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Abstract

We formulate a model for acoustic excitations in a magnetorhe-
ological fluid. Constitutive equations are derived for Navier-Stokes
flow coupled with Maxwell’s Equations. The viscosity of the fluid is
modified to reflect the dependence of waves propagating within the
fluid itself and in the case where they propagate along the network of
particles.

1 Introduction

One of the defining characteristics of fluids is the inability to carry acous-
tical shear wave modes. To enable a fluid to carry more than one longitu-
dinal mode one of its properties must be changed. It has been experimen-
tally proven that with the addition of small particles two longitudinal modes
may propagate through a system provided that the wavelength is compa-
rable to the size of the particles or smaller [10, 20]. In the past decade
researchers experimenting with magnetorheological fluids discovered in the
large wavelength regime two acoustical longitudinal waves of differing speed
and amplitude propagating simultaneously [13]. From their experimental
findings Nahmad-Molinari et al were able to show a strong behavioral de-
pendence upon an external magnetic field in both waves. The exact nature
of these waves have been debated [2, 14, 7] and several models have been pro-
posed [13, 3, 4] of varying degrees of computational complexity and accuracy.
The motivation of this study is to produce equations using homogenization
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theory which correctly model the behavior of acoustical waves in a magne-
torheological fluid.

Magnetorheological fluids (MR fluids) are typically classified as Bingham
plastics. In the presence of an external magnetic field the effective viscosity
of the fluid changes. The alteration in viscosity is sudden but not permanent
and quickly returns to initial conditions once the magnetic field is removed.
The variation of the viscosity is a product of the arrangement of the mag-
netically active particles due to dipole forces [17]. These particles arrange
themselves to form web like structures [17, 21] and it is along these structures
that the second longitudinal mode travels [13].

The study of the nucleation rates and responses to magnetic fields has a
much larger background than the study of the acoustical wave propagation.
The interest there was how to best incorporate these fluids into modern
technological uses. Many of these types of simulations were based either on
a modified Bingham plastic [19], on a minimum energy approach [12, 1] or
incorporated static Maxwell’s Equations to explain particle trajectories [11].
This study departs from these earlier works formulating our equations based
upon the conservation of mass and momentum coupled with time dependent
Maxwell’s equations.

Homogenization techniques have been used in the past to study magne-
torheological materials [8, 16] and the comparable electrorheological mate-
rials [15, 18]. Our model is based in part on prior work with waves in sus-
pensions of particles [6] and structural deformations in MR fluids [8]. The
wave motion is taken to be a plain wave eliminating the need to include time
stepping algorithms into the implementation of the equations. However, due
to the oscillatory nature of the acoustical excitations within the MR fluid we
are not able to assume that the magnetic properties of the particles may be
represented by static Maxwell’s equations as was done by Levy. Furthermore,
since the amplitudes of the oscillations are comparably small we are able to
neglect non-linear terms in the fluid motion.

Several studies have modelled acoustical waves in MR fluids by partition-
ing the system into two components: the fluid itself and the rigid skeleton
formed by the particles [3, 4]. In this way they obtain two waves whose
characteristics approximate experimental results. However, their method-
ology does not reflect the dependence upon the magnetic field observed in
the longitudinal mode propagating in the fluid. A more natural approach
is to examine the entire system as a whole, weakening the viscosity of the
fluid when modelling the waves traveling along the magnetic particles. The
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justification for this technique relies on the assumption that the two modes
will collapse into a single mode in the absence of a magnetic field. As this
paper will show not only does this happen but our equations reduce to a
more familiar form of wave motion for an anisotropic viscous fluid.

2 Formalization of the Problem

We consider a suspension of magnetizable rigid spheres in a viscous incom-
pressible fluid under the influence of a magnetic inductance, B. For our pur-
poses we assume that the magnetic permeability of the particles is linear and
uniform, µS, and the electric permitivity is likewise linear and uniform, εs.
Furthermore the particles carry no free charge and any accumulation of such
charges is quickly dispersed by the surrounding fluid. We also assume that
the dielectric polarization of the particles matches that of the fluid, rendering
force contributions by the induced electric field negligable.

