
Haptic Keyboard Aid

A Major Qualifying Project Report:

Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Jose Meneses

Julia Rugo

Date: December 18, 2014

Approved:

Major Advisor: Professor John A. Orr

Co-Advisor: Professor Scott D. Barton

i

Abstract

This MQP was to develop a prototype for a haptic learning device for piano. The aim of the
device is to use haptic feedback to reinforce proper piano playing. The device is a keyboard that
has electromagnets embedded in the keys. The user of this device wears gloves that have
magnets on the fingertips. The device uses the electromagnets to pull the user’s fingers to the
correct finger positioning. The keyboard has touch sensors to detect user input and RGB LEDs to
provide visual queues while in operation. The device is controlled using an Arudino
microcontroller and Max computer software. The final product is a prototype that implements the
haptic technology and can demonstrate its operation with some piano exercises.

ii

Acknowledgments

Our team would like to thank Professor John Orr and Professor Scott Barton for advising this
project. Their guidance and support was a valuable resource for the development of this project.
We would also like to thank Dominic Lopriore for giving us access to his shop and helping us
with the design and construction of the piano keyboard. Without their assistance this project
would have not been completed successfully.

1

Table of Contents
Abstract ... i
Acknowledgments .. ii
1. Introduction ... 4
2. Background ... 5

2.1 Piano Pedagogy ... 5
2.3 Market Research .. 8
2.4 Haptic Technology...13
2.5 Design Approach for Haptic Systems ..16
2.5.1 Electrical Actuators ...18
2.5.1.1 Electromagnets ...18
2.5.2 Pneumatic Actuators ..20
2.5.3 Hydraulic Actuators ..20

3. Project Goals .. 21
4. Preliminary Design Approach .. 22

4.1 Description of Device ..23
4.2 Multicolor LEDs ...23
4.3 Touch Sensors ..26
4.4 Electromagnets ...27
4.5 Microcontroller ...28
4.6 Software: Max ...29
4.7 Glove...30
4.8 Keyboard structure ..31

5. Hardware Implementation ..32
5.1 Touch Sensors ..32
5.1.1 Initial Tests and Implementation ...32
5.1.2 Final Implementation ..34
5.2 LED Circuit ..36
5.2.1 Initial Tests and Implementation ...36
5.2.2 Final Implementation ..40
5.3 Electromagnet Circuit ..41
5.3.1 Initial Tests and Implementation ...41
5.3.2 Final Implementation ..41
5.4 Arduino Microcontroller Connections ...42
5.5 Box Construction ...45

6. Max Software Implementation ... 46
7. Recommendations .. 47
8. Results and Conclusions .. 49
9. References ... 50
10. Appendices .. 57
Appendix A: Arduino Software Installation and Setup ...57
Appendix B: Touch Sensors ..59

1. Example Code for One Touch Sensor ...59
2. Setting the Touch Sensor’s Sensitivity for 15 Keys ..60
3. Serial Port Connection ..62
Sending Unique Readings to the Touch Sensors via Serial Port ...62

Appendix C: Receive LED Control Data ..66
1. LED Shift Register Control via Serial Port ConnectionA ..66
2. Activating the 15 RGB LEDs via Shift Register and Serial Port Connection69

2

Appendix D: Full Program Execution ..74
Control the Keyboard’s 15 electromagnets, 15 RGB LEDs and 15 Capacitive Touch Sensors 74

Appendix E: Solid Works Keyboard Design Plans ...83
Appendix F: Max Software ...89

1. User Interface..89
2. Data Control ..90
3. Music Patches ...91

Music Patchers (Sub-patches) ...93

3

Table of Figures
Figure 1: Proper Hand Position, Baseball Curve [10] ... 6
Figure 2: Proper Hand Position Piano [8] .. 6
Figure 3: Proper Hand Position, Emphasis on Thumb [12] ... 6
Figure 4: Left and Right Hand Number Association [14] ... 7
Figure 5: Finger Muscle Memory Cartoon [20] .. 8
Figure 6: Children's Learn to Play Keyboard [23] ... 9
Figure 7:iTikes Keyboard with iPad Software Attached [26] ... 9
Figure 8: Steinway Etude Sheet Music View [2] ... 10
Figure 9: Steinway Etude Tempo and Rhythm View [2] .. 10
Figure 10: Piano... iPad Application [28] .. 11
Figure 11: iGrand Piano; Metronome and Tempo [30] ... 12
Figure 12: PianoMaestro; Piano, Keyboard Light Strip, and Computer Software [1] 12
Figure 13: PianoMaestro's Musical Notation Output After Conversion of a MIDI File [1] 13
Figure 14: PHANTOM interface from SenseAble Technologies [37] 14
Figure 15: CyberGrasp system from Immersion Corporation [38] 15
Figure 16: PianoTouch developed in Georgia Tech [40]... 15
Figure 17: Types of Haptic Interaction [42] .. 16
Figure 18: Basic representation of Haptic System [33, pg. 70] ... 17
Figure 19: Magnetic field in electromagnet [44] ... 18
Figure 20: FingerFlux electromagnet array [47] .. 19
Figure 21: System Black Diagram ... 23
Figure 22: RGB LED [48] ... 24
Figure 23: Color Truth Table for LEDs [49] ... 24
Figure 24: 74HC595 Schematic [50] ... 25
Figure 25: Breadboard Circuit for Two Shift Registers ... 25
Figure 26: Capactivie Touch Sensor Circuit [51] .. 26
Figure 27: Electromagnet [52] ... 27
Figure 28: Circuit to Drive One Electromagnet [54] ... 28
Figure 29: Arduino Mega2560 [55] ... 28
Figure 30: Arduino Mega2560 Specification [55] ... 29
Figure 31: Magnet next to penny for scale [60] ... 31
Figure 32: Flow diagram for initial touch sensor test .. 33
Figure 33: Print out logic for sensors ... 36
Figure 34: One LED with one 74HC164 ... 37
Figure 35: Check to see if serial data is fully received .. 38
Figure 36: Shift Registers Control Flow .. 40
Figure 37: Full Circuit Schematic .. 43
Figure 38: PCB layout designed using Fritzing ... 44

4

1. Introduction

Learning to play a musical instrument is an activity that takes time and effort. Many beginners
struggle with playing skills and have difficulty finding motivation to practice. There are a variety
of tools on the market that provide assistance for learning to play an instrument. These tools
focus on helping users learn basic playing skills, while also adding a fun component to the
process, such as a game or enticing visuals; an example would be lights that correspond to the
musical notes being played. This approach can liven a player’s instrument experience and
provide an incentive to keep practicing. Such products not only increase enthusiasm towards
learning an instrument, but are also meant to efficiently speed up the learning process.

A popular instrument is the piano, and there are multitudes of resources available in software
and physical form to aid in the piano learning process. Most learning tools available for
beginning piano players use technology that focuses on visual interaction. Products, such as
PianoMaestro [1], focus on utilizing visual aids with LEDs on a piano or keyboard to teach
lessons. Steinway Etude [2] is a software application for iPads or iPhones that simulates a piano
keyboard and gives preemptive visual instruction to help the player anticipate which notes
should be played. Both of these products provide feedback that helps the user learn. However,
these products only use visual signals for learning. The goal of this MQP is to add a second
stimulus to improve the learning process. Our team has developed a physical device meant to
enhance a beginning piano student’s learning experience by guiding the user’s hands and
fingers to the correct piano playing position on the keyboard. The project implements a tactile
stimulus to explore the viability of haptic feedback in piano learning technology.

5

2. Background
In order to design a haptic learning device it is important to look at previously implemented and
successful piano-learning devices and techniques. The concept of this project is to combine
both tactile and visual cues into an educational piano keyboard; therefore, it is vital to
understand haptic feedback and study some of the applications in this field. An overview of
design approaches for haptic systems reveals different implementation methods for haptic
technology. Learning devices that implement haptic systems have displayed positive results,
such as the Georgia Tech PianoTouch device [3].

To create an effective educational keyboard, piano-learning techniques must be evaluated.
Music teachers use a variety of academic approaches to teach the piano. Most include
repetitive finger exercises and practicing songs. Repetitive exercises develop coordination
between the brain and nerves controlling the action. Repeating piano exercises enhances
coordination between a player’s fingers and hands and will familiarize the player with proper
finger placement upon the keys on the keyboard.

2.1 Piano Pedagogy
Pedagogy is defined as a method or practice of teaching, especially when applied to an
academic subject or theoretical concept [4]; piano pedagogy focuses on musical skills that are
used to teach individuals studying the instrument. However, there are a variety of pedagogical
approaches that used to teach piano. Common pedagogical methods include scales and
exercises that help beginners acquire proper finger placement and playing techniques for the
piano. While practicing, students are also familiarized with the musical note’s sound and its
associated key [5].

Developing proper piano-playing technique assures that the time and effort a student dedicates
to practicing will be used most efficiently [8]. Internationally-renowned piano teacher Martha
Beth Lewis graduated with a Ph.D. in musicology from the University of Florida and has a
successful reputation in piano pedagogy for beginners [6] There is a large “Readers’ Questions
and Answers About Pedagogy” section on Lewis’ website that is aimed mostly for piano
teachers and parents of piano students [7]. Many of the questions address teaching students
with physical or mental disabilities and how to teach, correct, or refine proper piano playing
technique to these individuals, as well as tips on how to fix common bad habits that beginning
students struggle with. Questions 114, 138, and 156 on Martha Beth Lewis’s website refer to
teaching hand position, correcting bad fingering, and reversing a student’s dropping thumb
habit, respectively [7]. Those new to piano will struggle with maintaining good hand position
while playing [9]. Lewis says that students must be aware of their wrists and thumbs while
practicing [7]. The wrist is meant to hold a player’s hand and fingers strong over the keys. A
proper hand position is curved as if the student is holding a baseball [Figure 1]. Lewis uses
techniques that she calls “piranha”, which is when she tickles the bottom side of a student’s
wrist when they sag. Beginning students also struggle with “dropping the thumbs” while playing,
so that they are pointing towards the floor [Q. 156]. Lewis suggests playing “alligator”, in which

6

a piano teacher “bites” the bottom of the students thumb by giving it a soft pinch or tickle. This
makes the student aware of their problem so that they are able to focus on correcting it while
practicing. Thumbs do not follow the same arched finger form for proper playing. Rather, the
thumb rests on its side upon the key it is placed upon [10], as can be seen in Figure 3 below.
Correct finger position is also important, and allows a student to play songs and scales easily
and efficiently. Using the wrong finger position can lead to developing bad practice habits,
which can be detrimental to a beginner’s progression [11].

Figure 1: Proper Hand Position, Baseball Curve [10]

Figure 2: Proper Hand Position Piano [8]

Figure 3: Proper Hand Position, Emphasis on Thumb [12]

Acquiring proper technique is an important aspect to be considered when learning to play the
piano, and is mostly a process of brain and nerve development [11]. The combination of proper

7

technique and efficient learning methods decreases the amount of time it takes for a novice
player to progress. The physical act of playing the piano exercises one’s physical and cognitive
coordination between the brain and nerves [13]. Association between which finger corresponds
to which musical note on the keyboard must be processed and acted upon instantaneously.
Practicing the piano and acquiring technique develops faster nerve connections. Muscle
memory is a common term associated with procedural memory, which helps a person become
very good at something through repetition. If a beginning piano student practices good
technique while playing, the novice will build procedural memory that quickens the brain’s
execution of muscle control. This will be referred to as muscle memory throughout this report.
Procedural memory has no control over whether a task is being performed correctly, and will
continue to develop no matter what action is being repeated. If a piano player practices bad
technique while learning and practicing, muscle memory will develop around the bad habits.
These habits are hard to reverse and hinder learning progression [13].

Muscle memory is an essential part of learning to play the piano and developing proper finger-
note association. To play the piano most efficiently with fluid hand and finger motions, a
player’s fingers, on both hands, are assigned a number 1-5 that will correspond to a song or
scale’s notes on the keyboard [14]. The thumb is labeled 1, index finger 2, middle finger 3, ring
finger 4, and the pinky 5; these can be referred to as the first, second, third, fourth, and fifth
fingers and have equivalent associations for both the left and right hands, as can be seen in the
Figure 4 below.

Figure 4: Left and Right Hand Number Association [14]

There are a variety of practice techniques that help students develop and refine piano-playing
skills. Such are scales, finger exercises, and breaking up a song into measures or separate
components [15]. Scales improve a piano student’s muscle memory, coordination and
concentration. Practicing scales is essential to learning to play the piano with the most natural
and effective fingering. The repetition and symmetrical fingering performed while playing scales
strengthens muscle memory and note-to-finger association [17].

Finger exercises improve and develop independence between each finger, also enhancing
muscle memory and control [18]. When it comes to learning how to play a song, it is extremely
helpful to break the song up into chunks and separate musical components, master a part of the
piece, and then continue on to the next measure [19]. One way to do this is by separating the
left and right hands and practicing each hand’s part separately until the player is comfortable
with that component. By mastering the left hand and right hand’s musical progression

8

separately, achieving coordination between the fingers and hands will be much easier due to
muscle memory developed between each separate hand and its accompanying music [17].

Figure 5: Finger Muscle Memory Cartoon [20]

2.3 Market Research
Learning to play the piano is no longer confined to a music teacher instructing piano students to
practice scales and song assignments. In 2014, there are more options available to beginning
piano students. The alternative to music lessons is technological piano-playing learning devices
and downloadable software. Piano technology ranges from player pianos, digital pianos, and
software that specializes in a variety of learning or musical aspects [21]. Modern software
applications can convert music files to sheet music, download, unzip, and process music files
from the Internet, as well as perform harmony analysis and chord names that a musician plays.

Many technological systems that are aimed to help beginners learn the piano are age specific.
Some will specify an age range, such as the “Kids’ Toy Piano” [22], while others incorporate
games and lights to intrigue children learning the piano, such as Hammacher Schlemmer’s
“Children’s Learn to Play Keyboard” [23]. The “Children’s Learn to Play Keyboard” includes
instructional software programmed with over 100 lessons for beginning piano students that
range from learning basic piano skills, such as proper finger placement on the piano, to more
complex lessons that help a child student learn to play songs and read music.

9

Figure 6: Children's Learn to Play Keyboard [23]

As can be seen in Figure 6 above, the “Children’s Learn to Play Keyboard” incorporates
computer software and a physical keyboard to practice the lessons on. A similar product is
MGA Entertainment’s “iTikes: A place where tech meets play” keyboard [24]. iTikes
pedagogical system consists of a standalone keyboard that has the ability to control volume and
a tempo/pitch tuner. The downside to this product is that it requires an Apple iPhone, iPad, or
iPod touch to download the corresponding iTikes application [25]. The app is where musical
games teach children limited piano skills. Although this product is meant to aid in the learning
process of a beginning piano student, iTikes is appealing to the eye with its light-up major keys,
but only includes 4 built-in songs and received a 2.5 stars out of 5 in the iTunes app store. The
app is free and the keyboard can be found at stores such as Target, ToysR’Us, or Walmart, and
is selling for $35.79 online [26]. The “Children’s Learn to Play Keyboard” has many more
learning exercises than iTikes, and a USB cable connects the “Children’s Learn to Play
Keyboard” computer software to its physical, 49-key device. Reviews indicate 5 out of 5 stars;
the multimedia system costs $149.95 on Hammacher Schlemmer’s online site [23].

