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Abstract 

This project explores how to use band-pass filtering with a variety of filters to filter both 

two and three dimensional surface data. The software developed collects and makes 

available these filtering methods to support a larger project. It is used to automate the 

filtering procedure. This paper goes through the workflow of the program, explaining 

how each filter was implemented. Then it demonstrates how the filters work by 

applying them to surface data used to test correlation between friction and roughness 

[Berglund and Rosen, 2009]. It also provides some explanations of the mathematical 

development of the filtering procedures as obtained from literature. 
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CHAPTER 1: Introduction 

Project Overview 

This project explores how to use band-pass filtering with a variety of filters to filter both 

two and three dimensional surface data. The software developed collects and makes 

available these filtering methods to support a larger project. The larger project is done 

by [Berglund et. al, 2010]. It seeks to use band-pass filtering to find strong correlations. 

The software described in this report is used to automate the filtering procedure. This 

report goes through the workflow of the program, explaining how each filter was 

implemented. Then it demonstrates how the filters work by applying them to surface 

data provided by [Berglund, 2009]. It also provides some explanations of the 

mathematical development of the filtering procedures as obtained from literature. 

Some Conventions and Definitions 

Surface data and filters that depend on a single variable are termed “2D data” and “2D 

filters” respectively. Those depending on two variables are termed “3D data” and “3D 

filters” respectively. 

 

Surface roughness is viewed as texture created by a combination of spatial short 

wavelength sinusoids present in the surface [Muralikrishnan and Raja, 2009, Chapter 3]. 

There is a reciprocal relationship between wavelength, , and frequency :  

 

The wavelength’s relationship to frequency thus makes relevant the use of Fourier 

decomposition and frequency spectrum filtering to extract surface roughness values at 

different frequency or wavelength bands. The center wavelength in each wavelength 

band represents the wavelength scale in which we are extracting roughness 

information. The length and area scales are examples of other scales used in scale-based 

decomposition of surface data. These scales are used in the scale sensitive fractal 

analysis of surface data [Berglund and Rosén, 2009]. 
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Two main examples of parameters that characterize the surface roughness are: average 

roughness (abbreviated as Ra for 2D and Sa for 3D), root mean square roughness 

(abbreviated as Rq for 2D and Sq for 3D). Average roughness is the arithmetic average of 

absolute values of the surface data residuals around the mean line: 

. 

The root mean square is the square root of the variance of the surface data around the 

mean line: 

 . 

There are other parameters. The above formulas, along with some others used to 

characterize a surface, are explained by [Muralikrishnan and Raja, 2009, Chapter 23].  

Obtaining the mean line requires low-pass filtering. Thus, filtering participates in the 

roughness parameter calculations. The larger project extends this procedure by 

controlling the wavelength band selection where the roughness parameters are 

calculated. So the same Ra and Rq formulas, for example, can be applied on band-pass 

filtered surface data and the results studied. 

The importance of roughness parameters 

One way to study calculated roughness parameters is to correlate them to some 

topographic controlling processing or topographic dependent attribute, behavior, or 

performance exhibited by a class of surfaces in which we are interested. These observed 

phenomena could be for example: friction, adhesion, adsorption, wetting, scattering of 

light or particles, reflectivity. The correlation subsequently helps in the selection of the 

value for the roughness parameter adequate for influencing the observed behavior as in 

engineering design optimization. 

Why use band-pass filters on Surface Data? 

Band-pass filters enable a type of scale-based decomposition of surface data. Making 

surface roughness depend on wavelength scale is a particular vehicle to answer the 
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question: “how does scale influence observed topographic phenomena?” Now, instead 

of only varying the way each surface in our collection is created and calculating the 

roughness parameters for each, we can also calculate a collection of roughness 

parameters for data restricted to certain scales. In this case, the scales are wavelength 

bands of our own choosing. The larger project tests the hypothesis that we will find 

stronger correlations between roughness parameters and, in particular, the friction 

coefficient of the surface when we select the appropriate wavelength band. 

State of the Art in Surface Roughness Filtering 

There are many filters available for surface data filtering. They broadly fall into two 

categories: envelope filters (E filters) and mean line filters (M filters) (see 

[Muralikrishnan and Raja, 2009]). We only select a few mean line filters presented in the 

book. We also make it possible for the user to either employ MATLAB’s fdatool 

command in designing a custom filter or to specify the filter spatial domain coefficients 

or matrix for use in the program. They each deal with certain issues such as the ability to 

avoid introducing edge artifacts, and how oscillatory the mean line result is. 

