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Abstract

Data clustering is an immensely powerful tool. The analysis of big data has
led to many clustering techniques. Among these techniques is Regularity
Clustering, a new technique based on Abel Prize winner Endre Szemerédi’s
Regularity Lemma. Regularity Clustering has been shown to outperform in-
dustry standard clustering techniques in many circumstances. In this report
we present new methods of executing Regularity Clustering. Among these
methods one, which we call the most recurring construction method, outper-
forms the standard Regularity Clustering method by a significant margin.
We also present empirical evidence indicating when Regularity Clustering
performs well.
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Chapter 1

Introduction

Big Data has become a major topic in recent years as the amount of infor-
mation has increased exponentially along with technological advancements.
As we are able to store more and more data it becomes a question of what
we can learn from this data. One idea is to try to organize the data together
so that the data points that are grouped together share common attributes.
This way when a new datum point is introduced, if one can accurately pre-
dict the group to which the datum point belongs then one could also predict
the value of unknown attributes that the group shares. This is the essence
of data clustering, to predict an attribute of new data based on the values of
old data. This tool is immensely effective in answering some very important
questions: What kind of skin disease does one have? Is the tumor one just
found malignant or benign? Will the surgery the doctor is recommending
add five years to a patient’s life? But data clustering is not limited to ques-
tions like these, we can also predict how well a student will learn from a
particular tutoring technique, or how many miles per gallon a car gets. Any
question for which we have data to compare can be answered with relatively
good accuracy using data clustering techniques.

Many clustering techniques have been created which group data based on
similar characteristics. Some of these methods include spectral clustering,
k-means clustering, density-based clustering, and probabilistic clustering [4].
A new and promising type of clustering, Regularity Clustering, was recently
introduced [16].

In 1975 in his proof of the celebrated Szemerédi’s Theorem [18], Endre
Szemerédi proved what is known today as Szemerédi’s Regularity Lemma,
which has turned out to be an extremely powerful result in mathematics and
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theoretical computer science. The Regularity Lemma is applicable to many
problems across combinatorics and extremal graph theory, such as Ramsey-
Turan theory [8] [18] [19], the (6,3) extremal hypergraph problem [15], and
its applications with large forbidden graphs [5] to name a few. The lemma
has been used to prove some of the intricate conjectures of the last 30 years.
This result is so important that Szemerédi was awarded the Abel Prize, the
unofficial Nobel Prize in Mathematics, for this work in 2012 [14].

A major criticism of the Regularity Lemma comes from its inability to
be used in real world applications as it only worked on graphs that are so
large they could not possibly be represented. In fact, Field’s Medal winner
Sir Timothy Gowers writes in his paper about Szemerédi that ”the theorem
(is) well beyond the realms of any practical applications” [11]. Until recently
the Regularity Lemma was considered a purely theoretical result. However
in 2012 Sárközy, Song, Szemerédi, and Trivedi made a modified version of
the algorithm used to prove the Regularity Lemma. While it has not been
proven that this modified algorithm will ever produce the results of the orig-
inal Regularity Lemma, the size requirement for the input to the modified
algorithm is practical [16].

The idea was to use this modified Regularity Lemma algorithm, in con-
junction with modern data clustering techniques to produce a new clustering
technique termed Regularity Clustering. Their results were very promising,
despite the lack of understanding about the theory behind the modified algo-
rithm. In this paper we build on the results of Sárközy et al. and improve the
accuracy of Regularity Clustering while also classifying some of the attributes
that make Regularity Clustering effective.

We created six new variations of Regularity Clustering each of which
performed better than the variation created by Sárközy et al. One variation
in particular, which we call the most recurring construction, significantly
outperformed the standard variation. We also found evidence that the success
of Regularity Clustering is influenced by the ratio of data points to target
clusters of the dataset. This discovery was groundbreaking as previously
there was no way to predict if Regularity Clustering would perform well on
any given dataset. With this discovery we are one step closer to being able
to confidently use Regularity Clustering for real world applications. Used
to their full effectiveness these improvements have the potential to provide
the means to answering very difficult questions, to improve the quality of life
of people around the world by improving individualized care and education,
and even to save lives by providing quick and accurate diagnosis of illness.
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Chapter 2

Background

In this chapter we present the Regularity Lemma, an outline of its proof, al-
gorithmic versions of the lemma, data clustering, and we show how the Reg-
ularity Lemma can be used to improve upon modern clustering techniques.
First we will cover definitions and concepts that are vital to the proper un-
derstanding of these topics. For the rest of this chapter, let G = (V,E) be a
graph where V is the set of vertices of the graph G and E is the set of edges
of the graph G.

2.1 Important Concepts

The purpose of the Regularity Lemma is to partition the vertices of a graph
into classes that behave almost randomly with each other. The concepts
required to discuss the Regularity Lemma include density, ε-regular pairs,
ε-regular partitions, refinements of partitions, and the index of a partition.

Definition 1. For disjoint subsets of vertices A and B, the density of the
pair, denoted d(A,B) is the ratio of edges between the pair to the maximum
possible number of edges between subsets of this size. This is equal to the
number of edges between A and B, denoted ‖ A,B ‖, divided by the product
of the size of A and the size of B. Thus:

d(A,B) =
‖ A,B ‖
|A||B|

(2.1)

For example, consider the bipartite graph depicted in Figure 2.1. 9 of the
possible 25 edges are present; therefore the density of the graph is 9

25
= 0.36.
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Figure 2.1: Example graph for density.

Definition 2. A pair of disjoint subsets A and B of V is ε-regular for
some ε > 0 if for every subset X of A and subset Y of B which are sufficiently
large (|X| ≥ ε|A| and |Y | ≥ ε|B|), the density of the pair X, Y differs from
the density of the pair A,B by at most ε. That is:

|d(A,B)− d(X, Y )| ≤ ε. (2.2)

If the edges between A and B were distributed randomly we would expect
to observe this behavior; therefore we can think of the edges of an ε-regular
pair as being distributed ε close to randomly.

As an example, let ε = 0.25 and consider the graph in Figure 2.1. Since
|A| = |B| = 5 we must check for all pairs X and Y where |X| ≥ ε|A| = 1.25
and |Y | ≥ ε|B| = 1.25 that it has density greater than 0.36 − ε = 0.11 or
less than 0.36 + ε = 0.61. Since there are 26 subsets of A larger than 1.25
we have 676 pairs to consider.

Consider the pairs of square vertices in Figure 2.2. The pair on the left
is composed of subsets that are large enough, yet the density of the pair is
0.75. This is enough to show that the pair is ε-irregular. The center pair’s
density is 0 and thus this pair also shows ε-irregularity. Finally the pair on
the right has density 5

9
which falls within our bounds for ε-regularity.

Definition 3. A partition P (V ) = V0 ∪ V1 ∪ V2 ∪ ... ∪ Vk of the vertices of a
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Figure 2.2: ε-regular pair examples.

graph is called an ε-regular partition of G if all but at most εk2 of the pairs
of sets in the partition (Vi, Vj) form an ε-regular pair in G where k is the
number of non-exceptional classes in the partition (V0 is the exceptional set
where V1, ..., Vk are non-exceptional). Otherwise it is an ε-irregular partition.

Definition 4. A partition Q of the set S is considered a refinement of a
partition P of S if every element of Q is a subset of some element of P .
That is if Q = {Q1, Q2, ..., Qj} and P = {P1, P2, ..., Pk} then each Qt in Q
is a subset of some Ps in P . In this case we say that Q is finer than P and
P is courser than Q.

When we consider the refining of an ε-(ir)regular partition we usually do
not consider the exceptional set. That is, the exceptional set of the refinement
need not be a subset of any set from the original ε-(ir)regular partition.

