| FIRSTFLOOR:<br>ZONE4 | 750<br>5.85<br>0                                                                              | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 370<br>2.22<br>9                                                 | 0.0<br>00                                                        | 200<br>8.45<br>0                                                        | 815<br>7.15<br>6                                 | 0.0<br>00                                                                                  | 59.<br>198                                                     | 0.00                                                                                                          | 0.00<br>0                                                                          | -<br>239<br>8.3<br>6                                    | 0.0<br>00                                                                                 | -<br>449<br>8.7<br>6                                              | -<br>145<br>35.7<br>7                                                                                        |
| FIRSTFLOOR:<br>ZONE2 | 755<br>62.3<br>09                                                                             | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 986<br>37.4<br>13                                                | 0.0                                                              | 568<br>93.3<br>27                                                       | 117<br>843.<br>864                               | 0.0<br>00                                                                                  | 839<br>.49<br>4                                                | 0.00                                                                                                          | 0.00                                                                               | -<br>455<br>64.<br>41                                   | 0.0<br>00                                                                                 | 136<br>002<br>.67                                                 | -<br>168<br>209.<br>33                                                                                       |
| FIRSTFLOOR:<br>ZONE6 | 458<br>3.35<br>4                                                                              | 0.0<br>00                                                                                                           | 0.0<br>00                                                                                     | 0.0<br>00                                                                                                | 0.0<br>00                                                                                           | 0.<br>00<br>0                                                                                              | 276<br>9.76<br>6                                                 | 0.0<br>00                                                        | 151<br>7.49<br>7                                                        | 460<br>8.51<br>2                                 | 0.0<br>00                                                                                  | 55.<br>831                                                     | 0.03<br>7                                                                                                     | 0.00                                                                               | -<br>198                                                | 0.0<br>00                                                                                 | -<br>356                                                          | -<br>798<br>1.43                                                                                             |

|                                   |                   |           |           |           |           |               |                   |           |                   |                   |           |                 |           |           | 3.6<br>8             |           | 9.8<br>5              |                       |
|-----------------------------------|-------------------|-----------|-----------|-----------|-----------|---------------|-------------------|-----------|-------------------|-------------------|-----------|-----------------|-----------|-----------|----------------------|-----------|-----------------------|-----------------------|
| FIRSTFLOOR:<br>ZONE7              | 514<br>6.10<br>3  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 279<br>2.55<br>8  | 0.0<br>00 | 151<br>7.49<br>7  | 479<br>0.38<br>5  | 0.0<br>00 | 69.<br>778      | 0.07<br>6 | 0.00      | -<br>179<br>0.5<br>2 | 0.0<br>00 | -<br>347<br>7.1<br>5  | -<br>904<br>8.66      |
| FIRSTFLOOR:<br>ZONE1              | 188<br>8.51<br>0  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 127<br>7.36<br>6  | 0.0<br>00 | 711.<br>571       | 0.00              | 0.0<br>00 | 28.<br>514      | 0.00<br>9 | 0.00      | 0.0<br>00            | 0.0<br>00 | -<br>195<br>1.3<br>2  | -<br>195<br>4.64      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE1 | 776<br>8.66<br>9  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 222<br>3.77<br>0  | 0.0<br>00 | 484<br>8.93<br>6  | 108<br>43.0<br>37 | 0.0<br>00 | 65.<br>053      | 0.14<br>7 | 0.00      | -<br>481<br>0.1<br>3 | 0.0<br>00 | -<br>603<br>7.0<br>1  | -<br>149<br>02.3<br>3 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE2 | 542<br>4.05<br>4  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 122<br>7.51<br>8  | 0.0<br>00 | 263<br>1.57<br>1  | 0.00<br>0         | 0.0<br>00 | 81.<br>784      | 0.03<br>3 | 0.00      | 0.0<br>00            | 0.0<br>00 | -<br>276<br>5.1<br>1  | -<br>659<br>9.82      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE3 | 524<br>5.65<br>8  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 145<br>8.66<br>3  | 0.0<br>00 | 315<br>9.33<br>0  | 266<br>9.77<br>7  | 0.0<br>00 | 75.<br>368      | 0.07<br>9 | 0.00<br>0 | -<br>225<br>0.6<br>9 | 0.0<br>00 | -<br>349<br>6.0<br>4  | -<br>686<br>2.07      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE4 | 464<br>96.1<br>38 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 232<br>56.3<br>67 | 0.0<br>00 | 520<br>54.8<br>33 | 156<br>26.5<br>05 | 0.0<br>00 | 902<br>.06<br>6 | 0.00      | 0.00      | -<br>595<br>9.1<br>4 | 0.0<br>00 | -<br>637<br>16.<br>94 | -<br>686<br>59.8<br>2 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE5 | 223<br>7.89<br>2  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 595.<br>463       | 0.0<br>00 | 128<br>9.20<br>6  | 0.00<br>0         | 0.0<br>00 | 38.<br>201      | 0.00<br>8 | 0.00<br>0 | 0.0<br>00            | 0.0<br>00 | -<br>143<br>8.7<br>3  | -<br>272<br>2.03      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE6 | 364<br>4.15<br>5  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 101<br>4.56<br>2  | 0.0<br>00 | 219<br>6.58<br>7  | 0.00              | 0.0<br>00 | 71.<br>266      | 0.02<br>8 | 0.00<br>0 | 0.0<br>00            | 0.0<br>00 | -<br>237<br>0.6<br>9  | -<br>455<br>5.88      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE7 | 521<br>8.62<br>7  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 185<br>4.69<br>3  | 0.0<br>00 | 403<br>5.91<br>7  | 0.00<br>0         | 0.0<br>00 | 118<br>.98<br>9 | 0.02<br>5 | 0.00<br>0 | 0.0<br>00            | 0.0<br>00 | -<br>434<br>0.5<br>1  | -<br>688<br>7.71      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE8 | 113<br>77.3<br>67 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 431<br>4.61<br>0  | 0.0<br>00 | 955<br>6.39<br>0  | 889<br>4.79<br>0  | 0.0<br>00 | 156<br>.98<br>2 | 0.00      | 0.00      | -<br>358             | 0.0<br>00 | -<br>118              | -<br>188              |

|                                    |                   |           |           |           |           |               |                  |           |                  |                   |           |                  |                  |      | 7.7<br>7             |           | 56.<br>35             | 56.0<br>2             |
|------------------------------------|-------------------|-----------|-----------|-----------|-----------|---------------|------------------|-----------|------------------|-------------------|-----------|------------------|------------------|------|----------------------|-----------|-----------------------|-----------------------|
| BASEMENTXA<br>BOVEGRADE:<br>ZONE9  | 358<br>1.49<br>0  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 127<br>6.81<br>0 | 0.0<br>00 | 281<br>9.69<br>5 | 442<br>6.49<br>6  | 0.0<br>00 | 41.<br>572       | 0.00             | 0.00 | -<br>181<br>8.5<br>3 | 0.0<br>00 | -<br>358<br>8.3<br>8  | -<br>673<br>9.15      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE10 | 228<br>5.70<br>6  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 790.<br>351      | 0.0<br>00 | 173<br>8.38<br>3 | 0.00<br>0         | 0.0<br>00 | 46.<br>275       | 0.00             | 0.00 | 0.0<br>00            | 0.0<br>00 | -<br>206<br>5.0<br>4  | -<br>279<br>5.67      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE11 | 555<br>7.38<br>0  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 225<br>0.93<br>2 | 0.0<br>00 | 493<br>9.78<br>2 | 0.00<br>0         | 0.0<br>00 | 128<br>.05<br>3  | 0.00             | 0.00 | 0.0<br>00            | 0.0<br>00 | -<br>555<br>0.9<br>5  | -<br>732<br>5.19      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE12 | 249<br>8.88<br>0  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 470.<br>839      | 0.0<br>00 | 100<br>2.36<br>4 | 693.<br>930       | 0.0<br>00 | 31.<br>898       | 0.00             | 0.00 | -<br>535<br>.12      | 0.0<br>00 | -<br>104<br>5.0<br>0  | -<br>311<br>7.79      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE13 | 586<br>9.93<br>7  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 263<br>7.12<br>4 | 0.0<br>00 | 597<br>7.14<br>3 | 936<br>9.47<br>9  | 0.0<br>00 | 75.<br>052       | 0.00             | 0.00 | -<br>271<br>4.9<br>7 | 0.0<br>00 | -<br>786<br>9.2<br>8  | -<br>133<br>44.4<br>9 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE14 | 603<br>9.76<br>8  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 172<br>5.50<br>1 | 0.0<br>00 | 372<br>6.78<br>9 | 272<br>4.38<br>1  | 0.0<br>00 | 86.<br>157       | 0.00             | 0.00 | -<br>859<br>.57      | 0.0<br>00 | -<br>404<br>2.9<br>2  | -<br>940<br>0.11      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE15 | 585<br>7.87<br>0  | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 165<br>3.90<br>8 | 0.0<br>00 | 356<br>8.57<br>1 | 332<br>2.23<br>0  | 0.0<br>00 | 80.<br>841       | 0.00             | 0.00 | -<br>111<br>5.7<br>1 | 0.0<br>00 | -<br>385<br>5.3<br>1  | -<br>951<br>2.41      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE16 | 120<br>13.6<br>62 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 423<br>1.90<br>2 | 0.0<br>00 | 929<br>9.50<br>7 | 211<br>44.1<br>37 | 0.0<br>00 | 95.<br>469       | 0.00<br>0        | 0.00 | -<br>828<br>4.8<br>4 | 0.0<br>00 | -<br>119<br>08.<br>65 | -<br>265<br>91.1<br>8 |
| CHURCHROOF<br>:ZONE1               | 0.00              | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 0.00             | 0.0<br>00 | 0.00             | 0.00              | 0.0<br>00 | 141<br>9.2<br>80 | 761<br>6.49<br>8 | 0.00 | 0.0<br>00            | 0.0<br>00 | -<br>903<br>5.7<br>8  | 0.00                  |
| CHURCHROOF<br>:ZONE4               | 0.00              | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 0.00             | 0.0<br>00 | 0.00<br>0        | 0.00              | 0.0<br>00 | 84.<br>372       | 174<br>3.91<br>2 | 0.00 | 0.0<br>00            | 0.0<br>00 | -<br>182              | 0.00                  |

