
Introductory Microcontroller
Programming

by

Peter Alley

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Robotics Engineering

May 2011

Prof. William Michalson
Advisor

Prof. Taskin Padir Prof. Susan Jarvis
Committee member Committee member

Abstract

This text is a treatise on microcontroller programming. It introduces the ma-
jor peripherals found on most microcontrollers, including the usage of them,
focusing on the ATmega644p in the AVR family produced by Atmel. Gen-
eral information and background knowledge on several topics is also presented.
These topics include information regarding the hardware of a microcontroller
and assembly code as well as instructions regarding good program structure and
coding practices. Examples with code and discussion are presented throughout.
This is intended for hobbyists and students desiring knowledge on programming
microcontrollers, and is written at a level that students entering the junior level
core robotics classes would find useful.

Contents

Preface i

1 What is a Microcontroller? 1
1.1 Micro-processors, -computers, -controllers 1

1.1.1 Microprocessor . 1
1.1.2 Microcomputer . 2
1.1.3 Microcontroller . 2

1.2 Memory Models . 3
1.2.1 Von Neumann . 3
1.2.2 Harvard Architecture . 4
1.2.3 Modified Harvard Architecture 5

1.3 The Stack . 6
1.4 Conclusion . 7

2 Datasheets, SFRs and Libraries 9
2.1 Datasheets . 9

2.1.1 Part Name . 10
2.1.2 Description and Operation 10
2.1.3 Absolute Maximum Ratings 11
2.1.4 Electrical Characteristics 12
2.1.5 Physical Characteristics 13
2.1.6 Other Information . 13

2.2 Special Function Registers . 14
2.2.1 SFRs in Datasheets . 14
2.2.2 Addressing SFRs . 15

2.3 Libraries . 17
2.3.1 Including libraries . 18
2.3.2 Commonly used libraries 19

2.4 Conclusion . 20

3 Hello World 21
3.1 Example: Lighting an LED . 22
3.2 Programming “Hello World” . 27
3.3 Digital Input . 30

3.4 DIO Operation . 36
3.5 Conclusion . 41

4 Analog Digital Converter 43
4.1 Terminology . 43
4.2 Converting methods . 44
4.3 Sources of Error . 45
4.4 Return to the LED example . 47

4.4.1 The ATmega644p ADC 47
4.4.2 Understanding the ADC 48
4.4.3 Programming with the ADC 51

4.5 Conclusion . 55

5 Code Styles 56
5.1 Headers and Header Files . 56

5.1.1 #ifndef MY PROGRAM H 56
5.1.2 Additional Inclusions . 57
5.1.3 Macro Definitions . 58
5.1.4 Global Variable Declaration 59
5.1.5 Function Prototypes . 59

5.2 Commenting . 59
5.2.1 Documentation Comments 59
5.2.2 Non-Documentation Comments 62

5.3 Code reuse: Functions and Libraries 63
5.3.1 When to use functions . 63
5.3.2 Variable Scope and Arguments 63
5.3.3 structs . 64
5.3.4 Libraries . 64

5.4 ADC program revisited . 65
5.5 Conclusion . 69

6 C Data Structures 70
6.1 Arrays . 70

6.1.1 Declaring Arrays . 70
6.1.2 Accessing Arrays . 71
6.1.3 Multi-Dimensional Arrays 71

6.2 structs . 72
6.2.1 Declaring structs . 72
6.2.2 Uses for structs . 74

6.3 Pointers . 78
6.3.1 Pointer Syntax . 78
6.3.2 Pointers and arrays . 79
6.3.3 Pointers and other data structures 79
6.3.4 Pointers in pass by reference 81
6.3.5 Function pointers . 81

6.4 Conclusion . 82

7 Serial Communications 83
7.1 USART and RS232 Serial . 83

7.1.1 RS232 . 83
7.1.2 USART . 84
7.1.3 USART Communications Example 86

7.2 Serial Peripheral Interface (SPI) 86
7.2.1 SPI Bus . 87
7.2.2 Operation . 87
7.2.3 SPI Communications Example 89
7.2.4 Daisy-Chaining SPI devices 94

7.3 Two-Wire Interface (TWI) . 96
7.3.1 Operation . 96
7.3.2 Example . 97

7.4 Comparing TWI and SPI . 98
7.5 Conclusion . 99

8 Interrupts and Timers 100
8.1 Interrupts . 100

8.1.1 How interrupts work . 100
8.1.2 Using Interrupts . 101
8.1.3 The Interrupt Process . 102

8.2 Program startup assembly . 105
8.3 Timing . 106

8.3.1 Basic Methods . 106
8.3.2 Using the Timers . 109

8.4 Conclusion . 111

9 External Devices 112
9.1 Motors . 112

9.1.1 Linear Drivers . 112
9.1.2 PWM Motor Driver . 115

9.2 Servos . 118
9.3 Sensors . 119
9.4 Conclusion . 121

10 Real-Time Operating Systems 122
10.1 Preemptive schedulers . 122
10.2 Cooperative schedulers . 123
10.3 Round-Robin example . 123
10.4 Conclusion . 129

11 The final example 130
11.1 Problem statement . 130
11.2 Design decisions . 130

11.2.1 Control . 131
11.2.2 Sense . 132

11.2.3 Decision . 133
11.3 File structure . 135

11.3.1 RTOSmain.c . 135
11.3.2 RTOSmain.h . 136
11.3.3 tasks.h . 137
11.3.4 tasks.c . 137
11.3.5 motor.h and motor.c . 140
11.3.6 ADC, SPI and USART libraries 140

11.4 Conclusion . 141

Afterword 142

A regstructs.h 143

B Code for final RTOS example 174
B.1 RTOSmain.h . 174
B.2 RTOSmain.c . 176
B.3 tasks.h . 178
B.4 tasks.c . 179
B.5 motor.h . 183
B.6 motor.c . 185
B.7 ADC.h . 187
B.8 ADC.c . 189
B.9 SPI.h . 190
B.10 SPI.c . 192
B.11 USART.h . 194
B.12 USART.c . 196

C Setting up and using Eclipse 198
C.1 Set up Eclipse for use with the AVR 198
C.2 Making a project . 200

List of Figures

1 Pin configuration for ATmega644p. iv

1.1 Basic components of a microprocessor. 2
1.2 Basic components of a microcomputer 3
1.3 Block diagram of the von Neumann architecture. 4
1.4 A block diagram of the Harvard architecture. 5
1.5 Origin of requested data in LIFO storage (left) and FIFO (right). 6

2.1 Description section of AND gate datasheet.[18] 11
2.2 Absolute Maximum Ratings section of AND gate datasheet.[18] . 11
2.3 Electrical Characteristics section of AND gate datasheet.[18] . . 12
2.4 ADCSRA Register Excerpt from ATmega644p datasheet.[11] . . 15
2.5 ADPS2:0 Bit field from ADCSRA Register from ATmega644p

datasheet.[11] . 15

3.1 Diagram of a basic controlled system 21
3.2 Excerpt from data sheet for LED part LTL-2F3VEKNT.[16] . . . 23
3.3 Excerpt from pp325-326 of datasheet for ATmega644p regarding

maximum sink/source capabilities.[11] 24
3.4 Circuit diagram for using the microcontroller as the current source

(left) or as a current sink (right). 25
3.5 Excerpt from pp325-326 of datasheet for ATmega644p regarding

digital input voltage levels.[11] 30
3.6 Three options for feedback signal. 32
3.7 Comparator circuit design from LM193 datasheet.[20] 33
3.8 Schematic and calculations for a voltage divider 33
3.9 Logical OR of the output of 2 comparator circuits. From LM193

datasheet.[20] . 34
3.10 Circuit diagram of the entire LED control and feedback system. . 35
3.11 General Digital I/O schematic from ATmega644p datasheet.[11] . 37
3.12 Segment of DIO schematic relating to PORTx register.[11] 38
3.13 Segment of DIO schematic relating to DDRx register.[11] 39
3.14 Segment of DIO schematic relating to PINx register.[11] 39
3.15 Segment of DIO schematic relating to pull-up resistor. 40
3.16 Path of PORTxn signal when a pin is set as an output. 41

3.17 Path of PORTxn (heavy, solid line) and input (heavy, dashed line)
signals when a pin is set as an input. 42

4.1 Aliasing caused by sampling a 7.5Hz signal which is above the
Nyquist rate of 5Hz. Sampling rate is 10Hz. 46

4.2 Complete circuit for LED example using the ADC 47
4.3 Schematic of the ATmega644p ADC. Found in section 20.2 of the

datasheet.[11] . 50
4.4 Reference voltage selection schematic. Excerpt from figure 4.3. . 51
4.5 Signal selection schematic. Excerpt from figure 4.3. 51

5.1 File structure for relative path include. 57

7.1 3 devices connected to a microcontroller using SPI. 88
7.2 The four modes of SPI clock polarity and phase. 88
7.3 How to form commands for the LS7366R Quadrature Encoder

Counter. [17] . 90
7.4 Bit field descriptions for MDR0 and MDR1. [17] 91
7.5 States of all four SPI lines during operation to read 16 bit CNTR

register from LS7366R Quadrature Counter. 94
7.6 3 devices daisy-chained to a microcontroller using SPI. 95
7.7 3 devices connected to a microcontroller using TWI. 96

9.1 Differential op amp. 115
9.2 Schematic and equation for completed differential op-amp design. 116
9.3 Two modes of H-bridge driving. A) Switches 1 and 4 closed, CW

spin of motor. B) Switches 2 and 3 closed, CCW spin. 117
9.4 Common servo timings for three angles. 119

11.1 Range vs Voltage data for the GP2D12 SHARP IR sensor. [19] . 133
11.2 Calculating angle formed with the wall based off distance mea-

surements. 134
11.3 File structure of final example showing all files not installed with

the compiler. 136

C.1 Install New Software window from Eclipse 200
C.2 Eclipse window with ‘Project Explorer’ and new project button

marked. 201
C.3 C Project window. 202
C.4 Properties window for setting MCU type and clock frequency. . . 203
C.5 Worksheet for setting internal fuses. 203

List of Tables

3.1 Voltage values for the various feedback possibilities. 32
3.2 Truth table for the PORTxn latch. 38

7.1 Pin assignments for RS232 standard. [5] 84

10.1 Schedule of tasks in round-robin RTOS example. 126

Preface

Why this topic?

In the spring of 2009, Worcester Polytechnic Institute’s junior level robotics
courses were first offered, with me as one of the teacher’s assistants for the
courses. At the time, I had never worked with microcontrollers before, excepting
the VEX system used in the lower level WPI robotics classes, which provides
a layer of abstraction between the programmer and the actual hardware. This
was the first time that many of the students and my self actually had to worry
about special function registers, peripheral initialization and other similar tasks.
Over the period of being the TA for these courses multiple times, I learned a
great deal, but also noticed several recurring issues the students seemed to
face. In addition to furthering my own knowledge on the care and feeding of
microcontrollers, this thesis is an attempt to provide students with a resource
to overcome some of their difficulties, to provide a better understanding of the
hardware level operation of a microcontroller, and as instruction into improving
their knowledge and code.

One problem I noticed, was that many students viewed a microcontroller
as a little black box in which magic happens. By the end of the course the
black box in their imagination may have shrunk slightly and grown a few more
inputs and outputs, but they still did not know what was actually occurring in
the hardware to generate the results they desired and saw. Therefore, one of
my goals was to provide this understanding both by giving a general overview
of the hardware as well as by examining the schematics for portions of the
microcontroller at a component level and explaining their operation.

A second problem is that students appear to have a great aversion to proper
commenting and documentation of their code. In many cases it is due to the
laziness and overconfidence of the programmer, however in some cases it is due
to the programmer having never been properly instructed on good practices and
the reasoning behind them. This instruction is something I provide, along with
several examples of well documented code to model what should be done.

Finally, I have noticed that students coding styles lack forethought and de-
sign. When handed a problem, they will jump to a conclusion on how to solve
one section of it and begin work on that, which causes portions of the solution
to be completed before others are even considered. This leads to disorganized,

i

hard to follow code which is difficult to maintain and debug. This text attempts
to demonstrate a method of working through problems stem to stern, and show
that forethought can make the solution simpler and more elegant.

Although this text was initially intended for students in the first junior level
robotics engineering class at WPI (RBE3001), it should prove to be a valuable
resource to anyone beginning work with microcontrollers, students and hobby-
ists alike. This text focuses on the use of the ATmega644p 8-bit microcontroller
produced by Atmel, though the lessons taught can be applied to any microcon-
troller, and some lessons to programming in general.

Organization

This text works through the various peripherals on the ATmega644p in an order
commensurate with their complexity and usefulness. Interspersed with these
portions are sections devoted to solving the other problems I have noticed over
the years.

� Chapter 1: What is a Microcontroller?
This chapter explains the general components of a microcontroller, via
comparisons with microprocessors and microcomputers. The next step
was to introduce the common memory models in order to distinguish what
most people are more familiar with: von Neumann architecture where
programs and data are stored together such as in desktop computers,
from the Harvard architecture commonly used in microcontrollers. The
Harvard memory model separates the program and data memories into
separate address spaces.

The first chapter of the text finishes with an explanation of what the
stack is and how it operates. This background knowledge provides a ba-
sic understanding of how microcontrollers operate, and is important for
understanding assembly code.

� Chapter 2: Datasheets, SFRs and Libraries
Chapter 2 is a collection of disparate topics that each deserve discussion
prior to beginning to look at code. The section on datasheets disects an
example datasheet and explains the various portions. The special func-
tion register section introduces what SFRs are and how to address them
on the microcontroller. The final section in the chapter gives a basic un-
derstanding of what a library is, and which are most commonly used in
programming the ATmega644p.

� Chapter 3: Hello World
In this chapter the first peripheral, the digital input and output, is in-
troduced and used in a basic task. This example is examined from a
very basic level and demonstrates a good process for solving the problem
without jumping to conclusions and checking every aspect.

ii

� Chapter 4: Analog to Digital Converter
Continuing the example from chapter 3, chapter 4 introduces the ADC.
After explaining background information on ADCs in general, the example
using the ADC on the ATmega644p is presented.

� Chapter 5: Code Styles As the programs in the examples, and those that
would be required in using these peripherals, are becoming more complex,
chapter 5 takes a break from peripherals and hardware in general to intro-
duce good coding styles. These include how to use and form header files,
when to use documentation and non-documentation comments as well as
more information on functions and libraries, this time looking at creating
libraries rather than using pre-existing ones. The chapter finishes up by
reexamining the example from chapter 4, using it to demonstrate proper
styles and comments.

� Chapter 6: C Data Structures Continuing the digression from microcon-
troller peripherals, chapter 6 presents several data structures that are
useful in programming: arrays, structs and pointers. In addition to dis-
cussing what these structures are and the specifics of their usage, several
uses for structs that are not immediately apparent are presented which
aid in making programs cleaner and easier to create.

� Chapter 7: Serial Communications With this chapter, the text returns
to discussing microcontroller peripherals. After providing background
knowledge on serial communications in general, and on each peripheral in
question, the operations of three types of serial communications are pre-
sented with examples. These communications methods are USART and
the RS232 standard, the serial-peripheral interface (SPI) and the two-wire
interface (TWI or I2C).

� Chapter 8: Interrupts and Timers Chapter 8 concludes the discussions
on individual peripherals by introducing hardware interrupts, timers, and
how they can be used in conjunction or separately.

� Chapter 9: External Devices Up to this point, the text has focused on
the microcontroller and coding styles. This chapter breaks off and looks
at the other devices that might need to be attached to a microcontroller:
motors, servos, various sorts of sensors, and how to use them.

� Chapter 10: Real-Time Operating Systems This chapter discusses real-
time operating systems (RTOSs) and their uses. It proceeds to present an
example of a basic RTOS that might be used to control a mobile robot,
which is implemented in the following chapter.

� Chapter 11: The Final Example This chapter is dedicated to a single mo-
bile robot example. It begins with a simple problem statement and works
through several chains of choices and decisions to be made, culminating
in a functional program.

iii

Hardware

This text focuses on the usage of the ATmega644p. This is an 8-bit micro-
controller from the AVR family produced by Atmel [1]. There are a variety
to choices for programmers, however the STK500 is a good choice [10]. It is a
development board capable of handling a number of difference microcontrollers,
provides the hardware for connecting the microcontroller to a computer using
serial via the RS232 standard and provides eight switches and LEDs for use
with basic programs. Figure 1 shows the 40 pins of the ATmega644p with the
names of each pin. Most pins have multiple names as they are used for different
tasks by different peripherals.

Figure 1: Pin configuration for ATmega644p.

A variety of additional hardware components are introduced, primarily in
the later chapters. These are by no means required to understand and learn
from this text, and for many readers it would be a better exercise to determine
what devices best fit their needs, rather than blindly following the examples
presented herein.

Software

There are several choices for the software required to develop programs for the
ATmega644p and download them to the microcontroller.

� AVR Studio AVR Studio, in version 5 at the time of writing, is a devel-
opment environment produced by Atmel specifically for the AVR family
of microcontrollers [2]. As it is more dedicated than other IDEs, it has
debugging and simulation tools that surpass those available elsewhere. Its

iv

primary drawback is that it is specialized and cannot be used to develop
programs for microcontrollers outside this family.

� Eclipse Eclipse is another good choice for IDEs. Although it requires more
setup and configuration than AVR Studio, it is a very extensible environ-
ment and there are plugins available for most any programming language
or environment one could need. Instructions for setting up Eclipse for pro-
gramming the ATmega644p, as well as for creating projects within Eclipse
are provided in appendix C.

� Others While there most certainly are other choices available, these two are
the best. They provide a great number of features useful in development,
and are both well supported in the community, with help easily available.

Read, learn and enjoy

As you read this text, keep this thought in the back of your mind: this document
is not trying to turn you into an automaton by telling you how to do everything
every time. It is attempting to demonstrate methods and teach you how to
learn on your own, providing you with the tools to do so. Keep this in mind
and the lessons learned within will be useful outside as well.

v

Chapter 1

What is a Microcontroller?

As time progresses, an increasing number of consumer goods contain micro-
controllers. With the current cost of basic microcontrollers as low as 30 cents
[6], they are being used as simple solutions to tasks that previously utilized
transistor-transistor-logic. With the profusion of these devices being used in
industry as well as in hobby electronics the ability to program them can be very
useful for any project that may be attempted.

This text is written to be an introduction to microcontrollers as well as to
take a new user from opening the datasheet for the first time through program-
ming a microcontroller and using a variety of peripheral devices. For a more
advanced user this text will provide suggestions on how to make code more
readable and put forth good coding practices. While this will focus on a sin-
gle microcontroller, the ATmega644p, the ideas presented are valid for most
microcontrollers available today.

1.1 Micro-processors, -computers, -controllers

While microprocessors, microcomputers and microcontrollers all share certain
characteristics and the terms are often used interchangeably, there are certain
distinctions that are used to classify them into separate categories.

1.1.1 Microprocessor

The simplest of the three categories is the microprocessor. Also known as a
CPU (Central Processing Unit), these devices are generally found at the heart
of a much larger system such as a desktop computer and are primarily used as
data processors. They generally consist of an arithmetic logic unit (ALU), an
instruction decoder, a number of registers and digital input/output (DIO) lines
(see figure 1.1). Some processors also include memory spaces such as a cache or
stack which can be used for more rapid temporary storage and retrieval of data
than having to access system memory. Additionally, the processor must connect

1

to some form of data bus to access the memory and input/output peripherals
external to the processor itself.

Figure 1.1: Basic components of a microprocessor.

Depending on the memory architecture the microprocessor may have only a
handful of registers such as a program counter for keeping track of the address
of the next instruction and an instruction register for loading and storing the
next instruction; or there may be dozens of registers. These additional registers
are known as general purpose registers and store data while it is being used.

1.1.2 Microcomputer

A microcomputer contains all the components of a computer in a small circuit,
though not on a single chip. This term generally applies to laptops and desktop
computers, however has fallen out of usage for these devices. The component
devices of a microcomputer consist of a CPU (such as a microprocessor), memory
and/or other storage devices, as well as IO devices (see figure 1.2). Several
examples of I/O devices include a keyboard, display, network, etc.; but can be
any device that the microcomputer uses to collect or distribute information.

1.1.3 Microcontroller

A microcontroller is, in some ways, a cross between a microprocessor and a
microcomputer. Like microprocessors, the term microcontroller refers to a sin-
gle device; however it contains the entire microcomputer on that single chip.
Therefore a microcontroller will have a processor, on-board memory as well as a
variety of IO devices. While using a microcontroller instead of a microcomputer
simplifies the overall design, to accomplish this it sacrifices the flexibility. A
microcomputer can be configured to have specific quantities of memory or de-
vices attached. Microcontrollers are generally limited to the memory sizes and
peripherals that the manufacturers dictate. There are a great many choices in

2

Figure 1.2: Basic components of a microcomputer

microcontrollers and their capabilities, however this still can be a limitation in
some circumstances.

Because microcontrollers are designed more to be standalone data collection
and control devices, rather than for the human interaction or networking tasks
that microcomputers often handle, their standard IO devices differ. Analog-
digital converters (ADCs), timers and external interrupts are common periph-
erals found on microcontrollers, while keyboards, monitors and other devices
used daily to control a personal computer are not.

1.2 Memory Models

1.2.1 Von Neumann

The von Neumann architecture was named after a scientist involved in the
Manhattan Project and, due to the computational requirements of that project,
joined in the development of the EDVAC stored-program computer [12]. During
this time he wrote First Draft of a report on the EDVAC, which became the
source of the von Neumann architecture [21].

The first computers and computational devices had fixed programs. These
programs were built into the machine in various ways and to change the program
the machine often had to be rebuilt. This includes most of the early computers
such as the ENIAC. These rebuilds could take weeks and used a high percentage
of the machine’s time.

The von Neumann architecture fixed this problem by storing the program
in memory (hence stored-program). This memory block is shared between the
program storage and data storage, which allows data to be treated as code and
vice versa. Furthermore, it allows the use of self-modifying code, which was
useful in the early days of the architecture to reduce memory use or improve

3

performance [21].
Figure 1.3 contains a block diagram of the von Neumann architecture. This

shows the single memory block which both the control unit, the device that reads
and interprets the program, and the ALU, where most operations are executed,
are connected to. The necessity of communicating with memory external to the
CPU leads to a throughput limit known as the von Neumann bottleneck [3].
This bottleneck is especially severe in this architecture compared to others due
to the control unit and ALU both needing to read and write to the memory,
therefore sharing the limiting resource in the system (memory access time).

Figure 1.3: Block diagram of the von Neumann architecture.

1.2.2 Harvard Architecture

One solution to the von Neumann bottleneck is to separate the program mem-
ory from the data memory (see figure 1.4). This separation allows for several
improvements over the von Neumann architecture.

The first and most obvious improvement is that both program memory and
data memory can be accessed simultaneously. In the von Neumann architecture,
in order to store a word from a register through the ALU to memory, the
control unit must first load and interpret the instruction, then the ALU can
transfer the data to memory, and finally the control unit can move on to the
next instruction. This requires two separate read/write operations along the
same path. In the Harvard architecture the write to data memory and read
from program memory for the next operation can be performed simultaneously
reducing the time required for any instruction that accesses data memory.

A somewhat less obvious change that can greatly increase operating speed
is that lengths of words in the program memory no longer need to be integer
numbers of bytes. This allows for longer instruction words that can contain
both an instruction and a memory address in a single instruction, and therefore
every read from program memory, and every clock cycle of the processor, can be
an entire instruction. In the von Neumann architecture instructions are often

4

Figure 1.4: A block diagram of the Harvard architecture.

multiple words long to encompass both the op-code and any memory addresses
required. The example given above would therefore require three read/write
operations as opposed to the two previously mentioned or the single operation
of the Harvard architecture.

The major disadvantage of the Harvard architecture is that it cannot modify
the program memory, limiting its usefulness in general systems such as personal
computers. This does not pose a problem for more dedicated processors such
as those in embedded systems, though memory bandwidth must be high as the
memory may be accessed by two operations per cycle. Both the AVR family
of microcontrollers produced by Atmel and Microchip’s PIC family are Har-
vard architectures, though they have been modified slightly to allow read/write
operations to program memory. These operations are used primarily for boot-
loaders.

1.2.3 Modified Harvard Architecture

The modified Harvard architecture is a mix of von Neumann and Harvard ar-
chitectures attempting to capture the benefits of each. Specifically, the data
and program again share a memory space similar to how the von Neumann ar-
chitecture works, however data and instructions do not share cache memories
or paths between the CPU and memory. This allows for less restricted memory
access than von Neumann, and yet the ability to treat code and data as each
other that Harvard lacks. One of the most common examples of processors that
use this architecture is the x86 processor found in most personal computers.

5

1.3 The Stack

The stack is a last-in-first-out (LIFO) section of memory used to store infor-
mation related to procedure calls as well as data for certain operations. The
stack can be in general memory with a fixed or variable size, or have a dedi-
cated memory block of fixed size. In either case the processor will have a stack
pointer register pointing to the most recently addressed location in the stack.
In some processors the stack begins at the highest address in its memory block
and grows downwards, in others it begins at the lowest address and grows up.

LIFO refers to the order in which data is removed from where it is stored.
In LIFO the most recent piece of data that was added to storage is the first
one removed when data is requested. This is the source of the stacks name, due
to the similarity between LIFO and creating a stack of some form of object,
when all that is available is the top item. The alternative to last-in-first-out is
first-in-first-out or FIFO. In this paradigm the oldest piece of data in storage
is removed whenever data in requested. This is often called a queue due to its
similarity to a checkout line or the line of people waiting for a cashier at a bank.

Figure 1.5: Origin of requested data in LIFO storage (left) and FIFO (right).

The basic stack supports only two operations; push and pop. The push

operation adds data to the top of the stack, incrementing the stack pointer,
while pop decrements the stack pointer and returns the data on top of the
stack. Some environments that depend on the stack for many of its operations
will occasionally have additionally operations such as peek (a pop operation
without changing the stack pointer), dup (a pop followed by pushing the result
twice), or swap (switching the order of the top two items on the stack).

In addition to the stack, any processor will be able to store several pieces
of data without having to access the system’s memory, though the amount of
storage varies between processors. These storage locations are called registers,
and while some may have specific purposes, most processors will have several
for general usage called general purpose registers (GPRs). Among the special
purpose registers, there will be one called the program counter. This register
holds the memory address of the next instruction to be executed. Any time an
instruction is executed, it increases, and without it the processor wouldn’t know
where to look for the next instruction. What happens then when a function call

6

occurs? Some form of return address has to be kept for the program to return
from the called function’s location in memory back to where the program counter
was before, and that is where the stack steps in. Whenever a function is called,
the current program counter, along with some other data, is pushed onto the
stack, and the called functions memory address is entered into the program
counter. At the end of the called function, the old program counter value is
restored and the processor picks up where it left off.

It was mentioned that additional data is pushed to the stack as well during
a function call. What this data is depends somewhat on the compiler as well as
the instructions that the processor can execute, as not all processors have the
same instruction set. When entering a new function, the local variables of the
previous function must be saved for restoration, and space for the new variables
created. One method some compilers and processors use is to push onto the
stack the current contents of all the GPRs during a function call, and restore
them afterwards. This is especially common in processors that have a “push
all” instruction such as the x86 processors since the 80186 (these are processors
common to desktop computers since the early days of home computing).

A second method of saving variables and the current state of the registers is
for the called function to push to the stack only the values of the registers that
it will actually use. This is common on processors with smaller memories, and
therefore smaller stack sizes, such as most microcontrollers.

There are two types of errors relating to the stack; underflow and overflow.
Of these, underflow is far less common and is most often found in software stacks,
or as the result of malice. These are caused by attempting to pop a value off
the stack when the stack is empty. Stack overflow errors, on the other hand,
occur when an attempt is made to exceed the maximum size of the stack. Most
often this error occurs when there have been too many function calls nested
inside each other, such as with recursion. This error can be fixed by reducing
the depth of function calls, or by reducing the memory requirements of each
function.

1.4 Conclusion

The purpose of this chapter was to introduce some terminology and provide a
very basic understanding of what a microcontroller actually is. From here on
out each chapter will be covering some aspect of microcontrollers, their pro-
gramming and their use in greater detail. This text is focused around the
ATmega644p microcontroller produced by Atmel, so users of other companies’
microcontrollers may need to go elsewhere for specifics on their devices. It is
one of the goals of this text to provide enough background that the reader will
be able to use any Atmel microcontroller at the very least, and figure out other
companies’ microcontrollers as well.

If the history or other subjects covered in this chapter are of interest, there
are many sources available for further reading. A brief search on Google or
at the local library should result in numerous sources of interest. Wikipedia

7

is a good initial source for additional information as well, however care must
be taken with publicly editable sites such as that. Further resources should be
available via links at the bottom of most wikipedia articles.

8

Chapter 2

Datasheets, SFRs and
Libraries

Before beginning to examine a microcontroller in depth, there are a few im-
portant topics to learn about. These are topics which are closely related, or
directly about microcontrollers that should provide a better understanding of
what exactly is occurring in the subsequent chapters, and where the informa-
tion presented is stemming from. This chapter is presented as three independent
sections, each a mini-chapter in it’s own right.

The first section, datasheets, dissects an example datasheet and explains the
various portions thereof. The special function register section introduces what
SFRs are and how to address them on a microcontroller. The final section in
this chapter provides a basic understanding of what a library is and which are
most commonly used in programming the ATmega644p.

2.1 Datasheets

Datasheets are the documents containing all the vital information that the man-
ufacturer is supplying, which should answer most any question on the usage and
operation of the component. Datasheets should be available, either directly from
the manufacturer or most commonly on-line, for any electrical component one
may wish to include in a project. This includes resistors, capacitors and other
basic electrical components.

On first glance, datasheets can seem somewhat daunting with pages of
graphs, tables and text. This is because the datasheet is presenting a wide vari-
ety of information about operation and usage. Generally, unless the component
is to be used in extreme conditions, only a small percentage of the information is
actually required, though tracking down the important information is where the
skill of reading datasheets enters. Each section of the datasheet that is discussed
will be accompanied by an example from STMicroelectronics’ M74HCT08 Quad
2-Input AND Gate [18].

9

It is also important to note that there is no such thing as a standard
datasheet. The following information is common, but by no means always
present. Furthermore there may be multiple documents required to obtain the
desired information. If the first data sheet found doesn’t have the information,
keep looking. There may be other documents covering different aspects of the
device or generic aspects of an entire range of devices.

2.1.1 Part Name

The part name can often tell someone a lot of information. Besides stating
what type of device it is (resistor, H-bridge driver, sensor etc.) The part name
will also divulge further information. In the case of many ICs, the part name
will reveal how many copies of the device exists on the chip. For example ICs
containing the basic logic gates (AND, OR, NOT etc) regularly have four or
even eight copies of the gate per chip. Other information that can be gleaned
from the part name can involve the number of bits used for precision in devices
such as analog-digital converters (ADC) or digital-analog converters (DAC),
voltage ranges (op-amps, ADCs, DACs), or max power (resistors). The lesson
here is to always read the full part name, just in case there’s some extra piece
of important information therein.

Example - Quad 2-Input AND Gate

The name of this device specifies a number of things. First, that his device
contains AND logic gates. Secondly, that there are 4 independent gates on the
device, and finally that each AND gate is limited to two inputs. AND gates
require at least two, however it is possible to create AND gates with three or
more inputs.

2.1.2 Description and Operation

The first few pages of a datasheet are often text. These pages contain a descrip-
tion of what exactly the device does, and often how it works, which can include
the duration of delays of various operations, descriptions of what occurs and
explanations of errors. This should be at minimum skimmed by anyone who is
unfamiliar with the specific device, and those who are unfamiliar with the type
in general should read the entire section.

Example

While the description is very short in this case, it does provide information
about the sorts of other devices it can interact with (TTL and NMOS). This
covers the majority of other logic components, and if in doubt the electrical
characteristics can be examined as well.

10

Figure 2.1: Description section of AND gate datasheet.[18]

2.1.3 Absolute Maximum Ratings

Most datasheets will include this section. It lists the maximum voltages, cur-
rents, and possibly temperatures at which the device can be used. Exceeding
these limits can, and often will, damage or destroy the device in question.

Example

Figure 2.2: Absolute Maximum Ratings section of AND gate datasheet.[18]

The far left column, symbol, is what is used elsewhere to refer to these
parameters. An immediate example is the values for the input and output
voltages. Both of these refer to VCC which, according to the first line in the
table, is the supply voltage. Since the supply voltage’s maximum rating is 7V,
the input and output voltages can be as high as 7.5V. Keep in mind, these are
the maximum ratings. Designing a circuit to be pushing these ratings is more
likely to cause failures, either due to occasional spikes over the maximum value
or through added wear and tear. Most devices do not function as long when
continually pushed to their limits.

Although not always present, the datasheet in question also provides a table
of recommended operating conditions. These are somewhat lower voltages at
which it is safe to continually run the device. These are the conditions that the
design should not exceed. If the design indicates exceeding these limits, selected
parts and voltage levels should be reassessed.

11

2.1.4 Electrical Characteristics

Aside from the maximum ratings, this section will contain the most impor-
tant information when designing a circuit. This includes voltage limits, current
limits, uncertainties and any additional information required for the successful
operation of the device. While the maximum ratings supply the limits of what
the device can safely accept, this section covers how the signals will be inter-
preted. This will often include three values per parameter, a minimum value, a
typical value, and a maximum value. These indicate the range over which the
device will interpret the signal in a specific way, as well as what value should
be designed for. If the typical value cannot be exactly reached, it is not an
issue, and generally not worth adjusting the signal assuming it falls within the
minimum and maximum ratings. On occasion some of these values may not be
present, and only a minimum or maximum may be given (with or without a
typical value). If this is the case, it means that the missing value if often zero,
or may be specified by a ± in another column. Many parameters will also have
a test condition specified. The test condition specifies some aspect that may or
may not be true in a given application (such as supply voltage or current), and
means that any values given in that row of the table are only guaranteed if that
test condition is true.

Example

Figure 2.3: Electrical Characteristics section of AND gate datasheet.[18]

As the M74HCT08 is a logic chip, it is necessary to know what constitutes

12

a logical low vs a logical high. Looking at the first two rows of the table, and
referring to the recommended input voltages, any input between 2.0V and VCC

registers as high, and any input between 0V and 0.8V registers as low. This
is only true if VCC is between 4.5V and 5.5V. If VCC is lower than 4.5V then
the triggering voltages may also change. A voltage between the maximum low
input (0.8V) and minimum high input (2.0V) should be avoided as the output
will be unpredictable.

2.1.5 Physical Characteristics

There will be several tables covering a variety of characteristics of the device,
including physical, electrical and thermal responses. These can appear in any
order in the datasheet, but appear after the description of the device.

The physical characteristics table will often be accompanied by a diagram of
the exterior of the device. The table will proceed to list dimensions, mounting
requirements etc., everything someone would need to know to physically fit the
component onto a PCB or whatever medium is supporting the circuit. While
eventually vital for the final designs of the physical circuit, during the initial
design and prototyping, this section can mostly be ignored. The most important
information in this section at that point is determining whether there is a pack-
age available that will easily fit in the prototype, such as the classic through-hole
dual-inline-package (DIP) design of ICs which fit nicely into breadboards.

Example

On the AND gate datasheet, the physical characteristics are three full-page de-
scriptions of the packages in which the chip is available, with all the dimensions
necessary to use them. As they are full page they are not copied here.

2.1.6 Other Information

The other available information will vary depending on the device. For de-
vices which relate to temperature (thermocouples) or whose characteristics may
change with temperature, there will often be graphs linking variable parame-
ters to internal or external temperatures. Motors and other actuating devices
will regularly have power/velocity curves of some variety. Whenever looking
at a new datasheet, skim all the charts for anything mentioned in the descrip-
tion, or anything unknown and determine which of these are important to the
task at hand, and remember, if the needed information can’t be found, look for
additional documents on the device or family of devices.

Complex devices, such as microcontrollers and other integrated circuits, will
often have a schematic of the interior workings of the device. Examples of these
schematics, and descriptions thereof, can be found in Chapter 3: Hello World
and Chapter 4: Analog Digital Converter of this text.

13

2.2 Special Function Registers

The datasheets for microcontrollers are generally several times that of other
devices, often running into the hundreds if not thousands of pages. This is due
in part to the number of devices, called peripherals, that are internal to the
microcontroller, but also due to the required listings of all the special function
registers (SFRs).

SFRs are specific locations in the memory map that have predefined tasks.
The memory map is the linking of a memory address, which is the value used
to determine where the desired information is, to the physical location of that
data. For the majority of memory addresses, these locations are within a block
of RAM (random-access memory). For SFRs, however, these addresses point
to buffers, latches or other devices in the hardware related to each peripheral,
not to the RAM. Each SFR is connected to one of the various peripherals in
the microcontroller (ADC, timer, input/output etc.) or to the processor itself.
The SFRs serve as the connection between the software and hardware. The
majority of these registers are for settings and status information, with every
bit field meaning something different. A bit field is one or more bits that relate
to the same very specific operation, such as a 2-bit field choosing one of four
modes of operation. Each register can contain several bit fields relating to
different options on the peripheral. The datasheets must therefore list not only
each register, but each bit of each register and explain what they do.

2.2.1 SFRs in Datasheets

Although specifics change from manufacturer to manufacturer, the sections of
the datasheets relating to SFRs are always similar. For each peripheral in the
microcontroller, a list of related SFRs is given. Each SFR entry has a listing
of each bit, and what they do, including whether the can be read or written.
Elsewhere there will also be a large table of all the SFRs and their memory ad-
dresses, which may also include the bit names, though without the descriptions.
Figure 2.4 presents an example from the ADC of Atmel’s ATmega644p.

This is one of the control and status registers for the ADC. The first line gives
the name of the register as used in the libraries and elsewhere in the datasheet,
followed by a more human-readable name. Note that all the register and bit
names are some form of abbreviation of their full name. The small table below
the register name is a listing of the bits. Each bit has a unique name. The
second to last row of the chart indicates whether the bit can be read and/or
written. An ’R’ indicates that the bit can be read, and a ’W’ for written. All
the bits in this register can be both read and written. The final row gives the
default value of the bit when the microcontroller is first powered on. In most
cases this is 0, but not always.