The magnitization of each particle, M, is known and the magnetic forces
on each particle are composed of the volumic density force (∇×M)× B̃ and
the surface density force (n×M)× B̃. Generally the term ∇×M is denoted
JB, reflecting the fact that it represents the density of the bound current in
each particle. Likewise, n×M is commonly referred to as the bound surface
current density, KB. This nomenclature shall be used for the remainder of
the study.

The oscillatory nature of the fluid’s velocity, V, is taken to follow a plane
wave, Ṽ(x, t) = V(x)eiωt. Due to the fact that the currents within each
particle are bound, the time dependence of the magnetic and electric fields
may be expressed as B̃(x, t) = B(x)eiωt and Ẽ(x, t) = E(x)eiωt respectively.
The wavelength of the acoustical excitations is assumed to be larger than the
particle size. Thermal considerations are also neglected.

In the domain we have

∇× E = −iωB (1)

∇ · E = 0 (2)

∇ ·B = 0 (3)

In the fluid we have

∇ ·V = 0 (4)
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iωρF Vi =
∂σij

∂xj

(5)

∇×B = iωµ0ε0E (6)

where

σij = −δijP + 2µDij(V)

Dij(V) =
1

2

(∂Vi

∂xj

+
∂Vj

∂xi

)
In each particle, S we have

Dij(V) = 0 (7)

∇×B = µ0∇×M + iωµ0εSE (8)

On the boundary ∂S the velocity, V, is continuous. While the magnetic and
electrical fields satisfy the relations

(BF −BS) · n = 0

n× (
1

µ0

BF − (
1

µ0

BS −M)) = n×M

(ε0EF − εSES) · n = 0

(EF − ES)× n = 0

The balance of forces is then expressed as

iω
∫

S
ρsVdv =

∫
S
(∇×M)×Bdv +

∫
∂S

(n×M)×Bdσ

−
∫

∂S
σijnjeidσ (9)

iω
∫

S
ρs(x− xG)×Vdv =

∫
S
(x− xG)× ((∇×M)×B)dv

+
∫

∂S
(x− xG)× ((n×M)×B)dσ

−
∫

∂S
(x− xG)× (σijnjei)dσ (10)

The suspension of particles is assumed to be non-dilute and of infinite
dimensions. The equilibrium state shall be used as the reference configuration
with the particles being distributed within a locally periodic unit cell under a
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uniform pressure P0. The length of this unit cell, l, compared to the length of
the macroscopic phenomena, L, denoted ε = l/L is small ε � 1. We impose
a double scale assymptotic expansion on the spacial coordinates within the
unit cell. We define y = (x − xG)/ε, where xG is the center of mass of the
solid, to be the scretched coordinates. The derivative operator takes on the
form

∂

∂x
⇒ ∂

∂x
+

1

ε

∂

∂y

The functions are expanded in powers of epsilon in the limit ε → 0,

V = V0(x) + Vr(x,y) + εV1(x,y)...

E = E0(x) + εE1(x,y) + ...

B = B0(x) + εB1(x,y) + ...

P = P0(x,y) + εP1(x,y) + ...

where the functions Vr, V1, B1, and E1 are Y-periodic in y. Excluding pres-
sure, the zeroth order functions are not arbitrairily chosen to be independent
of y. It will be proved later that this initial assumption is valid.

The nature of the viscosity and the role that the viscosity has in the
determination of the solution of the problem is of paramount concern in this
study. We take the viscosity of the fluid to be a function of ε,

µ(η) = µεη

where η is a positive number. The physical interpritation of this mathemati-
cal definition is to say that the contribution of forces resulting from the fluid’s
viscosity is relatively small compared to the magnetic forces when η > 0.

3 Homogenized Maxwell Equations

3.1 Determination of E0 and B0

From eq(3) at order O(ε−1) we have

∇(y) ·B0 = 0 (11)

in F from eq(6) at order O(ε−1) we have

∇(y) ×B0 = 0 (12)

5



and in S from eq(8) at order O(ε−1) we have

∇(y) ×B0 = 0 (13)

which combined with the boundary conditions allow us to conclude that
B0(x,y) ≡ B0(x).

The form of the electric field may be deduced from Maxwell’s equations
in relation to the magnetic induction. From eq(1) at order O(ε−1) and eq(2)
at order O(ε−1) we have

∇(y) × E0 = 0 (14)

∇(y) · E0 = 0 (15)

which combined with the boundary conditions allows us to conclude that
E0(x,y) ≡ E0(x).

