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Abstract

This paper describes an algorithm, referred to as The Chase that nondeterminis-
tically generates models for a geometric theory. A set of jointly universal models is
a set of models for which there exists a homomorphism from one or more models in
the set to any other model that can satisfy the theory. Such sets are useful in solu-
tions to problems in many practical applications, including but not limited to firewall
configuration examination, protocol analysis, and access control evaluation. The set
of all models The Chase can generate is jointly universal. A Haskell implementation
of The Chase and its development process and design decisions are documented. The
implementation can determine all possible outputs of The Chase given any input the-
ory. This implementation is then used to generate sets of jointly universal models for
a theory that represent a cryptographic protocol.
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1 Introduction

1.1 Goals

The two main goals of this Major Qualifying Project are:

1. to implement an algorithm known as “The Chase” accurately and with a well-defined,

usable interface, and

2. to demonstrate the chase implementation in a real-world application: generating

models used in analysis of a specific cryptographic protocol

Secondary goals include implementing various optimizations and integrating the chase

implementation into a program that can take advantage of the functionality the imple-

mentation provides.

1.2 The Chase

The chase is an algorithm used to find jointly universal models (Section 2.9) for a set

of geometric logic formulæ (Section 2.11). Many common real-world problems can be

expressed as a set of geometric logic formulæ. When these problems have an unbounded

scope of possible solutions, the chase can be used to find the possible solutions that are

interesting. This allows researchers to go through only models that represent a large set

of models rather than testing each of the infinite number of models separately.

To generate these jointly universal models, the chase begins with a model M that has

an empty domain and no facts. The chase goes through each formula σ in the geometric

theory T such that M is not a model of σ. The chase is nondeterministic over disjunctions;

when a disjunction is encountered, only a single disjunct is chosen to be satisfied. The

chase expands M until M is a model of all σ ∈ T .
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Geometric formulæ are implications of positive-existential formulæ (Section 2.11). Positive-

existential formulæ have the useful property in that adding elements/facts to a model that

satisfies one will never cause the model to no longer satisfy that formula. Because of this,

the chase can keep adding to the model until all σ ∈ T are satisfied. The set of all models

generated by this process is a jointly universal set for the input theory T .

1.3 Chase Implementation

We will see in Section 4 that, in a Haskell implementation of the chase, the result of all

choices of disjunct in any disjunction can be found by forking the chase at each disjunction

and returning a list containing the concatenation of the lists returned by the forks. In this

way, we can deterministically calculate a set of jointly universal models by finding all of

the models returned by successful runs of a naturally nondeterministic algorithm.

The choice of Haskell for an implementation language is beneficial because of Haskell’s

lazy evaluation. When the chase would run infinitely, the program runs infinitely as well,

but it will still process and return all of the results of the halting runs of the chase. Haskell

is also commonly used by mathematicians and theoretical computer scientists.

1.4 Application

Cryptographic protocol analysis is the particular application that is explored in Section

5.1. In this application, protocols are modeled in the strand space formalism. Each role

of every participant in a legal run of the protocol is modeled as a strand. The roles of a

special participant that does not obey the rules of the protocol are called adversary strands

(Section 5.1.2). These adversary strands consist of a series of nodes that send/receive

messages to/from regular strands while manipulating those messages.

Because the positions and actions of adversary strands are variable, there exists a large
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number of possible runs of a single protocol. It is prohibitive to test all of these to find

if they break assumptions made about the properties of the protocol because of the large

number of possibilities.

This protocol can be represented as a geometric theory and given to the chase to find

models. A jointly universal set of models can describe nearly all interesting ways that

the adversaries can interact with regular strands. In the case that there are finitely many

models returned by the chase, these models can then be analysed in a finite amount of

time.

Section 2 can be used as a reference for terms discussed in later sections. Appendices A

and B contain a syntax reference and glossary, respectively.
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2 Technical Background

2.1 Vocabulary

A relation symbol, often called a predicate, can be any unique symbol. An arity function

takes a relation symbol as input and returns a non-negative integer. A vocabulary is a

construct containing a set of relation symbols and an arity function.

2.2 Models

A model M for a vocabulary V is a construct that consists of:

• a set, denoted |M|, called the universe or domain of M

• for each pairing of a predicate R of arity k in V, a relation RM
k ⊆ |M|

The relation itself is a set of tuples of members from the universe.

Definition 1. Let A and B be models. A is a submodel of B if

• |A| ⊆ |B|

• for each relation R, RA ⊆ RB

That is, for each tuple ~a from |A|, ~a ∈ RA implies ~a ∈ RB.

2.3 First-order Logic

First-order logic, also called predicate logic, is a formal logic system. A first-order logic

formula is defined inductively by the following:

• if R is a relation symbol of arity k and each of x0 . . . xk−1 ∈ ~x is a variable, then

R(~x) is a formula, specifically an atomic formula
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• if x and y are variables, then x = y is a formula

• > and ⊥ are formulæ

• if α is a formula, then (¬α) is a formula

• if α and β are formulæ, then (α ∧ β) is a formula

• if α and β are formulæ, then (α ∨ β) is a formula

• if α and β are formulæ, then (α→ β) is a formula

• if α is a formula and x is a variable, then (∀ x : α) is a formula

• if α is a formula and x is a variable, then (∃ x : α) is a formula

For our purposes, this logic system will not contain any constant symbols or function

symbols which are commonly included in first-order logic. We will see in section 2.11 that

these are unnecessary and can be replicated using other, allowed constructs.

A shorthand notation may sometimes be used which omits either the left or right side of

an implication and denotes (> → σ) and (σ → ⊥) respectively. If α is a formula and ~x is

a set of variables of size k, then (∀ ~x : α) is (∀ x0 . . . ∀ xk−1 : α). If α is a formula and ~x

is a set of variables of size k, then (∃ ~x : α) is (∃ x0 . . . ∃ xk−1 : α).

2.4 Variable Binding

The set of free variables in a formula σ, denoted free(σ) is defined inductively as follows:

• free(R(x0, . . . , xn)) = {x0, . . . , xn}

• free(>) = ∅

• free(⊥) = ∅
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• free(x = y) = {x, y}

• free(¬α) = free(α)

• free(α ∧ β) = free(α) ∪ free(β)

• free(α ∨ β) = free(α) ∪ free(β)

• free(α→ β) = free(α) ∪ free(β)

• free(∀ x : α) = free(α) \ {x}

• free(∃ x : α) = free(α) \ {x}

A formula σ is a sentence if free(σ) = ∅.

2.5 Environment

An environment λ for a model M is a function from a set of variables ~v to |M|. The syntax

λ[v 7→a] denotes the environment λ′ that returns a when x = v and returns λ(x) otherwise.

2.6 Satisfiability

A model M is said to satisfy a formula σ in an environment λ, denoted M |=λ σ and read

“under λ, σ is true in M”, when

• σ is a relation symbol R and R(λ(a0), . . . , λ(an)) ∈M where a is a set of variables

• σ is of the form ¬α and M 6|=λ α

• σ is of the form α ∧ β and both M |=λ α and M |=λ β

• σ is of the form α ∨ β and either M |=λ α or M |=λ β

• σ is of the form α→ β and either M 6|=λ α or M |=λ β
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• σ is of the form ∀ x : α and for every x′ ∈ |M|, M |=λ[x 7→x′] α

• σ is of the form ∃ x : α and for at least one x′ ∈ |M|, M |=λ[x 7→x′] α

The notation M |= σ (no environment specification) means that, under the empty envi-

ronment l, M |=l σ.