Following the table is a listing of each bit: its bit number, its code name, its
full name and a description. Often times the description is just text, however
on occasion there is a table as well. Tables most often occur when there is a bit
field of more than one bit, such as bits 0 through 2 in this register. Wider bit

14

Figure 2.4: ADCSRA Register Excerpt from ATmega644p datasheet.[11]

fields can be recognized because their names are identical except for a number
at the end. When referring to the bit field as a whole either the number can
be left off (ADPS) or the size of it can be specified by giving a range of bits
(ADPS2:0).

Figure 2.5: ADPS2:0 Bit field from ADCSRA Register from ATmega644p
datasheet.[11]

2.2.2 Addressing SFRs

As SFRs exist in the memory map, each one has a unique memory address.
While they can appear anywhere in data memory, they are generally either at the
bottom (near address 0x00) or near the top of the memory map. There may also
be a number of general purpose registers (GPRs) which are used as temporary

15

storage and do not relate to the peripherals. Both PIC microcontrollers and
Atmel’s AVR microcontrollers place the SFRs at the bottom of the data memory
map, along with a number of GPRs.

Within the code, there are a few methods of accessing the contents of the
SFRs, depending on how the code libraries are set up. PIC microcontrollers,
for example, use prebuilt data structures called structs to access the individual
bit fields of the SFRs, while AVR microcontrollers use bitmasking on predefined
variables. As this text focuses on the ATMega644p microcontroller from Atmel’s
AVR line of microcontrollers, bitmasking is the method that will be examined
here. For additional information on using structs, both in general and for
accessing SFRs, refer to chapter 6.

In and amongst the numerous files included in WinAVR (the development
kit for AVR microcontrollers for Windows users), is a file called iomxx4.h. This
is the file that maps all the SFR register addresses to names for the developer
to use for the family of microcontrollers the ATmega644p belongs to. In it, for
every SFR on the microcontroller, is a line similar to this:

#define ADCSRA _SFR_MEM8 (0x68)

This statement tells the compiler that any time the name ADCSRA appears in
the code, to replace it with SFR MEM8(0x68). This function is defined elsewhere
in the assorted libraries and accesses the given location in the memory map, in
this case 0x68. After each register definition is a listing of each bit in the
register, defining each name to be the bit’s location in the byte.

#define ADIE 3

The above line of code causes any appearance of ADIE to be replaced with
3, as ADIE is the fourth bit in the ADCSRA register. Bits are zero indexed in a
byte, which means that the first bit is called bit 0.

With all the registers and individual bits named, it is possible to read and
write to the SFRs. Technically its possible to not use the names, however it
becomes much more difficult both on the initial programmer and on anyone who
needs to look at the code later to understand what is going on. To this end,
there are several methods of reading and writing to the registers.

Reading an SFR

Retrieving data from an SFR can have several purposes. It can be used to
retrieve data, inquire about the specific status of the peripheral, or be used
as part of writing a specific bit (see below). The simplest case is when the
contents of the entire SFR need to be read, such as when accessing the results
of an analog to digital conversion:

char ADCResult = ADCH;

This reads the entire contents of the ADCH register and saves it to the single
byte variable ADCResult. If only specific bits are desired, a bitmasking process
must be used.

16

char ADCEnabled = ADCSRA & (1<<ADEN);

This retrieves the value of only the ADEN (ADC Enable) bit of the register
using a bitwise AND operation. A bitwise and compares each bit of the left
argument (ADCSRA) with the corresponding bit of the right hand argument (1
<<ADEN) and saves the result of each of these comparisons in the corresponding
bit in ADCEnabled. If the ADC were enabled, the result would be 0b10000000

else it would be 0, as the ADEN bit is bit 7. Another option is to replace (1

<<ADEN) with BV(ADEN) which accomplishes the same purpose. The function
BV() is defined in the libraries supplied with the compilers to have the same

result as the left shifting operation performed in the code example above.

Writing to an SFR

While writing a specific value to an SFR is easy, it is not commonly done. Far
more often only a single bit or two need to be changed, which becomes more
complicated as then entire byte must always be written simultaneously. To avoid
changing the other bits, they must first be read and then masked to prevent
them from changing. To set a specific bit, use a bitwise OR operation such as:

ADCSRA = ADCSRA | (1<<ADEN);

After this executes, the ADC will be enabled whether or not it was before.
In order to clear a bit however, the register must be bitwise ANDed with a
bitwise NOT of the left-shifted bit.

ADCSRA = ADCSRA & ~(1<<ADEN);

After being executed, this line will ensure that the ADC is disabled without
changing any other bit. This works because any bit that was enabled, excepting
the ADEN bit, will result in an enabled bit in the final result as it is being ANDed
with another high bit. The ADEN bit is the only bit in the right hand argument
that is not high after the bitwise not.

While the concept of SFRs, their names and the logic required to access them
may seem daunting at the moment, they will become second nature through use
and the logic will become a matter of recognizing a pattern rather than working
out the steps every time.

2.3 Libraries

Libraries are vital components to any form of programming. They extend the
capabilities of a programming language by supplying functions which can be
reused from project to project without the need to rewrite the functions every
time. If they did not exist, programming anything would be a far longer and
more labor intensive task.

A library is a collection of pre-defined, and often pre-compiled, functions,
definitions, types or classes (in a language which uses classes). In short, a library
can contain any part of a program except the main function and interrupt service

17

routines (ISRs, see chapter 8). The contents of each library are in some manor
related, and often call upon the contents of other libraries.

Libraries sole purpose is to increase code re-usability. Once written, libraries
can be used in any program to provide the same capabilities as the previous
program it was used in. An example of this would be the common math func-
tions in math.h, which is a library containing a variety of commonly used math
functions, such as to find a square-root or the various trigonometric functions.
These functions are commonly used, however can be difficult to implement. The
trigonometric functions are often implemented via a look-up table rather than
actually calculating the precise value as it is more efficient. If every programmer
had to re-implement these functions for every program they wrote, the time lost
would be immense.

While the majority of necessary libraries are supplied with the compiler,
or available from other sources, libraries can also be user created. Any time a
function is written that is likely to be needed again elsewhere, it should be added
to a library. These user-created libraries are often stored somewhat differently.
Libraries obtained from other sources are generally pre-compiled and are header
files and object files (.h and .o respectively in C). User-created libraries are often
left uncompiled, and are compiled into any program they are used in, which
allows the user to more freely modify and add to the contents of the library.

Libraries are extremely useful and time-saving constructs. Some care needs
to be taken in their creation and use, however. Firstly, user-created libraries
should be stored in some central repository rather than copied into each pro-
gram separately. By referencing every program to the same file, rather than
copies thereof, correctly errors and adding functionality need only occur once.
Otherwise keeping track of what program uses which version of a library can be-
come a nightmare. Secondly, once a function is created and used in a program,
its name, arguments and return type cannot be changed without changing every
call to the function in every program. The functions should therefore be writ-
ten to be as generic as possible to avoid having to add to it or create multiple
similar functions later. One method to help keep it general is to use a pointer
to a struct as the sole argument. This allows the function to be modified by
changing the struct, which is less likely to cause issues than attempting to
change the function call itself. For more information on pointers and structs
and their uses, refer to chapter 6.

2.3.1 Including libraries

Whenever a library is to be used in a program, the compiler must be told to
include it using a #include line at the top of the source file or header file (see
chapter 5 for more information on header files). This #include statement tells
the compiler what file to look for, and where it can be located. There are two
syntaxes for including libraries. The first uses angle brackets (<,>) and tells the
compiler to look for the library somewhere within its defined library structure.
These are the libraries that were specifically installed with the compiler, as well
as any other folders it has been instructed to look in via the /I compiler option.

18

If the library exists within a sub-folder of one of these locations, the entire path
from the base point the compiler looks at must be included. Examples of these
paths are the avr\io.h and utils\interrupt.h libraries mentioned below.

The second syntax is for giving a relative system path and uses double quote
marks ("). When looking for these libraries, the compiler begins in the folder
containing the program files and browses the system file structure from there.
For example, to reach a library called ADClib.h in the folder Libraries, which
is contained in the same parent folder as the project, the command would be:
#include "..\Libraries\ADClib.h". No semi-colon is included after either
of these syntaxes.

For examples of files using #include instructions, refer to appendix B.

2.3.2 Commonly used libraries

These libraries are specifically those commonly used on the ATmega644p mi-
crocontroller, a member of the AVR family of microcontrollers made by Atmel,
though the ones created and distributed by Atmel are usable on many Atmel
microcontrollers. Logic internal to the libraries handles the microcontrollers
specific needs. Paths will also be given for the libraries that require them.

� <avr\io.h>: This library, and the libraries it calls, includes defined names
for all of the SFRs on the microcontroller. These names allow access to the
registers without needing to know their memory addresses. This library
is used in almost every single program written for the AVR family of
microcontrollers.

� <utils\delay.h>: This library contains two functions for causing the pro-
gram to wait for certain periods of time. These functions are delay ms

and delay us: which cause the program to wait for a given number of
mili- or micro-seconds respectively. This library only needs to be included
if one or both these functions are required. See chapter 8 for more infor-
mation on timing events.

� <utils\interrupt.h>: This library includes several functions and defined
values for use with interrupts, and is required if interrupts are to be used.
See chapter 8 for more information on interrupts.

� <math.h>: This library is a generic library available for most any plat-
form. It contains a variety of commonly used math functions, including
exponential and trigonometric functions.

� Peripheral libraries: Individual libraries for the various peripherals on the
ATmega644p are not supplied with the compiler. It is highly advantageous
to create libraries to handle common tasks for the various peripherals such
as initialization or any reading/writing tasks that may be required.

There are numerous other libraries available for use. Check the documenta-
tion or explore the libraries themselves to find out more.

19

2.4 Conclusion

Data sheets and their contents, as well as the names and contents of SFRs, are
incredibly diverse, with each company doing things their own way. Practice and
experience will help a great deal, so don’t feel bad if they seem daunting at first.
Also, remember that if the information does not seem to be available there may
be another document published about the device’s family or series as a whole.

20

Chapter 3

Hello World

The first task for most any new programming environment, language or device
is some version of a ‘Hello world’ program. This is one of the simplest programs
possible because its goal is to test that the environment is setup properly and to
display the basic syntax of the programming language and specific environment.
In the case of microcontrollers this generally consists of turning an LED on or
off.

In any sort of controlled system, there are four basic parts: the controller,
the control interface, the plant, and the feedback interface. Generally the con-
troller is a microcontroller. The microcontroller may be dedicated to this single
task, or handle a few related subsystems. Due to the abundance and low cost
of microcontrollers, it is common to use multiple microcontrollers in a single
system, each one handling a different task with a final microcontroller sending
commands to each of the low-level microcontrollers.

Figure 3.1: Diagram of a basic controlled system

The plant is the device to be controlled. This can be a motor, a sensor, or
the controller for a further subsystem. This is most often the first part of the
system to be defined, and may be immutable in the case of using commercially
available products.

In nearly every conceivable system, merely connecting the controlled system
to the microcontroller directly to the controller will either destroy one of the

21

components or nothing will happen. For example, attempting to drive a motor
with the power that a microcontroller can supply will likely destroy the micro-
controller before the motor moves. Therefore there must be some component or
subsystem that converts the signal that the controller can safely provide into a
signal that the controlled system can actually use. This could be as simple as a
binary on/off signal being converted into the current necessary to light an LED,
or more complicated such as the information a computer sends to a printer to
print out a document, and can be in any number of formats or standards. The
feedback interface performs the same role in reverse. Any information the plant
needs to return to the microcontroller must be translated into something the
microcontroller will understand. In addition to simply translating data, both
these interfaces may need to adjust the voltage or current of the signals to pre-
vent damage or supply the necessary power to make the plant operate. Finally,
not all systems require both interfaces. Some operate with just one or the other.

In the case of controlling an LED, the system components are the microcon-
troller, the connection to the LED including any necessary support circuit, and
the LED itself. In this example there is no feedback.

3.1 Example: Lighting an LED

The next two sections will cover the process for using a microcontroller to turn
on and off an LED. This section will cover the electronics involved and section
3.2 will cover the programming required. While many students or hobbyists
would simply throw a few components together and decide the results are either
adequate, disastrous or in need of refinement, the proper procedure is far more in
depth, and has the benefits of being scalable to any system being designed, and
also of preventing the accidental destruction of any of the electrical components
involved.

It is important to note that this is an iterative process. If each step is
completed without thought for the subsequent steps, and without going back
to make changes to previous steps, systems will often end up being far more
complicated, inefficient and expensive than they need to be. While this example
may seem to work first try, it is because of careful consideration and multiple
iterations to create as simple a system as possible.

Step 1: Determining requirements and design constraints

Before doing anything else, it is vital to decide what the final results of the
system are. Whether it is to lift a five-ton crucible of molten steel or to let a
user know a machine is on, these requirements will lay the basis for the entire
system. Additionally, defining a few design constraints or goals can help in
choosing between several possibilities that fit the requirements. These goals
often relate to reliability, cost, and simplicity. For this example the requirements
are quite simple: turn on and off an LED which is bright enough that the on/off
state is easily identifiable in a well-lit room. Meanwhile the goal is to have the

22

control interface as simple as possible, which means avoiding the use of any form
of buffer or level-shifting.

Step 2: Selecting the LED

There are hundreds of varieties of LEDs on the market, varying in color, bright-
ness, package size, voltage and current requirements, and view angle among
others. All these factors need to be considered and determined what values are
desired and how important it is to match that value. For this example, the
most important requirement is that the brightness of the LED be high enough
to be visible. Two additional characteristics, the forward voltage and current,
must be considered due to the design constraints, namely attempting to keep
the LED’s requirements within the ranges that the microcontroller can supply,
which will be addressed more later. These limits, along with several arbitrary
decisions on color and package, lead to the choice of a red LED in a round 5mm
package from Lite-On Electronics part number LTL-2F3VEKNT; for which the
datasheet is available through an on-line search.

Figure 3.2 contains an excerpt from this datasheet, and contains the three
pieces of information required: luminous intensity, forward voltage and the for-
ward current test condition. As stated in the requirements, the brightness of
the LED is paramount. According to the datasheet, the selected LED emits a
minimum of 4200 mcd (milli-candela) at a test condition of 20mA. One candela
(1000 mcd) is defined such as to be approximately equal to the brightness of a
common candle, which is bright enough to be readily seen in a well-lit room.
This LED has over four times as luminous intensity as is necessary, and therefore
meets that requirement.

Figure 3.2: Excerpt from data sheet for LED part LTL-2F3VEKNT.[16]

The forward voltage is the voltage required to turn on the LED. If the
forward voltage level is not met, the LED will not turn on and will act like an
open circuit. For the LED chosen, this level is typically 2.0V, but can be as
high as 2.4V. The final piece of information is the test condition forward current.
This is the maximum recommended current to be allowed to flow through the

23

LED, and is also the current which will provide the rated brightness. Lower
currents will provide less light.

Step 3: Determining microcontroller capabilities

In general, the microcontroller used for a given application will be highly de-
pendent on the requirements of that application. There is no need, for example,
to use a high-end 32-bit microcontroller to control an LED. For the purposes
of this example, the ATmega644p produced by Atmel will be used. Virtually
any information that one could ever want to know about the technical specifi-
cations of a microcontroller can be found in the data sheet. Starting on page
325 of the datasheet for this microcontroller, all the electrical characteristics of
the microcontroller are available, including the absolute max ratings and the
test conditions. These test conditions are the generally accepted safe limits for
long-term applications, so should be used as the design limits of the system.

Figure 3.3 contains a few important pieces of information. First it provides
the current limits for both sinking (input) and sourcing (output) at multiple
voltages. Additionally, notes three and four specify maximum currents for a
group of pins. This is a limit that must be examined if the microcontroller is
performing several tasks, such as controlling whole banks of LEDs. In the case
of this example, a maximum of 20mA at 5V is available for powering the LED.

Figure 3.3: Excerpt from pp325-326 of datasheet for ATmega644p regarding
maximum sink/source capabilities.[11]

Designing the control interface

Step 4: Comparing system requirements to controller abilities

Now that both the system and controller blocks of figure 3.1 have been defined,
it is time to determine what is necessary for the control interface. The first
step of which is to compare what is available from the controller to what is
required by the system. In this case the maximum current is the same for both
(20mA), and the microcontroller can provide the necessary 2.0 to 2.4V. As the

24

controller can provide everything necessary, the control interface can be kept
fairly simple, not requiring any form of level shifting, amplification, or external
current source.

Sink or source

There are two possible ways to setup the LED circuit. The first method is to
have the microcontroller be the power source for the LED, and run the digital
output of the microcontroller through the LED and a resistor to ground as
shown in figure 3.4.

Figure 3.4: Circuit diagram for using the microcontroller as the current source
(left) or as a current sink (right).

The first method, using the microcontroller as the current source, is the
left hand schematic in figure 3.4. This connects the LED through a resistor
to ground. When the pin on the microcontroller it is connected to is set to a
logical high, power flows in the direction shown by the arrow to ground, lighting
the LED. The second method, using the microcontroller as a sink, is the right
hand schematic. In this method the LED is permanently connected to a voltage
source. When the microcontroller’s digital output is set high, the pin is set to
the same voltage causing a voltage difference of 0V. As this difference is the
important value, no current flows. When the pin is set to low, it is connected
to ground. This allows current to flow in the direction of the arrows into the
microcontroller, lighting the LED. In this case the logic for turning on the LED
is reversed from the previous method, in that a logical high will turn off the
LED as there is no voltage difference between VCC and Chip DO. This is known
as active low, as opposed to the active high method above.

25

As previously determined from the datasheet, the sink and source capabilities
of the ATmega644p are the same at 20mA per pin. This is not always the case,
however, as many microcontrollers can sink more current than they can source.
The second method, sinking the current and active low logic, is therefore more
commonly used, and the method that will be used here.

Step 5: Resistor selection

By itself, an LED has an insignificant resistance when turned on. This would
cause a very high current to flow through it, likely burning out both the LED and
the microcontroller in the process without the inclusion of the current limiting
resistor seen in figures 3.3 and 3.4.

Determining the value of the resistor needed depends on several variables:
the supply voltage, the diode forward voltage, diode forward current, and sink
current of the microcontroller.

As determined earlier, the selected LED has a forward voltage of 2.0V and
forward current of 20mA. The resistor therefore must be sized to allow a max-
imum of 20mA through with a voltage drop of the remaining 3V of the 5V
supply. Using Ohms Law:

V = IR

R = V/I

R = 3V/20mA

R = 150Ω

This is the minimum resistor size necessary, so it is important to always
round up to the next standard resistor value. This is true even if the calcu-
lation results in a standard value. All resistors have a tolerance, which means
that the actual resistance will fall within a percentage error often 5 or 10% for
inexpensive, commonly available resistors. Were a 10% tolerance resistor to be
used in this application, choosing a 150Ω resistor could result in actually using
a 135Ω resistor, causing the actual current to be higher than the rated 20mA.
By rounding up to 220Ω, the next standard value, a current below 20mA is
guaranteed.

In many cases it may be advantageous to reduce the current drawn from
or carried to the microcontroller further. It is often preferred to reduce the
current as low as possible while still achieving the minimum requirements, and
the reasons are numerous.

� Power: According to Joule’s law, power is equal to current multiplied by
voltage. As that power has to come from somewhere, reducing the current
flow will reduce the power consumed. If that power happens to stem from
a battery, the batteries life will be improved.

� Heat: Whenever power is absorbed by something, such as a resistor, it
will eventually result in heat. This heat is a waste of power, can adversely

26

affect long term performance, and can be dangerous to users if the heat
generation is too high.

� Reliability: Increased current, especially when nearing the maximum, will
cause increased wear and tear on components, reducing its reliability and
lifespan. Excess heat can exacerbate the problem.

� Global limits: As was mentioned before in section 3.1 in step 3, there is a
limit to the current that groups of pins can sink or source, which is far lower
than the sum of the limits of the individual pins. If, therefore, eight LEDs
were to be controlled, one per pin on port B, each pin would be limited
to 12.5mA to stay within the 100mA limit; and this still assumes that
port D and XTAL2 are unused. By reducing the current to the minimum
necessary instead of the maximum allowable, more devices can be run
simultaneously.

In prior steps there had been an assumption about a current of 20mA. At this
point the current will be lower than that, which means that while no components
will fail the brightness needs to be rechecked. From the last page of the data
sheet for the LED, it can be determined that the luminous intensity is directly
proportional to the current. Calculating the current using the 220Ω resistor,
13.6 mA, and using this in the linear relationship, the LED is found to have a
luminous intensity of 2856 mcd. While significantly lower than the initial 4200
mcd, it is still well above the level of a candle (1000 mcd). Using the concept
of calculating for the minimum required, the current must be at least 4.76mA,
so the maximum usable resistor value would be 630Ω.

3.2 Programming “Hello World”

As with most ”Hello World” programs; this one is very short. It will be presented
in its entirety and then broken down piece by piece. A basic understanding of
the C programming language will be helpful, though not necessary for this.
Before jumping in and using peripherals in a microcontroller, one should first
look at the datasheet, read about the operation of the device and learn what
each of the associated registers are for. On the ATmega644p, digital I/O utilizes
three types of registers, with each of the four 8-bit ports requiring one of each
type, plus an additional register relating to pull-up resisters for a total of 13
registers. Port designations have been generalized to ’x’ here. Section 4 of this
chapter contains further information on how these registers operate and interact
in the hardware.

� PORTx - Port x Data Register
The four PORTx registers control the signals being generated for digital
output. Each bit corresponds to a separate pin on the microcontroller. If
the port is set for any or all pins to be input, a 1 in the corresponding
bit(s) of this register will enable a pull-up resistor on that pin. For more

27

information about controlling the pull-up resistors and their purpose, refer
to section 3.4 later in this chapter.

� DDRx - Portx Data Direction Register
These registers control whether a given pin on the port is an input or
an output. If the bit in the register is high, the corresponding pin is
configured as an output. The default when the ATmega644p is powered
on is that all pins are inputs.

� PINx - Port x Input Pins Address
This register reads the current value of the pin, regardless of the data
direction. When a pin is set to input, the pin is not connected to anything
else and the pull-up resistor is off, the value of the corresponding bit may
randomly change. If the pull-up resistor is turned on, the pin will read
high when it is not connected. If the data direction is set to output, this
register will match PORTx.

� MCUCR - MCU Control Register
Only bit four of this register matters to the digital I/O. This pin, PUD is
a global disable for the pull-up resistor. When set to 1, the pull-ups are
disabled even if DDRx and PORTx are configured to use them.

Now, knowing what each of the register do, they can be used in an applica-
tion.

#include <avr/io.h>

int main(void) {

DDRA = 0xff;

PORTA = 0xfe;

return 0;

}

This program will turn on an LED connected to pin 40 of the ATmega644p
and then ends (pin configuration is shown in figure 1 in the Preface). Due to the
nature of microcontrollers this LED will remain on as long as power is supplied
to both the microcontroller and the LED. In order to better understand how
this program works, each line is explained below.

#include <avr/io.h>

This line tells the compiler to include the specified header file (avr/io.h).
Almost every program written for any AVR series processor will include this line,
as it in turn includes additional files that define much of the memory structure
such as the names of all the registers. Most microcontroller manufacturers or
compilers will include such a header file to define names for all the registers in
their microcontrollers Did this not exist, the programmer would be forced to
address the registers by memory address, rather than by name.

int main(void) {

28

This is the main function. Every program must have exactly one main
function and it is where program execution starts. This line also specifies that
the program does not take any information as input (void), but it does return
an integer upon completion (int).

DDRA = 0xff;

This sets the contents of the register DDRA to the hex (0x) value ff, which
turns all 8 pins to output. Only one of the pins is actually used, but setting
them all does not cause any issues in this case.

Whenever there are several registers serving the same purpose for multiple
devices, the actual register names are often generalized by replacing the dis-
tinguishing character, in this case A, with a generic character indicating that
it could be any of the possibilities. This generic character is generally a lower
case ‘n’ for numerical distinguishers or ‘x’ for alphabetic. Therefore, when
some reference is made to DDRx, it is referring to any or all of the data direction
registers rather than a specific one. This ‘x’ means something different when
preceded by a ‘0’ and followed by a string of numbers or letters a-e. In this case
the ‘0x’ is a designator that the following value is in hexadecimal (base 16).

PORTA = 0xfe;

This sets all of the bits in the data register to high except for bit 0. As
the circuit is using active-low logic, with the microcontroller acting as a sink,
this turns the LED on. As a value of 0 is default here this line could be left
out, however including this line will cause any LEDs attached to the other pins
on the port to be off. Additionally, the value 0xfe can be replaced by any
syntax that gives the same value. This syntax is for hexadecimal, other options
include binary (0b11111110) or decimal (254). Hexadecimal is commonly used
due to its compactness and easy conversion to and from binary (each character
in hexadecimal corresponds to a block of four bits).

return 0;

The final line of code supplies the integer requested as the return value in the
function declaration. The return statement has the added effect of exiting the
function immediately. While not necessary in this application, many compilers
will throw errors or warnings if the main function does not have a return type
of int or if execution of the function can reach the end of the function without
encountering the return command.

}

While the return statement tells the program to exit the function, this
bracket signifies that the definition of the function is complete, and any further
lines belong to some other aspect of the code.

29

3.3 Digital Input

Detecting a dead LED

The ability to control a system if useful, however some form of determining the
result of the control signal is also generally required. Feedback is necessary to
account for vagaries in the system and unforeseen circumstances. Continuing
the example of lighting an LED from before, the feedback desired would be
whether the LED is properly functioning. While there are several methods that
can be used, including various forms of optical sensors, the method used here
will take advantage of the fact that LEDs generally become an open circuit
(allowing no current to flow) or a short circuit (providing no resistance to the
current) when they fail.

Step 1: Determining feedback requirements

Before any steps toward designing the feedback interface can be taken, require-
ments must be laid down as they were for designing the control interface.

� Feedback signal must differentiate between an LED working under ex-
pected parameters (2V forward voltage, under 20mA) and a broken LED

� Feedback signal must be interpretable by the digital inputs on the micro-
controller

� Broken LEDs can be either a short or open circuit, it is not important to
distinguish between the modes of failure

� Easily implemented on a solder-less breadboard

The second requirement necessitates a return to the microcontroller datasheet.
Figure 3.5 shows the relevant information from the Electrical Characteristics
chapter. The first row in the table states that for a signal to be guaranteed to
be read as low, the signal can be no greater that 0.3 times VCC or 1.5V at a
5V VCC as is being used here. Similarly, the second line says that a high signal
must be at least 3V at a 5V VCC .

Figure 3.5: Excerpt from pp325-326 of datasheet for ATmega644p regarding
digital input voltage levels.[11]

30

Step 2: Adjusting control interface

There are two reasons the previously designed control interface is no longer
sufficient. The first is for safety’s sake in event that the LED is burnt out. Should
the LED become a short circuit, the 220Ω resistor would then be absorbing the
entire 5V instead of merely 3V. This would cause the current to increase to
22.7mA, which is above the safe limit of the microcontroller as determined in
step 3 of the first example. The second reason to redesign the control interface
is to simplify the feedback interface in the long run. As the method of feedback
hasn’t been fully determined yet, this step may be returned to later for further
modification to the control interface.

New resistor value

As mentioned above, the resistance in the control interface must be increased to
prevent a shorted LED from damaging the microcontroller. Therefore, instead
of designing for a 3V drop across the resistor, designing for a 5V drop will
protect the microcontroller.

The next higher standard value for resistors is 270Ω, and this is a perfectly
acceptable value, however it is possible to have a 260Ω resistance by using a 110Ω
and a 150Ω resistor in series. This is what will be used for reasons described
later.

Recheck design requirements

Due to the change in the resistance, the current through the LED has dropped
to 11.5mA while everything is working correctly. This will reduce the luminous
intensity, so the design requirements must be rechecked to ensure the modifica-
tions do not violate any of them. As luminous intensity increases linearly with
current, this new current will result in a luminous intensity just over half the
test condition; specifically 2415mcd. As this is still over the 1000mcd minimum,
the design requirements have not been violated.

Step 3: Available feedback signals

As the feedback is an attempt to determine, in essence, if the voltage drop across
the LED is what is expected, perhaps the easiest method for determining this
drop is to determine if the voltage drop across the resistors is the expected value.
This voltage drop can then be compared to various break points to determine
what the LED is doing using a comparator circuit.

Due to the resistor choice made above, there are now several options for
where to obtain the voltage level for the feedback: just after the LED (nominally
3V), after the LED and the 110 resistor, or, swapping the order of the resistors,
after the LED and the 150 resistor (see figure 3.6).

Table 3.1 contains information on the voltage levels for each of the three
options for normal operations (on), as well as the two modes of LED failure

31

Figure 3.6: Three options for feedback signal.

(short, open). The first column denotes the resistor or resistors that the voltage
is being measured across.

R value On (V) Short (V) Open (V)
260 3 5 0
110 1.26 2.11 0
150 1.73 2.88 0

Table 3.1: Voltage values for the various feedback possibilities.

Step 4: Feedback interface

After inspecting table 3.1, it should be apparent that none of the three possible
signals will fulfill the requirements without some form of interface to the micro-
controller. As the desired result is a the digital result of whether the feedback
voltage is at a desired value, a pair of comparator circuits can be used to com-
pare the feedback voltage to set points between the operating voltage and the
voltages of each of the failure modes.

The way a comparator circuit such as the one in figure 3.7 works is as follows.
If VREF is at a higher voltage than VIN, the output is tied to the negative power
supply for the comparator (often -VCC or ground), otherwise the output is left
‘floating’ with a high impedance to ground. Please note that though VREF is
labeled as a reference voltage, either input can be used as reference depending
on the desired bias of the output. The 3k resistor in figure 3.7 acts as a pull-up
resistor causing VO to be approximately VCC .

The pullup resistor is necessary because the output of the comparator is
something known as “open collector”. An open collector is an internal NPN
transistor connected by its base to the output of the comparator, with the

32

Figure 3.7: Comparator circuit design from LM193 datasheet.[20]

emitter connected to ground and the collector connected to the output pin of
the IC. When the comparator sends a high signal to the transistor, current is
allowed to flow from the collector (IC output) to the emitter (ground). This ties
the output to ground and occurs in the case where VREF is greater than VIN.
When the comparator sends the transistor a low signal, the transistor essentially
becomes an open circuit causing the IC output to float. The pull-up resistor
then causes the output to be approximately VCC .

Reference Voltages

The simplest method for obtaining the necessary reference voltages is to use a
voltage divider. This consists of two or more resistors between VCC and ground,
with the reference voltage being pulled from between two of the resistors. Figure
3.8 contains both a schematic of a voltage divider as well as the calculation for
the output voltage.

Vdivider = VCC
R1

R1 +R2

0.88V = 5V
1000Ω

1000Ω + 4700Ω

Figure 3.8: Schematic and calculations for a voltage divider

33

While any of the three possible feedback signals are usable, the third option
(measuring across the 150 resistor) provides for simple calculations and resistor
requirements, so that is the chosen signal in this example. Having made that
decision, the necessary reference voltages are some value between 0V and 1.73V,
and between 1.73V and 2.88V. The second voltage is easy to obtain. A voltage
divider between two equal valued resistors, such as 1k for both R1 and R2,
between a VCC of 5V and ground would result in a 2.5V reference voltage,
which fits neatly in the required slot. For the lower reference voltage R1 again
being 1k and R2 being 4.7k would provide an acceptable reference voltage of
0.88V.

Putting the parts together

Now that the general design and the reference voltages have been determined, its
time to once again compare what the interface provides to what the microcon-
troller needs. At this point, using two comparator circuits, one for each mode of
failure, the feedback interface provides two digital signals of undecided bias. As
the design requirements do not necessitate the ability to discriminate between
the two failure modes, ideally two signals would be reduced to a single signal
binary signal indicating whether the LED works or is broken. Fortunately, due
to the floating nature of the comparator’s output, it is a simple matter to build
a logical OR between the output of the two comparators (see figure 3.9), leaving
only the matter of ensuring the correct biases on the comparators.

Figure 3.9: Logical OR of the output of 2 comparator circuits. From LM193
datasheet.[20]

While it is called a logical OR gate in the documentation for the comparators,

34

care must be used in utilizing the design. The way it actually works is that if
either of the inverting inputs (the inputs marked by a - sign) are at a higher
voltage than the non-inverting input (marked by a + sign), then VO will be tied
to ground. This means that to receive a logical high on VO, both non-inverting
inputs must be at a higher voltage than their corresponding inverting inputs.
In this way it works more like an AND gate.

The final result

Figure 3.10 below contains the complete circuit diagram for the system. Starting
with a digital low from the microcontroller to turn on the LED, passing through
both the control and feedback interfaces, the microcontroller can read a digital
input, seeing a digital low for a functional LED or a digital high for a broken
LED.

Figure 3.10: Circuit diagram of the entire LED control and feedback system.

Reading the result on the microcontroller

#include <avr/io.h>

35

#include <util/delay.h>

int main(void) {

unsigned int LEDstatus;

DDRA = 0xff;

PORTA = 0xfe;

_delay_us (1);

LEDstatus = PINB & 0x01;

return 0;

}

This is the same program that appeared in section 3.2 with four additional
lines.

#include <util/delay.h>

This tells the compiler to include the delay library, which includes two func-
tions causing the microcontroller to idle for a certain period of time.

unsigned int LEDstatus;

Here the program initializes a variable in which the program will store the
information garnered from the feedback

_delay_us (1);

This is a call to a function in the delay library, and causes the microcontroller
to idle for 1µs. While not necessary, it allows the system to fully stabilize before
the chip checks the feedback.

LEDstatus = PINB & 0x01;

As previously mentioned, there are three registers for each of the 8-bit ports
on the Atmega644p: PINx, PORTx, DDRx. Here the program is reading the
inputs on port B. the rest of the line performs a bitwise AND operation on
the read value and stores it in the previously initialized variable LEDstatus. A
bitwise AND compares each bit in the two bytes (PINB and 0x01), and results
in a new value that has a 1 in each bit in the byte where both the input bytes
have 1s. For example, ANDing 0x56 and 0x24 would result in 0x04. DDRB was
not set anywhere in the code as it defaults to all pins being input.

0b01010110

& 0b00100100

0b00000100

In the program this operation causes only the one bit of data corresponding
to port B pin 0 (pin 1 on the ATmega644p) to be saved and ignores the other
seven bits of the port.

3.4 DIO Operation

Being able to read the schematics of a given device or peripheral will aid in
understanding how the device actually operates. As such, this section will take

36

the schematic for the digital I/O from the ATmega644p datasheet (figure 3.11)
and explain the various components. This schematic covers the DIO for a single
pin. Each pin has has these components, though some of the signals are shared
between pins. Any other capabilities the pin may have (other peripherals) are
not covered here. If the term “pin” or “port” is lower case such as these, they are
referring to a single external connector on the microcontroller and its associated
hardware or a collection of 8 of these pins respectively. If on the other hand
these terms in all caps, especially if they are followed by “x” or “xn” they are
referring to the registers which are components in each pin/port.

Figure 3.11: General Digital I/O schematic from ATmega644p datasheet.[11]

The first major component of this peripheral is the data bus on the right
side of the schematic. This bus is what links all the peripherals and memory to
the processor. Any read/write operation sends its data through this bus. The
control signals which control the actual operation of the circuit are the labeled,
unconnected lines. A legend for these signals is found at the bottom.

37

PORTx

The latch (the square component) in figure 3.12 is the component that is specif-
ically PORTxn. Its output signal (Q) is what is connected to the pin when the pin
is set as an output. The other components are involved in the logic of setting
the value of this latch. The input to the latch marked < is the clock. On the
rising edge of this signal, the latch samples the D input at stores that value.
This can occur either when a 1 is being written to the corresponding bit in the
PINx register, or when the PORTx register is being written to. In the former case
the multiplexer (the trapezoidal component) changes to using its 1 input, which
is the inverse of the latches output, thus causing the PORT’s output to toggle. If,
on the other hand, it is the PORTx write signal, the multiplexer uses its 0 input
drawing the value from the data bus. The final signal in this segment is the
PORTx read signal. This signal enables the buffer (triangular component at the
bottom) and causes the latches output to be connected to the data bus. When
not enabled a buffer has no effect on the line connected to its output. This is
called a high-impedance or tri-state (see chapter 7). Table 3.2 is a truth table
consisting of the various possible combinations of signals and conditions, as well
as what results from them. The Q column is the new value for the latch and the
PINxn and PORTxn columns refer to what is being written to a particular pin
via the databus. A Q appearing within a column refers to the old value stored
in the latch, while an x means that the value does not matter to the conditions
in the remainder of the row. A line above Q means “not Q”, which is the other
logical value. If Q is high, then Q is low and vice-versa.

Figure 3.12: Segment of DIO schematic relating to PORTx register.[11]

WPx WRx PINxn PORTxn Q

0 0 x x Q

1 0 0 x Q

1 0 1 x Q

0 1 x 0 0
0 1 x 1 1

Table 3.2: Truth table for the PORTxn latch.

38

DDRx

Figure 3.13 contains the portion of the DIO schematic relating to the DDRx

register. Similarly to the PORTx portion, the actual value is contained in a latch
which samples from the data bus when it receives the write signal on its clock
input. Additionally it has them same type of buffer enabled by a read signal to
return the currently stored value. The output of this latch is used as the enable
for a buffer on the output of the PORTx latch. This buffer is what connects the
latch to the actual output when the DDRx latch value is high.

Figure 3.13: Segment of DIO schematic relating to DDRx register.[11]

PINx

The schematic for the PINx register is in figure 3.14. The segment to the left of
the portion marked SYNCHRONIZER relates to power-saving (the SLEEP signal

and signal conditioning. This ensures that the input to the SYNCHRONIZER will
be an acceptable signal. The SYNCHRONIZER is a pair of latches which prevents
pin value changes near clock pulses from causing glitches, but introduces a delay
of 1

2 to 1 1
2 clock cycles. The read signal enabled buffer is the same as was on

the previous two sections.

Figure 3.14: Segment of DIO schematic relating to PINx register.[11]

Pull-up resistor

The final portion of the schematic relates to the pull-up resistor as seen in figure
3.15. If enabled, the pull-up resistor connects the pin to VCC through a large
resistance. This has the effect of causing a floating value at the pin to be pulled
up to VCC rather than being indeterminant. A floating value at a pin is caused

39

by the pin not being connected, either directly or indirectly, to a power source
or ground. The actual voltage potential on a floating pin cannot be predicted,
and it can change over time based on background electrical noise. The switch
enables the resistor unless one or more of the following statements is true: the
PUD (pull-up disable) bit in the MCUCR register is set, the DDRxn bit for the pin is
set high causing the pin to be an output or if the PORTxn bit for the pin is low.
If one or more of those conditions is true, the switch is opened and the pull-up
resistor is disabled.