Figure 7: iTikes Keyboard with iPad Software Attached [26]

10

Apple devices, such as iPads, iPhones, and iPods, have multiple applications to help a beginner
learn how to play piano; we will refer to the iPad as an example device throughout this section.
Piano pedagogy apps for the iPad range in complexity, features, and price. Of the eight piano-
learning iPad apps recommended by AJ Dellinger of MacLife, only one does not involve an
interactive piano keyboard [27]. For these applications, the user, or student, will tap the iPad’s
interactive touch screen to “play” the piano notes. Examples of free iPad applications are
“Steinway Etude”, “Piano Lesson PianoMan”, and “Piano...”. Steinway Etude displays sheet
music and a keyboard [Figure 8] that follows along with the musical score’s measures and
indicates which keys should be played during that time [2]. There is another interactive view
that displays the musical notes to be played and the duration of the length of the note. This
corresponds to musical components of the piece, such as tempo and rhythm via note notation,
such as half, whole, or quarter notes.

Figure 8: Steinway Etude Sheet Music [2] Figure 9: Steinway Etude Tempo and Rhythm View [2]

Piano Lesson PianoMan is advertised in Dellinger’s article as a piano learning device, but the
application’s description and reviews infer a game similar to guitar hero [27]. No technical
learning skills are mentioned. Piano... is an iPad app created by Obie Leff [28] that is described
as an interactive piano with 50 pre-programmed animated songs and keys that light up with the
music’s rhythm [Figure 10].

11

Figure 10: Piano... iPad Application [28]

Other piano pedagogy iPad applications are not free. Depending on the application’s
technicality, iPad apps that are aimed to teach beginners how to play piano range from $2.99
(SmileyApp’s “Piano Tutor for iPad”) to $19.99 (IK-Multimedia’s iGrand Piano) [29, 30]. Piano
Tutor for iPad has great user ratings. Customers boast about enjoying the piano-learning
experience and the application’s educational value that teaches the user how to read notes and
practice rhythm [29]. IK-Multimedia’s iGrand Piano sells for $19.99, and is worth its price [31].
iGrand Piano has “quality, variety, and professional features” including MIDI-controllable
adjustable parameters and a low-latency touch screen response that makes it feel like the
student is playing real piano keys. The user can choose from 18 different multi-sampled pianos
such as the Classical Baby Grand and a Jazz Upright piano. The app offers a recorder,
metronome, and multiple compatibility features for Audiobus and MIDI applications. When
connected to a computer, the iGrand Piano can send its output an audio app such as
AmpliTube and GarageBand where the sound can be filtered, recorded, and looped [30]. These
audio application compatibility functions and an interface that implements the feeling of playing
a natural piano gives the iGrand Piano application its credibility. Reviews claim a “tremendous
piano app” but complaints about advertisements and a distorted output make an overall rating of
4.5 out of 5 stars [31]. The following figures show iPad screenshots of iGrand Piano’s
metronome, recording, tempo, and playback capabilities.

12

Figure 11: iGrand Piano; Metronome and Tempo [30]

Finally, the “PianoMaestro Learning System”, created by Ken Ihara, is a computer software
learning device that connects via a USB cable to a strip of lights that is placed upon the back of
a full, real-life piano keyboard [1]. The lights correspond to what note should be played at what
time by communicating with the computer software that a student has opened on their
computer. The software translates standard MIDI files into a musical notation that then appears
onscreen in the form of sheet music. The player is to read along with the music while being
guided by PianoMaestro’s light learning system. Combining computer software and a visual
stimulant, as well as a real-life piano, a student learning the piano should experience a quicker
and easier learning process than learning without the aid of the device.

Figure 12: PianoMaestro; Piano, Keyboard Light Strip, and Computer Software [1]

13

Figure 13: PianoMaestro's Musical Notation Output After Conversion of a MIDI File [1]

2.4 Haptic Technology
Computer scientists have developed numerous methods to emulate sounds and visuals with
computers; however, it has been a harder task to replicate tactile signals [32, pg. 0]. The
challenge behind stimulating the sense of touch originates from the limitations in the design of
typical interfaces. For instance, it is hard to transmit the reality of playing tennis through a
standard video game controller. The game controller cannot imitate the shape, texture, weight,
forces and overall feel of a tennis racket; nevertheless, these controllers do offer some tactile
feedback through vibrations. This example is just one of many applications in the field of haptic
technology.

The science of haptics focuses on studying how the sense of touch works, understanding the
manipulation of environments and the perception of motion under different circumstances. Like
all other senses, the sense of touch is crucial so that humans can perceive their surroundings.
What separates touch from the other senses is that humans can receive tactile feedback from
any point on their body. There are many receptors and nerves scattered right under the skin.
These receptors are distributed with varying densities in different areas of the body. The hand is
the main body part used to touch surroundings and it contains 40 muscles that allow for a great
deal dexterity [32, pg. 1]. According to Heller and Schiff, the human body can distinguish two
different tactile stimuli that are within 5ms of each other. The sense of touch is perceived and
processed at an impressive rate, which is five times faster than vision. [33, pg. 2] Not only is
the response to touch fast, but also it is accurate. Humans are capable of detecting movements
of 0.2μm [33, pg. 2]. A study by Robles de la Torre, PhD, states that losing the sense of touch
can lead to implications such as “impairment of hand dexterity, loss of limb position perception,
and the inability to walk” [33, pg. 3]. The study and development of haptic technologies is
fundamental to the improvement of technological interactions since touch is an invaluable
resource that the human body uses to react to stimuli.

14

The study of haptic technology is documented as early as the 1960’s; however, haptic
technology only reached new heights in development with the advancement of robotics [34].
The fields of robotics and haptics have been developed alongside, since both have overlapping
goals and applications. Many of the early implementations of haptic technology were focused
on creating a device that allowed remote control of certain machinery. This is known as
teleoperation [34]. The purpose of these systems was to allow for a user to operate hazardous
objects that were located at a distance. For example, this allowed for safe manipulation of
nuclear materials through robotic arms. Eventually, haptic technology was introduced to other
areas like medicine, aerospace, teaching, music and many others. But it was not until 1993 that
the Artificial Intelligence Laboratory at MIT created the first device that allowed for manipulation
of virtual objects [32, pg. 2]. This invention promoted a surge in the research of haptics. The
application of haptics can be divided into two categories. The first category focuses on
simulating the sensations of a certain action or object. The second category aims to provide
motor feedback in order to control or regulate motion.

Haptic technology is present in many of the devices that are common to everyday use. Some of
the most common application of haptics is in new cell phones. Today, many of the phones
available on the market use a touch screen. There is haptic technology in many of these phones
that attempts to improve the user experience by generating tactile feedback on the touch
screen. The tactile feedback is provided through piezoelectric sensors to simulate the
experience of pressing a real button. The haptic feedback in touch screens helps reduce user
error and also reduces the time to finish a task [32, pg. 6]. For instance, FingerFlux is an
application of haptic feedback on touch surfaces. It uses electromagnetic fields to guide the
users when using a touch surface. Through user studies, FingerFlux showed that users
drastically increased accuracy when pressing different items on the screen [35]. FingerFlux
especially facilitated the use of the surface without the need to look at the screen.

Other notable devices that incorporate haptic technology are the PHANTOM and Cyber Grasp.

Figure 14: PHANTOM interface from SenseAble Technologies [37]

The PHANTOM device is a haptic tool that helps simulate different situations. It is controlled
with the pen shaped arm that can be moved with different resistances. The PHANTOM can be
programed to simulate movement under water, the feel of modeling clay or even the resistance
of skin to a needle. This device uses three motors to generate the different forces required in
the simulation. The maximum continuous force that the device can exert is .88N[38]. The device

15

has six degrees of freedom for position sensing, but only three degrees of freedom for providing
force feedback. The limitation of this device is that it has reduced range of motion and it is
focused on helping in specific technical training [32, pg. 4].

Figure 15: CyberGrasp system from Immersion Corporation [38]

The CyberGrasp is another type of haptic device that works through a mechanical exoskeleton.
This glove-like contraption uses an exoskeleton to enforce different resistances for finger
movements. The CyberGrasp system consists of the exoskeleton, a position tracker, and a
CyberGlove [39]. Every component communicates with the CyberGrasp Force Control Unit
(FCU). The exoskeleton is responsible for providing the force feedback through actuators. The
exoskeleton can exert up to 12N of continuous force per finger [39]. The position tracker is a
third party component that measures the position and orientation of the hand in space. The
position tracker communicates with the FCU through a tracker interface unit. The CyberGlove is
worn under the exoskeleton and it is responsible for measuring the joint angles of the fingers,
hand and wrist. The main purpose of this device is to generate the resistance necessary to feel
virtually generated objects. Through CyberGrasp, it is possible to feel a virtual model of a soccer
ball. The five actuators in the device will create the necessary resistances to emulate the
properties of touching a desired object [32, pg. 4]. The CyberGrasp and the PHANTOM
interface fall under the category of haptic products that focus on simulating environments. The
next haptic invention belongs to the category that is aimed to provide motor feedback rather
than simulating a motion or texture.

Figure 16: PianoTouch developed in Georgia Tech [40]

In the realm of music, students from Georgia Tech have developed a device called PianoTouch.
The goal of the device is to serve as a teaching tool for piano. PianoTouch is composed of three

16

main components: the actuators (10 small vibrators), a microprocessor with a Bluetooth module,
and a laptop computer [41]. The laptop is responsible for producing the music and sending the
synchronized vibration instructions to the Bluetooth module. The module then passes the
information to the microprocessor so that it sends the necessary current to activate the
actuators. The vibrations motors are set to vibrate for 350 ms for each note when they are
activated. The goal of the device is to help with the passive learning of piano. This means that
users could practice the piano while focused on other daily activities. The results from their user
study showed that the tactile feedback allowed the subjects to play a song with less number of
errors. A user of the study stated that PianoTouch was helpful for memorizing the finger order
and patterns for playing. This left the users with the task of focusing on recalling the position for
one finger because the rest of the fingers “fell into place”. The device decreased the amount of
information required to retrieve from memory. An issue with this device is that the vibrations
proved to be distracting to some of the test subjects. In addition, the device itself was obtrusive
and not very comfortable. Users who participated in the study suggested that the glove should
be thin and breathable [41].

2.5 Design Approach for Haptic Systems
There are many approaches for designing haptic systems. The initial step for designing a haptic
device involves defining the following [42, pg 115]:

1. The specific function of the device
2. A specific technical approach and market-oriented context

It is vital to establish the function of the haptic device at the beginning of the design process.
The function determines the intended results from utilizing the device. The market-oriented
context of a device is dependent on many factors such as: product competition, time frame of
development, customer audience, personal resources and budget [42, pg 115]. These factors
should serve as constraints in order to select the best method to developing the haptic system.
Selecting the technical approach for a haptic application is dependent on the type of haptic
feedback needed for the system.

Figure 17: Types of Haptic Interaction [42]

17

The types of haptic feedback can be divided into two main categories (Figure 17) as follows:
simulation and telepresence of objects and haptic coding of information [42, pg 117]. The first
category involves recreating or interacting with objects that are either virtual or remotely
accessible. This usually requires a tool that can interact with the user to control and interact with
the simulation or telepresent object. This tool can be a joystick, a pen, or other objects that can
be hand held. An example of a haptic device that falls under the first category is the PHANTOM
device by SensAble. This first category also includes direct haptic interaction. In this
subcategory, the user can feel the physical attributes of the object. Some of these attributes
include: mass, texture, elasticity and plasticity [42, pg 117]. For direct haptic interaction, not only
is it necessary to have a tool that is used to manipulate the object but also it is important to
consider the methods needed to recreate the textures. For instance, CyberGrasp is a device
that focuses on direct haptic interaction since it involves manipulation of 3D simulated objects.

The second category entails abstract information that is communicated through the sense of
touch. This haptic interaction relies on the source of the information. The information could rely
on single time events, spatial orientation, or volumetric information [42, pg 117]. A simple
example of this is the vibrations setting on phones. If the phone is set to vibrate, then whenever
there is an incoming call or message the phone will vibrate. This project corresponds to this
category, since it develops a device that associates the pull of magnetic fields with correct finger
positioning while playing piano.

The basic parts of a haptic system are the power supply, the computer controller, and the
physical device [33, pg 70]. The physical device is constituted of sensor(s) and actuator(s). The
sensors are used to record information from surrounding elements and the actuators provide a
response to an electrical stimulus. An analog-to-digital converter (ADC) translates the
information from the sensors to a digital value that is used by the computer. The computer
processes the information and then provides the output to a digital-to-analog-converter (DAC).
The DAC uses the digital information and converts it to an analog signal that can be used to
control the actuators. The interaction among all the components of a basic haptic system are
depicted in the following image:

Figure 18: Basic representation of Haptic System [33, pg. 70]

The most important component in a haptic feedback system is the actuator, since it directly
influences the haptic interaction with the user [33, pg 76]. In a haptic device, the actuator is the
component that is responsible for exerting a stimulus on the human body in order to create a
certain sensation. There are three most important actuators for haptic interfaces: electrical

18

actuators, pneumatic actuators, and hydraulic actuators. Some of the important factors to
consider while selecting an actuator are the following: speed of operation (response time),
safety, mechanical transparency, workspace, number of degrees of freedom, maximum
applicable forces, and compactness [33, pg 76].

2.5.1 Electrical Actuators
Electrical actuators include: AC, DC, and stepper motors. These actuators are usually
small and straightforward to install. The disadvantage with electrical actuators is that they
only generate small torques in relation to their size and weight. They are also rigid so they
cannot bend and it becomes hard to apply them to wearable devices [33, pg 76].

2.5.1.1 Electromagnets
This project aims to create a device that is small and as unobtrusive as possible. The
device will attempt to guide the users fingers into correct position. In order to achieve this
effect, our deice will attach magnets to the users fingertips and will implement
electromagnets into the keys of our device. An electromagnet behaves similar to a
permanent magnet. The difference is that an electrical current generates the magnetic
field in an electromagnet. Electromagnets are usually composed of a conductive wire that
is coiled around some ferromagnetic core. The purpose of the core is to intensify the
strength of the magnetic field produced by the wire [43]. Ferromagnetism is a property
attributed to materials that can be magnetized or that are strongly responsive to magnetic
fields.

Figure 19: Magnetic field in electromagnet [44]

The diagram in Figure 19 shows the magnetic field formed as the current goes through the coil.
The field emanates from two poles at the extremes of the core known as “north” and “south” or
“positive” and “negative”. When two identical poles are close together they repel each other.
When two different magnetic poles come in proximity then they attract each other. The unique
characteristic of electromagnets is that it is possible to change the polarity and strength of the
magnetic field by manipulating the direction and amplitude of the current. Electromagnets are
powered with a battery or any other source that produces a current [43]. The following equation
is used to relate the magnetic field with the current and the number of turns of the wire:

𝐵 =
𝑁𝑁𝑁
𝐿

19

In the above equation, B represents the magnetic flux density in tesla [45]. N is the number of
turns the wire has on the electromagnet and I is the current in amperes going through the wire.
μ is the permeability of the electromagnet core material and it is represented in newton per
square ampere. Finally, L is the length, in meters, of the magnetic field.

Electromagnets can be found in a wide range of electrical applications. A common use for
electromagnets is in electric doorbells [44]. These doorbells use an electromagnet to pull a
metal clapper against a bell. The electromagnet is turned on only when the doorbell is rung.
Another popular use for electromagnets is in hard disks. Data is stored in a hard disk by
magnetizing small segments on a thin metal surface into different patterns. The patterns saved
onto the disks are representations of binary code, which can then be read and translated into
useful information. There are many other uses for electromagnets, including, but not limited to,
motors, magnetic locks, actuators, particle accelerators, and speakers.

One of the newer applications for electromagnets is in haptic technology. In haptic feedback
systems, electromagnets are a popular choice for providing response. As mentioned in the
haptic technology section, FingerFlux is a product that uses electromagnets to provide a haptic
output. FingerFlux uses an array of electromagnets to control user interaction with a display
[46]. The user needs to attach a small permanent magnet to one of their fingertips in order to
interact with the haptic surface. The electromagnets grid is then controlled to either pull or repel
the magnet on the user’s finger. In this design, each magnet had a height of 34.5mm and the
diameter was 19.5mm [46]. The magnets contained 3,500 turns of wire and were driven at 40V
DC and 255 mA. The purpose of using electromagnets in this application is that the haptic
feedback can be provided up to 35mm above the surface of the display. Figure 20 shows the
electromagnet array of 12 x 19 used in FingerFlux.

