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This work presents a novel method to efficiently factorize the combination of multiple

factor graphs having common variables of estimation. The fast-paced innovation in the

algebraic graph theory has enabled new tools of state estimation like factor graphs.

Recent factor graph formulation for Simultaneous Localization and Mapping (SLAM)

like Incremental Smoothing and Mapping using the Bayes tree (ISAM2) has been very

successful and garnered much attention. Variable ordering, a well-known technique in

linear algebra is employed for solving the factor graph. Our primary contribution in

this work is to reuse the variable ordering of the graphs being combined to find the

ordering of the fused graph. In the case of mapping, multiple robots provide a great

advantage over single robot by providing a faster map coverage and better estimation

quality. This coupled with an inevitable increase in the number of robots around us

produce a demand for faster algorithms. For example, a city full of self-driving cars

could pool their observation measurements rapidly to plan a traffic free navigation. By

reusing the variable ordering of the parent graphs we were able to produce an order-of-

magnitude difference in the time required for solving the fused graph. We also provide

a formal verification to show that the proposed strategy does not violate any of the

relevant standards. A common problem in multi-robot SLAM is relative pose graph

initialization to produce a globally consistent map. The other contribution addresses

this by minimizing a specially formulated error function as a part of solving the factor

graph. The performance is illustrated on a publicly available SuiteSparse dataset and

the multi-robot AP Hill dataset.
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Chapter 1

Introduction

As the boundaries of the definition of robotics are expanding multi-robot systems are

increasingly finding its application in various fields. In many applications, including

robots in a cluttered environment like a retail store or search and rescue operation and

extremely uncertain environment like planetary exploration or surveillance, one of the

key challenges is to map the environment and localize the robot simultaneously. This

problem is called Simultaneous Localization and Mapping (SLAM) which deals with

fusing different sensor measurements to develop a consistent picture of the environment.

With the solutions to single robot SLAM getting more matured than ever coupled with

the rise of self-driving cars the path forward is to develop solutions for a team of robot

explorers which split up at a pathway fork and later meet again to share and merge their

maps. Also, with multiple robots, the environment could be mapped more robustly and

significantly faster. In particular, we deal with developing a centralized optimal map

by fusing the measurement estimates from all the robots. Combining the measurements

and estimates from multiple robots for centralized mapping is important because it helps

to avoid the data redundancy in the overlapping areas and allow the robots to help each

other out in case of localization loss. Multi-robot SLAM has been extensively studied

since the last decade leading to the development of several algorithms [4–6]. The multi-

robot scenario also introduces several key issues on top of a single robot case. A large

body of the previous work try to address these issues (listed below) in different ways,

1
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Figure 1.1: Clockwise from left: 1) A mobile robot navigating in a retail store to
provide inventory solutions. They are designed to collaborate with other robots at
the end of scanning an aisle. 2) Swarm of robots teaming up in a cooperative task of
building lego blocks at Grasp Laboratory, University of Pennsylvania. 3) Decentralized

control and planning of a multi-robot system at University of New Hampshire.

1. Globally consistent robot pose initialization.

2. Direct and indirect encounters.

3. Multi-robot data association

For multi-robot SLAM, we use factor graphs [7] as the underlying framework for state

estimation. This work proposes a method to quickly and efficiently fuse the factor graphs

of the encountering robots and also address the aforementioned issues simultaneously.



Chapter 1 Introduction 3

1.1 Thesis

My thesis in this dissertation is the following:

Ordering the variables of the fused factor graph using the ordering of the parent factor

graphs provides a superior alternative to the complete reordering approach that is fast,

efficient and also numerically stable. Also, by introducing the concept of “global nail”

the issue of relative pose graph initialization for different robots is solved.

I split this thesis into three claims that correspond to the Chapters 3, 4 and 6.1

respectively. The goal of my research is efficient factor graph fusion, globally consistent

pose initialization for all the robots and rapid multi-channel object detection as explained

below:

1. Fused Graph Ordering: Variable reordering is a technique used to retain the spar-

sity of the factor graph during its factorization. This chapter proposes a numer-

ically stable variable ordering strategy for the fused graph by reusing the par-

ent graph ordering that is faster than the naive approach of complete reordering

(Chapter 3).

2. Multi-robot Pose Graph Initialization: Factor Graph is also referred as Pose Graph

in the SLAM context. This chapter introduces a new type of error function used

as a factor in the factor graph to estimate the globally consistent trajectory for

the robots starting at unknown relative initial positions.

3. Multi-robot Data Association: This is another common problem in multi-robot

mapping that deals with unknown robot identity during a robot-robot encounter.

The experimental real world dataset has colored fiducials attached to the robots

and the environment. An improved version of Viola-Jones rapid detection [8] for

identifying the fiducials is developed and the computational complexity is studied

(Chapter 6.1).

In the reminder of this chapter, I lay down the reasoning leading to my thesis.
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1.2 Efficient Factor Graph Fusion

In order to be useful for a multi-robot system, SLAM needs to perform at real-time.

Offline or batch solutions to SLAM means the robot has to wait until the calculation

for the update is finished. Even in the case of multiple robots with a centralized map-

ping capability, quicker update times are always useful. With the centralized system

calculating the best estimate based on measurements received from all the robots, an

update sent back to the individual robots could be used to correct or improve the local

estimates.

A real-time algorithm should also be able to update the system incrementally. This

means that the centralized system should just require the new set of measurements from

the individual robots taken after the last time they communicated to make an update.

SLAM by nature itself is a sparse problem with the measurements connected temporally

almost always. The centralized system should also be able to calculate an update by

just using a local portion of the graph being impacted by the new measurements. For

example, the measurements from a robot moving down a particular aisle in a retail store

are completely independent of the measurements and observations made in a different

and far away aisle. So a centralized system recalculating the estimates of the unaffected

portions of the map is not a wise option. This incremental requirement for SLAM

problem is well studied, particularly by Kaess and Dellart in [9] and [10]. By using the

formulation presented in their work and reusing the variable ordering of the graph being

combined we come up with an efficient graph fusion strategy (Chapter 3).

1.3 Multi-robot Pose Graph Initialization

The measurements from multiple robots must be globally consistent to build a unified

map of the environment. In order to do this, all the robots should have a prior knowledge

about their relative initial positions. It is not necessary or a fair assumption to consider

that all the robots of a multi-robot system start at the same position on the map.

Any arbitrary value to the initial position will lead to a conflict during a robot-robot
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encounter in terms of global map alignment. For example, in the case of multiple robots

navigating in a large retail store across distinct aisles, lack of knowledge about each

robot’s initial position gives the freedom to all the independent trajectories to align

together in several possible ways. Although there is a closed form solution to resolve the

alignment issue with a single robot-robot encounter [6] the devised algorithm should be

able to continuously and incrementally integrate the incoming measurements to refine

the alignment error.

The encounter could also be indirect in which multiple robots visit the same portion

of the environment at different time instants. In this case, the variable representing the

pose of the landmark (or common portion of visit among different robots) is also involved

in alignment estimation. It is therefore essential for the algorithm to incorporate indirect

encounters in the alignment of the map. In other words, aligning the map is same as

finding the globally consistent initial pose for all the robots. A cost function that tries to

minimize the alignment error and also supports multiple encounters between the robots

is formulated and optimized in Chapter 4.

1.4 Multi-robot Data Association

Data Association, in general, is an important component of SLAM. It is the process

of recognizing previously visited landmarks in the environment to refine the map and

the robot’s path. There are several ways of extracting the features of interest (land-

marks) from the environment, ranging from wireless network-based to computer vision

techniques. With multiple robots in place the identity of the fellow robots should also

be identified on top of the landmarks in the environment. The data association engine

should be able to recognize both the landmarks in the environment and the robot IDs

from the extracted features. Simultaneously, these type of sophisticated measurements

should not consume a large amount of time as it introduces the problem of synchroniza-

tion and scheduling.
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In this thesis, an object detection based data association is used to demonstrate the

results with the experimental dataset. Although this is not the main concentration of

the thesis, an improved Viola-Jones rapid object detection [8] is devised to work in the

multi-channel image space. As it is able to use multiple image channels beyond color

(like depth and intensity), detection could be performed at a much lower resolution

saving time per scan. Chapter 6.1 presents a theoretical study of the time complexity

of the improved algorithm.

1.5 Organization

The remainder of the dissertation is organized as follows: The background and related

work is discussed separately for factor graph ordering and multi-robot map alignment in

Chapter 3 and Chapter 4 respectively. The next chapter formally introduces the factor

graph and the Bayes tree data structure often used throughout my work. In Chapter

2, a set of key terminologies from graph theory and sparse linear algebra literature

are also explained for the sake of better understanding and completeness. The novel

algorithm to quickly find the variable ordering of the fused graph is presented in Chapter

3. Experimental results on the standard real world datasets from the sparse linear

algebra literature is also presented at the end of Chapter 3. Chapter 4 deals with the

problem of pose graph initialization or map alignment and gives a solution by devising an

appropriate cost function and “global nail”. A detailed numerical section, sensor models

& software library used and demonstration of experiments is presented in Chapter 5.

The conclusions and the potential future work are also discussed in the same chapter.

Finally, Chapter 6.1 presents the improved rapid object detection for multi-channel

images.



Chapter 2

Multi-robot Smoothing and

Mapping

In this chapter, I will review the SLAM formulation using probabilistic inference as pro-

posed by Dellaert and Kaess [11] but for the scenario of multiple robots. It is referred

as the full SLAM problem as it contains the entire trajectory and all the landmarks

in the state vector. The solution to the SLAM problem using the recent pose graph

representations has garnered much attention because of their computational efficiency

and robustness. In our work, we will be using the Incremental Smoothing and Mapping

using the Bayes tree (ISAM2) [10] as the optimization algorithm for SLAM. Improve-

ments on efficiency of variable reordering for combined graphs, support for cooperative

mapping and multi-robot relative pose initialization are demonstrated as an extension

to ISAM2. I will also introduce a few key concepts and terminologies of factor graph

[7] aiding in the better understanding of the contributions in this thesis. A factor graph

is a type of probabilistic graphical model which represents the factorization of a prob-

abilistic distribution function. They are used to model complex estimation problems

having wide range of applications in robotics. Formulating the SLAM problem using

the factor graph, also known as pose graph in the robotics literature, opens the door

for the application of several probabilistic inference algorithms. Although the proposed

variable reordering is applicable to any general sparse linear system, our research is

multi-robot SLAM and we will use this as an example for formulation throughout the

7
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paper. However, to demonstrate its capability outside SLAM, we present some results

on the real-world datasets from SuiteSparse [1] in Chapter 3.

In the following section, I will describe the graph structure underlying the multi-

robot SLAM which leads to the optimization problem. I then briefly explain the various

factorization schemes available upon linearization. I continue with providing an insight

on how the various components of the graph are linked with their equivalent matrix

representations. The chapter concludes by providing sufficient motivation and getting

into the crux of the contribution i.e. efficient variable reordering for fused factor graphs.

2.1 Cooperative SLAM as Probabilistic Inference

In the case of SLAM, the set of constraints obtained from the proprioceptive sensors like

odometry measurements, inertial measurement units (IMUs) and exteroceptive sensors

like range (LIDAR) and vision measurements form a Markov chain that connects all the

variables to be estimated. Consider a single robot navigation task whose pose variables

are given by X = {xi}i=Ni=0 , input commands by U = {ui}i=Ni=1 , sensor observations by

Z = {zk}i=Mk=0 and the landmarks as L = {lj}j=Kj=1 . The belief network showing the

interrelationship between these variables is given in Figure 2.1. The estimation of these

variables is given by the following probabilistic formulation:

P (X,U,Z, L) = p(x0)
N∏
i=1

p(xi | xi−1,ui)
M∏
k=0

p(zk | xik , ljk) (2.1)

where p(x0) is the prior over the initial pose of the robot, p(xi | xi−1,ui) represents

the process model or the motion model that gives the next pose xi based on the control

input ui and p(zk | xik , ljk) represents the measurement model. The measurement

model is parametrized by the current pose xi that is obtained from the motion model.

Throughout this explanation, I assume known correspondence between the landmark

and measurement (ik, jk). However, in our experiments this correspondence is obtained

from data association as described in Chapter 6.1.
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Figure 2.1: The belief network showing the cause-effect relationship of a robot navi-
gation scenario. The robot (red) is given action inputs (plain) to navigate and collect
landmark (yellow) measurements (blue). Same landmarks detected at multiple observa-
tions from a single pose indicates duplication which will be solved by data association.

I consider Gaussian noise in the process and measurement models following the

standard assumption in SLAM literature [12]. The below formulation differs slightly

from the typical way it is done in the SLAM papers as needed for our implementation

and walking through it would provide a clear picture. The process model relating the

previous pose xi−1 and the control input ui with the ground truth value of current pose

xi is:

xi = f(xi−1,ui) + wp (2.2)

where f(.) is the odometry model and wp is the normally distributed zero mean process

noise with variance Λ. The previous pose xi−1 is obtained from recursion and a prior

over the very first pose is provided as a starting point. The equation can be understood

as expressing the gap between the model and the ground truth with noise wp ∼ N (0,Λ).