3.2 Determination of B1

From eq(3) at order O(1) we have

∇ ·B0 = −∇(y) ·B1 (16)

in F from eq(6) at order O(1) we have

∇×B0 = iωµ0ε0E
0 −∇(y) ×B1 (17)

and in S from eq(8) at order O(1) we have

∇×B0 = µ0JB + iωµ0ε0E
0 −∇(y) ×B1 (18)

This allows us to write B1 as

B1 = −y(∇ ·B0)− y × (iωµ0ε0E
0 −∇×B0) + µ0[ei · JB]Ψi (19)

with Ψi = −1
3
χYS

(y× ei) where χYS
is the charateristic function of YS. The

strength of the first order expansion of the magnetic induction is dependent
upon the frequency of the propagating wave indicating some amount of non-
linearity intrinsic within the electromagnetic forces.
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The integral of B1 over the surface of the particles Γ is computed using
basic vector identities applied to eq(19) where we have grouped common
terms together:∫

Γ
B1dσy =

∫
Γ
τij(B

0)eidσy + (µ0[JB · ei] + 3iωµ0ε0[E
0 · ei])

∫
Γ
Ψidσy

with

τij(B
0) =

(
yj

∂B0
j

∂xi

− yi

∂B0
j

∂xj

− yj
∂B0

i

∂xj

)

4 Wave propagation in a viscous fluid

The propagation of waves within the fluid is modelled as a suspension of
magnetic particles immersed in a non-magnetic fluid. The viscosity of the
fluid is taken to be of the same order as the magnetic forces, µ = O(1).

4.1 Determination of V0

We get from eqn(4) at order O(ε−1) and eqn(5) at order O(ε−2) in F

∇(y) ·V0 = 0 (20)

∂

∂yj

Dij(V
0) = 0 (21)

In S from (8) at the order O(ε−1) we have

Dij(y)(V
0) = 0 (22)

From eqn(9) and eqn(10) at order O(ε) we have

2µ
∫
Γ
Dij(y)(V

0)njeidσy = 0 (23)

2µ
∫
Γ
y ×Dij(y)(V

0)njeidσy = 0 (24)

This implies that for some function Υ ∈ Uad = {υ ∈ [H1(Y )], Y-periodic,
∇ · υ = 0 in F, Dij(υ) = 0 ∀ i,j in YS}:∫

YS

Dij(y)(V
0)Dij(y)(u)dy = 0 (25)

∀u ∈ Υ

with u = α + β × y in S, α and β independent of y. We therefore conclude
that V0(x,y) ≡ V0(x) and Vr(x,y) ≡ 0

7



4.2 Determination of V1, and P 0

We may choose to normalize P 0 such that∫
YF

P 0dy = 0

and with careful selection of normalization constants any periodic extension
into the solid can produce [5] ∫

Y
P 0dy = 0 (26)

However, we choose not to explore this option for reasons that will become
obvious later on.

From eq(5) and eq(6) in F

∇(y) ·V1 = −∇(x) ·V0 (27)

∂

∂yj

σ0
ij = 0 (28)

σ0
ij = −δijP

0 + 2µ(Dij(x)(V
0) + Dij(y)(V

1)) (29)

and from eq(8) in S
Dij(y)(V

1) = −Dij(x)(V
0) (30)

From eq(9) and eq(10) at order O(ε2) combined with the conditions of
eq(27) through eq(30)∫

Γ
σ0

ijnjeidσy = |Γ|(KB ×B0)∫
Γ
y × (σ0

ijnjei)dσy = −(KB ×B0)×
∫
Γ
ydσy

We express the velocity of the particles as

V1 = V′1 + V”1

where V′1 reflects the macroscopic strains and V”1 reflects the magnetic
forces on the particles.
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The equations governing the solution of V′1, derived from eq(27) through
eq(30), are

∇ ·V′0 = −∇(y) ·V1 (31)

∂

∂yj

σ0
ij = 0 (32)

Dij(V
′0) = −Dij(y)(V

1) (33)∫
YS

σ0
ijnjeidσy = 0 (34)∫

YS

y × (σ0
ijnjei)dσy = 0 (35)