|                      |                    |           |           |           |           |               |                    |           |                    |                    |           |                  |                   |      |                        |           | 8.2<br>8               |                        |
|----------------------|--------------------|-----------|-----------|-----------|-----------|---------------|--------------------|-----------|--------------------|--------------------|-----------|------------------|-------------------|------|------------------------|-----------|------------------------|------------------------|
| CHURCHROOF<br>:ZONE2 | 0.00               | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 0.00               | 0.0<br>00 | 0.00               | 0.00               | 0.0<br>00 | 136<br>.26<br>1  | 169<br>1.15<br>4  | 0.00 | 0.0<br>00              | 0.0<br>00 | -<br>182<br>7.4<br>1   | 0.00                   |
| Total Facility       | 401<br>069.<br>191 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.0<br>00 | 0.<br>00<br>0 | 179<br>646.<br>347 | 0.0<br>00 | 215<br>626.<br>783 | 252<br>136.<br>476 | 0.0<br>00 | 523<br>1.8<br>55 | 110<br>52.3<br>35 | 0.00 | -<br>101<br>100<br>.06 | 0.0<br>00 | -<br>367<br>824<br>.70 | -<br>595<br>837.<br>45 |

### Peak Cooling Sensible Heat Gain Components

|                      | Time<br>of<br>Peak<br>{TIM<br>ESTA<br>MP} | HV<br>AC<br>Zo<br>ne<br>Eq<br>&<br>Ot<br>her<br>Se<br>nsi<br>ble<br>Air<br>He<br>ati<br>ng<br>[Bt<br>u/<br>h] | HV<br>AC<br>Zo<br>ne<br>Eq<br>&<br>Ot<br>her<br>Se<br>nsi<br>ble<br>Air<br>Co<br>oli<br>ng<br>[to<br>n] | HV<br>AC<br>Ter<br>mi<br>nal<br>Uni<br>t<br>Se<br>nsi<br>ble<br>Air<br>He<br>ati<br>ng<br>[Bt<br>u/h<br>] | HV<br>AC<br>Ter<br>mi<br>nal<br>Uni<br>t<br>Se<br>nsi<br>ble<br>Air<br>Co<br>olin<br>g<br>[to<br>n] | HV<br>AC<br>In<br>pu<br>t<br>He<br>at<br>ce<br>He<br>ati<br>ng<br>[Bt<br>u/<br>h] | HV<br>AC<br>In<br>pu<br>t<br>Co<br>ole<br>d<br>Su<br>rfa<br>ce<br>Co<br>oli<br>ng<br>[to<br>n] | Pe<br>opl<br>e<br>Se<br>nsi<br>ble<br>He<br>at<br>Ad<br>diti<br>on<br>[Bt<br>u/<br>h] | Lig<br>hts<br>Se<br>nsi<br>ble<br>He<br>at<br>Ad<br>diti<br>on<br>[Bt<br>u/<br>h] | Equi<br>pm<br>ent<br>Sen<br>sibl<br>e<br>Hea<br>t<br>Add<br>ition<br>[Btu<br>/h] | Wi<br>nd<br>ow<br>He<br>at<br>Ad<br>diti<br>on<br>[Bt<br>u/<br>h] | Int<br>erz<br>one<br>Air<br>Tra<br>nsf<br>er<br>He<br>at<br>Add<br>itio<br>n<br>[Bt<br>u/h<br>] | Infil<br>trati<br>on<br>Hea<br>t<br>Add<br>itio<br>n<br>[Bt<br>u/h<br>] | Opa<br>que<br>Surf<br>ace<br>Con<br>duct<br>ion<br>and<br>Oth<br>er<br>Hea<br>t<br>Addi<br>tion<br>[Btu<br>/h] | Equi<br>pm<br>ent<br>Sen<br>sibl<br>e<br>Hea<br>t<br>Re<br>mov<br>al<br>[Btu<br>/h] | Wi<br>nd<br>ow<br>He<br>at<br>Re<br>wo<br>val<br>[Bt<br>u/h<br>] | Int<br>erz<br>one<br>Air<br>Tra<br>nsf<br>er<br>He<br>at<br>Re<br>mo<br>val<br>[Bt<br>u/h<br>] | Infil<br>trati<br>on<br>Hea<br>t<br>Re<br>mo<br>val<br>[Bt<br>u/h<br>] | Opa<br>que<br>Surf<br>ace<br>Con<br>duct<br>ion<br>and<br>Oth<br>er<br>Hea<br>t<br>Rem<br>oval<br>[Btu<br>/h] |
|----------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| GYM:ZONE3            | -                                         | 0.0<br>0                                                                                                      | 0.0<br>0                                                                                                | 0.0<br>0                                                                                                  | 0.0<br>0                                                                                            | 0.<br>00                                                                          | 0.<br>00                                                                                       | 0.0<br>0                                                                              | 0.0<br>0                                                                          | 0.0<br>0                                                                         | 0.0<br>0                                                          | 0.0<br>0                                                                                        | 0.0<br>0                                                                | 0.00                                                                                                           | 0.0<br>0                                                                            | 0.0<br>0                                                         | 0.0<br>0                                                                                       | 0.0<br>0                                                               | 0.00                                                                                                          |
| GYM:ZONE1            | -                                         | 0.0<br>0                                                                                                      | 0.0<br>0                                                                                                | 0.0<br>0                                                                                                  | 0.0<br>0                                                                                            | 0.<br>00                                                                          | 0.<br>00                                                                                       | 0.0<br>0                                                                              | 0.0<br>0                                                                          | 0.0<br>0                                                                         | 0.0<br>0                                                          | 0.0<br>0                                                                                        | 0.0<br>0                                                                | 0.00                                                                                                           | 0.0<br>0                                                                            | 0.0<br>0                                                         | 0.0<br>0                                                                                       | 0.0<br>0                                                               | 0.00                                                                                                          |
| GYM:ZONE2            | -                                         | 0.0<br>0                                                                                                      | 0.0<br>0                                                                                                | 0.0<br>0                                                                                                  | 0.0<br>0                                                                                            | 0.<br>00                                                                          | 0.<br>00                                                                                       | 0.0<br>0                                                                              | 0.0<br>0                                                                          | 0.0                                                                              | 0.0<br>0                                                          | 0.0<br>0                                                                                        | 0.0                                                                     | 0.00                                                                                                           | 0.0                                                                                 | 0.0<br>0                                                         | 0.0<br>0                                                                                       | 0.0<br>0                                                               | 0.00                                                                                                          |
| FIRSTFLOOR:<br>ZONE3 | -                                         | 0.0<br>0                                                                                                      | 0.0<br>0                                                                                                | 0.0<br>0                                                                                                  | 0.0<br>0                                                                                            | 0.<br>00                                                                          | 0.<br>00                                                                                       | 0.0<br>0                                                                              | 0.0<br>0                                                                          | 0.0<br>0                                                                         | 0.0<br>0                                                          | 0.0<br>0                                                                                        | 0.0<br>0                                                                | 0.00                                                                                                           | 0.0<br>0                                                                            | 0.0<br>0                                                         | 0.0                                                                                            | 0.0<br>0                                                               | 0.00                                                                                                          |
| FIRSTFLOOR:<br>ZONE4 | -                                         | 0.0<br>0                                                                                                      | 0.0<br>0                                                                                                | 0.0<br>0                                                                                                  | 0.0<br>0                                                                                            | 0.<br>00                                                                          | 0.<br>00                                                                                       | 0.0<br>0                                                                              | 0.0<br>0                                                                          | 0.0<br>0                                                                         | 0.0<br>0                                                          | 0.0<br>0                                                                                        | 0.0<br>0                                                                | 0.00                                                                                                           | 0.0<br>0                                                                            | 0.0<br>0                                                         | 0.0<br>0                                                                                       | 0.0<br>0                                                               | 0.00                                                                                                          |