Since this noise parameter only captures the local variation between two poses it is a valid
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approximation owing to data coming from sensors at a high frequency. We also use point-

to-line metric based Iterative Closest Point (ICP) [13] for laser scan-matching which is

another source for obtaining local transform measurement between every successive pose

of the robot. The laser scan matching model is given by:

xi = xi−1 + s(di−1,di) + ws (2.3)

where s(.) is the laser scan-matching model, di−1 and di are the scan ranges obtained at

xi−1 and f(xi−1,ui) respectively and ws is the normally distributed zero mean process

noise with variance Ω. A curious reader can refer Appendix 2 [update] for a better

description of motion and scan-matching models. The measurement model relating the

current pose obtained from the process model, the landmark pose lj and the ground

truth landmark pose zk is:

zk = h(f(xi−1,ui) + wp, lk) + wm (2.4)

where h(.) is the measurement model, wm is the zero mean Gaussian measurement noise

with variance Γ. Using the above Equations 2.2, 2.3 and 2.4 to express the probability

distributions in Equation 2.1:

p(xi | xi−1,ui) ∝ exp

(
−1

2

(
1

8
‖xi−1 + s(di−1,di)− f(xi−1,ui)‖2Ξ +

1

2
ln

| Ξ |√
| Λ || Ω |

))
(2.5)

where

Ξ =
Λ + Ω

2

p(zk | xik , ljk) ∝ exp

(
−1

2

(
1

8
‖zk − h(f(xi−1,ui) + wp, lj)‖2Ψ +

1

2
ln

| Ψ |√
| Λ || Γ |

))
(2.6)

where

Ψ =
Λ + Γ

2

The distance measure raised by the exponential term in the above equations are given

by the Bhattacharyya distance [14] between the noise distributions of different sensor

models. It is more reliable than the usual Mahalanobis distance formulation for finding

the distance between distributions of different standard deviations.
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Remark: We denoted xi as the ground truth value of the current pose. However, in

practise ground truth is either not available or extremely difficult to obtain. But it has

to be noted that none of the above equations in this section has xi term on the right hand

side. This means that we do not require the ground truth for any of our calculations and

only require the previous pose xi−1 which is obtained by forward simulating the process

model during the last iteration. Effectively, all that is represented by the Equation 2.5

and 2.6 are the distributions of error between various sensor models.

2.1.1 Formulating as Optimization

The optimal estimate of the unknown variables is obtained by minimizing the error dis-

tribution. The error distribution that is obtained in the previous subsection eventually

becomes the cost function to be optimized. The error magnitude given by ‖.‖2 in Equa-

tion 2.5 and 2.6 has to be minimum for the probabilities to attain maximum. Note that

the constant natural logarithm term is immaterial in the optimization. This is called as

Maximum a Posteriori (MAP) estimate of the unknown variables. The problem could

easily be converted in to non-linear least squares optimization to take advantage of the

state-of-the-art sparse solvers based on Gauss-Newton or the Levenberg-Marquardt al-

gorithm [15]. The estimate of the unknown variables at peak probability from Equation

2.1:

Θ∗ = arg max
Θ

P (X,U,Z, L) (2.7)

where Θ = [X;L] and Θ∗ = [X∗;L∗] is the augmented state vector containing all the

state and landmark unknowns. Maximizing the above function is equal to minimizing

its negative log likelihood:

Θ∗ = arg min
Θ
−ln P (X,U,Z, L) (2.8)
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This gives the most famous non-linear Least Squares formulation of the SLAM problem:

Θ∗ = arg min
Θ

{
N

16

N∑
i=1

‖xi−1 + s(di−1,di)− f(xi−1,ui)‖2Ξ +

M

16

M∑
k=1

‖zk − h(f(xi−1,ui) + wp, lj)‖2Ψ +
1

4
ln

( | Ξ || Ψ |
| Λ |

√
| Ω || Γ |

)}
(2.9)

where ‖e‖Σ = e>Σ−1e. Although the constant natural logarithm term does not matter

during optimization it is necessary to include it in case of time varying covariance as

used by us.

2.1.2 Optimization for Multiple robots

Formulating the optimization objective for multiple robots is simple once the Equation

2.9 is given. However, the difficulty arises during real-time implementation as it involves

online fusing of multiple factor graphs and initializing the relative pose graphs. The

next two chapters exclusively contributes towards that by introducing smart numerical

techniques.

In SLAM, loop closures play an important role in significantly improving the overall

estimate of all the unknown variables. A loop introduces correlations between the current

pose and previously observed landmarks, which themselves are connected to earlier parts

of the trajectory. During an update after the loop closure, the belief is propagated all the

way through the trajectory to improve the estimate based on the rich set of information

obtained. In multi-robot scenario, such belief propagations can be very non-trivial. A

robot-robot encounter could give rise to interesting correlations between same portions

of map previously visited by both the robots. In such cases, propagating the belief

across both the trajectory increases the confidence of the overall map. Figure 2.2 shows

a belief network of a multi-robot encounter. It can be seen that there are two types of

interactions - 1) robot-robot and 2) robot-landmark-robot.

Different robots have different sensor models. This is due to variations in the wheel

diameter, LIDAR manufacturer etc. Upgrading the above symbols to multiple robots, let
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Figure 2.2: A belief network showing direct and indirect encounter in a multi-robot
scenario. Robot-robot encounters (direct) are shown by orange arrows and a robot-

landmark-robot encounter (indirect) are shown by red arrows.

Xr = {xri }r=R,i=N
r

r=1,i=0 , Ur = {uri }r=R,i=N
r

r=1,i=1 and Zr = {zrk}
r=R,k=Mr

r=1,k=0 represent the robot’s

position, control inputs and observations for different robots r ∈ 1...R. The landmarks

L need not be redefined as they depend on the environment and not on the number of

robots. Then the Equation 2.9 for multi-robot scenario becomes:

Θ∗r = arg min
Θr

{
N r

16

Nr∑
i=1

∥∥xri−1 + sr(d
r
i−1,d

r
i )− fr(xri−1,u

r
i )
∥∥2

Ξr +

M r

16

Mr∑
k=1

∥∥zrk − hr(f(xri−1,u
r
i ) + wp, lj)

∥∥2

Ψr +

1

4
ln

( | Ξr || Ψr |
| Λr |

√
| Ωr || Γr |

)}
(2.10)

where fr(.), sr(.), hr(.), w
r
p, w

r
s , w

r
m, Λr, Ωr, Γr are the process, scan-matching and

measurement model, noise and their covariance respectively. Similarly, Ξr = Λr+Ωr

2 and
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Ψr = Λr+Γr

2 . The optimization is very similar to Extended Kalman Filter (EKF) in [16]

except that they are iterated continuously until convergence.

2.2 Solving the Multi-robot Least-Square SLAM

Both Gauss-Newton and Levenberg-Marquardt proceeds by finding the step value to be

added to all the unknowns at every iteration using the approximate linear system at

a particular linearization point. To begin with, this linearization point is supplied as

initial guess on the decision variables. In other words, we work on the linearized form

of the objective function. By using first-order Taylor series approximation on the first

term of the objective function in Equation 2.10 representing the difference odometry

and scan-matching model,

xri−1 + sr(d
r
i−1,d

r
i )− fr(xri−1,u

r
i ) (2.11)

≈0xri−1 + δ0xri−1 + {sr(0dri−1,
0 dri ) + Si−1

r δdri−1 + Sirδd
r
i } − {fr(0xri−1,u

r
i ) + F i−1

r δxri−1}

(2.12)

={δ0xri−1 + Si−1
r δdri−1 + Sirδd

r
i − F i−1

r δxri−1}+ {0xri−1 + sr(
0dri−1,

0 dri )− fr(0xri−1,u
r
i )}

(2.13)

={δ0xri−1 + Si−1
r δdri−1 + Sirδd

r
i − F i−1

r δxri−1}+αααri (2.14)

where F i−1
i is the Jacobian of the process model with respect to linearization point,

αααri =0 xri−1 + sr(
0dri−1,

0 dri ) − fr(
0xri−1,u

r
i ) is the difference in odometry and scan-

matching prediction and a superscript on the left side of the variable indicate the index

number of optimization iteration, a ”0” indicates initial guess.

F i−1
r :=

∂fr(x
r
i−1,u

r
i )

∂xri−1

∣∣∣∣
0xr

i−1

(2.15)

Si−1
r :=

∂sr(d
r
i−1,d

r
i )

∂dri−1

∣∣∣∣
(0dr

i−1,
0dr

i )

(2.16)

Sir :=
∂sr(d

r
i−1,d

r
i )

∂dri

∣∣∣∣
(0dr

i−1,
0dr

i )

(2.17)
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The first-order Taylor expansion of the second term in the objective function Equation

2.10 scan-matching and measurement model is as follows:

zrk − hr(fr(xri−1,u
r
i ) + wp, lj) (2.18)

≈zrk − {hr(fr(0xri−1,u
r
i ),

0 lrjk) +H ik
r δx

r
ik

+ J jkr δljk} (2.19)

=βββri − {H ik
r δx

r
ik

+ J jkr δljk} (2.20)

where H ik
r and J jkr is the Jacobian of measurement model with respect to xrik and lrik

and βββri = zrk − hk(f(0xri−1,u
r
i ),

0 lrjk) is the measurement prediction error.

H ik
r :=

∂hr(xik , ljk)

∂f(xri−1,u
r
i )
.
∂fr(x

r
i−1,u

r
i )

∂xri−1

∣∣∣∣
(0xr

ik
,0lrjk

)

(2.21)

J jkr :=
∂hr(xik , ljk)

∂lrjk

∣∣∣∣
(0xr

ik
,0lrjk

)

(2.22)

Substituting the Taylor approximated linear system formulated in the Equations 2.14

and 2.20 back in the non-linear least squares problem in 2.10:

δΘ∗r = argmin
δΘr

{
N

16

N∑
i=1

∥∥Gi−1
r δ0xri−1 + Si−1

r δdri−1 + Sirδd
r
i − F i−1

r δxri−1 +αααri
∥∥2

Ξ
+

M

16

M∑
k=1

∥∥βββri −H ik
r δx

r
ik

+ J jkr δljk
∥∥2

Ψ
+

1

4
ln

( | Ξr || Ψr |
| Λr |

√
| Ωr || Γr |

)}
(2.23)

where δΘr = [δXr; δLr] and δΘ∗r = [δX∗r ; δL∗r ] is the step size to be added to all the

unknown variables towards minimizing the cost function. This now forms a linear least

squares problem in δΘ. The length of the state vector is given as nr = N rdrx + Krdrl

where drx and drl is the dimension of pose and landmark variables. Gi−1
r = Idr

x×dr
x

is the

identity matrix of size drx. The δdri−1 and δdri terms are not added to the state vector

as they are estimated as a part of the scan-matching process. See [Appendix] [Appendix

2] for details. The covariance terms weighting the squared norms could be removed by
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multiplying the Jacobians with the transpose of inverse square-root of the covariance:

‖e‖2Σ := e>Σ−1e = (Σ−T/2e)>(Σ−T/2e) =
∥∥∥Σ−T/2e

∥∥∥2
(2.24)

By using the relation 2.24 in Equation 2.23 we can simplify it to group all the model

specific Jacobians into single large Jacobian Ar ∈ Rm×n where m is the total number

of input measurements scaled to dimension of each measurement. The constants in the

objective function including αααri , βββ
r
i and the natural logarithm term can be grouped to

form br ∈ Rm. We obtain a over-determined system of linear equations that require

inverting a huge matrix to find the solution:

δΘ∗r = argmin
δΘr

‖ArδΘr − br‖2 (2.25)

The above optimization can be minimized by setting the derivative equal to zero. With

the assumption that we begin at a good linearization point (good initial guess) we are

bound to slide into the global minima.

2.2.1 Incremental Optimization

An optimization problem is often supplemented by an initial guess for the decision

variables. In our case, we have to supply the initial guess for the variables to be estimated

whose error will then be iteratively reduced based on the measurements. However, one

important aspect to be worried about is the source of the initial guess. Modern robots

are mostly accompanied with more sensors than necessary for localization, and hence

one of them can be utilized as the source for initial guess. But if SLAM is done as a

batch process with a fixed lag and not at real-time this again becomes a problem. This is

because, sensors like odometry encoder, LIDAR and Inertial Measurement Units (IMU)

are very good only at providing a local estimate between nearly successive pose frames

but drifts away significantly when forward integrated continuously. Figure 2.3 shows

an example comparison between a robot’s trajectory generated from dead reckoning

odometry and SLAM reconstruction. Thus, incremental optimization is beneficial in

several ways that include:



Chapter 2 Multi-robot Smoothing and Mapping 17

Figure 2.3: Left: Trajectory obtained by just forward integrating the odometry pro-
vided by robot. Right: Trajectory reconstructed after batch SLAM. It can be seen
that the plain odometry trajectory looks same as the reconstructed trajectory at the

beginning (blue triangle) but starts drifting away due to integral error.

1. Easier to provide an accurate initial guess based on local sensor information as we

have an optimized estimate for variables processed so far.

2. A good initial guess means that it is close to the optimal solution and saves a lot

of optimization time and iterations.

3. A good initial guess also significantly reduces the probability of getting trapped in a

local minima. For example, in Figure 2.3, the dead-reckoning odometry trajectory

as an initial guess for a batch SLAM optimizer is far away from the optimal solution

and may suffer local minima.

4. Finally, an incremental system gives optimal estimates on the fly and is real-time.

For our purpose, we use ISAM2 [10] as the underlying optimization algorithm.