Figure 3.15: Segment of DIO schematic relating to pull-up resistor.

Reading the registers

It can be incredibly frustrating, and sometimes difficult to debug, if a port is
not behaving as one believes it should. This section will attempt to reinforce
how the registers interact by giving several cases.

� If DDRxn is set to output, reading PINxn and PORTxn will both result in
the value stored in PORTxn.

� If DDRxn is set to input, PINxn and PORTxn are disconnected from each
other by the disabled tri-state buffer. Reading PORTxn will read result in
the value stored in the register, while PINxn will read the value that any
external device is setting the pin to. If left floating and the pull-up resistor
is enabled, this will read as high.

� Writing to PINxn will always toggle the value stored and read from PORTxn,
whether the pin be set to input or output.

� Writing to PINxn does not directly affect the PINx register. If reading
the PINx register after writing to it, do not expect to see the value just
written.

� After writing to PORTx, if reading PINx does not give the same value, it is
likely that the data direction is set to input and not output.

To further demonstrate this point figure 3.16 displays the path the PORTxn

signal travels to reach the output pin as well as back to the data buffer along
both the PINxn and PORTxn read paths when the pin is set as an output, while

40

figure 3.17 shows the separation between PORTxn and PINxn caused by setting
the pin as an input. In both figures a heavy solid line indicates the path of
PORTxn while a dashed line is the signal generated by an external device.

Figure 3.16: Path of PORTxn signal when a pin is set as an output.

3.5 Conclusion

Digital I/O is the most basic method a microcontroller has to interact with
other devices. Though simple, it forms the back bone for most everything else
and teaches a great deal about actually operating a microcontroller. Just like
beginning to learn a programming language by writing a ”Hello World” program,
digital I/O is the first step for any new microcontroller.

If the schematics shown in this chapter don’t make sense, or more infor-
mation about the components is desired, there are numerous introductory or
hobbyist level books available on electronics. Check the local library, as they
will likely have a variety of them.

41

Figure 3.17: Path of PORTxn (heavy, solid line) and input (heavy, dashed line)
signals when a pin is set as an input.

42

Chapter 4

Analog Digital Converter

The feedback interface designed previously for the LED example is all well and
good; however it is relatively complicated, especially for such a simple task and
basic control interface. It would be helpful if the microcontroller itself could
accept any voltage and then would calculate the logic itself. This has the benefit
of being a much simpler system and a more flexible system as the logic could
be changed in software rather than needing to redesign the feedback interface.

Thankfully, most microcontrollers have a peripheral called an Analog to
Digital Converter (ADC). ADCs accept an analog signal and using one of a
variety of methods provide a digital representation of that signal for use in a
program. Before returning to the LED example and using an ADC, there is
some information that should be understood.

4.1 Terminology

There is a great deal of terminology integral to the use of ADCs. Here are
the definitions of many of these terms, followed by an example of their use and
values:

� ADC (Analog Digital Converter): A device found often in microcontrollers
or as a dedicated chip which converts an analog voltage into a represen-
tative digital value.

� ADC Resolution: Generally measured in bits, the ADC resolution indi-
cates the number of discrete digital values the ADC can output. For
example an 8-bit ADC can produce 256 (28) .

� Accuracy: There are several sources of error inherent in the use of ADCs.
Accuracy is an overall measure of these errors and is measured in a unit
called an LSB (see Least Significant Bit).

� Least Significant Bit (LSB): This is a unit for measuring, among other
things, the error. It is equal to the change in input signal voltage necessary

43

to increase the digital output signal to the next consecutive value (i.e. the
difference between receiving an output of 114 vs 115).

� Full scale: The full scale measurement of an ADC is the range that covers
the lowest measurable value to the highest measurable value. These are
often based on ground or VCC , but can also use separate reference voltages.

� Voltage Resolution: This is the change in input voltage corresponding to
a single step change in the output signal. It is also equal to 1 LSB.

� Conversion time: Each analog to digital conversion takes a finite amount
of time. The conversion time is the longest time a conversion can take.

Example:

A 10-bit resolution ADC is attempting to measure a 0-5V analog signal. In this
case the full scale measurement is 0-5V and the resolution is 10-bit. The voltage
resolution is equal to the full scale measurement range divided by the number
of discrete intervals.

Q =
EFSR

2n − 1
=

5V − 0V

210 − 1
=

5V

1023
= 0.0049V/step

where Q is equal to both the voltage resolution and 1 LSB.

4.2 Converting methods

There are several methods for converting an analog signal to a digital value.
This section will cover some of them [15].

� Direct Comparison: This method uses a large bank of comparators, each
one corresponding to a specific and distinct value. This method is very
fast as the conversion time is just the settling time of the comparators
plus the time required to sample them, however is generally limited in
precision as for each additional bit the number of required comparators is
doubles. This also leads to a large die size and high power dissipation.

� Successive-approximation: This is the method that is employed on the
ATmega644p. It uses an internal digital-analog converter (DAC) which
provides reference voltages to a single comparator. A binary search algo-
rithm is then used to successively narrow down the possible values. This
leads to a somewhat longer conversion time, requiring a comparison for
each bit of precision, but requires far less space and power than a direct
comparison ADC.

44

Example:

A 3-bit ADC with a range of 0-10V is measuring an 7V signal.
Clock cycle 1 - The DAC produces a 5V (0b100) signal for the comparator,

which reports that the sampled signal is higher. A binary 1 is stored in the first
bit of a successive approximation register (SAR)

Clock cycle 2 - The DAC produces a 7.5V (0b110) signal. This time the
comparator reports that the DAC’s output is higher, so a 0 is stored in the SAR
(which now reads 0b100).

Clock cycle 3 - The DAC produces a 6.25V (0b101) signal. Again the sampled
signal is higher so a 1 is stored in the SAR (0b101).

The end result is that the ADC reports that the input signal is 6.25V. Due
to the low resolution this is the best it can do. It is important to note that in
this example the reported voltage is strictly lower than the actual voltage by as
much as 1 LSB. This error is called quantization error and will be covered more
fully later. It is possible to shift the interpreted value in software by 0.5 LSB
which will shift the error from +1/-0 LSB to ±0.5 LSB. If this is implemented
the above example would still report the same digital signal, but this would now
be interpreted as 6.875V, which is closer to the actual value. This method of
shifting the interpreted value will not always reduce the error, but will reduce
the standard deviation of the error.

� Ramp-compare: Similar to the successive-approximation method, the ramp-
compare ADC utilizes a single comparator, but with a difference in the
input method. Instead of using several compare and adjust cycles, a slowly
increasing voltage is applied to the reference voltage of the comparator and
a clock is used to determine when the reference voltage increases above the
sampled voltage. There are two methods to produce this ramped voltage.
Either a DAC using a clock to constantly increase its output can be used,
or a calibrated timed ramp. A simple, though non-linear, possibility for
the calibrated ramp uses a single resistor and capacitor. One benefit of
this ADC design is that additional comparators require only an additional
comparator and storage register. The clock and ramp generation can be
shared between all the comparators in use.

� Integrating: This method applies the unknown sampled voltage to the
input of an integrator circuit. The integrator is allowed to ramp up for
a known duration (the run-up period), at which point the input of the
integrator is switched to a known voltage of opposite polarity. The time it
takes for the output of the integrator to reach zero (the run-down period)
corresponds to the sampled voltage.

4.3 Sources of Error

This section will address and quantize some of the sources of error inherent in
ADCs. The error values are given in units of LSB as discussed previously.

45

� Quantization: Mentioned earlier, quantization error is the error inherent
in any attempt to represent an analog value as digital. Depending on the
type of ADC in question, this error will either be +1/-0 LSB or ±0.5 LSB.
In the former case it is adjustable to ±0.5 LSB simply by adding 0.5 LSB
to the result.

� Aliasing: ADCs are often used to regularly sample a changing signal to
determine the signals characteristics. Because an ADC works with discrete
points in time, it is working with an incomplete picture of what’s going
on. Aliasing is an error caused by attempting to sample a signal at a
frequency over half of the sampling frequency, and will cause the signal
to appear to be a different frequency than it actually is. This maximum
observable frequency of half the sampling frequency is called the Nyquist
rate. When the sampled signal is at a frequency greater than the Nyquist
rate it will appear to be at a frequency mirrored across the Nyquist rate.

fobs = fNyquist − (factual − fNyquist)

Take the example of a 10Hz ADC was attempting to observe a 7.5 Hz
signal. Here the Nyquist rate is 5 Hz, so the observed signal will be at 2.5
Hz.

Figure 4.1: Aliasing caused by sampling a 7.5Hz signal which is above the
Nyquist rate of 5Hz. Sampling rate is 10Hz.

46

� Aperture: No clock is perfectly accurate. There is always some jitter,
which is the clock’s cycle being slightly longer or shorter than the adjacent
cycles. Overall this doesn’t change the clock frequency, but can cause
individual cycles to happen at a time other than what is expected. When
the sampled signal is a non-constant value, this slight offset in sampling
time will cause the wrong value to be sampled.

4.4 Return to the LED example

With the inclusion of the ADC, the feedback interface for the LED example
becomes far simpler. No longer needed are the comparators, reference voltage
dividers or pull-up resister. In fact, the only required feedback interface is a wire
running from either side of the 110Ω resistor to the ADC on the microcontroller.
The changes in the voltage reading will be larger if the connection between the
LED and the 110Ω resistor is sampled, so that is where the ADC should be
connected.

Figure 4.2: Complete circuit for LED example using the ADC

4.4.1 The ATmega644p ADC

The ADC on the ATmega644p is a 10-bit successive approximation ADC. The
ADC is connected to the pins of Port A via an 8-channel analog multiplexer.
This allows any and all pins on Port A to be used as an analog input, however
as the ADC has only a single converter, only one of these channels can be read
at any given time.

The ADC contains a sample-and-hold circuit, which is used to prevent the
sampled value from changing during a conversion. This is important when
measuring a non-constant signal, especially when the signal is changing rapidly
in comparison to the conversion time.

47

There are several choices for the reference voltage on the ATmega644p. The
reference voltage can be selected between AVCC, which is a separate supply
voltage pin, but which also must be within ±0.3V of VCC , internal 1.1V or 2.56V
reference voltages, or an external AREF (analog reference) pin. The selection of
the reference voltage is stored in the SFR ADMUX (ADC Muliplexer Selection).

The ADC also supports a variety of differential voltage measurements, some
of which with programmable amplification of 1x, 10x or 200x. Using these
amplifications is limited to only two pairs of the differential inputs (ADC1,0 and
ADC3,2) and also reduces the resolution. More information on the differential
voltage capabilities of the ATmega644p can be found in its data sheet with the
other ADC information in chapter 20.

4.4.2 Understanding the ADC

The simplicity of the physical circuit has its cost in code complexity. Using this
peripheral requires initialization and configuration. On the ATmega644p, there
are 5 registers involved in the use of the ADC. Here is a brief description of
each register. Further, more detailed information can be found in section 20.9
Register Description of the data sheet [11].

� ADMUX - ADC Multiplexer Selection Register
Within the ADC are several multiplexers which are controlled by the bit
fields in this register. These include the selection of the reference voltage
(REFS1:0) as well as the various channel and gain selections (MUX4:0).
This register also contains the justification of the result within the ADCW
register (ADLAR).

� ADCSRA - ADC Control and Status Register A
This is the first of two registers responsible for controlling the ADC and
making available to the programmer various bits of status information.
This includes, but is not limited to, enabling the ADC, triggering conver-
sions and controlling interrupts. Additionally, this register controls the
selection of a clock prescaler for the ADC. This prescaler causes the ADC
clock to run several times slower than the system clock, and is necessary
because in order to obtain the full 10-bit precision the ADC must run at
a clock frequency between 50kHz and 200kHz.

� ADCW - The ADC Data Register
This register is a 16-bit register made by the combination of ADCL and
ADCH. While the datasheet only lists the component registers, ADCW is
defined in the header files for the ATmega644p, and is very useful in that
it precludes the necessity of manually joining the registers to obtain the
full value. Additionally, it is required that when using ADCL and ADCH
that ADCL be read first. Reading ADCW takes care of this requirement
as well.

� ADCSRB - ADC Control and Status Register B
At the time of writing, there is only a single 3 bit field in this second control

48

register. This bit field controls the source for auto triggered comparisons.
Auto triggering allows for performing analog conversions at times specified
by certain events rather than at specific points in the code. These events
could be based on time or an external event. It is also possible to have
the ADC begin conversions as soon as the previous one finishes.

� DIDR0 - Digital Input Disable Register 0
The use of this register is completely optional and is used to reduce power
consumption. Each bit of this register corresponds to one of the eight
ADC input pins. When a given bit is set, the corresponding pin’s digital
input capabilities are disabled and the PINA register will always read a 0
for that bit.

Each of these registers corresponds to a physical device inside the ADC.
Four of them (DIDR0 is left out as it appears in the DIO logic) appear across
the top of figure 4.3, which is a schematic of the internal workings of the ADC.
The values of each bit in the registers are transmitted in parallel to the other
devices in the ADC. These are the lines exiting and entering the bottom of the
register boxes in the schematic. These signals control the other devices, causing
the ADC to behave as desired. ADCSRB only controls auto triggering, so its logic
is included in figure 20-2 of the data sheet, rather than this one.

There are two sections of this schematic that deserve additional attention.
These are the reference selection and the signal selection.

Reference selection

When configuring a progressive-approximation ADC such as the one in the
ATmega644p, the ADC must have some reference value to compare to. This
voltage is supplied by the portion of the ADC found in figure 4.4. There are four
options for the voltage source for the comparator which are selected between
using the REFS1:0 bits of the ADMUX register. These options are AVCC, which is an
external pin that should be connected to the voltage that the microcontroller is
running at, AREF, which is an externally supplied voltage, and the two internally
supplied voltages of 1.1V and 2.56V. The first three of these options are selected
through a multiplexer. The final choice on whether it is the output of the
multiplexer or the voltage supplied at AREF is used is determined by the switch.
If the switch is engaged the multiplexer output is connected to the AREF pin and
supplied the digital-analog converted (DAC), otherwise only AREF is connected
to the DAC. If one of the three sources chosen by the multiplexer is used, it
is best to connect AREF to ground using a capacitor to reduce electrical noise,
which may result in inconsistencies.

The selected voltage is used to power a DAC. This DAC can then produce
voltages in the range of 0V to the selected reference in 210 increments. The
output of the DAC is used in the comparator to determine the analog voltage
that the ADC is working on.

49

Figure 4.3: Schematic of the ATmega644p ADC. Found in section 20.2 of the
datasheet.[11]

Signal selection

The other section of the ADC that deserves attention is the signal selection.
This portion determines what signal is actually converted into a digital value.
This value can either stem from one of the eight external ADC pins, which are
the pins of port A, ground, or an internally created 1.1V reference. The ground
and 1.1V reference voltages are generally used to calibrate the ADC and ensure
that it gives the expected value. All these options are fed into the positive input
multiplexer, and one of them is selected depending on the status of the MUX4:0

bits in the ADMUX register. This voltage is used both as the positive input to the
gain amplifier, and as one of the inputs to another multiplexer discussed below.

The first three external ADC pins (ADC2:0) are also connected to another
multiplexer. This is the negative input multiplexer which allows for differential
conversions. In this case the signal selected by the negative input multiplexer
is subtracted from the signal selected by the positive input multiplexer by the
gain amplifier. This amplifier can optionally multiply this difference by 10 or
by 200. The result of this subtraction and optional multiplication is then used
as the second input to the afore mentioned final multiplexer.

50

Figure 4.4: Reference voltage selection schematic. Excerpt from figure 4.3.

Figure 4.5: Signal selection schematic. Excerpt from figure 4.3.

The unlabeled multiplexer on the right side of figure 4.5 determines whether
the signal directly from the positive input multiplexer is used (called a single-
ended input) or if the result of the subtraction and multiplication is used (called
a differential input). The result of this selection is what is passed on to the
progressive-approximation circuitry. For additional information regarding the
values stored in ADMUX for each of these options, as well as the limits and ca-
pabilities of the peripheral refer to the ADC portion of the microcontroller’s
datasheet.

4.4.3 Programming with the ADC

With the information on the various ADC registers now in hand, it is possible to
utilize the ADC for checking the status of the LED. As before, the entire program
will be presented first followed by a breakdown of its various components. Since
it is much longer and more complicated, this will not include a line by line
breakdown, rather certain aspects will be emphasized and other parts merely

51

summarized.

#include <avr/io.h>

#include <util/delay.h>

int main(void) {

unsigned int LEDstatus;

ADMUX = 0x00 | (0b01 << REFS0) | (0b0 << ADLAR);

ADCSRA = 0x00 | (1 << ADEN) | (0b110 << ADPS0);

ADCSRB = 0x00;

ADCSRA |= (1 << ADSC); //begin first conversion.

//Done for timing purposes

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

DDRA = 0x01;

while (1) {

PORTA = ~PORTA;

_delay_ms (1);

while (ADCSRA & (1 << ADSC)) {}

//wait for any previous conversion to complete

ADMUX = (ADMUX & 0xe0) | 1; //set ADC channel to 1

ADCSRA |= (1 << ADSC); //begin conversion

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

LEDstatus = ADCW;

if (~ PORTA && ((LEDstatus >820) || (LEDstatus <410))) {

// This will be reached only if the LED is bad

break;

}

_delay_ms (998);

}

return 0;

}

Before examining the code in great depth, a few of Atmel’s standards for
accessing the SFRs must be understood. This information can be determined
through examination of the header files, especially, iomxx4.h. This header file
contains a list of several hundred #define statements used to access the various
registers and bit fields. Each register name from the data sheet is defined to
the specific memory address of the SFR and can therefore be used directly in
the code as was done previously with the PINx, PORTx and DDRx registers.
Additionally, for each register there are #define statements for each bit. These
bit field definitions are not directly usable however. Rather than directly ac-
cessing the bit in question, the bit field names are defined as the bit number in
the register. It is therefore necessary to left shift the desired value of a given
bit by the bit field name to position the desired value correctly. For example, in

52

order to start a conversion a value of 1 must be written to the ADSC bit of the
ADCSRA register. In order to do that the 1 must be left shifted (<< operator)
ADSC times

ADCSRA |= (1 << ADSC);

where ADSC is defined as

#define ADSC 6

The |= operator is ‘or equals’. This tells the compiler to store in the variable
to the operator’s left the results of a bitwise OR operation between the left and
right sides of the operator. It is necessary to use the OR operation to maintain
the other bits as they were prior to this instruction because the entire register
must be written at once. It is not possible to actually write a single bit of a
register without writing the entire register. This is not the only method for
performing this sort of shifting operation, but it is the one that will be used
throughout this text.

Initializing the ADC

There are several settings required to properly run the ADC.

ADMUX = 0x00 | (0b01 << REFS0) | (0b0 << ADLAR);

ADCSRA = 0x00 | (1 << ADEN) | (0b110 << ADPS0);

ADCSRB = 0x00;

ADCSRA |= (1 << ADSC); //begin first conversion.

//Done for timing purposes

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

This section of code is responsible for initializing and setting up the ADC
for the use it will be put in this example.

ADMUX = 0x00 | (0b01 << REFS0) | (0b0 << ADLAR);

This line sets the ADMUX register to specify that the reference voltage
for the conversions will be the AVCC voltage and that the result will be right
justified. Technically it also specifies that the ADC will perform single-ended
(non-differential) conversions on channel 0, however that does not matter at this
point. This line could be simplified to

ADMUX = 1 << REFS0;

However the extra code makes it easier to change specific settings in the
future, as well as make it more clear what settings are being used to someone
reading the code. There is no loss of efficiency either as the extra operations
are optimized out by the compiler.

ADCSRA = 0x00 | (1 << ADEN) | (0b110 << ADPS0);

53

These settings for the ADCSRA register specify that the ADC is to be en-
abled (ADEN) and that the prescaler is to be 64 (ADPS). This required prescaler
was calculated by dividing the clock speed of the microcontroller (8MHz) by the
maximum speed of the ADC clock to ensure full precision (200kHz). This re-
sulted in a required prescaler of at least 40. The smallest possible prescaler
above that value was 64 resulting in an ADC clock speed of 125kHz.

The final lines of the section should, at this point, be readily comprehensible.
They, in order, clear all the bits of the ADCSRB register as auto triggering is
not being used, begin an ADC conversion, and wait for the ADC Interrupt Flag
to be set, signaling the completion of the conversion. While the results of this
first conversion do not matter, the fact that it is performed at this point rather
than later is important for timing. For this ADC, all conversions but the very
first require 13 ADC clock cycles (104µs with current settings). Due to the
necessity of initializing the analog circuitry, the first conversion after enabling
the ADC requires 25 ADC clock cycles (200µs). This difference in time can
cause issues in applications where precise timing is required from the beginning,
so this longer conversion can be performed during initialization when timing
tends to be less important.

Reading the ADC

At this point it should be a fairly simple task of determining the individual tasks
of each line of code based on the initialization code, so only a brief overview
should be required. This section takes as an input the channel to perform a
conversion on. It then ensures that any previously requested conversions are
completed, and waits for them to finish if necessary. It then sets the channel
selection multiplexer to the desired channel and begins a conversion. After the
conversion is completed, it saves the results of the conversion to LEDstatus.

while (ADCSRA & (1 << ADSC)) {}

//wait for any previous conversion to complete

ADMUX = (ADMUX & 0xe0) | 1; //set ADC channel to 1

ADCSRA |= (1 << ADSC); //begin conversion

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

LEDstatus = ADCW;

Putting it together

After initializing required variables, setting the DDRA register to have pin 0
be a digital output and initializing the ADC, the main loop of the program can
begin.

while (1) {

PORTA = ~PORTA;

_delay_us (1);

while (ADCSRA & (1 << ADSC)) {}

54

//wait for any previous conversion to complete

ADMUX = (ADMUX & 0xe0) | 1; //set ADC channel to 1

ADCSRA |= (1 << ADSC); //begin conversion

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

LEDstatus = ADCW;

if (~ PORTA && ((LEDstatus >820) || (LEDstatus <410))) {

// This will be reached only if the LED is bad

break;

}

_delay_ms (999);

}

This loop does several tasks, in order, ad infinitum unless a problem is
detected. The first thing it does is change the entire Port A from outputting
a high signal to low, or from low to high. The first execution is a low to high
transition. While only the first pin of the port is actually required, the entire
port can be changed with no adverse effects because all the other pins are set
to input in the data direction register.

After a one microsecond delay to ensure stabilization of the output, the ADC
is read and the result stored. The logic in the if statement checks for a failure
in the LED. If the output pin is low (which turns on the LED) and the voltage
is above 4V (a reading of 820) or below 2V (a reading of 410) the LED must
be bad, as the voltage reading of a correctly operating circuit would read at
3V (an ADC reading of 615). In this case the program leaves the loop via the
break command and the program exits. If the LED is functioning properly the
program waits the remainder of a second before repeating the loop.

It should be noted here that the entire loop is not exactly one second. It is
in fact slightly longer than one second due to the time involved in performing
the analog conversion, the logic test to determine the state of the LED as well
as the bookkeeping for the loop itself. This will be covered in greater detail
later, it is sufficient to say for now that the loop is less than half a millisecond
longer than desired.

4.5 Conclusion

ADCs are very commonly used as many sensors provide analog signals. It is also
a device that can cause problems that may be difficult to notice if incorrectly set.
As such, always ensure the reference voltage is stable and correct, and that the
ADC clock is an appropriate frequency. There is a great deal more information,
and numerous more methods than what is presented in this chapter. A good
place to start for further information would be The Data Conversion Hand-
book available at Analog Device’s website [15], and certainly the ATmega644p
datasheet’s chapter on the ADC (chapter 20) for more information on the ADC
on this microcontroller [11].

55

Chapter 5

Code Styles

As can be seen even within the short programs presented so far, without good
organization code can quickly become an unmanageable mass, especially for
people other than the author attempting to discern how it works. This chapter
will break away from specifics on using any particular hardware and delve into
some stylistic and organizational aspects of coding.

5.1 Headers and Header Files

This section of the code consists of instructions to the compiler as well as vari-
able and function declarations. These instructions are necessary to tell the
compiler what to do with certain things found throughout the code, and are
not ultimately executed in the compiled code. Often times these instructions
are contained within a header file. These header files are used to separate the
compiler instructions from the executed code for organization as well as for im-
proving the possibility for code re-use. When written to correspond to a single,
specific file containing code, the header file will often use the same name as the
code file, only using a .h (for header) extension in place of the .c extension (e.g.
my program.h for my program.c).

5.1.1 #ifndef MY PROGRAM H

All header files should start with a #ifndef statement. This is a pre-processor
instruction (as signified by the # symbol) which tells the pre-processor to check
to see if MY PROGRAM H has been defined previously. If it has, then the compiler
skips to the corresponding #endif statement, which should be at the bottom of
the header file. The line after the #ifndef should be

#define MY_PROGRAM_H}

which will create the definition of MY PROGRAM H and cause the compiler to
skip the interior of the #ifndef #endif section should the compiler attempt to
compile the file a second time within the same compilation of the program, thus

56

avoiding illegal multiple declarations of anything contained within. Should this
combination of lines not be included and the file appears in multiple #include

lines in other files, then the compiler may throw errors about multiple definitions
of the same function or variable. The standards for the definition is to use the
file name in all capital letters, with the period for the extension turned into an
underscore.

5.1.2 Additional Inclusions

In order to better organize the header files, similar commands are grouped
together. The first of these commands is #include. This command tells the
compiler to look at another file and compile it as well, and is used to bring
code in from other files such as libraries (see the section on Libraries later in
this chapter). Even the header files must be included by the source files in this
manor. As long as all the header files are properly constructed with the #ifndef
commands as covered above, there is little need to be concerned over including
the same file multiple times in a single project. There are two slightly different
types of #include statements depending on where the library is located. If the
library is located in a folder in specific paths known by the compiler, such as
where the built in standard libraries were installed to, then angle brackets are
used around the library name e.g.

#include <math.h>

whereas if the file is located in the directory where the current source file is
contained, then double-quotes replace the angle brackets. The standard relative
path syntax is used to navigate between folders and can be used to access higher
level folders than the current directory. The command

#include "..\ Libraries\myFile.h"

would look for myFile.h inside the Libraries folder which resides in the
same parent folder as the current directory (see figure 5.1 for the file structure
in question).

Figure 5.1: File structure for relative path include.

57

5.1.3 Macro Definitions

Compiler macros are created using the #define statement using the structure
#define MACRO NAME macro

It is standard to use all capital letters for macro names. The compilers then
use macros by directly replacing any occurrence of the macro name in the code
with the macro itself via direct substitution. This is most commonly used for
removing numbers from calculations in the code whose purpose may not be
obvious, and replacing them with names. This can improve the readability of
the code, and also makes it simpler to change the value at a later date. This is
especially true if the number appears in multiple locations.

For example, there are two values that are found by experimental means
that are needed as a multiplier and an offset in a control function. The header
file could then contain the lines

#define CONTROL_MULT 0.23897

#define CONTROL_OFFSET 2.348

and the values would be used in the code in the line

output = (input * CONTROL_MULT) + CONTROL_OFFSET;

which is more readable and, when new data is available and the multiplier
and offset change, the macros will be easier to change than finding that line
again.

While this is one common use, these macros can also be used to replace
calculations, function calls and even entire blocks of code. Here’s an example
used for calculating the value to store in a specific register on the ATmega644p
which determines the baud rate for serial communications (see the chapter on
the USART peripheral).

#define UBRR_VAL F_CPU /16/BAUD -1

UBRR0 = UBRR_VAL;

This calculates the required value for the UBRR register based on the clock
speed (F CPU) and the desired baud rate.
Important note: macros should NOT end in a semi-colon unless one is desired
where the macro is used. This example

#define DEF_NUM 4;

sum = DEF_NUM + 2;

throws an error of “expected identifier or ‘(’ before ‘+’ token” as
the macro will result in

sum = 4; + 2;

and the compiler will interpret + 2; as its own command rather than as
part of the sum as intended.

58

5.1.4 Global Variable Declaration

The next section of statements in a header file are the global variable declara-
tions. These global variables are just like local c variables, except that multiple
functions can access them through the use of the extern keyword. It is also
important to note that initializing the global variables in the header file can
cause errors that may not be easily traceable back to the actual source (the
initialization).

5.1.5 Function Prototypes

Finally there are the function prototypes. These are promises that the functions
exist and can be called, but are implemented in some source file not at the
location where the prototype appears. The prototypes are formatted the same
way as the standard function declaration, however instead of there being code
contained within {}’s, there is only a semicolon.

int foo(char bar);

The purpose of these prototypes is to increase the scope of the functions and
allow other source files to call them. Additionally it allows the implementations
to occur in any order in the source file. Take, for example, a program with
a main function which calls the function foo and no function prototypes. If
the main function were implemented before foo (earlier in the file), then the
error ‘foo’ undeclared (first use in this function) would be thrown.
The error would not be thrown if foo was implemented first, or if function
prototypes were included.

5.2 Commenting

Comments are a vital part of a program, not for changing how the code is run on
a machine, but for maintenance and use by other people. Some people propose
that every line that contains code should be commented, others are proponents
of fewer comments, but still more lines with comments than lines without. The
number and style of comments needed will vary depending on the desires of the
person in charge of the project (often times a manager; the boss of the person
writing the code) and the complexity of the code. Well written code will require
fewer comments as the code is more self explanatory, however a good rule of
thumb is that a reader should be able to understand what the code is doing, as
well as how it is doing it by reading the comments alone.

5.2.1 Documentation Comments

Documentation comments are blocks of comments whose purpose is to create
the documentation for the program. When properly formated programs such as
Doxygen will automatically pull these comments out and form them into a nice
set of documentation.

59

Doxygen standards are very similar to Javadoc, both in methods to declare
a comment block as documentation and in the tag system used to mark certain
pieces of information. Many of the pieces of information important to include
in the documentation have keywords called tags that precede the information
in the comment block. These tags include brief, return, param and file, and
are preceded by either a \or an @ symbol. Either will work, but it is best to
choose one of the two and stick with it within any program for consistency’s
sake.

There are several variations on how to mark comments as documentation,
using both the comment block and comment line styles. The most common
method for comment blocks, because it is also the method used by Javadoc, is
to begin the comment block with a second asterisk. Often times each line will
also begin with an asterisk to improve visibility in the code.

/**

* This is a documentation comment

*/

/*

This is not

*/

Another method, utilizing comment lines, is to create a block of comments at
least two lines long, and beginning with an extra /.

///

/// This is a documentation comment

///

File Documentation Comments

Each file should begin with a documentation comment block. This block should
contain a description of what is included within the file, the date of creation or
modification and the authors’ name(s). Often times there will also be a change
log or version history included in the file comments as well. A full listing of the
usable tags can be found at www.doxygen.com [4]. Here is an example of the
file documentation for the source file mainfile.c.

/**

* \file mainfile.c

* \author Peter Alley

* \date 7 JUL 2009

* \version 2.3

*

* \Section

* Here we have a description of the file. As this is

* just a demo and the file doesn't contain anything ,

* this is just a dummy description.

*

60

* \Section

* By the way , there can be multiple sections.

*/

Macro and Global Variable Comments

Each defined macro and global variable needs to be commented. This will help
keep track of which symbols have been used as well has what they have been
used for. The tags for these comments tend to be fairly self explanatory, in
that the def tag is for defined macros, struct is for structures, typedef is for
defined variable types and var is for variable declarations. Again, a full list of
these tags can be found at www.doxygen.com [4].

/**

* \def ADC_CHANNEL

* Channel to use on ADC

*/

#define ADC_CHANNEL 1

Function Documentation Comments

Perhaps the most important and most useful documentation comments are those
for individual functions. These can appear either with the function prototype
in a header file or with the implementation in the source file, or with both; and
contain descriptions of the functions as well as what each of the input parameters
should be and what the function returns. In a multiple-author file, there may
also be an author tag.

These are some of the most common tags for function, and how they are
used.

� brief: Following this should be a brief, one to two sentence explanation of
the function. Should a more in depth explanation be desired or required,
put the verbose explanation at the end of the comment block, separated
from the tags above it by an empty line.

� param: This tag has two arguments separated only by spaces. The first
argument is the name of the parameter in question, and the second is a
description of what information the function is expecting to be in it.

� return: This tag indicates a brief explanation of what the return value for
a function is. If the return type for the function is void then there is no
need to include this tag.

/**

* \brief This is a function that subtracts the first

* argument from the second

* \param param1 The number to be subtracted from

* \param param2 The number to subtract

61

* \return The result of the subtraction problem

*

* This is the place to include a longer description of

* the function as necessary , though in this case it is

* hardly required due to the simplicity of the function.

*/

float subtract(float param1 , float param2) {

return param1 -param2;

}

5.2.2 Non-Documentation Comments

While documentation comments purpose is to explain what the code does, the
comments not intended for documentation cover how the code works. These
comments are most useful to future programmers attempting to maintain the
code. Every comment will give them more information and make their job
easier. These are several situations where comments are highly useful.

� Lines with complicated logic. Whenever there is a logic check that includes
more than one or two operations it is advisable to include a comment
specifying, in English, what cases will result in a true result.

� Beginnings of conditional blocks. Whenever a section of code may or may
not be executed, a comment explaining the block of code and when it will
run should be included.

� Beginnings of loops. When entering into a loop (while, do-while etc.), it is
useful to have a description of what the loop accomplishes, and how long
it will loop for. If the loop is set to loop a set number of times, a reason
why that number should be included.

� Any line with a non-obvious result or reason. If a single line, or even a
collection of lines, has a result that is not easily understood, be it the
reason, process, or result, a comment explaining the line(s) should be
included.

� Logically separated blocks of code. Every so often a given task will be
completed, and a new task started in the code. Each of these tasks should
be commented at the beginning, briefly stating what the section does. This
could be something such as “initialization” or “compute motor torque”.
When there is a problem discovered in a certain portion of the program,
these are the comments that are the first inspected, to find the correct
section of code.

These are by no means the only places comments can be. Any time the
programmer wants a comment, be it to write down his thought process, get
an idea across, demonstrate pseudo-code or even to temporarily remove code
from execution, a comment can be included. If in doubt about the usefulness
or necessity of a comment, include it: someone, someday, may find it useful.

62

5.3 Code reuse: Functions and Libraries

One of the best ways to increase both the speed and accuracy of coding is to
reuse code. By taking code from previously written programs or sections of the
same program, correct operation is easier to ensure, and time is saved in not
having to rewrite and debug the code. This section covers using functions and
function libraries to this end.

5.3.1 When to use functions

The primary purpose of a function is to allow the same piece of code to be
used in multiple locations in a program. While physically possible to write
an entire program within the main function, it would be extremely difficult to
follow and would likely have numerous bugs it would be difficult to remove.
Functions allow for better organized, easier to maintain, and often result in
smaller resultant programs.

The question then becomes, when are functions appropriate? Whenever the
answer to any of the following questions is yes, then the code in question should
probably be its own function.

� Does the section of code exist in more than one location? Repetition of
code leads to a nightmare for maintenance as one location may be changed
or updated and another location left as original.

� Will the code be useful for other/future projects? This comes into play
more with the code use and libraries discussed later in this chapter.

� Is it a complex section of code with a relatively simple result? This can be
complex calculations to result in a single value, or a series of initialization
commands. In either case, even if the function would only ever be called
once, separating the code out into a function can improve readability and
maintainability.

5.3.2 Variable Scope and Arguments

The instant a function is entered, all previous local variables are no longer
available. The only variables usable (in scope) are the global variables and the
arguments passed to the function in the call. It is therefore important to pass
the function any information it will need to produce its result.

There are, however, a few problems with simply adding another argument
for ever piece of information the function requires. First, the function call
could become unmanageably large as the number of arguments reaches 10 and
beyond; and secondly if the function is being called from multiple locations or
even multiple programs (see Libraries below) then every function call has to be
updated when another argument is added.

63

5.3.3 structs

An easy solution to both problems is to use structs. Structures, or structs
as they’re commonly called, are blocks of memory that can hold several pieces
of information in key-value pairs. This allows many pieces of information to
be stored and passed using a single symbol, especially when the included infor-
mation is relevant to a single theme (the dimensions of an object for example).
When returning from a function, structs also have the ability to carry several
results back to the calling function, as opposed to the single result that is nor-
mally possible. Finally, the addition of another key-value pair to a struct does
not change its appearance in function calls. The same function call can be used
without any modification, and the new value is available inside the function as
long as it has been declared somewhere else.

Structs are used in a manor very similar to accessing fields of objects in
object-oriented programming languages such as C++ or Java. The command
to access a specific value in the struct is the name of the struct followed by
a period and then the field name. E.g.

myStruct.myField = 4;

will cause the value 4 to be saved to the field myField in the struct

myStruct, and afterwards calling

myStruct.myField

will return a result of 4 (the value stored in myField).
For more information on structs, refer to chapter 6.

5.3.4 Libraries

A library is a group of functions related to a similar purpose that is collected
in its own file. Libraries aid in the organization of large programs, but their
primary purpose is in code reuse.

For every commonly used programming language there are dozens or hun-
dreds of libraries already in existence. Many of these are included when the
compiler is installed, but on occasion some of the more esoteric libraries may
have to be installed separately. These libraries include functions for most basic
tasks which most programmers will need at some time or another. These include
all the various math functions (square roots, trigonometry etc.), time functions
(system clock, delays), file and system IO etc. The list goes on and on. It is also
very common for programmers to write their own libraries, either for use within
a single project where their purpose is mostly organization, to use in multiple
projects to prevent having to re-write the same functions many times.

Take the example of a microcontroller such as the ATmega644p. There are
only a limited number of ways to setup peripherals such as the ADC, and once
setup once a given programmer is likely to keep with the same setup every time
he uses it. Why should the programmer then have to rewrite the initialization
and reading functions every time a new program is written. Instead, by putting

64

the functions into a library the first time, that library can be included in the
next project and the functions used saving time and effort.

These libraries are no different than most other source files in execution.
There should generally be a header file (see Headers and Header Files above)
and will contain functions in the exact same format as a non-library source file.
The only differences is that there should never be a main function in a library,
and that libraries are specifically intended to be used across multiple projects.