| FIRSTFLOOR:<br>ZONE2              | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
|-----------------------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|----------|----------|----------|----------|------|
| FIRSTFLOOR:<br>ZONE6              | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| FIRSTFLOOR:<br>ZONE7              | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| FIRSTFLOOR:<br>ZONE1              | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0      | 0.0<br>0 | 0.0      | 0.0      | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE1 | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE2 | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE3 | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE4 | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE5 | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE6 | - | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0      | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE7 | - | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0      | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE8 | - | 0.0      | 0.0      | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0 | 0.0      | 0.0      | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0      | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE9 | - | 0.0      | 0.0      | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0 | 0.0      | 0.0      | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0      | 0.0<br>0 | 0.00 |

| BASEMENTXA<br>BOVEGRADE:<br>ZONE10 | - | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
|------------------------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|----------|----------|----------|----------|------|
| BASEMENTXA<br>BOVEGRADE:<br>ZONE11 | - | 0.0      | 0.0      | 0.0<br>0 | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE12 | - | 0.0      | 0.0      | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE13 | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE14 | - | 0.0      | 0.0<br>0 | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE15 | - | 0.0      | 0.0<br>0 | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE16 | - | 0.0      | 0.0      | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 |
| CHURCHROO<br>F:ZONE1               | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| CHURCHROO<br>F:ZONE4               | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| CHURCHROO<br>F:ZONE2               | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |
| Total Facility                     | - | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 |

# Peak Heating Sensible Heat Gain Components

|      | HVA | ΗV | HV  | HV  | ΗV | ΗV | Pe  | Lig | Equ  | Wi | Int | Infil | Ора  | Equ  | Wi | Int | Infil | Ора  |
|------|-----|----|-----|-----|----|----|-----|-----|------|----|-----|-------|------|------|----|-----|-------|------|
| Time | C   | AC | AC  | AC  | AC | AC | opl | hts | ipm  | nd | erz | trati | que  | ipm  | nd | erz | trati | que  |
| of   | Zon | Zo | Ter | Ter | In | In | e   | Se  | ent  | ow | one | on    | Surf | ent  | OW | one | on    | Surf |
| Peak | e   | ne | mi  | mi  | pu | pu | Se  | nsi | Sen  | He | Air | Hea   | ace  | Sen  | He | Air | Hea   | ace  |
| {TIM | Eq  | Eq | nal | nal | t  | t  | nsi | ble | sibl | at | Tra | t     | Con  | sibl | at | Tra | t     | Con  |
|      | &   | &  | Uni | Uni | He | Со | ble | He  | е    | Ad | nsf | Add   | duct | е    | Re | nsf | Re    | duct |
|                      | ESTA<br>MP}              | Oth<br>er<br>Sen<br>sibl<br>e<br>Air<br>Hea<br>ting<br>[Btu<br>/h] | Ot<br>her<br>Se<br>nsi<br>ble<br>Air<br>Co<br>oli<br>ng<br>[to<br>n] | t<br>Se<br>nsi<br>ble<br>Air<br>He<br>ati<br>ng<br>[Bt<br>u/h<br>] | t<br>Se<br>nsi<br>ble<br>Air<br>Co<br>oli<br>ng<br>[to<br>n] | at<br>ed<br>Su<br>rfa<br>ce<br>He<br>ati<br>ng<br>[Bt<br>u/<br>h] | ole<br>d<br>Su<br>rfa<br>ce<br>Co<br>oli<br>ng<br>[to<br>n] | He<br>at<br>Ad<br>diti<br>on<br>[Bt<br>u/<br>h] | at<br>Ad<br>diti<br>on<br>[Bt<br>u/<br>h] | Hea<br>t<br>Add<br>itio<br>n<br>[Btu<br>/h] | diti<br>on<br>[Bt<br>u/<br>h] | er<br>He<br>Ad<br>diti<br>on<br>[Bt<br>u/h<br>] | itio<br>n<br>[Bt<br>u/h<br>] | ion<br>and<br>Oth<br>er<br>Hea<br>t<br>Addi<br>tion<br>[Btu<br>/h] | Hea<br>t<br>Re<br>mov<br>al<br>[Btu<br>/h] | mo<br>val<br>[Bt<br>u/h<br>] | er<br>He<br>at<br>Re<br>mo<br>val<br>[Bt<br>u/h<br>] | mo<br>val<br>[Bt<br>u/h<br>] | ion<br>and<br>Oth<br>er<br>Hea<br>t<br>Re<br>mov<br>al<br>[Btu<br>/h] |
|----------------------|--------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------------------------|------------------------------|--------------------------------------------------------------------|--------------------------------------------|------------------------------|------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|
| GYM:ZONE3            | 02-<br>FEB-<br>09:0<br>1 | 174<br>451<br>.13                                                  | 0.0                                                                  | 0.0                                                                | 0.0                                                          | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 424<br>1.2<br>8                             | 55<br>10.<br>57               | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | 0.0                          | 0.0<br>0                                             | -<br>861<br>9.4              | -<br>175<br>583.<br>6                                                 |
| GYM:ZONE1            | 02-<br>FEB-<br>09:0<br>1 | 124<br>99.<br>96                                                   | 0.0                                                                  | 0.0                                                                | 0.0<br>0                                                     | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 100<br>.63                                  | 33<br>07.<br>44               | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | 0.0<br>0                     | 0.0<br>0                                             | -<br>258<br>.1               | -<br>156<br>49.9                                                      |
| GYM:ZONE2            | 02-<br>FEB-<br>09:0<br>1 | 668<br>6.4<br>7                                                    | 0.0                                                                  | 0.0                                                                | 0.0<br>0                                                     | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 45.<br>52                                   | 31.<br>14                     | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | 0.0<br>0                     | 0.0<br>0                                             | -<br>105<br>.8               | -<br>665<br>7.4                                                       |
| FIRSTFLOOR:<br>ZONE3 | 03-<br>FEB-<br>00:0<br>1 | 311<br>47.<br>97                                                   | 0.0                                                                  | 0.0                                                                | 0.0                                                          | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 0.0<br>0                                    | 0.0<br>0                      | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | -<br>39<br>9.1               | 0.0                                                  | -<br>425<br>.3               | -<br>303<br>23.5                                                      |
| FIRSTFLOOR:<br>ZONE4 | 03-<br>FEB-<br>00:0<br>1 | 320<br>63.<br>99                                                   | 0.0                                                                  | 0.0                                                                | 0.0                                                          | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 0.0<br>0                                    | 0.0                           | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | -<br>39<br>5.8               | 0.0<br>0                                             | -<br>427<br>.3               | -<br>312<br>40.9                                                      |
| FIRSTFLOOR:<br>ZONE2 | 03-<br>FEB-<br>00:0<br>1 | 277<br>896<br>.57                                                  | 0.0                                                                  | 0.0                                                                | 0.0                                                          | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 0.0<br>0                                    | 0.0                           | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | -<br>74<br>96.<br>1          | 0.0                                                  | -<br>125<br>68.<br>5         | -<br>257<br>832.<br>0                                                 |
| FIRSTFLOOR:<br>ZONE6 | 03-<br>FEB-<br>00:0<br>1 | 157<br>41.<br>00                                                   | 0.0                                                                  | 0.0                                                                | 0.0                                                          | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 0.0<br>0                                    | 0.0                           | 0.0<br>0                                        | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | -<br>35<br>1.0               | 0.0                                                  | -<br>410<br>.1               | -<br>149<br>79.9                                                      |
| FIRSTFLOOR:<br>ZONE7 | 03-<br>FEB-<br>00:0<br>1 | 182<br>39.<br>08                                                   | 0.0                                                                  | 0.0                                                                | 0.0<br>0                                                     | 0.<br>00                                                          | 0.<br>00                                                    | 0.0                                             | 0.0                                       | 0.0<br>0                                    | 0.0                           | 0.0                                             | 0.0<br>0                     | 0.00                                                               | 0.0<br>0                                   | -<br>31<br>2.4               | 0.0<br>0                                             | -<br>370<br>.4               | -<br>175<br>56.4                                                      |