Definition 5. The index of a partition is the sum of the squares of the
densities of every pair in the partition divided by (about) twice the number of
pairs. More precisely:

q(P ) =
1

k2

k∑
i=1

k∑
j=1

d2(Xi, Xj). (2.3)

Since the square of the density of a pair is at most one, the sum of these
squares is at most the number of pairs ((k2) or k(k−1)

2
) thus the index of a
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partition is bounded above by 1
2
. The index of a partition is closely related

to its ε-regularity and will give us a notion of how close a partition is to being
ε-regular.

Now we are able to state the Regularity Lemma:

Theorem 1 (Szemerédi [20] see also in [7]). For every ε > 0 and m there exist
two integers M(ε,m) and N(ε,m) such that for every graph with n ≥ N(ε,m)
vertices there exists a partition of the vertex P (V ) = {V0, V1, V2, ..., Vk} set
into k + 1 disjoint subsets with the following properties:

1. m ≤ k ≤M(ε,m) where k+ 1 is the number of classes in our partition
(k normal partition classes plus the exceptional set).

2. The exceptional set V0 has size less than or equal to ε times the order
of the graph (|V0| ≤ εn).

3. Each subset in the partition has the same cardinality excluding the ex-
ceptional set. |V1| = |V2| = ... = |Vk|

4. Fewer than εk2 of the pairs are ε-irregular.

As we defined earlier, a partition that meets these requirements is called
an ε-regular partition of the vertices of the graph. A partition that fails only
the fourth requirement is called an ε-irregular partition.

2.2 Outline of the Proof

We provide the reader with an outline of the proof of the Regularity Lemma
because it provides insight into the decisions that must be made when imple-
menting a Regularity Clustering algorithm. Readers interested in the proof
this outline is modeled on are referred to [7]. To prove the Regularity Lemma
we employ four lemmas.

Lemma 1. If C is a partition of C and D is a partition of D, then q(C,D) ≥
q(C,D) where

q(C,D) =
d2(C,D)

k2
(2.4)

and

q(C,D) = q(C) + q(D) +

|C|∑
i=1

|D|∑
j=1

q(Ci, Dj). (2.5)

10



In other words, partitioning a pair cannot make the index less. With
Lemma 1 we can tackle the next lemma which states the following:

Lemma 2. If P and P ′ are partitions of V and if P ′ refines P , then q(P ′) ≥
q(P ).

This follows directly from the definition of a refinement of a partition and
repeated applications of Lemma 1.

Lemma 3. Let (C,D) be an ε-irregular pair. If (C ′, D′) is a witness of ε-
irregularity (subsets of C and D which show that C and D are ε-irregular)
where C ′ ⊆ C and D′ ⊆ D, then partitioning C into C∗ = {C ′, C\C ′} and
D into D∗ = {D′, D\D′} guarantees q(C∗, D∗) > q(C,D).

That is, separating an ε-irregular witness is guaranteed to increase the
index.

Lemma 4. An ε-irregular partition can be refined in such a way that the
index increases by at least a constant amount ( ε

5

2
).

Lemma 4 follows from Lemma 3 and the fact that an ε-irregular partition
contains at least εk2 irregular pairs.

We call the refinement guaranteed by Lemma 4 an intermediate re-
finement. Recall that the index is bounded above by 1

2
. This means that

there is an upper bound ( 2
ε5

) on the number of times this refinement can be
applied before it must be the case that the result has less than εk2 irregular
pairs. Additionally, this partition can be further refined (without decreasing
the index, by Lemma 2) into much smaller, but equally sized parts, where
the leftover vertices are added to the exceptional set. Further, we can choose
this size small enough to guarantee that the number of vertices added to
the exceptional set is not too large. We call this partition the iteration’s
partition.

The intermediate partition described above is achieved by taking the
unique maximal partition that refines every ε-irregular witness. For example,
if a partition class is ε-irregular with three other partition classes and each
witness intersects each other witness, the refinement of this piece will have
23 = 8 pieces. Figure 2.3 depicts what is occurring, where A, B, and C rep-
resent the ε-irregular witnesses and each color, including the white section
that does not belong to A, B or C, represents a class in the intermediate
refinement.
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Figure 2.3: Venn-Diagram refinement example.

From the intermediate partition we construct the iteration’s partition by
dividing each element of the intermediate partition into a maximal number
of pieces of size c

4k
where c is the size of the classes of our original equitable

partition. Since each of the k classes of our original partition are divided
into a maximum of 2k classes and from each we could add a maximum of
c
4k

vertices to V0, we have a maximum of ck2k

4k
= n

2k
vertices added to the

exceptional set (where n is the number of vertices in the graph). It is im-
portant to note that the iteration’s refinement has k4k pieces and thus has
exponentially more classes of much smaller size than the original.

Knowing Lemma 4, it is possible to obtain a partition that is guaranteed
by the Regularity Lemma. At each step in the partitioning we are going
to apply Lemma 4 to our current ε-irregular partition. This will yield a
new partition with an index at least ε5

2
higher than the previous partition.

Repeated application of this must yield an ε-regular partition as the index
is bounded above by 1

2
. Thus we have an upper bound on the number of

iterations ( 2
ε5

) the partitioning can take before regularity is achieved. During
each iteration, the size of the exceptional set grows by at most n

2k
, thus over

the course of the partitioning the exceptional set will grow by at most n
2k−1ε5

. All that remains is to choose the parameters of our initial partition to
ensure we do not exceed our bounds. We must choose k (size of the initial
partition) that is large enough that after 2

ε5
iterations so that the exceptional

set does not grow more than εn
2

. Thus we choose k such that 2k−1 ≥ 2
ε6
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which is equivalent to k ≥ 2 − log2(ε
6). We then choose M , the upper

bound on the number of sets in the partition, which grows from x to x4x

each iteration, to be f
2
ε5 (k) (applying f to k 2

ε5
times) where f(x) = x4x.

Graphs of order less than M are trivially partitioned into sets of size one
producing an ε-regular partition. For any graph of order larger than M this
partitioning produces a non-trivial ε-regular partition of V . To give some
reference on the size of these number for ε = 0.93, k = 3 and M = 126, 021
and for ε = 0.92, k = 3 and M = 15, 880, 788, 357. As you can see, the
tower function that defines M increases exceptionally fast as ε decreases. It
increases so fast that graphs large enough to guarantee an ε-regular partition
for even ε = 0.5 (considered quite large) are so large it would not be feasible
to represent one in practice. In 1998, W.T. Gowers proved the tower function
lower bound is necessary for the Regularity Lemma to work on all graphs
[10]. This was done by constructing an extremely degenerate example that
does not have an ε-regular partition until the size of the graph surpasses the
tower function lower bound.

2.2.1 Refinement Example

The following example is designed purely to explain the refinement pro-
cess. There is no underlying graph and we are using a different notion of
ε-regularity

Let the following be defined:
ε = 1

6
, the set to be partitioned V = {1, 2, ..., 30}, the initial partition

P = {P0, P1, P2, P3, P4}, where

the exceptional setP0 = {1, 23},
P1 = {2, 6, 12, 17, 24, 28, 30},
P2 = {3, 7, 14, 19, 21, 22, 29},
P3 = {4, 5, 8, 11, 13, 18, 27},
P4 = {9, 10, 15, 16, 20, 25, 26}.

A pair (A,B) is called an ε-irregular witness here if |A| ≥ ε|Px|, |B| ≥
ε|Px|, and A and B are composed only of prime numbers. When we examine
the pairs for this example we find the following witnesses based on this new
definition.