5.4 ADC program revisited

With the ideas put forth in this chapter, it should be a simple matter to take the
program found at the end of the previous chapter on ADCs and improve upon
it by separating the ADC related sections of the code into separate functions
and placing them within a library that shall be called ADC for simplicity.

Main.c

Here is what the primary source file should look like.

/**

* /file Main.c

* /author Peter Alley

* /version 1.0

* /date July 2010

*

* This file contains the main function for a program to

* slowly flash an LED and exit the program if a fault is

* detected in the system using the ADC on the ATmega644p

*/

#include "Main.h"

/** \fn int main(void)

* \brief Main function that continually reads the ADC

* and exits if it detects a fault.

* \return Returns 0 and exits upon fault

*/

int main(void) {

unsigned int LEDstatus;

ADC_init ();

DDRA = 0x01;

while (1) {

PORTA = ~PORTA;

_delay_ms (1);

LEDstatus = ADC_read(ADC_CHANNEL);

if (~ PORTA && ((LEDstatus > LED_UPPER) ||

(LEDstatus < LED_LOWER))) {

// This will be reached only if the LED is bad

65

break;

}

_delay_ms (998);

}

return 0;

}

This should be far more understandable than it was previously. Note, however,
that there is only a single #include command pointing to a local file, and that
there are several undefined symbols (such as ADC CHANNEL). These symbols are
defined in the header file.

Main.h

/**

* /file Main.h

* /author Peter Alley

* /version 1.0

* /date July 2010

*

* Header file for a program to slowly flash an LED and

* exit the program if a fault is detected in the system

* using the ADC on the ATmega644p.

*/

#ifndef MAIN_H_

#define MAIN_H_

#include <avr/io.h>

#include <util/delay.h>

#include "ADC.h"

/**

* \def ADC_CHANNEL

* Channel to use on ADC

*

* \def LED_UPPER

* Upper limit for reading a 'good' LED (4V)

*

* \def LED_LOWER

* Lower limit for reading a 'good' LED (2V)

*/

#define ADC_CHANNEL 1

#define LED_UPPER 820

#define LED_LOWER 410

/** \fn int main(void)

* \brief Main function that continually reads the ADC

* and exits if it detects a fault.

66

* \return Returns 0 and exits upon fault

*/

int main(void);

#endif

This file includes the standard pre-processor check against multiple includes
of the file, instructions to include the built-in libraries required for the AT-
mega644p as well as a local library ADC, and defines the previously magic num-
bers to understandable symbols. Finally is the function prototype for the single
function found in the source file. While not strictly required to be in both the
header and the source file, the documentation comments for the main function
is included in both locations here. Especially for libraries having the documen-
tation in the header file is more important than in the source file, however it
can sometimes help to have the documentation in both locations.

ADC.h

/**

* /file ADC.h

* /author Peter Alley

* /version 1.0

* /date July 2010

*

* Header file for library containing functions for using

* the ADC on the ATmega644p.

*/

#ifndef ADC_H_

#define ADC_H_

#include <avr/io.h>

/** \fn ADC_init

* \brief Initializes the ATmega644p and sets it to use

* ADC1 (PA1)

*

* ADMUX:

* Use AVCC as reference

* Right adjust result

*

* ADCSRA:

* Enable ADC

* Select prescaler of 64

*/

void ADC_init(void);

/** \fn ADC_read

* \brief Performs conversion on selected channel and

* waits for completion

67

* \param Channel upon which to perform conversion

* \return Converted value

*/

unsigned int ADC_read(unsigned char channel);

#endif

By this point this file should be easy to follow and understand.

ADC.c

/**

* /file ADC.c

* /author Peter Alley

* /version 1.0

* /date July 2010

*

* Source file for library containing functions for using

* the ADC on the ATmega644p.

*/

#include "ADC.h"

/** \fn ADC_init

* \brief Initializes the ATmega644p and sets it to use

* ADC1 (PA1)

*

* ADMUX:

* Use AVCC as reference

* Right adjust result

*

* ADCSRA:

* Enable ADC

* Select prescaler of 64

*/

void ADC_init(void) {

ADMUX = 0x00 | (0b01 << REFS0) | (0b0 << ADLAR);

ADCSRA = 0x00 | (1 << ADEN) | (0b110 << ADPS0);

ADCSRB = 0x00;

ADCSRA |= (1 << ADSC); //begin first conversion.

//Done for timing purposes

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

}

/** \fn ADC_read

* \brief Performs conversion on selected channel and

* waits for completion

* \param Channel upon which to perform conversion

* \return Converted value

*/

68

unsigned int ADC_read(unsigned char channel) {

while (ADCSRA & (1 << ADSC)) {}

//wait for any previous conversion to complete

ADMUX = (ADMUX & 0xe0) | channel;

ADCSRA |= (1 << ADSC); //begin conversion

while (ADCSRA & ~(1 <<ADIF)) {}

//wait until conversion complete

return ADCW;

}

Finally the program is complete. These two functions are called by the main
function to operate the ADC. Additionally, this library can be used in future
projects without modification assuming the task is similar. The symbols that
are still not defined in the code in this or the previous chapter (such as ADMUX)
are the registers and locations of individual bits within the register which are
defined within the header files installed with the compiler, and are included via
the #include <avr/io.h> command in the header file.

5.5 Conclusion

Nothing presented in this chapter is required by the compiler. Everything in the
header files can be included in the code file, and the program certainly doesn’t
care about whether it’s commented. Nonetheless, it is important to spend the
time and effort to do all this, otherwise in six months when the code needs
modifying it will be difficult to determine what was going on. In the long run,
proper documentation and organization will save time. For further information,
or other opinions on the proper documentation and design of code, look for
instructional books on C programming such as C for Dummies [14].

69

Chapter 6

C Data Structures

At this juncture there are a couple aspects about the C programming language
that should be brought up. While they are covered in more depth in most any C
programming course or text, they are very useful in microcontrollers so at least
a brief look at them and their uses are warranted. Specifically, this chapter will
cover arrays (called matrices in some languages) and structs.

6.1 Arrays

To compare arrays to mathematics, arrays are Cartesian collections of data with
at least one dimension. In other words, a single data point is just that, a point
with zero dimensions. If additional data points are added next to the first, it
becomes analogous to a line, or a shape with one dimension. This series of
data is a one-dimensional array. More dimensions can be added on, however
the frequency of finding multi-dimensional arrays decreases drastically as the
number of dimensions increases. This is both due to the lack of a need for those
arrays as well as the complexity and space requirements of storing arrays with
large numbers of dimensions. The Cartesian reference indicates that each piece
of data has a unique set of coordinates to reference it, similar to how a Cartesian
graph operates.

6.1.1 Declaring Arrays

There are two ways to declare an array in C, depending on if the array will be
initialized or not.

char firstArray [12];

The first method, seen above, is used when the array is not being initialized
at the same time as its creation. This causes an appropriate block of memory,
in this case 10 /textttchars and store the address of the first char to the name
firstArray. This method is used when declaring global variables, or when the
data does not exist yet to store in the array, such as when taking sensor readings.

70

char array1 [] = "Hello World";

char array2 [] =

{'H','e','l','l','o',' ','W','o','r','l','d','\0'};

These two lines are equivalent, and merely differentiate the storage of a
string vs a series of values. Functionally they are identical in this case, however
when storing numerical data, the second method is what will be used. The ’\0’
character is a null character indicating the end of a string, and was appended
automatically in array1. In this case the length specification is left out of the
declaration and the array becomes the required length for the initialization, in
this case 11 chars.

It is also permissible to specify the array length even when initializing at
the same time. This can have one of four results. First, the specified size can
be the same as what would be necessary, in which case there is no difference
to what occurred above. Second, the specified size could be smaller than the
length of the initialization, in which case an error will occur and the compiler
will be most displeased. Third, the specified size could be larger than necessary.
In this case the remaining space in the array will be filled with zeros. The final
case is a special case that occurs when a string is used to initialize an array
and there is only enough space for the letters and not for the terminating null
character. In this case the null character will not be appended and the array
will merely be filled with the characters in the string.

6.1.2 Accessing Arrays

Accessing the data within an array for either reading or writing is a fairly
simple process. Below is an example of both writing to and reading from an
array. There are two important things to note here. The first is that all access
to the array after its initialization is performed on a per datum basis. It is not
possible to read or write multiple pieces of data at once. The second piece of
important information is that arrays in C are zero indexed. That means that
the first piece of data is stored at location 0.

int array[] = {1,2,3,4};

int x = 2+ array [2];

array [3] = 15;

At this point x is equal to 5 (2+3) and array is {1,2,3,15}.

6.1.3 Multi-Dimensional Arrays

Up to now all the examples have been using arrays with only a single dimension.
To add a second dimension an extra pair of square brackets is added for each
dimension. In a two dimensional array the order of the coordinates is row
followed by column. For example

char array1 [4][2] = {0,1,2,3,4,5,6,0};

char array2 [4][2] = {{0 ,1}{2 ,3}{4 ,5}{6 ,0}};

71

char array3 [4][2];

array3 [0][0] = 0;

array3 [0][1] = 1;

array3 [1][0] = 2;

array3 [1][1] = 3;

array3 [2][0] = 4;

array3 [2][1] = 5;

array3 [3][0] = 6;

array3 [3][1] = 0;

all produce the same result with four rows and two columns. Additional
dimensions can be added in similar fashion. It is also possible to only define the
values for part of the array. If there are not enough values to fill the array (such
as if the zero was left off array1 or array2) there will still be a value in that
memory location, though it is not known. Any such unknown values are likely
to be zero, however if that memory location had previously been used to store
something else, that value will remain. It is therefore important to explicitly
set each value of an array before it is read.

These are only the basics of working with arrays. There is a wealth of other
sources available for those who want or need more than is covered here.

6.2 structs

In the C programming language the struct is a specific data structure that is
somewhat analogous to objects from languages such as C++ or Java. A struct

in C is a collection of one or more pieces of data stored in named fields within
a single named object. Unlike arrays the pieces of data do not all have to be
the same type. One piece could be an int, another a float, and a third be a
pointer to a function. In this manor it is actually possible to almost directly
convert C++ into C by turning all the objects in C++ into structs.

The similarities to objects do not end there. structs are also accessed via
dot notation. This means that to access a specific field or piece of data in the
struct, one uses the struct’s name, followed by a period, followed by the field
name. For example, to store the value 5 into a field in exampleStruct one
would enter:

exampleStruct.exampleField = 4;

This method of storing and accessing data requires a little more effort than
simply storing the value in an ordinary variable, however it becomes far more
useful when passing data from function to function (see below).

6.2.1 Declaring structs

There are three methods available for declaring structs. The first method is to
follow struct keyword with the type name of the struct. Note that this is the
general name for all structs using the set of fields. Following the type name is

72

a list of all the fields that will be contained in the struct within a set of curly
brackets. If an instance of the struct is to be immediately created, the instance
name or names follow the closing curly bracket, though this is not required.

struct exampleStructType { int field1;

float field2;

char [5] string;

} structInstance1 , structInstance2;

In this example two separate structs, structInstance1 and structInstance2,
are created. Each can store the same types of data (an int, a float and an
array of five chars), and the two structs are both of type exampleStructType.
Note the semicolon after each field listing of data type and field name, as well
as the semicolon at the end of the instance list. To create instances of a pre-
defined struct later, the list of fields and accompanying curly brackets are not
included. For example:

struct exampleStructType structInstance3;

The second method for declaring a struct is to precede the struct keyword
with they typedef keyword and include before the list of instances to create,
a name for the struct that will be they keyword for the type. Due to the
similarity of usage to the name already included (exampleStructType in the
example above), it is common to just append t for the keyword.

typedef struct keywordExStruct { int field1;

float field2;

char [5] string;

} keywordExStruct_t structInstance1 , structInstance2;

Note the lack of a comma after the new keyword. This is important as it
distinguishes the keyword from the instance names. Using the typedef keyword
in this fashion will turn keywordExStruct t into a keyword akin to int or
float, and remove the need of including the struct keyword in the future.
Therefore future instantiations of the keywordExStruct t is simply

keywordExStruct_t structInstance3;

The final method is an extension of using typedef. In this case the initial
type name is left out. The drawback of this method is that instances cannot
be created immediately. This drawback is minimal however, as shall be seen
below.

typedef struct { int field1;

float field2;

char [5] string;

} keywordEx2_t;

keywordEx2_t structInstance1 , structInstance2;

In any of the cases, whether using typedef or not, filling a struct with
data can be tedious. Once the struct has been instantiated, it is only possible

73

to access a single field at a time. For large structs this can turn into a mess.
There is an exception to this however. When the instance is first created, it can
be set equal to a list of the values for each field in this manor:

keywordExStruct_t structInstance4 = {8, 3.2, "foo"};

The order of the data must match the order of the fields, but this is the
simplest way of filling large structs if the data is known at the time of cre-
ation. keywordExStruct was used in this example, however the method of
filling a struct applies to either method of declaration. This then minimizes
the drawback of the third method of declaration, as it is most advantageous to
fill structs as they are instantiated. A better method is to use a list format
as above, but combine it with the dot notation. This allows for setting specific
fields rather than relying on the order being correct. The whitespace in the
example below is for readability and is ignored by the compiler.

keywordExStruct_t structInstance5 = { .field1 = 8,

.field2 = 3.2,

.string = "foo"};

6.2.2 Uses for structs

The uses for structs are many and varied. Already mentioned was the pos-
sibility of emulating C++ or Java objects and storing references to functions,
however these are not the purpose of introducing structs herein. Instead this
text will introduce their use as another method of accessing SFRs (see chapter
2) and using them as the sole argument to functions, especially those in libraries
referenced by different projects.

SFR access

Thus far access to individual bits of SFRs has been a clunky troublesome
prospect requiring bitwise logic, left-shifting and masking. With a properly
prepared library the bit fields and individual bits of the various SFRs become
trivial to access. It has previously been mentioned that any data type can be
included in a struct. This includes bit fields of any width, signed or unsigned.
To create a bit field in a struct use the signed or unsigned keyword as appro-
priate (in this usage they will all be unsigned) and follow the field name with
a colon and the number of bits wide the field is. Here is an example using the
ADCSRA register (Analog-Digital Converter Status Register A):

typedef struct {

unsigned _ADPS0 :1;

unsigned _ADPS1 :1;

unsigned _ADPS2 :1;

unsigned _ADIE :1;

unsigned _ADIF :1;

unsigned _ADATE :1;

74

unsigned _ADSC :1;

unsigned _ADEN :1;

} __ADCSRAbits_t;

extern volatile __ADCSRAbits_t ADCSRAbits

__asm__ ("0x7A") __attribute__ ((section("sfr")));

The struct defined above consists of eight 1-bit wide bit-fields with the
names of each field being the same (with the addition of an underscore) as are
in the datasheet for the ATMega644p. It is vital to note that the least significant
bit (bit 0) is the first listed in the definition. The final line of the above code
instantiates the struct under the name ADCSRAbits and tells the compiler what
memory address to reference. Specifically, each part of the final line mean the
following:

� extern: This keyword explicitly states that the variable defined on this
line is a global variable. The variable is therefore accessible from anywhere
in the program without special effort.

� volatile: Often times a compiler will attempt to optimize the code.
This can cause the compiler to store a value retrieved from memory in a
temporary variable for usage multiple times, rather than reloading it from
memory each time. The volatile keyword prevents this optimization
which is important in this case as things outside the code can affect what
is stored in the register.

� ADCSRAbits t: The name of the type as defined by the typedef above.

� ADCSRAbits: The variable name. This is name of the variable that can be
referenced in the code.

� asm ("0x7A"): This is a special command to the compiler instructing
it to include what is in the parenthesis directly into the compiled code as
is. In this instance it is telling the compiler that the variable ADCSRAbits

refers to the register found at the memory address 0x7A.

� attribute ((section("sfr"))): This provides additional informa-
tion to the compiler for error checking regarding what the variable is for,
and is not required.

Useful as this is, this struct provides no method of reading or writing the
entire register at once. Another thing that would be useful is to be able to
address all three ADPSn bits simultaniously. In order to do this another keyword
must be introduced: union. A union allows multiple different data types to
address the same memory. In this case the different data types will all be
structs though with differing bit-fields. A unionis declared in much the same
way as a struct, however each member of a union is a separate struct which
does not require a name. Here is the same type as above (ADCSRAbits t)
adapted to allow easier access to larger bit-fields.

75

typedef union {

struct {

unsigned _ADPS0 :1;

unsigned _ADPS1 :1;

unsigned _ADPS2 :1;

unsigned _ADIE :1;

unsigned _ADIF :1;

unsigned _ADATE :1;

unsigned _ADSC :1;

unsigned _ADEN :1;

};

struct {

unsigned _ADPS :3;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __ADCSRAbits_t;

The first struct is the same as before. The second struct provides access
to all three ADPSn bits simultaneously. This leaves five bits that already have
been named in the first struct individually and don’t require further naming.
Thus the name is left out of that line. Finally a third struct groups the entire
byte into a single field. All three of these structs provide access to the same
register, just with different layouts.

AVR, the makers of the ATMega644p, do not provide a header file with these
definitions. It therefore falls upon the individual user to create or find such a
header file. While it seems a daunting task the author created such a file with
less than ten hours of work, and has proven to be very useful. As an example,
in order to set the ADC prescaler to a division factor of 8 (ADPS2:0 = 0b011)
without changing any other bit in the register now requires only

ADCSRAbits._ADPS = 0b011;

rather than

ADCSRA = 0b011 | (ADCSRA & 0b11111000);

While both take a single line, the new method is easier to understand and
to code.

Function Arguments

When first creating libraries it is not unusual to unintentionally limit the use-
fulness by limiting the functions, especially those responsible for initializing
peripherals, to specific tasks. It is much more useful to have a single function
used for initialization of a peripheral with arguments for the various options
and always use that function. This reduces the number of functions required
for any particular task as only one is required as opposed to a separate function
for each slightly different possibility.

76

There are two issues with doing this however. First, there could be numerous
options, and while from the compiler’s side it isn’t an issue, it can cause problems
for the programmer or whomever has to look at the code later. The second
problem comes into play when an additional argument is required at a later
date. This could be caused by a change to the hardware, be it update or change
to a different controller, or due to a previously overlooked option. If suddenly a
new argument is required, either a new function has to be written or all instances
of function calls to the old version must be updated. The alternative to this is
to only require a single argument for such a function - a struct containing all
the information about the various options. If something changes in the future,
a new field can be added to the struct in the library and old code using the
functions will not require modification. The old code will simply ignore that
additional field. A further benefit is that the struct can be used to store data
being returned from the function. This is especially helpful when more than a
single value must be returned.

Here is an example of how this can be used in initializing the ADC. All
options available on the ATmega644p’s ADC are available via this struct and
function except for the DIDR0 register which is purely optional anyways (its
function is merely to save a tiny bit of power).

/**

* \typedef ADC_init_struct

* struct containing all config options for ADC

*/

typedef struct {

char channel; ///<Channel to use

char left_adjust; ///<left or right adjust result

char reference; ///<reference voltage source

char auto_trigger; ///<start conversion based

///<on external source

char auto_source; ///<source for auto conversion

char enable_interrupt; ///<enables conversion

///<complete interrupt

char prescaler; ///< ADC clock prescaler

} ADC_init_struct;

int main(void) {

ADC_init_struct ADC_struct;

ADC_struct.channel = 0;

ADC_struct.left_adjust = 0; // right adjust

ADC_struct.reference = 1; //AVCC

ADC_struct.auto_trigger = 0; //off

ADC_struct.auto_source = 0; // doesn't matter

ADC_struct.enable_interrupt = 0; //off

ADC_struct.prescaler = 0b110; // divisor = 4

ADC_init(ADC_struct);

}

/**

77

* \func ADC_init

* \brief Initializes ADC and runs first (extra long)

* conversion

* \param config struct containing all

* configuration information

*

* Accepts a a struct (ADC_init_struct)

* containing options for every ADC configuration

* excepting only DIDR0

*/

void ADC_init(ADC_init_struct config) {

ADMUXbits._MUX = config.channel;

ADMUXbits._ADLAR = config.left_adjust;

ADMUXbits._REFS = config.reference;

ADCSRAbits._ADATE = config.auto_trigger;

ADCSRBbits._ADTS = config.auto_source;

ADCSRAbits._ADIE = config.enable_interrupt;

ADCSRAbits._ADPS = config.prescaler;

ADCSRAbits._ADEN = 1;

ADCSRAbits._ADSC = 1; // begin first conversion.

//Done for timing purposes

while (ADCSRA._ADIF == 0) {}

//wait until conversion complete

}

The uses for both arrays and structs are far more numerous than mentioned
here, and there is a wealth of information available on each for the interested.
This has only been a brief introduction including some uses that may not be
immediately obvious.

6.3 Pointers

Whenever programming in C, pointers will eventually float to the surface. A
pointer is a data type who’s value is the memory address for some other piece
of data. Pointers have a variety of uses and applications, most of which relate
either to improving performance for repetitive operations or for allowing access
to stored data that might not otherwise be available in the current program
context.

6.3.1 Pointer Syntax

A pointer is declared by adding and asterisk (*) before the name of the pointer.
The data type when declaring the pointer is the same type as that which the
pointer will be referencing, as though a variable of that data type were being
declared. This pointer is set equal to the variable it should reference with an
ampersand (& preceding it. This ampersand causes the address of the variable
rather than its value to be retrieved. A pointer to the int var could look
something like this:

78

int var1 = 1;

int *var_pointer = &var1;

At this point the value stored in memory for var pointer is the address of
var1. When using the pointer to access its referenced value, a process called
dereferencing, include the asterisk before the pointer name.

*var_pointer = 4;

This line does not change the value stored for var pointer, instead the value
of var was changed to 4. If the asterisk were omitted, the value of the pointer
itself would change. This can be useful when using pointers for array operations
as will be covered later.

6.3.2 Pointers and arrays

Pointers are commonly found when working with arrays, as they provide an
alternative to the square bracket notation mentioned above. As arrays are
created as a single block of values when declared, a little bit of math is all that
is required to find any location in the array. Even multi-dimensional arrays are
created this way, each row being appended to the one before it. To reach any
value in a row, assuming there is a pointer to the first value, add the index of
the desired value. Any calculations for the width of the data types is taken care
of automatically. Note that different processors use different widths for data
types. For example, the ATmega644p has 16 bit ints, where as most modern
computers use 32 bit ints. In the case of two dimensional arrays multiply the
row number by the number of columns and then add the column number of the
desired value. It is interesting to note that the variable for an array is actually
a pointer to this block of memory. This means that the syntaxes for arrays and
pointers can be used somewhat interchangeable. Below are several examples

int array[] = {0,1,2,3,4};

int *ptr = array;

ptr[0] = 0; //Using a pointer with array syntax

*(array +3) = 3; //using the array symbol as a pointer

ptr++; //ptr now points to array [1]

ptr[0] = 1;

In these examples, once the array is declared and initialized, none of its
values ever change. The values are merely overwritten with the same value as
they already were.

6.3.3 Pointers and other data structures

Between the use of pointers, arrays and structs, most any other type of data
structure can be created. Here are several common structures and how they can
be created.

79

Linked Lists

A linked list is a series of items, each one linking to the next. These items can
be any data type or structure, including pointers, arrays, structs or anything
else. The link to the next item in the list is a pointer storing the address. The
actual method for creating a linked list could be to use an array with a column
for the pointer, however this only works if the array is of ints or something
similar. What works better is to use structs for each item in the list, with one
or more fields containing the object and another field for the pointer to the next
struct. The following is an example of using a very generic linked list. The
void type for the data pointer allows that data to be of any type, thus allowing
the list to be composed of items of differing types.

struct llstruct {

void *data;

struct llstruct *next;

};

int main(void) {

struct llstruct item1;

int array[] = {0,1,2,3,4};

item1.data = &array;

struct llstruct item2;

item1.next = &item2;

item2.data = &array;

return 0;

}

Doubly Linked Lists

Doubly linked lists are almost identical to linked lists, with the exception that
they also have a link to the previous item in the list. This removes the limitation
that only items later in the list are findable from a given item. One very handy
use for both, singly and doubly linked lists is to have a dynamically resizing
array. While somewhat less time and space efficient than a single pre-sized
array, each row of the array could be its own item in the list.

Trees

A tree is a collection of items (called nodes) branching out from a single point
(called the root). Each node in the tree may have 0 or more child nodes.
These data structures are commonly used in a variety of path-finding and other
decision making algorithms. The creation of a tree is very similar to linked lists,
but with multiple options for the next item. Nodes will very often have a link
back to its parent, so the route to the node can be retraced.

80

6.3.4 Pointers in pass by reference

Normally, when a function is called, copies of any arguments are made and those
copies are what are used in the function, and then are lost when the function
returns. This is called being passed by value. Fairly often the functions are
supposed to change the original values, especially as only a single value can
be returned. The solution to this is to pass a pointer to the variable (pass
by reference), which will allow the function to work on the original data and
location rather than a copy of it. Any changes made in the function will remain
after it returns. This is commonly done when a few variables are needed. For
larger numbers of variables, they are often put in an array and the array is
passed. As the array variable is technically a pointer itself, passing an array to
a function is automatically pass by reference. Pointers are also commonly used
for passing structs, both due to the time involved in copying all the data in a
struct, as well as conserving stack space. The syntax for passing a pointer is to
use an asterisk in the function declaration, but not in the call itself.

void ptrFunc(int *ptr) {

*ptr = 5;

}

int main(void) {

int var = 2;

int *ptr = &var;

ptrFunc(ptr);

return var; // returned value is 5

}

As it is somewhat cumbersome to constantly create pointers for the variables,
the address of var can be sent using the ampersand notation eliminating the
need to create ptr.

ptrFunc (&var);

6.3.5 Function pointers

When discussing structs it was mentioned that they could be used as a primi-
tive form of object. One important aspect of objects in object oriented program-
ming is to have callable functions which may do different things depending on
the object. A similar form is possible using structs and pointers to functions.
The creation of a function pointer is very similar to that of any other function.
The type is the return type of the function, and it is set equal to the address of
the function using an ampersand and the function’s name. The only difference
is the list of the function’s argument’s types (no argument names) is included
within parentheses immediately after the pointer name, not after the function
name. Calling them is done the same way as any other function. Here’s an
example:

int add(int a, int b) {

81

return a+b;

}

int main(void) {

int *funcPtr(int ,int) = &add;

return funcPtr (4 ,3); // returns 7

}

6.4 Conclusion

The uses for these various data types are many and varied. Only the barest
surface was scratched here, though it should be enough to get one started and
stir the imagination for other uses they may have. Most any text focusing on C
programing will have more. There is also a wealth of information available on
the internet, so just doing a keyword search for any of these data types should
return many results. A reasonable starting point is Wikipedia and the sources
referenced there, or a book on C programming such as C for Dummies [14].

82

Chapter 7

Serial Communications

Serial communications is a very broad topic that covers numerous formats, stan-
dards, customs etc. It refers to any digital signal where data is transferred a
single bit at a time. Common examples include USB (Universal Serial Bus),
digital telephone lines, telegraphs, RS232 (commonly called the serial port on
computers), ethernet and the list continues. There are three serial communica-
tions peripherals on the ATMega644p: SPI (Serial Peripheral Interface), USART
(Universal Synchronous/Asynchronous Receiver Transmitter) and TWI (2-wire
Serial Interface) also known as I2C(pronounced I-squared C or I-two C).

7.1 USART and RS232 Serial

The USART (Universal Synchronous/Asynchronous Receiver Transmitter) is
the peripheral most often used for communications to and from a computer
or another microcontroller. This is because it is very simply converted into a
signal using the RS232 standard with the use of another IC. This second IC’s
purpose is to ensure the voltage level of the signal is within the plus or minus
3 to 15 volts, protect the microcontroller from shorts and grounds, and provide
the signals for the other pins in the RS232 standard.

7.1.1 RS232

The RS232 serial communications standard is used by the port commonly la-
beled the ”Serial Port” on desktop or laptop computers, using a 25 pin D-sub
connector. Of these 25 pins only 10 are used by the standards, and only two
actually carry the data being transfered. The two devices communicating under
this standard are classified as ”Data Terminal Equipment” (DTE) or as ”DATA
Communication Equipment” (DCE). When communicating with a desktop com-
puter, the computer will be the DTE and the microcontroller will be the DCE.
Table 7.1 lists the pins used by RS232 and their assignments.

The ring signal on pin 22 dates back from the time when the standard was

83

Name Purpose Brief Pin#
Data Terminal Ready Tells DCE that DTE is ready DTR 20

to be connected
Data Carrier Detect Tells DTE that DCE is connected DCD 8
Data Set Ready Tells DTE that DCE is ready to DSR 6

receive
Ring Indicator Tells DTE that DCE has detected RI 22

a ring signal on telephone line
Request to Send Tells DCE to prepare to accept RTS 4

data from DTE
Clear to Send Allows DTE to transmit 5
Transmitted Data Data line from DTE to DCE TxD 2
Received Data Data line from DCE to DTE RxD 3
Common Ground GND 7
Protective Ground PG 1

Table 7.1: Pin assignments for RS232 standard. [5]

primarily used for communications between teletypewriters and modems. In
more modern circumstances the pin triggers a hardware interrupt (see chapter
8 for information regarding interrupts) that informs the DCE to prepare for the
possibility of communications.

As useful as the RS232 standard is for communicating with desktop comput-
ers and other devices, it does require additional hardware to use with the AT-
Mega644p, as well as most other microcontrollers. Besides requiring the actual
port, an RS232 transceiver such as the MAX202CSE produced by MAXIM is
required, as well as possibly requiring additional voltage sources or level shifters
depending on the voltage that the microcontroller is operated at. This being
said, there are two and three wire methods of communication via the USART,
which is actually what is used to communicate with an RS232 transceiver.

7.1.2 USART

USARTs generally use a three-wire setup to communicate with other devices
such as microcontrollers and RS232 transceivers. Two of these wire are for the
actual communications (one for each direction) and the third wire is ground. If
the data transfer only requires one direction, the second data line can be left
off. The use of separate data lines for each direction does allow for full duplex
communications (data is sent and received simultaneously), however this is not
required.

Synchronous v. Asynchronous communications

Asynchronous communications means that information can be sent whenever
its ready, and the receiver cannot expect a transmission to arrive at specific

84

times. Synchronous communications means that both the transmitter and re-
ceiver know exactly when each byte will start and stop. This requires that data
be continually transmitted to keep the two devices in sync. When there is no
data to be sent, the ASCII ”SYN” character is generally used as padding. Un-
less the required data transfer rate is very high in comparison to the maximum
possible data rate, using asynchronous communications is often a better choice
as it is somewhat more robust and easier to maintain.

Character Framing

When using a USART, each character is a separate transmission, with a config-
urable number of bits per character. The characters transmitted via a USART
can be anywhere from 5 bits to 9 bits long with 7bits (ASCII character) or 8 bits
(1 byte) being the most common. Each character is preceded by a single start
bit (logical low) and followed by one or two stop bits (logical high), and may
contain a single parity bit after the final data bit and before the stop bit(s), the
total length of a transmission can range from 7 bits to 13 bits [5]. It is vital that
both devices are configured to use the same options of character length (5-9),
parity (none, even, odd), number of stop bits (1 or 2) and data rate, otherwise
errors will arise and if any characters are actually accepted by the receiver, they
will likely be gibberish.

Communications Errors

There are several possible errors that can be detected if a problem occurs during
transmission or reception

� Overrun Error: Occurs when data is received before the previously re-
ceived data can be processed. Different devices have different buffer sizes
to store received data in, and if the buffer fills up this error is triggered.
The ATMega644p can only buffer a single character, so it is important to
read that character as soon as possible after it arrives and either use it,
ignore it, or (most likely) store it until it can be used.

� Underrun Error: Occurs when the transmit buffer is empty and the US-
ART has completed transmitting the previous character. In general, this
is treated as an indication that nothing is being transmitted as in asyn-
chronous communications data does not need to be continually transmit-
ted. This error can indicate a problem in synchronous communications as
underrun is more serious there.

� Framing Error: Occurs when the start and stop bits do not align properly.
If the receiver does not find the stop bit(s) where they are expected, this
error is triggered indicating something went wrong with the transmission.
If this occurs regularly it could indicate that the two devices are configured
for different character frames.

85

� Parity Error: Occurs when the parity calculation does not match the
parity bit. When parity is enabled and set to even, the parity bit should
be logical high when an even number of bits in the character are logical
high, or when the number of logical high bits is odd and parity is set to
odd. If this bit does not match the receiver’s calculations a parity error
is thrown indicating that there was an error in the received data. If the
transmission lines are particularly noisy and two bit errors occur, they can
cancel each other out in the parity calculation and the parity calculations
will be correct, even if the data is incorrect. [5]

7.1.3 USART Communications Example

Here is an example program using the USART0 on the ATmega644p. Its purpose
is merely to echo anything transmitted to it, and immediate transmit it back.

#include <avr/io.h>

#include <util/delay.h>

#include "../ libraries/reg_structs.h"

/**

* \func serial_init

* \brief initialize USART

* Settings: 8 bit char , asynch , no parity , 1 stop bit

*/

void serial_init () {

UCSR0Bbits._RXEN0 = 1; // enable transmit

UCSR0Bbits._TXEN0 = 1; // enable receive

UCSR0Cbits._UCSZ0 = 3; //8 bit char

UBRR0bits._w = 25; //19.2k baud rate

}

int main(void) {

serial_init ();

while (1){

while (! UCSR0Abits._RXC0) {}

UDR0bits._w = UDR0bits._w;

// transmit what was received

}

}

Ordinarily contents of the UDR0 register would be saved to memory, however
this is not needed in this case. The act of writing data to UDR0 is what begins
the transmission, so ordinarily it would be set to some value from memory.

7.2 Serial Peripheral Interface (SPI)

Serial Peripheral Interfaces (SPI) are four-wire, full-duplex communications
busses run in a master-slave mode. This means that any time communica-
tions occur between the devices on the bus, it is the master that initiates the

86

communications. Slaves can only respond to the master. More than two devices
can be connected to the same data bus, however there can only be a single
master and each slave requires an individual slave select line. Therefore the
actual number of lines on the bus ranges from 3 (single slave, uni-directional
communication) to three plus the number of slaves on the bus.

7.2.1 SPI Bus

Figure 7.1 below gives an example of a setup where there are three slaves con-
nected to a single master via SPI. The six wires are:

� SCK: System ClocK. This is a clock signal that the transmission uses. It
is generated by the master and is not required to be a constant frequency.
While often generated by a hardware clock in the master, it is possible to
manually control the line via software in extraordinary situations. Also
called SCLK or CLK.

� MOSI: Master Out Slave In. This is the line for transmission from the
master to the slaves and is uni-directional. Also called SIMO, SDO, DO,
SO.

� MISO: Master In Slave Out. This is the line for transmission from a slave
to the master and is also uni-directional. Also called SOMI, SDI, DI, SI.

� SSn: Slave Select n. In single slave situations this is just SS or Slave
Select. This line connects the master to only a single slave device and
is used to tell that device to pay attention to the transmissions. Only
a single slave select should be pulled low at a given time, otherwise the
slaves transmissions may interfere with each other. Also called nCS, CSB,
CSN, STE, nSS.

7.2.2 Operation

During times at which the master is not specifically communicating with one
of the slaves, all of the pins are dormant. SCK is held at either logical high or
low depending on the configuration of CPOL, all nSS lines are held at logical
high and the MISO and MOSI lines can be anything (often tri-state, see below).
Once the SS for a given device is pulled low, one of two thinks will happen
depending on the clock phase configuration (CPHA). If the phase is set to 0
both the master and slave immediately pull their respective out lines to the
correct level for the first bit to be transmitted. For one or the other this is often
logical low, though does not have to be. Half a cycle later the clock switches
high to low or low to high (depending on CPOL) and both master and slave
sample their input lines. On the trailing edge of the cycle (half a cycle later,
when the clock returns to its original value), data is propagated and the MISO
and MOSI values change. This continues until the clock is stopped and returned
to its idle value. After that the SS pin can be returned to a high value and MISO

87

Figure 7.1: 3 devices connected to a microcontroller using SPI.

and MOSI return to being uncared about. Because communication only occurs
while the master is driving the clock, if the master is expecting some response
from the slave after transmitting, the master must continue operating the clock,
and most likely transmitting zeros, until the slave has finished transmitting. In
the case where CPHA is set to 1, data is propagated on the leading clock edges
and sampled on the trailing, rather than vice versa.

Figure 7.2 shows the states of each data line at each clock cycle four config-
urations of CPOL and CPHA. The long vertical lines indicate the leading clock
edges. Here is a brief explanation of each of the four possible configurations,
including the commonly used mode numbers for each:

Figure 7.2: The four modes of SPI clock polarity and phase.

88

CPOL=0 (base clock value is 0)

� CPHA=0: Data is captured on rising edge and propagated on falling edge.
(Mode 0)

� CPHA=1: Data is propagated on rising edge and captured on falling edge.
(Mode 1)

CPOL=1 (base clock value is 1)

� CPHA=0: Data is captured on falling edge and propagated on rising edge.
(Mode 2)

� CPHA=1: Data is propagated on falling edge and captured on rising edge.
(Mode 3)

It was mentioned that MISO and MOSI are often set to tri-state when not
in use. Tri-state is a special third state in binary logic which is obtained by
connecting the line through a large resistor (such as 50kΩ) to ground to prevent
it from affecting the level of the line. The large resistor is designed to be enough
to prevent it from reducing the voltage on the line any great amount, while at
the same time preventing the device from sourcing a Voltage on the line. This
is also called a high-impedance state.

7.2.3 SPI Communications Example

The following program can be used to setup and read the 4-byte counter register
from an LS7366R 32-bit quadrature counter. This is a device used for counting
ticks on an encoder (see chapter 9). It is somewhat longer than the USART
example as both the SPI peripheral on the ATmega644p must be configured to
the requirements of the LS7366R as well as the LS7366R needing configuration.
Once they are both configured and started, the program waits for one second and
then reads the current count. This operation requires transmitting five bytes.
The first byte is the actual command, telling the LS7366R what register is being
read. The following four transmitted bytes are all ignored by the LS7366R as
it is transmitting the counter value. This transmitted data is read from the
same register as the transmitted data was written to. This program saves the
incoming data byte by byte into an array of chars.