Figure 20: FingerFlux electromagnet array [47]

Another instance of electromagnets in a haptic feedback system is a mouse interface developed
in Korea. The device uses an electromagnet to create attraction between an optical mouse and
a ferromagnetic trackpad [45]. The purpose of this attraction is to create different types of
responses for the user. For instance, the attraction can be used to generate higher friction when
the user moves to certain areas on the screen. This would allow the user to locate certain
objects on the screen fairly easily. The advantage provided in this haptic mouse is that it does
not change the conventional mouse functionality. It also creates intuitive responses based on
the different environments on the screen. The next improvement for this mouse is to use more
than one electromagnet in order to provide control over more dimensions.

20

2.5.2 Pneumatic Actuators
These actuators usually use air pressure to convert energy into a mechanical motion.
Pneumatic actuators are usually lightweight and are composed of a piston, a cylinder and
valves or ports. The disadvantage of using pneumatic actuators is that they are stiff and
they require lubrication to deal with static friction [33, pg 76].

2.5.3 Hydraulic Actuators
As the name suggests, hydraulic actuators work with a fluid, which is usually oil. They use
this hydraulic pressure to generate the mechanical motion. They are bulky devices that
can deal with heavyweights and high forces in haptic interactions. Their biggest
disadvantage is the need to maintain and replace the liquid in the actuator [33, pg 77].

21

3. Project Goals

There have been other designs that aim to create devices that help improve the piano learning
process and to increase the motivation for practicing the instrument. The approach for many of
these products is to provide visual cues. This MQP aims to improve upon the design of many of
the piano learning devices by introducing haptic feedback into the learning process, since haptic
technology has shown to have a positive impact in learning applications.

The goal of this MQP is to implement and assess the viability of a haptic learning device to aid
piano students develop good habits while learning finger positioning for piano. Overall, this
device will focus on reducing errors in finger positioning on a keyboard. This will allow beginner
students to shorten the amount of time it takes to develop the correct muscle memory
associated with these actions. The device will consist of a keyboard that uses haptic feedback
to enforce proper playing on a piano. The design approach to achieve these attributes and to
fulfill the goal of the project will be described in the following section.

22

4. Preliminary Design Approach

Our design will use haptic technology to input data from a capacitive touch sensor that will be
used to light the keyboard’s LEDs and activate its electromagnets. A visual programming
language will be used to output these statuses for each key. The project’s firmware will be a
microcontroller detecting sensor inputs and outputting the LED and electromagnet statuses for
the keys.

The user will be wearing gloves with colors on the “fingernail” and magnets on the “finger pads”.
There will be a different color on each finger that match the five colors that the LEDs will display.
To show which key is supposed to be played, an LED will light and the key’s electromagnet will
turn on. The LED color will indicate which finger should play the key for proper playing
technique; when the key’s electromagnet is turned on, the user will be able to feel which key is
supposed to be played because of the newly present magnetic field tugging upon the glove’s
magnet. The LED and glove color coordination will assure that a player uses the correct finger
to play the key.

Users will be able to between two modes, Follow and Play, and two piano exercises, Ode to
Joy, a song composed by Beethoven [62], and the C Major Scale. The modes will determine
the keyboard’s functionality for each exercise. In Follow mode, the user must press the proper
key before the program will continue on to the next note instruction. Once input data
corresponding to the proper key press is received, the next LED and electromagnet output
states will be implemented. Alternatively, play mode is independent of user input. The LED and
electromagnet key commands will be sent to the keyboard continuously, at a specified timing
interval, or tempo. The keyboard’s user is expected to play along with the output instructions.
Ode to Joy and the C Major Scale are the two melodies that will determine the keyboard’s
output progression. Each exercise has a key signature of C Major, which contains no sharps or
flats. This enhances the key signature’s simplicity because the player does not need to play
any black keys on a piano keyboard; therefore C Major is a good beginning point for novice
piano students.

23

4.1 Description of Device
Our system is composed of two parts: gloves and a keyboard. Gloves worn by the user will have
small magnets attached to the fingertips. The keyboard box imitates 2 octaves of a piano
keyboard. Our project will only be testing functionality with the 15 white keys of these octaves.
The box will contain 15 electromagnets that provide haptic feedback, one for each key in our
device. One multicolor LED will be located at the top of each key and one electromagnet will be
located under each key. A microcontroller will be used to control all these components. The
microcontroller will be located inside the box and it will be communicating with Max on a
computer through a serial port. The interaction for these devices is depicted in 21.

Figure 21: System Black Diagram

4.2 Multicolor LEDs
The LEDs wills serve as a visual aid for using the device. Each LED will be located at the top of
each of the keys in our device. The LEDs will light up when the corresponding key must be
played. We will use multicolor LEDs and there will be five possible colors for each LED. The
color of the LED will be used to identify which finger should press which key. The user will be
responsible for associating the correct hand to the necessary keys through deduction. The
colors that are matched to each finger are shown on Table 1 below.

Color Name Finger

Red Thumb

Blue Index

Green Middle

Cyan Ring

Magenta Pinky

24

The multicolor LEDs, used to create the colors in the table above, have four leads. The following
image shows the LED:

Figure 22: RGB LED [48]

The longest lead is the common cathode for the LED. The pin furthest to the left is used to
control the color red. The pin to the right of the cathode can control the color green and the last
pin to the right is used to control the color blue. Each one of the color leads operates at its
brightest when 20 mA are supplied to the pins. The red pin has a typical forward voltage of 2V
while the green and blue pins have forward voltages of 3.2V. Each LED can create multiple
colors based on which colored pins are being powered. The table for creating the colors is
shown in Figure 23.

Figure 23: Color Truth Table for LEDs [49]

Our design requires 15 of these LEDs. In order to avoid using one digital port for each pin on
the LEDs, they will be controlled using shift registers. This allows us to reduce the amount of
digital ports used on our microcontroller to three. In addition to the three digital ports, to
implement this design we require: a connection to the 5V pin, the ground pin (GND), 45 current
limiting resistors, and 6 8-bit shift registers. The shift register chip that we will be using is the
74HC595. The description for each pin is shown in Figure 24.

25

 Figure 24: 74HC595 Schematic [50]

There are 16 total pins on the chip. As shown in the figure, pins 1-7 and 15 are the output ports.
The three pins that control the shifting process are pins 11,12,14. These pins are commonly
known as the clockPin, the latchPin, and the dataPin respectively. The clockPin gives the signal
of when you are going to send a new bit. When the clock is set to high, it sends that bit to the
dataPin so that it can be shifted in. The latchPin is turned on when all the bits have been shifted
in and the data is ready to be outputted. For our design, we will first shift in the data for the
LEDs that should be turned on and then we will enable the latchPin so that the LEDs change
state. The GND pin goes to ground and the Vcc pin will be powered by the 5V pin from the
microcontroller. The output enable will be set to low since it is active low and we always want to
display an output. The master clear pin will be grounded. The chip only has 8 bits of output;
however it is possible to add more shift registers in order to satisfy the amount of outputs. We
can do this by connecting another chip to pin 9. This pin is the serial data out port. For our
design, we need to do connect six shift registers together. The circuit for two shift register is
shown in Figure 25.

Figure 25: Breadboard Circuit for Two Shift Registers

26

The circuit above shows the setup of two shift registers with the RGB LEDs and the
microcontroller. The black wires are GND connections and the red wires are the 5V
connections. The latchPin is coded with the green wire. A 0.1µF capacitor is placed on this pin
to prevent any flicker while latching. The yellow wires are the clockPin connections. It is
important that all shift registers are connected to the same clockPin, latchPin, GND and Vcc.
The blue wires are the dataPin connections. As shown in the image, the serial out of the first
chip goes into the serial input of the second chip. This extends the number of bits available as
outputs. Finally the white wires are the output connections to the LED pins. Each LED has a
ground connection and one current regulating resistor in series with each pin.

4.3 Touch Sensors
The device will take user inputs through capacitive touch sensors. The surface of each key will
be a touch sensor. The touch sensors will be used to determine when there are key presses in
order to generate the sound and to control the next instruction for the device. The sensor will
work by measuring the capacitance of the human body. The implementation of this technology
will be done with the capacitive sensing library for Arduino.

Our device will require 15 touch sensors. For each touch sensor, we need two pins on our
microcontroller. One pin acts as the send pin and the other as the receive pin. The
microcontroller continuously changes the send pin state and then measures the time it take for
the receive pin to match the state. This delay is stored in the microcontroller and provided as an
output with arbitrary units. This design requires a medium to high value resistor that will be
placed between the two pins. This resistor is used to regulate the sensitivity, because it
influences the delay between the send pin changing and the receive pin changing. A typical
value for the resistor in this application is 1MΩ. A visual representation of one touch sensor can
be seen in the following image.

Figure 26: Capactivie Touch Sensor Circuit [51]

The receive pin senses touch through a piece of metal that is connected to the circuit with a
wire. This metal can be covered with plastic or other materials in order to conceal the metal if

27

desired. A small capacitor should be placed between the sensor pin and GND in order to
improve stability. A good value for this capacitor is 100 pF. It is also desired to add a capacitor
in parallel with the user’s body and GND to stabilize the reading even further. We will try to use
aluminum or thin copper sheets for our touch sensor. These are good alternatives since they
are easy to acquire and it is easy to shape them into piano keys.

4.4 Electromagnets
The electromagnets are the components responsible for creating the haptic feedback on the
device. One electromagnet will be placed under each key. The electromagnets will provide the
feedback to the user through the permanent magnets located on the fingertips of the gloves.
The electromagnets will work by pulling the users finger to the desired keys. The main
considerations for picking our electromagnet are the size, the magnetic field strength and the
power requirements.

Our system will require 15 electromagnets. Each electromagnet needs to have a diameter
smaller than 23.5mm in order to fit inside a piano key. The electromagnet that we will be suing
has a diameter of 20mm and is depicted in the next image.

Figure 27: Electromagnet [52]

This electromagnet has a holding force of 25N or 5.6lbs that should be enough to provide the
haptic feedback in our system. It is important to point out that the magnetic field strength drops
off almost exponentially over distance [53]. The power consumption of this electromagnet is 3W.
It operates at 12V DC at .25A. In order to power all the electromagnets our system demands a
power supply. Our microcontroller will not be able to power the electromagnets, since they
require more current that can be provided through the digital ports. It is risky to power the
electromagnets directly through the microcontroller pins. When the electromagnet turns off, a
large voltage is generated across the magnet that can easily damage the microcontroller. We
avoid these issues by controlling our electromagnets with an NPN transistor and also placing a
protective diode in parallel with the electromagnet. The driving circuit for one electromagnet is
shown in Figure 28.

28

Figure 28: Circuit to Drive One Electromagnet [54]

The base of the transistor is connected to the digital port of the microcontroller. The Arduino will
be programed to provide the current required to switch on the NPN transistor. The transistor that
we will use is the TIP120. The electromagnet will be connected to an external power supply and
to the collector of the transistor. A 1N4001 diode will be placed in parallel to the electromagnet
to protect the circuit from voltage spikes. Each electromagnet requires 12 V DC and 250 mA;
therefore we will need a 12V DC power supply that can provide at least 3.75 A.

4.5 Microcontroller
Our haptic feedback system requires a microcontroller in order to manage all the separate
components in the device. One requirement for our microcontroller is to have enough pins to
control the inputs and outputs of our system. In our system we need a total of 48 digital I/O pins
(15 pins for the electromagnets, 30 pins for the touch sensors, and 3 pins for the LED shift
register). Our team is most familiar with the Arduino environment; therefore, we decided to
select one of their boards. The board we selected is the Arduino Mega 2560.

Figure 29: Arduino Mega2560 [55]

Figure 29, above, shows the Arduino Mega board. Some of the specifications for the board are
shown below.

29

Figure 30: Arduino Mega2560 Specification [55]

The board operates with the ATmega2560 chip. The board can be powered with the USB
connection; however, this limits the current available to the ports. In order to power all our circuit
components we will be using an AC to DC adapter with 12V and 2A. The DC current available
for each port is 40 mA.

The microcontroller in the keyboard will communicate with the computer through a serial port.
This means that pin 0 and pin 1 need to be explicitly used for the communication and cannot be
used to control any components. The board will receive information from one input, the touch
sensors. The data read from the sensors will be passed on to the computer as either a high or a
low value. The microcontroller will receive data from the computer to control the two outputs.
The data received to control the electromagnets will be a sequence of 1’s and 0’s to control the
state of each port. The computer will provide the data to control the LEDs as a binary sequence
that will be passed on to the shift registers.

4.6 Software: Max
Max is a visual programming language useful for building audio MIDI, video, and graphic
interactive software programs, or for controlling the hardware of a physical application [56]. The
language is split into three separate components that work together, Max, MSP, and Jitter. Max
controls MIDI and discrete operations. MSP is the audio and signal processor of the program;
Jitter renders graphics and video manipulation. Neither MSP nor Jitter will be applied to this
project. The Max programming language can be incorporated into projects that include
hardware interfaces, such as an Arduino microcontroller.

Patches are Max programs that are created by connecting interface objects together [57]. The
objects within a patch have text names and different attributes to define their functionality
[58]. Interface objects include dials, sliders, graphic keyboards, buttons, toggles, and switches
that are manipulated by the computer’s mouse or keyboard to store and send messages. Max

30

messages are passed between objects along a patch’s virtual “cord”. Objects have inlets and
outlets that patch cords are connected to in order for objects to send and receive
messages. Any data type that is passed between Max objects is referred to as a message, and
can be in integer, float, bang, symbol, or list form [59]. Bang messages are specific to Max;
they instruct objects to execute their functions. The programming language’s order of operation
is right-to-left and bottom-to-top [58]. This means that patch cord messages will be sent in the
order of which cord connects to the right-most object first. Objects follow Max’s right-to-let order
of operation through their inlets and outlets. An object will accept and store messages in its
right inlet, while the left inlet will receive messages from cords and trigger the object’s operation

Max controls all of the inputs and outputs of our system’s design [Figure 21]. While active, the
software will constantly be on the lookout for input data from the device’s touch sensors.
Detecting the user’s touch will be the only input data transferred from the keyboard to Max. Our
design has two outputs that will be implemented by the Arduino microcontroller once it receives
an execution command from Max. These outputs will control the LEDs and electromagnets of
each key on the device. Sensor feedback will determine which key has been pressed by the
user, and will affect all of the other components under Max’s control. The following Max patches
will control the keyboard’s functionality: the user interface, serial data, exercise/song modes,
and key states.

Within each music patch, send and receive message objects carry input and output data that
will be evaluated based on the patch’s mode and note sequence, whether it be the C Major
scale or Ode to Joy song. Sensor data retrieves information regarding which key was just
pressed, and the program determines if the input is correct; the LED and electromagnet output
states associated with the key are also evaluated. Based on the mode and input data, the
active music patch will output new LED and electromagnet commands for the next key in the
note sequence. The keyboard’s output states will change, alerting the user of the next note in
the patch’s musical progression.

4.7 Glove
Our haptic system uses electromagnets in the piano keys to provide the tactile stimulation. In
order to transmit this information, it is necessary for the user to have a magnet attached to each
one of their fingertips. Our device will require the user to wear gloves that will have disk
magnets attached to each one of the fingertips. The gloves should be thin and comfortable. We
will attach color strips to the top area of the fingers corresponding to the available LED colors.
This will allow the users to match the correct finger with the correct key. The permanent
magnets need to be as unobtrusive as possible while still providing enough pull from the
electromagnets. The magnets that we will be using are shown in Figure 31. We will use
magnets that have .375” inches in diameter and .031” in thickness. The pull strength for this
magnet on a flat surface made of steel is 7.166 lbs. The magnets are cheap so we can easily try
different sizes and strengths in order to find the optimal magnet for our device.