The pair (P1, P2) yields witness ({2, 17}, {3, 7, 29}).
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The pair (P1, P3) yields witness ({2, 17}, {5, 13}).
The pair (P1, P4) is a regular pair.
The pair (P2, P3) yields witness ({3, 7}, {5, 11}).
The pair (P3, P4) is a regular pair.
Now we construct Pij for 1 ≤ i, j ≤ 4 where Pij is the witness or Pi

induced by Pj unioned with the complement of the witness. So:

P12 = {{2, 17}, {6, 12, 24, 28, 30}}

P13 = {{2, 17}, {6, 12, 24, 28, 30}}

P14 = {{2, 6, 12, 17, 24, 28, 30}}

P21 = {{3, 7, 29}, {14, 19, 21, 22}}

P23 = {{3, 7}, {14, 19, 21, 22, 29}}

P24 = {{3, 7, 14, 19, 21, 22, 29}}

P31 = {{5, 13}, {4, 8, 17, 27, 11}}

P32 = {{5, 11}, {4, 8, 13, 18, 27}}

P34 = {{4, 5, 8, 11, 13, 18, 27}}

P41 = {{9, 10, 15, 16, 20, 25, 26}}

P42 = {{9, 10, 15, 16, 20, 25, 26}}

P43 = {{9, 10, 15, 16, 20, 25, 26}}

Now we construct P ∗i for each 1 ≤ x ≤ 4 where P ∗i is the unique minimal
partition that refines each of Pij so

P ∗1 = {{2, 17}, {6, 12, 24, 28, 30}}

P ∗2 = {{3, 7}, {29}, {14, 19, 21, 22}}

P ∗3 = {{5}, {11}, {13}, {4, 8, 17, 27}}

P ∗4 = {{9, 10, 15, 16, 20, 25, 26}}

From these we construct the intermediate partition :

P ∗ = P0 ∪ P ∗1 ∪ P ∗2 ∪ P ∗3 ∪ P ∗4
P ∗ = {{1, 23}, {2, 17}, {6, 12, 24, 28, 30}, {3, 7}, {29}, {14, 19, 21, 22},
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{5}, {11}, {13}, {4, 8, 17, 27}, {9, 10, 15, 16, 20, 25, 26}}
The final step in the refinement process is to reduce each class size to a

size small enough that the adding the left over pieces to the exceptional size
will not cause the exceptional size to grow by too much. For this example,
we let that size be 2. then the iteration’s partition is:

P ′ = {{1, 23, 30, 29, 5, 11, 13, 26}, {2, 17}, {6, 12}, {24, 28}, {3, 7},
{14, 19}, {21, 22}, {4, 8}, {17, 27}, {9, 10}, {15, 16}, {20, 25}}

2.3 Algorithmic Versions

The astronomical size requirements is not the only obstacle to implementing
the Regularity Lemma. Lemma 4 described in the previous section requires
that we identify those pairs which are ε-irregular. Naively, this process takes
exponential time as we need to check every pair of subsets and the number of
subsets grows exponentially with the size of the set. The issue is that it can be
shown that determining whether or not a pair is ε-regular is co-NP complete
[1]. Yet surprisingly there are polynomial time algorithms for finding the
ε-irregular witnesses required by the Regularity Lemma. In order to see how
this is possible, consider the repercussions of incorrectly reporting a pair as
ε-irregular. Incorrectly reporting a pair as ε-irregular increases the count
of the number of ε-irregular pairs and the amount of witnesses that must
be considered in the refinement process. However, neither of these results
are detrimental to the algorithm. Increasing the count of ε-irregular pairs
could cause the algorithm to require an extra iteration, and an additional
witness could significantly increase the work required during the refinement
process, but neither of these cases will result in an incorrect process. Thus
the polynomial time algorithms are achieved by reporting a pair as ε-regular
or ε’-irregular for ε′ < ε. Pairs which fall between these bounds (which are
both ε-regular and ε’-irregular) could produce either result, both of which
are valid and we have no control over which one occurs.

One algorithmic method for identifying ε-irregular witnesses is to use the
first singular value of the adjacency matrix. Another is to examine a concept
called neighborhood deviation. Both of these methods will yield a poly-
nomial time algorithm for identifying the ε-irregular pairs required for the
algorithm for the Regularity Lemma, reducing the complexity from exponen-
tial to polynomial. While this is very good news in terms of computability,
the constants associated with the Regularity Lemma are still too large for
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practical use, regardless of the existence of a polynomial time algorithm.

2.3.1 First Singular Value Method

The singular value method developed by Frieze and Kannan in 1998 [9] uses
the first singular value of the adjacency matrix of the graph when determining
regularity. We first give the terminology we will be using. For any matrix A,
the first singular value is defined as σ1(A) = max|x|=|y|=1|xTAy|. Second,
let Xb and Xc be disjoint subsets of the vertices of the graph and define Ab,c
as the submatrix of A containing the vertices of Xb as rows and the vertices
of Xc as columns. Finally, define Wb,c as (Ab,c −D) where D is a matrix for
which every value is the average of the values in Ab,c.

Let S be a subset of the vertices in Xb and let T be a subset of the vertices
in Xc. Define xS as the vector containing 0’s and 1’s such that (xS)i = 1 if
i ∈ S and (xS)i = 0 if i /∈ S. Similarly define xT . Using these definitions we
let

A(S, T ) =
∑
i∈S

∑
j∈T

A(i, j) = xTSAxT . (2.6)

We can then see that a pair (Xb, Xc) of a partition is ε-regular if and only if
|A(S, T )| ≤ ε|S||T | where |S| ≥ ε|Xb| and |T | ≥ ε|Xc|. The following Lemma
from Frieze and Kannan’s 1998 paper relates this definition of ε-regularity
to the first singular value to show that the first singular value can be used
to determine whether a pair of subsets of a partition is ε-regular.

Lemma 5 (Frieze, Kannan [9]). Let W be an R × C matrix with |R| = p,
|C| = q and ‖W‖∞ ≤ 1 and γ be a positive real. If there exist S ⊆ R
and T ⊆ C such that |S| ≥ γp, |T | ≥ γq and |W (S, T )| ≥ γ|S||T | then
σ1(W ) ≥ γ3

√
pq. If σ1(W ) ≥ γ

√
pq then there exist S ⊆ R and T ⊆ C such

that |S| ≥ γ′p, |T | ≥ γ′q and |W (S, T )| ≥ γ′|S||T | where γ′ = γ3

108
.

Thus computing the first singular value of each pair produces a witness
of ε’-irregularity if it exists where ε′ = ε3

108
. If such a witness does not exist,

it reports ε-regularity. This algorithm uses the first singular value of each
pair (Xb, Xc) of the partition to determine regularity and produce witnesses.

2.3.2 Neighborhood Deviation Method

Rather than checking each pair for ε-regularity, which would take exponential
time, one might instead consider constructing the worst pair and checking
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just that instead. One might also realize that vertices with degree differing
far from the average are the most promising candidates for inclusion. Upon
further consideration one might also realize that degree is not enough. In-
stead we need a notion of pairwise degree to guarantee that this difference
from the average is present in our pair. This is the notion of neighborhood
deviation, which Alon, Duke, Lefmann, Rödl, and Yuster [1] used to create
their algorithmic method and is formally defined as:

σ(y1, y2) = |N(y1) ∩N(y2)| −
d2

n
(2.7)

Here σ is the neighborhood deviation function, y1 and y2 are elements of
the same color class of a bipartite graph, N(v) denotes the neighborhood of
a vertex, d is the average degree of vertices in the graph, and n is the size of
the color class. The concept of neighborhood deviation can be extended to
a set of vertices as follows:

σ(Y ) =

∑
y1,y2∈Y σ(y1, y2)

|Y |2
(2.8)

The following statement is shown by Alon et al [1].