Determining commands for encoder counter

Before programming the microcontroller, the commands for the encoder counter
must be determined. This includes the command to write to registers, the
settings for the registers, and the command to read the counter itself. Figure
7.3 is an excerpt from the data sheet which explains how to form commands to
be transmitted to the encoder counter.

The section at the top of figure 7.3 explains the instruction register on the
encoder counter, and has a bit by bit description of each command. In this

89

Figure 7.3: How to form commands for the LS7366R Quadrature Encoder
Counter. [17]

example the first required command is to write to the MDR0 (Mode Register 0)
register. This register is the first of two controlling how the encoder counter
operates. To write to this register requires the write command (B7:6 = 10) and
the MDR0 register (B5:3 = 001) as seen to the right of the IR register description.
For any command B2:0 can be anything. Here these bits will be 0. The com-
mand required to write to MDR0 is therefore (bit 7 first) 0b10001000. According
to the table in the datasheet extract the write command can be followed by 1-4
bytes of data. In this case, there is only one additional byte: the value to be
stored in the MDR0 register, which will be determined shortly. The other two
commands required by this program can be determined in the same way, which
are the commands to write to the MDR1 register (0b10010000), and to read the
CNTR register (0b01100000). The MDR1 register is the second mode register and
requires again only a single byte of data. The CNTR register is the counter regis-
ter. When reading from CNTR, that register is not actually what is transmitted.
As is stated in the table in the excerpt, attempting to read CNTR actually copies
the count into the OTR and transmits that. This copy prevents the counting and

90

transmitting operations from interfering with each other.
With the commands determined, the next step is to determine the data

bytes to be written to MDR0 and MDR1. Figure 7.4 contains an excerpt from the
datasheet specifying what the various settings for these two registers are.

Figure 7.4: Bit field descriptions for MDR0 and MDR1. [17]

MDR0

� B1:0: This controls how the counter handles the quadrature counts. In
this example the highest precision will be used, which is the x4 count
mode.

� B3:2: This bit field modifies or limits what is counted. Here the free-
running mode will be used, which causes every tick to be counted. In the
event of overflowing the counter it will continue counting and set a carry
bit in another register.

91

� B5:4: These bits control the operation of an external pin called the index.
In this case the pin is unused, so left disabled.

� B6: As the index pin is not being used here, this bit doesn’t matter so is
left as 0.

� B7: This relates to a frequency crystal external to the encoder counter.
As such it is left as 0 in this example. See the data sheet for further
information.

With this information, the data byte to be written to this register is 0b00000011.
MDR1

� B1:0 This byte field controls how many bytes wide the counter is. This
example uses a 4-byte counter.

� B2 This enables counting. It must be set to 1 before any encoder ticks
will be counted.

� B3 Unused, so left as 0.

� B7:4 These bits enable external pins to be used as flags for various con-
ditions. These pins, if connected to the microcontroller, can trigger inter-
rupts when certain conditions are met on the encoder counter. These are
all disabled in this example.

The only bit in this register that needs to be set is the counter enable, so the byte
to be written to this register is 0b00000100. At this point all the information
required to create the program is gathered. Below is the code for this example.

Example code

#include <avr/io.h>

#include <util/delay.h>

#include "../ libraries/reg_structs.h"

/**

* \def SS Slave Select pin

*/

#define SS PORTBbits._P4

/**

* \func SPI_init ()

* \brief initializes SPI for use with LS7366R

*/

void SPI_init () {

SPIDDRbits._MOSI = 1;

SPIDDRbits._MISO = 1;

DDRBbits._P4 = 1;

SPCRbits._DORD = 0; //MSB first

92

SPCRbits._MSTR = 1; // Master mode

SPCRbits._CPOL = 0; // clock low when idle

SPCRbits._CPHA = 0; // sample on leading edge

SPCRbits._SPR = 0; //250ns pulse

SPSRbits._w = 0; // flags and double speed bit

SPCRbits._SPE = 1; // enable SPI

}

/**

* \func SPI_xmit

* \param data byte to xmit

* \return received byte

* \brief transmits data and returns received data

*/

char SPI_xmit(char data) {

SPDRbits._w = data;

while (! SPSRbits._SPIF) {} //wait till tx done

return SPDRbits._w; // return rx data

}

/**

* \func quad_count_init

* \brief initializes LS7366R quadrature counter

*/

void quad_count_init () {

SS = 1; //set slave select

//MDR0: 0b00 00 00 11: clock/1, async , index

// disabled , free -running count

// 4 counts per quad cycle

SPI_xmit (0 b10001000);

SPI_xmit (0 b00000011);

//MDR1: 0b0000x000: no flags , counting enabled ,

// 4-byte counter

SPI_xmit (0 b10010000);

SPI_xmit (0 b00000100);

SS = 0; //clear slave select

}

int main(void) {

SPI_init ();

quad_count_init ();

_delay_ms (1000);

char data [4];

int i = 0;

SS = 1; // set slave select

//load CNTR to OTR then read OTR: 0b01 100 xxx

SPI_xmit (0 b01100000);

for(i=0; i<4; i++){

data[i] = SPI_xmit (0); //read 4 bytes

}

SS = 0; //clear slave select

93

//32 bit count of encoder ticks now stored in

//4 bytes of data array

return 0;

}

Example timing

In order to better understand what is happening during SPI communication,
Figure 7.5 displays the states of all four SPI lines during a read operation of the
CNTR register of the LS7366R Quadrature Counter. In the figure the CNTR
register is setup to be 16 bits rather than the 32 used above. The sections
on the MISO line marked tri-state are periods that the LS7366R is not actively
controlling the line, even though the microcontroller may be sampling it. The
sampled data for these times is garbage and is never read by the code. The
section marked ”Random Data” is a period that the microcontroller must be
transmitting something to cause the clock to oscillate, but the LS7366R ignores
the MOSI line during this time.

Figure 7.5: States of all four SPI lines during operation to read 16 bit CNTR
register from LS7366R Quadrature Counter.

7.2.4 Daisy-Chaining SPI devices

Due to hardware or layout limitations, there are times that using a separate
slave select line for each SPI device is not feasible. In this case it may be
possible to daisy chain the devices together and use a single slave select line for
all of them.

A daisy chain is formed by connecting the output of one device into the input
of the next, thereby connecting the devices in series rather than in parallel (see

94

Figure 7.6: 3 devices daisy-chained to a microcontroller using SPI.

figure 7.6). Whenever the clock pulses, the registers in each of the devices
shifts one, causing the highest bit of each device to shift into the lowest bit of
the next device. Therefore, when sending a command to each of the devices,
the command for the last device on the chain must be sent first. Once all the
commands are shifted into the devices, the slave select line is driven high and all
the devices read their instructions. Reading data back on the MISO line works
similarly, in that the appropriate number of bytes must be clocked out to shift
the results from all the devices back around to the microcontroller.

Limitations of a daisy-chain

There are several limitations which cause daisy chains to be less useful than
they might otherwise be.

� All devices must be daisy-chain compatible. Not all devices that use SPI
are set up to be able to daisy-chain. Any device that is not must be
controlled using its own slave select line.

� All devices must use the same clock mode. If two devices use different clock
operational modes (CPOL or CPHA are different), then they cannot be
daisy-chained together as they will be operating out of sync with each
other.

� All devices are controlled simultaneously. Whenever a command is sent to
one device, all of them receive some form of command. If the programmer
is not careful to send a sequence that is known to be ignored by other
devices, unexpected behaviors may occur.

Over all, daisy-chains can be useful in certain circumstances, especially when
all the devices being controlled are identical. They do suffer serious limitations

95

that reduce their usability, so take care when attempting to daisy-chain SPI
devices.

7.3 Two-Wire Interface (TWI)

The final type of serial communications peripheral on the ATMega644p is the
Two-Wire Interface serial. Other common names include TWI, I2C (I-squared
C), I2C (I-two C) or Inter-Integrated Circuit). This is again a master-slave
configuration, though multiple masters can exist. With only two wires, one for
data and one for the clock, it is only half-duplex meaning data can only be sent
in one direction at any given time.

Figure 7.7: 3 devices connected to a microcontroller using TWI.

7.3.1 Operation

As TWI is not limited to two devices, and as there is no slave select line as there
was for SPI, each device on the bus must have a unique address. When the
master (or any of them in a multi-master setup) is ready to begin transmitting,
it begins with a low start bit, followed by the 7-bit address of the slave to which
the master is talking. The clock (SCL) then begins timing the transmission
after the start bit has been set, and before the address. Unlike SPI, where the
data was read and propagated on the rising and falling edges of the clock, in
TWI SDA is set while the clock is low and read while the clock is high.

After the address is sent, the master indicates with a single bit whether it
will be reading from (1) or writing to (0) the addressed slave. If there is a slave
with that address on the bus, it will respond with a single ACK bit (logical
low), and then the master or slave will transmit the data, depending on the
read/write bit. If the master wants to transmit several bytes in succession to
the same slave, it can do so, though the slave will send ACK bits between each
byte sent. Likewise, if receiving multiple bytes the master must send ACK bits
after every byte received except for the final byte. Finally, once all the data has

96

been transmitted the master can send a stop bit, indicating that it has finished,
or another start bit indicating a new message to a new slave.

7.3.2 Example

While TWI is simpler in physical execution, it has the trade-off of being far
more complex programmatically. What follows is a microcontroller retrieving
a temperature reading from a TMP102 temperature sensor from Texas Instru-
ments. To accomplish this task the microcontroller must write a single byte to
the sensor instructing it which register to read from, followed by the microcon-
troller reading the two bytes of data from the controller. What complicates the
matter is the number of times that the interrupt flag must be cleared before the
peripheral can continue due to the number of ACKs and transmissions.

#include <avr/io.h>

#include "../old libraries/reg_structs.h"

/**

* \def address Address of target sensor

*/

#define address 0b10010000

/**

* \func TWI_config

* \brief configure TWI peripheral

*/

void TWI_config () {

TWBRbits._w = 4; //bit rate setting

TWSRbits._TWPS = 0; //bit rate setting

TWCRbits._TWEA = 1; // enable ack

TWCRbits._TWEN = 1; // enable

}

int main(void) {

TWI_config ();

// default config is fine for sensor

char highbyte;

char lowbyte;

// Set sensor 's register address to data register

TWCRbits._TWINT = 1; // clear interrupt

TWCRbits._TWSTA = 1; // START condition

while(! TWCRbits._TWINT) {} //wait until ready

if (TWSRbits._TWS != 0x01) { //error checking

return 0;

}

TWDRbits._w = address; //SLA+Write

TWCRbits._TWINT = 1; // transmit address

97

while(! TWCRbits._TWINT) {} //wait until ready

if (TWSRbits._TWS != 5){ //error checking

return 0;

}

TWDRbits._w = 0; //set sensor register address

TWCRbits._TWINT = 1; // transmit data

while(! TWCRbits._TWINT) {} //wait until ready

// Read sensor 's data register (2 bytes)

TWCRbits._TWINT = 1; // clear interrupt

TWCRbits._TWSTA = 1; // START condition

while(! TWCRbits._TWINT) {} //wait until ready

if (TWSRbits._TWS != 0x02) { //error checking

return 0;

}

TWDRbits._w = address +1; //SLA+Read

TWCRbits._TWINT = 1; // transmit address

while(! TWCRbits._TWINT) {} //wait until ready

if (TWSRbits._TWS != 0x09) { //error checking

return 0;

}

TWCRbits._TWINT = 1; // receive highbyte

while(! TWCRbits._TWINT) {} //wait until ready

highbyte = TWDRbits._w;

TWCRbits._TWINT = 1; // receive lowbyte

while(! TWCRbits._TWINT) {} //wait until ready

lowbyte = TWDRbits._w;

// generate STOP

TWCRbits._TWSTO = 1;

TWCRbits._TWINT = 1; //send stop condition

// highbyte and lowbyte now available for use

return highbyte *256+ lowbyte;

}

7.4 Comparing TWI and SPI

Many devices will support both TWI and SPI. In such a case, one must examine
the needs versus the capabilities of each.

Real-Estate

In terms of pin-outs required, and therefore wires or traces on a PCB, TWI is
far superior as it only requires two lines no matter how many devices are on the
board. The cost benefit of the reduction was one of the driving forces for the
development of TWI for use in small electronics.

98

Speed

SPI has a major benefit here as it is full-duplex, meaning twice the data can flow
over the lines. This is not fully utilized as it is uncommon for master and slave
to be transmitting data simultaneously. Another major speed advantage that
SPI has is the lack of addresses. For any message this increases the overhead,
thereby decreasing the available time to transmit data. This can get especially
bad when sending many short messages.

Flexibility

Here each has benefits over the other. SPI has more configurable options, how-
ever this can often lead to confusion and problems. On the other hand it is
somewhat easier to use once set up. TWI is more consistent from device to
device as to levels and clock phase and also has the ability to hot-swap devices
on and off the bus, however does have a severe drawback. Slave devices, such
as sensors, DACs and ADCs, can run into problems with overlapping addresses
if several identical devices are used on the same bus. Careful attention must be
payed while designing the system to how many are possible on a single bus and
how to set their addresses.

Complexity

Again, SPI takes the lead here. While TWI has less physical complexity, the
added complexity in the code is vast and often more than makes up for the
extra pair of wires required. SPI also does not require the step of ensuring
every device has a separate address.

Overall, when given choice between TWI and SPI, and the requirements of
the system don’t indicate one choice is particularly better, the best choice is
most likely the one that is more comfortable for the developers to reduce the
likely hood of errors and the costly debugging process.

7.5 Conclusion

There are several additional serial communications protocols, however these are
the three (RS232, SPI and TWI) that are primarily found on microcontrollers.
More information is available about the history and development of these stan-
dards by searching on-line, as well as the standards themselves for interested
parties. The information contained herein should be enough to enable their use.
The primary source to learn more about the operation of these three peripherals
is the datasheet. Chapters 15 through 18 cover all of the serial communications
for the ATmega644p [11].

99

Chapter 8

Interrupts and Timers

Interrupts and accurate timing are vitally important to the smooth operation
of a microcontroller. Without the first, the controller would spend most of its
time checking to see if events occurred or face the possibility of missing vital
signals. Without the second, there would be no method of controlling when
tasks occurred, which would cause error in measurements, skewing results and
rendering it impossible to control the system properly.

8.1 Interrupts

An interrupt is a notification to the processor that some event has occurred
and requires attention, analogous to a phone call during work. Interrupts can
be triggered by a number of events including incoming communications, errors
occurring in hardware, notification that a task has been completed (such as
transmission or an ADC conversion), values of input pins changing or timers,
just to name a few. One type of interrupt most people encounter on a regular
basis is the interrupt that occurs on a computer every time a key on the key-
board is pressed. Most of the time the keystrokes are buffered and displayed
later, without the interrupt if the computer wasn’t actively paying attention
keystrokes would be missed. These interrupts are vital to the smooth and cor-
rect operation of many systems.

8.1.1 How interrupts work

When an interrupt is triggered normal program operation ceases after the cur-
rently executing operation finishes. A snap-shot of the current status of the
program, including variables and the program counter, is stored as if the pro-
gram was entering a function. The processor then checks a special block of
memory that contains addresses for all of the interrupt service routines (ISRs).
These are called the interrupt vectors and are special functions that are called if
and when an interrupt is triggered. If an ISR doesn’t exist for a given interrupt

100

the address will be left at zero. It is the programmers responsibility to ensure
that there are ISRs available for every enabled interrupt.

In general, there are four parts to interrupts on microcontrollers. The first
is the interrupt flag. It is normally a single bit located in one of the SFRs
for the peripheral it pertains to, and indicates whether the interrupt event has
occurred. When the interrupt event happens the flag is set (to logical 1). This
occurs whether or not interrupts are actually enabled, and it is cleared when
the interrupt is serviced. Alternatively, the flag can be cleared via software or
in certain cases through additional events.

The second part is the interrupt enable bit. This is again a single bit located
in one of the appropriate SFRs and tells the hardware whether or not this
specific interrupt is to be serviced automatically. If it is not set high then when
the triggering event occurs, even though the interrupt flag gets set, no interrupt
occurs. At this point it becomes the software’s responsibility to check the flag
every so often or completely ignore it if the event is of no importance to the
program.

Next is the global interrupt enable. Aptly named, the global interrupt enable
allows interrupts to occur. If this is off (logical 0) then no interrupts will be
triggered, though the flags will still be set. It is common practice to clear this
bit during ISRs to prevent interrupts from interrupting the operation of another
ISR, which can lead to odd or unexpected behavior.

Finally there is the interrupt service routine mentioned above. This is a
set of instructions, much like a function though without the ability to accept
arguments or return data, that is run when its corresponding event occurs and
both enable bits are set. It is common practice to keep ISRs as short as possi-
ble, often simply storing relevant information in memory, for later examination
by the program. This has the dual effect of keeping the program running as
smoothly as possible with minimal delay and missing fewer interrupts if they
occur in close proximity. If a program is stuck in an ISR for an extended period
of time other, perhaps more important, events can be missed, causing a loss of
data or incorrect data to be stored.

Entering an ISR is much like an ordinary function call, with the exception
that the function being interrupted is not expecting it. This places the entire
burden of saving and restoring the program context on the ISR. It, therefore,
must handle pushing any register it will overwrite onto the stack and popping
the data back to its original register when it finishes. Certain other things, such
as status registers (SREG on the ATmega644p) may also need to be saved. These
registers may contain required data regarding the results of previous operations
such as compares, carries and overflows. If the status register is not saved, and
it is overwritten by the ISR, the program may operate differently from what it
is supposed to upon returning from the ISR.

8.1.2 Using Interrupts

Interrupts can be tricky to set up the first time or two as they are very processor
specific. This is due to not only needing to know their names, but also knowing

101

the syntax for writing an ISR for that microcontroller. This section pertains
almost exclusively to the ATMega644p. Other AVR microcontrollers use sim-
ilar syntax, but microcontrollers produced by other companies use completely
different methods of defining an ISR.

The first step is to decide if the interrupt is necessary. If the only requirement
is to let the controller know that the event has happened at some point in the
past (such as a digital input pin has changed value), then it is perhaps not
necessary and the program can simply check the interrupt flag every so often.
If, on the other hand, it is time critical such as data arriving via the USART
and it needs to be read before the next byte arrives then an interrupt is likely
warranted. As this is a commonly used interrupt it will be the object of this
example.

Now that the interrupt has been determined to be necessary, it must be
enabled. In this case the interrupt in question is the RX Complete Interrupt
and the interrupt enable bit is RXCIEn in the register UCSRnB (USART Control
and Status Register n B).

UCSRnBbits._UCSRnB = 1;

Assuming the rest of the USART has been correctly setup, the global inter-
rupt enable flag must be set. This is the I bit in the SREG register. This status
register is for the microcontroller in general and contains several bits related
to the arithmetic logic unit (ALU). In this case Atmel, the producers of this
microcontroller, have provided easy methods of enabling and disabling this bit.
The function sei() enables global interrupts and cli() disables them. When
using these functions the instruction immediately following sei() will execute
before any interrupts actually trigger, though cli() disables them immediately,
and will not even allow an interrupt occurring simultaneously to trigger its ISR.

Finally it is time for the ISR itself. This is a function definition so it ap-
pears outside the definition for any other function, although it’s syntax differs
from ordinary C functions. Furthermore, unlike standard functions, it does not
require a function prototype, nor does it matter where in the file structure it is
located.

ISR(USART0_RX_vect) {

* code goes here i.e...*\

receivedData[nextOpenSpot] = UDR0bits._w;

}

The names of the interrupt vectors, in this case USART0 RX vect, can be
determined by looking at Table 9-1 Reset and Interrupt Vectors on page 61 of
the datasheet [11], finding the appropriate vector and adding vect to the end
of the Source.

8.1.3 The Interrupt Process

When an interrupt is actually received, there are several steps the processor
must take to ensure the rest of the program and any stored data is not lost

102

due to the interrupt. Below is an example of an ISR which acts as an adder,
summing the values of the PINA and PINB registers, and using the result to set
PORTC. Immediately below the ISR is the assembly code, which will be broken
down into segments and explained along with the steps the processor must take.
Assembly is an intermediate step between a programming language such as C
and the machine code that is written to the microcontroller. In assembly, each
line is an individual instruction stored in the program memory and executed in
one or more cycles. The first column is the memory address of the instruction,
and the following hexadecimal value is the instruction stored there. To the right
of that are the human readable opcodes and arguments that correspond to the
hexadecimal instructions. Descriptions of all the opcodes for the ATmega644p
are in chapter 28 of the datasheet [11]. Different processors may have different
instruction sets, so what works for one processor or microcontroller likely will
not work for a different type.

ISR(TIMER0_COMPA_vect) {

//load arguments (PINA ,B)

char i = PINA;

char j = PINB;

//sum the two and output

PORTC = i+j;

}

000000a4 <__vector_16>:

a4: 1f 92 push r1 ; This register not actually needed

a6: 0f 92 push r0 ; Used in saving status register

a8: 0f b6 in r0, 0x3f ; 63 (Status register SREG)

aa: 0f 92 push r0 ; push SREG

ac: 11 24 eor r1, r1 ; clears register

ae: 8f 93 push r24 ; store registers used in ISR

b0: 9f 93 push r25

b2: 90 b1 in r25, 0x00 ; 0 Load PINA (address 0)

b4: 83 b1 in r24, 0x03 ; 3 Load PINB

b6: 89 0f add r24, r25 ; Sum PINA, PORTB. Save to r24

b8: 88 b9 out 0x08, r24 ; 8 Set PORTC

ba: 9f 91 pop r25 ; restore registers used in ISR

bc: 8f 91 pop r24

be: 0f 90 pop r0 ; pop old SREG value

c0: 0f be out 0x3f, r0 ; 63 restore SREG

c2: 0f 90 pop r0 ; pop old values

c4: 1f 90 pop r1

c6: 18 95 reti ; return to previous function

1. The first step of the interrupt process is the actual receipt of the interrupt
signal. If the individual interrupt is enabled, and interrupts are enabled
globally by the I bit of the SREG register, the process continues after the
currently executing instruction completes. If either are disabled than the
flag is set but no interrupt service routine is called.

103

2. The global interrupt enable is cleared to prevent further interrupts from
occurring while one is being serviced.

3. The instruction pointer is pushed to the stack. This is handled by hard-
ware and does not appear anywhere in the program. The instruction
pointer must be saved in order to restore the system to the next instruc-
tion that would have executed had the interrupt not occurred.

4. The program counter is set to the beginning of the ISR. This is also
handled by hardware, however the addresses of all ISRs are stored in the
program memory. If the requisite ISR does not exist, the software resets
and begins again from the start of the main function.

5. The previous program context is saved. This involves pushing the values
of any registers that will be used during the course of the ISR onto the
stack for later retrieval. If this is not done, then when the ISR exits some
of the data required by the main program may have changed and can cause
problems to occur. Furthermore, the current value of the status register
SREG must be saved. This register contains carry, overflow and other
ALU (arithmetic logic unit) result flags. Failing to save this information
can result in errors in the main program. This process is handled by the
instructions in the memory block 0xa4 through 0xb0 in the above example.

a4: 1f 92 push r1 ; This register not actually needed

a6: 0f 92 push r0 ; Used in saving status register

a8: 0f b6 in r0, 0x3f ; 63 (Status register SREG)

aa: 0f 92 push r0 ; push SREG

ac: 11 24 eor r1, r1 ; clears register

ae: 8f 93 push r24 ; store registers used in ISR

b0: 9f 93 push r25

6. Finally the actual code in the ISR is executed. In this example it is the
reading of PINA and PINB, the addition of the same and saving the result to
PORTC. These registers are accessed using their memory addresses: 0x00,
0x03 and 0x08 respectively.

b2: 90 b1 in r25, 0x00 ; 0 Load PINA (address 0)

b4: 83 b1 in r24, 0x03 ; 3 Load PINB

b6: 89 0f add r24, r25 ; Sum PINA, PORTB. Save to r24

b8: 88 b9 out 0x08, r24 ; 8 Set PORTC

7. After the ISR has completed, the previously stored context of the main
function must be restored by poping the previously stored values off the
stack and returning them to their previous registers. This is step 4 in
reverse, including restoring SREG to its previous state.

ba: 9f 91 pop r25 ; restore registers used in ISR

bc: 8f 91 pop r24

104

be: 0f 90 pop r0 ; pop old SREG value

c0: 0f be out 0x3f, r0 ; 63 restore SREG

c2: 0f 90 pop r0 ; pop old values

c4: 1f 90 pop r1

8. Finally the ISR returns to the main function. The previously stored in-
struction pointer value is reloaded, global interrupts are re-enabled and
the main function picks up where it left off, unaware of the interruption.
This is all handled by hardware when the reti instruction occurs.

c6: 18 95 reti ; return to previous function

8.2 Program startup assembly

While on the topic of assembly code, this is a good point for a tangent into
what the compiler puts into the code on its own. The very first instruction,
placed at address 0 and preceding even the interrupt vector table is a jump
instruction to a block of instructions immediately following the interrupt vector
table. This instruction block performs basic start-up tasks such as clearing the
status register and defining the stack location. The exact contents vary with
compiler and processor, however this is fully automated and not something
the programmer need worry about unless programming directly in assembly.
The last two instructions in this block are to call the main function, and then
complete any on-exit tasks upon main’s return.

00000000 <__vectors>:

0: 0c 94 3e 00 jmp 0x7c ; jump to 0x7c <__ctors_end>

; Interrupt vector table goes here

0000007c <__ctors_end>:

7c: 11 24 eor r1, r1

7e: 1f be out 0x3f, r1 ; 63 Clear SREG

80: cf ef ldi r28, 0xFF ; 255 Load stack pointer value

82: d0 e1 ldi r29, 0x10 ; 16

84: de bf out 0x3e, r29 ; 62 set stack pointer to 0x10FF

86: cd bf out 0x3d, r28 ; 61

88: 0e 94 4a 00 call 0x94 ; 0x94 <main>

8c: 0c 94 85 00 jmp 0x10a ; 0x10a <_exit>

The interrupt vector table consists of a jump instruction for each type of
interrupt. If an ISR exists for that interrupt the jump command points to that
location, else it points to a specific point as determined by the compiler which
handles the bad interrupt. Generally this causes the program to reset back to
instruction 0. This can be avoided by ensuring that each enabled interrupt has
a corresponding ISR.

105

40: 0c 94 be 00 jmp 0x17c ; 0x17c <__vector_16>

44: 0c 94 53 00 jmp 0xa6 ; 0x90 <__bad_interrupt>

00000090 <__bad_interrupt>:

90: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>

8.3 Timing

The ability to keep accurate time can be of vital importance, especially when
performing tasks such as deductive reckoning navigation when there is no feed-
back. The examples given herein will all pertain directly to the timing of loops,
as this is where it is most important. Furthermore, these methods can all be
used in most any situation.

8.3.1 Basic Methods

The simplest, and least accurate, method for making an event happen at regular
intervals is to include a the task and a wait command inside a loop; for or
while depending on the needs of the situation. There are two functions that
are made available for the ATMega644p, delay ms() and delay us() each
of which accept a double as an argument and delay that many milliseconds or
microseconds respectively. Most microcontrollers should have similar functions
available in the pre-compiled libraries.

Straight Delay

int main(void) {

DDRA = 0x01;

while (1) {

if (PORTA && 0x01 == 1) {

PORTA = 0;

} else {

PORTA = 1;

}

_delay_us (1000);

}

}

This is an example that is attempting to turn an LED on or off every mil-
lisecond, resulting in a flash rate of 500Hz. The actual rate will be slightly
slower, however, as the delay does not take into account the time spent on other
instructions in the loop or the loop itself, so the entire loop takes slightly longer
than one millisecond, nor is the actual frequency known. Additionally, if there
are any interrupts that can occur, individual passes through the loop can be
significantly longer.

106

Calculated Delay

In an effort to get the loop closer to the desired duration, it is possible to attempt
to calculate how long the task and looping take. One method is to run the task
several times and use some form of stopwatch such as the timer peripheral to
time the task. This however is fairly complicated as it requires running the task
by itself on hardware. Some IDEs may also provide methods of counting the
number of clock cycles required. It is also possible to do so manually, which
requires some knowledge of assembly.

00000094 <main>:

94: 81 e0 ldi r24, 0x01 ; 1

96: 81 b9 out 0x01, r24 ; 1

98: 41 e0 ldi r20, 0x01 ; 1

9a: 20 ed ldi r18, 0xD0 ; 208

9c: 37 e0 ldi r19, 0x07 ; 7

9e: 80 b1 in r24, 0x00 ; 0

a0: 88 23 and r24, r24

a2: 11 f0 breq .+4 ; 0xa8 <main+0x14>

a4: 12 b8 out 0x02, r1 ; 2

a6: 01 c0 rjmp .+2 ; 0xaa <main+0x16>

a8: 42 b9 out 0x02, r20 ; 2

aa: c9 01 movw r24, r18

ac: 01 97 sbiw r24, 0x01 ; 1

ae: f1 f7 brne .-4 ; 0xac <main+0x18>

b0: f6 cf rjmp .-20 ; 0x9e <main+0xa>

This is assembly code for the example above. While fully understanding
what is occurring here requires sitting down with the datasheet to understand
what each of the instructions (opcodes) are (chapter 28 of the ATMega644p
datasheet [11]), here is a brief description. Up through address 9c is setting
up the loop and DDRA, and is only ever run once. Addresses 9e through a8 as
well as b0 are related to the loop, conditional and toggling the LED on or off.
Finally addresses aa through ae are the delay function.

Knowing this, and with datasheet in hand, it is a straightforward process to
determine the number of clock cycles required to run the task through each of
the conditions and not count the instructions relating to the delay. For this task
the the loop and toggle require 8 clock cycles if the conditional is true and only
7 if it is false. This difference can be rectified by manually adding a NOP (no op)
operation in the else statement using the asm () function used to manually
state memory addresses as mentioned in chapter 5.

} else {

PORTA = 1;

__asm__("nop");

}

107

This leaves both conditions at eight cycles which, if the microcontroller is
running at 8MHz, is one microsecond. Adjusting the delay function results in
the following.

int main(void) {

DDRA = 0x01;

while (1) {

if (PORTA && 0x01 == 1) {

PORTA = 0;

} else {

__asm__("nop");

PORTA = 1;

}

_delay_us (999);

}

}

00000094 <main>:

94: 81 e0 ldi r24, 0x01 ; 1

96: 81 b9 out 0x01, r24 ; 1

98: 41 e0 ldi r20, 0x01 ; 1

9a: 2e ec ldi r18, 0xCE ; 206

9c: 37 e0 ldi r19, 0x07 ; 7

9e: 80 b1 in r24, 0x00 ; 0

a0: 88 23 and r24, r24

a2: 11 f0 breq .+4 ; 0xa8 <main+0x14>

a4: 12 b8 out 0x02, r1 ; 2

a6: 02 c0 rjmp .+4 ; 0xac <main+0x18>

a8: 00 00 nop

aa: 42 b9 out 0x02, r20 ; 2

ac: c9 01 movw r24, r18

ae: 01 97 sbiw r24, 0x01 ; 1

b0: f1 f7 brne .-4 ; 0xae <main+0x1a>

b2: f5 cf rjmp .-22 ; 0x9e <main+0xa>

Having already expended this much effort, it is worth checking the cycle
count to ensure the desired length was reached, which does require examining
the delay loop. This delay function works by loading a two-byte integer into
a register and repeatedly subtracting one. The repeated subtraction requires
four clock cycles each time (SBIW and BRNE operations) except for the final time
when the BRNE operation requires a single clock cycle. Including the single cycle
required for MOVW, the entire loop therefore takes exactly 8000 cycles (eq.8.1),
which is exactly what was desired.

loopLength+ 4 ∗ (delayInt− 1) + 3 + 1 =

8 + 4 ∗ (7 ∗ 256 + 205) + 3 = 8002

108

All said and done, while it is nice to know that the loop is precise down
to the uncontrollable jitter of the clock, this was a lot of work which must be
redone any time there is a change in the system clock, task, or even sometimes
compiler options. Additionally, this still suffers from the effects of interrupts if
they are used, so this is not the best system to use either.

8.3.2 Using the Timers

Most, if not all, microcontrollers contain some form of timer peripheral specif-
ically for this sort of task. In fact the only reasons not to use one for this sort
of task is either because all the timers on the microcontroller in question are
already in use for tasks at different frequencies, and therefore cannot be used to
handle both, in which case it is likely time to reassess what microcontroller to
use, or because the developer is new and doesn’t know how to set it up properly.

The first method is to run a timer and continually check what the value in
the counter register is. When the counter matches or exceeds the desired value,
reset the counter and perform the task. This does mostly solve the issue faced
before of interference from interrupts, poorly timed interrupts can still cause
problems, and it is still prone to drift as there is no correction for when the
counter exceeds the desired value. This can be fixed by subtracting the desired
value from the current value, thereby saving the overrun and turning the drift
into a jitter. This method of timing may be best suited to tasks where accuracy
is not vital, all timers are in use by other tasks, and there are few other things
happening. In this case, if there is a system clock available that simply counts
the time from power on (which does not exist on the ATMega644p), or a timer in
use with a significant longer duration than is being timed, a modification can be
made to this method to change the target value rather than the counter value,
allowing this task to piggy back on another clock. Such an event is unlikely
enough, and has enough variables that no example is given here.

In most cases, the correct way to do this is to use the timer interrupts. These
allow for timings accurate to the prescaler value set in the configuration, which
divides the system clock to lower frequencies to allow longer times than 256
clock cycles (or 65536 for a 16-bit timer). Furthermore, while it can still be
delayed by other interrupts, such a delay will only affect the one run of the task
and subsequent interrupts will occur on schedule.

The ATMega644p has three timer/counters; two 8-bit and one 16-bit. Each
one has slightly different options and capabilities, including, for Timer/Counter2,
asynchronous operation using an external signal which allows counting external
pulses. In this example Timer/Counter0 will be used as it meets all the require-
ments and has less unused capability. The peripherals registers consist of the
following:

� TCCR0A and TCCR0B: These are two control registers that control the be-
havior of the timer/counter, including prescaler, when to reset the counter
register, and whether the clock toggles external pins to generate PWM sig-
nals.

109

� TCNT0: This is the heart of the timer/counter and contains the current
count. It can be both read from and written to, however writing to this
register while the counter is running causes the next compare match check
not to happen. When running in certain modes this can cause an interrupt
to be skipped.

� OCR0A and OCR0B: These are the compare to registers. Every time the
TCNT0 register is incremented, it is compared to both of these registers,
which may cause interrupts or the TCNT0 register to reset depending on
the settings in the control registers.

� TIMSK0: The Timer Interrupt Mask register contains all the interrupt
enable bits for the timer/counter, and have corresponding flags in the
Timer Interrupt Flag register.

� TIFR0: This is the aforementioned Timer Interrupt Flag register. The
three bits used in this register, each of which have interrupt enable bits in
TIMSK0 and accompanying interrupt vectors, are set when TCNT0 matches
OCR0A, OCR0B or when the timer/counter overflows.

In this example, as interrupts at a specific frequency are required, it makes
the most sense to trigger an interrupt and reset the counter when it reaches a
specific value. This means using the Clear Timer on Compare Match (CTC)
mode of operation and compare register A. As for the clock prescaler, of the
options available a prescaler of 64 is best to achieve a 1kHz interrupt frequency
on an 8MHz clock and an 8-bit counter. By dividing the prescaler into the
system clock frequency, the compare register value can be found to be 125.
Finally, the requisite compare match interrupt must be enabled.

The interrupt vector name can be found in the place mentioned before in
chapter 9 of the datasheet. In this case the appropriate vector is Timer0 COMPA vect

into which the LED toggling code is placed. One last thing is required for this
to work properly, and that is an infinite loop of doing nothing after the timer
is setup. While this loop can be used for various tasks, the timer/counter will
only run as long as there is code executing, which means if the main function
ever exits, the interrupts and therefore the LED toggling will also stop.

int main(void) {

DDRAbits._P1 = 1;

TCCR0Abits._WGM = 2; // enable CTC mode

TCCR0Bbits._CS = 3; //set clock w/ prescale of 8

TIMSK0bits._OCIE0A = 1;

OCR0Abits._w = 125;

sei(); // global interrupt enable

while (1) {}

}

ISR(TIMER0_COMPA_vect) {

PINAbits._P1 = 1; // writing PIN toggles PORT

}

110

There is one final way in which this can be simplified even further. As was
previously mentioned, the timer/counters are attached to external pins which
can be used to run PWM signals. This is, an essence, a PWM signal with
a 50% duty cycle (for more on PWM signals see chapter 9). This will allow
the timer to take care of the task in its entirety, and will remove the necessity
of any interrupts. This setting appears in the TCCR0A register and is called
the Compare Match Output A Mode, which needs to be set to toggling the
corresponding output compare pin (OC0A) which is also pin PB3, as opposed to
pin PA0 which has been used previously. To set up the timer/counter to do
this requires the following code, and does not require, or enable any interrupts,
though it does require the infinite loop.

int main(void) {

DDRAbits._P1 = 1;

TCCR0Abits._WGM = 2; // enable CTC mode

TCCR0Abits._COM0A = 1; //OC0A toggle on compare

TCCR0Bbits._CS = 3; //set clock w/ prescale of 8

OCR0Abits._w = 125;

while (1) {}

}

8.4 Conclusion

The timers built into microcontrollers are designed to give a wide variety of
functions, and automate most common processes. To this end the delay func-
tions should only be necissary on the rare occasion where a specific delay is
required, rather than a specific timing. Use the timers for any repeating task.

To find out more about the capabilites and usage of timers, read the data
sheet for the microcontroller in question [11]. Some microcontrollers have dif-
ferent capabilities for each of their timers, so read all of the timer information,
and don’t assume that the others are like the first.

111

Chapter 9

External Devices

Thus far the focus has been on the peripherals internal to a microcontroller.
This is all well and good, but microcontrollers alone, without external devices,
are somewhat less than useful. This chapter will cover several types of external
devices including motors, servos, and a variety of sensors.

9.1 Motors

Motors are one of the standards when it comes to controlling motion, and the
options available reflect this. There are so many options that entire books can
be written about the differences between them. This, therefore, shall limit itself
to the control of a DC motor. Even the voltage doesn’t matter significantly, as
it will only change the specific devices used in the control interface and not the
type of device used.

9.1.1 Linear Drivers

There are two primary methods of supplying and controlling power to a DC
motor; a variable DC voltage or a continuous series of pulses at the maximum
voltage of varying voltage. This section covers the former.