A model M satisfies a set of formulæ Σ under an environment λ if for every σ such that

σ ∈ Σ, M |=λ σ. This is denoted as M |=λ Σ and read “M is a model of Σ”.

2.7 Entailment

Given an environment λ, a set of formulæ Σ is said to entail a formula σ (Σ |=λ σ) if the

set of all models satisfied by Σ under λ is a subset of the set of all models satisfying σ

under λ. In other words, given a model M, a set of formulæ Σ, and a formula σ such that

Σ |= σ, whenever M |= Σ, M |= σ.

The notation used for satisfiability and entailment is very similar, in that the operator

used (|=) is the same, but they can be distinguished by the type of left operand.

2.8 Homomorphisms

A homomorphism from A to B is a function h : |A| → |B| such that, for each relation

symbol R and tuple 〈a0, . . . , an〉, 〈a0, . . . , an〉 ∈ RA implies 〈h(a0), . . . , h(an)〉 ∈ RB. The

identity function is a homomorphism from any model M to itself.

A homomorphism h is also a strong homomorphism if, for each relation symbol R and

tuple 〈a0, . . . , an〉, 〈a0, . . . , an〉 ∈ RA if and only if 〈h(a0), . . . , h(an)〉 ∈ RB.

The notation M � N means that there exists a homomorphism h : M → N. � has the

property that A � B ∧ B � C implies A � C. However, M � N ∧ N � M does not
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imply that M = N. For example, fix two models M and N that are equivalent except that

|N| = |M| ∪ ω where ω 6∈ |M|. Both M � N and N �M are true, yet M 6= N.

Given two models M and N, when M � N and N � M, M and N are homomorphically

equivalent. Homomorphic equivalence between a model M and a model N is denoted

M ' N.

Given models M and N where M � N and a formula in positive-existential form σ, if

M |= σ then N |= σ.

A homomorphism h : A → B is also an isomorphism when h is 1:1 and onto and the

inverse function h−1 : B→ A is a homomorphism.

2.9 Universal Models

Universal models, also called universal models, are models for a theory T with the special

property that there exists a homomorphism from the universal model to any other model

that satisfies T . Intuitively, universal models have no unnecessary entities or relations and

thus display the least amount of constraint necessary to satisfy the theory for which they

are universal. Any model to which there exists a homomorphism from a universal model

will have more constraints than the universal model.

A set of models M is said to be jointly universal for a set of formulæ Σ when, for every

model N such that N |= Σ, there exists a homomorphism from a model M ∈ M to N. It

follows that any superset of a jointly universal set of models is also jointly universal.

More than one universal model may exist for a given theory. Given a model M that is

universal for a theory T , any model N such that N 'M is also universal for T .

Not every theory must have a universal model. A simple example of this is the theory

containing a single formula σ where σ contains a disjunction. There exists no single
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universal model for the formula P ∨Q (P and Q are relations with arity 0) because any

model that satisfies both P and Q would not have a homomorphism to a model that

satisfies the theory with only P or Q in its set of facts. However, the set containing a

model M that contains P in its set of facts and a model N that contains Q in its set of

fact would be jointly universal.

2.10 Positive Existential Form

Formulæ in positive existential form are constructed using only conjunctions (∧), disjunc-

tions (∨), existential quantifications (∃), tautologies (>), contradictions (⊥), equalities,

and relations.

Theorem 1. The set of models of a sentence σ is closed under homomorphisms if and

only if σ is logically equivalent to a positive existential formula ϕ.

Proof. This is a well-known classical result in model theory. See [2], section 5.2 for exam-

ple.

We will only use one direction of Theorem 1: the fact that if a sentence is in positive-

existential form then it is closed under homomorphisms. To keep this paper self-contained,

we provide here a proof of this fact.

It suffices to prove the following, more general, claim for positive-existential formulæ.

If σ is a positive-existential formula, M is a model, λ : [var] → |M| is an

environment such that M |=λ σ, and h is a homomorphism h : |M| → |M′|,

then M′ |=h◦λ σ.

We prove this by induction over formulæ.
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When σ is an atomic formula R(x0, . . . , xn), we know that R(λ(x0), . . . , λ(xn)) ∈ M and

by the definition of a homomorphism

R((h(λ(x0)), . . . , (h(λ(xn))) ∈M′

That is,

R((h ◦ λ)(x0), . . . , (h ◦ λ)(xn)) ∈M′

as desired.

When σ is x = y, we know that λ(x) = λ(y), so h(λ(x)) must be h(λ(y)).

When σ is ⊥, there exists no λ such that M |=λ ⊥, so the hypothesis of our claim never

holds, which causes our claim to always hold.

When σ is >, we know that M |=λ > and by the induction hypothesis, M′ |=h◦λ >.

When σ is α ∧ β, we know that M |=λ α and by the induction hypothesis M′ |=h◦λ α. We

also know that M |=λ β and by the induction hypothesis M′ |=h◦λ β. By the definition of

conjunction, because M′ |=h◦λ α and M′ |=h◦λ β, we know that M′ |=h◦λ α ∧ β.

When σ is α ∨ β, we know that if M |=λ α, by the induction hypothesis M′ |=h◦λ α. We

also know that if M |=λ β, by the induction hypothesis M′ |=h◦λ β. By the definition of

disjunction, because M′ |=h◦λ α or M′ |=h◦λ β, we know that M′ |=h◦λ α ∨ β.

When σ is ∃ ~x : α, we know that M |=λ ∃ x : α, and want to prove that M′ |=h◦λ ∃ x : α.

There is a d ∈ |M| such that M |=λ[x 7→d] α. By our induction hypothesis, M′ |=h◦(λ[x 7→d]) α.

This is equivalent to M′ |=(h◦λ)[x 7→h(d)] α.

Corollary 1. If M is a submodel of N, σ is a positive-existential formula, and M |= σ,

then N |= σ.

Proof. If M is a submodel of N the inclusion function from M to N is a homomorphism.

10



2.11 Geometric Logic

Geometric logic formulæ are implicitly universally quantified implications between positive

existential formulæ. More specifically, a geometric logic formula is of the form

∀ ~x : FL → FR

where ~x = free(FL) ∪ free(FR), free is the function that returns the set of all free

variables for a given formula, and both FL and FR are first-order logic formulæ in positive

existential form.

A set of geometric logic formulæ is called a geometric theory.

It is convention to treat a positive existential formula σ as > → σ when expecting a

geometric logic formula. It is also convention to treat a negated positive existential formula

¬σ as σ → ⊥.