| FIRSTFLOOR:<br>ZONE1              | 03-<br>FEB-<br>00:0<br>1 | 508<br>7.3<br>0   | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0            | 0.0<br>0 | -<br>258<br>.9  | -<br>482<br>8.4       |
|-----------------------------------|--------------------------|-------------------|----------|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|------|----------|---------------------|----------|-----------------|-----------------------|
| BASEMENTXA<br>BOVEGRADE:<br>ZONE1 | 03-<br>FEB-<br>00:0<br>1 | 240<br>30.<br>96  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | -<br>10<br>23.<br>5 | 0.0<br>0 | -<br>795<br>.4  | -<br>222<br>12.0      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE2 | 03-<br>FEB-<br>00:0<br>1 | 161<br>57.<br>68  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0                 | 0.0<br>0 | -<br>412<br>.3  | -<br>157<br>45.4      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE3 | 03-<br>FEB-<br>00:0<br>1 | 151<br>15.<br>44  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | -<br>46<br>7.1      | 0.0<br>0 | -<br>503<br>.6  | -<br>141<br>44.7      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE4 | 03-<br>FEB-<br>00:0<br>1 | 130<br>886<br>.23 | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | -<br>12<br>30.<br>2 | 0.0<br>0 | -<br>812<br>5.1 | -<br>121<br>530.<br>9 |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE5 | 03-<br>FEB-<br>00:0<br>1 | 601<br>8.2<br>1   | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0      | 0.0<br>0            | 0.0<br>0 | -<br>210<br>.5  | -<br>580<br>7.7       |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE6 | 03-<br>FEB-<br>00:0<br>1 | 978<br>7.6<br>0   | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0                 | 0.0<br>0 | -<br>348<br>.3  | -<br>943<br>9.3       |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE7 | 03-<br>FEB-<br>00:0<br>1 | 147<br>57.<br>94  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | 0.0<br>0            | 0.0<br>0 | -<br>550<br>.2  | -<br>142<br>07.7      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE8 | 03-<br>FEB-<br>00:0<br>1 | 322<br>94.<br>25  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0<br>0 | -<br>79<br>8.5      | 0.0<br>0 | -<br>171<br>8.0 | -<br>297<br>77.7      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE9 | 03-<br>FEB-<br>00:0<br>1 | 104<br>07.<br>22  | 0.0      | 0.0      | 0.0      | 0.<br>00 | 0.<br>00 | 0.0      | 0.0 | 0.0<br>0 | 0.0      | 0.0<br>0 | 0.0<br>0 | 0.00 | 0.0      | -<br>39<br>6.0      | 0.0<br>0 | -<br>510<br>.2  | -<br>950<br>1.0       |

| BASEMENTXA<br>BOVEGRADE:<br>ZONE10 | 03-<br>FEB-<br>00:0<br>1 | 577<br>0.7<br>6   | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | 0.0                 | 0.0<br>0 | -<br>304<br>.1       | -<br>546<br>6.6       |
|------------------------------------|--------------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|-----------------|-----------------|----------|------------|------|----------|---------------------|----------|----------------------|-----------------------|
| BASEMENTXA<br>BOVEGRADE:<br>ZONE11 | 03-<br>FEB-<br>00:0<br>1 | 154<br>80.<br>92  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | 0.0                 | 0.0<br>0 | -<br>703<br>.6       | -<br>147<br>77.3      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE12 | 03-<br>FEB-<br>00:0<br>1 | 790<br>2.1<br>5   | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | -<br>10<br>3.4      | 0.0<br>0 | -<br>153<br>.1       | -<br>764<br>5.7       |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE13 | 03-<br>FEB-<br>00:0<br>1 | 200<br>92.<br>19  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | -<br>59<br>2.3      | 0.0<br>0 | -<br>106<br>2.3      | -<br>184<br>37.6      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE14 | 03-<br>FEB-<br>00:0<br>1 | 205<br>16.<br>25  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | -<br>16<br>3.1      | 0.0<br>0 | -<br>496<br>.7       | -<br>198<br>56.4      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE15 | 03-<br>FEB-<br>00:0<br>1 | 199<br>61.<br>68  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | -<br>20<br>1.6      | 0.0<br>0 | -<br>471<br>.6       | -<br>192<br>88.5      |
| BASEMENTXA<br>BOVEGRADE:<br>ZONE16 | 03-<br>FEB-<br>00:0<br>1 | 416<br>48.<br>94  | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 0.0<br>0        | 0.0             | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | -<br>15<br>03.<br>4 | 0.0<br>0 | -<br>133<br>3.0      | -<br>388<br>12.5      |
| CHURCHROO<br>F:ZONE1               | -                        | 0.0<br>0          | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0        | 0.0<br>0        | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | 0.0<br>0            | 0.0<br>0 | 0.0<br>0             | 0.00                  |
| CHURCHROO<br>F:ZONE4               | -                        | 0.0<br>0          | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0        | 0.0<br>0        | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | 0.0<br>0            | 0.0<br>0 | 0.0<br>0             | 0.00                  |
| CHURCHROO<br>F:ZONE2               | -                        | 0.0<br>0          | 0.0<br>0 | 0.0<br>0 | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0<br>0 | 0.0<br>0 | 0.0<br>0        | 0.0<br>0        | 0.0<br>0 | 0.0<br>0   | 0.00 | 0.0<br>0 | 0.0<br>0            | 0.0<br>0 | 0.0<br>0             | 0.00                  |
| Total Facility                     | 03-<br>FEB-<br>09:0<br>1 | 771<br>505<br>.83 | 0.0      | 0.0      | 0.0<br>0 | 0.<br>00 | 0.<br>00 | 0.0      | 0.0      | 413<br>4.8<br>2 | 83<br>71.<br>68 | 0.0<br>0 | 450<br>.92 | 0.00 | 0.0<br>0 | -<br>70<br>3.4      | 0.0<br>0 | -<br>911<br>65.<br>4 | -<br>692<br>594.<br>4 |

### Table of Contents

Report: Standard 62.1 Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

#### System Ventilation Requirements for Cooling

|          | Sum<br>of<br>Zone<br>Primar<br>y Air<br>Flow -<br>Vpz-<br>sum<br>[ft3/mi<br>n] | System<br>Populati<br>on - Ps | Sum of<br>Zone<br>Populati<br>on - Pz-<br>sum | Occupa<br>nt<br>Diversi<br>ty - D | Uncorrec<br>ted<br>Outdoor<br>Air<br>Intake<br>Airflow -<br>Vou<br>[ft3/min] | Syste<br>m<br>Primar<br>y<br>Airflow<br>- Vps<br>[ft3/mi<br>n] | Avera<br>ge<br>Outdo<br>or Air<br>Fracti<br>on -<br>Xs | System<br>Ventilati<br>on<br>Efficien<br>cy - Ev | Outdo<br>or Air<br>Intake<br>Flow -<br>Vot<br>[ft3/mi<br>n] | Perce<br>nt<br>Outdo<br>or Air<br>-<br>%OA | Environm<br>ent Name<br>of Peak<br>System<br>Populatio<br>n - Ps | Date<br>and<br>Time of<br>Last<br>Peak<br>System<br>Populati<br>on - Ps |
|----------|--------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Non<br>e |                                                                                |                               |                                               |                                   |                                                                              |                                                                |                                                        |                                                  |                                                             |                                            |                                                                  |                                                                         |