Lemma 6. Let H be a bipartite graph with color classes A and B such that
|A| = |B| = n, let d be the average degree of the vertices in H, and 0 < ε < 1

16

be given. Then if there exists a Y a subset of B such that |Y | ≥ εn and
σ(Y ) ≥ ε3n

2
then one of the following occurs:

1. d < σ3n

2. There exists a set of more than ε4n
8

vertices in B whose degree differs
from d by at least ε4n

3. There are subsets A’ of A and B’ of B such that |A′| ≥ ε4n
4
, |B′| ≥ ε4n

4
,

and |d(A′, B′)− d(A,B)| ≥ ε4. That is, a witness to ε4-irregularity.

With this we develop an algorithm for producing a witness of ε’-irregularity
or verifying that the pair is ε-regular. First we compute d equal to the aver-
age degree of the vertices in H, it can be shown that if d ≤ ε3n then H must
be ε-regular and we are done. If not then we count the number of vertices in
B that have a degree that differs from d by at least ε4n, if there are at least
ε4n
8

of these then at least ε4n
16

deviate in the same direction. Let B’ be the
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set of these vertices. Then |B′| ≥ ε4n
16

and |d(A,B′) − d(A,B)| ≥ ε4. Thus
(A,B′) is an ε4-witness.

If neither of these is true then for each y0 in B that has degree that differs
from d by less than ε4n we find the set By0 = {y ∈ B|σ(y0, y) ≥ 2ε4n}, this
can be done by squaring H’s adjacency matrix. The proof of the statement
above also proves the existence of at least one such y0 such that |By0| ≥ ε4n

4

thus the pair (N(By0), By0) is a witness of ε4-irregularity.

2.4 Regularity Clustering

The objective of data clustering is to group together data points that behave
similarly. Consider that this goal is similar to the goal of ε-regular partition-
ing. In an ε-regular partition most of the pairs (Vi, Vj) are ε-regular pairs
which means the edges between Vi and Vj are distributed randomly. That
is, every vertex in Vi has probability d(Vi, Vj) of having an edge with every
vertex of Vj. In other words, the vertices of Vi behave similarly with vertices
outside of Vi. While the goals of data clustering and ε-regular partitioning
are similar there are some glaring differences. The most obvious example is
the third requirement of an ε-regular partition which states that each parti-
tion piece must be of equal size. Obviously it is unreasonable to expect that
data clusters would all be equal in size. However the similarity motivated
Sárközy, Song, Szemerédi, and Trivedi to experiment with what they call
Regularity Clustering.

The idea behind Regularity Clustering is to use an ε-regular partition
of the data points, generated by the Regularity Lemma to create what is
known as a reduced graph and then using traditional clustering methods
(Spectral, k-means, etc.) on this reduced graph to achieve our final clus-
ters. The reduced graph has a vertex for each class of the ε-regular partition.
Two vertices of the reduced graph have an edge between them if and only if
the partition pieces they are assigned to form an ε-regular pair with density
greater than or equal to some small value δ. This reduced graph maintains
many of the properties of the original graph while being of constant (de-
pendent only on ε) size. For our purposes, since we are not guaranteed to
achieve an ε-regular partition we simple add every edge with weight equal
to the density of the pair. In theory, this reduced graph should be easier to
cluster due to its reduced size, and could provide better results due to the
similarities between ε-regular partitions and accurate data clusters.
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The choice of traditional clustering method to be performed on the re-
duced graph is arbitrary. We have decided upon a spectral clustering tech-
nique developed by Ng, Jordan and Weiss [13]. We chose a spectral clus-
tering technique due to its popularity and superior performance over other
techniques. Most clustering techniques, such as k-means and expectation
maximization, work by estimating specific models within the data. These
methods behave very poorly when the data is organized in irregular manner,
such as concentric rings. On the other hand, spectral clustering methods
work by analysing the spectrum of the Graph Laplacian. This effectively
projects the data to a space of smaller dimension where clusters of irregular
shape are much more obvious.

There are six primary steps to spectral clustering. The first step it to
project the data into RN . Next we define an affinity matrix A based on
a Gaussian Kernel K. From the affinity matrix we construct the graphs
Laplacian L and then solve the eigenvalue problem Lv = λDv. We then
select the k eigenvectors corresponding to the k lowest eigenvalues to define
a k dimensional subspace P tLP . Finally we use another clustering technique,
like k-means, to form clusters in this new subspace. This process of projecting
the data into this eigenspace reveals connected but not necessarily compact
groups of vertices, like concentric rings. Interested readers can find a more
in depth explanation of spectral clustering in [13].

The issue that we run into when trying to utilize the Regularity Lemma is
that the it requires immense graphs in order to run to completion, much larger
than can be feasibly clustered. Thus for realistically sized datasets (and an
appropriate ε) we cannot guarantee an ε-regular partition. We can however
follow the steps of the algorithm of the proof of the Regularity Lemma, with
some modifications, to produce a partition that is an approximation of an
ε-regular partition. There are four main modifications to the algorithm that
aim to reduce the exponential refinement that occurs during each iteration.

The first of these changes is to reduce the number of ε-irregular witnesses
we use to obtain our intermediate partition. The use of every ε-irregular
witness is what causes the exponential refinement, as we have to refine on
every intersection. Unfortunately, if we do not refine on every ε-irregular
witness we have no guarantee that we will ever reach an ε-regular partition.
The second modification is to the refinement of the intermediate partition
to the iteration’s partition. A notion of a refinement factor is introduced
which is the number (a usual choice being between 3 and 7) of new classes
that each class of the intermediate partition will be divided into when con-
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structing the iteration’s partition. This is the modification that changes the
refinement from exponential to constant. The third modification is to what
we do with the leftover vertices. If we added them all to the exceptional set,
the exceptional set would grow much too quickly. Instead, all of the leftover
vertices are united to form an additional refinement class for the iteration’s
refinement. The second modification guarantees that these vertices will be
numerous enough to create another appropriately sized piece. Finally, a mod-
ification to the stopping criteria is needed. Since the algorithm is no longer
guaranteed to produce an ε-regular partition, a number is chosen, usually
dependent on ε and the size of the dataset, and when the size of the parti-
tion elements is less than this number the algorithm terminates. With these
modifications and the use of either of the algorithmic methods for identifying
ε-irregular witnesses, the algorithm can be used on reasonably sized datasets.

Sárközy, Song, Szemerédi, and Trivedi’s results are very promising; how-
ever there is still so much that is not known about Regularity Clustering.
There is very little known theoretically about the method due to the modifi-
cations to the algorithm. Additionally, Sárközy et al. made several heuristic
choices in their implementation of the modified algorithm. The most notable
of these choices is the method for choosing which ε-irregular witness(es) to
refine on and how the ε-irregular witnesses should be generated.

2.5 Conclusion

In this chapter we have discussed the concept of ε-regularity, the Regularity
Lemma with an outline of its proof, algorithms used to find the ε-irregular
witnesses, and Regularity Clustering. We examined the heuristic choices
made by Sárközy et al. in their implementation of Regularity Clustering
in an attempt to improve upon their results and learn something about the
attributes of the datasets for which Regularity Clustering seems to work. In
the next section we discuss how we approached this problem.
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Chapter 3

Methodology

In this chapter we specify the heuristic choices of Sárközy, Song, Szemerédi,
and Trivedi’s implementation of Regularity Clustering and discuss the choices
with which we experimented. We also discuss the pros and cons of each
method as we perceive them in order to attempt to justify the experiment as
well as the results. Finally, we provide descriptions of the datasets we used
to test our methods.

3.1 Heuristic Choices by Sárközy et al

The results found in the paper by Sárközy et al. were generated by a version
of the algorithm that used unmodified versions of both the Alon et al. and
Frieze-Kannan methods for generating ε-irregular witnesses. However both
of these methods were created to find any ε-irregular witness, with no con-
sideration given to the quality of the witness. With some modifications these
methods could be improved for our purposes.