2.11.1 Examples

1. We can express properties of an ordering relation R:

reflexivity > → R(x, x)

symmetry R(x, y)→ R(y, x)

asymmetry R(x, y) ∧R(y, x)→ ⊥

serial > → ∃ y : R(x, y)

totality > → R(x, y) ∨R(y, x)

transitivity R(x, y) ∧R(y, z)→ R(x, z)

11



2. Equality can be encoded as the two relations

EQ(x, y) → EQ(y, x)

EQ(x, y) ∧ EQ(y, z) → EQ(x, z)

along with, for each relation symbol P in the vocabulary and each of its variables ~x,

a relation of the form P (x0) ∧EQ(x0, z)→ P (z). For example, the relation P with

arity 2 would require the following rules.

P (x, y) ∧ EQ(x, x′) → P (x′, y)

P (x, y) ∧ EQ(y, y′) → P (x, y′)

This is sometimes convenient because it allows one to define a logic system that does

not include equality without limiting the expressiveness of the system.

3. Negation of a relation R with arity k can be used in positive-existential formulæ by

introducing another relation R′ with arity k, adding two formulæ of the form

R ∧R′ → ⊥

> → R ∨R′

and using R′ where ¬R would be used.

4. A binary relation F (x, y) will behave like a function when expressed using the geo-

metric logic formulæ

→ ∃ y : F (x, y) (1)

F (x, y) ∧ F (x, z) → y = z (2)

If (1) is omitted, F behaves like a partial function instead.

12



3 The Chase

The chase is a function that, when given a geometric theory, will generate a model in

the set of jointly universal models for that theory. More specifically, if U is the set of all

models obtained from an execution of the chase over a geometric theory T , for any model

M such that M |= T , there is a homomorphism from some model U ∈ U to M. Note that

given a model M returned by the chase there may exist a model N such that N �M.

Verifying the universality of a model or the joint universality of a set of models requires

checking if a homomorphism exists from the universal model(s) to each of the infinite set

of all models that satisfy the theory. It may not at first seem obvious that generating a

universal model would be a computable task, but it will be shown that the chase is able

to do this, and it will be proven that the models it returns during successful runs are in

fact members of a set of jointly universal models.

Geometric logic sentences are used by the chase both because they are natural expressions

of many common applications and because they take advantage of the useful properties of

the positive-existential sentences of which they are constructed. Recall that, when adding

any relations or domain members to a model that satisfies a positive-existential sentence,

the model will always satisfy the sentence. This is particularly helpful when trying to

create a model that satisfies all sentences in a geometric theory.

3.1 Algorithm

To describe the chase algorithm succinctly, it is convenient to introduce the following

notation. Given M is a model, T is a geometric theory, σ is a sentence in T , and λ :

free(σ) → |M| is an environment, the pair (σ, λ) is a test, specifically a test of M based

on T . The model M passes this test if and only if M |=λ σ.

An existentially-quantified conjunction of atomics (ECA) E is defined inductively by
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• if E is an atomic, E is an ECA

• if E is ∃ ~x : α and α is an ECA, E is an ECA

• if E is α ∧ β and both α and β are ECAs, E is an ECA

For simplicity, we describe the chase assuming each sentence of the input theory is of the

form

δ0 ∨ . . . ∨ δn → γ0 ∨ . . . ∨ γk

where each δi and γj are ECAs. The chase can take this form as input without loss of

generality. In other words, a logical equivalent to any legal chase input theory can be

expressed in a way that respects these constraints.

Next we define a chase step, denoted M (σ,λ)−−−→M′, with M′ being the result of the following

algorithm applied to the model M, the sentence σ, and the environment λ.

Algorithm: chaseStep :: Model (M) → Sentence (σ) → Environment (λ) → Model

let σ be α→ β

choose some disjunct e ≡ ∃ x0, . . . , xp : c0( ~a0) ∧ . . . ∧ cn( ~an) of β

add new elements d0 . . . dp to |M|

define θ as λ[x0 7→d0,...,xp 7→dp]

add each of the facts {ci(θ ~aj) | 0 ≤ i ≤ n} to M

return M

A chase step fails if and only if the right side of the implication is a contradiction.
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Now that the notion of a chase step is established, the chase can be defined as follows.

Algorithm: chase :: [Sentence] (T ) → Model

let M be a model that has an empty domain and an empty set of facts

while M 6|= T do

choose a test (σ, λ) for which M fails

update M to be the result of the chase step on M based on (σ, λ)

return M

There are three types of runs of the chase:

• a set of jointly universal models is found in finite time

• an empty result is found in finite time

• an infinite run with possible return dependent on implementation

3.2 Examples

Define Σ as the following geometric theory.

> → ∃ x, y : R(x, y) (3)

R(x, y) → (∃ z : Q(x, z)) ∨ P (4)

Q(x, y) → (∃ z : R(x, z)) ∨ (∃ z : R(z, y)) (5)

P → ⊥ (6)

The following three chase runs show the different types of results depending on which

disjunct the algorithm attempts to satisfy when a disjunction is encountered.

1. A non-empty result in finite time:

15



∅ 7→ { a, b | R(a, b) }

7→ { a, b, c | R(a, b), Q(a, c) }

Since the left side of (3) is always satisfied, but its right side is not, domain members

a and b and fact R(a, b) are added to the initially empty model to satisfy (3). The

left side of (4) holds, but the right side does not, so one of the disjuncts ∃ z : Q(x, z)

or P (x) is chosen to be satisfied. Assuming the left operand is chosen, x will already

have been assigned to a and a new domain member c and a new fact Q(a, c) will be

added to satisfy (4). With the current model, all rules hold under any environment.

Therefore, this model is universal.

2. An empty result in finite time:

∅ 7→ { a, b | R(a, b) }

7→ { a, b, c | R(a, b), P (a, c) }

7→ { a, b, c | R(a, b), P (a, c),⊥ }

7→ ε

Again, domain members a and c and fact R(a, b) are added to the initial model to

satisfy (3). This time, when attempting to satisfy (4), the right side is chosen and

P is added to the set of facts. After adding this new fact, rule (6) no longer holds;

its left side is satisfied, but its right side does not hold for all of the bindings for

which it is satisfied. When we attempt to satisfy the right side of (6), it is found

to be a contradiction and therefore unsatisfiable. Since this model can never satisfy

this theory, the chase fails.

3. An infinite run:

∅ 7→ { a, b | R(a, b) }

7→ { a, b, c | R(a, b), Q(a, c) }

7→ { a, . . . , d | R(a, b), Q(a, c), R(d, c) }

7→ { a, . . . , e | R(a, b), Q(a, c), R(d, c), Q(d, e) }

7→ { a, . . . , f | R(a, b), Q(a, c), R(d, c), Q(d, e), R(f, e) }

7→ . . .
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Like in the example above that returned a non-empty, finite result, the first two

steps add domain members a, b, and c and facts R(a, b) and Q(a, c). The left side

of the implication in (5) now holds, but the right side does not. In order to make

the right side hold, one of the disjuncts needs to be satisfied. If the right disjunct

is chosen, a new domain member d and a new relation R(d, c) will be added. This

will cause the left side of the implication in (4) to hold for R(d, c), but the right side

will not hold for the same binding. Q(d, e) will be added, and this loop will continue

indefinitely unless a different disjunct is chosen in (4) or (5).