## System Ventilation Requirements for Heating

|          | Sum<br>of<br>Zone<br>Primar<br>y Air<br>Flow -<br>Vpz-<br>sum<br>[ft3/mi<br>n] | System<br>Populati<br>on - Ps | Sum of<br>Zone<br>Populati<br>on - Pz-<br>sum | Occupa<br>nt<br>Diversi<br>ty - D | Uncorrec<br>ted<br>Outdoor<br>Air<br>Intake<br>Airflow -<br>Vou<br>[ft3/min] | Syste<br>m<br>Primar<br>y<br>Airflow<br>- Vps<br>[ft3/mi<br>n] | Avera<br>ge<br>Outdo<br>or Air<br>Fracti<br>on -<br>Xs | System<br>Ventilati<br>on<br>Efficien<br>cy - Ev | Outdo<br>or Air<br>Intake<br>Flow<br>Vot<br>[ft3/mi<br>n] | Perce<br>nt<br>Outdo<br>or Air<br>-<br>%OA | Environm<br>ent Name<br>of Peak<br>System<br>Populatio<br>n - Ps | Date<br>and<br>Time of<br>Last<br>Peak<br>System<br>Populati<br>on - Ps |
|----------|--------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Non<br>e |                                                                                |                               |                                               |                                   |                                                                              |                                                                |                                                        |                                                  |                                                           |                                            |                                                                  |                                                                         |

**Zone Ventilation Parameters** 

|      | AirLoop<br>Name | People<br>Outdoor<br>Air Rate<br>- Rp<br>[ft3/min-<br>person] | Zone<br>Population<br>- Pz | Area<br>Outdoor<br>Air Rate<br>- Ra<br>[ft3/min-<br>ft2] | Zone<br>Floor<br>Area<br>- Az<br>[ft2] | Breathing<br>Zone<br>Outdoor<br>Airflow -<br>Vbz<br>[ft3/min] | Cooling Zone<br>Air<br>Distribution<br>Effectiveness<br>- Ez-clg | Cooling<br>Zone<br>Outdoor<br>Airflow -<br>Voz-clg<br>[ft3/min] | Heating<br>Zone Air<br>Distribution<br>Effectiveness<br>- Ez-htg | Heating<br>Zone<br>Outdoor<br>Airflow -<br>Voz-htg<br>[ft3/min] |
|------|-----------------|---------------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|
| None |                 |                                                               |                            |                                                          |                                        |                                                               |                                                                  |                                                                 |                                                                  |                                                                 |

## System Ventilation Parameters

|      | People<br>Outdoor Air<br>Rate - Rp<br>[ft3/min-<br>person] | Sum of Zone<br>Population -<br>Pz-sum | Area Outdoor<br>Air Rate - Ra<br>[ft3/min-ft2] | Sum of<br>Zone<br>Floor Area<br>- Az-sum<br>[ft2] | Breathing Zone<br>Outdoor<br>Airflow - Vbz<br>[ft3/min] | Cooling Zone<br>Outdoor<br>Airflow - Voz-<br>clg [ft3/min] | Heating Zone<br>Outdoor<br>Airflow - Voz-<br>htg [ft3/min] |
|------|------------------------------------------------------------|---------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| None |                                                            |                                       |                                                |                                                   |                                                         |                                                            |                                                            |

# Zone Ventilation Calculations for Cooling Design

|          | AirLo<br>op<br>Name | Box<br>Typ<br>e | Zone<br>Primar<br>y<br>Airflow<br>- Vpz<br>[ft3/mi<br>n] | Zone<br>Dischar<br>ge<br>Airflow<br>- Vdz<br>[ft3/mi<br>n] | Minimu<br>m<br>Zone<br>Primar<br>y<br>Airflow<br>- Vpz-<br>min<br>[ft3/mi<br>n] | Zone<br>Outdo<br>or<br>Airflow<br>Coolin<br>g -<br>Voz-clg<br>[ft3/mi<br>n] | Primar<br>y<br>Outdo<br>or Air<br>Fracti<br>on -<br>Zpz | Prima<br>ry Air<br>Fracti<br>on -<br>Ep | Secondar<br>y<br>Recirculati<br>on<br>Fraction-<br>Er | Supply<br>Air<br>Fractio<br>n- Fa | Mixed<br>Air<br>Fracti<br>on -<br>Fb | Outdo<br>or Air<br>Fracti<br>on -<br>Fc | Zone<br>Ventilati<br>on<br>Efficienc<br>y - Evz |
|----------|---------------------|-----------------|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------------|
| Non<br>e |                     |                 |                                                          |                                                            |                                                                                 |                                                                             |                                                         |                                         |                                                       |                                   |                                      |                                         |                                                 |

# System Ventilation Calculations for Cooling Design

|  | Sum of Zone<br>Primary Airflow -<br>Vpz-sum<br>[ft3/min] | System<br>Primary<br>Airflow - Vps<br>[ft3/min] | Sum of Zone<br>Discharge Airflow<br>- Vdz-sum<br>[ft3/min] | Sum of Min Zone<br>Primary Airflow -<br>Vpz-min [ft3/min] | Zone Outdoor<br>Airflow Cooling -<br>Voz-clg [ft3/min] | Zone<br>Ventilation<br>Efficiency - Evz-<br>min |
|--|----------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
|--|----------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|

| None |  |  |  |
|------|--|--|--|
|      |  |  |  |

### Zone Ventilation Calculations for Heating Design

|          | AirLo<br>op<br>Name | Box<br>Typ<br>e | Zone<br>Primar<br>y<br>Airflow<br>- Vpz<br>[ft3/mi<br>n] | Zone<br>Dischar<br>ge<br>Airflow<br>- Vdz<br>[ft3/mi<br>n] | Minimu<br>m<br>Zone<br>Primar<br>y<br>Airflow<br>- Vpz-<br>min<br>[ft3/mi<br>n] | Zone<br>Outdo<br>or<br>Airflow<br>Heatin<br>g -<br>Voz-<br>htg<br>[ft3/mi<br>n] | Primar<br>y<br>Outdo<br>or Air<br>Fracti<br>on -<br>Zpz | Prima<br>ry Air<br>Fracti<br>on -<br>Ep | Secondar<br>y<br>Recirculati<br>on<br>Fraction-<br>Er | Supply<br>Air<br>Fractio<br>n- Fa | Mixed<br>Air<br>Fracti<br>on -<br>Fb | Outdo<br>or Air<br>Fracti<br>on -<br>Fc | Zone<br>Ventilati<br>on<br>Efficienc<br>y - Evz |
|----------|---------------------|-----------------|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------------|
| Non<br>e |                     |                 |                                                          |                                                            |                                                                                 |                                                                                 |                                                         |                                         |                                                       |                                   |                                      |                                         |                                                 |

## System Ventilation Calculations for Heating Design

|      | Sum of Zone<br>Primary Airflow -<br>Vpz-sum<br>[ft3/min] | System<br>Primary<br>Airflow - Vps<br>[ft3/min] | Sum of Zone<br>Discharge Airflow<br>- Vdz-sum<br>[ft3/min] | Sum of Min Zone<br>Primary Airflow -<br>Vpz-min [ft3/min] | Zone Outdoor<br>Airflow Heating -<br>Voz-htg<br>[ft3/min] | Zone<br>Ventilation<br>Efficiency -<br>Evz-min |
|------|----------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|
| None |                                                          |                                                 |                                                            |                                                           |                                                           |                                                |

#### Table of Contents

Report: LEED Summary

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

#### Sec1.1A-General Information

| Data |  |      |
|------|--|------|
|      |  | Data |

| Weather File                    | MQP WORCESTER GOSPEL CHURCH (01-01:31-12) ** WORCESTER MA USA TMY2-94746<br>WMO#=725095 |
|---------------------------------|-----------------------------------------------------------------------------------------|
| Total gross floor area<br>[ft2] | 36151.86                                                                                |
| Principal Heating<br>Source     | Additional Fuel                                                                         |