As in Levy [8] we find the local variation of V′1 as

V′1(x,y) = −Dij(V
0)Xij(y)

where ∫
Y

Xij(y)dy = 0

Xij ∈ Uad(P
ij) = {Ψ ∈ [H1(Y )]3, Y-periodic, ∇ ·Ψ = 0 in YF , Dkl(Ψ) =

Dkl(P
ij)∀ k,l in YS} with Pij such that P ij

k = yjδik, and∫
YF

2µDkl(X
ij)Dkl(Ψ−Xij)dy = 0

For y ∈ Ys:

Xij =
1

2
(Pij + Pji) + αij + βij × y

with αij and βij independent of the local variable y.
The equations governing the solution of V”1, derived from eq(27) through

eq(30), are

∇(y) ·V”1 = 0 (36)

∂

∂yj

σ”0
ij = 0 (37)

σ”0
ij = −δijP + 2µDij(y)(V”1) (38)

Dij(y)(V”1) = 0 (39)

2µ
∫
Γ
σ”0

ijnjeidσy = |Γ|(KB ×B0)

2µ
∫
Γ
y × (σ”0

ijnjei)dσy = −(KB ×B0)×
∫
Γ
ydσy
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This leads to a solution where we are looking for Υ ∈ Uad = {υ ∈ [H1(Y )],
Y-periodic, ∇·υ = 0 in F, Dij(υ) = 0 ∀ i,j in YS} excluding constant vectors,
and

2µ
∫

YF

Dij(V”1)Dij(u)dy =
∫
Γ
(KB ×B0) · u

∀u ∈ Υ

where u = α + β × y for y ∈ YS.
The answer is

V”1(x,y, t) = [ei · (KB ×B0)]wi (40)

with wi satisfying ∫
Y

widy = 0

wi ∈ Υ

such that ∫
YF

2µDkj(w
i)Dkj(u)dy =

∫
Γ
ei · udσy

∀u ∈ Υ

Note that for y ∈ YS, wi = αi + βi × y where αi and βi are independent of
y.

The asymptotic Y-periodic expansion of V written in terms of V0, B0

and KB up to an additive constant is

V(x, t) = V0(x, t) + ε
[
−Dij(V

0)Xij(y) + [ei · (KB ×B0)]wi(y)

+A(x, t)
]
+ O(1)

4.3 Macroscopic Equations

In order to establish the correct homogenization results on the boundary we
must take an additional expansion of Vk in the form of a Taylor series [9, 18]:

Vk(x) = Vk(εxG) +
∂Vk(εxG)

∂xj

(xj − εxG · ej) + ...
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We have in the fluid, YF ,

∇ ·V1 = −∇(y) ·V2 (41)

iωρFV0 =
∂

∂xj

σ0
ij +

∂

∂yj

σ1
ij (42)

where
σ1

ij = −δijP
1 + 2µ(Dij(V

1) + Dij(y)(V
2))

In the solid, YS, we have

Dij(V
1) = −Dij(y)(V

2) (43)

with the balance of forces given as

iω
∫

YS

ρsV
0dy =

∫
YS

JB ×B0dy +
∫
Γ
KB ×B1dσy

−
∫
Γ
(
∂σ0

ij

∂xk

yk + σ1
ij)njeidσy (44)

iω
∫

YS

ρsy ×V0dy =
∫

YS

y × (JB ×B0)dy +
∫
Γ
y × (KB ×B1)dσy

−
∫
Γ
y × (

∂σ0
ij

∂xk

yk + σ1
ij)njeidσy (45)

We integrate eq(42) on YF and add it to eq(44) to get

iω
∫

Y
ρ̄V0dy =

∂

∂xj

∫
YF

σ0
ijdyei −

∂

∂xk

∫
Γ
σ0

ijyknjeidσy

+
∫

YS

JB ×B0dy +
∫
Γ
KB ×B1dσy (46)

where we take

ρ̄ =
|YS|
|Y |

ρS +
|YF |
|Y |

ρF

The average of the equations is taken

iωρ̄ < V0 > −iω < E0 >=
∂

∂xl

< σ0
kl > + < fl >

requiring a computation of an extension of the macroscopic tensor, the aver-
age velocity,

< V0 >=
1

|Y |

∫
Y

V0dy (47)
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the average of magnetic forces minus the frequency dependent terms,

< fl > =
1

|Y |
([KB × ei] · el)

∫
Γ
τij(B

0)dσy +
|YS|
|Y |

(KB ×B0) · el

+
1

|Y |
µ0[JB · ei]

∫
Γ
(KB ×Ψi) · eldσy (48)

and the average of the frequency dependent terms of the magnetic forces

< E0 >=
3

|Y |
µ0ε0[E

0 · ei]
∫
Γ
(KB ×Ψi)dσy (49)

which may be reguarded as a slight pertubation due to the induced electric
field by the particle oscillations.