2.2.1.1 Jacobian Decomposition

This is a well known material but discussed mainly to differentiate linear algebra algo-

rithms with graph theoretic view in the next section. A detailed study is available in

the standard textbook [17]. Matrix decomposition is a very common technique in math-

ematics and engineering disciplines to factorize the matrix into product matrices so as

to arrive at the solution faster than pure inversion. Among several methods available,

Cholesky, QR and LDL [17] decomposition are the ones commonly used by the SLAM
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community. The Jacobian matrix Ar in Equation 2.25 has a column for every variable

being estimated of size n and a row for every sensor measurement of size m. It is a very

sparse matrix owing to the fact that different measurements are recorded at every pose

variable and every measurement measures no more than a few pose variables. As there

are multiple sensors, total number of measurements are very large compared to number

of variables, i.e. m � n. With respect to time complexity, both Cholesky and QR

factorization require O(mn2) operations for dense matrices when m� n. But for dense

and sparse matrices, in practice, we have seen that both Cholesky and LDL factoriza-

tion outperform QR factorization at least by a factor of 2. However, mathematical tools

from linear algebra and graph theory literature like Gram-Schmidt orthogonalization

and Householder reflections for QR decomposition along with Givens rotations [17] for

incremental update of the square-root information matrix Rr make QR decomposition as

the most suitable choice for our purpose. Also, QR decomposition works directly on the

Jacobian matrix Ar unlike Cholesky which needs the information matrix, I = Ar
>Ar

to be computed. It is also more accurate and numerically stable compared to Cholesky

decomposition. The Qr matrix is orthogonal and is usually not formed as a part of

factorization. The QR factorization of the Jacobian matrix Ar is:

Ar = Qr

Rr
0

 (2.26)

Applying this factorization to the multi-robot linearized least-squares problem 2.25:

‖ArΘ− br‖ =

∥∥∥∥∥∥∥Qr
Rr

0

Θr − br

∥∥∥∥∥∥∥
2

(2.27)

=

∥∥∥∥∥∥∥Q>r Qr
Rr

0

Θr −Q>r br

∥∥∥∥∥∥∥
2

(2.28)

=

∥∥∥∥∥∥∥
Rr

0

Θr −

dr

er


∥∥∥∥∥∥∥

2

(2.29)

= ‖RrΘr − dr‖2 + ‖er‖2 (2.30)
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where Rr is the upper triangular square-root information matrix or square-root factor

obtained using QR factorization, Q>r br = [dr; er], dr ∈ Rn, er ∈ Rm−n and R>r Rr =

A>r Ar. For the above Equation 2.30 to attain minimum, RrΘr should be equal to dr.

This leaves the residual of the least squares problem given by ‖er‖2. Since Rr is upper

triangular, back-substitution is trivial and the estimate δΘr is added to the linearization

point to update and proceed with the next iteration.

2.3 Foundations of Matrix and Graphs

A major key to the improving performance of pose graph based SLAM algorithms is

rooted in tiny numerical optimizations developed over time. One has to analyze the

deep connections between Linear Algebra and Graph Theory in conjunction with SLAM

algorithms to understand this fact better. Due to the nature of SLAM problem, we

specifically deal with sparse graphs and matrices. Both sparse linear algebra and graph

theory has flourished over the past four decades with each being critical to other [18].

This section gives a brief grounding of terminologies frequently used in the upcoming

chapters and then examines the relationship between matrices and graphs.

2.3.1 Graph Theory Terminology

Definition: A graph G = (V,E) is a collection V of vertices and E ⊂ V × V of edges.

Informally, we think of the edges as linking the pairs of vertices that they correspond

to, and typically represents graphs by drawings in which we connect the endpoints by a

curve.

Glossary of Terms:

• A graph is simple if every edge links a unique pair of distinct vertices.

• A graph is bipartite if the vertex set can be partitioned into two sets V1∪V2 such

that edges only run between V1 and V2.



Chapter 2 Multi-robot Smoothing and Mapping 20

• A clique on n vertices, denoted Kn, is the n-vertex graph with all
(n

2

)
possible

edges.

• A complete graph on n vertices, denoted Kn, is the n-vertex graph with all
(n

2

)
possible edges.

• A graph is connected if there is a path between every pair of distinct vertices.

• A cycle is a path for which the first and last vertices are the same.

• A chord is an edge that is not part of the cycle but connects two vertices of the

cycle.

• A chordal graph is one in which all cycles of four or more vertices have a chord.

• The degree d(v) of a vertex v is the number of edges that are incident to v.

• We say that an edge e is incident to a vertex v if v is an endpoint of e.

• A path is a sequence of distinct, pairwise-adjacent vertices.

• A graph is planar if it is possible to draw it in the plane without any crossing

edges.

• A tree is a connected graph with no cycles.

• A subgraph of a graph G is another graph formed from a subset of the vertices

and edges of G. The vertex subset must include all endpoints of the edge subset,

but may also include additional vertices.

• A supergraph is a graph formed by adding vertices, edges, or both to a given

graph. If H is a subgraph of G, then G is a supergraph of H.

• A connected component (or just component) of an undirected graph is a

subgraph in which any two vertices are connected to each other by paths, and

which is connected to no additional vertices in the supergraph.
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2.3.2 Factor Graph and Bayes Tree

A formal introduction of factor graphs [7] and Bayes tree [19] is presented below. I

will also provide details on how the formulations made in this subsection relate to ones

derived previously. This section might slightly abuse the usage of symbols and hence

should not be confused with the usage in the previous sections.

2.3.2.1 Factor Graph

A factor graph is a bipartite graph G = (C,Θ, E) with two node types: factor nodes

cp ∈ C and variable nodes θq ∈ Θ. Edges epq ∈ E are always between factor nodes and

variable nodes. A factor graph G represents the factorization of a function:

c(Θ) =
∏
p

cp(Θp) (2.31)

where Θp is the set of variables θq adjacent to the factor cp. The independence relation-

ship between the factors and variables are encoded by the edges epq. Every factor cp is

a function of variables contained in Θp. Assuming Gaussian measurement models:

cpq ∝ exp

(
−1

2
‖Hp(Θp)−Zp‖2Σp

)
(2.32)

The above equation is a consolidation of detailed objective function listed in 2.23 to

minimize the net difference between prediction Hp(Θp) and measurement Zp weighted

by the covariance Σp.

2.3.2.2 Bayes Network

A Bayes net is obtained as an intermediate structure when eliminating a factor graph

into Bayes tree. Eliminating a factor graph into a Bayes tree uses a variable elimination

procedure which has roots dated 2000 years ago in Chinese and Indian literature [20]. In

the modern times, variable elimination was first implemented by C. F. Gauss in 1809 [21].

Factor graphs elimination is done using bipartite elimination game that was proposed by



Chapter 2 Multi-robot Smoothing and Mapping 22

Heggernes et al. [22]. Variable elimination is a procedure of expressing a variable in terms

of other, one at a time based on sequence given by variable ordering. On eliminating

every variable a corresponding node is introduced in the Bayes net that has conditional

variables directed towards it. The conditional variables are the independent variables

used to express the eliminated variable at every iteration. This process continues until

all the variables are eliminated in the factor graph. Thus, the structure of the Bayes net

depends on the choice of variable ordering and any operation carried out on it is specific

to that ordering. The pseudo code for a quick understanding of eliminating the factor

graph into Bayes net is present in [19]

2.3.2.3 Bayes Tree

The Bayes net resulting from the elimination of variables is chordal. This chordal graph

can be converted into a Bayes tree by identifying the cliques in the graph. This was

first intoduced by Kaess et al. in [19]. A Bayes tree is a directed tree where the nodes

represent cliques of the underlying chordal Bayes net. In this respect, Bayes trees are

similar to clique trees, but a Bayes tree is directed and is closer to a Bayes net in the way

it encodes a factored probability density. Every chordal Bayes net can be transformed

into a tree by discovering its cliques. Discovering cliques in chordal graphs is done

using the maximum cardinality search algorithm by Tarjan and Yannakakis [23], which

proceeds in the reverse elimination order to discover cliques in the Bayes net. In this

regard, as a Bayes tree is generated out of the Bayes net, the structure of the Bayes tree

is also specific to the variable ordering. From the Bayes tree it is not possible to retrieve

the order in which the variables were measured.

2.3.3 Matrix vs. Graph

In the following chapters, this thesis revolves around two main types of graphical models

and a type of tree data structure. They are central in understanding the contributions

of the work and gaining sufficient intuition on how they are related to their equivalent

matrix representations is imperative. The two types of graphical models include factor
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graphs [7] and Bayesian Network. Bayes Tree [19] is the tree data structure used widely

in this work.

2.3.3.1 Jacobian vs. Factor Graph

The measurement Jacobian Ar is the matrix of the factor graph associated with SLAM.

This statement can be understood in two stages:

1. Every block of Ar corresponds to one term in the least-squares criterion 2.23,

either a landmark measurement or an odometry/scan-matching constraint, and

every block-row corresponds to one factor in the factor graph. Within each block-

row, the sparsity pattern indicates which unknown poses and/or landmarks are

connected to the factor. Hence, the block-structure of A corresponds exactly to

the adjacency matrix of the factor graph associated with SLAM.

2. At the scalar level, every row Aj in A corresponds to a scalar term
∥∥∥Ajrδ − br

∥∥∥2

2

in the sparse matrix least squares criterion:

‖Arδ − b‖22 =
∑
j

∥∥Ajrδ − br
∥∥2

2
(2.33)

The reordering is not done across all the scalar parts of the pose and landmark

variables as done by the standard linear algebra literature. But for our case, such

a fine and granular ordering is not needed for two reasons 1) We would then be

operating on a larger matrix and hence takes longer time for finding a variable

ordering. 2) A single pose constraint or landmark measurement introduces a block

and all the scalars in them are generally non-zero. So it is better to operate on

these blocks rather than those fine scalar variables [11].

2.3.3.2 Square-root Information vs. Bayes Network

The square-root information matrix is more or less the adjacency matrix of the Bayes

net. Since it is a directed graph, the adjacency matrix is not going be symmetric.
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Nevertheless, the square-root factor Rr is upper triangular and not a symmetric ma-

trix. The arrows pointing towards any node in the Bayes net denoting the variables

on which the node is conditioned upon, is analogous to a non-zero present other than

the main diagonal in the row corresponding to that node. The Bayes net also indicates

conditional independence relationship between variables as that of a factor graph. But

the relation follows a causal direction implied by the choice of variable ordering. By

definition, although a Bayes net does not have any cycles they contain loops. Storing

and updating the Bayes net by attaching new factors and variables to a node in these

loops is intractable because 1) Changes to the direction of arrows within a clique is not

understood [19] 2) Additional variables that get affected is not elegantly traceable.

2.3.3.3 Square-root Information vs. Bayes Tree

One of the finest outcomes from The Borg Lab at Georgia Tech was incremental smooth-

ing and mapping using the Bayes tree (ISAM2) [10]. The increase in performance over

other pose graph SLAM solutions comes from using the Bayes tree [19] to represent

the cliques of the square-root factor or the Bayes net in the incremental smoothing and

mapping (iSAM). Updating the square root factor with a new measurement removes its

upper triangularity. It is made upper triangular again by using Givens rotations [17].

During this process, the new measurement row is multiplied with the Givens rotation

matrix producing new non-zeros replacing zeros in the upper triangle. The pattern in

which these non-zeros are generated is unintuitive and was not understood in the matrix

form. The new non-zero elements that are created during variable elimination is referred

as fill-in. These blocks of non-zeros relate to the cliques in the Bayes tree. The row in

Rr corresponding to the first eliminated frontal variable of any clique has non-zeros

in the positions corresponding to the rest of the variables of that clique. However, by

representing the square root factor Rr as a Bayes tree an independence relation condi-

tioned on the variable ordering is established across variables that allows us to find the

subset of variables that gets affected on adding a new measurement. This also led to

an interesting concept of just-in-time fluid relinearization that updates the linearization

point incrementally and efficient access to marginal covariances [24].
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2.3.4 Factor Graph → Bayes Network → Bayes Tree

Despite the attempts to simplify the understanding of relevant matrix-graph relation,

one may still wonder how to eliminate any arbitrary factor graph into a Bayes net and

in turn convert a Bayes net into a Bayes tree. This portion of research has spanned over

several decades and intersects different areas of study including sparse linear algebra,

graph theory, probabilistic and statistical inference, finite element analysis and numerical

analysis. It is therefore beyond the scope of this piece of work to provide a step-by-step

explanation. However, a brief visual treatment is attempted to expedite the process of

understanding in Figure 2.4 and 2.5. Some seminal works that could be referred include

[19, 20, 22, 23, 25, 26]

2.4 Variable Reordering

This is the most important section of this chapter as it is the gateway towards the set of

contributions. The most dramatic improvement in performance comes from choosing a

good variable ordering when factorizing a matrix. This variable ordering is used by the

graph theoretic algorithm called variable eliminiation, in which each variable is expressed

in terms of other variables based on the order of elimination. The order in which the

variables are eliminated has a large impact on the running time and storage of matrix

factorization algorithms such as QR and Cholesky factorization. Finding an optimal

ordering is an NP-complete problem [27], but there are numerous ordering heuristics and

approximate algorithms that perform well on general problems [3, 22]. While a great

deal of improvement in terms of storage and time complexity is obtained by using these

general purpose orderings, yet another order-of-magnitude improvement is obtained by

exploiting the structure of SLAM problem. Ordering the variables depending on the

nature and structure of the problem is not unprecedented and has been a trend in

linear algebra [28]. It is therefore valid to believe that more efficient and sophisticated

algorithms can be developed by viewing the problem as one of the computation on a

SLAM pose graph. While a large body of work is available for delivering a comprehensive
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Figure 2.4: Eliminating a factor graph into a Bayes net. The elimination order used
for converting is O = [l3, l2, l1, x4, x3, x2, x1]. The vertex of the factor graph that is
removed at every step is shown by a red dotted separator. The horizontal arrows
indicate the equivalent Bayes net on removing a factor graph vertex. The vertical

arrows point the progress within the factor graph and Bayes net.
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Figure 2.5: Converting a Bayes net into a Bayes tree by clique factorization. The
bubble around the node(s) in the Bayes net indicate the cliques found at every iteration
based on reverse elimination ordering x1, x2, x3, x4, l1, l2, l3. The color of the bubble

denotes the node being added to the same colored clique.
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or esoteric explanation about the need for variable ordering, in my thesis, I will provide

a quick overview using a practical example and simple language.