Approach 

Chapter 2 introduces the program and explains the main function that provides an 

interface to user.  Chapter 3 explains inputs and outputs of the auxiliary filter functions 

that are called by the main function. Chapter 4 provides detail about how the filter 

codes were implemented. Chapter 5 explains the two strategies used to create a band-

pass filter with specified characteristics. Chapter 6 discusses some results of applying 

the filters to data. Finally, chapter 7 concludes the paper summarizing the work and its 

usefulness. 
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CHAPTER 2: The Program  

This chapter introduces the program and explains the main function that provides an 

interface to user. It provides two charts. The first one shows the structure of the 

program. The second shows the project work flow in relation to the larger project. The 

work flow consists of both the steps the program follows in filtering the data and the 

preparation of the filtered data files for more analysis work in the larger project.   

Surface Data Filtering Procedure using grandforloop.m 

The main function that is used to automate the selection of data files and filtering is 

called grandforloop.m. Table 1 shows how to use it. Apart from accepting inputs 

through the command window, one can call it without any inputs. In this case, 

grandforloop.m provides dialogue boxes that enable one to choose the data source 

folder, the results destination folder, the number of files to analyze, a list of center 

wavelengths, a corresponding list of bandwidths, and the type of filter to use. (See the 

dialogue box pictures in Table 2.) 

 

Dialogue boxes are used to: Available Filters: Major Inputs  

1. Choose the data folder 

2. Choose folder where to save 

calculations 

3. Specify center wavelengths 

and wavelength bandwidths 

4. Choose the filtertype 

a. Filters available 

through matlab’s FDA 

toolkit 

1. Surface Data 

2. filtertype 

3. bandwidth 

4. center wavelength 

5. Band pass method 

(see chapter 5) 

 

b. Gaussian Filter 

c. Zero order Gaussian 

regression filter 

d. Second order Gaussian 

regression filter 

e. Robust zero order 

Gaussian regression 

filter 
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f. Non-periodic Spline 

Filter 

Table 1: Usage of grandforloop.m 
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Figure 1: Choosing the results destination folder 

 
Figure 2: Choosing the data source folder 

 
Figure 3: Specifying filter parameters 

 
Figure 4: Choosing a filter 

Table 2: Dialogue boxes numbered in the sequence they are used when calling grandforloop.m 
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Charts 

The chart in Figure 6 below shows the two auxiliary functions called by grandforloop. 

The function bndfilt.m converts the bandwidth and center wavelength parameters to 

upper and lower cutoffs or to center frequency and frequency bandwidth depending on 

what band pass method the user chooses. The chart also shows the level of 

grandforloop.m’s connection to other important auxiliary functions that implement the 

filtering.  

 

One should note that the function, filterimg.m, shown at the fourth level in the chart, 

accepts already generated filter coefficients and implements them either via 

convolution in space or frequency domain multiplication after application of FFT. (See 

chapter 4 for implementation details.) 

 

 

Figure 5:   Program chart 
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The next chart, Figure 7 below, shows the input 3D data is fed into a Gaussian band-pass 

filter with specified characteristics. Then a band-pass filtering method is used. The 

filtered data files are saved. Then, MountainsMap software is then used in the larger 

project to calculate and record roughness parameters for each data file. 

 

Figure 6:   Project Work-Flow Chart 
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CHAPTER 3: Description of important Inputs and Outputs of 

Major Functions in the Program 

This chapter describes the important inputs and outputs of major functions in the 

program. Table 2 below lists the inputs and outputs of each function. There some 

functions have extra inputs that are only used to study them – not varied in the program 

and not relevant to the actual work the function does. There are also other sub-

functions used to enable the functions to work. The comments for each function are 

pasted in Appendix A. The filtertype input options are given in chapter 4. The 

explanations for the filters are also given in that chapter.  

 

Also, note that these functions are not the only functions necessary to make the 

program work. There are other auxiliary functions they call that need to be present 

whenever one is using these functions. The input surface data format to 

grandforloop.m, bndfilt.m, and getwavelength2cos.m is in the WPI format. This format 

requires the readfraxsurf.m file to read it. One should select 1 for the frax input option if 

one has data in WPI format. Otherwise if one is using a raw data matrix, one should 

select 0 for the frax input option in files that have the frax option.  