3.3 Foundations

Intuitively, a deterministic realization of the chase algorithm (the pairing of the nonde-

terministic chase algorithm with an evaluation strategy) is fair if the scheduler would

not allow for a (rule, binding) pair to go unevaluated during an infinite run. The formal

definition is below.

Definition 2. Let T be a geometric theory, and let

ρ = F0
(σ0,λ0)−−−−→ F1

(σ1,λ1)−−−−→ · · ·Fi
(σi,λi)−−−−→ Fi+1

(σi+1,λi+1)−−−−−−−→ · · ·

be an infinite run of the chase starting with the empty model F0.

Let C be the set of domain elements that occur anywhere in the chase; that is,

C =
⋃
{|Fi| | 0 ≤ i <∞}

We say that ρ is fair if for every pair (σ, λ) such that σ ∈ T , λ is an environment over

C, and Fi 6|=λ σ, there exists j such that i ≤ j and (σ, λ) is (σj , λj).

Lemma 1. Let T be a geometric theory and M be a model of T . Let N be a model and

suppose there exists a homomorphism h : N→ M. If N fails the test (σ, λ), there exists a

17



chase step N (σ,λ)−−−→ N′ and a homomorphism h′ : N′ →M.

Proof. We give the proof in the setting without equality. See example 2 in section 2.11.1

to see that we can treat all equalities as if they were defined as a relational equivalent.

Suppose σ is in the form

E(~x)→
∨
i

Fi(~x)

Since N 6|=λ σ, we know N |=λ E(~x) while N 6|=λ
∨
i Fi(~x). Since h is a homomorphism,

M |=h◦λ E(~x). Since M |=h◦λ σ, we have M |=h◦λ
∨
i Fi(~x) for some disjunct i. There

exists a chase step N (σ,λ)−−−→ N′ that will choose this disjunct.

In case Fi(~x) is of the form
∧
j Rij(~x) the chase step generates N′ by adding the facts

Rij(λ(~x)) for each j. To see that h : N → M is also a homomorphism from N′ to M it

suffices to see that each of the new facts added to N′ is preserved, by h, in M. That is,

we want to see that for each j, the fact Rij(h(λ(x0)), . . . , h(λ(xn)) holds in M. But this

follows from our earlier observation that M |=h◦λ Fi(~x).

In case Fi is of the form ∃y0, . . . , ym :
∧
j Rij(x0, . . . , xn, y0, . . . , ym), the chase step gen-

erates N′ by duplicating N and adding new elements a0, . . . , am to |N′|. The chase

step also adds the facts Rij(λ(x0), . . . , λ(xn), a0, . . . , am) to N′. There must exist some

e0, . . . , em ⊆ |M| such that the fact Rij(h(λ(x0)), . . . , h(λ(xn)), e0, . . . , em) ∈ M. Define

h′(ag) = eg for each 0 ≤ g ≤ m and h′(k) = h(k) for all k ∈ |N|. It follows that h′ is a

homomorphism h′ : N′ →M and M |=h′◦λ Fi(~x).

The model that plays the role that M plays in Lemma 1 is sometimes referred to as the

oracle.

Theorem 2. Let T be a geometric theory. For any model M such that M |= T , there

exists a run of the chase that returns a model N such that N |= T and N �M.
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Proof. Define F0 as the empty model. The empty function is a homomorphism h : F0 →M.

Starting with F0, iterate Lemma 1 over the models generated by successive chase steps

with respect to oracle M and theory T in such a way that the resulting chase is fair.

If the chase stops after n chase steps, the model Fn will satisfy Fn |= T and Fn �M.

If the chase does not stop and the chase steps are chosen fairly, the generated infinite

model, which we may call F∞, will satisfy F∞ |= T and F∞ �M.

To show that F∞ |= T , let σ be a sentence of T of the form ∀ ~x : α(~x) → β(~x). To see

that F∞ |= σ, let λ be a binding from ~x to |F∞|. It suffices to show F∞ |=λ α(~x)→ β(~x).

For convenience, let a0, . . . , an denote λ(x0), . . . , λ(xn).

If F∞ 6|=λ α(~x), then F∞ |= σ as desired. Otherwise, F∞ |=λ α(~x). Here, it suffices to

show that F∞ |=λ β(~x). For some fixed i, a0, . . . , an ∈ |Fi|. By fairness, there exists some

j such that i ≤ j and the chase step from Fj uses σ and λ: Fj
(σ,λ)−−−→ Fj+1. Because Fj+1

is a submodel of F∞ and β(~x) is in positive-existential form, F∞ |=λ β(~x) as desired.

3.4 History

In [5] Data Exchange: Semantics and Query Answering, Fagin et. al. first introduce a

chase algorithm. The version they defined disallows disjunctions. Input sentences with-

out disjunctions are appropriate to the database setting of [5] and allow a completely

deterministic algorithm.

The chase was originally used to solve the problem of data exchange. As Fagin et. al.

states, “Data exchange is the problem of taking data structured under a source schema

and creating an instance of a target schema that reflects the source data as accurately as

possible”. The solution to the stated problem was to find a universal model. In theories

without disjunction, a single universal model exists that has a homomorphism to any other

model that satisfies the theory. This absolute universal model can be calculated from a
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single run of their deterministic chase algorithm.

The definition of the chase algorithm used by Fagin et. al. is similar to the one defined

in section 3.1 in all ways except that it does not have to choose a disjunct.
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4 Haskell Chase Implementation

The goal of the implementation of the chase is to deterministically find all possible out-

comes of the chase. It does this by forking and taking all paths when encountering a

disjunct rather than nondeterministically choosing one disjunct to satisfy.

The results from the attempts to satisfy each disjunct are returned as a list. The returned

list will not contain an entry for runs that return no model, and will merge lists returned

from runs that themselves encountered a disjunct. The lazy evaluation of Haskell allows

a user to access members of the returned list as they are found, even though some chase

runs have not returned a value, and even if a chase run is infinite.

To be sure that a chase implementation returns every model a chase run could possibly

return, it is important that the implementation is fair. Recall the definition of fairness

from section 3.3.

Though the discussed implementation is efficient, it is not fair. The domain is represented

by an ordered type. Any time the algorithm would ask us to choose a binding, each variable

is assigned a member of the domain, starting with all variables paired with the representa-

tive with the lowest ordering. Successive pairings relate variables with successive domain

members. Problems similar to this are the cause of unfairness in the implementation.

Appendix C contains the chase-running portions of the implementation.

4.1 Operation

The first step of the chase implementation is to make sure that each formula of the given

theory can be represented as a geometric logic formula. If a formula ϕ can not be coerced

to a geometric logic formula, the implementation tries to coerce it into one by applying

the following rules recursively:
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¬α ∧ ¬β 7→ α ∨ β

¬α ∨ ¬β 7→ α ∧ β

¬¬α 7→ α

¬α→ β 7→ α ∨ β

α→ ¬β 7→ α ∧ β

¬(∀ ~x : ¬α) 7→ ∃ ~x : α

All other constructs are preserved. If this transformed formula is still not in positive

existential form, an error is thrown.