2.4.1 Variable Ordering for QR Factorization

Given a variable ordering O, the QR factorization using Gram-Schmidt process works

as follows: At every iteration, a column vector as per the sequence in variable ordering

is orthogonalized with respect to all the previously orthogonalized column vectors (the

first column vector is taken as-is). These orthogonalized vectors are unit normalized

and stacked horizontally to form the orthonormal Q matrix. The order of columns in Q

follows the same ordering as O. Given a full column rank matrix A = [a1, · · · ,an] with

inner product defined as 〈v,w〉 = v>w then uk is:

uk = ak −
k−1∑
j=1

projuj
ak, ek =

uk
‖uk‖

∀ k = 1 · · ·n (2.34)

where

projea =
〈e,a〉
〈e, e〉e (2.35)

Then Q is given as,

Q = [e1, · · · , en] (2.36)

As Q is an orthonormal matrix Q>Q = 1. The R matrix of QR factorization is now

obtained using the below step:

R = Q>QR = Q>A; (2.37)

Expanding the value of R with A = [a1, · · · ,an] and Equation 2.36:

R =



〈e1,a1〉 〈e1,a2〉 〈e1,a3〉 . . .

0 〈e2,a2〉 〈e2,a3〉 . . .

0 0 〈e3,a3〉 . . .

...
...

...
. . .


(2.38)
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The inner product 〈ei,aj〉 = 0; ∀ j < i because at every iteration k, ek is the orthogo-

nalized version of ak with el; ∀ l < k. To retain the sparsity of the square root factor

it is necessary to have as many inner products, 〈ei,aj〉, equalling 0 as possible. The

inner product of two vectors are zero if they are orthogonal or if the intersection of their

components forms a nullset. The latter is a specific case of the former. From the general

representation of R in Equation 2.38 it can be seen that, the lower the value of subscript

of e higher is its presence. So lesser the dimension of a ei for lesser values of i higher

is the probability that it does not share a component with aj . The vector ei with the

lowest dimension corresponds to a column i in A with maximum zeros. In other words,

as the columns of the Jacobian matrix A is same as the nodes of the factor graph, the

previous statement refers to node with the lowest degree. Based on the above explana-

tion, an example matrix and its equivalent factor graph with two different orderings are

factorized to show the difference in the non-zero pattern in R.

Consider a measurement Jacobian A as given below with the column number anno-

tated on top of each column:

A =

1 2 3 4 5



2 0 0 4 0

0 4 8 0 0

0 0 1 0 1

1 0 0 0 10

0 0 6 6 0

Let us assume the column elimination ordering as O = [x2, x3, x4, x1, x5]. The trans-

formed matrix AO based on the ordering O and the structure of RO on factorizing the

transformed matrix is given below:
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AO =

x2 x3 x4 x1 x5



0 0 4 2 0

4 8 0 0 0

0 1 0 0 1

0 0 0 1 10

0 6 6 0 0
0 1 2 3 4 5 6

nz = 11

0

1

2

3

4

5

6

O = [x
2

, x
3

, x
4

, x
1

, x
5

]

Figure 2.6: Left: Matrix in which the lower degree node x2, d(x2) = 1, is ordered
before the higher degree node 3, d(x3) = 3. The structure of square root factor RO

with 11 non-zero elements.

The above ordering is also performed in the factor graph and factorized into a Bayes

tree as shown in Figure 2.7

x3 | x4,x5

x2

x5

x3

x1 x4 x4x1

x3x2

x5bb

b b

b

x1,x5

x4 | x1

x2 | x3

Figure 2.7: Eliminating a factor graph into a Bayes net and in turn into a Bayes tree.
A good ordering has resulted in smaller cliques or reduced fill-in.

Whereas if the matrix is ordered by placing the vector with highest dimension or the

node with the highest degree at the first place, for example O = [x3, x4, x1, x2, x5], then

the structure of square root factor RO is as follows:
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AO =

x3 x4 x1 x2 x5



0 4 2 0 0

8 0 0 4 0

1 0 0 0 1

0 0 1 0 10

6 6 0 0 0
0 1 2 3 4 5 6

nz = 14

0

1

2

3

4

5

6

Figure 2.8: Left:Jacobian matrix with highest degree variable x3 of degree d(x3) = 3
in the first place. Right: The square-root factor with higher fill-in when compared the
ordering O = [x2, x3, x4, x1, x5]. Although the increase in non-zeros is only 4, it is very

large given the original fill-in and the size of the matrix.

Applying the above ordering in the factor graph yields a Bayes tree with a large clique

representing the fill-in as shown in Figure 2.9,

x2

x5

x3

x1 x4

x4

x1

x3

x2x5bb

b b

b

x4,x1,x2,x5

x3 | x4,x2,x5

Figure 2.9: Eliminating a factor graph into a Bayes net and in turn into a Bayes tree.
Eliminating nodes of higher degree at the beginning has resulted in larger cliques or

high fill-in.

Although ordering the variables based on the minimum degree seems to work for small

examples like the above, it quickly plummets in terms of time and storage efficiency as

the degree of the remaining nodes get affected on eliminating a variable. This change

in the degree has to be tracked separately and accounted in the algorithm. Several

previous works have showed that keeping track of the changes to the degree of the node

is the most expensive part of the algorithm [29–31]. So the above ordering is a greedy

solution that has not taken into account the changes to the degree of the neighbouring

nodes. But I hope that the magnitude of improvement achieved by such a tiny greedy

alteration serves as a motivation for the need for fast and efficient variable ordering. In
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the next chapter, I will address the idea of efficiently reusing the parent ordering when

fusing the graphs of multiple robots.



Chapter 3

Efficient Factor Graph Fusion

In the previous chapter, I described how the multi-robot smoothing and mapping is for-

mulated as a least squares problem with a flavor that is specific to our implementation.

Following that, I discussed the options to incrementally solve the least squares optimiza-

tion and the critical requirement for fast, efficient and incremental variable reordering.

A good ordering is necessary to reduce the amount of fill-in which refers additional

non-zeros introduced during elimination. However, it has been shown that finding an

optimal ordering for an arbitrary factor graph is NP-complete [27]. An optimal ordering

called perfect elimination ordering [32] exists only if the factor graph is chordal. SLAM

graphs are generally not chordal mainly due to revisiting the landmarks after a long

time and loop closures that connect two far away nodes. Loops in the trajectory can

result in a significant increase in computational complexity through a large increase of

non-zero entries in the factor matrix. In addition to the typical loop closures in the

SLAM problem, a multi-robot scenario could introduce several non-trivial loop closures.

This is because for an indirect encounter between the robots, a big chunk of graph with

several measurements from one robot has to combined with a far away node of another

robot. Such an update is equivalent to loop closure in terms of computation and stor-

age. Despite that, it is important in a multi-robot scenario to fuse the factor graphs

of individual robots to improve the overall estimate. This requires finding the variable

ordering of the fused factor graph.

33
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To combat this scenario, this chapter comes up with a methodology to quickly find

the variable ordering of the combined graph using the ordering of the participating factor

graphs. The worst case here would be to do a complete reordering of the fused graph.

We provide a complexity analysis to compare the time performance of both the options.

The outline of this chapter is as follows: In the next section, I will provide a relevant

literature survey from linear algebra and graph theory community. Following that, I will

dive deep in to Bayes tree data structure that was introduced in the previous chapter

to establish incremental variable ordering. Then I will formally verify that the proposed

ordering does not violate any of the standard rules to be obeyed. Finally, I will explain

the proposed approach and display results on a standard dataset from sparse linear

algebra community.

3.1 Related Work

Solving the least-squares and linear programming problem is central to several scientific

and engineering applications. Our focus in on sparse least-squares optimization with

primary applications to SLAM. Smoothing formulation of SLAM as a least-squares with

sparse graphs was first done by Lu and Milios [33]. Their method provides both batch

and sequential procedure but performs the expensive inversion of the information matrix

for updates. Although several smoothing based SLAM solutions have been developed

based on conjugate gradient [34], gradient descent [35], relaxation [12] and multi-level

relaxation [36], we only deal with the ones that derive performance improvements from

information matrix decomposition.
√
SAM by Dellaert [37] was the first work to replace

expensive matrix inversion with sparse matrix factorization for the SLAM problem. It

mentioned the dramatic performance improvements that could be derived from good

variable ordering but is done only on a batch setting. The two key algorithms that

improved on the least-squares formulation of SLAM using the premise set by [37] include

ISAM [9] and ISAM2 [10]. Both of these works combine the formulation in [33] with the

interchangeable linear algebra and graph theory flavor introduced in [37] and provide

some additional improvements in terms of incremental optimization. Recently, Agarwal
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and Olson [38] provided different variable reordering strategies to SLAM and explained

the critical role played by variable ordering in different solutions to SLAM.

In our work, we use ISAM2 using the Bayes tree [19] [10] as the underlying state

estimation engine because it is exact, incremental and solves the full non-linear problem.

While tremendous amount of work is done to extend the general SLAM algorithms to

multiple robots, smoothing and mapping for multi-robot SLAM is not explored much.

The most relevant ones include [39] by Kim et al., C-SAM [40] and Tectonic SAM [41].

Although these algorithms are based on Smoothing and Mapping, Tectonic SAM ad-

dresses only single robot, batch mapping and the other two algorithms only address the

fundamental multi-robot mapping issues like map-aligning and relative pose initializa-

tion. Important graph based SLAM approaches that build independent sub-graphs and

merge those graphs include [35], [42] and [43]. Folkesson’s [35] reduces the graph com-

plexity by collapsing parts of the robot trajectory into a cluster called star-nodes. Frese’s

[42] and [43] gives a hierarchical approach by exploiting the square root information and

representing the Cholesky factors as a tree data structure. They provide a highly effi-

cient algorithm but employ numerous approximations and none of these partition based

algorithms are extended to multi-robots. Also, several recent developments in the alge-

braic graph theory community like hypergraph nested dissection ordering [44] and exact

graph partitioning algorithm [45] have not been utilized in solutions for SLAM. Clearly

from the above discussion, previous research has either been done in graph merging for

single robot SLAM or, multi-robot SLAM that does not deal with combining the graphs.

While solving large linear systems, it is a very common preprocessing step to order the

columns of the matrix A to be factorized to keep the factorization as sparse as possible.

Finding the variable ordering involves finding the permutation matrix P which is right-

multiplied with A to obtain the ordered matrix AP . Cholesky or QR factorization of AP

is more sparser and requires less storage than factorizing A. Ordering schemes have been

proposed for different class of problems that include - 1) A being symmetric 2) A being

unsymmetric. As finding the optimal ordering is NP-complete [27] various heuristics

have been developed. The common aspect across all the approaches is to eliminate the
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nodes in the ascending order of their degrees. This is called as the minimum degree

algorithm which is derived from a method first proposed by Markowitz in 1957 [46]

for non-symmetric linear programming problems. The symmetric matrix version was

formalized by Tinney et al. [47]. The ordering of the nodes directly on the graph

data structure was derived by Rose [48]. Initial algorithms for symmetric matrices also

include approximate minimum degree (AMD) [49] and nested dissection [50]. In case of

the unsymmetric matrix such as Jacobian A, it is converted to symmetric information

form A>A to be used by these ordering schemes. State-of-the-art algorithms like column

approximate minimum degree ordering (COLAMD) [3] works directly on the non-zero

pattern of A without explicitly calculating A>A. A brief survey of the evolution of

minimum degree ordering is consolidated by George [51]. Nested dissection is a divide

and conquer heuristic based on graph partitioning that has the advantage of reordering

the matrix into a form suitable for parallel execution. Very recently, nested dissection

has been extended to unsymmetric hypergraphs in [44]. Although there is a significant

amount of research in developing a near to optimal variable ordering tailored for various

graphical models, to the best of our knowledge, there is no work in finding an ordering

for the graph obtained by fusing ordered graphs.

3.2 Bayes Tree for Variable Ordering

Topologically, the Bayes net described in Section 2.3.2.2 is a chordal directed acyclic

graph. By identifying cliques (groups of fully connected variables), the Bayes net may

be rewritten as a Bayes tree. For full details about the clique-finding algorithm, see

Kaess et al. [19]. Within the Bayes tree, each node represents the conditional density of

the clique variables (also called as frontal variables), Θj , given all of its neighbors (also

called as separators), N(Θj):

p(Θ) = Π(Θ | N(Θj)) (3.1)

During elimination of the factor graph (assuming the Bayes net is formed), the leaves of

the tree are built first, and factors on the conditional variables are passed up the tree to
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l3 | x4

l1,x2,x1

l1 l2

x1 x2 x3 x4

l3

x4,x3 | x2

l2 | x2,x3

p(l3 | x4)p(x4 | x3, x2)p(x3 | x2)p(l2 | x2, x3)p(x2 | x1)p(l1 | x1, x2)p(x1)

p(l3 | x4)p(x4 | x3, x2)p(l2 | x2, x3)p(x3 | x2)p(l1, x2, x1)

Figure 3.1: Bayes network and Bayes tree representations of the factor graph exam-
ple used in last chapter with the elimination order O = [l3, l2, l1, x4, x3, x2, x1]. The
factorization of the factor graph joint probability density is mentioned for both the

representations.

their parents. Back-substitution then proceeds top-down from the root clique, which is

eliminated last, as it has no external dependencies. The solution of the frontal variables

of the parent clique are passed down the tree to the children, which are guaranteed to

depend only on the frontal variables of their ancestors.

Like the Bayes net, the structure of the Bayes tree is affected by the selected variable

ordering. The Bayes net and Bayes tree representations are interchangeable. This is

shown in the Figure 3.1 with the factor graph example used in Section 2.3.4. The terms

p(l3 | x4), p(x4 | x3, x2), p(x3 | x2), p(l2 | x2, x3) are present in both the factoriza-

tions. It can be shown using the chain rule in Bayes theorem that p(l1, x2, x1) = p(l1 |

x1, x2)p(x2 | x1)p(x1). Although both the representations are same given the variable

ordering, modeling the inference using a tree structure is often more convenient and in-

tuitive: elimination passes information up the tree, while back-substitution propagates
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information down the tree.