 

Function Command with Inputs and outputs 

grandforloop.m [IIb,filenames,List,  directory_name] = grandforlooptest( 

filtertype, I, centwave, bndwths, sw, sw2, disgraphs); 

bndfilt.m [IIL,II2L,IIH,II2H,IIb] = bndpfilt(filtertype, I, centwave, 

Lambdamn, sw, disgraphs); 

getwavelengthcos.m [II, II2] = getwavelength2cos(filtertype, I, centerfreq, 

Lambdam, frax, Lambda, L, npoints, spacing, disgraphs); 
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secgaussreg.m II = secgaussreg(I, n, nv, wc1, wc1v, dx, dxv, lambdacn, 

lambdacnv, Lambdam, Dirsw); 

robustgauss.m II = robustgauss(I, n, nh, wc1, wc1h, dx, dxh, lambdacn, 

lambdacnh, Lambdam, alpha, CBt, relCB, iterationNo, 

disgraphs); 

npspline2.m [x,II6] = npspline2(I, dx, Lambdam(1), wc1); 

zerogausreg.m II = zerogaussreg(I, n, nv, wc1, wc1v, dx, dxv, lambdacn, 

lambdacnv, Lambdam); 

filterimg.m This Is not intended to be called independently. (The results of 

each filter can seen by using getfiltereddat.m) 

ROB_FILT2.m (Copy 

of ROB_FILT.m from 

SCOUT) 

[ FDATA,FS ] = rob_filt ( DATA, SPACING, CUTOFF ) 

Used but not written by this project. (See Appendix A.9) 

GAU_FILT2.m (Copy 

of GAU_FILT.m from 

SCOUT) 

FDATA ] = Gau_filt ( DATA, SPACING, CUTOFF, FTYPE ) 

Used but not written by this project. (See Appendix A.10) 

Table 3: Description of program functions 

 

Below is the description of the functions: 

 

(For all the functions using it, the disgraphs input causes the functions to display graphs 

when they run. This option is suppressed by default.) 
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The grandforloop.m function: 

 The filtered data is stored with a name that contains the input surface data filename, 

bandwidth, center wavelength, and type of filter used. It is also outputted as IIb if the 

user uses this option in the command window. The input variable, I, is the raw surface 

data stored in WPI format. The inputs centwave and bndwths are the center wavelength 

and bandwidths respectively. The input, sw, specifies whether a sequence of low-pass 

and high-pass filters are used or modulation at a center frequency is used. It is 1 for the 

first case and 0 for the second one. One specifies how many data files to analyze by 

setting sw2 to that number.    

 

The bndfilt.m function: 

This converts the center wavelength and bandwidth to upper and lower cutoffs or to 

center frequency and frequency bandwidth. Then it decides whether to use a sequence 

of low-pass and high-pass filters by calling the filtering function twice, or to use 

modulation. It provides the filtered and leveled data as IIb to grandforloop.m 

Lambdamn can either be horizontal and vertical bandwidths or horizontal and vertical 

low-pass cutoffs. 

  

The getwavelengthcos.m function: 

This calls the filter functions. It either uses a sequence of low-pass and high-pass filters 

by calling the filtering function twice, or it calls the filtering function once, giving it the 

center frequency for modulation. It outputs the filtered and leveled data as II and the 

non-leveled and filtered data as II2. The function obtains the number of points, spacing 

information from the WPI format structure, I. Lambdam is the cutoff wavelength vector 

for vertical and horizontal directions while Lambda is the Lambdam divided by the 

spacing. One specifies either Lambdam or Lambda. 

  

General Inputs to the Filters: 

The input, I or z, is the raw surface data matrix. The outputted filtered data variable is II.  

The number of points in the vertical and horizontal directions are n and nv respectively. 
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(v or h in nv or nh only shows nv and nh are different from n. The vertical direction is 

assigned to n and to other variables that do not end with v or h.) The angular frequency 

shift is wc1, dx is the spacing, lambdacn is the cutoff wavelength divided by the 

corresponding spacing, and Lambdam is the cutoff wavelength vector. 

 

The filter codes: secgaussre.m, robustgauss.m, npsplin2.m, and zerogaussreg.m can be 

used independent of grandforloop to filter individual surface data files. 

 

Descriptions and Inputs specific to each Filter: 

The secgaussreg.m function: 

 This function performs 2D and 3D second order Gaussian regression filtering. Dirsw 

provides an option to perform the filtering assumging that the vertical and horizontal 

directions are independent or to allow the cross-product terms to enter the calculation. 

(See chapter 4.) The setting, Dirsw = 1, is for no interaction while Dirsw = 2 allows the 

interaction term. 

  

The robustgauss.m function: 

 This function uses the robust Gaussian filter. This filter is an iterated - weighted zero 

order Gaussian regression filter. Its input, alpha, is used to decide how many standard 

deviations away from the mean of the data to use in calculating the weight. The 

thresholds, Cbt, relCB, and IterationNo are used to stop the iteration. CBt is applied on 

the average of the filtered data, relCB limits the error between the current average and 

the previous average, and iterationNo limits the number of iterations. 

 

The npspline2.m function: 

This function implements the nonperiodic spline filter in the vertical direction. So it is 

called a second time by getwavelength2cos.m in order to filter the horizontal direction.  

   

The zerogausreg.m function: 
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 This function uses the zero order Gaussian regression filter. It only uses the general 

filter inputs. 