#### EAp2-1. Space Usage Type

|                           | Space Area<br>[ft2] | Regularly<br>Occupied Area<br>[ft2] | Unconditioned<br>Area [ft2] | Typical Hours/Week in<br>Operation [hr/wk] |
|---------------------------|---------------------|-------------------------------------|-----------------------------|--------------------------------------------|
| GYM:ZONE3                 | 5947.27             | 5947.27                             | 0.00                        | 29.23                                      |
| GYM:ZONE1                 | 141.11              | 141.11                              | 0.00                        | 29.23                                      |
| GYM:ZONE2                 | 63.83               | 63.83                               | 0.00                        | 29.23                                      |
| FIRSTFLOOR:ZONE3          | 322.68              | 322.68                              | 0.00                        | 29.23                                      |
| FIRSTFLOOR:ZONE4          | 324.03              | 324.03                              | 0.00                        | 29.23                                      |
| FIRSTFLOOR:ZONE2          | 9178.84             | 9178.84                             | 0.00                        | 29.23                                      |
| FIRSTFLOOR:ZONE6          | 244.82              | 244.82                              | 0.00                        | 29.23                                      |
| FIRSTFLOOR:ZONE7          | 244.82              | 244.82                              | 0.00                        | 29.23                                      |
| FIRSTFLOOR:ZONE1          | 114.80              | 114.80                              | 0.00                        | 29.23                                      |
| BASEMENTXABOVEGRADE:ZONE1 | 782.30              | 782.30                              | 0.00                        | 29.23                                      |
| BASEMENTXABOVEGRADE:ZONE2 | 424.56              | 424.56                              | 0.00                        | 29.23                                      |
| BASEMENTXABOVEGRADE:ZONE3 | 509.71              | 509.71                              | 0.00                        | 29.23                                      |
| BASEMENTXABOVEGRADE:ZONE4 | 8398.23             | 8398.23                             | 0.00                        | 29.23                                      |
| BASEMENTXABOVEGRADE:ZONE5 | 207.99              | 207.99                              | 0.00                        | 29.23                                      |
| BASEMENTXABOVEGRADE:ZONE6 | 354.38              | 354.38                              | 0.00                        | 29.23                                      |

| BASEMENTXABOVEGRADE:ZONE7  | 651.13   | 651.13   | 0.00    | 29.23 |
|----------------------------|----------|----------|---------|-------|
| BASEMENTXABOVEGRADE:ZONE8  | 1541.77  | 1541.77  | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE9  | 454.91   | 454.91   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE10 | 280.46   | 280.46   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE11 | 796.96   | 796.96   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE12 | 161.72   | 161.72   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE13 | 964.32   | 964.32   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE14 | 601.26   | 601.26   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE15 | 575.73   | 575.73   | 0.00    | 29.23 |
| BASEMENTXABOVEGRADE:ZONE16 | 1500.33  | 1500.33  | 0.00    | 29.23 |
| CHURCHROOF:ZONE1           | 867.38   | 0.00     | 867.38  | 0.00  |
| CHURCHROOF: ZONE4          | 248.25   | 0.00     | 248.25  | 0.00  |
| CHURCHROOF: ZONE2          | 248.25   | 0.00     | 248.25  | 0.00  |
| Totals                     | 36151.86 | 34787.98 | 1363.88 |       |

### EAp2-2. Advisory Messages

|                                       | Data   |
|---------------------------------------|--------|
| Number of hours heating loads not met | 105.83 |
| Number of hours cooling loads not met | 0.00   |
| Number of hours not met               | 105.83 |

# EAp2-3. Energy Type Summary

|  | Utility Rate | Virtual Rate [\$/unit energy] | Units of Energy | Units of Demand |
|--|--------------|-------------------------------|-----------------|-----------------|
|--|--------------|-------------------------------|-----------------|-----------------|

| None |  |  |
|------|--|--|
|      |  |  |

# EAp2-4/5. Performance Rating Method Compliance

|                                            | Electric<br>Energy<br>Use<br>[kWh] | Electric<br>Demand<br>[W] | Natural<br>Gas<br>Energy<br>Use<br>[therm<br>] | Natural<br>Gas<br>Deman<br>d<br>[Btu/h] | Additional<br>Fuel Use<br>[kBtu] | Additional<br>Fuel<br>Demand<br>[Btu/h] | District<br>Coolin<br>g Use<br>[ton-<br>hrs] | District<br>Cooling<br>Deman<br>d [ton] | District<br>Heatin<br>g Use<br>[kBtu] | District<br>Heating<br>Deman<br>d<br>[Btu/h] |
|--------------------------------------------|------------------------------------|---------------------------|------------------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------------|
| Heating<br>Boiler                          | 0.00                               | 0.00                      | 0.00                                           | 0.00                                    | 565906.7<br>6                    | 1139827.0<br>1                          | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Heating<br>Boiler<br>Parasitic             | 13.43                              | 25.00                     | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Cooling<br>Not<br>Subdivided               | 0.00                               | 0.00                      | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Interior<br>Lighting<br>Not<br>Subdivided  | 0.00                               | 0.00                      | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Exterior<br>Lighting<br>Not<br>Subdivided  | 0.00                               | 0.00                      | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Interior<br>Equipment<br>General           | 63151.8<br>5                       | 23025.1<br>1              | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Exterior<br>Equipment<br>Not<br>Subdivided | 0.00                               | 0.00                      | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Fans<br>Ventilation<br>(simple)            | 0.00                               | 0.00                      | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |
| Pumps Not<br>Subdivided                    | 92.73                              | 198.22                    | 0.00                                           | 0.00                                    | 0.00                             | 0.00                                    | 0.00                                         | 0.00                                    | 0.00                                  | 0.00                                         |

| Heat<br>Rejection<br>Not<br>Subdivided | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|----------------------------------------|------|------|------|------|------|------|------|------|------|------|
| Humidificatio<br>n Not<br>Subdivided   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Heat<br>Recovery<br>Not<br>Subdivided  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Water<br>Systems<br>Not<br>Subdivided  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Refrigeration<br>Not<br>Subdivided     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Generators<br>Not<br>Subdivided        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## EAp2-6. Energy Use Summary

|             | Process Subtotal [kBtu] | Total Energy Use [kBtu] |
|-------------|-------------------------|-------------------------|
| Electricity | 215626.78               | 215989.24               |
| Natural Gas | 0.00                    | 0.00                    |
| Additional  | 0.00                    | 565906.76               |
| Total       | 215626.78               | 781896.00               |

## EAp2-7. Energy Cost Summary

|  | Process Subtotal [\$] | Total Energy Cost [\$] |
|--|-----------------------|------------------------|
|  |                       |                        |

| Electricity | 0.00 |  |
|-------------|------|--|
| Natural Gas | 0.00 |  |
| Additional  | 0.00 |  |
| Total       | 0.00 |  |

Process energy cost based on ratio of process to total energy.

## L-1. Renewable Energy Source Summary

|              | Rated Capacity [kW] | Annual Energy Generated [kBtu] |
|--------------|---------------------|--------------------------------|
| Photovoltaic | 0.00                | 0.00                           |
| Wind         | 0.00                | 0.00                           |

## EAp2-17a. Energy Use Intensity - Electricity

|                         | Electricty [kWh/ft2] |
|-------------------------|----------------------|
| Interior Lighting (All) | 0.00                 |
| Space Heating           | 0.00                 |
| Space Cooling           | 0.00                 |
| Fans (All)              | 0.00                 |
| Service Water Heating   | 0.00                 |
| Receptacle Equipment    | 1.75                 |
| Miscellaneous (All)     | 1.75                 |
| Subtotal                | 1.75                 |

### EAp2-17b. Energy Use Intensity - Natural Gas

|                       | Natural Gas [kWh/ft2] |
|-----------------------|-----------------------|
| Space Heating         | 0.00                  |
| Service Water Heating | 0.00                  |
| Miscellaneous (All)   | 0.00                  |
| Subtotal              | 0.00                  |

# EAp2-17c. Energy Use Intensity - Additional

|               | Additional [kBtu/ft2] |
|---------------|-----------------------|
| Subtotal      | 15.63                 |
| Miscellaneous | 15.63                 |

## EAp2-18. End Use Percentage

|                         | Percent [%] |
|-------------------------|-------------|
| Interior Lighting (All) | 0.00        |
| Space Heating           | 72.38       |
| Space Cooling           | 0.00        |
| Fans (All)              | 0.00        |
| Service Water Heating   | 0.00        |
| Receptacle Equipment    | 27.58       |
| Miscellaneous           | 0.04        |