The algorithm then chose one witness at random to use for the refinement.
The benefit of choosing the witness at random is that it generates a random
sampling and thus we can expect that the refinement will be close to uniform
after repeated application. However, not all witnesses are created equal and
it is certainly the case that refining some witnesses brings us closer to ε-
regularity than others. The disadvantage of picking at random is that we do
not know if this is a good witness to partition over.
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3.2 Our Heuristic Choices

Our heuristic choices can be divided into two groups; how to choose the
witness(es) to refine on, and how to generate the witnesses. The methods we
tested for how to choose witnesses include: best-fit, most irregular, largest
and closest to half, most overlap, maximal disjoint, and paired. The methods
we tested for witness generation include a most deviant construction and a
most frequent construction.

3.2.1 Choice of Witness: Best-Fit

The best-fit method for choosing ε-irregular witnesses requires the selection
of the witness whose size is closest to a multiple of the target size. We
know the size that we are going to make the partition elements once the
refinement complete. If a witness is not selected carefully one of the resulting
partition classes will most likely be constructed of both vertices in and out
of the witness. To try and minimize the number of vertices that cross that
boundary, we select the witness whose size is closest to a multiple of the size
we will make the partition elements. By doing this we hoped to construct
a refinement that isolated more irregular vertices. The disadvantage of this
method is that no consideration is given to the witness’ irregularity. It could
be the case that a witness which is not as close to perfectly sized is much
more irregular which may be better to refine.

3.2.2 Choice of Witness: Most Irregular

The method of choosing the most irregular witness requires the selection of
the witness whose density varies the most from the density of the original
sets. We chose this witness with the hope that by dividing the most irregular
witness from the other vertices, we would be more productive with each
partition. We thought that by separating the vertices that were most different
from each other, in one refinement the partition would be closer to a regular
partition than if we had chosen a witness that was less irregular. This method
has the opposite problem to best-fit in that it pays no consideration to the
size of the witness, meaning that some of these very irregular vertices are
likely to be mixed back in with vertices which are regular.
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3.2.3 Choice of Witness: Largest / Closest to Half

The method for choosing the largest ε-irregular witness requires the selection
of the generated witness that is largest in size. When we first considered this
idea we thought it would make better progress since it is refining out the
largest number of vertices. We then realized that this method could have
a very opposite effect from what we hoped when the size of the witness
surpasses half the size of the set. In response to this issue we tried a similar
idea. The closest to half method requires the selections of the witness whose
size is closest to half of the size of the original sets. The purpose of this
method is to separate the most vertices from each other, those that are
witnesses from those that are not witnesses.

3.2.4 Generating Witnesses: Most Deviant Construc-
tion

Both the Alon et al. and Frieze-Kannan algorithms produce witnesses by
selecting every vertex that fits the bill. While this is the simplest way to find
any ε-irregular witness it is most likely not the best witness for our purposes.
Modifying the algorithm to produce witnesses that is of high quality could
prove very beneficial. Our first attempt at this was to abandon the Alon
et al. and Frieze-Kannan methods in favor of a simplified algorithm which
will produce a “witness” regardless of the ε-regular status of the pair. Our
thought process was that the classes will be refined anyway, so instead of
doing nothing we should still attempt to improve the pair. The Alon et
al. method creates its witnesses the majority of the time by collecting all
the vertices which all have degree differing from the average in the same
direction by a certain amount. We decided to use this method to generate
our witnesses. For each vertex in a class we kept a running tally of the
difference of its degree within each pair and that pairs density. We then
constructed two “witnesses” both of one refinement factors size. The first
“witness” was composed of the vertices with the largest values in the tally
and the second was composed of the vertices with the last value in the tally.
This method has the benefit of creating correctly sized “witnesses” doing
work at each iteration, regardless of the pairs ε-regular status. However the
method has the disadvantage of not necessarily generating a witness to any
ε-irregular pairs reducing our knowledge of the theory behind the algorithm
even more. Additionally, the method moves even further from the Regularity

23



Lemma by disregarding the ε-regularity of the pairs.

3.2.5 Generating Witnesses: Most Recurring Construc-
tion

For our final modification we developed an algorithm for generating a “wit-
ness” to use in the refinement. First we used either the Alon et al. or
the Frieze-Kannan algorithm to construct a witness of each ε-irregular pair.
Then we counted the number of times each vertex appeared in a witness
which has density higher than the average, and also the number of times
each vertex appears in a witness which has density less than the average.
We then construct two new “witnesses” of one refinement factors size. One
of these “witnesses” will be composed of those vertices which appear in the
most high density witnesses. The other “witness” will be composed of the
those vertices which appear in the most low density witnesses (no vertex will
be used in both). This method has the benefit of creating correctly sized
“witnesses” as well as taking those vertices which are a part of as many
actual witnesses as possible. However the method has the disadvantage of
not necessarily generating a witness to any ε-irregular pairs reducing our
knowledge of the theory behind the algorithm even more.

3.3 Testing Our Choices

It is important to note that the results from Regularity Clustering vary
based on the dataset being clustered and the choice of ε and refinement
factor. Thus in order to test each of our choices we compared the aver-
age accuracy of our clusters over ten trials on 25 different combinations
of ε = {0.2, 0.3, 0.4, 0.5, 0.6} and refinement factor = {3, 4, 5, 6, 7} on 10
datasets. By examining all the combinations of each, we hope to discern
patterns in the results for different combinations of these heuristic choices.

The datasets we tested our methods on include: Auto-MPG [3], Contra-
ception Method Choice [2], Dermatology [3], Haberman’s Survival [3], Red
Wine and White Wine [6], Steel Plates Faults and Steel Plate Pastry Faults
[17], Wisconsin Diagnostic [3], and finally Yeast [3]. All of these datasets
were taken from the University of California, Irvine’s repository for machine
learning. This repository contains hundreds of donated datasets which are
used to test new machine learning techniques, like Regularity Clustering.
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Many of these datasets come with predefined clusters, which allows us to
test the accuracy of the clusters that we produce. We define accuracy as
the cost of the minimum matching as defined by the Hungarian Algorithm
[12] divided by the number of data points.

3.3.1 Auto-MPG

Auto-MPG is multivariate dataset with 398 instances. Each instance cor-
responds to a different make and model of a car. Each instance contains
8 attributes; Number of cylinders, the displacement of those cylinders, the
horsepower of the car, the weight of the car, the maximum acceleration, the
year the car was made in, where the car was made, and the name of the make
and model. From these attributes we attempt to predict the fuel efficiency
of car in miles per gallon. The MPG values range from 9.0 to 46.6. Since
the MPG values correspond to the true clusters, we rounded these values to
the closest integer. Additionally, since the name of the make and model of
the car does not effect the mpg of the car, we removed this attribute.

3.3.2 Contraception Method Choice

Contraception Method Choice is a multivariate dataset with 1473 instances.
In this dataset each instance corresponds to a wife and husband. Each in-
stance contains 9 attributes; wife’s age, wife’s education, husbands education,
number of children ever born, wife’s religion, wife’s now working, husband’s
occupation, standard of living index, and media exposure. From these at-
tribute we attempt to classify the couple’s contraception method choice into
one for three categories; no use, long term, or short term contraception.

3.3.3 Dermatology

Dermatology is a multivariate dataset with 366 instances. In this case each
instance corresponds to a patient with an erythemato-squamous disease. The
nature of these diseases makes diagnosis very difficult, most of the time a
biopsy is required as the symptoms are so similar. Each instance of this
dataset has 34 attributes, 12 of which are basic attributes about the pa-
tients condition, such as age, itching, and family history. The remaining 24
attributes are the results of tests on skin samples. From these attributes
we attempt to predict which erythemato-squamous disease the patient had.