At every iteration, the update can be a new variable to be added to the graph or

a new measurement factor connecting already existing variables. In both the cases,

the square-root information of several variables other than the new variable in different

cliques of the Bayes tree has to be updated. This could either be done by 1) Going back

to the factor graph, adding a new measurement and/or a variable, reordering all the

variables and completely factorizing the graph from scratch or 2) Partially recovering

the portion of factor graph to which the new measurement and/or a variable should be

added, reordering the partial graph and factorizing it. The second option is incremental,

efficient and hence preferable, but would require the knowledge of subset of variables

and factors that gets affected on touching a variable. This is exactly obtainable from

the formulation of the Bayes tree.

A new variable is always accompanied by a measurement. When a new measurement

is added, for example a factor c′(xj , xj′), only the paths between the cliques containing

xj and xj′ (respectively) and the root are affected. The sub-trees below these cliques are

unaffected, as are any other sub-trees not containing xj or xj′ . The example in Figure

3.2 demonstrates the addition of a new pose node to the factor graph and Bayes tree

example used in the previous chapter in Figure 2.5.

This in turn may move the estimates far off the current linearization point or add

new non-zero components to the square-root factor. The former would require updating

the linearization point and the latter requires reordering the variables. But as the set of

variables that will be affected is known in advance it could be leveraged by changing the

linearization point or reordering and factorizing only those variables. This relationship

is understood by the construction of Bayes tree and was not obvious within the matrix

framework [19].
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l1

x1 x2 x3 x4

l3 | x4

l1,x2,x1

x4,x3 | x2

l2 | x2,x3

b

b

b

b b b bbb b b b x5b

l1

x1 x2 x3 x4 x5b

l3 | x4

x2,x1, l1

x4,x3 | x2

l2 | x2,x3 x5 | x4

Figure 3.2: Adding a new variable with measurement to a factor graph example
described in the previous chapter. It should be noted that only a part of the Bayes
tree (red filled nodes) to which the new variable is added is recovered, reordered and
factorized. The unaffected cliques (purple filled nodes) are attached back to the new

tree. The new variable added is shown used a red broken circle.

3.2.1 Multi-robot Pose Graph Fusion

From the construction of the Bayes tree discussed so far and the example in Figure

3.2 it is clear that the Bayes tree is suitable for updating the square-root information

incrementally. With ISAM2 [10] as the SLAM algorithm, a centralized cooperative

mapping system will require fusing the maps from individual robots represented as the

Bayes tree. In case of centralized mapping it could be assumed that every robot’s factor

graph is accessible always with no restrictions on bandwidth or that the robots share

information only when they encounter. For our experiment, we assume that the robots

share information only when they encounter. Also, our procedure does not require

both the robots to identify each other when they encounter and work even if one robot

identifies the other. Knowing the subset of variables using the Bayes tree which alone

can be reordered could easily be extended to the situation of fusing multiple robots’ pose

graphs.

Direct encounters between robots introduce a constraint between the cliques of two

different Bayes tree with pose nodes as the frontal variables. As a direct encounter
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relates the recent pose of the robots, the constraint joins the nodes near the root of the

tree. The argument that the recent poses of the robot need not necessarily end up near

the root of the tree after variable ordering will be addressed later. Since a connection is

made between the nodes near the root of the tree the total number of affected variables

is minimal. Whereas an indirect encounter occurs when two robots observe the same

part of an environment (not necessarily at the same time), allowing a constraint of type

robot-landmark-robot between the robot poses pivoted by the landmark pose, to be

estimated. They could also be transformed into a constraint between the positions of

two robots at the respective time steps. This type of constraint connects the recent

pose of one of the robots from which the landmark is observed with a older pose of

another robot from which the same landmark was observed. Figure 3.3 gives a pictorial

step-by-step procedure to combine two Bayes trees.

In Figure 3.3, the factor graph of two robots exploring the environment is considered.

Row 3 indicates the equivalent Bayes tree based on some variable ordering O1 and O2.

It can be seen from the common variable among the factor graphs that both the robots

have visited the same landmark l1. To fuse those Bayes trees, only the path between

the clique containing the landmark frontal variable and root clique is recovered as factor

graph. The factor graph centred over the common variable is fused, reordered and

eliminated back into a Bayes tree. The unaffected portions of the individual Bayes

tree is merged back. These unaffected portions are shown as colored cliques in row 3

of Figure 3.3. While merging back the unaffected portions, the clique containing the

earliest eliminated variable out of all the conditional variables of the unaffected clique

is considered as the parent clique. For example, in Figure 3.3, it can be seen in the

second Bayes tree that the unaffected green colored clique with frontal variable x2
1 has

two conditional variables x2
2 and x2

4. It is attached to the clique containing the earliest

eliminated variable, according to O2, as the frontal variable, x2
2. However, in row 5

containing the fused Bayes tree, the same unaffected clique is attached to the clique

with frontal variable x2
4 as it is eliminated before x2

2 according to Ofused. The idea here

is that, during elimination information is propagated up the tree and every eliminated
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Figure 3.3: Fusing multiple Bayes trees to calculate the best estimate. Only the af-
fected part (inside blob in row 3) of both the Bayes trees are recovered and refactorized.
O1, O2 and Ofused are the variable ordering of first, second and the fused factor graph.
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variable will have the variables yet to be eliminated as its ancestor if there is a fill-in

between them.

3.3 Formal Verification

Before proceeding to the proposed algorithm, it is important to formally validate that

the operations carried out and the utilization of Bayes tree does not violate any of

the standard assumptions, works for any general class of factor graph problems and

is backward compatible. Firstly, when multiple robots visit several same regions of

the environment the number of common landmarks between the graphs go up. The

Bayes tree would be used to extract the affected subset of variables when combining the

graphs with multiple common variables. It has to be verified that these affected subset

of variables do not form disconnected components. Secondly, it has to be ensured that

the root clique always contains more than one frontal variable. This is needed both in

terms of the property of the Bayes tree and the requirements of the software optimizer

used by us, [52]. To ensure these the following two proofs are given: In the following

write-up a variable in/of the clique usually refers to the frontal variable of the clique.

Let us consider the simple case of merging two bipartite graphs G1 = (C1,Θ1, E1) and

G2 = (C2,Θ2, E2) with their Bayes tree function given as Bi(Ci). The Bayes tree function

returns the union of set of variables in the ancestor cliques of the clique containing

each and every variable in Ci, i = 1, 2 here. The graph is merged only when the set

of common variables C1 ∩ C2 6= ∅. The set of all affected variables obtained from the

Bayes tree is given as Cfused = B1(C1) ∪ B2(C2) ∪ (C1 ∩ C2). The fused graph is then

given as Gfused = (Cfused,Θfused, Efused) where Efused = {(u,w) | [u,w ∈ C1 ∩ (u,w) ∈

E1] ∪ [u,w ∈ C2 ∩ (u,w) ∈ E2]} and Θfused = {θ(u,w) | θ ∈ Θ1 ∪Θ2;u,w ∈ C1 ∪ C2}.

Theorem 3.1. The set of affected variables from the Bayes tree do not form a discon-

nected graph.

Proof. The common variables forming the separator when combining the factor graphs

can have multiple connected components. However, the subset of affected variables ob-

tained by recursively traversing up the Bayes tree from every common variable forms a
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single connected component. It follows from the fact that, although the common vari-

ables might be present at different leaf cliques or non-leaf cliques, different branches or

different depths, they all have a single root clique. Recovering all the common variables

with all its ancestors will eventually be connected by the frontal variables of the root

clique. It is mathematically verified by showing that the multiplicity of 0 as an eigen-

value of the Laplacian matrix of the fused graph is 1. The Laplacian matrix LN×N of a

bipartite factor graph with N variable nodes is given as:

Lfused = Dfused −Afused (3.2)

where D is the degree matrix and A is the adjacency matrix of the graph. Simplifying

the above equation:

Lj,k :=


deg(vj) if j = k

−1 if j 6= k and vj is adjacent to vk

0 otherwise

(3.3)

So from the above general equation it can be seen that Lfused is a square matrix of size

| Cfused | with the degree, deg(Cn); n = 1 . . . N , along its diagonals. The degree of a

variable node is equal to number of edges that are incident to it from other variable

nodes. This is also equal to the number of negative ones in every column other than the

diagonal element as the number of adjacent variable nodes is equal to degree of the node.

Therefore a row transformation such as R1 = R1 +R2 + . . .+Rn will result in all-zeros

in row 1. Hence, the Laplacian matrix is rank deficient and the determinant is zero. It

follows from the Invertible Matrix Theorem (IMT) [53] that a LN×N matrix is invertible

if and only if 0 is not an eigenvalue of LN×N . But as the rank goes down by 1 (not more

than one row could be zeroed by this transformation), only the constant term vanishes

from the characteristic polynomial while finding the eigenvalues. Hence the multiplicity

of 0 in the eigenvalue multiset is 1 which equals the number of connected components.

This proves that the set of affected variables forms a connected graph. In other words,

the set of affected variables from the Bayes tree do not form a disconnected graph.
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Theorem 3.2. On fusing the graphs, the root clique of the Bayes tree will have more

than one frontal variable.

Lemma: There is always a path between two nodes in the fused factor graph.

Proof. It naturally follows from the previous theorem that the fused factor graph forms

a single connected component and the well known fact that any two nodes are joined by

a path in an undirected graph.

Lemma: The edge between the last and last but one node always fills-in, if all the

nodes between these two nodes are eliminated before these two nodes.

Proof. The concern here is that variable ordering an arbitrarily mixed graph should not

defy the standard norms of the root clique. Let the factor graph obtained by joining that

of two robots be the one obtained from a single robot exploration task itself. Structurally,

the fused factor graph is not any special when compared to the individual graphs. So

any variable ordering is valid but may end up with a high fill-in. In the equivalent matrix

representation, every column eliminated will leave changes with the rest of the columns

yet to eliminated. By proceeding this, the last but one column in the elimination order

will leave the information (make changes) with the last column to be eliminated. This

information left by the last variable to the last but one variable is represented by an

arrow pointing to from the last variable node to the last but one variable node. Therefore

there is always a factor of the form p(last but one variable | last variable) at the second

iteration of clique-finding algorithm which forms the root clique with these nodes as the

frontal variables.

3.4 Ordering the Fused Graph

Let G1 = (C1,Θ1, E1) and G2 = (C2,Θ2, E2) be two bipartite factor graphs that has to be

fused. The Bayes tree function Bi(Ci) is same as that defined in the previous section. Let

O1 and O2 be the COLAMD [3] orderings of G1 and G2 respectively. The factor graphs

G1 and G2 are eliminated based on the ordering O1 and O2 as explained in Section 2.3.4
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and stored as the Bayes tree [19]. Let Ccommon = C1 ∩ C2 represent the set of common

variables among the graphs. We inherit the definition of Cfused, Θfused and Efused

from the previous section that gives the fused graph Gfused = (Cfused,Θfused, Efused).

The set of variables that get impacted are obtained from the Bayes tree as Caffected1 =

B1(Ccommon) and Caffected2 = B2(Ccommon). It should be noted that Caffected1 ∩Ccommon =

∅, Caffected2 ∩ Ccommon = ∅ and Cfused = Caffected1 ∪ Caffected2 ∪ Ccommon.

3.4.1 Fusion Ordering

Ordering a fused graph is same as finding the permutation matrix P1 that has to be

post-multiplied with the factor graph matrix or the Jacobian matrix A. A permutation

matrix is a square binary matrix that has exactly one entry of 1 in each row and each

column and 0s elsewhere. The graphs of multiple robots are fused only when there are

common variables among them, C1 ∩ C2 6= ∅. Let the ordering O1 = [o
c11
1 , o

c21
1 , . . . , o

c
n1
1

1 ]

and O2 = [o
c12
2 , o

c22
2 , . . . , o

c
n2
2

2 ] where n1 =| C1 |, n2 =| C2 |, {c1
1, c

2
1, . . . , c

n1
1 } ∈ C1 and

{c1
2, c

2
2, . . . , c

n2
2 } ∈ C2. Consider the functions o1(v) and o2(v) that gives the ordering

value of the variable v ∈ C1 and v ∈ C2 respectively. For instance, o1(cn1
1 ) = o

c
n1
1

1 . With

these notations, the relative ordering of the fused graph, Gfused is derived below.

The relative ordering of the Caffected1 variables of the Gfused graph is given as:

Ofused1 = arg sort

(⋃
j∈C1

o1(j)

)
(3.4)

where argsort gives the original position of each element in the sorted array. For example,

the above operation on the array [41, 23, 12, 8, 22] gives [4, 3, 5, 2, 1]. The relative ordering

of the Caffected2 variables of the Gfused graph is given as:

Ofused2 =| Ofused1 | +arg sort

(⋃
j∈C2

o2(j)

)
(3.5)
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The common variables are positioned towards the end of the ordering and are eliminated

at last:

Ofusedcommon =| Ofused1 | + | Ofused2 | +arg sort

( ⋃
j∈Ccommon

ocommon(j)

)
(3.6)

Thus, using the parent orderings of the graphs G1 and G2 the relative ordering of Gfused

is given by the concatenated array Ofused = [Ofused1 , Ofused2 , Ofusedcommon]. The permutation

matrix P 1 ∈ [0, 1]|N |×|N | and | Ofused |= N where N =| Ofused1 | + | Ofused2 | +

| Ofusedcommon |.

P 1
j,k :=


1 if j = Ofusedk

0 otherwise

(3.7)

Therefore, in an event of fusing the graphs containing common set of nodes, the variables

can be ordered by finding the permutation matrix and post-multiplying with the factor

graph Jacobian matrix. The fusion ordered factor graph is then factorized using QR

decomposition to obtain the estimate on combining the information from multiple robots.

This fused graph is then converted to the Bayes tree using the proposed ordering and

attached back to the unaffected portion of the Bayes tree. In this way, the incremental

updates could be generated by reusing the parent ordering.

3.4.2 Relation with Nested Dissection

The idea of reusing the variable ordering by finding the relative ordering was inspired

from the working principle of nested dissection [50]. Although the principle of nested

dissection has not been employed for reusing the variable ordering, in the SLAM context,

it has been used for recursively partitioning the graph into multi-level submaps in [54].