The majority of DC motors can be powered by voltage levels up to a certain
level; 12V or 24V are common values among hobby and household motors.
With no load on the motor’s output shaft, and this maximum voltage applied,
the motor will spin at it’s maximum rated speed, measured in rotations per
minute (RPM), or if its held stationary it will provide its rated stall torque.
If, however, some lower voltage is applied then the maximum speed and stall
torque will reduce linearly reaching 0 rpm and no torque at near 0 volts. In
practice small voltages can be supplied to motors without any motion by the
motor due to the torque being insufficient to overcome internal friction.

This then becomes the challenge: to design a method of providing a variable
DC voltage from 0V up to the maximum the motor can take with sufficient

112

current that nothing is destroyed. Recalling back to the voltage and current ca-
pabilities of microchips in general, and specifically the ATMega644p as covered
in Chapter 3, microcontrollers generally cannot supply either the voltage or the
current required. Nor, when push comes to shove, can many even provided the
variable voltage due to not having a digital-analog-converter (DAC) built into
it.

Assuming the desired motor and microcontroller have already been chosen,
and assuming the microcontroller does not have a DAC peripheral, an exter-
nal DAC needs to be chosen. There are three points of concern when choosing
the DAC. The first is how it interacts with the microcontroller. This involves
communications protocol (generally SPI or TWI/I2C) and signal triggering lev-
els (microcontrollers running at 3.3V may not have the output voltage for the
DAC to recognize high bits). The second point of concern is the resolution of
the DAC. The number of bits in the resolution determines how many individual
voltage values the DAC can output, and therefore also the distance between each
value. To find the resolution of a DAC in volts, divide the maximum output
range by 2 raised to power equal to the number of bits minus 1. For example,
on a 0-5V DAC with 12-bit resolution, the voltage resolution would be:

Vres =
VDACmax − VDACmin

2DACres − 1

Vres =
5V − 0V

212 − 1

Vres =
5V

4095
Vres = 1.22mV

The final point of concern is the output range. While this can affect the
complexity of the calculations required for the remainder of the motor driver,
any range can be made to work without great effort. The output range merely
affects the range of the amplifier necessary to reach the required voltage and
amperage.

The only other major component in a linear motor driver is an operational
amplifier, commonly called an op-amp. There is not time here to explain the
workings or the myriad ways in which to use them, rather only the specific con-
figuration used herein will be discussed. There are numerous sources available
for additional information on op-amps. Wikipedia has a long article (Oper-
ational amplifier) [7] on the history and operation of an op-amp, as well as
another article (Operational amplifier applications) [8] on various applications
and configurations. Another site, www.rfcafe.com, also has a brief description
and several of the configurations [9].

The capabilities of the op-amp for this circuit must match or exceed the
requirements of the motor, both in terms of voltage and current. Furthermore,
in order to run the motor in both directions, the op-amp must be able to handle
the motor’s voltage both positive and negative.

113

Once the primary components (microcontroller, DAC, op-amp and motor)
are chosen, the process of combining them can begin. Several resistors will also
be required, though there values are not known at this point.

Example

For this example, the components to be used will be the ATmega644p, a DAC7554
12-bit DAC from Texas Instruments, an OPA548T operation amplifier from
Texas Instruments and a Faulhaber 1524T012SR 12V DC motor. The DAC
can be run via SPI and can operate at the same 5V as the ATmega644p. Its
output is a 0V to 5V signal with a maximum current of 50mA. This then needs
to be converted into a -12V to 12V signal by the op-amp. While there are a few
possible ways to configure a conversion between the two voltage ranges, a shift
and a gain are required. As it is easier to produce the shift before the gain in a
circuit, the conversion should look like this:

Vo = gain ∗ (Vi − shift)

Vo =
12V

2.5V
∗ (Vi − 2.5V)

Vo = 4.8 ∗ (Vi − 2.5V)

Figure 9.1 displays a differential amplifier which can be used to produce this
equation. The full form of the output equation for this configuration is

Vo =
1 + R2

R1

1 + R3

R4

∗ (V2 − V3)− R2

R1
∗ V1

This design is commonly used with V3 connected to ground (0V), however
the calculations are much easier in this case if V3 is connected to a 2.5V source
while V1 is connected to ground. All that remains is to find resistor values for
R1 through R4 that cause the gain term to be as close as possible to 4.8. If
the gain is slightly large it means that the maximum voltage may be reached
prior to the highest value of the DAC. As long as the supply voltages for the
op-amp are limited to the ±12V that is the limit for the motor, nothing will be
damaged.

As there are innumerable ways to reach a desired combination with resistors,
there is no single right answer. Instead its best to decide on a couple design
goals and work towards them. In general the first goal should be fewest number
of resisters possible, in this case 4, and the second should be to limit the number
of different values. Looking more closely at the equation, it can be found that
if R3 and R4 are the same value, then the denominator equals two and the
numerator can be designed for a value of 9.6, or R2

R1
= 8.6. One of these two

values is arbitrary, so let R1 be a 10kΩ resistor. R2 could be either an 82kΩ or
a 91kΩ resistor. The former would not allow the full 12V to reach the motor, so

114

Figure 9.1: Differential op amp.

the later is the better choice if this is an issue. Finally, to keep the number of
different components low, R1 and R2 can both be declared to be 10kΩ resistors
as well.

Similar resistors are available in any multiple of ten from 10Ω up to 22MΩ, so
why pick 10kΩ? The choice is somewhat arbitrary, however they are commonly
used values and meet a minimum requirement. This minimum stems from the
voltage difference between V2 and V3 and the maximum current that the DAC
can supply (50mA). The sum of the resistors R1 and R2 must be such that
they limit the current across this up to 2.5V difference to below 50mA, which
equates out to being at least 50Ω. After choosing these resistors and grounding
V1, the schematic and equation are as Figure 9.2. The unconnected pins in
the schematic are for the power supplies, an enable pin, and a current limiter.
Additional information can be found on the data sheet as to what should be
connected.

9.1.2 PWM Motor Driver

As opposed to the linear motor drivers, which change the motors input voltage
to change the speed, running a motor via a PWM signal controls the speed by
changing the amount of time the motor is powered for. This has the benefit of
increasing the torque because full voltage, and therefore full torque, is available
part of the time. This allows for greater loads without stalling when not running
at full power.

PWM drivers generally utilize H-bridges. An H-bridge, so called due to its
shape in schematics, utilizes four switches, either mechanical or transistors, to
allow current to flow through the motor in either direction (see Figure 9.3).

While H-bridges are easy to build, there are numerous chips with one or
more H-bridges built in. These chips may require external control of all four
switches, however many require only two inputs. Powering one of these inputs

115

Vmotor =
1 + 91kΩ

10kΩ

1 + 10kΩ
10kΩ

∗ (VDAC − 2.5V)− 91kΩ

10kΩ
∗ (0V)

Vmotor = 5.05 ∗ (VDAC − 2.5V)

Figure 9.2: Schematic and equation for completed differential op-amp design.

while the other is low will cause the motor to spin in one direction and vice versa
for the other direction. Some H-bridges can support using one input as direction
and the other as an active low pulse, however this can damage or destroy some
H-bridges so attention must be payed to ensure this doesn’t happen.

Example

Whereas most of the complexity in the linear driver was designing the op amp
circuit and the code was just setting the DAC through SPI, here is just the
opposite. The H-bridge in question, an L6205 produced by STMicroelectronics
requires only two lines from the microcontroller as input, and the two wires to
the motor as output. There is some additional circuitry required for the supply
and enable, however there is an example of how to do this in the datasheet
for the H-bridge. The trade-off comes in via the increased complexity of the
code. Instead of setting the SPI and forgetting about it until the next time
the speed needs changing, the microcontroller must be constantly generating a
PWM signal on one of two pins with the other low. Thankfully, this is possible
with one timer and no interrupts.

Recall back to section 8.2 where the registers for timer 0 were discussed.
In the description for TCCR0A and TCCR0B it was mentioned that the clock can
toggle external pins. Each clock on the ATmega644p has two external pins
that the clock can control. Pins OC0A and OC0B, also known as PB3 and PB4

respectively), can each be set, cleared, or toggled when TCNT0 matches the
corresponding compare register (OCR0A or OCR0B).

116

Figure 9.3: Two modes of H-bridge driving.
A) Switches 1 and 4 closed, CW spin of motor.

B) Switches 2 and 3 closed, CCW spin.

As the initial direction of the motor is unknown, the timer should be set up
to not enable either pin. As both will be needed eventually, neither compare
register can be used to refine the frequency of the PWM signal, the choices are
somewhat more limited. Furthermore, the waveform generation mode options
are narrowed down to only mode 3, which is the fast PWM with TCNT resetting
at its maximum value rather than on a compare match.

void hbridge_timer_init () {

TCCR0Abits._w = 0; // ensure output pins are disabled

TCCR0Abits._WGM = 3; //Set mode 3 (fast PWM , top=0xff)

TCCR0Bbits._WGM = 0; // remaining bit of mode 3

TCCR0Bbits._CS = 4; //256 prescaler. F = 31.25 kHz

// L6205 H-bridge max frequency = 100 kHz

OCR0Abits._w = 0; // ensure register clear

OCR0Bbits._w = 0; // ensure register clear

TIMSK0bits._w = 0; // disable all interrupts

}

In order to safely set a speed and direction, several tasks must be done
in order. Following this list will prevent both inputs to the H-bridge from
ever being high simultaneously, as well as prevent any pulses to be longer than
desired.

� Disable clock.

117

� Clear output pins.

� Disable previous pinout if changing directions.

� Enable new pinout if changing directions.

� Set new compare value. Both compare registers can be set to the same
value.

� Clear TCNT (optional).

� Enable clock.

/**

* \func hbridge_set_speed

* \brief Sets speed and direction of H-bridge via timer0

* \param speed Duty cycle of PWM signal

* \param direction 0 or !0 sets direction of H-bridge

*

* A direction of 0 causes output on the OC0A pin

* non 0 is OC0B pin.

*/

void hbridge_set_speed(char speed , char direction) {

char prescale = TCCR0Bbits._CS; //save clock prescaler

TCCR0Bbits._CS = 0; // disable clock

PORTBbits._P3 = 0;

PORTBbits._P4 = 0; //clear output pins

if(TCCR0Abits._COMA && direction) {

//swap from 0 direction to !0 direction

TCCR0Abits._COMA = 0;

TCCR0Abits._COMB = 2; //set on compare

} else if(TCCR0Abits._COM0B && !direction) {

//swap from !0 direction to 0 direction

TCCR0Abits._COMB = 0;

TCCR0Abits._COMA = 2; //set on compare

}

OCR0Abits._w = speed;

OCR0Bbits._w = speed; //set speed

TCNT0bits._w = 0;

TCCR0Bbits._CS = prescale; // restore clock

}

9.2 Servos

Another popular choice for creating and controlling motion is a servo. Unlike
a motor, which settles into a speed/torque combination based on the load and
electrical power supplied, servos have error-correcting negative feedback built
in which causes them to seek the specific speed or position they are instructed
to. The majority of servos have a limited range of motion, commonly limited

118

to a mere 180 degrees or less of rotation at the output shaft, and the position
they move to is set by the incoming signal. Servos will try with all their might
to reach that set point and hold there against any forces, which is useful in
many applications. There are some servos that provide continuous rotation
with speed control rather than position, but they are less common and accept
the same types of signals, so they shall be ignored for now.

Servos have three wires, power, ground and control. The control wire is the
only one that need be connected to the microcontroller. Servos work off of a
PWM signal, though the duty cycle does not range from 0-100%. Rather than
looking at the duty cycle, a servo looks at the width (or duration) of the pulse.
A pulse of 1.5 ms will cause the servo to move to its neutral position, which is
the center of its range of motion. While the range of motion and timings vary
from model to model, the relationship is linear and will appear on the datasheet.
Servos expect this control pulse at least every 20ms.

Figure 9.4: Common servo timings for three angles.

Servos have several benefits over motors for certain applications. If, for
instance, only a small motion or a specific position is desired a servo is likely
the better choice due to its built in error correction. For continuous motion
applications such as drives, motors remain the better choice. One other benefit
of servos is the reduction in the number of components required. In fact most
servos will only require itself, a power supply capable of providing the voltage
and current it needs, and the microcontroller to function. No extra interfacing
components are required. Combine this with the PWM capabilities of the timers
on many microcontrollers, and servo control becomes simpler than anything
since chapter 3.

9.3 Sensors

The ability to control ones environment is all well and good, however isn’t
incredibly useful without the ability to know what is actually occurring, both
as a result of said control and the effects of outside influences. To this end there
are innumerable sensors: temperature, light, position, distance, the list goes
on. From a microcontroller’s standpoint, there are really only about four types:
those that use a communications protocol, analog signals, a one-bit digital signal
(on or off), or a series of pulses.

119

Digital Signals

One bit digital signals have two possible states: on or off. This often relates to
a switch or whether a given device is powered or not. This was covered in depth
in the digital input section of chapter 3.

Analog Sensors

A great many sensors are analog. These include thermocouples, photoresistor
circuits and most range-finders to name a few. While the data coming from each
means different things, once translated into a signal the microcontroller can ac-
cept (any amplification or current limiting that is required), the microcontroller
sees them as much the same device; an analog signal sent to the ADC. It is
up to the developer and the code to interpret what the data means. As such,
refer to chapter 4 and the data sheet for the sensor to use these sensors. The
data sheet will explain what the voltages mean, and any equations required to
convert a voltage into a meaningful result.

Sensors Using Serial Communications

Any analog sensor can be turned into a sensor that communicates via some
form of serial through the use of an external ADC, and many have these ADCs
built in. These can communicate over any of the various methods of serial
communication, however SPI or TWI are the most common. Refer to chapter
7 for more information about serial communications.

Encoders

Encoders are sensors that give information on distance covered, either rotation-
ally or linearly. The rotational encoders are made of a disk with a series of
holes and a sensor that can detect these holes. Each time one of these holes
is detected a pulse is sent to the microcontroller. When counted, these pulses
can be translated into a distance. Basic encoders use one signal line, however
this only allows information on total distance covered, and does not provide
any information on direction. There are encoders that provide this additional
information (quadrature encoders) by providing a second set of pulses slightly
offset, however this becomes more difficult for the controller to interpret.

Many microcontrollers have a timer/counter peripheral with an option to use
an external clock signal (e.g. timer2 on the ATmega644p). When using a basic
encoder, the encoder can be used as the clock signal and the number of encoder
ticks that have occured can be read from the counter’s data register. The use
of quadrature encoders precludes the use of this method. Each time a tick
occurs on one of the channels, the second channel must be checked. It’s status
(high or low) determines the direction, and then a counter can be incremented
or decremented as necessary. This can be accomplished using a single pin-
change interrupt and a software counter. Additional accuracy can be attained
by looking at both the rising edge and falling edge of a signal, looking at one

120

edge of both signals, or both edges of both signals. The first two options double
the number of ticks per distance measured, while the third option doubles it
again.

When using high-accuracy encoders and high-speed motors, this many in-
terrupts can cause problems by taking up all of the processors time, or missing
interrupts. This situation can also cause the counters to overflow too quickly
to be read on 8 or even 16 bit systems causing loss of data. If this is an issue,
there are dedicated encoder counters available which can use larger counter reg-
isters and are designed to handle the high speed ticks. These can even handle
the quadrature calculations, and then communicate with a microcontroller via
serial.

9.4 Conclusion

This covers only a tiny fraction of the sensors and actuators available. Com-
pletely unmentioned thus far have been inertial navigation sensors (gyros, ac-
celerometers), pneumatic actuators and more. This chapter was not intended to
list what was available, but to provide a starting point on how to use whatever
might be needed.

121

Chapter 10

Real-Time Operating
Systems

A real-time operating system (RTOS) is any operating system that handles
application requests in real time. For personal computers running OSs such as
Windows, Mac OS or some *NIX, this entails jumping back and forth between
threads as the various running applications need processor time or the user
makes a request via the mouse or keyboard. In the case of microcontrollers an
RTOS generally ensures that a given set of tasks are completed in an appropriate
amount of time and attempts to prevent any of these tasks from consuming
excessive processor time or external resources. There are two broad categories
of RTOS, preemptive schedulers and cooperative schedulers.

10.1 Preemptive schedulers

A preemptive scheduler is one in which the controlling software, the scheduler,
can preempt low priority processes to allow higher priority processes to run.
When running multiple tasks or processes the scheduler maintains a priority list
containing each process and its priority. When the priority of a process exceeds
that of the currently executing process the scheduler interrupts the process,
saves its current state and allows the new process to run. Properly executed,
this ensures that all processes get at least some CPU time, with the focus on
those that are more important. If the scheduler is implemented with a timer
which can force changes between processes tasks that are taking longer than
expected can be paused and finished later, thus preventing the entire schedule
of running processes from being delayed by a hung process.

In modern computing, all of the commonly used operating systems used in
a personal computer or larger systems such as academic or business computers
use are capable of preemptive scheduling. This includes operating systems such
as all versions of Windows since Windows 95, Mac OS X, Linux and Unix
based systems as well as others. Preemptive schedulers are less common in

122

microcomputers (such as cell-phones) and microcontrollers, but certainly do
exist. Examples of these are Windows Mobile and FreeRTOS. Even Unix based
OSs can often be trimmed down and run on microcontrollers. This being said,
for most applications preemptive schedulers are more complex and powerful than
are truly necessary for microcontrollers as microcontrollers are usually working
on a single problem composed of several related tasks.

10.2 Cooperative schedulers

Cooperative schedulers are less centralized and rely on the programmer and
the various tasks to cede processor usage to other tasks. As such, a poorly
designed system is likely to hang and cause timing issues. These systems must
be designed in such a way that each process is guaranteed to complete in a given
time frame, or track its own time usage and pause itself when some time limit
is reached. It can then regain processor usage at a later time to complete itself.
One of the simpler cooperative schedulers is a round-robin system, of which an
example is given below.

Cooperative schedulers were common in personal computing as an interme-
diate stage between the early non-multitasking systems (such as DOS) and the
more modern preemptive schedulers. Well-known examples include the versions
of Windows prior to Windows 95 and Mac OS prior to OS X. As cooperative
schedulers are easy to implement and work well at maintaining multiple repet-
itive tasks, they are often used in some of the more complex microcontroller
applications, as the example below will demonstrate.

10.3 Round-Robin example

A round-robin RTOS is perhaps the simplest form of RTOS. It consists of a
number of scheduling blocks of a pre-determined duration within which each
task must fit. An appropriate analogy would be to the periods during a school
day. Each one lasts a specific period of time before the student moves on to the
next. The passing period between classes is the equivalent of the time taken by
the scheduler to switch between tasks. The rest of this chapter is an example
of designing and implementing a round-robin RTOS.

Tasks

The first step is to determine the requirements for the system and what the
various tasks to be accomplished are. For this example assume a wheeled robot
is tasked with manipulating an object with an arm and navigating about its
environment. To this end it has a pair of linearly driven (not PWM) drive
motors which are also responsible for steering, a servo controlling the arm with
a potentiometer for position feedback, a 3-axis IMU with an SPI interface, a
pair of IR range-finders and a communications link to a remote computer. The
control for each of these nine devices is an individual task. It may eventually be

123

possible to combine some of these into a single time slot, however for the moment
they must all be assessed individually. These are the tasks, the peripherals they
require, and any additional notes about them

� Drive motor control (x2): Both motors can be run using the same DAC if
the DAC has multiple output channels (most do). The DAC is controlled
via the SPI bus and requires only two bytes to set the speed of a motor.

� Servo control: An easy method of controlling the servo is to use a clock
in PWM mode. As the clock operates independently of the code and does
not even need to throw interrupts, this task could be a short as saving
a new value into a compare register for the clock. Most likely there will
be a little bit of calculation before hand, but either way this is likely the
shortest task.

� Potentiometer: The potentiometer is for feedback from the arm position.
While servos often have their own internal feedback for reaching the de-
sired location, external feedback to the controller is also often desirable.
This uses the ADC.

� 3-axis IMU: An IMU’s (Inertial Motion Unit) communications can come
in one of several flavors. The more basic variety outputs an analog signal
for each of the axis. This can absorb a significant amount of physical
and controller pins, so an ADC is often packaged with an IMU and some
form of serial communications such as SPI is used to carry the data to
the controller. This is assumed to be the case here. A reading of all three
axis would likely require six bytes of communications; half a byte for each
request and 10 to 12 bytes of data sent back to the controller.

� IR range-finders (x2): IR range-finders such as those SHARP produces
are analog. The downside to them is they only have a refresh time of
approximately 40 milliseconds, meaning multiple attempts to read the
value in a short period will result in the same reading. If the RTOS is
capable of running through all of its tasks more rapidly, then these tasks
could be skipped every so often without issue.

� Communications link: This links the robot to a remote station with far
more processing power, and allows the robot to focus on controlling itself
while the remote station is concerned with higher level decision making,
including where the robot should be going and mapping if necessary. This
task is the hardest to quantify in a theoretical exercise such as this due
to both not knowing the volume of information being transmitted and
received, as well as not knowing when during the RTOS cycle the data
will be received. This second part is actually very important to note. As
the received buffer on the ATMega644p is only a single byte, when data
is received it needs to be handled immediately, even though this is likely
only to entail storing it for attention later. Furthermore, this means that

124

each task needs to allocate at least a little extra time to account for any
interrupts from the communications task that may occur.

Time Frames

Now that the required tasks have been determined, the next step is to approx-
imate how long each task should take. This could be in terms of clock cycles
or milliseconds. In this example the 1MHz clock on the ATMega644p is used
which means the usage time for each peripheral is about a tenth of a millisecond
(0.0001sec) or less, although any form of data processing needs to be included
as well. This time was determined by looking at the length of time it takes
the peripheral to perform the hardware portions of the tasks. For the ADC
this means the actual conversion (12 clock cycles [11]) and for the various serial
communications methods it is calculated from the peripheral’s clock frequency
and the number of bytes to be transmitted. In all actuality, these tasks, with
the possible exception of the communications, should require less than a mil-
lisecond. If the actual duration of each task is in doubt, or is needed more
specifically, the task can be set up in a trial program using a timer to time ex-
actly how long it requires. With eight tasks requiring under a millisecond each,
and a ninth requiring an unknown but still small time frame, one option would
be to set the RTOS to have ten 1ms time blocks, allowing the communications
a second millisecond if it so requires.

On the other hand, looking back to the IR range-finders, only one out of
four passes through the tasks would be useful for these devices. Furthermore,
it may be possible to combine some of the short tasks into a single longer task.
Depending on the setup the IR range-finders may be combinable into a single
task, however as this isn’t always the case they have been left separate in this
example. The drive motor control tasks, however, can and perhaps should be.
Due to how the calculations for this type of drive system works, the values for
both motors are determined simultaneously, and it is likely unwise to set the
motors at different times or there would be un-desired turning. These two tasks
can therefore be combined into one.

Finally one must consider the response time of the entire system. Can the
remote computer process the information and return instructions within 10ms,
and is 10ms long enough to get a meaningful change out of the physical system?
Often times this is a little bit faster than is truly necessary. A time of 20ms for
the cycle through all the tasks may be somewhat more appropriate, resulting in
a system cycle rate of 50Hz. This also allows a little more flexibility in timing,
as well as more time for communications and calculations. Also, if some task,
such as the IMU, does need to be run more often, there are empty time slots
that can accommodate a second running of the task.

Scheduling

Now that the basic framework is tentatively decided (it can always be changed
later if necessary), the time has come to begin deciding the order of the tasks.

125

For instance in the potentiometer/servo control/feedback loop, does it make
sense to read the potentiometer immediately before, immediately after, or some
neutral time between runs of the servo control task. If a single sensor is being
read multiple times (such as the IMU) does it make more sense to read twice in
quick succession to eliminate noise, or separate them to achieve a more accurate
time average? These, and similar others, are questions that need to be examined
for each system individually, however it is generally best to have the control tasks
as soon after the sense tasks as possible. Table 10.1 lists the 20 time slots and
what is included in each. The ”as needed” tasks can be used for additional
communication or calculation needs as they arise, or are there as padding in
case a task runs long. Communication has also been given several time slots to
ensure sufficient time for it and to keep the remote computer as up-to-date as
possible, and the potentiometer and servo tasks have been combined into a single
task as there is no need for communications between reading the potentiometer
and updating the servo.

Slot Task
0 IMU Reading
1
2 Communication
3
4 Drive Motor Control
5
6 Potentiometer and Servo
7
8 Communication
9
10 As needed
11
12 IMU Reading
13
14 IR Range-finder
15 Communication
16
17 As needed
18
19

Table 10.1: Schedule of tasks in round-robin RTOS example.

Coding

Finally it is time to start programming the RTOS. There are two schools of
thought on how to do this. The first approach is to program it top down; that
is to start with the framework of the RTOS and work ones way down to the

126

individual tasks. The second approach is to program the tasks first and test
them before creating the RTOS framework. This second method allows one to
test each segment as its completed both for operation and for timing, and pre-
vents mistakes in the timing approximations done previously to cause problems
in an already completed framework. With the amount of spare time in this
system timing problems are not a great concern, and either method is perfectly
feasible. As this chapter is focused on the RTOS and the individual peripherals
have already been covered, assume that the functions mentioned have been im-
plemented elsewhere. Furthermore, it is very useful to have each time block or
set of blocks be a single function for both readability and modularity’s sakes.

Initialization

Before entering the loop that is the RTOS, every device that will be used needs
to be set up, variables initialized and any other preparatory work completed.
In this example it will require two timers (one for the servo (chapter 9), one
for the RTOS), the SPI (chapter 7), the ADC (chapter 4) and one of the US-
ARTs (chapter 7). The RTOS clock should be set to trigger an interrupt every
millisecond. One way to do this is:

/** initRTOS ()

* Initialize and setup RTOS using timer 2.

* TCNT2 register and RTOS counter

* should both be reset just prior to entering RTOS loop

* Sets timer to 1ms interrupts

*/

void initRTOS () {

TCCR2Abits._WGM = 2; //set mode to CTC

TCCR2Bbits._CS = 0x01; //set prescaler to 8

OCR2Abits._w = 125; //125 counts at 1MHz/8 = 1ms

TIMSK2bits._OCIEA = 0x02; //int on compare match

}

Interrupt

The interrupt service routine (ISR) for the RTOS is quite short. It simply
increments a counter and once the counter exceeds the number of scheduled
blocks, returns the counter to 0 through the use of a modulus function.

ISR(TIMER2_COMPA_vect){

RTOScounter = (RTOScounter +1)%25;

}

RTOS Loop

The RTOS loop itself is an infinite while loop using a switch-case to determine
which task to run. A switch-case operates similarly to a series of if then

else statements, but is faster and continues executing until a break is reached,

127

even if it involves entering the next case. Before entering the loop the RTOS
timer and counter need to be reset as stated in the comments for the initRTOS

function and interrupts enabled. This then is the remainder of the round-robin
RTOS example.

long time;

int RTOScounter;

int main (void) {

initialization_functions (); // including initRTOS ()

time = 0; //Time in cycles since RTOS started

//one cycle = 20ms

RTOScounter = 0;

int taskID = 0;

TCNT2bits._w = 0;

while (1) {

switch(RTOScounter) {

case 0:

IMUReadingTask ();

break;

case 1:

break;

case 2:

CommunicationTask ();

break;

case 3:

break;

case 4:

DriveMotorControlTask ();

break;

case 5:

break;

case 6:

PotServoTask ();

break;

case 7:

break;

case 8:

CommunicationTask ();

break;

case 9:

break;

case 10:

break;

case 11:

break;

case 12:

IMUReadingTask ();

break;

128

case 13:

break;

case 14:

IRTask ();

break;

case 15:

CommunicationTask ();

break;

case 16:

break;

case 17:

break;

case 18:

break;

case 19:

break;

}

time ++;

while(RTOSCounter == taskID){}

//this loop prevents a task from running twice

// during its block and waits until the

// RTOSCounter changes before continuing

}

}

Breaks are not actually required for every case. They are only necessary in
the cases before those with actual tasks to perform. Likewise the time variable
is not necessary, it merely tracks the cycles passed since the RTOS loop started
and can be used for time stamps. Another possible use for it is tracking when
to sample the IR sensors, as their refresh rate is such that they will only update
approximately every other pass. It does no harm to reread them every pass but
if time does become an issue only reading one of them per pass and alternating
which is read is one method of saving a fraction of a second.

10.4 Conclusion

When using microcontrollers for complicated applications involving a variety
of individual tasks, implementing an RTOS can be very useful in guaranteeing
some form of scheduling for the tasks. Whether it is more advantageous to
use a preemptive or cooperative scheduler is dependent on the application and
tasks in question. Often times, however, the most basic scheduler is sufficient,
if not overkill. For further information about the various forms of RTOS and
how to implement them, search the local library or bookstores for books on
real time operating systems, embedded systems programming architecture and
similar topics.

129

Chapter 11

The final example

Thus far, this text has addressed many topics. Now it is time to put everything
together into a single example containing something from most every chapter.
This example will cover the entire process, from problem statement to completed
code with varying levels of analysis. Sections whose analysis has been completed
in depth in previous channels (such as the setup of certain devices) will be
skimmed over. Refer to the previous chapters for more information in these
cases.

11.1 Problem statement

The task in this example is to drive a small (under 5kg) robot parallel to a
wall at a distance of 30cm ±10% (3cm). The robot will travel at a minimum
of 4cm/s and accelerate from stop at a minimum acceleration of 15m/s2. The
robot is 30cm long.

11.2 Design decisions

As with many problems, there are three segments to the solution: sense, which
detects the current state of the robot; decide, which decides what the robot
should do; and control, which implements the decision. These three segments
will be examined in the order of control, sense and finally decide. This order is
in part by choice and in part mandated by the order in which design decisions
effect other decisions that must be made down the line. The remainder of this
section follows the logic for making some of the design decisions. While some
of the data behind the decisions have been omitted due to the vast array of
decisions that go into any solution, the primary requirements have been worked
out start to finish.

130

11.2.1 Control

Upon examining the problem statement, it can be noted that there is a minimum
speed and acceleration and that the robot must be steerable. No requirements
specify a specific drive or steering system, which means these must be decided
upon. A good rule of thumb when making a design decision is to accept the
simplest solution that is good enough. While better solutions may exist, they
are likely more costly in materials, manufacturing or time. A solution that is
good enough is one that meets every requirement with a reasonable margin for
error.

There are innumerable drive choices from wheeled robots, to legged robots to
other, more esoteric drive systems such as imitating a worm. The simplest and
easiest to control of these is a wheeled robot, therefore that is what should be
used. Within the category of wheeled robotics there is a wide range of options
including number of wheels, number of powered wheels and steering method.
Again the simplest of each option should be chosen. This leads to using four
wheels (simpler chassis design and stabler in motion than three wheels) with
two of them powered by motors and using skid steer. Skid steer, also known as
differential steering, uses a difference in the speed of the left and right wheels
to turn the robot.

Motor choice

As the problem statement provides a minimum speed, acceleration and a max-
imum weight for the robot, some of the minimum motor specifications can be
calculated. As an example, the required speed of the motor output shaft is cal-
culated here. The wheels are assumed to be 2.875 inches (7.30 cm) in diameter.
This choice was made based on the availability of the wheels to the author at
the time of writing.

shaft speed =
min speed

wheelcircumference

shaft speed =
4cm/s

7.30cm ∗ π
shaft speed = 10.5rpm

While there are numerous suitable motors available, one that fits the bill is a
12V Globe E-2135 gearmotor with a 187.68:1 ratio gearhead [13]. These motors
have a maximum rpm of over 5000, resulting in an output shaft speed of over
26rpm, which is more than sufficient. This excess allows the motors to be run
at an average of half speed, see section 11.2.3 below for the reasoning behind
this choice. The calculations for whether this motor meets the acceleration
requirements has been left as an exercise for the reader.

The motor control will be the same setup as used previously in 9.1.1 Linear
drivers, using an external 12-bit DAC and an op-amp.

131

11.2.2 Sense

In order to maintain a set distance, the robot must be capable of detecting
whether or not it is in the acceptable range. The most basic form would be
a switch on a 30cm-long arm sticking out from the side of the robot. If the
switch becomes un-pressed it means the robot is moving away from the wall
and a correction must be made. While acceptable by some interpretations of
the problem statement, it is a rather silly solution that is prone to problems
such as catching on the wall. Some form of ranging sensor must therefore be
used.

Some possible choices include infra-red (IR) sensors, ultrasonic rangefinders,
RADAR and LADAR (laser rangefinding). RADAR and LADAR can be elim-
inated straight off. These two methods are best used for long range detection
and range-finding, and are prohibitively expensive. This leaves the ultrasonic
sensors, which are prone to interference from similar devices as well as the en-
vironment, and IR sensors which are non-linear.

In order to decide between the two, the problem should be examined in
further detail. First off is the range of operation. The sensors must be able
to distinguish three ranges: under 27cm, between 27 and 33cm (the acceptable
range), and above 33cm. These three ranges tell the robot that it either needs to
move further from the wall, stay put, or move closer. Common hobby versions
of both types of sensors are capable of this.

While a single distance measurement can tell which direction the robot needs
to go, it does not tell the robot whether it is parallel or not. While not absolutely
necessary, having some measure of the angle the robot forms with the wall will
allow for a better control algorithm. Not only will the robot be able to adjust
its turning speed based on the angle with the wall, it will be capable of more
accurately calculating its distance as the sensor will not always be directed
perpendicular to the wall. A simple solution to this angle measurement problem
is to use two ranging sensors, one fore and one aft. The difference between these
measurements will give an indication of the angle. As ultra-sonics can interfere
with each other, IR sensors are the better choice here.

Having chosen IR sensors, a specific model that fits the requirements of
operational range (30cm) and precision (3cm) must be found. SHARP produces
a line of IR sensors with varying minimum and maximum ranges. One of these
sensors, the GP2D12, has an operational range of 10.16cm to 80.01cm, easily
covering the required range with room to spare. The sensor produces an analog
voltage from 0.4V at 80cm, to 2.4V at 10 cm, though non-linearly. The precision
must be calculated at 30cm to ensure compatibility with the requirements.

Examining the distance vs. voltage graph in the data sheet (see figure
11.1), the slope of the relationship at 30cm can be found to be approximately
24.3mV/cm. Recalling that the ADC on the microcontroller is 10-bit, it has a
resolution of 4.9mV with a 5V reference voltage. This equates to determining
the distance to within 2mm, which is well within the requirements.

132

Figure 11.1: Range vs Voltage data for the GP2D12 SHARP IR sensor. [19]

11.2.3 Decision

The final portion of the problem to examine is the process by which the robot
decides what control signals are actually sent by examining the sensor results.
To this end, some form of control equation must be derived, which the robot
then uses to set the speeds of each motor thereby steering the robot. When
creating a control law, there are several goals that can be designed for: speed of
reaction, simplicity (low processor time and/or memory usage) and optimizing
energy usage. As these three are highly dependent on each other, the general
procedure is to design for one and possibly maintain some form of minimum
requirement on the others. In this case, the design goal will be to use a minimum
of processor time and memory.

Starting from scratch, there are two parameters that effect the decision on
how the robot moves: distance from the wall and angle with the wall. As they
are independent, each one will be the basis for one term of the final control
equation.

control = distance error term+ angle term

The incoming signals from the sensors supply the distance to the wall per-
pendicular to the direction of travel from the front and from the rear of the
robot. From these, the distance can be easily calculated. Then angle is slightly
more difficult to calculate in that it requires a bit of geometry and trigonometry

133

(figure 11.2), but still relatively simple.

distance error =
front distance+ rear distance

2
− 30cm

angle = arctan(
front distance− rear distance

robotlength

Figure 11.2: Calculating angle formed with the wall based off distance
measurements.

These can then be combined together with some form of multiplier on one
or both terms to achieve a reasonable control law. There are two problems
however. First, the sensors are non-linear which means that if the angle isn’t
very small, it will have a great deal of error in the calculation; and second,
this involves both float math as well as trigonometric functions. This will be
very costly in terms of time and memory as the microcontroller cannot easily
handle float math, and both the trigonometric functions and converting the
ADC reading into an actual distance will require large lookup tables as well as
a non-insignificant amount of processor time.

A surprisingly elegant solution in this case is to just use the actual ADC val-
ues instead of calculating exact distances, and use the difference in the readings
without actually calculating the angle in the following manner:

control = distance mod ∗ (
front ADC + rear ADC

2
−ADC30cm)

+angle mod ∗ (front ADC − rear ADC)

Using this control law will have several effects

134

� The further from the desired distance the robot is, the faster it will attempt
to correct.

� The further from the wall the slower this correction will be. This allows
for gentle correction away from the wall where there is space, but quicker
reaction when the robot is close to the wall

� The further off parallel the robot is, the faster it will attempt to turn back
to parallel. Turns will again be magnified when close to the wall.

� Only basic arithmetic is used, allowing for quick calculations. Further-
more, if both tuning values (distance mod and angle mod) are multiples
of 2 (as they turn out to be for satisfactory responses), the only operations
are addition, subtraction, left-shifting and right-shifting: all of which re-
quire a single clock cycle. Multiplication by values other than a multiple
of 2 would require an additional cycle.

The value that results from this equation is then added to or subtracted from
some average motor speed to turn the robot. In this example, as the DAC used
is 12-bits, the control value is multiplied by 4 (left-shifted twice) and applied to
both motor values. This maintains the average speed while turning the robot.

11.3 File structure

This program consists of three .c files, their associated header files, three periph-
eral libraries and reg structs.h, a file which contains all the register structs
which have been used since chapter 6. The three libraries are for the USART,
SPI and ADC, which are the peripherals used in this example. The code files for
this program in particular are RTOSmain.c, which contains the main function
and the RTOS itself, tasks.c containing the functions called by the RTOS for
each task as well as initialization and motor.c which contains functions directly
related to the motors and encoders. As seen in figure 11.3, the libraries includ-
ing reg structs.h are in a sub-folder. In actuality they are in a separate folder
that is linked to the project by the compiler to appear as a sub-folder. If the
libraries are moved, which they shouldn’t be, only the compiler’s options need
to be changed rather than the code itself.

11.3.1 RTOSmain.c

There have been some changes to RTOSmain.c since the previous example. As
a separate header file was created, the #include statements and global variable
declarations have been removed to there. Additionally, the initialization func-
tion was moved out of this file and into tasks.c. Finally, a second ISR was
added.