4.4 Extension of < σ0
ij >

From the previous section we must determine < σ0
kl >, let us again split it

into two components reflecting the contributions of the magnetic fields and
those of the fluid.

< σ0
kl >=< σ′0

kl >Y + < σ”0
kl >Y + < σ′0

kl >Γ + < σ”0
kl >Γ

with
σ′0

kl = −δklP
′0(x) + 2µ[Dkl(V

0) + Dkl(y)(V
1)]

and
σ”0

kl = −δklP”0(x) + 2µDkl(y)(V
1)

Therefore the sum of the fluid components is expressed up to an additive
constant

< σ′0
kl >Y + < σ′0

kl >Γ= −δklπ
′0(x) + aijklDij(V

0) (50)

where

aijkl =
2µ

|Y |

∫
YF

Dpq(y)(P
ij −Xij)Dpq(y)(P

kl −Xkl)dy

+
2µ

|Γ|

∫
Γ
(δikδml + Dim(y)(X

kl))yjnmdσy

and π′(x) an additive constant.
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To calculate < σ”0
kl > we must extend σ”0

kl over the entire period. This
extension, σ̂”0

kl, satisfies the following conditions

σ̂”0
kl = σ”0

kl in YF (51)

∇(y) · σ̂”0
kl = 0 in YS (52)

σ̂”0
klnlek = σ”0

klnlek − (KB ×B0) on Γ (53)

The mean volumic value is then given as

σ̄”0
kl =

1

|Y |
( ∫

YF

σ”0
kldy +

∫
Y S

σ̂”0
kldy

)
We have ∫

YS

σ̂”0
kldy =

∫
YS

∂

∂yj

(σ”0
kjyl)dy −

∫
YS

∂σ”0
kj

∂yj

yldy

= −δklπ”0 −
∫
Γ
σ̂”0

kjnjyldy

Using eq(53) this becomes∫
YS

σ̂”0
kldy = −

∫
Γ
σ”0

kjnjyldσy +
∫
Γ
(KB ×B0) · ekyldσy

= −
∫

YF

σ”0
kldy + |Y | < σ”0

kl >Y +
∫
Γ
(KB ×B0) · ekyldσy

Hence

σ̄”0
kl =< σ”0

kl >Y +
1

|Y |

∫
Γ
(KB ×B0) · ekyldσy (54)

Then we follow with a direct calculation of < σ”0
kl >Y :∫

YF

σ”0
kldy = −δkl

∫
YF

P”0dy + 2µ
∫

YF

Dkl(y)(V”1)dy

= −2µ[(KB ×B0) · ei]
∫

YF

Dkl(y)(w
i)dy∫

YS

σ̂”0
kldy =

∫
YS

σ̂”0
pqDpq(X

kl)dy

= −
∫
Γ
σ̂”0

klX
kl
p nqdy

= −
∫

YF

σ”0
pqDpq(X

kl)dy + [KB ×B0] ·
∫
Γ
Xkldσy
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which gives

σ̄”0
kl = −δklπ”0 + (KB ×B0) · 2µei

|Y |

∫
YF

Dkl(y)(w
i)dy

+(KB ×B0) · ei

|Y |

∫
Γ
(Xkl · ei)dσy (55)

We then give a direct calculation of < σ”0
kl >Γ

< σ”0
kl >Γ=

2µei

|Γ|

∫
Γ
Dkm(y)(w

i)ylnmdσy (56)

Summing our results gives

< σ0
kl >= −δklπ

0 + aijklDij(V
0) + (KB ×B0) · bkl (57)

with the vector bkl defined

bkl =
2µei

|Y |

∫
YF

Dkl(y)(w
i)dy +

ei

|Y |

∫
Γ
(Xkl · ei)dσy

+
2µei

|Γ|

∫
Γ
Dkm(y)(w

i)ylnmdσy (58)

5 Wave Propagation in a Slightly Viscous Fluid

The propagation of waves along the web like structure formed by the particles
under the influence of a magnetic induction immersed in a non-magnetic fluid
is modelled as a suspension of interacting particles in a slightly viscous fluid.
The macroscopic stress is taken to be of a higher order, µ = O(ε) resulting
in the magnetic forces dominating the behavior of the acoustical waves.