The chase function then sorts the input formulæ by the number of disjunctions on the

right side of the implication. It allows branches to sometimes terminate where they could

otherwise grow to an unnecessarily (and possibly infinitely) large size. This step will

cause each branch of the algorithm to finish in less time, as they are likely to halt before

branching yet again. The formulæ are not sorted purely by absolute number of disjunctions

on the right side, but by whether there are zero, one, or many disjunctions. This is done to

avoid unnecessary re-ordering for no gain because formulæ with no disjunctions or only a

single disjunct on the right side are more likely to cause a branch to stop growing than one

with many disjunctions. Likewise, formulæ with zero disjunctions are more likely to cause

a branch to halt than those with one or more disjunctions. A secondary sort also occurs

within these classifications that orders formulæ by the number of variables to reduce the

number of bindings generated.

Once the input formulæ are sorted, the chase function begins processing a pending list,

which is initially populated with a single model that has an empty domain and no facts.

For each pending model, each formula is evaluated to see if it holds in the model for all
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environments. If an environment is found that does not satisfy the model, the model and

environment in which the formula did not hold is passed to the satisfy function, along

with the formula that needs to be satisfied. The list of models returned from satisfy

is merged into the pending list, and the result of running chase on the new pending list

is returned. If, however, the model holds for all formulæ in the theory and all possible

associated environments, it is concatenated with the result of running the chase on the

rest of the models in the pending list and returned.

The satisfy function performs a pattern match on the type of formula given. satisfy

will behave as outlined in the algorithm which can be found in Appendix D.

4.2 Input Format

Input to the program must be in a form parsable by the context-free grammar seen in

Appendix E. Terminals are denoted by a monospace style and nonterminals are denoted

by an oblique style. The Greek letter ε matches a zero-length list of tokens. Patterns that

match non-literal terminals are defined in the table in Appendix F. The expected input is

essentially a newline-separated list of ASCII representations of geometric formulæ.

Comments are removed at the lexical analysis step and have no effect on the input to the

parser. Single-line comments begin with either a hash (#) or double-dash (--). Multi-line

comments begin with /* and are terminated by */.

4.3 Options

Help on the usage of the chase implementation can be found by passing the executable

output by Haskell the --help or -? options.

When no options are given to the executable, it expects input from stdin and outputs

models in a human-readable format to stdout. To take input from a file instead, pass the
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executable the -i or --input option followed by the filename.

To output models to numbered files in a directory, pass the -o or --output option along

with an optional directory name. The given directory does not have to exist. If the output

directory is omitted, it defaults to “./models”.

Using the -o or --output options will change the selection for output format to a machine-

readable format. To switch output formats at any time, pass the -h or -m flags for human-

readable and machine-readable formats respectively.

4.4 Future Considerations

This section details areas of possible improvement/development.

4.4.1 Better Data Structures

Some less-than-optimal data structures are being used to hold data that should really be

in a Data.Map or Data.Set. One such example of this is with the truth table holding the

relation information of a model. This truth table should be implemented as a Data.Map.

Environments are currently a list of tuples, but should really be a Data.Map. Instead of

Domains being a list of DomainMember, it would be better if a Domain was a Data.Set.

4.4.2 Broader Use of the Maybe Monad

In several helper functions, the program’s execution is halted and an error is output when

the function receives certain invalid inputs. These functions should take advantage of

the Maybe Monad and return Maybe a where a is the type they currently return. One

particular example of this is the pef function. When pef takes a formula as input that

can not be converted to positive-existential form, it causes the program to produce an
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error and exit. Instead, pef should return Maybe Formula and the places where it is used

should handle the error condition however they choose.

4.4.3 Binding Search Approach for Satisfaction Checking

When checking if a model with 30 domain members and 60 facts holds for a formula with

5 universally quantified variables (a reasonable real-life usage example), 305 or 24, 300, 000

bindings will have to be generated, and the formula will be checked under each one. But

by limiting the checked bindings to only those that can produce facts that exist in the

model from the atomics in the formula, only the 60 facts will have to be checked in the

worst case, and only 1 in the best. In practical use, this should dramatically reduce the

running time of theories that produce finite results.

4.4.4 Avoid Isomorphic Model Generation

By taking different paths to arrive at the same model, the chase often creates equivalent

models that satisfy its given theory. These duplicate models are already being filtered from

the output. However, another problem exists when the chase returns isomorphic models.

Given two models, it is very computationally expensive to determine if there exists an

isomorphism between them. If a fast method of determining if two models are isomorphic

is found, including an implementation of it would provide more valuable results to the

user.

4.4.5 Improve Efficiency

The main goals of this project were to write a correct chase implementation and apply it

in a real-world situation. While reasonable and obvious optimizations were made, there

is still plenty of room for optimization.

25



In [8] Harrison’s Practical Logic and Automated Reasoning, Harrison mentions a large

number of formula rewriting and simplification algorithms, many of which are already

implemented in the Helpers module. Those functions that are written, however, are not

currently being used by the chase functions, and there are surely other functions that

Harrison mentions that have not yet been written.

One specific example of a function that [8] Harrison mentions on pages 141 to 144 is

pullQuants, which pulls all quantifiers in a formula to the outside. This results in a

formula with no conjunctions or disjunctions of quantified subformulæ. This function is

implemented, but a function that does exactly the opposite of this will help speed up

satisfaction checking when using the traditional looping method. This will minimize the

number of times bindings need to be generated for all permutations of the current model’s

domain because the number of quantified variables will be reduced.

4.4.6 Parallelize

The chase implementation should be easily parallelizable. The program can fork for every

call to the branch function as it is mapped over a pending list in the chase’ function. As

each fork finds a contradiction, the forks will die. This method could still lead to a large

number of threads. In a proper implementation, forks that are waiting on a single child

could consume that child’s work to minimize this problem. Doing this would prevent long

chains of waiting threads.

4.4.7 Tracing

Currently, Debug.Trace is being used to output real-time status for ease of debugging.

This output is helpful to both developers of the chase implementation and theories that

will be given as input. Unfortunately, all of the output can really slow down a chase run
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of a simple theory. Currently, the only way to disable tracing is to replace the definition

trace = Debug.Trace.trace

with

trace x = id

A flag is already being read in from the command line as -d and stored in the options

record under optDebug. When this flag is found, a callback function is being invoked in

the Main module. Someone who implements this enhancement would need to be able to

alter the behaviour of the Chase module’s trace function from a function within the Main

module. Ideally, a better debugging output method will be found and Debug.Trace.trace

will no longer need to be used in what is otherwise production-ready code.
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5 An Extended Application:

Cryptographic Protocol Analysis

The chase can be used for protocol analysis. A common technique for the analysis of pro-

tocols involves identifying the essentially different runs of the protocol. These essentially

different protocol runs are analogous to universal models. When a protocol is described

using geometric logic, the chase can find such universal models. The protocol can then be

analysed for characteristics such as the existence of security violations or other unexpected

behaviour.

5.1 Strand Spaces

The strand space formalism was developed as a method for formally reasoning about

cryptographic protocols. The formalism distinguishes between two different kinds of par-

ticipants: regular participants and an adversary. A single participant can be represented

as multiple regular strands if they play more than one role in the protocol.