31

Figure 31: Magnet next to penny for scale [60]

4.8 Keyboard structure
The last component in our device is the keyboard box. The keyboard box is the enclosure that
holds the other components. The box should be made out of a non-metallic material. We will
use either wood or plastic. The topside of the box will be covered with an image for the two
octaves of a piano keyboard. The metal pieces for the touch sensor will cover the white keys.
The LEDs are the other visible component on the box, since they will be placed at the top of
each key. There will be power cables coming out of the back of the box and the USB cable that
will be connected to the computer. The dimensions of the box need to be at least large enough
to fit two octaves. This requires that the length of the box should be at least 352.5mm and that
the width of the box is at least 15cm.

32

5. Hardware Implementation
The hardware of this project was initially developed as independent components. The
components of this project are the touch sensors, LED circuit, and electromagnet circuit. Once
all the components were tested separately they were combined together to test full operation of
the system. The overall system block diagram for our project is shown in Figure 21. The Arduino
IDE used in our project is version 1.0.6. The link for a download of the software can be found in
Appendix A.

5.1 Touch Sensors
The touch sensors serve as the only user input in our system. One instance of the touch sensor
was tested initially. Once all the desired functionality was achieved in one touch sensor, the
remaining instances were implemented and tested together. The final design requires a total of
15 touch sensors, one sensor for each white key in two octaves of a piano keyboard. The
Arduino program used to control the touch sensors uses the capacitive touch-sensing library
developed by Paul Badger. The name of the library is CapSense. The link and instructions to
install this library are in the Arduino website and are also detailed in Appendix A.

5.1.1 Initial Tests and Implementation
The circuit for one touch sensor consists of a resistor and a piece of metal. Each end of
the resistor was connected to a digital pin on the microcontroller. One of the pins acts as
the send pin and the other as the receive pin. The end of the resistor that is connected to
the receive pin is the sensor. We determined that as the resistance increased, the
sensitivity of the touch sensor increased, but it also lowered response time. For our
project, we wanted the touch sensors to react to direct touch and to have close to
immediate response time. We use a 1 MΩ resistor to achieve this operation. We decided
that copper would be the material used for the touch sensor since it provided consistent
readings from our sensors and it did not interfere with the magnetic field of the
electromagnets.

The program for the first touch sensor implements one touch sensor and uses the touch
sensor to control an LED. The program uses the sample code from the CapSense library
to setup the structure of the program. The full code for this program can be found in
Appendix B.1. In order to use the CapSense library it is necessary to include the header
for the library. This is done with the first line of code in the program #include
<CapacitiveSensor.h>. This grants access to the functions in that library. The following line
creates an instance of the touch sensor library in order to setup one touch sensor:

CapacitiveSensor cs_4_6 = CapacitiveSensor(4,6);

This sets up one touch sensor that uses pin 4 and pin 6. With this instance, the sensor pin
is pin 6. The setup for this program initializes the serial port in order to view sensor values

33

in serial monitor and then sets our LED pin as an output. The main loop of the program
works as described by the following flow diagram.

Figure 32: Flow diagram for initial touch sensor test

The flow diagram in Figure 32 shows the operation of the program used to test the first touch
sensor. This program provides the performance of the touch sensor and the data reading from
the touch sensor. The ‘if’ statement in the program checks to see if the sensor is being touched
by comparing the current reading to a user defined threshold. We found our threshold by looking
at the values read by the sensor when touched and then determined a value that marked a
touch event. In our tests the value was set to 250. The data for the touch sensor returned
values lower than the threshold when there was no contact with the sensors.

34

5.1.2 Final Implementation
After the initial tests, we added the remaining instances of the touch sensors to our
system. In our final design, we determined that by having three different common send
pins it was possible to connect the touch sensors in groups of five without increasing
response time significantly. Each touch sensor had a copper piece attached as the sensor
surface. The copper piece was cut to match the size of a white key of piano and it had wire
soldered to one end. The specific connection pins for the sensors to the Arduino are
detailed in a later section.

In order to implement 15 touch sensors the program included 15 instances of the
CapacitiveSensor [Appendix B.2]. These instances were created such that the send pin
was shared with 5 other sensors at a time. This program used the same code flow as
described for one touch sensor and then repeated this for 14 other sensors. An important
factor to notice is that the sensitivity threshold is different for 15 touch sensors than for one
touch sensor. An addition to this program is the code that prints the readings for the touch
sensors. This code lays out the foundation for the structures used to send out sensor
readings to Max for processing. The code compares the reading for each sensor with the
threshold. If the reading is higher then it writes 1 to an array, otherwise it remains 0. The
array is printed at the end of the program and it shows the sensor states as on or off.

The final step in the sensor implementation develops the code to fully transmit the desired
data through the serial port into Max [Appendix B.3]. The code reads data from the touch
sensor and then compares it to the threshold. If the sensor is ‘ON’ then it outputs the
corresponding character to the serial port otherwise it prints out the ‘OFF’ character.

Table 2, on the following page, shows the characters that are correspondent to each touch
sensor state.

35

Sensor # Sensor is ON
ASCII output

Sensor is OFF
ASCII output

1 'A' 'a'

2 'B' 'b'

3 'C' 'c'

4 'D' 'd'

5 'E' 'e'

6 'F' 'f'

7 'G' 'g'

8 'H' 'h'

9 'I' 'i'

10 'J' 'j'

11 'K' 'k'

12 'L' 'l'

13 'M' 'm'

14 'N' 'n'

15 'O' 'o'
 Table 2: ASCII to Max Conversion Factors

The characters are unique and are sent as ASCII numbers to Max. This allows for unique
identification for each sensor and for the state of each sensor. The program also controls the
number of ‘ messages sent to max. The progression for printing out one sensor reading to max
is shown in the flow chart below.

36

Figure 33: Print out logic for sensors

The diagram in Figure 33 shows the logic that governs the passing of data to Max. This logic is
repeated for each sensor. The purpose of keeping track of the previous state is to limit the off
messages sent to Max. We only print one off messages every time the touch sensor has no
longer received input. This prevents Max from receiving repeated data for off messages.

5.2 LED Circuit
The LEDs are one of the outputs to our system. We implemented the LEDs following a similar
progression as the touch sensors. The initial test only tried one LED. Then the LED was tested
using a shift register and finally the rest of the LEDs and shift registers were combined for the
final implementation.

5.2.1 Initial Tests and Implementation
The LEDs were implemented first by controlling one LED directly with the microcontroller. Each
anode of the LED was in series with a resistor and connected to a digital pin on the
microcontroller. The resistor values were determined to be 100Ω for green and blue and 200Ω
for red. This provided the optimal output of colors for the LEDs. In this initial setup with one LED
it was simple to test the different colors by changing the digital pins from low to high in the
Arduino program. This program declared three output pins and then they were set manually to
output the desired color. These tests showed that the LED was really bright and also required a
diffuser to properly mix the colors.

The next step in implementing the LEDs was to set up one LED and control it using a shift
register. The proposed approach would use the 74HC595 shift register chips; however, it was
not possible to obtain these and they were replaced with 74HC164 shift registers. The
difference between these two models is that the 74HC164 does not have a latch pin and there is
no serial out pin. The 74HC164 cannot be concatenated like the 74HC595. The disadvantage of

37

this is that using the 74HC164 required more digital pins on the Arduino than using the
74HC595. This was not a major issue since we saved many pins with our changes to the sensor
implementation. The circuit used to test the 74HC164 chip with one LED is shown next.

Figure 34: One LED with one 74HC164

Figure 34 shows the circuit connection used to test one LED with the 74HC164. The yellow
wire is the data connection for the information shifted out. The white wire is the clock connection
that controls when the values are shifted out. The black wires establish the common ground for
this circuit and the red wires provide 5V to the LEDs. Each anode of the LED is then connected
to an output from the shift register. The code that controls the operation of this circuit is attached
in Appendix C.1. The purpose of this code is to control the LEDs by reading data from the serial
monitor, since this is the method used to communicate with Max.

The code that controls the LED starts off by shifting out off messages to the LED. This ensures
that when the system starts, the LED will be off. The main loop of the program is depicted in the
following flow chart.

38

Figure 35: Check to see if serial data is fully received

Figure 35 shows the operation of the main loop in the LED test program. This loop checks a flag
to see if serial data has been provided to the system. If nothing has been received then it waits.
If a string has been provided then it send this string to the pinWrite function. The flag for this
loop is set using the serialEvent() function shown next.

void serialEvent() {// checks to see if serial event is occurring
 while (Serial.available()) {
 // get the new byte:
 char inChar = (char)Serial.read(); // read characters
 // add it to the inputString:
 inputString += inChar; // write characters to a string
 // if the incoming character is a newline, set a flag
 // so the main loop can do something about it:
 if (inChar == '\n') {// stop reading when newline is received
 stringComplete = true;
 }
 }
}

This function is called every time there is a serial event while the Arduino is running. This means
that when the user provides any input through the serial monitor this function is called to read
the bytes. It read the bytes as characters and appends them to a string. This process continues
until the newline character is sent. Once the newline character is received, the flag for
stringComplete is set to true so that the program can use the data to control the LEDs.

This program is implemented to work with a certain format of serial inputs. The format required
consists of a capital letter followed by two integers. The last character after the integers should
always be new line in order to finish reading the serial message. The capital letters that are
allowed are R, G, B, C, M and O. These letters represent Red, Green, Blue, Cyan, Magenta and
Off. These determine the output that the LED will display. The integers are used to control which

39

key number will be controlled. The operation of the integers is explained later in the final
implementation of the LED circuit.

When a valid serial message is completely received the main loop calls the function
pinWrite(String whichKey). The argument for this function is a string. In this program we pass
the received serial message to this function. The function uses this string to determine the
output for the LED. The function checks the first letter of the string to determine the desired
setting for the LED. If the string matches then it calls the colorWrite(char whichColor) function to
determine the color represented by the letter. The colorWrite function uses a switch statement
to convert the string into binary output for the string. The cases for the switch statement as well
as the outputs are shown in the table below.

String Cases Color Binary
Representation

R RED B001

G GREEN B010

B BLUE B100

C CYAN B110

M MAGENTA B101

O OFF B000
 Table 3: Arduino LED Color Representations

The binary representation of the string is the data that is passed out to the shift register. The bits
represent the pins on the LED. The least significant bit controls red. The most significant bit
controls blue. And the center bit controls green. After the function sets the desired binary
representation, it sends this data to the shiftOut function that is standard in the Arduino library.
The shiftOut function takes four arguments: dataPin, clockPin, bitOrder and value. The first two
are set to the data and clock pin connected to our shift register. The bit order is set to
MSBFIRST because we want the most significant bit to be displayed in the last shift register
output. The data that we provide is the binary value that we set previously. In conclusion, this
program allows control of the LED though the shift register when provided with a valid
instruction through the serial monitor.

40

5.2.2 Final Implementation

The initial implementation of the LED shift register created the framework for the rest of the
LEDs; however, some adjustments were introduced to handle the additional LEDs. In order to
control the 15 LEDs of our system we required six 74HC164 shift registers. We controlled the
shift registers in three groups. Each group of shift register consisted of five LEDs and two shift
registers. The final connections to the Arduino digital pins are detailed later in a separate
section.

We controlled the LEDs using a similar program as the one described above for a single LED.
The expected input continues to consist of a capital letter and two numbers. In this system it is
necessary to know the key number that needs to be controlled, so that the correct LED is
modified. This program begins by initializing the clock and data pins for each shift register
[Appendix C.2].. Then it calls the function turnAllOff(). This function ensures that all LED’s are
off at the start of the program. The main loop of the program is handled with the same loop that
is mentioned in the initial test with one LED. The first difference in the flow of this program is
that it calls the function getKeyNumber(String whichKey) when it finds a match in the pinWrite()
function. A flow diagram depicting the overall flow of the program is depicted next.

Figure 36: Shift Registers Control Flow

The diagram in Figure 36 shows the flow of tasks performed to write to an LED. In our program,
Max provides the instruction to control the LEDs through the serial port.

41

5.3 Electromagnet Circuit
The electromagnets are our second system output. The circuit for the electromagnets was
tested first individually and then as a whole. Controlling the electromagnets required a short
modification to the program created for the LEDs.

5.3.1 Initial Tests and Implementation
The electromagnet circuit was first tested without an electromagnet since the electromagnets
arrived at a later date than expected. For the first test, the electromagnet was replaced with a
red LED in series with a resistor in order to verify that the circuit had adequate functionality. The
LED successfully lit up during the preliminary tests to show that the circuit worked. The diagram
of the circuit can be found previously in Figure 28. Controlling the electromagnet requires one
line of code. In order to turn on the electromagnet the pin connected to the transistor is set to
high and to turn the electromagnet off, the pin should be set to low. During our tests, we noticed
that the electromagnets heat up a lot if left on for extended periods of time.

5.3.2 Final Implementation
The final implementation for the electromagnet circuit creates 15 total instances of the circuit in
Figure 28. The electromagnets are controlled within the LED code. They are turned on right
after the LEDs. The function to turn on the electromagnet is pullOn() and the function to turn it
off is pullOff(). They both consist of one line of code.

digitalWrite((thisKey+19),HIGH);

This line of code turns on the electromagnet based on the integers provided in the instruction
from Max. We add 19 because the electromagnet connections start on pin 20 as shown in the
next section.

42

5.4 Arduino Microcontroller Connections
The microcontroller connections were set up on digital pins that were not used for serial
communication. Throughout the entire implementation process, pin 0 and pin 1 have been set to
be the send and receive pin for serial data. The rest of the pin organization can be seen in the
following table.

Digital Pin Connection Purpose

0,1 Serial Communication

2 Touch Sensor Receive 1

3,4,5,6,7 Touch Sensors for Keys 1-5

8 Touch Sensor Receive 2

9,10,11,12,13 Touch Sensors for Keys 6-10

14 Touch Sensor Receive 3

15,16,17,18,19 Touch Sensors for Keys 11-15

20-34 Electromagnets

35-36 Shift Register 1

37-38 Shift Register 2

39-40 Shift Register 3

41-42 Shift Register 4

43-44 Shift Register 5

45-46 Shift Register 6

Vin Input for Power supply

GND Provides ground for circuits

5V Uses Voltage regulator to output 5V

The final program that combines all the components and runs with the connections listed in the
table is attached in Appendix D.

43

Figure 37: Full Circuit Schematic

44

Figure 37 shows the full circuit schematic for our device with all the connections of the
components to the Arduino. We created a layout for a PCB for our circuit with software called
Fritzing. The PCB layout we developed is shown in Figure 38.

Figure 38: PCB layout top layer designed using Fritzing

Figure 39: PCB layout bottom layer designed using Fritzing

45

5.5 Box Construction
The box was created using pine and the design plans were developed in SolidWorks. The
design plan for the Piano box is attached in Appendix E. The materials required to assemble the
piano box are shown in the next table.