5.1 Determination of V 0 and V r

from eqn(4) at order O(ε−1) and eqn(5) at order O(ε−2) in F

∇(y) · (V0 + Vr) = 0

∂

∂yj

σij = 0

σ0
ij = −δijP

0 + 2µDij(y)(V
0 + Vr)
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In S we from (7) at the order O(ε−1)

Dij(y)(V
0 + Vr) = 0 (59)

From eqn(9) and eqn(10) at order O(ε2) we have

2µ
∫
Γ
Dij(y)(V

0 + Vr)dσy =
∫
Γ
KB ×B0dσy (60)

2µ
∫
Γ
y ×Dij(y)(V

0 + Vr)dσy = −(KB ×B0)×
∫
Γ
ydσy (61)

Then for some function Υ ∈ Uad = {ν ∈ [H1(Y )], Y-periodic, ∇ · ν = 0 in F,
Dij(Υ) = 0 ∀ i,j in YS } we have

2µ
∫

YF

Dij(y)(V
0 + Vr)Dij(y)(u)dy =

∫
Γ
(KB ×B0) · udσy (62)

∀u ∈ Υ

with u = α + β × y in S, α and β independent of y. We choose V0 to be
the terms which are independent of y. Hence eq(62) becomes by the homo-
geneous nature of the suspension and the condition that V0 be independent
of the local variable y:

2µ
∫

YF

Dij(y)(V
r)Dij(y)(Υ)dy =

∫
Γ
(KB ×B0) · udσy

This implies that Vr can be expressed as

Vr(x,y) = [ei · (KB ×B0)]wi(y) (63)

with wi satisfying ∫
Y

widy = 0

wi ∈ Υ such that ∫
YF

2µDkj(w
i)Dkj(u)dy = ei ·

∫
Γ
udy

∀u ∈ Υ

Note that for y ∈ YS, wi = αi + βi × y where αi and βi are independent of
y.
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5.2 Macroscopic Equations

We have in the fluid, YF ,

∇ ·V1 = −∇(y) ·V2 (64)

iωρF (V0 + Vr) =
∂

∂xj

σ0
ij +

∂

∂yj

σ1
ij (65)

where
σ1

ij = −δijP
1 + 2µ(Dij(V

0 + Vr) + Dij(y)(V
1))

In the solid, YS, we have

Dij(V
1) = −Dij(y)(V

2) (66)

with the balance of forces given as

iω
∫

YS

ρs(V
0 + Vr)dy =

∫
YS

JB ×B0dy +
∫
Γ
KB ×B1dσy

−
∫
Γ
(
∂σ0

ij

∂xk

yk + σ1
ij)njeidσy (67)

iω
∫

YS

ρsy × (V0 + Vr)dy =
∫

YS

y × (JB ×B0)dy +
∫
Γ
y × (KB ×B1)dσy

−
∫
Γ
y × (

∂σ0
ij

∂xk

yk + σ1
ij)njeidσy (68)

We integrate eq(65) on YF and add it to eq(67) to get

iω
∫

Y
ρ̄(V0 + Vr)dy =

∂

∂xj

∫
YF

σ0
ijdy +

∂

∂xk

∫
Γ
σ0

ijyknjeidσy

+
∫

YS

JB ×B0dy +
∫
Γ
KB ×B1dσy (69)

where ρ̄ is previously defined.
The average of the relative velocity is given by

< Vr > =
1

|Y |

∫
Y

Vrdy

= 0 (70)

so that the macroscopic equation can be expressed as

iωρ̄ < V0 > −iω < E0 >=
∂

∂xl

< σ0
kl > + < fl > (71)
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where < fl > is the average frequency independent magnetic force contribu-
tions as defined in eq(48) and < E0 > is the average frequency dependent
magnetic force as define in eq(49).