Nested dissection is a fill-reducing ordering method based on the divide-and-conquer

principle. It is a recursive algorithm that finds a graph separator at every iteration,

which on removal splits the graph into multiple connected components. This process

continues until a point at which the size of the connected components are small and

ordering them is trivial. These simpler graphs in the leaf nodes are ordered using some

standard variable ordering technique like COLAMD [3]. The backtracking starts by
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ordering the leaf nodes containing these smaller graphs first and continues till it reaches

root node. By this process the nodes in the first separator are placed towards the end

of the variable ordering.

Reusing the variable ordering is similar to depth 1 nested dissection. Evidently, the

nodes in Ccommon forms a separator that divides the graph Gfused into child graphs

Gaffected1 and Gaffected2 where Gaffectedi = (Caffectedi ,Θaffected
i , Eaffectedi ), Θaffected

i |

{θ(u,w) = θ ∈ Θi;u,w ∈ Ci}, Eaffectedi = {(u,w) | u,w ∈ Ci ∩ (u,w) ∈ Ei}. If the

ordering of the graphs Gaffected1 and Gaffected2 could be reliably estimated using the par-

ent ordering, the divide and conquer loop could be stopped and backtracked from depth

1 itself. This is exactly what is achieved by coming up with an ordering as per Equa-

tion 3.6 and post-multiplying the Jacobian with the permutation matrix P 1 as given in

Equation 3.7.

3.4.3 Numerical Stabilization

Before explaining the approach that has been used to ensure numerical stability for

matrix operations a few terminologies are introduced:

Pivoting is a common practise in matrix algorithms to add numerical stability to the

final result. In the case of matrix algorithms, a pivot entry is usually required to be

at least distinct from zero, and often distant from it; in this case finding this element

is called pivoting. Pivoting may be followed by an interchange of rows or columns to

bring the pivot to a fixed position and allow the algorithm to proceed successfully, and

possibly to reduce round-off error. Usually the element which has the largest absolute

value in the pivot row or column is chosen as the pivot element. This is because the

percentage error that accrues on using a d-digit arithmetic precision is as much lower

as the absolute value is higher. Thus pivoting on the largest element propagates the

smallest round-off errors possible.
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Given a factor graph G = (C,Θ, E), a subset M ⊆ E is defined as matching or

assignment if no two edges of M are incident to the same node. In other words, it is a

set of pairwise non-adjacent edges, i.e. no two edges share a common vertex.

The proposed ordering described in the previous section only takes the structure

into account, and not the numerical values. To stabilize the factorization and minimize

pivoting, we wish to permute large entries to the diagonal. A standard approach is to

model this as matching in the bipartite graph [55]. We use the matching permutation P 2

to permute the rows such that the large entries in every column resides on the diagonal.

The remaining rows in the originally rectangular blocks have been pushed down. All

the permutations applied on the matrix after this step should be symmetric. This

permutation step for obtaining a strong diagonal is helpful for dynamic (partial) pivoting

methods, since the number of row swaps is significantly reduced, thereby speeding up the

factorization process [55]. It is essential for static pivoting methods, because it decreases

the probability of encountering small pivots during the factorization.

In summary, the proposed fusion ordering and the numerical stabilization is applied

on the fused graph or the fused Jacobian by post-multiplying and pre-multiplying the

fusion ordering permutation matrix P1 and the matching permutation matrix P2.

3.5 Experimental Results

In this section, we present the experimental results of the proposed ordering algorithm

when applied to the real world matrices. The algorithm was tested on a 2.3 GHz core

i5 processor with 15.1 Gigabytes of memory. Figure 3.4 and 3.5 shows the non-zero

structure of the square root factor for a bunch of real-world matrix datasets which are

split and fused again using the standard COLAMD ordering [3], the relative fusion

ordering (Section 3.4) and the default order in which nodes of the graph are retrieved

from the memory respectively. It can be seen from the R matrix plot that the number of

non-zeros are close to COLAMD ordering in the proposed ordering. At the same time,

the gap in the number of non-zeros between the proposed ordering and the variable
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memory order is huge. It can be calculated that from these examples that, on an average

the ratio of the difference between number of non-zeros in the proposed ordering and the

variable memory order to the difference between the number of non-zeros in the proposed

ordering and COLAMD ordering is 8.373. Also, it can be observed that just eliminating

the variables in the order they are retrieved from the memory produces complete fill-in

in some cases.

A comparison between the three types of orderings based on time taken to factorize

the matrix after applying those ordering to the factor graph is performed in Figure

3.6. As mentioned earlier, the orthonormal Q matrix from QR decomposition is never

explicitly formed in practice and hence the value of time is only that required to compute

the square root factor R. Same experiment as before, comparing the number of non-zeros

in the square root factor obtained from different ordering is also done on 120 real world

matrices and plotted in Figure 3.7. It can be seen that the proposed fusion ordering

takes less time for factorization in many cases. This might be because the proposed

ordering is inspired from variable ordering by nested dissection and is compatible to

parallel decomposition [2].
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Figure 3.4: Comparison of number of non-zeros in the square root factor from QR fac-
torization between the COLAMD ordering (second column), proposed ordering (third
column) and the order in which the variables are retrieved (third column). The first

column is the graph representation of the matrices in their lowest energy state [1].
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Figure 3.5: Comparison of number of non-zeros in the square root factor from QR fac-
torization between the COLAMD ordering (second column), proposed ordering (third
column) and the order in which the variables are retrieved (third column). The first

column is the graph representation of the matrices in their lowest energy state [1].
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pute the square root factor R. It can be seen that the proposed fusion ordering takes
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suitable for parallel QR decomposition [2].
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Chapter 4

Multi-robot Relative Pose

Initialization

In this chapter, we address the problem of global consistency in the estimated values of

the decision variables in least squares optimization across multiple robots. The problem

roughly boils down to initialization of the robot’s relative pose in case of an encounter.

Providing a good prior over the starting point of all robots that are consistent with re-

spect to an external global frame partially solves the problem. However, it is a daunting

task and also the presence of inter-robot constraints will further refine the estimates of

the starting point of the robots. These inter-robot constraints are provided by introduc-

ing the “global nail”, that transforms the trajectory of any individual robot to global

frame, as an estimation variable. By doing this, we demonstrate the alignment of map

reconstructed by every robot based on the optimized trajectory. The next section briefly

discusses the related work. Following that, we describe our proposed methodology.

4.1 Related Work

Although the field of multi-robot SLAM has been explored significantly [5, 56–58], there

is only a small body of work available on graph based multi-robot mapping. The prob-

lem of initialization of relative poses are addressed differently within various frameworks

53
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with qualifying assumptions. Early work in multi-robot mapping like [58] assume known

starting pose of all the robots with certainty in advance. A slight development in [4]

incorporates the initialization problem within the mapping framework but assumes that

the very first encounter is perfect and hence neglects the subsequent encounters. It

further developed into acknowledging the importance of initialization in [5] and con-

sequently addressing it using the sparse extended information filter. In the context of

smoothing and mapping (SAM), the most related work include cooperative SAM (C-

SAM) [40], tectonic SAM (T-SAM) [41] and multiple pose graph SLAM [39]. Tectonic

SAM is based on the similar principle that has the global nail to represent relative pose

across different submaps of the region. It is batch algorithm for single robot. C-SAM

is a batch algorithm for cooperative mapping and is tested only on simulation using

two robots. Multiple pose graph SLAM is the one closest to our approach but does not

explicitly consider the loop closures and landmarks while merging the pose graphs.

4.2 Relative Factor Graph Initialization

It is not necessary that all the robots in a multi-robot scenario start at the same location

as assumed by several previous works. Figure 4.1 shows the factor graph of three different

robots. The factor graphs in this particular example can be considered to encode spatial

information of the robot’s trajectory and can be seen that they start at different positions

and overlap. An arbitrary value as a prior factor over the starting pose works completely

fine until a first direct encounter between the robots or indirect encounter by multiple

robots visiting the same portion of the environment. The factor graph representation

of a bunch of direct and indirect encounters is given in Figure 4.2. It is during this

event that there is a conflict between the estimates of the state variables across different

graphs and the measured local value of the encounter. This problem is resolved by

introducing the “global nail” for every individual robot’s factor graph that converts the

pose variable estimate locally consistent with the prior to the common global reference

frame. Figure 4.3 introduces the global nails that constrain multiple robot trajectories

using the relative transform from every robot frame to the common global frame. That

said, the introduction of global nails might seem to remove the need for prior over the
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Figure 4.1: Factor graphs of three different robots. For this example, it can be
considered that they also represent the spatial information of the trajectory.

initial variables. Removing the prior does not affect the local measurements between

variables but it will provide a gauge freedom for all the individual robots factor graphs.

This is extremely problematic because the good linearization point can be far away from

the variable estimates and any iterative optimization has the unintended consequence

of getting stuck in the local minima. Thus the prior over the initial variables and the

global nails are both essential to estimate the states of all the robots departing from

various and uncertain starting locations.

Using the global nail transforms the respective poses of each pose graph into a com-

mon global reference frame where the comparison becomes possible. This is illustrated

using an example encounter in Figure 4.4. The transform T 1
G and T 2

G are optimized such

that the following equation representing the error on l1 is as low as possible:

TG1 T
1
x11
l
x11
1 − TG2 T 2

x22
l
x22
1 (4.1)
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Figure 4.2: The set of direct and indirect encounters between robots in their over-
lapping trajectories are expressed. An indirect encounter is landmark connecting two
different factor graphs and direct encounter is shown by a factor directly connecting

two different factor graphs.
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Figure 4.3: The same encounters as in the previous figure but using the relative factor
graph formulation. A global nail TG

r is introduced for each trajectory that specify the
offset with respect to the global frame. All the encounters are connected with the global
nail to account for multiple, uncertain encounters converging towards optimal solution

over time.
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Figure 4.4: Labelling the parts of a single encounter to understand the formulation
of global nail factor.

In the above Equation 4.1 the terms l
x11
1 and l

x22
1 are obtained from the sensor measure-

ments like fiducial detection as explained in the next chapter. The terms T 1
x11

and T 2
x22

are the direct reflection of the value of prior over the initial variable of each factor graph

and TG1 and TG2 are the variables to be estimated. The new type of factor that relates

the encounter measurement along with the global nail is mathematically formulated as

follows:
N∑
n=1

∣∣∣∣∣∣∣∣TGr T rxri lxrin − TGr′ T r′xr′
i′
l
xr
′

i′
n

∣∣∣∣∣∣∣∣2
Γn

(4.2)

where r and r′, i and i′ are the indices of robot and robot poses. Λn denotes the

corresponding direct or indirect encounter covariance. The above error function to be

minimized is added to the least squares formulation in Equation 2.23 incrementally for

every encounter.

Now it should be noted that the overall system encompassing all the factor graphs

faces gauge freedom. This is restricted by adding a prior over the first global nail. All

the other global nails are added as they are needed. Generally, the covariance of the

prior is made large because it is very likely to conflict when there is an encounter. The



Chapter 4 Multi-robot Relative Pose Initialization 58

alignment of the maps and the improvement in the estimation quality is discussed and

displayed in Chapter 6.



Chapter 5

Improved Viola-Jones Object

Detection for Landmark

Extraction

Viola-Jones object detection algorithm [8] is a gold-standard in computer vision to detect

trained objects at a very high speed using boosted classifiers. Because of their speed,

they are used for object detection based landmark extraction in SLAM. In our multi-

robot evaluation dataset, all the robots are fitted with a unique fiducial to represent

their identity. Apart from this, the environment also contains fiducial markers that can

be considered as landmarks in the map. In order to detect these with at a much lower

false positive rate, at a lower resolution and eventually at a higher speed we improve

the algorithm to utilize all the color channels in the input image. The original version

works only on grayscale images. The key requirements for our scenario include high

detection percentage with lower false positive rate and more importantly, the detection

of the fiducial markers at various scale. As the robots are navigating, the target fiducial

may come near or move away resulting in change in the size of fiducial on the captured

image over continuous frames. The Haar features in Viola-Jones algorithm are perfectly

suitable for this as they are scale invariant. We retain this property of the algorithm

and increase the detection percentage along with the detection speed by leveraging the

additional information obtained by using all the channels of the image. The improved

59
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version uses the same metric used in the original version to score a Haar feature but

does it for all the channels of the input image. Thus the score is represented as a vector

as opposed to a scalar value in the original version. These vectors are then ranked using

linear discriminant analysis. We train a classifier to detect these fiducial markers using

this improved version of Viola-Jones algorithm. The increase in the time complexity

is matched by the ability to achieve better detection rates at lower resolution thereby

producing a lower detection time overall.

Since the detection algorithm and in general SLAM problem is very time sensitive, it is

important to understand how the various tunable parameters affect the detection time.

This chapter focuses on the complexity analysis of the multi-scale and multi-channel

decision tree based detector. The algorithm learns a decision tree during the training

stage which is usually evaluated on the test image set using a sliding window approach

for multiple sizes of the window (scale invariance). In the next section, I would shed

some light on few relevant works that have extended the original work of Viola-Jones

in different contexts such as improving false alarm rate, modifications in Haar features,

weighting schemes in Adaboost etc. There is no particular work that specifically deals

with a detailed theoretical complexity analysis of the final detector although there has

been empirical analysis both in the original paper [8] and [59]. These theoretical results

would be followed by a few experiments in the final section.

5.1 Related Work

In Viola-Jones object detection algorithm [8], the integral image for feature computation,

Adaboost for feature selection and an attentional cascade for efficient computational

resource allocation are the three key components behind achieving very high processing

speed although the performance is same as the previous complex single stage classifiers.