### Schedules-Equivalent Full Load Hours (Schedule Type=Fraction)

|                                           | Equivalent Full Load Hours of Operation Per Year<br>[hr] | Hours > 1%<br>[hr] |
|-------------------------------------------|----------------------------------------------------------|--------------------|
| WINTER HEATING (NORTHERN<br>HEMISPHERE)   | 1560.                                                    | 1560.              |
| ASHRAE 90.1 OCCUPANCY - OFFICE            | 2654.                                                    | 5998.              |
| ASHRAE 90.1 SERVICE HOT WATER -<br>OFFICE | 1595.                                                    | 8760.              |

## Schedules-SetPoints (Schedule Type=Temperature)

|                                               | First Object Used        | Month<br>Assume<br>d | 11am First<br>Wednesda<br>y [F] | Days<br>with<br>Sam<br>e<br>11a<br>m<br>Valu<br>e | 11pm First<br>Wednesda<br>y [F] | Days<br>with<br>Sam<br>e<br>11p<br>m<br>Valu<br>e |
|-----------------------------------------------|--------------------------|----------------------|---------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------------------|
| GYM:ZONE3 HEATING<br>SETPOINT SCHEDULE        | GYM:ZONE3 DUAL SP        | January              | 68.00                           | 365                                               | -58.0                           | 365                                               |
| GYM:ZONE3 COOLING<br>SETPOINT SCHEDULE        | GYM:ZONE3 DUAL SP        | July                 | 75.99                           | 365                                               | 84.99                           | 365                                               |
| GYM:ZONE1 HEATING<br>SETPOINT SCHEDULE        | GYM:ZONE1 DUAL SP        | January              | 68.00                           | 365                                               | -58.0                           | 365                                               |
| GYM:ZONE1 COOLING<br>SETPOINT SCHEDULE        | GYM:ZONE1 DUAL SP        | July                 | 75.99                           | 365                                               | 84.99                           | 365                                               |
| GYM:ZONE2 HEATING<br>SETPOINT SCHEDULE        | GYM:ZONE2 DUAL SP        | January              | 68.00                           | 365                                               | -58.0                           | 365                                               |
| GYM:ZONE2 COOLING<br>SETPOINT SCHEDULE        | GYM:ZONE2 DUAL SP        | July                 | 75.99                           | 365                                               | 84.99                           | 365                                               |
| FIRSTFLOOR:ZONE3 HEATING<br>SETPOINT SCHEDULE | FIRSTFLOOR:ZONE3 DUAL SP | January              | -58.0                           | 365                                               | -58.0                           | 365                                               |
| FIRSTFLOOR:ZONE3 COOLING<br>SETPOINT SCHEDULE | FIRSTFLOOR:ZONE3 DUAL SP | July                 | 75.99                           | 365                                               | 84.99                           | 365                                               |

| FIRSTFLOOR:ZONE4 HEATING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE4 DUAL SP              | January | -58.0 | 365 | -58.0 | 365 |
|------------------------------------------------------------|---------------------------------------|---------|-------|-----|-------|-----|
| FIRSTFLOOR:ZONE4 COOLING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE4 DUAL SP              | July    | 75.99 | 365 | 84.99 | 365 |
| FIRSTFLOOR:ZONE2 HEATING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE2 DUAL SP              | January | -58.0 | 365 | -58.0 | 365 |
| FIRSTFLOOR:ZONE2 COOLING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE2 DUAL SP              | July    | 75.99 | 365 | 84.99 | 365 |
| FIRSTFLOOR:ZONE6 HEATING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE6 DUAL SP              | January | -58.0 | 365 | -58.0 | 365 |
| FIRSTFLOOR:ZONE6 COOLING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE6 DUAL SP              | July    | 75.99 | 365 | 84.99 | 365 |
| FIRSTFLOOR:ZONE7 HEATING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE7 DUAL SP              | January | -58.0 | 365 | -58.0 | 365 |
| FIRSTFLOOR:ZONE7 COOLING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE7 DUAL SP              | July    | 75.99 | 365 | 84.99 | 365 |
| FIRSTFLOOR:ZONE1 HEATING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE1 DUAL SP              | January | -58.0 | 365 | -58.0 | 365 |
| FIRSTFLOOR:ZONE1 COOLING<br>SETPOINT SCHEDULE              | FIRSTFLOOR:ZONE1 DUAL SP              | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>1 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>1 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>1 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>1 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>2 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>2 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>2 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>2 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>3 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>3 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |

| BASEMENTXABOVEGRADE:ZONE<br>3 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>3 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
|------------------------------------------------------------|---------------------------------------|---------|-------|-----|-------|-----|
| BASEMENTXABOVEGRADE:ZONE<br>4 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>4 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>4 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>4 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>5 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>5 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>5 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>5 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>6 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>6 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>6 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>6 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>7 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>7 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>7 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>7 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>8 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>8 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>8 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>8 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>9 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>9 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |

| BASEMENTXABOVEGRADE:ZONE<br>9 COOLING SETPOINT<br>SCHEDULE  | BASEMENTXABOVEGRADE:ZONE<br>9 DUAL SP  | July    | 75.99 | 365 | 84.99 | 365 |
|-------------------------------------------------------------|----------------------------------------|---------|-------|-----|-------|-----|
| BASEMENTXABOVEGRADE:ZONE<br>10 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>10 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>10 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>10 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>11 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>11 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>11 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>11 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>12 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>12 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>12 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>12 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>13 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>13 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>13 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>13 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>14 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>14 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>14 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>14 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>15 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>15 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |

| BASEMENTXABOVEGRADE:ZONE<br>15 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>15 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |
|-------------------------------------------------------------|----------------------------------------|---------|-------|-----|-------|-----|
| BASEMENTXABOVEGRADE:ZONE<br>16 HEATING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>16 DUAL SP | January | -58.0 | 365 | -58.0 | 365 |
| BASEMENTXABOVEGRADE:ZONE<br>16 COOLING SETPOINT<br>SCHEDULE | BASEMENTXABOVEGRADE:ZONE<br>16 DUAL SP | July    | 75.99 | 365 | 84.99 | 365 |

## Table of Contents

Report: Life-Cycle Cost Report

For: Entire Facility

Timestamp: 2019-12-26 10:47:47

Life-Cycle Cost Parameters

|                                 | Value                              |
|---------------------------------|------------------------------------|
| Name                            | LIFE-CYCLE COST ANALYSIS EXAMPLE 1 |
| Discounting Convention          | EndOfYear                          |
| Inflation Approach              | ConstantDollar                     |
| Real Discount Rate              | 0.0294                             |
| Nominal Discount Rate           | N/A                                |
| Inflation                       | N/A                                |
| Base Date                       | January 2011                       |
| Service Date                    | January 2013                       |
| Length of Study Period in Years | 25                                 |
| Tax rate                        | 0.0000                             |

None

### **Use Price Escalation**

|            | RESIDENTIAL-ELEC |
|------------|------------------|
| Resource   | Electricity      |
| Start Date | January 2010     |
| 1          | 0.979000         |
| 2          | 1.013800         |
| 3          | 1.012700         |
| 4          | 1.009600         |
| 5          | 1.017700         |
| 6          | 1.027900         |
| 7          | 1.034400         |
| 8          | 1.032700         |
| 9          | 1.038200         |
| 10         | 1.045400         |
| 11         | 1.049400         |
| 12         | 1.056400         |
| 13         | 1.058700         |
| 14         | 1.054900         |
| 15         | 1.056600         |
| 16         | 1.063000         |
| 17         | 1.070700         |

| 18 | 1.085700 |
|----|----------|
| 19 | 1.095300 |
| 20 | 1.106300 |
| 21 | 1.116500 |
| 22 | 1.122700 |
| 23 | 1.129200 |
| 24 | 1.134900 |
| 25 | 1.141400 |

## Use Adjustment

|              | ELECADJUSTMENT |
|--------------|----------------|
|              | Electricity    |
| January 2013 | 1.000000       |
| January 2014 | 1.002200       |
| January 2015 | 1.002300       |
| January 2016 | 1.002400       |
| January 2017 | 1.002500       |
| January 2018 | 1.002600       |
| January 2019 | 1.002700       |
| January 2020 | 1.000000       |
| January 2021 | 1.000000       |
| January 2022 | 1.000000       |
| January 2023 | 1.000000       |

| January 2024 | 1.000000 |
|--------------|----------|
| January 2025 | 1.000000 |
| January 2026 | 1.000000 |
| January 2027 | 1.000000 |
| January 2028 | 1.000000 |
| January 2029 | 1.000000 |
| January 2030 | 1.000000 |
| January 2031 | 1.000000 |
| January 2032 | 1.000000 |
| January 2033 | 1.000000 |
| January 2034 | 1.000000 |
| January 2035 | 1.000000 |