5.3 Extention of < σ0
ij >

To calculate < σ0
kl > we must extend σ0

kl over the entire period. This exten-
sion, σ̂0

kl, satisfies the following conditions

σ̂0
kl = σ0

kl in YF (72)

∇(y) · σ̂0
kl = 0 in YS (73)

σ̂0
klnlek = σ0

klnlek − (KB ×B0) on Γ (74)

The mean volumic value is then given as

σ̄0
kl =

1

|Y |
( ∫

YF

σ0
kldy +

∫
Y S

σ̂0
kldy

)
We have ∫

YS

σ̂0
kldy =

∫
YS

∂

∂yj

(σ0
kjyl)dy −

∫
YS

∂σ0
kj

∂yj

yldy

= −
∫
Γ
σ̂0

kjnjyldy

Using eq(74) this becomes∫
YS

σ̂0
kldy = −

∫
Γ
σ0

kjnjyldσy +
∫
Γ
(KB ×B0) · ekyldσy

= −
∫

YF

σ0
kldy + |Y | < σ0

kl > +
∫
Γ
(KB ×B0) · ekyldσy

Hence

σ̄0
kl =< σ0

kl > +
1

|Y |

∫
Γ
(KB ×B0) · ekyldσy (75)

Then we follow with a direct calculation of σ0
kl:∫

YF

σ0
kldy = −δkl

∫
YF

P 0dy + 2µ
∫

YF

Dkl(y)(V
r)dy

= −δklpi
0 − 2µ[(KB ×B0) · ei]

∫
YF

Dkl(y)(w
i)dy
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∫
YS

σ̂0
kldy =

∫
YS

σ̂0
pqDpq(X

kl)dy

= −
∫
Γ
σ̂0

klX
kl
p nqdy

= −
∫

YF

σ0
pqDpq(X

kl)dy + [KB ×B0] ·
∫
Γ
Xkldσy

From this we say

σ̄”0
kl = −δklπ

0 + (KB ×B0) · 2µei

|Y |

∫
YF

Dkl(y)(w
i)dy

+(KB ×B0) · ei

|Y |

∫
Γ
(Xkl · ei)dσy

)
(76)

Using the result of < σ0
kl >Γ in the previous section we may express the

macroscopic stress tensor as

< σ0
kl >= −δklπ

0 + (KB ×B0) · bkl (77)

with the vector bkl defined

bkl =
2µei

|Y |

∫
YF

Dkl(y)(w
i)dy +

ei

|Y |

∫
Γ
(Xkl · ei)dσy

+
2µei

|Γ|

∫
Γ
Dkm(y)(w

i)ylnmdσy

6 Discussion of Results

The propagation of acoustical waves in a magnetorheological fluid is char-
acterized by the macroscopic stress tensor, a symmetric tensor, plus some
additional force terms resulting from the electromagnetic fields. The volume
fraction of the particles, |YS|/|Y |, and the geometry of the system plays an
important role in determining the constants of the constitutive equations.
In the case of a viscous fluid the equations are eq(46), eq(57), eq(48), and
eq(49)

iωρ̄ < V0 > −iω < E0 >=
∂

∂xl

< σ0
kl > + < fl >

where
< σ0

kl >= −δklπ
0 + aijklDij(V

0) + (KB ×B0) · bkl
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We find that there is one dispersive, disipative wave within the fluid, magnetic
forces working against the waves propagation. In the abscence of a magnetic
field the average electromagnetic force terms and the magnetic contribution
of the macroscopic stress tensor disappear leaving an equation for acoustic
waves propagating in a viscous anisotropic fluid.

In the case of a slightly viscous fluid the equations are eq(71) and eq(77),
eq(48), and eq(49).

iωρ̄ < V0 > −iω < E0 >=
∂

∂xl

< σ0
kl > + < fl >

where
< σ0

kl >= −δklπ
0 + (KB ×B0) · bkl

We find that there is one dispersive, disipative wave present which is predom-
inately affected by the electromagnetic forces and lacks the standard viscous
tensor. In the abscence of a magnetic field the right side of the equation
reduces to a pressure term which may be selected so that it too disapears.
Therefore, we conclude that this precludes a second longitudinal mode trav-
elling along the network of particles unless an external magnetic induction is
applied to the system.
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