The new ISR triggers whenever data arrives via the USART. Its sole task
is to store that incoming data in an array of chars (rx data acting as a buffer,
and increment a variable (rx bytes) tracking where in the buffer the next byte

135

Figure 11.3: File structure of final example showing all files not installed with
the compiler.

should be placed. This information is handled later by the communications task.
Elsewhere, primarily in the USART library, ints are used instead of chars for
transmitted and received data. This is due to the possibility of having 9-bit
characters and the interest in making the library as generic as possible. The
ISR uses chars as in this application the serial characters are only 8-bits.

ISR(USART0_RX_vect) {

rx_data[rx_bytes] = (char)UDR0bits._w;

rx_bytes ++;

}

11.3.2 RTOSmain.h

This header file is where the global variable declarations and #include state-
ments have been moved to. There are also a few new variable declarations.
These are variables for storing the IR sensor readings for use in the motor con-
trol task, as well as the serial input and output buffers and their respective
position trackers. The set point variable stores the desired distance from the
wall as the value that should be read from the IR sensor when that distance
is achieved. Finally, an additional inclusion, tasks.h has been added which in
turn #includes all other necessary files.

//IR reading and distance storage

//196 = 1 foot

int fIR = 196;

int bIR = 196;

int set_point = 196;

136

//USART tx and rx data buffers and current locations

int tx_data [20];

unsigned char tx_bytes = 0; // track next byte location

char rx_data [50];

unsigned char rx_bytes = 0; // track next byte location

11.3.3 tasks.h

This file should be relatively easy to read and understand except for one thing.
There are several variables that are declared with the extern keyword. This
keyword tells the compiler that these variables are also declared in another file,
but that they should be accessible as if declared here as well. In this case, the
variables are the motor speed and communications buffer variables that were
declared initially in RTOSmain.h.

extern int fIR;

extern int bIR;

extern int set_point;

extern int tx_data [20];

extern unsigned char tx_bytes;

extern char rx_data [50];

extern unsigned char rx_bytes;

extern long time;

11.3.4 tasks.c

This file contains the functions for all of the individual tasks as well as the initial-
ization function. This initialization function (initialization functions())
merely calls further initialization functions for various tasks: the RTOS, ADC,
USART and motor functions (which includes the SPI). The RTOS initialization
function (initRTOS()) which was in RTOSmain.c previously is also in this file.

void initialization_functions () {

ADC_init (& ADC_struct); // initialize ADC

motor_init (); // initialize motor

USART_init (& USART_struct);

initRTOS ();

}

CommunicationsTask()

This task covers the transmission of any outgoing data accumulated in tx data

and the distribution of the data that has been saved in rx data. After transmit-
ting all the requisite data (by calling USART TX() the function enters a while

loop which steps over the commands stored in rx data. The loop enters a
switch statement using the first byte of data. This byte is the command and

137

causes different cases to trigger based on its value. All of the commands are an
ASCII character somehow related to the command (‘d’ for setting the desired
distance to the wall for example). Currently only a single command is available,
however more can be added easily if desired.

Each command has a specific number of data bytes which are transmitted
immediately after. These are used in the execution of the command, and then
the while loop counter variable i is increased by the number of bytes involved
in each command.

If the command code is not recognized, which can happen if there is a trans-
mission error or the wrong number of bytes is somehow sent, the default block
is triggered. This block sends the command code ‘x’ back to the computer along
with all the data that it didn’t reach. This tells the computer that an error has
occurred and what data was involved. It is then the computers job to determine
what commands must be resent.

void CommunicationTask (){

USART_TX(tx_data ,tx_bytes);

tx_bytes = 0;

unsigned char i = 0;

//work through received data

while(i<rx_bytes) {

// finite state machine for various commands

switch (rx_data[i]) {

case 'd': // distance setting

set_point = (int)rx_data[i+1]<<8 +

(int)rx_data[i+2];

i+=3;

break;

default:

//error occurred , send back all remaining data

// uneven command lengths means can't necessarily resync.

// remote controller will have to resend commands

tx_data[tx_bytes] = 'x'; //error indicator

tx_bytes ++;

for(i=i;i<rx_bytes;i++) {

tx_data[tx_bytes] = rx_data[i];

tx_bytes ++;

}

USART_TX(tx_data ,tx_bytes);

}

}

}

DriveMotorControlTask()

This function takes the IR sensor data stored in fIR and bIR and uses them
to calculate the motor speeds to maintain or achieve the desired distance from
the wall. The calculation works by first finding the difference between the IR

138

sensor readings to obtain a measure of what angle the robot is at relative to
the wall. Additionally an error term is calculated by subtracting the desired
distance from the current location of the robot, which is found by taking the
average of the readings. The angle term is multiplied by a #defined constant
which is a tuning value to adjust the relative importance of the two terms.

tune ∗ (fIR− bIR) +
fIR+ bIR

2
− distance

This calculation is done entirely using the ADC readings of the IR sensors.
This means that the results are non-linear and may not be exactly what is
expected looking at the equation without that knowledge. In this instance the
non-linearity is acceptable and the function does work.

At this point, a single value has been calculated. This is then used as a speed
modifier when setting the motor values, after being multiplied by 4 to increase
the speed of the robots corrections. This modifier is added to the DAC setting for
half-speed for each motor. This speed setting was a somewhat arbitrary choice.
In the code the left and right motors are set to 1020 and 3060 respectively to
travel straight. The difference is caused by the fact the motors are pointed in
opposite directions, meaning they must rotate in opposite directions to enable
the robot to travel forward rather than spin in place. As the DAC is 12 bits
and due to how the amplifier circuit is designed, a value of 0 causes full speed in
one direction, 4080 is full speed in the other and 2040 is stopped. After setting
the two motors, this task then reads the current values of the encoder counter
chips and queues that data for transmission to the computer.

int res = TURN_TUNE *(fIR -bIR)+(fIR+bIR)/2- set_point;

// set motors

set_motor(LEFT_MOTOR , 1020+(res < <2));

set_motor(RIGHT_MOTOR , 3060+(res < <2));

IRTask()

As was previously mentioned, the IR sensors have a refresh rate that is slower
than the RTOS, so only one is read each pass. This is taken care of by the
if statement checking if the time variable is even or odd. The sensor reading
along with which sensor made the reading is queued for transmission with the
command code ‘i’ (for Infra-red) for the front IR sensor, or ‘j’ for the rear, as
well as stored either the fIR or textttbIR as appropriate. The ‘j’ comes from
being the ASCII code numerically 1 greater than ‘i’.

Other tasks

Dummy functions are included for the other tasks in the RTOS, however as they
are not used in this example they have been left un-implemented.

139

11.3.5 motor.h and motor.c

motor.h contains a number of #define statements used primarily used for track-
ing which device is which. This includes the slave select pins for all three SPI
devices (DAC and two encoder counters.

motor.c contains three functions: motor initialization, setting motor speeds
and reading the encoder counters. The motor init() function handles all the
initializations required to use the motors which include configuring the SPI, both
encoder counters and the DAC. There is a major problem that is run into here
however, as the DAC expects that the SPI clock signal will be high when not in
use while the encoder counters expect it to be low. This requires two separate
configurations which will be swapped between whenever a different device must
be accessed. As two configurations are required, two separate SPI struct types
must be created, one for each configuration (see the section on the library files
below). The only difference between these structs is the clockpolarity field.

//DAC init struct. See SPI.h for struct definition

SPI_struct_type DAC_struct = {. intenable = 0,

.dataorder = MSBfirst ,

.clockpolarity = 1, // leading edge fall

.clockphase = 0, // sample on leading

.clockprescale = SPIPRE2 };

// Encoder init struct. See SPI.h for struct definition

SPI_struct_type Enc_struct = {. intenable = 0,

.dataorder = MSBfirst ,

.clockpolarity = 0,

.clockphase = 0,

.clockprescale = SPIPRE2 };

The motor init() function handles the switches between configurations
when it needs to, whereas the other two functions have logic at the beginning of
the function that only changes the configuration if the other configuration was
used last. This is the purpose of the cur device variable and the ENC DEVICE

and DAC DEVICE definitions in the header file.

//setup SPI for DAC

if(cur_device == ENC_DEVICE) {

SPI_init (& DAC_struct);

cur_device = DAC_DEVICE;

}

11.3.6 ADC, SPI and USART libraries

All three of these libraries are set up in the same method. Each one contains
an initialization function (i.e. ADC init()) who’s only argument is a pointer
to a specific type of typedefed struct. These structs contain fields for all
the configuration options. As mentioned in chapter 6, these structs allow for
more generic initialization functions and make future changes to the functions

140

easier. The other functions in each library are those required for operation, be
it reading, writing or some combination thereof.

In addition to the struct typedefs, the header files have numerous #define
statements. The majority of these are the options for configuration, giving
textual names that are usable instead of requiring the memorization of the
numeric values or constantly referencing the datasheet.

11.4 Conclusion

While complex tasks may seem daunting at first, breaking it up into individual
tasks and tackling each one individually should make any task achievable. The
important things to remember are to make liberal use of libraries, and keep code
as generic as possible to make future programming quicker and easier.

141

Afterword

This text has attempted to provide solutions to several of the problems faced
by RBE3001 students in Worcester Polytechnic Institute’s Robotics Engineering
course. The first two chapters, as well as the schematic analysis for the digital
I/O and the ADC attempted to provide students with a better understanding
of what microcontrollers are and how they function, as well as teaching them
how to read, understand and learn from datasheets and schematics. Chapters 5
and 6 were aimed at improving the coding practices of students, both in terms
of improving code re-use through libraries as well as properly commenting and
documenting their code. Additionally, several uses of structs were presented
which will again aid in code re-use and organization. Chapter 10 demonstrated
that if the organization of the code is properly thought out from the beginning,
the execution can be much improved via structures such as an RTOS. The
remaining chapters introduced and used various peripherals and external devices
useful in robotics.

In addition to these tasks, the entire text had the underlaying goal of teach-
ing the students how to obtain this information for themselves in the future.
Good practices are demonstrated, and the origins of important information are
displayed and explained initially before backing off on the detailed explanations
to allow readers to work on each skill in progressive steps. It has been to goal
of this text to allow readers to be able to easily branch off from the devices
presented herein into other microcontrollers and devices using the datasheets
and a minimum of other resources.

142

Appendix A

regstructs.h

This is a header file that allows access to all of the registers of the ATmega644p
as structs via the methods presented in chapter 6. None of the names contained
herein overlap with the ones provided in WinAVR, so there is no conflict and
registers can still be accessed in the methods used in the first five chapters.
Mixing paradigns is highly not reccommended.

/**

* \file reg_structs.h

* \author Peter Alley

* \date 11-18-09

*

* This file redefines all of the registers of the

* ATmega644p as structs to allow for easy

* access to individual bit fields in each register.

*/

#ifndef REG_STRUCTS_H_

#define REG_STRUCTS_H_

/**

* Generic 8-bit register

*/

typedef union {

struct {

unsigned _P0:1;

unsigned _P1:1;

unsigned _P2:1;

unsigned _P3:1;

unsigned _P4:1;

unsigned _P5:1;

unsigned _P6:1;

unsigned _P7:1;

};

struct {

143

unsigned _w:8;

};

} __8bitreg_t;

/**

* DIO

* PIN , DDR , PORT for A,B,C,D

*/

/**

* ADC port

*/

/**

* SPI port

*/

typedef union {

struct {

unsigned :5;

unsigned _MOSI :1;

unsigned _MISO :1;

unsigned _SCK :1;

};

struct {

unsigned _w :8;

};

} __SPIPORTbits_t;

/**

* TIFR0

*/

typedef union {

struct {

unsigned _TOV0 :1;

unsigned _OCF0A :1;

unsigned _OCF0B :1;

unsigned :5;

};

struct {

unsigned _w:8;

};

} __TIFR0bits_t;

/**

* TIFR1

*/

typedef union {

struct {

unsigned _TOV1 :1;

unsigned _OCF1A :1;

144

unsigned _OCF1B :1;

unsigned :2;

unsigned _ICF1 :1;

unsigned :2;

};

struct {

unsigned _w :8;

};

} __TIFR1bits_t;

/**

* TIFR2

*/

typedef union {

struct {

unsigned _TOV2 :1;

unsigned _OCF2A :1;

unsigned _OCF2B :1;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __TIFR2bits_t;

/**

* PCIFR

*/

typedef union {

struct {

unsigned _PCIF0 :1;

unsigned _PCIF1 :1;

unsigned _PCIF2 :1;

unsigned _PCIF3 :1;

unsigned :4;

};

struct {

unsigned _w :8;

};

} __PCIFRbits_t;

/**

* EIFR

*/

typedef union {

struct {

unsigned _INTF0 :1;

unsigned _INTF1 :1;

unsigned _INTF2 :1;

unsigned :5;

145

};

struct {

unsigned _w :8;

};

} __EIFRbits_t;

/**

* EIMSK

*/

typedef union {

struct {

unsigned _INT0 :1;

unsigned _INT1 :1;

unsigned _INT2 :1;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __EIMSKbits_t;

/**

* GPIOR0

*/

typedef union {

struct {

unsigned _b0 :1;

unsigned _b1 :1;

unsigned _b2 :1;

unsigned _b3 :1;

unsigned _b4 :1;

unsigned _b5 :1;

unsigned _b6 :1;

unsigned _b7 :1;

};

struct {

unsigned _w :8;

};

} __GPIOR0bits_t;

/**

* EECR

*/

typedef union {

struct {

unsigned _EERE :1;

unsigned _EEPE :1;

unsigned _EEMPE :1;

unsigned _EERIE :1;

unsigned _EEPM0 :1;

146

unsigned _EEPM1 :1;

unsigned :2;

};

struct {

unsigned :4;

unsigned _EEPM :2;

unsigned :2;

};

struct {

unsigned _w :8;

};

} __EECRbits_t;

/**

* EEDR

* 8bitreg

*/

/**

* EEAR

*/

typedef union {

struct {

unsigned _low :8;

unsigned _high :8;

};

struct {

unsigned _w :16;

};

}__16bitreg_t;

/**

* EEARL

* 8bitreg

*/

/**

* EEARH

* 8bitreg

*/

/**

* GTCCR

*/

typedef union {

struct {

unsigned _PSRSYNC :1;

unsigned _PSRASY :1;

unsigned :5;

unsigned _TSM :1;

147

};

struct {

unsigned _w :8;

};

} __GTCCRbits_t;

/**

* TCCR0A

*/

typedef union {

struct {

unsigned _WGM00 :1;

unsigned _WGM01 :1;

unsigned :2;

unsigned _COM0B0 :1;

unsigned _COM0B1 :1;

unsigned _COM0A0 :1;

unsigned _COM0A1 :1;

};

struct {

unsigned _WGM :2;

unsigned :2;

unsigned _COMB :2;

unsigned _COMA :2;

};

struct {

unsigned :4;

unsigned _COM0B :2;

unsigned _COM0A :2;

};

struct {

unsigned _w :8;

};

} __TCCR0Abits_t;

/**

* TCCR0B

*/

typedef union {

struct {

unsigned _CS00 :1;

unsigned _CS01 :1;

unsigned _CS02 :1;

unsigned _WGM02 :1;

unsigned :2;

unsigned _FOC0B :1;

unsigned _FOC0A :1;

};

struct {

unsigned _CS :3;

148

unsigned _WGM :1;

unsigned :2;

unsigned _FOC :2;

};

struct {

unsigned _w :8;

};

} __TCCR0Bbits_t;

/**

* TCNT0

* 8bitreg

*/

/**

* OCR0A

* 8bitreg

*/

/**

* OCR0B

* 8bitreg

*/

/**

* GPIOR1

* 8bitreg

*/

/**

* GPIOR2

* 8bitreg

*/

/**

* SPCR

*/

typedef union {

struct {

unsigned _SPR0 :1;

unsigned _SPR1 :1;

unsigned _CPHA :1;

unsigned _CPOL :1;

unsigned _MSTR :1;

unsigned _DORD :1;

unsigned _SPE :1;

unsigned _SPIE :1;

};

struct {

unsigned _SPR :2;

149

unsigned :6;

};

struct {

unsigned _ w:8;

};

} __SPCRbits_t;

/**

* SPSR

*/

typedef union {

struct {

unsigned _SPI2X :1;

unsigned :5;

unsigned _WCOL :1;

unsigned _SPIF :1;

};

struct {

unsigned _w :8;

};

} __SPSRbits_t;

/**

* SPDR

* 8bitreg

*/

/**

* ACSR

*/

typedef union {

struct {

unsigned _ACIS0 :1;

unsigned _ACIS1 :1;

unsigned _ACIC :1;

unsigned _ACIE :1;

unsigned _ACI :1;

unsigned _ACO :1;

unsigned _ACBG :1;

unsigned _ACD :1;

};

struct {

unsigned _w :8;

};

} __ACSRbits_t;

/**

* MONDR / OCDR

*/

typedef union {

150

struct {

unsigned _OCDR0 :1;

unsigned _OCDR1 :1;

unsigned _OCDR2 :1;

unsigned _OCDR3 :1;

unsigned _OCDR4 :1;

unsigned _OCDR5 :1;

unsigned _OCDR6 :1;

unsigned _OCDR7 :1;

};

struct {

unsigned :6;

unsigned _IDRD :1;

};

struct {

unsigned _w :8;

};

} __OCDRbits_t;

/**

* SMCR

*/

typedef union {

struct {

unsigned _SE :1;

unsigned _SM0 :1;

unsigned _SM1 :1;

unsigned _SM2 :1;

unsigned :4;

};

struct {

unsigned :1;

unsigned _SM :3;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __SMCRbits_t;

/**

* MCUSR

*/

typedef union {

struct {

unsigned _PORF :1;

unsigned _EXTRF :1;

unsigned _BORF :1;

unsigned _WDRF :1;

unsigned _JTRF :1;

151

unsigned :3;

};

struct {

unsigned _w :8;

};

} __MCUSRbits_t;

/**

* MCUCR

*/

typedef union {

struct {

unsigned _IVCE :1;

unsigned _IVSEL :1;

unsigned :2;

unsigned _PUD :1;

unsigned _BODSE :1;

unsigned _BODS :1;

unsigned _JTD :1;

};

struct {

unsigned _w :8;

};

} __MCUCRbits_t;

/**

* SPMCSR

*/

typedef union {

struct {

unsigned _SPMEN :1;

unsigned _PGERS :1;

unsigned _PGWRT :1;

unsigned _BLBSET :1;

unsigned _RWWSRE :1;

unsigned _SIGRD :1;

unsigned _RWWSB :1;

unsigned _SPMIE :1;

};

struct {

unsigned _w :8;

};

} __SPMCSRbits_t;

/**

* WDTCSR

*/

typedef union {

struct {

unsigned _WDP0 :1;

152

unsigned _WDP1 :1;

unsigned _WDP2 :1;

unsigned _WDE :1;

unsigned _WDCE :1;

unsigned _WDP3 :1;

unsigned _WDIE :1;

unsigned _WDIF :1;

};

struct {

unsigned _WDP :3;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __WDTCSRbits_t;

/**

* CLKPR

*/

typedef union {

struct {

unsigned _CLKPS0 :1;

unsigned _CLKPS1 :1;

unsigned _CLKPS2 :1;

unsigned _CLKPS3 :1;

unsigned :3;

unsigned _CLKPCE :1;

};

struct {

unsigned _CLKPS :4;

unsigned :4;

};

struct {

unsigned _w :8;

};

} __CLKPRbits_t;

/**

* PRR

*/

typedef union {

struct {

unsigned _PRADC :1;

unsigned _PRUSART0 :1;

unsigned _PRSPI :1;

unsigned _PRTIM1 :1;

unsigned _PRUSART1 :1;

unsigned _PRTIM0 :1;

unsigned _PRTIM2 :1;

153

unsigned _PRTWI :1;

};

struct {

unsigned _w :8;

};

} __PRRbits_t;

/**

* OSCCAL

* 8bitreg

*/

/**

* PCICR

*/

typedef union {

struct {

unsigned _PCIE0 :1;

unsigned _PCIE1 :1;

unsigned _PCIE2 :1;

unsigned _PCIE3 :1;

unsigned :4;

};

struct {

unsigned _PCIE :4;

unsigned :4;

};

struct {

unsigned _w :8;

};

} __PCICRbits_t;

/**

* EICRA

*/

typedef union {

struct {

unsigned _ISC00 :1;

unsigned _ISC01 :1;

unsigned _ISC10 :1;

unsigned _ISC11 :1;

unsigned _ISC20 :1;

unsigned _ISC21 :1;

unsigned :2;

};

struct {

unsigned _ISC0 :2;

unsigned _ISC1 :2;

unsigned _ISC2 :2;

unsigned :2;

154

};

struct {

unsigned _w :8;

};

} __EICRAbits_t;

/**

* PCMSK0

*/

typedef union {

struct {

unsigned _PCINT0 :1;

unsigned _PCINT1 :1;

unsigned _PCINT2 :1;

unsigned _PCINT3 :1;

unsigned _PCINT4 :1;

unsigned _PCINT5 :1;

unsigned _PCINT6 :1;

unsigned _PCINT7 :1;

};

struct {

unsigned _w :8;

};

} __PCMSK0bits_t;

/**

* PCMSK1

*/

typedef union {

struct {

unsigned _PCINT8 :1;

unsigned _PCINT9 :1;

unsigned _PCINT1 0:1;

unsigned _PCINT1 1:1;

unsigned _PCINT1 2:1;

unsigned _PCINT1 3:1;

unsigned _PCINT1 4:1;

unsigned _PCINT1 5:1;

};

struct {

unsigned _w :8;

};

} __PCMSK1bits_t;

/**

* PCMSK2

*/

typedef union {

struct {

unsigned _PCINT16 :1;

155

unsigned _PCINT17 :1;

unsigned _PCINT18 :1;

unsigned _PCINT19 :1;

unsigned _PCINT20 :1;

unsigned _PCINT21 :1;

unsigned _PCINT22 :1;

unsigned _PCINT23 :1;

};

struct {

unsigned _w :8;

};

} __PCMSK2bits_t;

/**

* TIMSK0

*/

typedef union {

struct {

unsigned _TOIE0 :1;

unsigned _OCIE0A :1;

unsigned _OCIE0B :1;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __TIMSK0bits_t;

/**

* TIMSK1

*/

typedef union {

struct {

unsigned _TOIE1 :1;

unsigned _OCIE1A :1;

unsigned _OCIE1B :1;

unsigned :2;

unsigned _ICIE1 :1;

unsigned :2;

};

struct {

unsigned _w :8;

};

} __TIMSK1bits_t;

/**

* TIMSK2

*/

typedef union {

struct {

156

unsigned _TOIE2 :1;

unsigned _OCIE2A :1;

unsigned _OCIE2B :1;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __TIMSK2bits_t;

/**

* PCMSK3

*/

typedef union {

struct {

unsigned _PCINT24 :1;

unsigned _PCINT25 :1;

unsigned _PCINT26 :1;

unsigned _PCINT27 :1;

unsigned _PCINT28 :1;

unsigned _PCINT29 :1;

unsigned _PCINT30 :1;

unsigned _PCINT31 :1;

};

struct {

unsigned _w :8;

};

} __PCMSK3bits_t;

/**

* ADCW

* 16 bitreg

*/

/**

* ADCL

* 8bitreg

*/

/**

* ADCH

* 8bitreg

*/

/**

* ADCSRA

*/

typedef union {

struct {

unsigned _ADPS0 :1;

157

unsigned _ADPS1 :1;

unsigned _ADPS2 :1;

unsigned _ADIE :1;

unsigned _ADIF :1;

unsigned _ADATE :1;

unsigned _ADSC :1;

unsigned _ADEN :1;

};

struct {

unsigned _ADPS :3;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __ADCSRAbits_t;

/**

* ADCSRB

*/

typedef union {

struct {

unsigned _ADTS0 :1;

unsigned _ADTS1 :1;

unsigned _ADTS2 :1;

unsigned :3;

unsigned _ACME :1;

unsigned :1;

};

struct {

unsigned _ADTS :3;

unsigned :5;

};

struct {

unsigned _w :8;

};

} __ADCSRBbits_t;

/**

* ADMUX

*/

typedef union {

struct {

unsigned _MUX0 :1;

unsigned _MUX1 :1;

unsigned _MUX2 :1;

unsigned _MUX3 :1;

unsigned _MUX4 :1;

unsigned _ADLAR :1;

unsigned _REFS0 :1;

158

unsigned _REFS1 :1;

};

struct {

unsigned _MUX :5;

unsigned :1;

unsigned _REFS :2;

};

struct {

unsigned _w :8;

};

} __ADMUXbits_t;

/**

* DIDR0

*/

typedef union {

struct {

unsigned _ADC0D :1;

unsigned _ADC1D :1;

unsigned _ADC2D :1;

unsigned _ADC3D :1;

unsigned _ADC4D :1;

unsigned _ADC5D :1;

unsigned _ADC6D :1;

unsigned _ADC7D :1;

};

struct {

unsigned _w :8;

};

} __DIDR0bits_t;

/**

* DIDR1

*/

typedef union {

struct {

unsigned _AIN0D :1;

unsigned _AIN1D :1;

unsigned :6;

};

struct {

unsigned _w :8;

};

} __DIDR1bits_t;

/**

* TCCR1A

*/

typedef union {

struct {

159

unsigned _WGM10 :1;

unsigned _WGM11 :1;

unsigned :2;

unsigned _COM1B0 :1;

unsigned _COM1B1 :1;

unsigned _COM1A0 :1;

unsigned _COM1A1 :1;

};

struct {

unsigned _WGM :2;

unsigned :2;

unsigned _COMB :2;

unsigned _COMA :2;

};

struct {

unsigned :4;

unsigned _COM1B :2;

unsigned _COM1A :2;

};

struct {

unsigned _w :8;

};

} __TCCR1Abits_t;

/**

* TCCR1B

*/

typedef union {

struct {

unsigned _CS10 :1;

unsigned _CS11 :1;

unsigned _CS12 :1;

unsigned _WGM12 :1;

unsigned _WGM13 :1;

unsigned :1;

unsigned _ICES1 :1;

unsigned _ICNC1 :1;

};

struct {

unsigned _CS :3;

unsigned _WGM :2;

unsigned :3;

};

struct {

unsigned _w :8;

};

} __TCCR1Bbits_t;

/**

* TCCR1C

160

*/

typedef union {

struct {

unsigned :6;

unsigned _FOC1A :1;

unsigned _FOC1B :1;

};

struct {

unsigned :6;

unsigned _FOC :2;

};

struct {

unsigned _w :8;

};

} __TCCR1Cbits_t;

/**

* TCNT1

* 16 bitreg

*/

/**

* TCNT1H

* 8bitreg

*/

/**

* TCNT1L

* 8bitreg

*/

/**

* ICR1

* 16 bitreg

*/

/**

* ICR1H

* 8bitreg

*/

/**

* ICR1L8bitreg

*/

/**

* OCR1A

* 16 bitreg

*/

161

/**

* OCR1AH

* 8bitreg

*/

/**

* OCR1AL

* 8bitreg

*/

/**

* OCR1B

* 16 bitreg

*/

/**

* OCR1H

* 8bitreg

*/

/**

* OCR1BL

* 8bitreg

*/

/**

* TCCR2A

*/

typedef union {

struct {

unsigned _WGM20 :1;

unsigned _WGM21 :1;

unsigned :2;

unsigned _COM2B0 :1;

unsigned _COM2B1 :1;

unsigned _COM2A0 :1;

unsigned _COM2A1 :1;

};

struct {

unsigned _WGM :2;

unsigned :2;

unsigned _COMB :2;

unsigned _COMA :2;

};

struct {

unsigned :4;

unsigned _COM1B :2;

unsigned _COM1A :2;

};

struct {

162

unsigned _w :8;

};

} __TCCR2Abits_t;

/**

* TCCR2B

*/

typedef union {

struct {

unsigned _CS20 :1;

unsigned _CS21 :1;

unsigned _CS22 :1;

unsigned _WGM22 :1;

unsigned :2;

unsigned _FOC2B :1;

unsigned _FOC2A :1;

};

struct {

unsigned _CS :3;

unsigned _WGM :1;

unsigned :1;

unsigned _FOC :2;

};

struct {

unsigned _w :8;

};

} __TCCR2Bbits_t;

/**

* TCNT2

* 8bitreg

*/

/**

* OCR2A

* 8bitreg

*/

/**

* OCR2B

* 8bitreg

*/

/**

* ASSR

*/

typedef union {

struct {

unsigned _TCR2BUB :1;

unsigned _TCR2AUB :1;

163

unsigned _OCR2BUB :1;

unsigned _OCR2AUB :1;

unsigned _TCN2UB :1;

unsigned _AS2 :1;

unsigned _EXCLK :1;

unsigned :1;

};

struct {

unsigned _w :8;

};

} __ASSRbits_t;

/**

* TWBR

* 8bitreg

*/

/**

* TWSR

*/

typedef union {

struct {

unsigned _TWPS0 :1;

unsigned _TWPS1 :1;

unsigned :1;

unsigned _TWS3 :1;

unsigned _TWS4 :1;

unsigned _TWS5 :1;

unsigned _TWS6 :1;

unsigned _TWS7 :1;

};

struct {

unsigned _TWPS :2;

unsigned :1;

unsigned _TWS :5;

};

struct {

unsigned _w :8;

};

} __TWSRbits_t;

/**

* TWAR

*/

typedef union {

struct {

unsigned _TWGCE :1;

unsigned _TWA0 :1;

unsigned _TWA1 :1;

unsigned _TWA2 :1;

164

unsigned _TWA3 :1;

unsigned _TWA4 :1;

unsigned _TWA5 :1;

unsigned _TWA6 :1;

};

struct {

unsigned :1;

unsigned _TWA :7;

};

struct {

unsigned _w :8;

};

} __TWARbits_t;

/**

* TWDR

* 8bitreg

*/

/**

* TWCR

*/

typedef union {

struct {

unsigned _TWIE :1;

unsigned :1;

unsigned _TWEN :1;

unsigned _TWWC :1;

unsigned _TWSTO :1;

unsigned _TWSTA :1;

unsigned _TWEA :1;

unsigned _TWINT :1;

};

struct {

unsigned _w :8;

};

} __TWCRbits_t;

/**

* TWAMR

*/

typedef union {

struct {

unsigned _TWAM0 :1;

unsigned _TWAM1 :1;

unsigned _TWAM2 :1;

unsigned _TWAM3 :1;

unsigned _TWAM4 :1;

unsigned _TWAM5 :1;

unsigned _TWAM6 :1;

165

unsigned _TWAM7 :1;

};

struct {

unsigned _w :8;

};

} __TWAMRbits_t;

/**

* UCSR0A

*/

typedef union {

struct {

unsigned _MPCM0 :1;

unsigned _U2X0 :1;

unsigned _UPE0 :1;

unsigned _DOR0 :1;

unsigned _FE0 :1;

unsigned _UDRE0 :1;

unsigned _TXC0 :1;

unsigned _RXC0 :1;

};

struct {

unsigned _w :8;

};

} __UCSR0Abits_t;

/**

* UCSR0B

*/

typedef union {

struct {

unsigned _TXB80 :1;

unsigned _RXB80 :1;

unsigned _UCSZ02 :1;

unsigned _TXEN0 :1;

unsigned _RXEN0 :1;

unsigned _UDRIE0 :1;

unsigned _TXCIE0 :1;

unsigned _RXCIE0 :1;

};

struct {

unsigned w :8;

};

} __UCSR0Bbits_t;

/**

* UCSR0C

*/

typedef union {

struct {

166

unsigned _UCPOL0 :1;

unsigned _UCSZ00 :1;

unsigned _UCSZ01 :1;

unsigned _USBS0 :1;

unsigned _UPM00 :1;

unsigned _UPM01 :1;

unsigned _UMSEL00 :1;

unsigned _UMSEL01 :1;

};

struct {

unsigned :1;

unsigned _UCSZ0 :2;

unsigned :1;

unsigned _UPM0 :2;

unsigned _UMSEL0 :2;

};

struct {

unsigned _w :8;

};

} __UCSR0Cbits_t;

/**

* UBRR0

* 16 bitreg

*/

/**

* UBRR0H

* 8bitreg

*/

/**

* UBRR0L

* 8bitreg

*/

/**

* UDR0

* 8bitreg

*/

/**

* UCSR1A

*/

typedef union {

struct {

unsigned _MPCM1 :1;

unsigned _U2X1 :1;

unsigned _UPE1 :1;

unsigned _DOR1 :1;

167

unsigned _FE1 :1;

unsigned _UDRE1 :1;

unsigned _TXC1 :1;

unsigned _RXC1 :1;

};

struct {

unsigned _w :8;

};

} __UCSR1Abits_t;

/**

* UCSR1B

*/

typedef union {

struct {

unsigned _TXB81 :1;

unsigned _RXB81 :1;

unsigned _UCSZ12 :1;

unsigned _TXEN1 :1;

unsigned _RXEN1 :1;

unsigned _UDRIE1 :1;

unsigned _TXCIE1 :1;

unsigned _RXCIE1 :1;

};

struct {

unsigned _w :8;

};

} __UCSR1Bbits_t;

/**

* UCSR1C

*/

typedef union {

struct {

unsigned _UCPOL1 :1;

unsigned _UCSZ10 :1;

unsigned _UCSZ11 :1;

unsigned _USBS1 :1;

unsigned _UPM10 :1;

unsigned _UPM11 :1;

unsigned _UMSEL10 :1;

unsigned _UMSEL11 :1;

};

struct {

unsigned :1;

unsigned _UCSZ1 :2;

unsigned :1;

unsigned _UPM1 :2;

unsigned _UMSEL1 :2;

};

168

struct {

unsigned _w :8;

};

} __UCSR1Cbits_t;