Item Qua
ntity

1”x6”x8’ No. 2 Pine Board 1pc

1”x12”x6’ No.2 Pine Board 1pc

1”x36” Square Wood Dowel 3pc

36”x3/8” Round Rod
Aluminum

1pc

2’x4’ Ice White Acrylic Panel 1pc

3/8” Nylon Washer 50pc

1/4”x6’ Threaded Rod 2pc

¼-20 Steel Nuts 50pc

1/4” Wide Washer 1bo
x

1/4”x36” Round Wood
Dowel

3pc

#10 Plate Joining Biscuit 1bo
x

The necessary tools for construction included:

• 12in. Sliding Dual Compound Miter Saw with Laser
• Table Saw with Adjustable angle
• Drill press with configurable depth and speed
• Router
• Palm Sander
• Hand Planer
• Hack Saw
• Various Screwdrivers
• Hammer
• Corded Drill
• 1/4” Brad Point Drill Bit
• 13/64” Brad Point Drill Bit
• 3/8” Brad Point Drill bit

46

• 13/16” Flat Wood Bit
• 4” C-Clamp
• 2 Adjustable ¾” Pole Clamps

6. Max Software Implementation
The software implementation of our product establishes communication between the keyboard’s
hardware, the Arduino microcontroller, and the Max virtual programming language. Multiple Max
patches control the keyboard’s functionality. The program’s patches can be recognized by the
Max file extension (.maxpat), and are named UI_homeScreen, pianoPoll., keyControl,
C_MajorScale_Follow, C_MajorScale_Play, odeToJoy_Follow, and odeToJoy_Play. Only the
user interface patch, UI_homeScreen, will be visible to the piano keyboard player [Appendix
F.1].

The Arduino microcontroller receives sensor data from the keyboard and sends it to the Max
patch pianoPoll [Appendix F.2]. PianoPoll deciphers which key was pressed and outputs the
MIDI pitch value corresponding to that key’s musical note. When a key press is detected,
pianoPoll sends the input data to be processed by keyControl [Appendix F.2]. KeyControl
contains patchwork that executes commands for each key. Output data is relayed back to
pianoPoll to output the key’s MIDI pitch through the computer’s speakers. The keyControl patch
also sends its output to the Max patch associated with the current mode and piano lesson
chosen by the user. These four patches, C_MajorScale_Follow, C_MajorScale_Play,
odeToJoy_Follow, and odeToJoy_Play, are referred to as “music” patches and contain
execution instructions for the patch’s lesson and mode [Appendix F.3]. Each patch described in
this paragraph is executed “behind the scenes” in Max, meaning that the user is unaware of
their presence.

The user interface patch, UI_homeScreen, is the only interactive window within the keyboard’s
program [Appendix F.1]. Here, the player chooses a serial port, lesson and mode. Two
interactive objects, a button and a toggle, and three selection menus are located in the user
interface. When the button is pressed, a list of serial port options is displayed in the Max
console, located on the right side of the window. One of the listed serial ports will be connected
to the keyboard via a USB connection. From the drop-down menu beneath the display-serial
button, the user must choose the letter corresponding to the correct serial port. Beneath the
serial port options and instructions are two drop-down menus that are used to select a lesson
and mode. Once selected, the corresponding music patch is activated. Now, the player can
click the large toggle button at the top of the user interface patch to begin playing, a state that
will be referred to as play mode.

Once in play mode, the keyboard receives its first instruction from the activated music patch.
The output instruction will turn on the electromagnet and LED of the key that corresponds to the
first pitch in the lesson’s note sequence.

47

If in Follow Mode, the next output instruction is not sent until the program receives input data
from the activated key’s touch sensor. Once received, the next key in the music patch’s note
sequence will be turned on. In Play Mode, instructions are output based on a specified time
interval, or tempo. Input data from the touch sensors is still received and processed, but is
completely independent of the output states associated with the music patch’s note sequence
and key progression.

While the keyboard and computer software exchange data, the user is still looking at the user
interface home screen. On the right side of the screen, a musical staff receives input data that
corresponds to the current key’s pitch and outputs a visual representation of the note on the
musical staff. On the left side of the home screen, there is a visual of the left and right hands
with numbered fingers, a keyboard with labeled note keys, and a musical staff showing the bass
and treble clef. A beginning piano player can use these images as a reference to which hand is
associated with the upper and lower halves of the keyboard, as well as where the notes’ pitch
value lies on the musical staff.

7. Recommendations
Ideas for future development of the keyboard, and other haptic learning devices, occurred to us
while we worked on the project. Throughout building the keyboard and analyzing the final
product’s functionality, we thought of how this could influence haptic technology in the future.
There are many improvements that could be made to improve the keyboard’s functionality and
influence its worth as a learning device.

One recommendation would be to add more electromagnets per key. This would enhance
haptic feedback control of the over the key’s surface, such as creating a magnetic grid with
altering polarities beneath the keys. The haptic device would have more degrees of control over
positioning the user’s fingers for correct piano playing. The opposing forces would also
enhance a player’s ability to determine which key should be pressed. Changing the polarity of a
key could also encourage a player to lift their finger from the key at the right time and would
greatly reduce the resistance between a key and the player’s fingers when trying to lift their
finger from the key just pressed. This is would be a helpful improvement because the
ferromagnetic material of the electromagnets is naturally attracted to the magnets in the gloves.

The touch sensors in our design worked adequately, but after testing we realized that replacing
them with force sensors under the keys would be more suitable for haptic technology. Force
sensors would allow better tracking of user input and could increase the sensation of playing a
piano. With force sensors, users would be required to press a key to generate sound, rather
than by simply touching the key. The user would also be able to rest their fingers on the keys
without generating input signals.

Modifications to our software would include a friendlier user interface and a more thorough
analysis of user performance, such as keeping track of wrong key presses corresponding to
each finger. More intense data analysis via the computer software could enhance the

48

keyboard’s educational abilities by providing users with feedback regarding their playing
technique and common mistakes.

In the future, the keyboard could be used in a user study to test the efficiency of haptic
technology as an educational tool. Following the progression of beginning-level piano students
using the keyboard would provide feedback for both the keyboard’s functionality and the
plausibility of creating other haptic learning-aid technologies. In addition to testing the exercises
we implemented, another interesting study would be to test the haptic technology using a larger
variety of songs and exercises that increase in difficulty. Advanced piano students may be
asked to use the keyboard as an aid for finger exercises and assess their performance. This
would show if the device has potential to be used as a viable option for users of different skill
levels.

49

8. Results and Conclusions

The outcome of this project created a proof of concept for a haptic learning device. We tested
the operation of the technology with our keyboard. Our keyboard prototype shows functionality
between its components. The keyboard we created can be programed to run a C Major scale
exercise and provide instructions for playing Ode to Joy. Haptic technology continues to show
that it has potential to become a viable alternative for learning applications; however, designing
a system that achieves this successfully requires extensive testing and design changes.

The end result of our device performed as expected in some respects. The gloves proved to be
a challenging component to design. It is important that they do not interfere with the capacitance
reading of the touch sensors. The electromagnets and the magnets interacted as expected;
however, the strength of the pull from the electromagnets was not as noticeable as anticipated.
Overall, the device functioned properly and could be used for user testing with some of the
improvements mentioned previously.

This project created a foundation for the design of the haptic learning technology, but would
require some user testing to show its applicability to teaching an instrument. Learning the piano
is an activity that continues to interest many and it would be beneficial to continue to explore
alternatives to improving the learning experience in a unique way.

50

9. References
[1] Ridden, Paul. "PianoMaestro Guides Pianists through the Music." Gizmag. Gizmag, 1 Apr.

2011. Web. 06 Oct. 2014. <http://www.gizmag.com/pianomaestro-guides-pianists-through-the-

music/18297/picture/132550/>.

[2] Steinway Etude. Computer software. Apple App Store. Vers. 2.2. Steinway Musical

Instruments, 24 Sept. 2012. Web. 07 Oct. 2014. <https://itunes.apple.com/us/app/steinway-

etude/id430004407?mt=8>.

[3] Georgia Tech PianoTouch

[4] “Pedagogy.” The Free Dictionary. Farlex, 2008. Web. 06 Oct. 2014.

<http://www.thefreedictionary.com/pedagogy>.

[5] “Piano Pedagogy." Wikipedia. Wikimedia Foundation, 10 July 2014. Web. 07 Oct. 2014.

<http://en.wikipedia.org/wiki/Piano_pedagogy>.

[6] Lewis, Martha Beth. "Music Biography." Music Biography. Summy-Birchard (Warner) and

E.C. Schirmer, 13 Mar. 2001. Web. 07 Oct. 2014.

<http://www.marthabeth.com/music_bio.html>.

[7] Lewis, Martha Beth, Ph.D. "Music Pedagogy QA." Music Pedagogy QA. Summy-Birchard

(Warner) and E.C. Schirmer, 31 July 2014. Web. 06 Oct. 2014.

<http://www.marthabeth.com/pedagogy_QA.html>.

[8] Graf, David. "Piano Fingering, Piano Technique, Piano Posture." True Piano Lessons.com.

True-piano-lessons.com, Fall 2014. Web. 07 Oct. 2014. <http://www.true-piano-

lessons.com/piano-fingering.html>.

[9] Green, Andrew. "Practice Makes Perfect." Piano Lessons:. Simon Probert, Jan. 2007. Web.

07 Oct. 2014. <http://www.piano-lessons.net/news_item.php?id=9>.

51

[10] Chang, C. C. "What Is Piano Technique?" Web log post. Fundamentals of Piano Practice.

Web. 06 Oct. 2014. <http://fundamentalpiano1.blogspot.com/2006/03/what-is-piano-

technique.html>.

[11] “Do You Have Piano Hands?" N.p., n.d. Web. 06 Oct. 2014.

http://www.heykiki.com/blog/2012/10/04/do-you-have-piano-hands/

[12] Sharlene. "Lesson 2: How to Sit at the Piano." How to Sit Properly at the Piano.

Epianostudio, Apr. 2013. Web. 07 Oct. 2014. <http://www.epianostudio.com/2008/10/21/lesson-

how-to-sit-at-the-piano/>.

[13] Dachis, Adam. "How Muscle Memory Works and How It Affects Your Success." Lifehacker.

Kinja, 6 May 2011. Web. 07 Oct. 2014. <http://lifehacker.com/5799234/how-muscle-memory-

works-and-how-it-affects-your-success>.

[14] Gleaves, Tiana. "Basic Piano Fingerings for the 12 Major Scales." Free Online Piano

Lessons Discover How To Play Piano in a Way That Fits Your Busy Lifestyle Basic Piano

Fingerings for the 12 Major Scales Comments. Piano Lessons Central, 30 July 2014. Web. 07

Oct. 2014. <http://www.piano-lessons-central.com/piano-scales/piano-fingerings/>.

[15] Frantz, Albert. "Efficient Piano Practice." 10 Expert Tips. Key-notes LLC, 2014. Web. 06

Oct. 2014. <http://www.key-notes.com/efficient-piano-practice.html>.

[16] Lewander, Maria. "The C Major Scale." Online Piano Coach. OnlinePianoCoach.com,

2014. Web. 07 Oct. 2014. <http://www.onlinepianocoach.com/c-major-scale.html>.

[17] Copp, Evan A. "Benefits of Learning Scales." Netplaces. About.com, 2014. Web. 6 Oct.

2014. <http://www.netplaces.com/piano/scaling-mountains/benefits-of-learning-scales.htm>.

[18] Frantz, Albert. "Efficient Piano Practice." Piano Fingering. Key-notes LLC, 2014. Web. 07

Oct. 2014. <http://www.key-notes.com/piano-fingering.html>.

[19] David, and Ido. "The Best Piano Exercises for Beginners." The Best Piano Exercises for

Beginners. Piano-Play-It.com, 2013. Web. 07 Oct. 2014. <http://www.piano-play-it.com/piano-

exercises.html>.

http://www.heykiki.com/blog/2012/10/04/do-you-have-piano-hands/

52

[20] Beatty, Jessica. "I Teach Piano (:." Pinterest. Pinterest, 2014. Web. 07 Oct. 2014.

<http://www.pinterest.com/jessicabeatty20/i-teach-piano/>.

[21] Pianonet. "New Technology in Pianos." Your Comprehensive Guide to Everything about

Pianos. National Piano Foundation, 2014. Web. 07 Oct. 2014.

<http://pianonet.com/resources/publications/new-technology-in-pianos/>.

[22] "Play Musical Piano For Kids Children's Learning Toy Machine." Aliexpress.com. Ali

Express. Web. 07 Oct. 2014. <http://www.aliexpress.com/item/Russian-Piano-Toys-Electrical-

Piano-Musical-Toys-For-Kids-Music-Piano-Keyboard-Instruments-For-Children-

Kids/725324095.html>.

[23] The Children's Learn To Play Keyboard. Digital image. Hammacher Schlemmer.

Hammacher Schlemmer & Company, INC, 2014. Web. 07 Oct. 2014.

<http://www.hammacher.com/Product/81525?cm_cat=ProductSEM&cm_pla=AdWordsPLA&sou

rce=PRODSEM&gclid=CjwKEAjwp7WgBRCRxMCLx8mMnDMSJADncxS2UOConeCBc3JqThc

WGw8K47DiAaSklBKoohbFPixpsRoCaATw_wcB>.

[24] iTikes. "Welcome to ITikes: A Place Where Tech Meets Play." Itikes.com. TM & MGA

Entertainment, Inc, 2014. Web. 06 Oct. 2014. <http://www.itikes.com/>.

[25] MGAE. ITikes | Create Piano. Computer software. Apple App Store. Vers. 1.2. MGA

Entertainment Inc., 6 Nov. 2012. Web. 06 Oct. 2014. <https://itunes.apple.com/us/app/itikes-i-

create-piano/id540567773?mt=8>.

[26] Little Tikes, ITikes. "Little Tikes ITikes Keyboard, White/Blue." Walmart.com. Walmart,

2014. Web. 07 Oct. 2014. <http://www.walmart.com/ip/Little-Tikes-iTikes-Keyboard-White-

Blue/21007393>.

[27] Dellinger, AJ. "8 Apps That Teach You How to Play Piano." Mac|Life. Mac|Life, 26 Sept.

2013. Web. 07 Oct. 2014.

<http://www.maclife.com/article/gallery/8_apps_teach_you_how_play_piano#slide-0>.

53

[28] Leff, Obie. Piano... Computer software. Apple App Store. Vers. 2.0. Obie LEFF, 5 Aug.

2014. Web. 06 Oct. 2014. <https://itunes.apple.com/us/app/piano.../id445298897?mt=8>.

[29] SmileyApps, LLC. Piano Tutor for IPad. Computer software. Apple App Store. Vers. 7.1.

SmileyApps, LLC, 7 Nov. 2013. Web. 06 Oct. 2014. <https://itunes.apple.com/us/app/piano-

tutor-for-ipad/id364898961?mt=8>.

[30] "The Concert Quality Piano App for IPad." IK Multimedia. IK Multimedia., 2014. Web. 06

Oct. 2014. http://www.ikmultimedia.com/products/igrandipad/

[31] IK Multimedia. IGrand Piano for IPad. Computer software. Apple App Store. Vers. 1.1.1. IK

Multimedia, 18 Sept. 2013. Web. 06 Oct. 2014. <https://itunes.apple.com/us/app/igrand-piano-

for-ipad/id562917936?mt=8>.

[32] Harris, William. "How Haptic Technology Works” 30 June 2008. HowStuffWorks.com.

<http://electronics.howstuffworks.com/everyday-tech/haptic-technology.htm> 17 September

2014.

[33] Saddik, Abdulmotaleb El. Haptics Technologies: Bringing Touch to Multimedia. Heidelberg:

Springer, 2011. Print.

[34] Stone, Robert J. "Haptic Feedback: A Potted History, From Telepresence to Virtual

Reality." http://www.dcs.gla.ac.uk/~stephen/workshops/haptic/papers/stone.pdf. 17 Sept. 2014.

[35] "FingerFlux: Near-surface Haptic Feedback on Tabletops." YouTube. YouTube, 16 Oct.

2011. Web. 19 Sept. 2014.

[36] PHANTOM OMNI® HAPTIC DEVICE. Digital image. SensAble, 1 July 2007. Web.

<http://www.dentsable.com/haptic-phantom-omni.htm>.

[37] “PHANTOM Omni® Haptic Device." PHANTOM OMNI. SenseAble, 2009. Web. 08 Oct.