Roles in a protocol run are represented by strands, and communicate with each other by

sending and receiving messages. A regular role is represented by a regular strand and

must follow the protocol. The adversary is represented by zero or more adversary strands,

and can manipulate the messages that regular strands send/receive.

A strand is made up of a non-empty, finite sequence of nodes. Every node either sends or

receives a term called its message. A term is anything can be sent between nodes.

5.1.1 Messaging

Terms are defined inductively as follows:
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• any text is a term, specifically a basic term

• the ciphertext {|τ1|}τ2 is a term if the plaintext τ1 and the key τ2 are terms

• the pair (τ1,τ2) is a term if τ1 and τ2 are terms

A term t is an ingredient of another term u if u can be constructed from t by repeatedly

pairing with arbitrary terms and encrypting with arbitrary keys. A component of a term

t is any term that can be retrieved simply by applying repeated unpairing operations to t

and is not a pair itself.

A nonce is a uniquely-originating basic term. A term t originates on a node n of a strand

s if n is a sending node, t is an ingredient of the message of n, and t is not an ingredient of

any previous node on s. A term is uniquely originating if it originates on only one strand.

A term is non-originating if it does not appear in any strand.

If a regular participant generates a random fresh nonce, it will be assumed uniquely-

originating because of the extreme unlikelihood of any other participant generating and

originating the same value.

Similarly, non-origination is helpful in describing private asymmetric keys that should

never be sent as part of a message.

5.1.2 The Adversary

An adversary is included in the strand space formalism to represent a worst-case situation,

where an attacker may control every point of communication between regular participants.

The actions of the adversary are represented by adversary strands. Recall that adversary

strands are not bound by the rules defined by the protocol; they manipulate messages

being sent and received by non-adversarial strands.

The capabilities of the adversary strands are given by the Dolev-Yao Threat Model [4].
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The five possible operations that an adversary may perform are derived from both the

Dolev-Yao Threat Model and the strand space formalism. These operations are:

pairing the pairing of two terms

unpairing the extraction of a term from a pair

encryption given a key k and a plaintext m, the construction of the ciphertext {|m|}k

by encrypting m with k

decryption given a ciphertext {|m|}k and its decryption key k−1, the extraction of the

plaintext m

generation the generation of an original term when that term is not assumed to be secure

Pairing and encryption are construction operations. Decryption and unpairing are decon-

struction operations.

5.2 Paths

An edge is a directional relationship between two nodes. The direct predecessor of a node

within its strand is called its parent. Not every node has a parent. Whenever a node n

has a parent p, there is an edge from p to n. A link is an edge from a sending node to a

receiving node that have the same message. If there is a node n with a link to a node m,

n sends m a message and m receives it unaltered. The path relation, written x < y, is the

transitive closure of the edge relation. A node n precedes another node m when there is

a path from n to m. In this formalism, events are partially ordered.
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5.2.1 Normalisation / Simplification

Two simplifying assumptions can be made about the sequence of actions an adversary can

perform without limiting their capabilities. These simplifications are called normalisation

and efficiency. Guttman and Thayer [7] proved that adding these constraints does not

limit the capabilities of an adversary.

A protocol is efficient if an adversary always takes a message from the earliest point at

which it appears. To be precise, a protocol is efficient if, for every sending node m and

receiving adversary node n, if every component of m is also a component of n, then there

is no regular node m′ such that m < m′ < n.

A protocol is normal if, for any path through adversary strands, the adversary always

either performs a generation followed by zero or more construction operations or performs

zero or more deconstruction operations followed by zero or more construction operations.

This constraint limits redundancy.

An important insight used in Cremers’s algorithm [3], which will be called chaining, states

that terms in messages received from an adversary strand always originate in a non-

adversarial strand. In simpler terms, an adversary can not send a message to himself nor

receive a message from himself.

5.3 The Problem

Some protocol researchers want to be able to programmatically reason about cryptographic

protocols. A common technique for this is to find a set of essentially different classes of

protocol runs, which are each a subset of all possible runs of the protocol. Together, these

classes encompass every possible run of the protocol. This can be accomplished by finding

universal models of a geometric logic representation of the protocol. This happens to be

precisely the problem the chase solves.
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5.4 The Solution: Universal Models

Given a theory T , the jointly universal modelsM that the chase outputs are representative

of all models because there always exists a homomorphism from some model M ∈ M to

any model that satisfies T . Every model N that satisfies T describes a possible run of the

protocol. It also indirectly represents a larger class of runs, specifically the set of all runs

of the protocol that are described by a model P such that P |= T and N � P.

Since the set of all models output of the chase is jointly universal, they represents every

possible run of the protocol. Finding every possible run of the protocol would be pro-

hibitive because there are infinitely many. Fortunately, the chase may halt with a finite

result, providing a model that is representative of a class of protocol runs. Fortunately, the

deterministic chase implementation may output a finite number of models before halting.

These models are jointly universal, and therefore represent all runs of the protocol.

5.5 Designing An Analogous Theory

In order to create a geometric theory describing a protocol, the formulæ that define strand

spaces, normilisation, efficiency, and chaining must be derived. The formulæ defining the

protocol must be combined with this scaffolding to create a theory that can be used to

infer the possible runs of the protocol.

The half-duplex protocol was chosen to be used as an example. This protocol involves two

participants, Alice and Bob, playing two roles, and specifies that the following actions

take place:

1. Alice sends Bob a nonce that she generated, encrypted with Bob’s public key

2. Bob receives the encrypted nonce

3. Bob replies to Alice with the decrypted nonce
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4. Alice receives Bob’s message

A visual representation of the protocol, as modeled in the strand space formalism, can be

seen in Figure 1.

A B
{|K|}B {|K|}B

K K

Figure 1: A visual representation of the half-duplex protocol modeled in strand space

The geometric logic rules that model this protocol were generated manually by direct

translation into geometric logic. Ideally, the process of generating geometric logic formulæ

from protocols should be done automatically.

5.6 The Results

The chase was run on the logic representation of the half-duplex protocol. A single model

was returned during the execution of the algorithm, which was manually stopped before

natural completion. This model, visualized in Figure 2, like all models returned by the

chase, satisfies the input theory, and belongs to a set of jointly universal models for the

theory.