25



Some of the values in the data were missing, we removed all instances which
contained missing values. Additionally, we converted the names of the dis-
eases to integer values between 1 and 6.

3.3.4 Haberman

Haberman’s Survival is a multivariate dataset with 306 instances. Each in-
stance corresponds to a patient who has undergone surgery for breast cancer.
There are 3 attributes for each patient; age of the patient, the year the oper-
ation took place, and the number of positive axillary nodes detected. From
these attributes we attempt to predict whether or not the patient lived five
years past their surgery.

3.3.5 Red and White Wine

The Red Wine and White Wine datasets are very similar and thus we will
discuss them together here. Both sets are multivariate in nature, with the red
wine set having 1599 instances and the white wine set having 4898 instances.
In both cases the instances correspond to red and white variants of the Por-
tuguese “Vinho Verde” wine respectively. The instances of both datasets
contain 12 attributes; fixed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, and
alcohol. In both datasets we use these attribute to predict the wine score in
a blind taste test, between 0 and 10 with 0 being the lowest quality wine and
10 being the highest quality wine.

3.3.6 Steel Plates Faults and Steel Plate Pastry Faults

Steel plates faults is another multivariate dataset with 1941 instances. Each
instance of the steel plates faults datasets corresponds to a fault in a steel
plate. Each instance contains 27 attributes about the steel such as luminosity,
thickness, type of steel, etc. From these attributes we attempt to classify the
fault as 1 of 7 different types of faults; pastry, Z scratch, K scratch, strains,
dirtiness, bumps, and other faults.

We also modified this dataset to contain only two target clusters, pastry
faults and other faults. We thought that if this change made a significant
difference in our results that it may provide valuable information about the
types of datasets that Regularity Clustering performs well on.
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3.3.7 Wisconsin Diagnostic

Wisconsin Diagnostic is a multivariate dataset with 569 instances. These
instances correspond to breast cancer patients at a Wisconsin hospital. Each
instance has 10 attributes about the physical characteristics of the patients
tumor. These attributes include; radius, texture, perimeter, area, smooth-
ness, compactness, concavity, concave points, symmetry and fractal dimen-
sion. From these attributes we attempt to predict the benign/malignant
nature of the tumor.

3.3.8 Yeast

Yeast is a multivariate dataset with 1484 instances. These instances cor-
respond to yeast colonies. Each instance has 8 attributes each of which is
a score on a particular test for certain attributes of yeast. For example,
one of the attributes is the yeast’s score in the ALOM membrane spanning
region prediction program. From these scores we attempt to predict the
yeast’s localization site. There are ten possible localization sites; cytosolic or
cytoskeletal, nuclear, mitochondrial, membrane protein with no N-terminal
signal, membrane protein with an uncleaved signal, membrane protein with
a cleaved signal, extracellular, vacuolar, peroxisoma, and endoplasmic retic-
ulum lumen.

3.4 Conclusion

In this chapter we described each of the heuristic choices we tested, how we
planned to go about testing them, and which datasets we tested them on. In
Chapter 4 we go over the results and analysis of our findings.
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Chapter 4

Results And Analysis

In this chapter we present the results of our experiments to the reader. We
also provide analysis of these results with regards to three very important
questions: Which, if any, of our methods for witness selection/generation
improve upon a random selection? What properties influence the best choice
of refinement factor and ε? What properties of datasets determine whether
or not Regularity Clustering will perform well? Finally we present the reader
with hypotheses supported by our findings.

4.1 Data

As mentioned before, we compared the average accuracy of our clusters over
ten trials on 25 different combinations of ε = {0.2, 0.3, 0.4, 0.5, 0.6} and re-
finement factor = {3, 4, 5, 6, 7} on ten datasets. Here we present the reader
graphs depicting our data in a much more interpretable format. Each graph
is titled with the dataset it is associated with and contains eight entries.
Each entry consists of two parts, an average and best case. The average
case is the average over all choices of ε and refinement factor while the best
case reports the value of the ε and refinement factor which did best. The
first seven entries correspond to our different Regularity Clustering Methods,
while the final entry is the benchmark, the results of a standard (spectral)
clustering technique. The vertical axis of the graph is associated with the
percent accuracy of our clusters.
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Figure 4.1: Graph of accuracy for the automobile MPG dataset.

Figure 4.2: Graph of accuracy for the contraceptive method choice dataset.
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Figure 4.3: Graph of accuracy for the dermatology dataset.

Figure 4.4: Graph of accuracy for the Haberman dataset.
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Figure 4.5: Graph of accuracy for the red wine dataset.

Figure 4.6: Graph of accuracy for the white wine dataset.
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Figure 4.7: Graph of accuracy for the all steel faults dataset.

Figure 4.8: Graph of accuracy for the pastry steel faults dataset.
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Figure 4.9: Graph of accuracy for the wisconsin diagnostic dataset.

Figure 4.10: Graph of accuracy for the yeast dataset.

33



4.2 Methods that Perform Best

Examining Figures 4.1 - 4.10 certain patterns begin to emerge. The first
of these patterns is that the selective methods (Random, Best Fit, Most
Irregular, Largest, and Closest to half) perform quite similarly. The excep-
tion to this rule is the closest to half method, in some datasets (Steel Faults
and Auto MPG) the closest to half method outperforms the other selective
methods by a significant margin, both on average and in the best case.

The next pattern is an inverse relation between the success of the selec-
tive methods and the most deviant construction method. It seems that when
the selective methods do on average worse than the bench mark the most
deviant construction method outperforms the selective methods. Conversely
when the selective methods outperform the benchmark the most deviant con-
struction method does worse than the selective methods. In 8 of the 10 cases
this relation is present, in the others (Dermatology, Wisconsin Diagnostic,
and Yeast) the most deviant construction method performed very similarly
to the selective methods.

Another pattern is the success of the most recurring construction method.
For the average case the most recurring construction method had the best
result for 8 of the 10 datasets. In the other two (Auto MPG and Dermatol-
ogy) it was the second highest next to most deviant construction. For the
best case the most recurring construction method had the best result in 6 of
the 10 datasets. In 3 other 4 (Auto MPG, White Wine, Steel Faults) most
recurring construction was the second or third best method. However in the
Yeast dataset the most recurring construction method performed the worst,
but only by a small margin.

A particularly observant reader may also notice the rather small difference
between the average and best cases for the most deviant construction method.
In 9 out of 10 cases this difference is least of any method, often by a large
amount. This can be explained by the nature of the method. The most
deviant construction method does not calculate witnesses of ε-irregularity,
it instead constructs witness from those vertices that have degree differing
from the average by the most. This means that the process of generating
witnesses does not depend on ε at all, instead ε only determines our stopping
condition. Since we still collected data for each value of ε, there were many
data points which were very close together since, for example, the results for
refinement factor 3 and ε = 0.2 are very close to refinement factor 3 and
ε = 0.6.
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4.3 Best Choice of Parameters

The large difference in the accuracy of the best case and average case for our
seven Regularity Clustering methods highlights the importance of the choice
of parameters (ε and refinement factor). In order to determine which values
of ε and refinement factor produce above average results we examined the
average accuracy of each method for each value of both parameters. Figures
4.11 - 4.24 are graphs depicting this analysis.

Let’s first consider the choice of ε. Usually we consider ε-regular par-
titions to be of higher quality when a smaller ε is chosen. This is because
as ε approaches zero the behavior of the partition approaches the expected
value of a similar partition of a random graph. However it is not as obvious
that smaller ε values will yield better results in Regularity Clustering (and
many times they do not). This is because the algorithm will, in most cases,
terminate before constructing an ε-regular partition. Since this is the case we
would like for the algorithm to do as much work in each iteration as possible,
in order to get as close to an ε-regular partition as possible. Witnesses of
ε-irregularity for larger values of ε have larger lower bounds for both size and
the difference in density and are thus presumably of higher quality. However,
witnesses of large ε-irregularity are few in number and will occasionally not
exist for certain pairs.