# Cash Flow for Recurring and Nonrecurring Costs (Without Escalation)

|              | ANNUALMAINT | ESTIMATEDSALVAGE |
|--------------|-------------|------------------|
|              | Recurring   | Nonrecurring     |
| January 2011 | 0.00        | 0.00             |
| January 2012 | 0.00        | 0.00             |
| January 2013 | 2000.00     | 0.00             |
| January 2014 | 2000.00     | 0.00             |
| January 2015 | 2000.00     | 0.00             |
| January 2016 | 2000.00     | 0.00             |
| January 2017 | 2000.00     | 0.00             |

| January 2018 | 2000.00 | 0.00    |
|--------------|---------|---------|
| January 2019 | 2000.00 | 0.00    |
| January 2020 | 2000.00 | 0.00    |
| January 2021 | 2000.00 | 0.00    |
| January 2022 | 2000.00 | 0.00    |
| January 2023 | 2000.00 | 0.00    |
| January 2024 | 2000.00 | 0.00    |
| January 2025 | 2000.00 | 0.00    |
| January 2026 | 2000.00 | 0.00    |
| January 2027 | 2000.00 | 0.00    |
| January 2028 | 2000.00 | 0.00    |
| January 2029 | 2000.00 | 0.00    |
| January 2030 | 2000.00 | 0.00    |
| January 2031 | 2000.00 | -2000.0 |
| January 2032 | 2000.00 | 0.00    |
| January 2033 | 2000.00 | 0.00    |
| January 2034 | 2000.00 | 0.00    |
| January 2035 | 2000.00 | 0.00    |

## Energy and Water Cost Cash Flows (Without Escalation)

| January 2011 |  |
|--------------|--|
| January 2012 |  |
| January 2013 |  |
|              |  |

| January 2014 |
|--------------|
| January 2015 |
| January 2016 |
| January 2017 |
| January 2018 |
| January 2019 |
| January 2020 |
| January 2021 |
| January 2022 |
| January 2023 |
| January 2024 |
| January 2025 |
| January 2026 |
| January 2027 |
| January 2028 |
| January 2029 |
| January 2030 |
| January 2031 |
| January 2032 |
| January 2033 |
| January 2034 |
| January 2035 |
|              |

# Capital Cash Flow by Category (Without Escalation)

|              | Construction | Salvage | OtherCapital | Total   |
|--------------|--------------|---------|--------------|---------|
| January 2011 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2012 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2013 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2014 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2015 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2016 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2017 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2018 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2019 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2020 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2021 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2022 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2023 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2024 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2025 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2026 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2027 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2028 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2029 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2030 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2031 | 0.00         | -2000.0 | 0.00         | -2000.0 |
| January 2032 | 0.00         | 0.00    | 0.00         | 0.00    |
| January 2033 | 0.00         | 0.00    | 0.00         | 0.00    |

| January 2034 | 0.00 | 0.00 | 0.00 | 0.00 |
|--------------|------|------|------|------|
| January 2035 | 0.00 | 0.00 | 0.00 | 0.00 |

## Operating Cash Flow by Category (Without Escalation)

|                     | Energ<br>y | Wate<br>r | Maintenan<br>ce | Repa<br>ir | Operati<br>on | Replaceme<br>nt | MinorOverh<br>aul | MajorOverh<br>aul | OtherOperatio<br>nal | Total       |
|---------------------|------------|-----------|-----------------|------------|---------------|-----------------|-------------------|-------------------|----------------------|-------------|
| Januar<br>y<br>2011 | 0.00       | 0.00      | 0.00            | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 0.00        |
| Januar<br>y<br>2012 | 0.00       | 0.00      | 0.00            | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 0.00        |
| Januar<br>y<br>2013 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |
| Januar<br>y<br>2014 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |
| Januar<br>y<br>2015 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |
| Januar<br>y<br>2016 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |
| Januar<br>y<br>2017 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |
| Januar<br>y<br>2018 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |
| Januar<br>y<br>2019 | 0.00       | 0.00      | 2000.00         | 0.00       | 0.00          | 0.00            | 0.00              | 0.00              | 0.00                 | 2000.0<br>0 |

| Januar<br>y<br>2020 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
|---------------------|------|------|---------|------|------|------|------|------|------|-------------|
| Januar<br>y<br>2021 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2022 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2023 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2024 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2025 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2026 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2027 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2028 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2029 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2030 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2031 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |

| Januar<br>y<br>2032 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
|---------------------|------|------|---------|------|------|------|------|------|------|-------------|
| Januar<br>y<br>2033 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2034 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |
| Januar<br>y<br>2035 | 0.00 | 0.00 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2000.0<br>0 |

### Monthly Total Cash Flow (Without Escalation)

|      | January | February | March | April | May  | June | July | August | September | October | November | December |
|------|---------|----------|-------|-------|------|------|------|--------|-----------|---------|----------|----------|
| 2011 | 0.00    | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2012 | 0.00    | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2013 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2014 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2015 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2016 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2017 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2018 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2019 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2020 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2021 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2022 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |
| 2023 | 2000.00 | 0.00     | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00      | 0.00    | 0.00     | 0.00     |

| 2024 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|------|---------|------|------|------|------|------|------|------|------|------|------|------|
| 2025 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2026 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2027 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2028 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2029 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2030 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2031 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2032 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2033 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2034 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2035 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

# Present Value for Recurring, Nonrecurring and Energy Costs (Before Tax)

|                  | Category    | Kind         | Cost    | Present Value | Present Value Factor |
|------------------|-------------|--------------|---------|---------------|----------------------|
| ANNUALMAINT      | Maintenance | Recurring    | 2000.00 | 31230.01      | 15.6150              |
| ESTIMATEDSALVAGE | Salvage     | Nonrecurring | -2000.0 | -1088.3       | 0.5442               |
| TOTAL            |             |              |         | 30141.67      |                      |

## Present Value by Category

|              | Present Value |
|--------------|---------------|
| Construction | 0.00          |
| Salvage      | -1088.3       |

| Other Capital     | 0.00     |
|-------------------|----------|
| Energy            | 0.00     |
| Water             | 0.00     |
| Maintenance       | 31230.01 |
| Repair            | 0.00     |
| Operation         | 0.00     |
| Replacement       | 0.00     |
| Minor Overhaul    | 0.00     |
| Major Overhaul    | 0.00     |
| Other Operational | 0.00     |
| Total Energy      | 0.00     |
| Total Operation   | 31230.01 |
| Total Capital     | -1088.3  |
| Grand Total       | 30141.67 |

## Present Value by Year

|              | Total Cost | Present Value of Costs |
|--------------|------------|------------------------|
| January 2011 | 0.00       | 0.00                   |
| January 2012 | 0.00       | 0.00                   |
| January 2013 | 2000.00    | 1833.49                |
| January 2014 | 2000.00    | 1781.12                |
| January 2015 | 2000.00    | 1730.25                |
| January 2016 | 2000.00    | 1680.83                |

| January 2017 | 2000.00 | 1632.83  |
|--------------|---------|----------|
| January 2018 | 2000.00 | 1586.20  |
| January 2019 | 2000.00 | 1540.89  |
| January 2020 | 2000.00 | 1496.88  |
| January 2021 | 2000.00 | 1454.13  |
| January 2022 | 2000.00 | 1412.60  |
| January 2023 | 2000.00 | 1372.26  |
| January 2024 | 2000.00 | 1333.07  |
| January 2025 | 2000.00 | 1294.99  |
| January 2026 | 2000.00 | 1258.01  |
| January 2027 | 2000.00 | 1222.08  |
| January 2028 | 2000.00 | 1187.18  |
| January 2029 | 2000.00 | 1153.27  |
| January 2030 | 2000.00 | 1120.33  |
| January 2031 | 0.00    | 0.00     |
| January 2032 | 2000.00 | 1057.25  |
| January 2033 | 2000.00 | 1027.06  |
| January 2034 | 2000.00 | 997.72   |
| January 2035 | 2000.00 | 969.23   |
| TOTAL        |         | 30141.67 |

Appendix H: Massachusetts DOT Church Pre-Construction Condition Survey

Appendix I: Massachusetts DOT Geotechnical Report

Appendix J: Roof Photos