Following that, Lienhart et. al, [59] did an empirical analysis of the original work and also

introduced 45o rotated HAAR features and verified that the Gentle Adaboost performs

better than Real and Discrete Adaboost in terms of detection accuracy. A complete

algorithmic description that explains the implementation logic behind Open Computer
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Vision library [60] is provided by [61]. Almost all the previously existing analysis deal

only with the complexity of training the Cascade Classifier and just mention that the

detection rate is very fast. To the best of my knowledge, this is the first analysis of

the computational complexity of the Cascade Classifier object detection as a function of

various tunable parameters.

5.2 Theoretical Results

The trained classifier performs a sliding window search over the target image for a fixed

window size during every iteration. The set of tunable parameters for the Cascade

Classifier Detector are:

• The minimum window width and height of search, Wmin = {wmin, hmin}

• The maximum window width and height of search, Wmax = {wmax, hmax}

• The scale factor by which the window size grows from minimum to maximum, γ0

• The minimum number of detections in the neighborhood to be selected as a true

positive, β

The classifier is a cascaded set of decision trees and the number of such decision trees

and the depth of each tree also influences the total time. However, since this value is

constant for a given classifier it cannot be considered as a part of tunable parameters.

Nevertheless, I have mentioned an upper bound on the number of evaluations of the

entire decision tree over a given image.

REMARK: The classifier cannot detect target objects smaller than the trained window

size.

5.2.1 Search window size and scale factor

The maximum and minimum window sizes and the scale factor are interrelated and

hence considered together for analysis. The size of the window along both the width
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and height is increased from the minimum to maximum value at the scale factor ratio.

This is done to stick to the constant aspect ratio at which the classifier is trained. Let

wt and ht be the training width and height. The set of all scale factor values is given by

Γ = {γ | wt.γ ∈ [wmin, wmax] ∩ ht.γ ∈ [hmin, hmax], γ = γ0, γ
2
0 , ..., γ

n
0 } ∀ n ∈ N (5.1)

where γ0 is the initial value of scale factor which is also equal to the one input by the

user. Generally, it is advised that γ0 be in the positive neighborhood of 1, γ0 → 1+ to

get a finer search window size. The set of scale factors form a geometric progression with

γ0 being the common ratio between subsequent values. Now the set of image resolutions

for which the integral image is to be calculated is given by

I = {(x, y)|x =
wt
r
, y =

ht
r
} ∀ r ∈ Γ (5.2)

The integral image is calculated for | I | number of times. The number of elements

in the set I is actually the number of terms in the G.P represented by Γ which can be

calculated as follows.

Let i denote the index of the terms in a G.P formed by initial value 1 and common

ratio γ0. Then the least and greatest value of i that scales wt to the range [wmin, wmax]

are

iwl =

⌈
logγ0

(
wmin
wt

)⌉
(5.3)

iwg =

⌊
logγ0

(
wmax
wt

)⌋
(5.4)

where the subscripts l and g represent the least and greatest index values respectively

and b.c and d.e are the least and greatest integer functions.
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Similarly, the least and greatest value of i that scales ht to the range [hmin, hmax] are

ihl =

⌈
logγ0

(
hmin
ht

)⌉
(5.5)

ihg =

⌊
logγ0

(
hmax
ht

)⌋
(5.6)

To stick with the aspect ratio, only the terms that are common between the set of

width and set of height ratios are considered. The number of common scale factors K

which is same as | Γ | and | I | is in turn given by

K =| Γ |=| I |= min{iwg − iwl , ihg − ihl } (5.7)

K = min

{⌈
logγ0

(
wmax
wmin

)⌉
,

⌈
logγ0

(
hmax
hmin

)⌉}
(5.8)

Using the change of base rule,

K = min



ln
(
wmax
wmin

)
ln γ0

 ,

ln
(
hmax
hmin

)
ln γ0


 (5.9)

All example sub-windows used for training were variance normalized to minimize

the effect of different lighting conditions. Normalization is therefore necessary during

detection as well. The variance of an image sub-window can be computed quickly us-

ing a pair of integral images. Recall that σ2 = m2 − 1
N

∑
x2, where σ is the standard

deviation, m is the mean, and x is the pixel value within the sub-window. The mean

of a sub-window can be computed using the integral image. The sum of squared pixels

is computed using an integral image of the image squared (i.e. two integral images are

used in the scanning process). During detection the effect of image normalization can

be achieved by post-multiplying the feature values rather than pre-multiplying the pix-

els. Thus the integral image is calculated 2K number of times. The integral image is a



Chapter 5 Improved Viola-Jones Object Detection for Landmark Extraction 64

summed area table data structure which is calculated efficiently using a recursive algo-

rithm. Though the computation of summed area table depends on the resolution of the

image, the task of evaluating the intensities over any rectangular area requires only four

array references. This allows for a constant calculation time that is independent of the

size of the rectangular area. Also for multichannel images with M channels, the number

of integral image computations is 2MK times. This factor M is the only significant

difference between multichannel cascade classifier detector and grayscale detector.

5.2.2 Minimum number of neighbors

The element set containing multiple detections of differently sized objects in target

images are split into equivalency classes (clustering). We use a first order logic with a

predicate that relates the objects in the set based on the test of similarity of rectangles.

The running time of the clustering algorithm is actually independent of the threshold β

that corresponds to the minimum number of neighbors jointly satisfying the predicate.

The logic implements an O(N2) algorithm for clustering a set of N elements into one or

more equivalency classes [62] as described using disjoint-set data structure representation

[63]. For every element in the disjoint-set data structure of size N2 the predicate is

evaluated which returns either true or false.

The predicate evaluates similarity of rectangles by taking any two elements from the

input set along with the internal parameter ε, 0 < ε < 1.

Lemma:Two rectangles are similar if their sides are proportional.

This is checked by finding if all the sides of one rectangle is within ∆ = ε∗(min(w1, w2),

min(h1, h2))/2 of the other rectangle.

Lemma:Two rectangles which are within a threshold ∆ on all the four sides, for

a ∆ formulated using minimum of width and height of the participating rectangles, are
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also within a threshold ∆ for a ∆ formulated using the maximum of their width and

height.

Hence a ∆ formed by the minimum of the their sides is a more restricted metric.

The reason for formulating ∆ is to account of uncertainty in similarity. The representa-

tive rectangle for all the equivalency class in the disjoint-set data structure is obtained

by averaging all the constituent rectangles which is in turn returned as the detected

rectangle.

5.2.3 Depth of the decision tree and target image resolution

Though it looks like the detector is evaluated for various window sizes from minimum

to maximum size, algorithmically the target image is shrunk from its original resolution

to various sizes depending upon scale factors such that the objects of interest of sizes

between minimum and maximum window size falls inside the constant window size. In

other words, we are decreasing the size of the target image itself rather than increasing

the size of the search window and rescaling the features appropriately. We take this

rather long route of rescaling the image because the detection could be done using

the same window size by which the classifier is trained. Although the values of the

feature learned at every level of the classifier is normalized by the area of the feature, no

clear explanation about guarantees on generality of learned classifier value for arbitrary

rescaling of the feature considering linear interpolation of image and truncation/round-

off errors in feature rescaling is given in the original paper [8]. Obviously, by fractional

rescaling the new correct positions become fractional. A plain vanilla solution is to round

all relative look-up positions to the nearest integer position. However, performance may

degrade significantly, since the ratio between the two areas of a feature may have changed

significantly compared to the area ratio at training due to rounding. One solution is

to correct the weights of the different rectangle sums so that the original area ratio

between them for a given haar-like feature is the same as it was at the original size [59].

Nevertheless, by doing this reverse operation we end up linearly decimating the target

image | Γ | times and calculating integral image for each of them. From a memory
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perspective, the integral image for all the scales of the target image are computed and

stored in a continuous serial buffer of size

M ×
∑
γ∈Γ

(
W

γ
+ 1

)(
H

γ
+ 1

)

where W ×H is the resolution, M is the number of channels of the target image

and Γ is the set of scale factors.

For a decision tree of S stages and depth ds per stage where s ∈ S, an upper bound

on the number of evaluations of all the stages of the decision tree is given by

≤
∑
γ∈Γ

{(
W

γ
− wt + 1

)(
H

γ
− ht + 1

)
×
∑
s∈S

ds

}
(5.10)

where W ×H is the resolution of the target image, wt×ht is the training resolution

and Γ is the set of all scale factors.

Note: An implementation detail is that, for integral image resolutions whose cor-

responding scale factor is less than 2, the cascaded decision tree is only evaluated over

every other pixel along width and height. Also, the entire continuous buffer of integral

image across various resolutions is striped into memory chunks of size

δi = 32× H

γiW
∀γi ∈ Γ (5.11)

where 32 is code specific. In total, there are
∑

i δi chunks which are processed in

parallel using TBB multi-threading library.

5.3 Experiments run

The Haar Cascade Classifier [8] described so far is used to detect the fiducial markers on

top of every robot and in the environment in an online fashion. The biggest advantage
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of the Cascade Classifiers are their rapid speed of detection despite very long training

time. The complexity analysis summarised in this report gives an idea on the sensitivity

of each classifier parameter on the detection time. A conservative search size may detect

all object instances but it is time critical to have a tight estimate that is just enough to

detect all such instances.

From the theoretical results, it is clear how different values of the parameters are

mathematically related. For this experiment we trained a fiducial marker with a training

window size 63×35 using Gentle Adaboost [64, 65]. In order to prove that the detection

time is logarithmically related to the size of the search space defined by maximum and

minimum window size, I ran the algorithm with multiple search search sizes decided by

minimum and maximum window size. For the simplicity of understanding and denoting,

the search size S can be represented as the length of line joining the right bottom corners

of the minimum and maximum sized search rectangles.

S =
√
w2
max + h2

max −
√
w2
min + h2

min (5.12)

The resolution of each source image captured by the camera that form the panorama

is 1920 × 2560. But as mentioned before, because of the various aisle section depths

and camera perspective the search rectangle size has to vary across the average size.

The search size characterized by the ratio of maximum and minimum window size is

started from Wmin = (480, 274), Wmax = (518, 296) and broadened till Wmin = (63, 35),

Wmax = (980, 560). In every iteration, the gap between the minimum and maximum

window size is reduced by a step size s = 24 pixels, i.e the minimum height is increased

by 12 pixels and maximum height is decreased by 12 pixels with their corresponding

widths being aspect ratio adjusted. The final time of detection for a given search gap

is found by averaging the detection time over 291 images having slightly varying target

object size. Fig. 5.1 shows the various search size represented by the ratio of maximum

and minimum window sizes plotted against the detection time(blue dots connected by a

blue line). It can be seen from the shape of the curve that it approximates the logarithmic
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Figure 5.1: Comparison of ratio of maximum and minimum search window size with
time taken taken for detection. It is clear from the shape of curve (blue) connecting the
time taken for every search size that it varies logarithmically. The ideal curve (green)
is just shown as a reference of a log curve and is not metrically accurate because we

are trying to explain the theoretical complexity.

complexity. The green curve is the true log curve plotted with the ratio of maximum

and minimum window size, i.e. logγ(W
i
max

W i
min

). This experiment empirically verifies that

the detection time scales logarithmically with the search size.

The second experiment is to empirically verify that the detection time varies inverse

logarithmically with the increase in the scale factor, which is the step size from the

minimum to maximum window size of detection. The experiment was conducted with

the constant minimum window size Wmin = (63, 35) and maximum window size Wmax =

(980, 560). The scale factor, γ is increased in steps of 0.02 starting from γ = 1.01. It can

be seen from the plot in Fig. 5.2 that the detection time decreases inverse logarithmically

with the increase in scale factor as explained theoretically by Eqn. 5.9. The green curve

in Fig. 5.2 is the ideal curve that is plotted with the different scale factors and constant

detection window size using the formula derived in Eqn. 5.9, i.e. logγi(
Wmax
Wmin

).
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Figure 5.2: Comparison of scale factor with time taken taken for detection. It is clear
from the shape of curve (blue) connecting the time taken for every scale factor that it
varies inverse logarithmically. The ideal curve (green) is just shown as a reference of
a inverse log curve and is not metrically accurate because we are trying to explain the

theoretical complexity.



Chapter 6

Results and Conclusions

In this chapter, we illustrate the performance of our fusion ordering in a real-world multi-

robot dataset [66] recorded at AP hill, Virginia. For our datasets, we use a canonical

scan-matcher [13] that remembers a short history of scans corresponding to the key

frames, fits contours to the data, and for a new scan, finds a globally optimal alignment

within a given search region. The canonical scan-matcher performs another least-squares

optimization that requires an initial guess about the relative transform between the

scans. The relative odometry measurement coming from the poses corresponding to

those scans is used as an initial guess. Larger key frame sizes are also problematic

as the scan ranges vary significantly due to seeing an altogether different structure

of the environment. This leads to a large uncertainty in the estimate of the relative

transform. It is also difficult to provide a good initial guess for large key frame sizes as

the corresponding odometry transform is likely to be drifted. In our results, we project

the raw laser scans from the optimized trajectory of every robot instead of occupancy

grid as the occupancy grid can sometime hide the inaccuracies in the map, such as

duplication of a wall. However, we also show the occupancy grid to comply with the

usual practise in the SLAM literature.
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6.1 AP Hill Multi-robot Dataset

The publicly available AP hill multi-robot dataset [66] is recorded using 4 mobile robots

with significant overlap in their trajectories. The robots travel different paths covering

different blocks in the building. Each robot is equipped with an odometer, a laser

range finder, an inertial measurement unit and a camera. Encounter information is also

provided along with the dataset. According to the dataset, all the robots start at nearly

the same position, and hence the number of encounters in the later stages are less in

number. In general, we increase the number of encounters by performing multi-channel

fiducial detection (see Chapter ) using the data obtained from the camera mounted on

the robots. Getting a good map of the environment is an engineering task that requires

tuning of several optimization parameters and those related to different measurement

models. In this section, we will describe the numerical values that are used for different

sensor models and ISAM2 algorithm in GTSAM optimizer [52]. We will then present

the timing analysis for using the fusion ordering for the combined graphs during every

encounter. Finally the map alignment that is obtained by adding the relative transform

between the trajectories as an estimation variable is displayed.