2014. <http://www.dentsable.com/haptic-phantom-omni.htm>

[38] Solon, Olivia. CyberGlove. Digital image. Stroke Victims Video Games. WIRED, 16 May

2011. Web. 17 Sept. 2014 <http://www.wired.co.uk/news/archive/2011-05/16/stroke-victims-

video-games>.

http://www.ikmultimedia.com/products/igrandipad/

54

[39] “CyberGrasp™ System V2.0." CyberGraspTM System V2.0 . CyberGlove Systems LLC,

2007. Web. 8 Oct. 2014.

[40] Mobile Music Touch Works with a Computer, MP3 Player or Even a Smart Phone. Digital

image. Science Data Base. Mumbai Mirror, 19 July 2012. Web. 17 Sept. 2014.

<http://www.sciencedatabase.com/2012_09_01_archive.html>.

[41] Huang, Kevin, Ellen Y. Do, and Thad Starner. PianoTouch: A Wearable Haptic Piano

Instruction System For Passive Learning of Piano Skills. IEEE, 28 Sep. 2008. Web. 17 Sept.

2014. <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4911582>.

[42] Kern, Thorsten A. Engineering Haptic Devices: A Beginner's Guide for Engineers.

Dordrecht: Springer, 2009. Print.

[43] Brain, Marshall, and Lance Looper. "How Electromagnets Work?" HowStuffWorks.

HowStuffWorks.com, 1 Apr. 2000. Web. 30 Sept. 2014.

<http://science.howstuffworks.com/electromagnet.htm>.

[44] France, Colin. Magnetic field produced by Electromagnet. Digital image. GCSE PHYSICS -

Electromagnetism. GCSE, 2014. Web. 01 Oct. 2014. <http://www.gcsescience.com/pme5.htm>.

[45] Park, Wanjoo, Sehyoung Park, Laehyun Kim, and Seungjae Shin. "Haptic Mouse Interface

Actuated by an Electromagnet." IEEE Xplore. IEE, July 2011. Web. 01 Oct. 2014.

<http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?arnumber=5989053>.

[46] Weiss, Malte, Chat Wacharamanotham, Simon Voelker, and Jan Borchers. "FingerFlux:

Nearsurface Haptic Feedback System on Tabletops." ACM. RWTH Aachen University, 19 Oct.

2011. Web. 8 Oct. 2014.

[47] Weiss, Malte. "FingerFlux: Near-surface Haptic Feedback." Digital image. The Media

Computing Group. 28 Oct. 2011. Web. 01 Oct. 2014. <http://hci.rwth-aachen.de/fingerflux>.

[48] "LED - RGB Clear Common Cathode." SparkFun Electronics. Spark Fun, 2014. Web. 20

Oct. 2014. <https://www.sparkfun.com/products/105>.

55

[49] Oomlout. "RGB LED Tutorial (using an Arduino) (RGBL)." Instructables. Instructables,

2009. Web. 20 Oct. 2014. <http://www.instructables.com/id/RGB-LED-Tutorial-using-an-

Arduino-RGBL/?ALLSTEPS>.

[50] Maw, Carlyn, and Tom Igoe. "Serial to Parallel Shifting-Out with a 74HC595." Arduino.

Arduino, Nov. 2006. Web. 20 Oct. 2014. <http://arduino.cc/en/tutorial/ShiftOut>.

[51] Badger, Paul. "CapacitiveSensor." Arduino Playground. Arduino, n.d. Web. 20 Oct. 2014.

<http://playground.arduino.cc/Main/CapacitiveSensor?from=Main.CapSense>.

[52] "5.6lbs DC 12V Holding Electromagnet Lift Solenoid." Suntek Store. Suntek Store, 2014.

Web. 20 Oct. 2014.

<http://www.suntekstore.com/goods.php?id=14002885&utm_source=gbus&utm_medium=paid>

[53] "Magnet Frequently Asked Questions." Integrated Magnetics. Integrated Magnetics, n.d.

Web. 20 Oct. 2014. <http://www.intemag.com/faqs.html#strengthdistance>.

[54] Jts3k. "Controlling Solenoids with Arduino." Instructables. Instructables, 2010. Web. 20 Oct.

2014. <http://www.instructables.com/id/Controlling-solenoids-with-arduino/?ALLSTEPS>.

[55] "ArduinoBoardMega2560." Arduino. Arduino, 2014. Web. 20 Oct. 2014.

<http://arduino.cc/en/Main/arduinoBoardMega2560>.

[56] Instructable is part of a 3-part workshop run at Women’s Audio Misson Ghassaei, Amanda.

"Intro to MaxMSP." Instructables.com. Autodesk, Inc, n.d. Web. 13 Oct. 2014.

[57] Spitz, Andrew. "How to Set Up Arduino with Max/MSP { Sound + Tutorial }." { Sound +

Design }. Creative Commons Attribution-Noncommercial-Share Alike, 1 Mar. 2009. Web. 20

Oct. 2014. <http://www.soundplusdesign.com/?p=1305>.

[58] Kothman, Keith. "(maxmsp) Programming and Max Basics." TeachingMusic.

TeachingMusic, 12 Jan. 2011. Web. 20 Oct. 2014.

<http://teachingmusic.keithkothman.com/2011/01/compmus3-programming-and-max-basic/>.

http://www.soundplusdesign.com/?p=1305
http://teachingmusic.keithkothman.com/2011/01/compmus3-programming-and-max-basic/

56

[59] "Max Basic Tutorial 5: Message Order and Debugging." Max Basic Tutorial 5: Message

Order and Debugging. Cycling '74, n.d. Web. 20 Oct. 2014.

<http://www.cycling74.com/docs/max5/tutorials/max-tut/basicchapter05.html>.

[60] "D032C." Amazing Magnets. Amazing Magnets, 2014. Web. 20 Oct. 2014.

<https://www.amazingmagnets.com/show-decimal-d032c.aspx>.

http://www.cycling74.com/docs/max5/tutorials/max-tut/basicchapter05.html

57

10. Appendices
Appendix A: Arduino Software Installation and Setup

1.Download link for Arduino IDE 1.0.6: http://arduino.cc/en/Main/Software
2.Download link for CapSense : http://playground.arduino.cc/Main/CapacitiveSensor?from=Main.CapSense

3.
4.Select the library that was downloaded in step one.
5.Click on choose
6.The library should appear in the import library menu

58

7.
8.Click to import the library.
9.To set up the environment for the Arduino Mega:

10. Go to the Tools menu and then move down to the Board option and select the Arduino Mega option.
11. To upload our project:
12. Copy Appendix G to the open window.
13. Connect the device with the USB port
14. And Click on the arrow facing right on the top left corner of the window.

59

The Program should be uploaded and will run with the final circuit described in this report.

Appendix B: Touch Sensors

1. Example Code for One Touch Sensor
#include <CapacitiveSensor.h>

int redLED = 12;
const int sensitivity = 200; // threshold to determine touch
const int samples = 30; //number of sample reading for touch sensor //reading

CapacitiveSensor cs_4_6 = CapacitiveSensor(4,6);// 1M resistor

 //between pins 4 &
6, pin 6 is sensor pin, add
 //a wire and or foil

void setup()
{
 Serial.begin(9600);
 pinMode(redLED,OUTPUT);
}

void loop()
{
 long start = millis(); // stores the number of milliseconds since

 //the program started
 long total1 = cs_4_6.capacitiveSensor(samples);
 // stores the sensor reading

for the requested number of samples

 Serial.print(millis() - start); // check on performance

 //in
milliseconds

 Serial.print("\t");// tab character for debug window
 //spacing

 Serial.print(total1); // print sensor output 1
 Serial.println("\t");

 if ((total1 > sensitivity)) // if sensor is being touched
 digitalWrite(redLED, HIGH); // turn on LED
 else if (total1 <= sensitivity) // else
 digitalWrite(redLED, LOW); // turn off LED

 delay(0);// arbitrary delay to limit data to serial port
}

60

2. Setting the Touch Sensor’s Sensitivity for 15 Keys
#include <CapacitiveSensor.h>

const int samples = 60;
const int sensitivity = 250;
int redLED = 13;
//int greenLED = 11;
//int blueLED = 10;
CapacitiveSensor cs_2_3 = CapacitiveSensor(2,3); // 1M resistor between pins 2 & 3, pin 3 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_4 = CapacitiveSensor(2,4); // 1M resistor between pins 2 & 4, pin 4 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_5 = CapacitiveSensor(2,5); // 1M resistor between pins 2 & 5, pin 5 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_6 = CapacitiveSensor(2,6); //4
CapacitiveSensor cs_2_7 = CapacitiveSensor(2,7); //5
CapacitiveSensor cs_8_9 = CapacitiveSensor(8,9); //6
CapacitiveSensor cs_8_10 = CapacitiveSensor(8,10); //7
CapacitiveSensor cs_8_11 = CapacitiveSensor(8,11); //8
CapacitiveSensor cs_8_12 = CapacitiveSensor(8,12); //9
CapacitiveSensor cs_8_13 = CapacitiveSensor(8,13); //10
CapacitiveSensor cs_14_15 = CapacitiveSensor(14,15); //11
CapacitiveSensor cs_14_16 = CapacitiveSensor(14,16); //12
CapacitiveSensor cs_14_17 = CapacitiveSensor(14,17); //13
CapacitiveSensor cs_14_18 = CapacitiveSensor(14,18); //14
CapacitiveSensor cs_14_19 = CapacitiveSensor(14,19); //15

void setup()
{
 //cs_4_6.set_CS_AutocaL_Millis(0xFFFFFFFF); // turn off autocalibrate on channel 1 - just as an example
 //cs_4_8.set_CS_AutocaL_Millis(0xFFFFFFFF);
 Serial.begin(9600);
 pinMode(redLED,OUTPUT);
// pinMode(greenLED,OUTPUT);
// pinMode(blueLED,OUTPUT);
}

void loop(){

 long start = millis();
 long touch1 = cs_2_3.capacitiveSensor(samples);
 long touch2 = cs_2_4.capacitiveSensor(samples);
 long touch3 = cs_2_5.capacitiveSensor(samples);
 long touch4 = cs_2_6.capacitiveSensor(samples);
 long touch5 = cs_2_7.capacitiveSensor(samples);
 long touch6 = cs_8_9.capacitiveSensor(samples);
 long touch7 = cs_8_10.capacitiveSensor(samples);
 long touch8 = cs_8_11.capacitiveSensor(samples);
 long touch9 = cs_8_12.capacitiveSensor(samples);
 long touch10 = cs_8_13.capacitiveSensor(samples);

61

 long touch11 = cs_14_15.capacitiveSensor(samples);
 long touch12 = cs_14_16.capacitiveSensor(samples);
 long touch13 = cs_14_17.capacitiveSensor(samples);
 long touch14 = cs_14_18.capacitiveSensor(samples);
 long touch15 = cs_14_19.capacitiveSensor(samples);

 int sensors[15] = {0};

 Serial.print(millis() - start); // check on performance in milliseconds
 Serial.print("\t"); // tab character for debug window spacing

// Serial.print(touch1); // print sensor output 1
// Serial.print("\t");
// Serial.print(touch2); // print sensor output 2
// Serial.print("\t");
// Serial.print(touch3); // print sensor output 3
// Serial.print("\t");
// Serial.print(touch4); // print sensor output 4
// Serial.print("\t");
// Serial.print(touch5); // print sensor output 5
// Serial.print("\t");
// Serial.print(touch6); // print sensor output 6
// Serial.print("\t");
// Serial.print(touch7); // print sensor output 7
// Serial.print("\t");
// Serial.print(touch8); // print sensor output 8
// Serial.print("\t");
// Serial.print(touch9); // print sensor output 9
// Serial.print("\t");
// Serial.print(touch10); // print sensor output 10
// Serial.print("\t");
// Serial.print(touch11); // print sensor output 11
// Serial.print("\t");
// Serial.print(touch12); // print sensor output 12
// Serial.print("\t");
// Serial.print(touch13); // print sensor output 13
// Serial.print("\t");
// Serial.print(touch14); // print sensor output 14
// Serial.print("\t");
// Serial.print(touch15); // print sensor output 15
// Serial.println("\t");

 if (touch1 > sensitivity) // Check reading with threshold
 sensors[0] = 1; // Output 1 if sensor

is touched
 if (touch2 > sensitivity)
 sensors[1] = 1;
 if (touch3 > sensitivity)
 sensors[2] = 1;
 if (touch4 > sensitivity)

62

 sensors[3] = 1;
 if (touch5 > sensitivity)
 sensors[4] = 1;
 if (touch6 > sensitivity)
 sensors[5] = 1;
 if (touch7 > sensitivity)
 sensors[6] = 1;
 if (touch8 > sensitivity)
 sensors[7] = 1;
 if (touch9 > sensitivity)
 sensors[8] = 1;
 if (touch10 > sensitivity)
 sensors[9] = 1;
 if (touch11 > sensitivity)
 sensors[10] = 1;
 if (touch12 > sensitivity)
 sensors[11] = 1;
 if (touch13 > sensitivity)
 sensors[12] = 1;
 if (touch14 > sensitivity)
 sensors[13] = 1;
 if (touch15 > sensitivity)
 sensors[14] = 1;

 for (int i = 0; i < 15; i = i + 1) { // prints the reading for each

 //sensor
 Serial.print(sensors[i]);
 }
 Serial.println("\t");

 delay(0); // arbitrary delay to limit data to serial port
}

3. Serial Port Connection

Sending Unique Readings to the Touch Sensors via Serial Port

#include <CapacitiveSensor.h>

const int samples = 60; // number of samples collected by touch sensor
const int sensitivity = 250; // threshold for sentisty of sensors
int state[15] = {0}; // record previous state for touch sensor 1= ON, 0=OFF

63

CapacitiveSensor cs_2_3 = CapacitiveSensor(2,3); // 1M resistor between pins 2 & 3, pin 3 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_4 = CapacitiveSensor(2,4); // 1M resistor between pins 2 & 4, pin 4 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_5 = CapacitiveSensor(2,5); // 1M resistor between pins 2 & 5, pin 5 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_6 = CapacitiveSensor(2,6); //4
CapacitiveSensor cs_2_7 = CapacitiveSensor(2,7); //5
CapacitiveSensor cs_8_9 = CapacitiveSensor(8,9); //6
CapacitiveSensor cs_8_10 = CapacitiveSensor(8,10); //7
CapacitiveSensor cs_8_11 = CapacitiveSensor(8,11); //8
CapacitiveSensor cs_8_12 = CapacitiveSensor(8,12); //9
CapacitiveSensor cs_8_13 = CapacitiveSensor(8,13); //10
CapacitiveSensor cs_14_15 = CapacitiveSensor(14,15); //11
CapacitiveSensor cs_14_16 = CapacitiveSensor(14,16); //12
CapacitiveSensor cs_14_17 = CapacitiveSensor(14,17); //13
CapacitiveSensor cs_14_18 = CapacitiveSensor(14,18); //14
CapacitiveSensor cs_14_19 = CapacitiveSensor(14,19); //15

void setup()
{

 Serial.begin(9600);

}

void loop(){

 long start = millis();// record time program is running
 long touch1 = cs_2_3.capacitiveSensor(samples); // read data from sensors
 long touch2 = cs_2_4.capacitiveSensor(samples);
 long touch3 = cs_2_5.capacitiveSensor(samples);
 long touch4 = cs_2_6.capacitiveSensor(samples);
 long touch5 = cs_2_7.capacitiveSensor(samples);
 long touch6 = cs_8_9.capacitiveSensor(samples);
 long touch7 = cs_8_10.capacitiveSensor(samples);
 long touch8 = cs_8_11.capacitiveSensor(samples);
 long touch9 = cs_8_12.capacitiveSensor(samples);
 long touch10 = cs_8_13.capacitiveSensor(samples);
 long touch11 = cs_14_15.capacitiveSensor(samples);
 long touch12 = cs_14_16.capacitiveSensor(samples);
 long touch13 = cs_14_17.capacitiveSensor(samples);
 long touch14 = cs_14_18.capacitiveSensor(samples);
 long touch15 = cs_14_19.capacitiveSensor(samples);

 if (touch1 > sensitivity){ // is the touch sensor being touched?
 Serial.write('A'); // Yes, so write out 'A'
 state[0] = 1; // set previous state to On
 }
 else if ((touch1 <= sensitivity) && (state[0] == 1)){ // is the touch not being touched and is the previous state on