Since we have not developed a method of determining this value for any
given dataset we have settled for analyzing the results of our data in an at-
tempt to generalize our results to other datasets. The first observation of
note is that the choice of ε makes very little difference for the Most Deviant
Construction method. This makes sense because the most deviant construc-
tion method does not use ε when constructing its “witnesses”. Instead, ε is
used only when determining the stopping condition. The second observation
of note is that ε = 0.6 yields very poor results for the random, best fit, most
irregular, and largest methods but average results for the closest to half,
most deviant construction and most recurring construction methods. The
difference between the selective and constructive methods at the ε = 0.6 is
likely explained by the difference in sizes of the chosen witnesses. The selec-
tive methods choose a witness of ε = 0.6 irregularity which must be at least
60% of the partition class while the constructive methods make “witnesses”
of a much smaller size. We cannot explain the success of the closest to half
method at the ε = 0.6 method and hypothesize that a few of our datasets
happened to be shaped in such a way that this method worked well at this
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Figure 4.11: Accuracy of random method based on ε.

Figure 4.12: Accuracy of best fit method based on ε.
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Figure 4.13: Accuracy of most irregular method based on ε.

Figure 4.14: Accuracy of largest method based on ε.
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Figure 4.15: Accuracy of closest to half method based on ε.

Figure 4.16: Accuracy of most deviant construction method based on ε.
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Figure 4.17: Accuracy of most recurring construction method based on ε.

Figure 4.18: Accuracy of random method based on refinement factor.
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Figure 4.19: Accuracy of best fit method based on refinement factor.

Figure 4.20: Accuracy of most irregular method based on refinement factor.
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Figure 4.21: Accuracy of largest method based on refinement factor.

Figure 4.22: Accuracy of closest to half method based on refinement factor.
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Figure 4.23: Accuracy of most deviant construction method based on refine-
ment factor.

Figure 4.24: Accuracy of most recurring construction method based on re-
finement factor.
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ε value.
Now lets consider the choice of refinement factor. By examining the

graphs of the selective methods accuracy (Figures 4.18-4.22) we realize that
they are very similar. This implies that the best choice of refinement factor
is not at all dependent on which (selective) method you choose but rather on
the dataset you are using. From these graphs we see that a refinement factor
of 3 or 5 is often a good choice for selective methods. Similarly, we also see a
pattern in the constructive methods. In both cases (most deviant and most
recurring construction) refinement factor 3 and 4 produce poor results while
refinement factor 5 produces the best result.

4.4 Conditions Under Which Regularity Clus-

tering Perform Well

Figures 4.1-4.10 convey a wide variety of results. In some datasets (Haber-
man, Contraceptive Method Choice, Red Wine, White Wine, and Pastry
Steel Faults) Regularity Clustering performs very well with every method
outperforming the benchmark both on average and in best case scenarios.
In others (Auto MPG, Steel Faults, and Wisconsin Diagnostic) Regularity
Clustering performs worse on average but better for certain choices of ε and
refinement factor. Still in others (Dermatology and Yeast) Regularity Clus-
tering performs very poorly, where no matter the choice of ε and refinement
factor we still perform worse than the benchmark. Since so little is known
about the theoretical results of Regularity Clustering it would be very valu-
able to predict how well Regularity Clustering will perform on a particular
dataset.

The similarities between the Red Wine and White Wine datasets and
the Steel Faults and Steel Pastry Faults provide insight into possible factors.
Regularity Clustering performed at 171% the benchmark for the White Wine
dataset but 157% the benchmark for the Red Wine dataset. Since White
Wine and Red Wine have the same attributes and the instances represent
very similar things (red and white wine samples), this difference is likely
caused by either the size of the data (White Wine has 4898 instances while
Red Wine only has 1599) or by the fact that it is much harder to the quantify
shape of the data (by this we could mean many things such as, how close
the points are together and how evenly distributed the points are across the
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target clusters).
Even more interesting is the difference in quality of our results on the Steel

Faults dataset and the Steel Pastry Faults dataset. Regularity Clustering
performed at 194% of the bench mark for the Steel Pastry Faults dataset
but only 151% the bench mark for the Steel Faults datasets, even though its
the same data! Recall that the difference between these sets. In Steel Faults
we are trying to predict whether the steel fault is one of six specific types
of faults or is some other kind of fault. In the Steel Pastry Faults dataset
we try to predict if these same faults are pastry faults or some other type of
fault. This seems to suggest that the number of target clusters plays a very
important role in the success of Regularity Clustering.

To see if the rest of our data supported any of these theories we plotted
the value Max{Methodi average

Benchmark
: 1 ≤ i ≤ 7} and Max{Methodi best

Benchmark
: 1 ≤ i ≤ 7}

for each dataset versus an attribute of the dataset we wanted to test. The
closer this plot is to linear with a non zero slope (or polynomial) the more our
data suggests the attribute influences the quality of Regularity Clustering.
We decided to examine combinations of four properties of the data: number
of attributes, number of data points, number of target clusters, and distance
from the expected distribution. By distance from the expected distribution

we mean
√∑t

i=1 (ActualSizet − ExpectedSize)2, where t is the number of

target clusters. We did not expect the graphs examining just the number of
attributes, or number of target clusters to yield results as these parameters
should also depend on the number of instances, however we included their
graphs for completeness.

Figures 4.25 - 4.31 are the results of this analysis.

4.5 Hypotheses

In this section we will discuss the hypotheses we conclude from our data as
well as a brief description of their theoretical merit.

4.5.1 Selection Methods

There are many different ways to go about selecting which witness(es) to
use in the refinement process and the four we tested did slightly better than
choosing a random witness. This seems to indicate that there is a best
choice for a witness. Additionally, the closest to half method’s occasional
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Figure 4.25: Comparing our results on each dataset to the benchmark based
on the number of attributes.

Figure 4.26: Comparing our results on each dataset to the benchmark based
on the number of attributes.
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Figure 4.27: Comparing our results on each dataset to the benchmark based
on the ratio of instances to number of attributes.

Figure 4.28: Comparing our results on each dataset to the benchmark based
on the number of target clusters.
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Figure 4.29: Comparing our results on each dataset to the benchmark based
on the ratio of instances to the number of target clusters.

Figure 4.30: Comparing our results on each dataset to the benchmark based
on the ratio of instances to target clusters times attributes.
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Figure 4.31: Comparing our results on each dataset to the benchmark based
on the distance from the expected value.

huge success seems to indicate that separating a lot of vertices is important
when attempting to choose the best witness. Beyond this it is difficult to
say which of our methods is closest to choosing the best witness however our
results show that each of these methods in general outperforms a random
witness.

The existence of a best witness makes theoretical sense. While refining
out each witness is guaranteed to increase the index by a certain amount
there is nothing to say that a refining a witness will not increase the index
by more than this amount. Additionally, witnesses have different properties
such as size, how far the density of the witness differs from the average, and
even how much the witness overlaps other witnesses. Our results show that
these properties appear to make a difference in the quality of the witness.

4.5.2 Most Deviant Construction

It is our hypothesis that the most deviant construction method for gener-
ating witnesses will rarely, if ever be the best method choice. Our results
seem to indicate that when the most deviant construction method outper-
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forms the other methods for Regularity Clustering, Regularity Clustering is
outperformed by the benchmark. Thus it seems that there is always a better
choice than the most deviant construction method. On the other hand, it
seems like a safe choice, in the sense that if you do not know if Regularity
Clustering will perform well on your dataset you are not risking as much of
the quality of your clusters. If it turns out Regularity Clustering does well
on the data in question then you will still benefit from the use of the most
deviant construction method over a technique other than Regularity Cluster-
ing. Conversely if Regularity Clustering does poorly on the data in question
you will still do better than the other methods.