The returned model denotes a run of the protocol which contains no adversary strands

and is a correct execution of the protocol.
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{|K|}B

K

Figure 2: A visual representation of the discovered run of the half-duplex protocol
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A Table of Syntax

syntax definition
f−1 the inverse function of f

R[a0, a1, a2] a relation of: relation symbol R, arity 3, and tuple 〈a0, a1, a2〉
> a tautological formula; one that will always hold
⊥ a contradictory formula; one that will never hold

ρ = τ given assumed environment λ, λ(ρ) = λ(τ)
¬α α does not hold

α ∧ β both α and β hold
α ∨ β either α or β hold
α→ β either α does not hold or β holds
∀ x : α for each member of the domain as x, α holds
∀ ~x : α when ~x is x0, . . . , xn, shorthand for ∀ x0 : (. . . (∀ xn : α))
∃ x : α for at least one member of the domain as x, α holds
∃ ~x : α when ~x is x0, . . . , xn, shorthand for ∃ x0 : (. . . (∃ xn : α))

λ[x 7→ y] the environment λ with variable x mapped to domain member y
M |=l σ M is a model of σ under environment l
M |= σ M |=l σ given any environment l

M |=l Σ for each σ ∈ Σ, M |=l σ
M |= Σ for each σ ∈ Σ, M |= σ

Σ |= σ Σ entails σ
M � N there exists a homomorphism h : |M| → |N|
M ' N M and N are homomorphically equivalent
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B Glossary

adversary a participant in the strand space formalism, represented by zero or more ad-
versary strands

adversary strand a type of strand in the strand space formalism that is not bound by
the rules defined by the protocol; manipulates messages being sent and received by
non-adversarial strands

chase a nondeterministic algorithm used to find jointly universal models for a set of
geometric logic formulæ

component a component of a term t is any term that can be retrieved simply by applying
repeated unpairing operations to t and is not a pair itself

construction operation pairing and encryption operations

deconstruction operation decryption and unpairing operations

efficient a protocol is efficient if, for every sending node m and receiving adversary node
n, if every component of m is also a component of n, then there is no regular node
m′ such that m < m′ < n.

entailment given an environment λ, a set of formulæ Σ is said to entail a formula σ
(Σ |=λ σ) if the set of all models satisfied by Σ under λ is a subset of the set of all
models satisfying σ under λ

environment an environment for a model M is a function from a variable v to a domain
member e where e ∈ |M|

first-order logic a formal logic system; also called predicate logic

geometric logic formula implicitly universally quantified implication of positive-existential
formulæ

geometric theory a set of geometric logic formulæ

homomorphic equivalence two models M and N are homomorphically equivalent if
M � N ∧ N �M

homomorphism a function h : |A| → |B| such that, for each relation symbol R and tuple
〈a0, . . . , an〉 where a ⊆ |A|, 〈a0, . . . , an〉 ∈ RA implies 〈h(a0), . . . , h(an)〉 ∈ RB

ingredient a term t is an ingredient of another term u if u can be constructed from t by
repeatedly pairing with arbitrary terms and encrypting with arbitrary keys

isomorphism a homomorphism h : A → B is also an isomorphism when h is 1:1 and
onto and the inverse function h−1 : B→ A is a homomorphism.

jointly universal models a set of models M is said to be jointly universal for a set of
formulæ Σ when every model N such that N |= Σ has a homomorphism from a model
M ∈M to N.
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message a term sent or received by a node

minimal model see universal model

model a model M is a construct that consists of a set, denoted |M|, called the universe
or domain of M and a relation RM

k ⊆ |M| for each pairing of a predicate R and an
arity k in a vocabulary V

nonce a uniquely-originating basic term

normal a protocol is normal if, for any path through adversary strands, the adversary
always either performs a generation followed by zero or more construction opera-
tions or performs zero or more deconstruction operations followed by zero or more
construction operations

origination a term t originates on a node n of a strand s if n is a sending node, t is an
ingredient of the message of n, and t is not an ingredient of any previous node on s

positive-existential form formula constructed using only conjunctions (∧), disjunc-
tions (∨), existential quantifications (∃), tautologies (>), contradictions (⊥), equal-
ities, and relations

predicate see relation symbol

predicate logic see first-order logic

relation symbol any unique symbol; also called a predicate

sentence a formula α if free(α) = ∅

strand space formalism a method for formally reasoning about cryptographic proto-
cols

strong homomorphism a homomorphism h is also a strong homomorphism if, for each
relation symbol R and tuple 〈a0, . . . , an〉 where a ⊆ |A|, 〈a0, . . . , an〉 ∈ RA if and
only if 〈h(a0), . . . , h(an)〉 ∈ RB.

uniquely originating a term is uniquely originating if it originates on only one strand

universal model a model for a theory T with the special property that there exists
a homomorphism from the model to any other model that satisfies T ; also called
universal model

vocabulary a set of pairings of a relation symbol with a non-negative integral arity
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C Chase code

1 module Chase where
2 import Parser
3 import Helpers
4 import Data . List
5
6 v e r i f y : : Formula −> Formula
7 −− v e r i f i e s t ha t a formula i s in p o s i t i v e e x i s t e n t i a l form and performs some
8 −− normal i za t ion on imp l i ed / constant imp l i c a t i on s
9 v e r i f y formula = case formula of

10 Imp l i c a t i on a b −> Imp l i c a t i on ( pe f a ) ( pe f b)
11 Not f −> Imp l i c a t i on ( pe f f ) Contrad ic t ion
12 −> Imp l i c a t i on Tautology ( pe f formula )
13
14 order : : [ Formula ] −> [ Formula ]
15 −− s o r t s a theory by number o f d i s j u n c t s then by number o f v a r i a b l e s
16 order formulae = sortBy (\ a b −>
17 let extractRHS = (\ f −> case f of ; ( Imp l i c a t i on l h s rhs ) −> rhs ; −> f ) in
18 let ( rhsA , rhsB ) = ( extractRHS a , extractRHS b) in
19 let ( lenA , lenB ) = ( numDisjuncts rhsA , numDisjuncts rhsB ) in
20 let (vA, vB) = ( length ( v a r i a b l e s a ) , length ( v a r i a b l e s b ) ) in
21 i f lenA == lenB | | lenA > 1 && lenB > 1 then
22 i f vA == vB then EQ
23 else
24 i f vA < vB then LT
25 else GT
26 else
27 i f lenA < lenB then LT
28 else GT
29 ) formulae
30
31 chase : : [ Formula ] −> [ Model ]
32 −− a wrapper f o r the chase ’ func t i on to hide the model i d e n t i t y and theory
33 −− manipulat ion / normal i za t ion
34 chase theory = nub $ chase ’ ( order $ map v e r i f y theory ) [ ( [ ] , [ ] ) ]
35
36 chase ’ : : [ Formula ] −> [ Model ] −> [ Model ]
37 −− runs the chase a lgor i thm on a given theory , manipulat ing the g iven l i s t o f
38 −− models , and re turn ing a l i s t o f models t ha t s a t i s f y the theory
39 chase ’ [ ] = [ ]
40 chase ’ theory pending = concatMap ( branch theory ) pending
41
42 branch : : [ Formula ] −> Model −> [ Model ]
43 −− i f t h e re i s a ( formula , environment ) pa i r ing f o r which the g iven model does not hold ,
44 −− a l t e r s the model in attempt to make i t ho ld
45 −− otherwise ,
46 −− re turns the g iven model
47 branch theory model =
48 let reBranch = chase ’ theory in
49 −− run chase on ‘model ‘
50 case f i n dF i r s t F a i l u r e model theory of
51 Just newModels −>
52 −− at l e a s t one formula does not ho ld f o r ‘model ‘
53 reBranch newModels
54 Nothing −> −− r ep re s en t s no f a i l u r e s
55 −− a l l formulae in theory ho ld f o r current model , re turn i t
56 [ model ]
57
58 f i n dF i r s t F a i l u r e : : Model −> [ Formula ] −> Maybe [ Model ]
59 −− t e s t i f t he re e x i s t s a (Formula , Environment ) pa i r ing f o r which the g iven
60 −− model does not ho ld
61 f i n dF i r s t F a i l u r e model [ ] = Nothing −− no f a i l u r e found
62 f i n dF i r s t F a i l u r e model@(domain , r e l a t i o n s ) ( f : ormulae ) =
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63 let s e l f = f i n dF i r s t F a i l u r e model in
64 let b ind ings = a l lB ind i ng s ( f r e eVa r i a b l e s f ) domain [ ] in
65 −− check formula ‘ f ‘
66 i f holds model ( Un iv e r s a lQuan t i f i e r ( f r e eVa r i a b l e s f ) f ) then s e l f ormulae
67 else Just $ f i ndF i r s tB ind i ngFa i l u r e model f b ind ings
68
69 f i ndF i r s tB ind i ngFa i l u r e : : Model −> Formula −> [ Environment ] −> [ Model ]
70 −− t e s t s i f t he re i s an environment f o r which the g iven model does not s a t i s f y
71 −− the g iven formula
72 f i ndF i r s tB ind i ngFa i l u r e ( Imp l i c a t i on a Contrad ic t ion ) = [ ]
73 f i ndF i r s tB ind i ngFa i l u r e model formula@ ( Imp l i c a t i on a b) ( e : e s ) =
74 let s e l f = f i ndF i r s tB ind i ngFa i l u r e model formula in
75 i f holds ’ model e formula then s e l f e s
76 else
77 −− attempt to s a t i s f y RHS ‘ b ‘ with b ind ing ‘ e ‘
78 s a t i s f y model e b
79
80 s a t i s f y : : Model −> Environment −> Formula −> [ Model ]
81 −− a l t e r the g iven model to s a t i s f y the g iven formula under the g iven environment
82 s a t i s f y model env formula =
83 let ( domain , r e l a t i o n s ) = model in
84 let domainSize = fromIntegral $ length domain in
85 let s e l f = s a t i s f y model in
86 case formula of
87 Tautology −> [ model ]
88 Contrad ic t ion −> [ ]
89 Or a b −> union ( s e l f env a ) ( s e l f env b)
90 And a b −> concatMap (\m −> s a t i s f y m env b) ( s e l f env a )
91 Equal i ty v1 v2 −> case ( lookup v1 env , lookup v2 env ) of
92 (Just v1 , Just v2 ) −> [ quot i ent model v1 v2 ]
93 −> error ( ” environment lookup e r r o r ” )
94 Atomic p r ed i c a t e vars −>
95 let newRelationArgs = genNewRelationArgs env vars domainSize in
96 let newRelation = mkRelation p r ed i c a t e ( length vars ) [ newRelationArgs ] in
97 let newDomain = mkDomain domainSize in
98 let newRelat ions = mergeRelat ion newRelation r e l a t i o n s in
99 let newModel = mkModel newDomain newRelat ions in