64

 Serial.write('a'); //Write out 'a'
 state[0]= 0; // set previous state to Off
 }

 if (touch2 > sensitivity){
 Serial.write('B');
 state[1] = 1;
 }
 else if ((touch2 <= sensitivity) && (state[1] == 1)){
 Serial.write('b');
 state[1]= 0;
 }

 if (touch3 > sensitivity){
 Serial.write('C');
 state[2] = 1;
 }
 else if ((touch3 <= sensitivity) && (state[2] == 1)){
 Serial.write('c');
 state[2]= 0;
 }

 if (touch4 > sensitivity){
 Serial.write('D');
 state[3] = 1;
 }
 else if ((touch4 <= sensitivity) && (state[3] == 1)){
 Serial.write('d');
 state[3]= 0;
 }

 if (touch5 > sensitivity){
 Serial.write('E');
 state[4] = 1;
 }
 else if ((touch5 <= sensitivity) && (state[4] == 1)){
 Serial.write('e');
 state[4]= 0;
 }

 if (touch6 > sensitivity){
 Serial.write('F');
 state[5] = 1;
 }
 else if ((touch6 <= sensitivity) && (state[5] == 1)){
 Serial.write('f');
 state[5]= 0;
 }

 if (touch7 > sensitivity){

65

 Serial.write('G');
 state[6] = 1;
 }
 else if ((touch7 <= sensitivity) && (state[6] == 1)){
 Serial.write('g');
 state[6]= 0;
 }

 if (touch8 > sensitivity){
 Serial.write('H');
 state[7] = 1;
 }
 else if ((touch8 <= sensitivity) && (state[7] == 1)){
 Serial.write('h');
 state[7]= 0;
 }

 if (touch9 > sensitivity){
 Serial.write('I');
 state[8] = 1;
 }
 else if ((touch9 <= sensitivity) && (state[8] == 1)){
 Serial.write('i');
 state[8]= 0;
 }

 if (touch10 > sensitivity){
 Serial.write('J');
 state[9] = 1;
 }
 else if ((touch10 <= sensitivity) && (state[9] == 1)){
 Serial.write('j');
 state[9]= 0;
 }
 if (touch11 > sensitivity){
 Serial.write('K');
 state[10] = 1;
 }
 else if ((touch11 <= sensitivity) && (state[10] == 1)){
 Serial.write('k');
 state[10]= 0;
 }

 if (touch12 > sensitivity){
 Serial.write('L');
 state[11] = 1;
 }
 else if ((touch12 <= sensitivity) && (state[11] == 1)){
 Serial.write('l');
 state[11]= 0;

66

 }

 if (touch13 > sensitivity){
 Serial.write('M');
 state[12] = 1;
 }
 else if ((touch13 <= sensitivity) && (state[12] == 1)){
 Serial.write('m');
 state[12]= 0;
 }

 if (touch14 > sensitivity){
 Serial.write('N');
 state[13] = 1;
 }
 else if ((touch14 <= sensitivity) && (state[13] == 1)){
 Serial.write('n');
 state[13]= 0;
 }

 if (touch15 > sensitivity){
 Serial.write('O');
 state[14] = 1;
 }
 else if ((touch15 <= sensitivity) && (state[14] == 1)){
 Serial.write('o');
 state[14]= 0;
 }

 delay(0); // arbitrary delay to limit data to serial port
}

Appendix C: Receive LED Control Data

1. LED Shift Register Control via Serial Port Connection

//Touch Sensor variables

int started = 0;

//Shift Register Variables
const int clockPin = 35; //Pin connected to clock pin (SH_CP) of 74HC595
const int dataPin = 36; //Pin connected to Data in (DS) of 74HC595

//Serial Variables

67

String inputString = ""; // a string to hold incoming data
boolean stringComplete = false; // whether the string is complete

void setup() {
 //set pins to output because they are addressed in the main loop
 pinMode(dataPin, OUTPUT);
 pinMode(clockPin, OUTPUT);

 Serial.begin(9600);
 inputString.reserve(200);
 shiftOut(dataPin, clockPin, MSBFIRST, B00000); // initialize LED outputs to off

}

void loop() {

 if (stringComplete) { // start reading serial values
 pinWrite(inputString); //call function to control LEDs
 // clear the string:
 inputString = "";
 stringComplete = false;
 }
}

//*****************************METHODS*****************************//

void pinWrite(String whichKey) {

 int key;

 if(whichKey.startsWith("R")){ //do we want to turn on red?
 Serial.print("Red");
 colorWrite('R');
 }
 if(whichKey.startsWith("G")){
 Serial.print("Green");
 colorWrite('G');
 }

 if(whichKey.startsWith("B")){
 Serial.print("Blue");
 colorWrite('B');
 }

 if(whichKey.startsWith("C")){
 Serial.print("Cyan");

68

 colorWrite('C');
 }

 if(whichKey.startsWith("M")){
 Serial.print("Magenta");
 colorWrite('M');
 }

 if(whichKey.startsWith("O")){
 Serial.print("Off");
 colorWrite('O');
 }
}

//Get data from serial (MAX)
void serialEvent() { // checks to see if serial event is occuring
 while (Serial.available()) {
 // get the new byte:
 char inChar = (char)Serial.read(); // read characters
 // add it to the inputString:
 inputString += inChar; // write characters to a string
 // if the incoming character is a newline, set a flag
 // so the main loop can do something about it:
 if (inChar == '\n') { // stop reading when newline is received
 stringComplete = true;
 }
 }
}
//turns on correct color
void colorWrite(char whichColor) {
// the bits you want to send
 byte bitsToSend = B000;

 switch(whichColor){
 case 'R':
 bitsToSend = B001; //Red on lED
 break;
 case 'G':
 bitsToSend = B010; //Green on LED
 break;
 case 'B':
 bitsToSend = B100;//Blue on LED
 break;
 case 'C':
 bitsToSend = B110;//Cyan on LED
 break;
 case 'M':
 bitsToSend = B101;//Magenta on LED
 break;
 case 'O':

69

 bitsToSend = B000;// LED OFF
 break;

 }
 // shift the bits out:
 shiftOut(dataPin, clockPin, MSBFIRST, bitsToSend);

}

2. Activating the 15 RGB LEDs via Shift Register and Serial Port Connection
//Clock and Data Pin for first Shift Register
const int clockPin1 = 35;
const int dataPin1 = 36;

//Clock and Data Pin for second Shift Register
const int clockPin2 = 37;
const int dataPin2 = 38;

//Clock and Data Pin for third Shift Register
const int clockPin3 = 38;
const int dataPin3 = 39;

//Clock and Data Pin for fourth Shift Register
const int clockPin4 = 40;
const int dataPin4 = 41;

//Clock and Data Pin for fifth Shift Register
const int clockPin5 = 42;
const int dataPin5 = 43;

//Clock and Data Pin for sixth Shift Register
const int clockPin6 = 44;
const int dataPin6 = 45;

//shifRegister Data
word shift1= 0;
word shift2= 0;
word shift3= 0;

String inputString = ""; // a string to hold incoming data
boolean stringComplete = false; // whether the string is complete

void setup() {
 pinMode(dataPin1, OUTPUT);
 pinMode(clockPin1, OUTPUT);
 pinMode(clockPin2, OUTPUT);
 pinMode(dataPin2, OUTPUT);
 pinMode(dataPin3, OUTPUT);
 pinMode(clockPin3, OUTPUT);
 pinMode(clockPin4, OUTPUT);

70

 pinMode(dataPin4, OUTPUT);
 pinMode(dataPin5, OUTPUT);
 pinMode(clockPin5, OUTPUT);
 pinMode(clockPin6, OUTPUT);
 pinMode(dataPin6, OUTPUT);

 digitalWrite(clockPin1,LOW);
 digitalWrite(clockPin2,LOW);
 digitalWrite(dataPin1,LOW);
 digitalWrite(dataPin2,LOW);

 Serial.begin(9600);
 inputString.reserve(200);
}
void loop() {
 if (stringComplete) {
 //Serial.println(inputString);
 pinWrite(inputString);
 // clear the string:
 inputString = "";
 stringComplete = false;
 }
}
void pinWrite(String whichKey) {
 int key;

 if(whichKey.startsWith("R")){
 Serial.print("Red");
 key = getKeyNumber(whichKey);
 colorWrite('R', key);
 Serial.print("\t");
 Serial.println(key);
 }
 if(whichKey.startsWith("G")){
 Serial.print("Green");
 key = getKeyNumber(whichKey);
 colorWrite('G',key);
 Serial.print("\t");
 Serial.println(key);
 }
 if(whichKey.startsWith("B")){
 Serial.print("Blue");
 key = getKeyNumber(whichKey);
 colorWrite('B',key);
 Serial.print("\t");
 Serial.println(key);
 }
 if(whichKey.startsWith("C")){
 Serial.print("Cyan");
 key = getKeyNumber(whichKey);

71

 colorWrite('C',key);
 Serial.print("\t");
 Serial.println(key);
 }
 if(whichKey.startsWith("M")){
 Serial.print("Magenta");
 key = getKeyNumber(whichKey);
 colorWrite('M',key);
 Serial.print("\t");
 Serial.println(key);
 }
 if(whichKey.startsWith("O")){
 Serial.print("Off");
 key = getKeyNumber(whichKey);
 colorWrite('O',key);
 Serial.print("\t");
 Serial.println(key);
 }
}
//gets the number for the key that needs to be controlled
int getKeyNumber(String getKey){
 String number = "";
 int keyNum;

 number += (char)getKey.charAt(1);
 number += (char)getKey.charAt(2);
 keyNum = number.toInt();
 number = "";
 return keyNum;
}

//Get data from serial (MAX)
void serialEvent() {
 while (Serial.available()) {
 // get the new byte:
 char inChar = (char)Serial.read();
 // add it to the inputString:
 inputString += inChar;
 // if the incoming character is a newline, set a flag
 // so the main loop can do something about it:
 if (inChar == '\n') {
 stringComplete = true;
 }
 }
}
//turns on correct color
void colorWrite(char whichColor, int thisKey) {
// the bits you want to send
 byte bitsToSend = B000;
 word shifth = 0;

72

 word bitMask = getBitMask(thisKey);
 Serial.print("\t");
 Serial.print(bitMask,BIN);

 switch(whichColor){
 case 'R':
 bitsToSend = B001;
 break;
 case 'G':
 bitsToSend = B010;
 break;
 case 'B':
 bitsToSend = B100;
 break;
 case 'C':
 bitsToSend = B110;
 break;
 case 'M':
 bitsToSend = B101;
 break;
 case 'O':
 bitsToSend = B000;
 break;
 }
 Serial.print("\t");
 Serial.print(bitsToSend,BIN);

 if(thisKey >=1 && thisKey < 6){
 shift1 = bitMask & shift1;
 shifth = bitsToSend << ((thisKey -1)*3);
 shift1 = shift1 | shifth;
 shiftBits(shift1, thisKey);
 Serial.print("\t");
 Serial.print("SHIFT1: ");
 Serial.print(shift1,BIN);
 }
 if(thisKey >=6 && thisKey < 11){
 shift2 = bitMask & shift2;
 shifth = bitsToSend << (((thisKey-5) -1)*3);//need to correct key number for second shift register group
 shift2 = shift2 | shifth;
 shiftBits(shift2, thisKey);
 Serial.print("\t");
 Serial.print("SHIFT2: ");
 Serial.print(shift2,BIN);
 }
 if(thisKey >=11 && thisKey < 16){
 shift3 = bitMask & shift3;
 shifth = bitsToSend << (((thisKey-10) -1)*3); //need to correct key number for third shift register group
 shift3 = shift3 | shifth;
 shiftBits(shift3, thisKey);

73

 Serial.print("\t");
 Serial.print("SHIFT3: ");
 Serial.print(shift3,BIN);
 }
}
word getBitMask(int keyNum){
 if((keyNum == 1) || (keyNum == 6) || (keyNum == 11))
 return 0xFFF8;//65528; //1111111111111000
 if((keyNum == 2) || (keyNum == 7) || (keyNum == 12))
 return 0xFFC7;//65479; //1111111111000111
 if((keyNum == 3) || (keyNum == 8) || (keyNum == 13))
 return 0xFE3F;//65087; //1111111000111111
 if((keyNum == 4) || (keyNum == 9) || (keyNum == 14))
 return 0xF1FF;//61951; //1111000111111111
 if((keyNum == 5) || (keyNum == 10) || (keyNum == 15))
 return 0x8FFF;//36863; //1000111111111111
}
void shiftBits(word bytes, int thisShiftReg){

 if(thisShiftReg >=1 && thisShiftReg < 6){
 // shift the bits out:
 shiftOut(dataPin1, clockPin1, MSBFIRST, lowByte(bytes));
 shiftOut(dataPin2, clockPin2, MSBFIRST, highByte(bytes));
 }
 if(thisShiftReg >=6 && thisShiftReg < 11){
 // shift the bits out:
 shiftOut(dataPin3, clockPin3, MSBFIRST, lowByte(bytes));
 shiftOut(dataPin4, clockPin4, MSBFIRST, highByte(bytes));
 }
 if(thisShiftReg >=11 && thisShiftReg < 16){
 // shift the bits out:
 shiftOut(dataPin5, clockPin5, MSBFIRST, lowByte(bytes));
 shiftOut(dataPin6, clockPin6, MSBFIRST, highByte(bytes));
 }
}
void turnAllOff(){
 pinWrite("O01");
 pinWrite("O02");
 pinWrite("O03");
 pinWrite("O04");
 pinWrite("O05");
 pinWrite("O06");
 pinWrite("O07");
 pinWrite("O09");
 pinWrite("O10");
 pinWrite("O11");
 pinWrite("O12");
 pinWrite("O13");
 pinWrite("O14");
 pinWrite("O15");

74

}

Appendix D: Full Program Execution

Control the Keyboard’s 15 electromagnets, 15 RGB LEDs and 15 Capacitive Touch Sensors

#include <CapacitiveSensor.h>

//Touch Sensor variables
CapacitiveSensor cs_2_3 = CapacitiveSensor(2,3); // 1M resistor between pins 2 & 3, pin 3 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_4 = CapacitiveSensor(2,4); // 1M resistor between pins 2 & 4, pin 4 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_5 = CapacitiveSensor(2,5); // 1M resistor between pins 2 & 5, pin 5 is sensor pin, add a wire and or foil
CapacitiveSensor cs_2_6 = CapacitiveSensor(2,6); //4
CapacitiveSensor cs_2_7 = CapacitiveSensor(2,7); //5
CapacitiveSensor cs_8_9 = CapacitiveSensor(8,9); //6
CapacitiveSensor cs_8_10 = CapacitiveSensor(8,10); //7
CapacitiveSensor cs_8_11 = CapacitiveSensor(8,11); //8
CapacitiveSensor cs_8_12 = CapacitiveSensor(8,12); //9
CapacitiveSensor cs_8_13 = CapacitiveSensor(8,13); //10
CapacitiveSensor cs_14_15 = CapacitiveSensor(14,15); //11
CapacitiveSensor cs_14_16 = CapacitiveSensor(14,16); //12
CapacitiveSensor cs_14_17 = CapacitiveSensor(14,17); //13
CapacitiveSensor cs_14_18 = CapacitiveSensor(14,18); //14
CapacitiveSensor cs_14_19 = CapacitiveSensor(14,19); //15

const int samples = 60;
const int sensitivity = 300;

int state[15] = {0};