4.5.3 Most Recurring Construction

We hypothesize that of the Regularity Clustering methods we tested the
most recurring construction method will in most cases produce the best re-
sults. Our data supports our claim, with the most recurring construction
outperforming the other methods on average. We also hypothesize that a
constructive method similar to most recurring construction will outperform
most if not all selection methods. This is because selection methods depend
upon the witnesses generated by algorithms which do not consider the qual-
ity of the witnesses they generate, merely that they are witnesses. Thus
we predict that selecting even the best witness generated by the Alon et al.
or Freize Kannan algorithms will not surpass the quality of the “witness” a
constructive method could achieve.

4.5.4 Choice of Parameters

We realize that, with the exception of the method of choosing the most
irregular witness (and largest by a very slight margin) ε = 0.2 yields the best
results with ε = 0.3 very close behind. Figure 4.32 shows the average of our
results across all datasets and all methods for each value of ε. From this
graph and the results mentioned before we hypothesize 0.2 or 0.3 to be the
best value for ε when nothing is known about the dataset in question.

We also hypothesize that the the choice of ε should depend heavily on
the dataset in order to achieve the best results. Our idea to achieve the best
(or at least very good) choice of ε would be to choose the largest value which
yields at least one witness for each partition class. This would guarantee
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that the witnesses used would be of the highest quality possible (assuming
that witnesses of higher ε-irregularity are of higher quality).

On the other hand, the best choice of refinement factor appears to be
independent of the method chosen. We hypothesize that the best choice of
refinement factor is common among all selective methods. Additionally we
have concluded that all of the methods we developed a refinement factor of
5 will generate the best results. Figure 4.34 shows the average of our results
across all datasets and all methods for each value of refinement factor. This
graph supports our claim.

4.5.5 When Regularity Clustering Performs Well

It is very hard for us to say anything with confidence in this regard as we
only have ten datasets to work with. That being said our data appears to
indicate that the size of the dataset, the number of attributes, and number
of target clusters do not by themselves influence the results of Regularity
Clustering. However, our data seems to roughly indicate that as the ratio of
instances in the dataset to target clusters increases the quality of Regularity
Clustering’s results increase. It seems that a value of about 200 or higher
indicates that Regularity Clustering is more likely to perform better than the
bench mark.

This hypothesis may have some theoretical merit as well. We perform
spectral clustering on the reduced graph that is produced as a result of the
modified Regularity Lemma. A small number of instances compared to the
number of target clusters will force the reduced graph to be too small to
accurately spectral cluster into the target clusters. For instance if the reduced
graph has less vertices than there are target clusters we are certainly in
trouble. On the other hand, if this value is large the resulting partition will
be fine enough for spectral clustering to be used effectively.

The ratio of instances in the dataset to the number of target clusters times
the number of attributes also seems to roughly fit a positively sloped linear
model. This might support our previous claims as including the number of
attributes in the consideration seems to have reduced the correlation but not
eliminated it. The correlation of the other attributes we tested to success are
not supported by our data.
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Figure 4.32: Accuracy of all methods based on ε.

Figure 4.33: Accuracy of all methods based on the refinement factor.
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Chapter 5

Conclusion

As data collection around the world increases at an exponential rate, the
importance of data clustering continues to grow. Without a way to organize
all of this data, the data becomes meaningless. Data clustering techniques
give us a tool to predict anything from what online item a customer will
most likely purchase to what stage of breast cancer a patient has. It has the
power to teach us what factors are most important to a certain outcome and
can lead to advances in nearly every field. Regularity Clustering has proved
itself to be a very valuable tool and has a bright future among data clustering
techniques.

The Regularity Lemma has been extremely influential in theoretical topics
in mathematics and computer science which led to Szemerédi being awarded
the Abel prize for this contribution. Although many believed Szemerédi’s
Regularity Lemma was purely theoretical, Regularity Clustering is a practical
application of it. Our results show that the Regularity Lemma can be applied
to the field of Big Data which suggests that its significance will continue to
grow.

We discovered that the selection of which witness(es) is used during the
refinement process had a large impact on the success of the clustering algo-
rithm. Our selection methods performed better than when choosing a witness
at random. This clearly shows that the selection methods provided a better
witness for refinement.

We also determined that constructing a “witness” based on the witnesses
produced in the Alon et al. algorithm can provide even better results. Our
most recurring construction method outperformed all the other methods most
of the time including standard spectral clustering. On average using most re-
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curring construction significantly increased the accuracy of the final partition
compared to other regularity clustering methods.

We concluded from our data that an ε value of 0.2 or 0.3 is best when
nothing is known about the dataset being clustered. However, higher ε values
can lead to even better results when there are enough witnesses created by
the algorithm with that ε value.

The ideal choice of refinement factor varied considerably from one dataset
to the next but remained consistent over different methods conducted on the
same dataset. This clearly showed that choice of refinement factor depends
mostly on the dataset rather than the method.

5.1 Future Work

There are many topics that came up during this project that would be inter-
esting to pursue in the future. The stopping condition for the algorithm we
used was determined by the original code we received from Sárközy, Song,
Szemerédi, and Trivedi. The algorithm stopped once d class size

2
e ≥ ki

ε
where

ki is the number of classes in the partition. Upon further investigation, it is
unclear if this is an ideal stopping condition. With this stopping condition
the number of iterations the algorithm performs is dependent on ε, which
means that there exists a value such that ε’s higher than that value cause
the algorithm to perform an additional iteration. It is unclear what the cor-
rect number of iterations is for any given dataset but it is likely not the case
that it should vary with epsilon. This is an area that we believe could be
improved with further study.

We suggested in the analysis of our results that the best choice of ε may
the largest value that ensures a witness for every partition class. We believe
that modifying the algorithm to produce the “smartest” ε based on the data
would be extremely effective in improvement the accuracy of the algorithm.

There were a few selection method we discussed but never followed through
with implementing and testing. In one method we would choose the witness
that overlaps the other witnesses most. This would be a witness that shares
vertices with the largest amount of other witnesses. The benefit being that
this set contains many vertices which lend witness to irregularity so by se-
lecting this set we also select a maximal portion of the other witnesses. This
is similar to the most recurring construction and has the benefit of being
guaranteed to be an actual witness of irregularity, unlike the most recurring
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construction method.
In another selection method we would find the largest set of witnesses

which do not overlap to partition over. Recalling that the exponential re-
finement was caused by having to take the intersection of all the witnesses.
If we are guaranteed the witnesses do not overlap then the refinement would
be linear. This method will likely work better with higher refinement factors
as there is more room for additional witnesses.

We also considered using witness pairs while refining which could lead to
new results. Recall that an ε-irregular witness is generated by finding a subset
of both ε-irregular sets such that the density of the subsets differs far from the
density of the original set. The thought behind this choice of an ε-irregular
witness is that the witnesses pair contains some of the information about why
these vertices are irregular and should thus also be selected. However, when
using the Alon et al. algorithm most pairs are a proper subset of the first set
and the entirety of the second so it would not make any difference. Thus we
expected this method would have a greater impact with the Frieze-Kannan
algorithm.

In final summary, our work suggests methods for improving upon the
already powerful Regularity Clustering technique. We also provide initial
analysis on the conditions under which regularity clustering performs well.
Our results suggest there is still unexplored potential in the field of Regularity
Clustering and we present a number of avenues for future work exploring this
potential.
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