6.1.1 Tuning the Sensor Models and GTSAM Optimizer

Getting the optimizer up and running to provide consistent and repeatable mapping

results is generally preceded by developing accurate sensor models. The AP hill multi-

robot dataset contains raw wheel encoder data, dead reckoning odometry data, laser

range data, IMU data and the camera feed. The raw wheel encoder data is processed

using a velocity motion model given in Appendix A. The laser range data is used by the

scan-matching module, also described in Appendix A, to convert it into pose constraint.

The IMU data is also treated in a similar manner to make it as a pose factor. Apart

from the velocity model factors the dead reckoning odometry data is also used. Thus, all

the pose variables are constrained by a minimum of four types of factors. In addition to

the fiducials on top of every robot the environment also contains fiducials that serve as

the landmarks. These fiducial and encounter information in the dataset are converted
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Table 6.1: Tuned covariance values of various sensor models used for mapping. These
values are used to calculate the Bhattacharyya distance in the least-squares problem
formulated in Chapter 2. The covariance matrix for n variables contain n2 terms, but

we tune the values only across the main diagonal (variance of each variable).

Sensor Model
robot 1 robot 2 robot 3 robot 4
x (m) y (m) θ (rad) x (m) y (m) θ (rad) x (m) y (m) θ (rad) x (m) y (m) θ (rad)

Velocity motion model 0.05 0.02 0.2 0.055 0.02 0.2 0.05 0.02 0.2 0.02 0.05 0.2

Odometry model 0.04 0.02 0.5 0.04 0.03 0.5 0.05 0.022 0.1 0.023 0.013 0.2

Landmark pose 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.001 0.02 0.01 0.01

IMU model 0.02 0.01 0.05 0.02 0.01 0.05 0.01 0.01 0.001 0.01 0.01 0.01

Loop closure factor 0.02 0.02 0.1 0.01 0.01 0.1 0.01 0.01 0.001 0.02 0.02 0.1

Robot-robot encounter 0.01 0.01 0.2 0.01 0.01 0.02 0.01 0.01 0.2 0.01 0.01 0.2

into a constraint between the poses and the landmarks/other robots. We also detect

the same on the camera feed to further constrain the variables and over-determine the

system.

All these sensor models are accurate to a level that depends on the amount of uncer-

tainty it introduces in the system. This level of uncertainty is captured by the covariance

matrix that measures the joint variability of different random variables measured by the

model. In other words, the sensor that is less accurate has a larger covariance. In many

cases, they are provided by the sensor manufacturer. They can be used as a starting

point and can then be tuned based on performance. For encoders like odometry, the

error accrued is larger for larger sampling times. For such sensors, the covariance is

tuned for unit time and scaled accordingly based on the time between different samples.

In case of fiducial markers, the center of the detected fiducial is taken as the landmark

position and therefore its covariance is also defined in terms of x, y and θ. The encounter

covariance works same as the fiducial covariance as they are also fiducial markers at-

tached to the robot. A loop closure introduces a correlation between the current pose

and a previous pose occurred long back in time from which the current portion of the

environment is observed. So a loop closure is also represented by a factor between robot

poses at fairly farther time instants. The IMU model also estimates the relative transfor-

mation between robot poses and contains the same variables over which the covariance

is represented. The tuned values of model covariance that are finally used for mapping

are presented in Table 6.1.
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Table 6.2: Tuned values for the prior over initial pose of every robot and the values
obtained by optimization using the global nail.

Value of relative pose graph transform
w/o global nail w/ global nail
x y θ x y θ

T 1
G 0 0 0 0.401 0.299 0

T 2
G -1.22 0.61 0 -1.22 0.61 0

T 3
G -2.44 0 0.1 -2.44 0 0

T 4
G -3.66 0.61 0 -4.66 0.36 0

6.1.2 Global Map Alignment

The global consistency in aligning the maps from multiple robots is achieved by using the

“global nails” introduced in Chapter 4. The prior over the starting pose for the robots

are initialized arbitrarily with minimum effort on tuning. Providing a prior over the

starting pose is trivial for a single robot case as all the sensor measurements are locally

consistent and the global alignment can be adjusted at any point in time. However, in a

multi-robot scenario or in a lifelong and repeated mapping of the same environment, the

prior over the initial pose should be known with certainty to fuse the common variables

of estimation. To overcome this, an acceptable level of uncertain prior is tuned and

improved via optimization with the global nail. The global nail corresponding to a

particular robot is introduced only on its first encounter. A prior over the global nail of

atleast one of the robots should be provided to prevent the entire system from having

a gauge freedom. The alignment of the projected laser scan with and without using

the global nail to calculate the relative transformation is shown in Figure 6.1 and 6.2.

Each robot’s trajectory is plotted with a unique color and its corresponding laser scan

is depicted using a faded variant of the same color. The estimated final value of global

nail variables are shown in the third column of the Table 6.2. The second column lists

the tuned values of all these variables and are used as an initial guess for optimization.

The variable TGr refers to the transformation from the starting point of robot r to the

global frame.
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Figure 6.1: Overlay of laser scan projections from the smoothed trajectory of differ-
ent robots. The optimization is done without the inter-robot relative pose transform
constraint called “global nail”. It can be seen that, even after sufficient tuning of the
prior over initial variables based on the map estimates at the early stages, we were not

able achieve a total alignment.

Figure 6.2: Overlay of laser scan projections from the smoothed trajectory of different
robots. By adding the global nail constraints the relative transform between the robot

trajectories are estimated accurates giving us a very good map alignment.
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6.1.3 Fusion ordering vs. COLAMD ordering

Whenever there is a direct or an indirect encounter, a factor between already existing

common variable(s) or a new common variable is added. This leads to fusing the cor-

responding Bayes trees and marginalizing out the respective robot’s variables. These

marginals are then added as a strong prior to each robot’s factor graph. The marginals

of the “global nail” variables from the fused graph are also added as a prior to the indi-

vidual robot’s factor graph that contains these “global nail” variables. In practise, the

graphs are fused for every few encounters and not every encounter. The performance

is compared in terms of time it takes to calculate both these orderings. This ordering

time does not include the time it takes to factorize the ordered measurement Jacobian.

However, as fusion ordering leaves the Jacobian in a format explained in [2] it can be

subjected to parallel QR factorization. As a result, the time taken for factorization could

be equal or lesser than using the COLAMD ordering. This phenomenon was already

discussed while demonstrating the timing analysis on SuiteSparse dataset in Chapter 3.

The time taken for either of the ordering schemes are shown graphically using an

encounter map in Figure 6.3 and 6.4. The encounter maps contain the smoothed, cen-

tralized and final trajectory of all the robots using the combined information during

every encounter. A line segment connecting the two trajectories indicate a robot-robot

encounter from those poses at its endpoint. The color of the line segment reflects the

time taken to compute the COLAMD ordering in Figure 6.3 or the fused ordering in

Figure 6.4. The color code reference is displayed with a color-bar on the right side of the

encounter maps. The dataset contains roughly around 6000 direct robot-robot encoun-

ters and 300 indirect robot-landmark-robot encounters. It can clearly be observed that

the color of the line segment for fusion ordering, when compared with that of nearly the

same line segment for COLAMD ordering lies well below in the color-bar. This implies

that the fusion ordering is faster in terms of computation than the COLAMD order-

ing. A more straightforward plot comparing the time taken by both these orderings is

presented in Figure 6.5. Figure 6.5 also includes the time taken for ordering the fused

graph from indirect encounters.
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Figure 6.3: The encounter map graphically describing the time taken for ordering the
fused graph after every direct encounter using COLAMD [3] ordering. The color of the
line segment indicate the time taken and its endpoints indicate the poses corresponding
to the encounter. A reference color bar is provided on the right. Note that the plot does
not include indirect encounters as the trajectories are not in the original positioned and

widely placed for clarity.

6.2 Conclusions and Summary of Contributions

In this thesis, we present a novel fusion ordering scheme for variable ordering the com-

bination of multiple factor graphs using their parent ordering. We explain its relation

with nested dissection to show the principle behind its working. A formal verification

of the proposed algorithm is provided to ensure that it meets all the relevant standards

and does not violate any canonical assumptions. One important aspect of the proposed
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Figure 6.4: The encounter map graphically describing the time taken for ordering
the fused graph after every direct encounter using the proposed fusion ordering. The
color of the line segment indicate the time taken and its endpoints indicate the poses
corresponding to the encounter. A reference color bar is provided on the right. Note
that the plot does not include indirect encounters as the trajectories are not in the

original positioned and widely placed for clarity.

algorithm is its potential to work in problems outside SLAM. Least squares is a stan-

dard approach for regression analysis and optimizing over-determined systems and is

ubiquitous in engineering problems. Several factor graph applications in the field of fi-

nite element analysis, computational fluid dynamics and power network problem involve

combining multiple graphs and variable ordering them for better estimation accuracy.

We also presented a solution for relative pose graph initialization, a common problem

in multi-robot mapping, that works within the framework of our problem formulation.

The proposed factor type and the error function can be seamlessly added to the existing
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Figure 6.5: Time comparison between the gold standard COLAMD and the proposed
fusion ordering after every direct and indirect encounter. It can be observed that the

time taken is lesser with fusion ordering for almost all the cases.

optimization problem and works for multiple and uncertain encounters with unknown

data association. We demonstrate the results using standard real-world dataset from

sparse linear algebra community called SuiteSparse and AP hill multi-robot dataset from

radish repository. Introducing methods from the algebraic graph theory literature into

the field of SLAM can be seen as another contribution. While several previous works

have employed and innovated on matrix factorizations for SLAM, variable ordering the

combined Jacobian from multiple robots has not been presented before. In particular,

the combination of efficient fusion ordering, numerical stability ordering and relative

pose graph initialization is novel and opens new possibilities that can be exploited in

various robotics applications.

6.3 Future Work

Although the fusion ordering is quick and efficient in terms of time and storage, a

thorough analysis about the change in the degree of the affected nodes in the fused graph

with respect to the parent graph could be studied for different SLAM situations. This

can lead to developing an upper bound on the additional number of non-zeros produced

by using the fusion ordering instead of standard ordering techniques like COLAMD.
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Also, the structure of the ordered matrix coming out of fusion ordering is suitable for

parallel QR decomposition according to [2], which I have not explored yet. The fusion

ordering could be extended to work in the concurrent filtering and smoothing (CFS)

framework [67] for multiple robots. To get an end-to-end working real-time system it

would interesting to investigate the bandwidth constraints in addition to the efficiency

improvements proposed in this work. New factor types for encounters such as range-only

or bearing-only might be studied in the context of relative pose graph initialization.



Appendix A

Sensor Models

A.1 Velocity Motion Model

The following basic physics based velocity model assumes that the robot can be con-

trolled through two velocities, rotational and translational. The model takes these ve-

locities as the input and gives the current pose obtained by commanding the robot with

those velocities from the previous pose. The translational velocity at time t is given by

vt, and the rotational velocity by ωt. We arbitrarily postulate that positive rotational

velocities ωt induce a counter-clockwise rotation (left turns). Positive translational ve-

locities vt correspond to forward motion. In reality the robot motion is subjected to

noise and hence the actual velocity differ from the commanded one. Thus the actual

velocity can be obtained by adding a noise term:

 v̂
ŵ

 =

v
w

+

εv
εw

 (A.1)

where εv and εw are zero mean random variable with finite variance. At every iteration

the raw wheel encoder data in terms of translational and rotational velocity is used to

find the relative transform from the previous pose (xt−1, yt−1, θt−1) to the next pose
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(xt, yt, θt).


xt

yt

θt

 =


xt−1

yt−1

θt−1

+


− v̂t−1

ω̂t−1
sinθt−1 + v̂t−1

ω̂t−1
sin(θt−1 + ω̂t−1∆t)

v̂t−1

ω̂t−1
cosθt−1 − v̂t−1

ω̂t−1
sin(θt−1 + ω̂t−1∆t)

ω̂t−1∆t+ γ̂∆t

 (A.2)

The above model describes the exact final location of a robot moving in a circular

trajectory of radius r = v̂
ω̂ . However, in reality the motion is affected by control noise

and the commanded circular trajectory is actually not circular. The circle constrains

the final orientation which is fixed by adding an additional robot specific noise term γ̂

on the final orientation in the above equation.

A.2 Iterative Closest Point based Scan Matching

Let X and P represent two laser scan measurements measured closely in time. Let k be

the number of scan indices in the laser scan measurement:

X = {x1, x2, . . . , xk} (A.3)

P = {p1, p2, . . . , pk} (A.4)

The model takes two laser scan data as input and gives the relative transform between

the poses from which those laser scans were measured as output. The problem is formu-

lated as a least-squares optimization that finds the translation t and rotation R which

minimizes the sum of squared error:

E(R, t) =
1

Kp

Kp∑
i=1

‖xi −Rpi − t‖2 (A.5)

where xi and pi are the corresponding points between two laser scans. Calculating the

corresponding points is the most expensive stage of the ICP algorithm. If there is no

uncertainty in calculating the corresponding points or if the corresponding points are

given beforehand then the relative translation and rotation can be calculated in a closed

form.
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In our case, it is approximately calculated by projecting the points according to the

view point [68]. As a start, the initial guess provided using the odometry model is used

as the view point and then shifted till convergence. In projection based matching there

are slightly bad alignments in each iteration but it is one to two orders of magnitude

faster than the closest point. It also requires the point-to-line error metric. Using the

point-to-line error metric the above vanilla iterative closest point formulation becomes:

min
qk+1

∑
i

(nTi [xi
⊕

qk+1 −Π{Sref , xi
⊕

qk}]) (A.6)

where qi is the robot’s pose in the world frame, xi are the points in the first scan,

Π{Sref , .} is the projection on the reference surface, ni is the normal to the surface and⊕
is the notation introduced by Lu and Milios for pose composition [33].
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