//Shift REgister Variables
//Clock and Data Pin for first Shift Register
const int clockPin1 = 35;//white wire
const int dataPin1 = 36; //yellow wire

//Clock and Data Pin for second Shift Register
const int clockPin2 = 37;
const int dataPin2 = 38;

//Clock and Data Pin for third Shift Register
const int clockPin3 = 39;
const int dataPin3 = 40;

//Clock and Data Pin for fourth Shift Register
const int clockPin4 = 41;
const int dataPin4 = 42;

75

//Clock and Data Pin for fifth Shift Register
const int clockPin5 = 43;
const int dataPin5 = 44;

//Clock and Data Pin for sixth Shift Register
const int clockPin6 = 45;
const int dataPin6 = 46;

//electromagnets
const int e1 = 20;
const int e2 = 21;
const int e3 = 22;
const int e4 = 23;
const int e5 = 24;
const int e6 = 25;
const int e7 = 26;
const int e8 = 27;
const int e9 = 28;
const int e10 = 29;
const int e11 = 30;
const int e12 = 31;
const int e13 = 32;
const int e14 = 33;
const int e15 = 34;

//shifRegister Data
word shift1= 0;
word shift2= 0;
word shift3= 0;

//Serial Variables
String inputString = ""; // a string to hold incoming data
boolean stringComplete = false; // whether the string is complete

void setup() {
 //set pins to output because they are addressed in the main loop
 pinMode(dataPin1, OUTPUT);
 pinMode(clockPin1, OUTPUT);
 pinMode(clockPin2, OUTPUT);
 pinMode(dataPin2, OUTPUT);
 pinMode(clockPin3, OUTPUT);
 pinMode(dataPin3, OUTPUT);
 pinMode(clockPin4, OUTPUT);
 pinMode(dataPin4, OUTPUT);
 pinMode(clockPin5, OUTPUT);
 pinMode(dataPin5, OUTPUT);
 pinMode(clockPin6, OUTPUT);
 pinMode(dataPin6, OUTPUT);

76

 pinMode(e1, OUTPUT);
 pinMode(e2, OUTPUT);
 pinMode(e3, OUTPUT);
 pinMode(e4, OUTPUT);
 pinMode(e5, OUTPUT);
 pinMode(e6, OUTPUT);
 pinMode(e7, OUTPUT);
 pinMode(e8, OUTPUT);
 pinMode(e9, OUTPUT);
 pinMode(e10, OUTPUT);
 pinMode(e11, OUTPUT);
 pinMode(e12, OUTPUT);
 pinMode(e13, OUTPUT);
 pinMode(e14, OUTPUT);
 pinMode(e15, OUTPUT);

 turnAllOff();

 Serial.begin(9600);
 inputString.reserve(200);
}

void loop() {
 long start = millis();
 long touch1 = cs_2_3.capacitiveSensor(samples);
 long touch2 = cs_2_4.capacitiveSensor(samples);
 long touch3 = cs_2_5.capacitiveSensor(samples);
 long touch4 = cs_2_6.capacitiveSensor(samples);
 long touch5 = cs_2_7.capacitiveSensor(samples);
 long touch6 = cs_8_9.capacitiveSensor(samples);
 long touch7 = cs_8_10.capacitiveSensor(samples);
 long touch8 = cs_8_11.capacitiveSensor(samples);
 long touch9 = cs_8_12.capacitiveSensor(samples);
 long touch10 = cs_8_13.capacitiveSensor(samples);
 long touch11 = cs_14_15.capacitiveSensor(samples);
 long touch12 = cs_14_16.capacitiveSensor(samples);
 long touch13 = cs_14_17.capacitiveSensor(samples);
 long touch14 = cs_14_18.capacitiveSensor(samples);
 long touch15 = cs_14_19.capacitiveSensor(samples);

 if ((touch1 > sensitivity)&& (state[0] == 0)){
 Serial.write('A');
 state[0] = 1;
 }
 else if ((touch1 <= sensitivity) && (state[0] == 1)){
 Serial.write('a');
 state[0]= 0;
 }

77

 if ((touch2 > sensitivity)&& (state[1] == 0)){
 Serial.write('B');
 state[1] = 1;
 }
 else if ((touch2 <= sensitivity) && (state[1] == 1)){
 Serial.write('b');
 state[1]= 0;
 }

 if ((touch3 > sensitivity)&& (state[2] == 0)){
 Serial.write('C');
 state[2] = 1;
 }
 else if ((touch3 <= sensitivity) && (state[2] == 1)){
 Serial.write('c');
 state[2]= 0;
 }

 if((touch4 > sensitivity)&& (state[3] == 0)){
 Serial.write('D');
 state[3] = 1;
 }
 else if ((touch4 <= sensitivity) && (state[3] == 1)){
 Serial.write('d');
 state[3]= 0;
 }

 if((touch5 > sensitivity)&& (state[4] == 0)){
 Serial.write('E');
 state[4] = 1;
 }
 else if ((touch5 <= sensitivity) && (state[4] == 1)){
 Serial.write('e');
 state[4]= 0;
 }

 if((touch6 > sensitivity)&& (state[5] == 0)){
 Serial.write('F');
 state[5] = 1;
 }
 else if ((touch6 <= sensitivity) && (state[5] == 1)){
 Serial.write('f');
 state[5]= 0;
 }

 if((touch7 > sensitivity)&& (state[6] == 0)){
 Serial.write('G');
 state[6] = 1;
 }
 else if ((touch7 <= sensitivity) && (state[6] == 1)){

78

 Serial.write('g');
 state[6]= 0;
 }

 if((touch8 > sensitivity)&& (state[7] == 0)){
 Serial.write('H');
 state[7] = 1;
 }
 else if ((touch8 <= sensitivity) && (state[7] == 1)){
 Serial.write('h');
 state[7]= 0;
 }

 if((touch9 > sensitivity)&& (state[8] == 0)){
 Serial.write('I');
 state[8] = 1;
 }
 else if ((touch9 <= sensitivity) && (state[8] == 1)){
 Serial.write('i');
 state[8]= 0;
 }

 if((touch10 > sensitivity)&& (state[9] == 0)){
 Serial.write('J');
 state[9] = 1;
 }
 else if ((touch10 <= sensitivity) && (state[9] == 1)){
 Serial.write('j');
 state[9]= 0;
 }

 if((touch11 > sensitivity)&& (state[10] == 0)){
 Serial.write('K');
 state[10] = 1;
 }
 else if ((touch11 <= sensitivity) && (state[10] == 1)){
 Serial.write('k');
 state[10]= 0;
 }

 if((touch12 > sensitivity)&& (state[11] == 0)){
 Serial.write('L');
 state[11] = 1;
 }
 else if ((touch12 <= sensitivity) && (state[11] == 1)){
 Serial.write('l');
 state[11]= 0;
 }

 if((touch13 > sensitivity)&& (state[12] == 0)){

79

 Serial.write('M');
 state[12] = 1;
 }
 else if ((touch13 <= sensitivity) && (state[12] == 1)){
 Serial.write('m');
 state[12]= 0;
 }

 if ((touch14 > sensitivity)&& (state[13] == 0)){
 Serial.write('N');
 state[13] = 1;
 }
 else if ((touch14 <= sensitivity) && (state[13] == 1)){
 Serial.write('n');
 state[13]= 0;
 }

 if ((touch15 > sensitivity)&& (state[14] == 0)){
 Serial.write('O');
 state[14] = 1;
 }
 else if ((touch15 <= sensitivity) && (state[14] == 1)){
 Serial.write('o');
 state[14]= 0;
 }

 if (stringComplete) {
 //Serial.println(inputString);
 pinWrite(inputString);
 // clear the string:
 inputString = "";
 stringComplete = false;
 }
}

//*****************************METHODS*****************************//

void pinWrite(String whichKey) {

 int key;

 if(whichKey.startsWith("R")){
 key = getKeyNumber(whichKey);
 colorWrite('R', key);
 pullOn(key);
 }
 if(whichKey.startsWith("G")){
 key = getKeyNumber(whichKey);

80

 colorWrite('G',key);
 pullOn(key);
 }

 if(whichKey.startsWith("B")){
 key = getKeyNumber(whichKey);
 colorWrite('B',key);
 pullOn(key);
 }

 if(whichKey.startsWith("C")){
 key = getKeyNumber(whichKey);
 colorWrite('C',key);
 pullOn(key);
 }

 if(whichKey.startsWith("M")){
 key = getKeyNumber(whichKey);
 colorWrite('M',key);
 pullOn(key);
 }

 if(whichKey.startsWith("O")){
 key = getKeyNumber(whichKey);
 colorWrite('O',key);
 pullOff(key);
 }
}

//gets the number for the key that needs to be controlled
int getKeyNumber(String getKey){
 String number = "";
 int keyNum;

 number += (char)getKey.charAt(1);
 number += (char)getKey.charAt(2);
 keyNum = number.toInt();
 number = "";
 return keyNum;

}

//Get data from serial (MAX)
void serialEvent() {
 while (Serial.available()) {
 // get the new byte:
 char inChar = (char)Serial.read();
 // add it to the inputString:
 inputString += inChar;
 // if the incoming character is a newline, set a flag

81

 // so the main loop can do something about it:
 if (inChar == '\n') {
 stringComplete = true;
 }
 }
}
//turns on correct color
void colorWrite(char whichColor, int thisKey) {
// the bits you want to send
 byte bitsToSend = B000;
 word shifth = 0;
 word bitMask = getBitMask(thisKey);

 switch(whichColor){
 case 'R':
 bitsToSend = B001;
 break;
 case 'G':
 bitsToSend = B010;
 break;
 case 'B':
 bitsToSend = B100;
 break;
 case 'C':
 bitsToSend = B110;
 break;
 case 'M':
 bitsToSend = B101;
 break;
 case 'O':
 bitsToSend = B000;
 break;
 }

 Serial.print("\t");
 Serial.print(bitsToSend,BIN);

 if(thisKey >=1 && thisKey < 6){
 shift1 = bitMask & shift1;
 shifth = bitsToSend << ((thisKey -1)*3);
 shift1 = shift1 | shifth;
 shiftBits(shift1, thisKey);
 }

 if(thisKey >=6 && thisKey < 11){
 shift2 = bitMask & shift2;
 shifth = bitsToSend << (((thisKey-5) -1)*3);//need to correct key number for second shift register group
 shift2 = shift2 | shifth;
 shiftBits(shift2, thisKey);
 }

82

 if(thisKey >=11 && thisKey < 16){
 shift3 = bitMask & shift3;
 shifth = bitsToSend << (((thisKey-10) -1)*3); //need to correct key number for third shift register group
 shift3 = shift3 | shifth;
 shiftBits(shift3, thisKey);
 }
}

word getBitMask(int keyNum){
 if((keyNum == 1) || (keyNum == 6) || (keyNum == 11))
 return 0xFFF8;//65528; //1111111111111000
 if((keyNum == 2) || (keyNum == 7) || (keyNum == 12))
 return 0xFFC7;//65479; //1111111111000111
 if((keyNum == 3) || (keyNum == 8) || (keyNum == 13))
 return 0xFE3F;//65087; //1111111000111111
 if((keyNum == 4) || (keyNum == 9) || (keyNum == 14))
 return 0xF1FF;//61951; //1111000111111111
 if((keyNum == 5) || (keyNum == 10) || (keyNum == 15))
 return 0x8FFF;//36863; //1000111111111111
}

void shiftBits(word bytes, int thisShiftReg){

 if(thisShiftReg >=1 && thisShiftReg < 6){
 // shift the bits out:
 shiftOut(dataPin1, clockPin1, MSBFIRST, lowByte(bytes));
 shiftOut(dataPin2, clockPin2, MSBFIRST, highByte(bytes));
 }

 if(thisShiftReg >=6 && thisShiftReg < 11){
 // shift the bits out:
 shiftOut(dataPin3, clockPin3, MSBFIRST, lowByte(bytes));
 shiftOut(dataPin4, clockPin4, MSBFIRST, highByte(bytes));
 }

 if(thisShiftReg >=11 && thisShiftReg < 16){
 // shift the bits out:
 shiftOut(dataPin5, clockPin5, MSBFIRST, lowByte(bytes));
 shiftOut(dataPin6, clockPin6, MSBFIRST, highByte(bytes));
 }
}

//Electromagnet On
void pullOn(int thisKey){
 digitalWrite((thisKey+19),HIGH);
}
//Electromagnet Off
void pullOff(int thisKey){
 digitalWrite((thisKey+19),LOW);

83

}

//Turn LED and ELectromagnets off
void turnAllOff(){
 pinWrite("O01");
 pinWrite("O02");
 pinWrite("O03");
 pinWrite("O04");
 pinWrite("O05");
 pinWrite("O06");
 pinWrite("O07");
 pinWrite("O09");
 pinWrite("O10");
 pinWrite("O11");
 pinWrite("O12");
 pinWrite("O13");
 pinWrite("O14");
 pinWrite("O15");
}

Appendix E: Solid Works Keyboard Design Plans

84

85

86

87

88

89

Appendix F: Max Software

1. User Interface

UI_homeScreen.maxpat

90

2. Data Control

pianoPoll.maxpat

keyControl.maxpat

91

3. Music Patches

C_Major_Scale_Follow.maxpat

C_Major_Scale_Play.maxpat

92

odeToJoy_Follow.maxpat

odeToJoy_Play.maxpat

93

Music Patchers (Sub-patches)

odeMeasureMenus

LED_colorLeft/Right

94

led_instructionL/R

LEDstateRx_L/R.maxpat

95

getKey.maxpat

checkKey.maxpat

	Abstract
	Acknowledgments
	1. Introduction
	2. Background
	2.1 Piano Pedagogy
	2.3 Market Research
	2.4 Haptic Technology
	2.5 Design Approach for Haptic Systems
	2.5.1 Electrical Actuators
	2.5.1.1 Electromagnets
	2.5.2 Pneumatic Actuators
	2.5.3 Hydraulic Actuators
	3. Project Goals
	4. Preliminary Design Approach

	4.1 Description of Device
	4.2 Multicolor LEDs
	4.3 Touch Sensors
	4.4 Electromagnets
	4.5 Microcontroller
	4.6 Software: Max
	4.7 Glove
	4.8 Keyboard structure
	5. Hardware Implementation

	5.1 Touch Sensors
	5.1.1 Initial Tests and Implementation
	5.1.2 Final Implementation
	5.2 LED Circuit
	5.2.1 Initial Tests and Implementation
	5.2.2 Final Implementation
	5.3 Electromagnet Circuit
	5.3.1 Initial Tests and Implementation
	5.3.2 Final Implementation
	5.4 Arduino Microcontroller Connections
	5.5 Box Construction
	6. Max Software Implementation
	7. Recommendations
	8. Results and Conclusions

	This project created a foundation for the design of the haptic learning technology, but would require some user testing to show its applicability to teaching an instrument. Learning the piano is an activity that continues to interest many and it would...
	9. References
	10. Appendices

	Appendix A: Arduino Software Installation and Setup
	Appendix B: Touch Sensors
	1. Example Code for One Touch Sensor
	2. Setting the Touch Sensor’s Sensitivity for 15 Keys
	3. Serial Port Connection
	Sending Unique Readings to the Touch Sensors via Serial Port
	Appendix C: Receive LED Control Data
	1. LED Shift Register Control via Serial Port Connection
	2. Activating the 15 RGB LEDs via Shift Register and Serial Port Connection
	Appendix D: Full Program Execution
	Control the Keyboard’s 15 electromagnets, 15 RGB LEDs and 15 Capacitive Touch Sensors
	Appendix E: Solid Works Keyboard Design Plans
	Appendix F: Max Software
	1. User Interface
	2. Data Control
	3. Music Patches
	Music Patchers (Sub-patches)