/**

* UBRR1

* 16 bitreg

*/

/**

* UBRR1H

* 8bitreg

*/

/**

* UBRR1L

* 8bitreg

*/

/**

* UDR1

* 8bitreg

*/

extern volatile __8bitreg_t PINAbits

__asm__ ("0x20") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t DDRAbits

__asm__ ("0x21") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PORTAbits

__asm__ ("0x22") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PINBbits

__asm__ ("0x23") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t DDRBbits

__asm__ ("0x24") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PORTBbits

__asm__ ("0x25") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PINCbits

__asm__ ("0x26") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t DDRCbits

__asm__ ("0x27") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PORTCbits

__asm__ ("0x28") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PINDbits

__asm__ ("0x29") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t DDRDbits

__asm__ ("0x2A") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t PORTDbits

__asm__ ("0x2B") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t ADCPINbits

169

__asm__ ("0x20") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t ADCDDRbits

__asm__ ("0x21") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t ADCPORTbits

__asm__ ("0x22") __attribute__ ((section("sfr")));

extern volatile __SPIPORTbits_t SPIDDRbits

__asm__ ("0x24") __attribute__ ((section("sfr")));

extern volatile __SPIPORTbits_t SPIPORTbits

__asm__ ("0x25") __attribute__ ((section("sfr")));

extern volatile __TIFR0bits_t TIFR0bits

__asm__ ("0x35") __attribute__ ((section("sfr")));

extern volatile __TIFR1bits_t TIFR1bits

__asm__ ("0x36") __attribute__ ((section("sfr")));

extern volatile __TIFR2bits_t TIFR2bits

__asm__ ("0x37") __attribute__ ((section("sfr")));

extern volatile __PCIFRbits_t PCIFRbits

__asm__ ("0x3B") __attribute__ ((section("sfr")));

extern volatile __EIFRbits_t EIFRits

__asm__ ("0x3C") __attribute__ ((section("sfr")));

extern volatile __EIMSKbits_t EIMSKbits

__asm__ ("0x3D") __attribute__ ((section("sfr")));

extern volatile __GPIOR0bits_t GPIOR0bits

__asm__ ("0x3E") __attribute__ ((section("sfr")));

extern volatile __EECRbits_t EECRbits

__asm__ ("0x3F") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t EEDRbits

__asm__ ("0x40") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t EEARbits

__asm__ ("0x41") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t EEARLbits

__asm__ ("0x41") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t EEARHbits

__asm__ ("0x42") __attribute__ ((section("sfr")));

extern volatile __GTCCRbits_t GTCCRbits

__asm__ ("0x43") __attribute__ ((section("sfr")));

extern volatile __TCCR0Abits_t TCCR0Abits

__asm__ ("0x44") __attribute__ ((section("sfr")));

extern volatile __TCCR0Bbits_t TCCR0Bbits

__asm__ ("0x45") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t TCNT0bits

__asm__ ("0x46") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR0Abits

__asm__ ("0x47") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR0Bbits

__asm__ ("0x48") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t GPIOR1bits

__asm__ ("0x4A") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t GPIOR2bits

__asm__ ("0x4B") __attribute__ ((section("sfr")));

extern volatile __SPCRbits_t SPCRbits

170

__asm__ ("0x4C") __attribute__ ((section("sfr")));

extern volatile __SPSRbits_t SPSRbits

__asm__ ("0x4D") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t SPDRbits

__asm__ ("0x4E") __attribute__ ((section("sfr")));

extern volatile __ACSRbits_t ACSRbits

__asm__ ("0x50") __attribute__ ((section("sfr")));

extern volatile __OCDRbits_t OCDRbits

__asm__ ("0x51") __attribute__ ((section("sfr")));

#define MONDRbits OCDRbits

#define __MONDRbits_t __OCDRbits_t

extern volatile __SMCRbits_t SMCRbits

__asm__ ("0x53") __attribute__ ((section("sfr")));

extern volatile __MCUSRbits_t MCUSRbits

__asm__ ("0x54") __attribute__ ((section("sfr")));

extern volatile __MCUCRbits_t MCUCRbits

__asm__ ("0x55") __attribute__ ((section("sfr")));

extern volatile __SPMCSRbits_t SPMCSRbits

__asm__ ("0x57") __attribute__ ((section("sfr")));

extern volatile __WDTCSRbits_t WDTCSRbits

__asm__ ("0x60") __attribute__ ((section("sfr")));

extern volatile __CLKPRbits_t CLKPRbits

__asm__ ("0x61") __attribute__ ((section("sfr")));

extern volatile __PRRbits_t PRRbits

__asm__ ("0x64") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OSCCALbits

__asm__ ("0x66") __attribute__ ((section("sfr")));

extern volatile __PCICRbits_t PCICRbits

__asm__ ("0x68") __attribute__ ((section("sfr")));

extern volatile __EICRAbits_t EICRAbits

__asm__ ("0x69") __attribute__ ((section("sfr")));

extern volatile __PCMSK0bits_t PCMSK0bits

__asm__ ("0x6B") __attribute__ ((section("sfr")));

extern volatile __PCMSK1bits_t PCMSK1bits

__asm__ ("0x6C") __attribute__ ((section("sfr")));

extern volatile __PCMSK2bits_t PCMSK2bits

__asm__ ("0x6D") __attribute__ ((section("sfr")));

extern volatile __TIMSK0bits_t TIMSK0bits

__asm__ ("0x6E") __attribute__ ((section("sfr")));

extern volatile __TIMSK1bits_t TIMSK1bits

__asm__ ("0x6F") __attribute__ ((section("sfr")));

extern volatile __TIMSK2bits_t TIMSK2bits

__asm__ ("0x70") __attribute__ ((section("sfr")));

extern volatile __PCMSK3bits_t PCMSK3bits

__asm__ ("0x73") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t ADCWbits

__asm__ ("0x78") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t ADCLbits

__asm__ ("0x78") __attribute__ ((section("sfr")));

171

extern volatile __8bitreg_t ADCHbits

__asm__ ("0x79") __attribute__ ((section("sfr")));

extern volatile __ADCSRAbits_t ADCSRAbits

__asm__ ("0x7A") __attribute__ ((section("sfr")));

extern volatile __ADCSRBbits_t ADCSRBbits

__asm__ ("0x7B") __attribute__ ((section("sfr")));

extern volatile __ADMUXbits_t ADMUXbits

__asm__ ("0x7C") __attribute__ ((section("sfr")));

extern volatile __DIDR0bits_t DIDR0bits

__asm__ ("0x7E") __attribute__ ((section("sfr")));

extern volatile __DIDR1bits_t DIDR1bits

__asm__ ("0x7F") __attribute__ ((section("sfr")));

extern volatile __TCCR1Abits_t TCCR1Abits

__asm__ ("0x80") __attribute__ ((section("sfr")));

extern volatile __TCCR1Bbits_t TCCR1Bbits

__asm__ ("0x81") __attribute__ ((section("sfr")));

extern volatile __TCCR1Cbits_t TCCR1Cbits

__asm__ ("0x82") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t TCNT1bits

__asm__ ("0x84") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t TCNT1Hbits

__asm__ ("0x84") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t TCNT1Lbits

__asm__ ("0x85") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t ICR1bits

__asm__ ("0x86") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t ICR1Hbits

__asm__ ("0x86") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t ICR1Lbits

__asm__ ("0x87") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t OCR1Abits

__asm__ ("0x88") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR1AHbits

__asm__ ("0x88") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR1ALbits

__asm__ ("0x89") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t OCR1Bbits

__asm__ ("0x8A") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR1BHbits

__asm__ ("0x8A") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR1BLbits

__asm__ ("0x8B") __attribute__ ((section("sfr")));

extern volatile __TCCR2Abits_t TCCR2Abits

__asm__ ("0xB0") __attribute__ ((section("sfr")));

extern volatile __TCCR2Bbits_t TCCR2Bbits

__asm__ ("0xB1") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t TCNT2bits

__asm__ ("0xB2") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t OCR2Abits

__asm__ ("0xB3") __attribute__ ((section("sfr")));

172

extern volatile __8bitreg_t OCR2Bbits

__asm__ ("0xB4") __attribute__ ((section("sfr")));

extern volatile __ASSRbits_t ASSRbits

__asm__ ("0xB6") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t TWBRbits

__asm__ ("0xB8") __attribute__ ((section("sfr")));

extern volatile __TWSRbits_t TWSRbits

__asm__ ("0xB9") __attribute__ ((section("sfr")));

extern volatile __TWARbits_t TWARbits

__asm__ ("0xBA") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t TWDRbits

__asm__ ("0xBB") __attribute__ ((section("sfr")));

extern volatile __TWCRbits_t TWCRbits

__asm__ ("0xBC") __attribute__ ((section("sfr")));

extern volatile __TWAMRbits_t TWAMRbits

__asm__ ("0xBD") __attribute__ ((section("sfr")));

extern volatile __UCSR0Abits_t UCSR0Abits

__asm__ ("0xC0") __attribute__ ((section("sfr")));

extern volatile __UCSR0Bbits_t UCSR0Bbits

__asm__ ("0xC1") __attribute__ ((section("sfr")));

extern volatile __UCSR0Cbits_t UCSR0Cbits

__asm__ ("0xC2") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t UBRR0bits

__asm__ ("0xC4") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t UBRR0Lbits

__asm__ ("0xC4") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t UBRR0Hbits

__asm__ ("0xC5") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t UDR0bits

__asm__ ("0xC6") __attribute__ ((section("sfr")));

extern volatile __UCSR1Abits_t UCSR1Abits

__asm__ ("0xC8") __attribute__ ((section("sfr")));

extern volatile __UCSR1Bbits_t UCSR1Bbits

__asm__ ("0xC9") __attribute__ ((section("sfr")));

extern volatile __UCSR1Cbits_t UCSR1Cbits

__asm__ ("0xCA") __attribute__ ((section("sfr")));

extern volatile __16bitreg_t UBRR1bits

__asm__ ("0xCC") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t UBRR1Hbits

__asm__ ("0xCC") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t UBRR1Lbits

__asm__ ("0xCD") __attribute__ ((section("sfr")));

extern volatile __8bitreg_t UDR1bits

__asm__ ("0xCE") __attribute__ ((section("sfr")));

#endif /* REG_STRUCTS_H_ */

173

Appendix B

Code for final RTOS
example

B.1 RTOSmain.h

/*

* RTOSmain.h

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#ifndef RTOSMAIN_H_

#define RTOSMAIN_H_

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include "tasks.h"

#include "Peripherals\reg_structs.h"

char RTOScounter; //track what task is next

long time = 0;

//IR reading and distance storage

//196 = 1 foot

int fIR = 196;

int bIR = 196;

int set_point = 196;

//USART tx and rx data buffers and current locations

int tx_data [20];

unsigned char tx_bytes = 0; // track next byte location

174

char rx_data [50];

unsigned char rx_bytes = 0; // track next byte location

#endif

175

B.2 RTOSmain.c

/*

* RTOSmain.c

*

* Created on: Jan 21, 2011

* Author: alleypj

*/

#include "RTOSmain.h"

int main (void) {

initialization_functions (); // including initRTOS ()

sei();

time = 0; //Time in ms since RTOS started

RTOScounter = 0;

char taskID = 0;

TCNT2 = 0;

while (1) {

taskID = RTOScounter;

switch(RTOScounter) {

case 0:

IMUReadingTask ();

break;

case 1:

break;

case 2:

CommunicationTask ();

break;

case 3:

break;

case 4:

DriveMotorControlTask ();

break;

case 5:

break;

case 6:

PotServoTask ();

break;

case 7:

break;

case 8:

CommunicationTask ();

break;

case 9:

break;

case 10:

break;

case 11:

176

break;

case 12:

IMUReadingTask ();

break;

case 13:

break;

case 14:

IRTask ();

break;

case 15:

CommunicationTask ();

break;

case 16:

break;

case 17:

break;

case 18:

break;

case 19:

break;

}

time ++;

while(RTOScounter == taskID){}

//this loop prevents a task from running twice during

//its block. Waits until the RTOSCounter changes

// before continuing

}

}

/** \ISR

* \brief saves incoming data to array for later perusal

*/

ISR(USART0_RX_vect) {

rx_data[rx_bytes] = (char)UDR0bits._w;

rx_bytes ++;

}

/** \ISR

* \brief Increments RTOS task

*/

ISR(TIMER2_COMPA_vect){

RTOScounter = (RTOScounter +1)%25;

}

177

B.3 tasks.h

/*

* tasks.h

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#ifndef TASKS_H_

#define TASKS_H_

#include "motor.h"

#include "Peripherals\ADC.h"

#include "Peripherals\USART.h"

/*

* \def TURN_TUNE

* tuning constant for motor control task

*/

#define TURN_TUNE 2

extern int fIR;

extern int bIR;

extern int set_point;

extern int tx_data [20];

extern unsigned char tx_bytes;

extern char rx_data [50];

extern unsigned char rx_bytes;

extern long time;

void initialization_functions ();

void initRTOS ();

void IMUReadingTask ();

void CommunicationTask ();

void DriveMotorControlTask ();

void IRTask ();

void PotServoTask ();

#endif /* TASKS_H_ */

178

B.4 tasks.c

/*

* tasks.c

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#include "tasks.h"

#include <util/delay.h>

#include <avr/interrupt.h>

// ADC initialization and usage struct. Defined in ADC.h

ADC_struct_type ADC_struct = {. reference = AREFselect ,

.justify = RIGHTjustify ,

.prescale = ADCPRE64 ,

.autotrigger = 0,

.intenable = 0};

// USART init and usage struct. Defined in USART.h

USART_struct_type USART_struct = {.baud = 384,

.intRX = 0,

.intTX = 0,

.intDataRegister = 0,

.enRX = 1,

.enTX = 1,

.charsize = 8,

.mode = ASYNC ,

.parity = NO_PARITY ,

.stopbit = STOP1 ,

.clockpolarity = 0};

/** \func initialization_functions

* \brief runs init functions for all peripherals

*/

void initialization_functions () {

USART_init (& USART_struct);

ADC_init (& ADC_struct); // initialize ADC

motor_init (); // initialize motor

initRTOS ();

}

/** \func initRTOS ()

* \brief Sets up RTOS on timer 2.

* Initialize and setup RTOS using timer 2. TCNT2

* register and RTOS counter should both be reset

* just prior to entering RTOS loop

* Sets timer to 1ms interrupts

179

*/

void initRTOS () {

TCCR2Abits._WGM = 2; //set CTC mode , no output pin

TCCR2Bbits._CS = 4; //set prescaler to 64

OCR2Abits._w = 125; //125 counts at 8MHz /64 = 1ms

TIMSK2bits._OCIE2A = 1; // enable int on compare

}

void IMUReadingTask () {

// dummy function in example

}

/** \func CommunicationTask

* \brief runs communications task for RTOS

* Transmits queued data , then assesses received data.

* If an error is found in the data , all remaining data

* is transmitted back with an error indicator so that

* the remote computer can resend it correctly.

*/

void CommunicationTask (){

USART_TX(tx_data ,tx_bytes);

tx_bytes = 0;

unsigned char i = 0;

//work through received data

while(i<rx_bytes) {

// finite state machine for various commands

switch (rx_data[i]) {

case 'd': // distance setting

set_point = ((int)rx_data[i+1]<<8) +

(int)rx_data[i+2];

i+=3;

break;

default:

//error occurred , send back all remaining data

// uneven command lengths means can't necessarily resync.

// remote controller will have to resend commands

tx_data[tx_bytes] = 'x'; //error indicator

tx_bytes ++;

for(i=i;i<rx_bytes;i++) {

tx_data[tx_bytes] = rx_data[i];

tx_bytes ++;

}

USART_TX(tx_data ,tx_bytes);

}

}

}

/** \func DriveMotorControlTask

* \brief Sets motor values and gets encoder counts

* Sets most recently received motor values. Also gets

180

* counts from both encoder counters and queues data

* for transmit.

*/

void DriveMotorControlTask (){

int res = TURN_TUNE *(fIR -bIR)+(fIR+bIR)/2- set_point;

// set motors

set_motor(LEFT_MOTOR , 1020+(res < <2));

set_motor(RIGHT_MOTOR , 3060+(res < <2));

//left encoder + queue for transmit

read_encoder(LEFT_MOTOR);

tx_data[tx_bytes] = 'e'+LEFT_MOTOR; //left encoder

tx_bytes ++;

int i;

for (i=0; i<4; i++) {

tx_data[tx_bytes+i] = SPI_data[i];

}

tx_bytes +=4;

// right encoder and queue for transmit

read_encoder(RIGHT_MOTOR);

tx_data[tx_bytes] = 'e'+RIGHT_MOTOR; //right encoder

tx_bytes ++;

for (i=0; i<4; i++) {

// tx_data[tx_bytes+i] = SPI_data[i];

}

// tx_bytes +=4;

}

/** \func IRTask

* \brief reads one IR sensor or other and transmits

* Only one IR sensor is read each pass as their update

* is slower than what the RTOS runs at

*/

void IRTask (){

tx_data[tx_bytes] = 'i'; //IR data indicator

if(time%2 == 0) {

tx_data[tx_bytes] = 'i'; //IR data indicator

ADC_struct.channel = 0;

ADC_convert (& ADC_struct);

fIR = ADC_struct.data;

tx_data[tx_bytes +1] = 0; // which IR sensor

} else {

tx_data[tx_bytes] = 'i'+1; //IR2 data indicator

ADC_struct.channel = 1;

ADC_convert (& ADC_struct);

bIR = ADC_struct.data;

tx_data[tx_bytes +1] = 1; // which IR sensor

}

tx_data[tx_bytes +2] = (char)(ADC_struct.data >>8);

tx_data[tx_bytes +3] = (char)(ADC_struct.data %256);

181

tx_bytes +=4;

}

void PotServoTask (){

// dummy function in example

}

182

B.5 motor.h

/*

* motor.h

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#ifndef MOTOR_H_

#define MOTOR_H_

#include "Peripherals\SPI.h"

/**

* \def DAC_DEVICE

* used to determine which device the SPI is setup for

* \def ENC_DEVICE

* used to determine which device the SPI is setup for

*/

#define DAC_DEVICE 0

#define ENC_DEVICE 1

/**

* \def LEFT_MOTOR

* DAC port for left motor

* \def RIGHT_MOTOR

* DAC port for right motor

*/

#define LEFT_MOTOR 0

#define RIGHT_MOTOR 1

/**

* \def DAC_SS_DDR

* Data direction pin for DAC SS

* \def DAC_SS

* Slave select pin for DAC

* \def ENC_L_SS_DDR

* Data direction for left enc SS

* \def ENC_L_SS

* Slave select pin for left encoder counter

* \def ENC_R_SS_DDR

* Data direction for right enc SS

* \def ENC_R_SS

* Slave select pin for right encoder counter

*/

#define DAC_SS_DDR DDRDbits._P4

#define DAC_SS PORTDbits._P4

#define ENC_L_SS_DDR DDRCbits._P5

183

#define ENC_L_SS PORTCbits._P5

#define ENC_R_SS_DDR DDRCbits._P4

#define ENC_R_SS PORTCbits._P4

//saves which device the SPI is setup for

char cur_device;

// location for storing xmit/rec SPI data

char SPI_data [5];

void motor_init ();

void read_encoder(char encoder);

void set_motor(char motor , int speed);

#endif /* MOTOR_H_ */

184

B.6 motor.c

/*

* motor.c

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#include "motor.h"

//DAC init struct. See SPI.h for struct definition

SPI_struct_type DAC_struct = {. intenable = 0,

.dataorder = MSBfirst ,

.clockpolarity = 1, // leading edge fall

.clockphase = 0, // sample on leading

.clockprescale = SPIPRE2 };

// Encoder init struct. See SPI.h for struct definition

SPI_struct_type Enc_struct = {. intenable = 0,

.dataorder = MSBfirst ,

.clockpolarity = 0,

.clockphase = 0,

.clockprescale = SPIPRE2 };

/** \func motor_init

* \brief Initializes SPI , DAC and encoder counter

*/

void motor_init () {

DAC_SS_DDR = 1;

ENC_L_SS_DDR = 1;

ENC_R_SS_DDR = 1;

SPI_init (& DAC_struct);

set_motor(LEFT_MOTOR , 1020);

set_motor(RIGHT_MOTOR , 3060);

// setup encoder counter

SPI_init (& Enc_struct);

cur_device = ENC_DEVICE;

ENC_L_SS = 1;

ENC_R_SS = 1; // config both encoders at once

//MDR0: 0b00 00 00 11: clock/1, asynch , index

// disabled , free -running count

// 4 counts per quad cycle

SPI_data [0] = 0b10001000;

SPI_data [1] = 0b00000011;

//MDR1: 0b0000x000: no flags , counting enabled ,

// 4-byte counter

SPI_data [2] = 0b10010000;

185

SPI_data [3] = 0b01100000;

SPI_txrx(SPI_data ,4 ,0);

ENC_L_SS = 0;

ENC_R_SS = 0;

}

/** \func read_encoder

* \brief reads selected encoder

* \param encoder to read (0/1)

* \return 32bit encoder value

*/

void read_encoder(char encoder) {

// setup SPI for encoder

if(cur_device == DAC_DEVICE) {

SPI_init (& Enc_struct);

cur_device = ENC_DEVICE;

}

// select correct encoder counter

switch(encoder) {

case LEFT_MOTOR:

ENC_L_SS = 1;

break;

case RIGHT_MOTOR:

ENC_R_SS = 1;

break;

}

//load CNTR to OTR then read OTR: 0b01 100 xxx

SPI_data [0] = 0b01100000;

SPI_txrx(SPI_data ,1 ,4);

ENC_L_SS = 0;

ENC_R_SS = 0;

}

/** \func set_motor

* \brief sets the given motor to the given speed

* \param motor motor to set

* \param speed speed for motor. 2048 is stationary

*/

void set_motor(char motor , int speed) {

// setup SPI for DAC

if(cur_device == ENC_DEVICE) {

SPI_init (& DAC_struct);

cur_device = DAC_DEVICE;

}

// create top byte: function , channel and top 4 bits

SPI_data [0] = 128 + (motor <<4) + (speed >>8);

// lower data byte: 8 data bites

SPI_data [1] = speed %256;

SPI_txrx(SPI_data ,2 ,0);

}

186

B.7 ADC.h

/*

* ADC.h

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#ifndef ADC_H_

#define ADC_H_

#include <avr/io.h>

#include "reg_structs.h"

/**

* \def ADC_enable ()

* Enable ADC presented as a function

* \def ADC_disable ()

* Disable ADC presented as a function

*/

#define ADC_enable () ADCSRAbits._ADEN = 1

#define ADC_disable () ADCSRAbits._ADEN = 0

/**

* list of defined values for initialization

*/

// references

#define AREFselect 0

#define AVCCselect 1

#define INT11select 2 // internal 1.1V

#define INT256select 3 // internal 2.56V

// justification

#define RIGHTjustify 0

#define LEFTjustify 1

// Channel selection

#define ADC_GROUND 0b11111

#define VBG 0b11110

// channel numbers can be entered directly

// differential input defines not created yet

// Prescaler bits

#define ADCPRE2 1

#define ADCPRE4 4

#define ADCPRE8 3

#define ADCPRE16 4

#define ADCPRE32 5

#define ADCPRE64 6

#define ADCPRE128 7

187

//Auto Trigger Source

//Not implemented currently , use direct values

/**

* ADC_struct_type

* Contains options for initializing and using the ADC.

* Fields will accept values directly from datasheet or

* can use #defined values.

*/

typedef struct {

// related to initialization

char reference;

char justify;

char prescale;

char autotrigger;

char autosource;

char disableDIO;

char intenable;

// related to use

char channel; // default to ground

int data;

} ADC_struct_type;

void ADC_init(ADC_struct_type *init);

void ADC_convert(ADC_struct_type *arg);

#endif /* ADC_H_ */

188

B.8 ADC.c

/*

* ADC.c

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#include "ADC.h"

/** \func ADC_init

* \brief initializes ADC using given settings

* \param init struct with settings

* Also runs first conversion as it is longer than

* all subsequent conversions.

*/

void ADC_init(ADC_struct_type *init) {

ADMUXbits._REFS = init ->reference;

ADMUXbits._ADLAR = init ->justify;

ADCSRAbits._ADPS = init ->prescale;

ADCSRAbits._ADATE = init ->autotrigger;

ADCSRBbits._ADTS = init ->autosource;

DIDR0bits._w = init ->disableDIO;

ADC_enable ();

ADMUXbits._MUX = ADC_GROUND;

ADCSRAbits._ADSC = 1;

//run first (extra long) conversion

while (! ADCSRAbits._ADIF) {} //wait for completion

ADCSRAbits._ADIE = init ->intenable;

}

/** \func ADC_convert

* \brief Runs conversion on specified channel

* \param arg same as init struct

* Channel to run the conversion on and location

* to store result are both within the struct

*/

void ADC_convert(ADC_struct_type *arg) {

ADMUXbits._MUX = arg ->channel;

ADCSRAbits._ADSC = 1; //run conversion

while (! ADCSRAbits._ADIF) {} //wait for completion

arg ->data = ADCWbits._w;

}

189

B.9 SPI.h

/*

* SPI.h

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#ifndef SPI_H_

#define SPI_H_

#include "reg_structs.h"

/**

* \def SPI_enable ()

* Enable SPI presented as a function

* \def SPI_disable ()

* Disable SPI presented as a function

*/

#define SPI_enable () SPCRbits._SPE = 1

#define SPI_disable () SPCRbits._SPE = 0

/**

* value definitions for SPI_struct

*/

//data order

#define MSBfirst 0

#define LSBfirst 1

//Clock polarity , clock phase see datasheet

//prescale , includes double speed bit

#define SPIPRE2 4

#define SPIPRE4 0

#define SPIPRE8 5

#define SPIPRE16 1

#define SPIPRE32 6

#define SPIPRE64 2

#define SPIPRE128 3

/**

* SPI_struct_type

* Contains options for initializing and using the SPI.

* Fields will accept values directly from datasheet or

* can use #defined values.

*/

typedef struct {

char intenable;

char dataorder;

char clockpolarity;

190

char clockphase;

char clockprescale;

} SPI_struct_type;

void SPI_init(SPI_struct_type *init);

void SPI_txrx(char *data , char txbytes , char rxbytes);

char SPI_txbyte(char data);

#endif /* SPI_H_ */

191

B.10 SPI.c

/*

* SPI.c

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#include "SPI.h"

/**\func SPI_init

* \brief Initializes SPI peripheral

* \param init pointer to struct of settings

*/

void SPI_init(SPI_struct_type *init) {

SPIDDRbits._MOSI = 1;

SPIDDRbits._MISO = 1;

SPCRbits._MSTR = 1; // Master mode

SPCRbits._SPIE = init ->intenable;

SPCRbits._DORD = init ->dataorder;

SPCRbits._CPOL = init ->clockpolarity;

SPCRbits._CPHA = init ->clockphase;

// prescale split up between 2 registers

SPCRbits._SPR = init ->clockprescale %4;

SPSRbits._SPI2X = init ->clockprescale >> 2;

SPI_enable ();

}

/**\func SPI_txtr

* \brief transmit and receive SPI

* \param data array of chars to tx/save received data

* \param txbytes number of bytes to tx (from data)

* \param rxbytes number of bytes to save after tx

*

* Transmits given number of bytes (stored in data), then

* transmits 0s to capture rxbytes number of chars to

* save in data. SS must be chosen prior to this

* function and cleared after.

* Does not work with daisy -chained devices.

*/

void SPI_txrx(char data[], char txbytes , char rxbytes) {

int i = 0;

for(i=0; i<txbytes; i++) {

SPI_txbyte(data[i]);

}

for(i=0; i<rxbytes; i++) {

data[i] = SPI_txbyte (0);

}

192

}

/**\func SPI_txbyte

* \brief transmit/receive 1 byte

* \param data char to transmit

* \return received char

*/

char SPI_txbyte(char data) {

SPDRbits._w = data;

while (! SPSRbits._SPIF) {} //wait for completion

return SPDRbits._w;

}

193

B.11 USART.h

/*

* USART.h

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#ifndef USART_H_

#define USART_H_

#include "reg_structs.h"

//mode options , only ASYNCH implemented

#define ASYNC 0

#define SYNC 1 //not fully implemented

#define M_SPI 2 //not at all implemented

// Parity options

#define NO_PARITY 0

#define EVEN_PARITY 2

#define ODD_PARITY 3

//Stop bits

#define STOP1 0

#define STOP2 1

//Clock polarity refer to datasheet

/**

* USART_struct_type

* Contains options for initializing and using the USART.

* Fields will accept values directly from datasheet or

* can use #defined values.

*/

typedef struct {

char baud;

char intRX;

char intTX;

char intDataRegister;

char enRX;

char enTX;

char charsize;

char mode; // ignored currently

char parity;

char stopbit;

char clockpolarity;

} USART_struct_type;

194

void USART_init(USART_struct_type *init);

void USART_TX(int data[], char num_char);

void USART_TX_char(char data);

#endif /* USART_H_ */

195

B.12 USART.c

/*

* USART.c

*

* Created on: Feb 26, 2011

* Author: alleypj

*/

#include "USART.h"

/** \func USART_init

* \brief initialize USART

* \param pointer to struct of init paramters

*

* Baud rate should be given as actual /100

* (i.e. 9600 would be 96). Does not currently

* support synchronous communications

*/

void USART_init(USART_struct_type *init){

UCSR0Abits._U2X = 1; // double tx speed

UCSR0Bbits._RXCIE = init ->intRX;

UCSR0Bbits._TXCIE = init ->intTX;

UCSR0Bbits._UDRIE = init ->intDataRegister;

UCSR0Bbits._RXEN = init ->enRX;

UCSR0Bbits._TXEN = init ->enTX;

UCSR0Cbits._UMSEL = 0;

UCSR0Cbits._UPM = init ->parity;

UCSR0Cbits._USBS = init ->stopbit;

UCSR0Cbits._UCPOL = init ->clockpolarity;

if(init ->charsize <= 8) {

UCSR0Cbits._UCSZ = init ->charsize -5;

UCSR0Bbits._UCSZ = 0;

} else {

UCSR0Cbits._UCSZ = 3;

UCSR0Bbits._UCSZ = 1;

}

UBRR0bits._w = F_CPU /(8*init ->baud *100) -1;

}

/** \func USART_init

* \brief Transmits a number of chars

* \param data array of data to transmit

* \param num_char number of data to transmit

*

* data array must be ints as characters can be 9 bits

* will not function properly if TX interrupt is enabled

*/

void USART_TX(int data[],char num_char) {

196

int i = 0;

for(i=0; i<num_char; i++) {

USART_TX_char(data[i]);

}

}

/** \func USART_TX_char

* \brief Transmits a single character

* \param character to transmit (up to 8 bits)

* 9th bit not functioning currently

*/

void USART_TX_char(char data) {

//wait for any previous transmissions

while (! UCSR0Abits._TXC0) {}

// UCSR0Bbits._TXB8 = (data >>8) & 1; //9th bit

UDR0bits._w = data;

}

197

Appendix C

Setting up and using
Eclipse

C.1 Set up Eclipse for use with the AVR

This is how to obtain Eclipse and set it up for use in programming the AT-
mega644p. This can take quite a while (an hour plus) to complete.

1. Download and install the Sun JDK (Java Development Kit). Downloads
and instructions can be found at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

2. Download Eclipse IDE for C/C++ Developers from http://www.eclipse.

org/downloads/. At the time of writing, the newest version is 3.6 Helios.

3. Extract the archive file to a destination of your choice. There is no in-
staller so a common location would be C:

Program Files

Eclipse or /usr/bin/eclipse on a unix based system. Open the stan-
dalone executable called eclipse or eclipse.exe to ensure that it works.

Windows

4. Download and install WinAVR. This is the compiler and headerfiles re-
quired for the AVR microcontrollers. Navigate to http://sourceforge.

net/projects/winavr/files/WinAVR/ and select the most recent ver-
sion. Click on the installer to download. Run the installer upon comple-
tion. The defaults should be acceptable, though the install path can be
changed if desired. Ensure that “Add directories to PATH” is selected
before clicking “Install”.

5. Download and install Doxygen. This is the stand alone program that will
create documentation from comments in the code (see chapter 5).

198

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://sourceforge.net/projects/winavr/files/WinAVR/
http://sourceforge.net/projects/winavr/files/WinAVR/

http://ftp.stack.nl/pub/users/dimitri/doxygen-1.6.2-setup.exe

Linux

4. On a debian based system only a single line is required to install all the
necessary packages:
sudo apt-get install avarice avr-libc avra avrdude avrp

avrprog binutils-avr gcc-avr gdb-avr simulavr doxygen

On non-debian based systems, these are the packages that must be found
and installed:

� avarice - use GDB with Atmel’s JTAG ICE for the AVR

� avr-libc - Standard C library for Atmel AVR development

� avra - Assembler for Atmel AVR microcontrollers

� avrdude - software for programming Atmel AVR microcontrollers

� avrp - Programmer for Atmel AVR microcontrollers

� avrprog - Programmer for Atmel AVR microcontrollers

� binutils-avr - Binary utilities supporting Atmel’s AVR targets

� gcc-avr - The GNU C compiler (cross compiler for avr)

� gdb-avr - The GNU Debugger for avr

� simulavr - Atmel AVR simulator

� doxygen - Documentation system for C, C++, Java, Python and
other languages

Installing Plug-ins

6. Start Eclipse and go to Help -> Install New Software...

7. Click the Add button in the ‘Install New Software’ window, type ‘AVR
plugin’ in the ‘Name’ field and ‘http://avr-eclipse.sourceforge.net/
updatesite/’ in the ‘Location’ field. Click OK. (See figure C.1)

8. One or more items should have appeared with checkboxes in the ‘Install
New Software’ window. Check all the boxes or hit the ‘Select All’ button
and hit ‘Next’. (See figure C.1)

9. A review of packages to be added will be displayed, click ‘Next’ again.

10. Accept the licensing terms and click ‘Finish’. This will start the instal-
lation. There may be a message regarding unsigned content. Click ‘OK’
and allow installation to complete. When Eclipse asks to restart, select
‘Not Now’

11. Repeat steps 6 through 10 using the address http://download.gna.org/
eclox/update for the Doxygen plugin. Restart Eclipse this time.

Eclipse is now ready to be used in the development of programs for the AT-
mega644p (or any other member of the AVR family of microcontrollers).

199

http://ftp.stack.nl/pub/users/dimitri/doxygen-1.6.2-setup.exe
http://avr-eclipse.sourceforge.net/updatesite/
http://avr-eclipse.sourceforge.net/updatesite/
http://download.gna.org/eclox/update
http://download.gna.org/eclox/update

Figure C.1: Install New Software window from Eclipse

C.2 Making a project

1. Open the New Project wizard for C projects by: (See figure C.2)

� File -> New -> C Project

� Clicking the ‘New’ button on the toolbar, expanding ‘C/C++’, se-
lecting ‘C Project’ and hitting ‘Next’

� Clicking the arrow next to the ‘New’ button on the toolbar and se-
lecting ‘C Project’

� Right-clicking in the ‘Project Explorer’, highlighting ‘New’ and se-
lecting ‘C Project’

2. Once the ‘C Project’ window is open, enter a project name, expand
‘AVR Cross Target Application’ under ‘Project type:’ and select ‘Empty
Project’. Select ‘AVR-GCC Toolchain’ under ‘Toolchains:’ and click ‘Fin-
ish’. (See figure C.3)

3. Right-click on the newly created project and choose ‘Properties’.

4. Expand ‘AVR’ and select ‘Target Hardware’

200

Figure C.2: Eclipse window with ‘Project Explorer’ and new project button
marked.

5. In the ‘MCU Type dropdown box select ‘ATmega644p’. If the STK500 is
connected to the computer and turned on, the ‘Load from MCU’ button
should automatically detect the microcontroller.

6. Change the MCU Clock Frequency to 8000000 (8 million) and click ‘Apply’
in the lower right.

7. Select the ‘AVRDude’ properties.

8. Under the ‘Programmer’ tab select a configuration from the ‘Program-
mer configuration’ drop down menu. If there are no choices available,
select ‘New’ to create a configuration. Name it whatever you like, and
otherwise the defaults are acceptable for using an STK500 for any AVR
microcontroller. Click ‘OK’ and select the new configuration.

9. Under the ‘Fuses’ tab select the ‘direct hex values’ radio button and click
the icon to the right that looks like a pencil over top 0s and 1s.

10. Select options as seen in Fig ???. This is a good initial setup for the
microcontroller. After finishing and clicking ‘OK’, the hex values in the
boxes should read C2 D1 FF.

11. Click ‘OK’

201

Figure C.3: C Project window.

The project is now setup to compile for the ATmega644p, and download prop-
erly.

202

Figure C.4: Properties window for setting MCU type and clock frequency.

Figure C.5: Worksheet for setting internal fuses.

203

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] Atmega644p. http://www.atmel.com/dyn/products/product_card.

asp?part_id=3896&category_id=163&family_id=607&subfamily_id=

760.

[2] Atmel avr studio 5. http://www.atmel.com/microsite/avr_studio_5/

default.asp?source=cms&icn=hmap1-AVR_STUDIO&ici=apr_2011.

[3] Can programming be liberated from the von neumann style? a functional
style and its algebra of program.

[4] Doxygen.com. http://www.doxygen.com.

[5] EIA Standard RS-232-C Interface Between Data Terminal Equipment and
Data Communication Equipment Employing Serial Data Interchange.

[6] Microchip technology inc. http://www.microchip.com.

[7] Operational amplifier. http://en.wikipedia.org/wiki/Operational_

amplifier.

[8] Operational amplifier applications. http://en.wikipedia.org/wiki/

Operational_amplifier_applications.

[9] Operational amplifiers (opamps). (http://www.rfcafe.com/references/
electrical/opamps.htm.

[10] Stk500. http://www.atmel.com/dyn/products/tools_card.asp?tool_

id=2735.

[11] Atmel. 8-bit AVR Microcontroller with 16/32/64K Bytes In-System Pro-
grammable Flash.

[12] Jack Copeland. A brief history of computing.

[13] Globe Motors. IM-13 GEARMOTORS.

[14] Dan Gookin. C for dummies, May 2004.

[15] Walt Kester, editor. The Data Conversion Handbook. Elsevier: Newnes,
2005.

204

http://www.atmel.com/dyn/products/product_card.asp?part_id=3896&category_id=163&family_id=607&subfamily_id=760
http://www.atmel.com/dyn/products/product_card.asp?part_id=3896&category_id=163&family_id=607&subfamily_id=760
http://www.atmel.com/dyn/products/product_card.asp?part_id=3896&category_id=163&family_id=607&subfamily_id=760
http://www.atmel.com/microsite/avr_studio_5/default.asp?source=cms&icn=hmap1-AVR_STUDIO&ici=apr_2011
http://www.atmel.com/microsite/avr_studio_5/default.asp?source=cms&icn=hmap1-AVR_STUDIO&ici=apr_2011
http://www.doxygen.com
http://www.microchip.com
http://en.wikipedia.org/wiki/Operational_amplifier
http://en.wikipedia.org/wiki/Operational_amplifier
http://en.wikipedia.org/wiki/Operational_amplifier_applications
http://en.wikipedia.org/wiki/Operational_amplifier_applications
(http://www.rfcafe.com/references/electrical/opamps.htm
(http://www.rfcafe.com/references/electrical/opamps.htm
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2735
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2735

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Lite-On. LTL2F3VxKNT/ 2H3VxKNT/ 2P3VxKNT/ 2R3VxKNT SE-
RIES.

[17] LSI/CSI. LS7366R: 32-BIT QUADRATURE COUNTER WITH SERIAL
INTERFACE.

[18] SGS-Thomson. M74HCT08: Quad 2-input AND gate.

[19] SHARP. GP2D12/GP2D15 General Purpose Type Distance Measuring
Sensors.

[20] Texas Instruments. LM193, LM293, LM293A, LM393, LM393A, LM2903,
LM2903Q DUAL DIFFERENTIAL COMPARATORS.

[21] John von Neumann. First draft of a report on the edvac.

205

	Preface
	What is a Microcontroller?
	Micro-processors, -computers, -controllers
	Microprocessor
	Microcomputer
	Microcontroller

	Memory Models
	Von Neumann
	Harvard Architecture
	Modified Harvard Architecture

	The Stack
	Conclusion

	Datasheets, SFRs and Libraries
	Datasheets
	Part Name
	Description and Operation
	Absolute Maximum Ratings
	Electrical Characteristics
	Physical Characteristics
	Other Information

	Special Function Registers
	SFRs in Datasheets
	Addressing SFRs

	Libraries
	Including libraries
	Commonly used libraries

	Conclusion

	Hello World
	Example: Lighting an LED
	Programming ``Hello World''
	Digital Input
	DIO Operation
	Conclusion

	Analog Digital Converter
	Terminology
	Converting methods
	Sources of Error
	Return to the LED example
	The ATmega644p ADC
	Understanding the ADC
	Programming with the ADC

	Conclusion

	Code Styles
	Headers and Header Files
	#ifndef MY_PROGRAM_H
	Additional Inclusions
	Macro Definitions
	Global Variable Declaration
	Function Prototypes

	Commenting
	Documentation Comments
	Non-Documentation Comments

	Code reuse: Functions and Libraries
	When to use functions
	Variable Scope and Arguments
	structs
	Libraries

	ADC program revisited
	Conclusion

	C Data Structures
	Arrays
	Declaring Arrays
	Accessing Arrays
	Multi-Dimensional Arrays

	structs
	Declaring structs
	Uses for structs

	Pointers
	Pointer Syntax
	Pointers and arrays
	Pointers and other data structures
	Pointers in pass by reference
	Function pointers

	Conclusion

	Serial Communications
	USART and RS232 Serial
	RS232
	USART
	USART Communications Example

	Serial Peripheral Interface (SPI)
	SPI Bus
	Operation
	SPI Communications Example
	Daisy-Chaining SPI devices

	Two-Wire Interface (TWI)
	Operation
	Example

	Comparing TWI and SPI
	Conclusion

	Interrupts and Timers
	Interrupts
	How interrupts work
	Using Interrupts
	The Interrupt Process

	Program startup assembly
	Timing
	Basic Methods
	Using the Timers

	Conclusion

	External Devices
	Motors
	Linear Drivers
	PWM Motor Driver

	Servos
	Sensors
	Conclusion

	Real-Time Operating Systems
	Preemptive schedulers
	Cooperative schedulers
	Round-Robin example
	Conclusion

	The final example
	Problem statement
	Design decisions
	Control
	Sense
	Decision

	File structure
	RTOSmain.c
	RTOSmain.h
	tasks.h
	tasks.c
	motor.h and motor.c
	ADC, SPI and USART libraries

	Conclusion

	Afterword
	regstructs.h
	Code for final RTOS example
	RTOSmain.h
	RTOSmain.c
	tasks.h
	tasks.c
	motor.h
	motor.c
	ADC.h
	ADC.c
	SPI.h
	SPI.c
	USART.h
	USART.c

	Setting up and using Eclipse
	Set up Eclipse for use with the AVR
	Making a project