100 −− add new r e l a t i o n ‘ newRelation ‘ to ‘model ‘
101 [ newModel ]
102 Ex i s t e n t i a lQuan t i f i e r [ ] f −> s e l f env f
103 Ex i s t e n t i a lQuan t i f i e r ( v : vs ) f −>
104 let f ’ = Ex i s t e n t i a lQuan t i f i e r vs f in
105 let modelHoldsIn = \d −> holds ’ model ( hashSet env v d) f ’ in
106 let nextDomainMember = fromIntegral $ ( length domain ) + 1 in
107 let newModel = mkModel (mkDomain nextDomainMember ) r e l a t i o n s in
108 let newEnvironment = hashSet env v nextDomainMember in
109 i f ( domain /= [ ] ) && any modelHoldsIn domain then
110 −− ‘ formula ‘ a l ready ho ld s
111 [ model ]
112 else
113 −− add new domain member ‘nextDomainMember ‘ f o r v a r i a b l e ‘ v ‘
114 −− and expand domain o f model to ‘nextDomainMember ‘ in l eng t h
115 s a t i s f y newModel newEnvironment f ’
116 −> error ( ” formula not in p o s i t i v e e x i s t e n t i a l form : ” ++ show formula )
117
118 genNewRelationArgs : : Environment −> [ Var iab le ] −> DomainMember −> [ DomainMember ]
119 −− f o r each v a r i a b l e in the g iven l i s t o f v a r i a b l e s , r e t r i e v e s the va lue
120 −− ass i gned to i t in the g iven environment , or the next domain element i f i t
121 −− does not e x i s t
122 genNewRelationArgs env [ ] domainSize = [ ]
123 genNewRelationArgs env (v : vs ) domainSize =
124 let s e l f = genNewRelationArgs env vs in
125 case lookup v env of
126 Just v ’ −> v ’ : s e l f domainSize
127 −> domainSize+1 : s e l f ( domainSize+1)
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D Satisfying Algorithm

Algorithm: satisfy :: Model (M) → Environment (λ) → Formula (ϕ) → [Model]
return switch ϕ do

case > return {M}
case ⊥ return ∅
case x = y /* identify λ(x) and λ(y) in N */

let a = λ(x) and b = λ(y)
let N be a model where |N| = |M| − {b}
foreach fact R(~v) ∈M do add R( ~v[b 7→a]) as a fact in N
return N

case α ∨ β return satisfy(M, λ, α) ∪ satisfy(M, λ, β)
case α ∧ β

let r = ∅
forall the models m ∈ satisfy(M, λ, α) do

redefine r as r ∪ satisfy(M, λ, β)

return r

case R(~x)
define a model N where |N| = |M| ∪ ω and ω 6∈ |N| to |N|
foreach PM do PN = PM

forall the v ∈ ~x do
if v 6∈ λ then redefine λ as λv 7→ω

define RN as RM(λ(x0) . . . λ(xn))
return {N}

case ∃ ~x : α
if ~x = ∅ then return satisfy(M, λ, α)
if |M| 6= ∅ and ∃ v′ ∈ |M| such that λ′ = λx0 7→v′ and M |=λ′ α then

return {M}
else

define a model N where |N| = |M| ∪ ω and ω 6∈ |N| to |N|
foreach RM do RN = RM

define κ = λx0 7→ω
return satisfy(N, κ,∃ {x1 . . . xn} : α)
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E Grammar

program : ε
| exprList optNEWLINE

exprList : expr
| exprList NEWLINE expr

expr : TAUTOLOGY
| CONTRADICTION
| expr OR expr
| expr AND expr
| NOT expr
| expr -> expr
| -> expr
| atomic
| VARIABLE EQ VARIABLE
| FOR ALL argList optCOLON expr
| THERE EXISTS argList optCOLON expr
| ( expr )
| [ expr ]

atomic : PREDICATE optIndex

index : ( argList )
| [ argList ]

argList : arg
| argList , arg

arg : VARIABLE

optIndex : ε
| index

optCOLON : ε
| :

optNEWLINE : ε
| NEWLINE
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F Lexical Rules

Input Pattern Terminal
| OR
& AND
! NOT
= EQ
[Tt]autology TAUTOLOGY
[Cc]ontradiction CONTRADICTION
[\r\n]+ NEWLINE
[a-z][A-Za-z0-9 ’]* VARIABLE
[A-Z][A-Za-z0-9 ’]* PREDICATE
For[Aa]ll FOR ALL
Exists THERE EXISTS
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