   

The filterimg.m function: 

 This function is not intended to be called independently. It accepts filter coefficients 

and performs the linear convolution either in space or by frequency multiplication. 

  

The ROB_FILT2.m and GAU_FILT2.m functions (from SCOUT): 

 These were written by S. Brinkman, Hannover University and A. Porrino, Brunel 

University. Their emails are: brinkmann@imr.uni-hannover.de and 

alessandro.porrino@brunel.ac.uk. These functions were not made specifically for this 

project. They were simply made available as an option that can be called when 

executing grandforloop.m. (See the Appendix A.9 and A.10  for further descriptions.) 

 

(SCOUT read and write functions were renamed from Readsdf.m and Writesdf.m to 

Readsdf22.m and Writesdf22.m respectively in order to avoid conflict with the surfrax 

read and write files that possess the same name.)  
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CHAPTER 4: Available Filter Types 

This chapter discusses the filter codes used, referring the reader to where the codes 

originated and explains the modifications that were inserted in each of them. In general, 

the modifications made to the filter codes were in terms of variable names, extending 

the method of implementing them to handle both 2D and 3D filtering, and to allow 

them to handle relatively large data sets. 

Filters from MATLAB’s FDA toolkit and Saved filter coefficients 

To use the MATLAB Filter Design and Analysis Tool, fdatool is typed on the command 

window or ‘fda’ is used as the filtertype input variable inside the function that has 

filtertype as an input. When using the FDA option to design a filter, the new filter is 

exported as an ascii file (with extension .fcf). One chooses from among the available 

filters, specifies the design parameters, designs the filter and exports it using the export 

option under the file menu. Then, before closing the FDA tool GUI, the ascii file is edited 

by removing both its header and the line that reads: “Numerator:”. This way the 

resulting file contains only the filter coefficients. The GUI is closed so that the calling 

function can resume.  

The calling function will request the user to select the file where the filter coefficients 

were saved. Then it will use those to filter the data. In addition, if one has already saved 

the filter coefficients, one can use the string, ‘coeff’, as the filtertype option. 

 

The Gaussian Filter 

Using the SCOUT code: 

The formulas and parameter specifications for the SCOUT program are: 

GAU_FILT (Z, h, CUTOFF,str) 

 

Z is the raw data, h is a vector containing the spacing in y and x directions, CUTOFF is the 

50% lowpass cutoff, and ‘str’ is a string where a cropping method is chosen. GAU_FILT.m 

uses the filter2 command from MATLAB. For the cropping method, ‘L’ or ‘l’ asks it to use 
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a cropping method provide by MATLAB filter2 command, and ‘H’ or ‘h’ asks it to use the 

cropping method provided inside the GAU_FILT.m code. An example is (assuming the 

raw data and parameters are in the workspace): 

[ZF] = GAU_FILT(z, [dy,dx], [Lamy Lamx],'l'); 

 

The code creating the filter, G, that SCOUT uses, is given below: 

Nx=round(lamx/dx/2); 

Ny=round(lamy/dy/2); 

x=[-Nx:Nx]*dx; 

y=[-Ny:Ny]*dy; 

[X,Y]=meshgrid(x,y); 

beta=log(2)/pi; 

G=dx*dy/beta/lamx/lamy; 

G=G*exp(-(pi/beta)*((X/lamx).^2+(Y/lamy).^2)); 

 

Note that it cuts the cutoff in half and uses the round command when creating the x and 

y coordinates. That is, the cutoff is approximately the filter length here. 

 

Another option uses the American Standard [American Society of Mechanical Engineers 

2002]. The formula [Muralikrishnan and Raja, 2009 chapter 5 page 33] for this method is 

given as:  

, where . 

The following code lines, in lines 265 to 378 of getwavelength2cos.m, are used to 

construct the function for this method: 

 

    lambdacc = dx*lambdacn; %user defined cutoff wavelength (When it is 

centered at zero before translation to a different center wavelength) 
    lambdacch = dxh*lambdacnh; 
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    lambdac = Lambdam(1); %user defined cutoff wavelength (When it is 

centered at zero before translation to a different center wavelength) 
    lambdach = Lambdam(2); 
    x1 = (-lambdacc:dx:lambdacc)'; 
    x1h = (-lambdacch:dxh:lambdacch)'; 
    N1 = round(x1/dx); 
    % plot(N1,'*') 
    % pause 
    alpha = sqrt(log(2)/pi); %0.4697; 
    S1 = (1/(alpha*lambdac)).*exp(-pi*(x1/(alpha*lambdac)).^2); 
    S1h = (1/(alpha*lambdach)).*exp(-pi*(x1h/(alpha*lambdach)).^2); 

 

This formula and basic code for this filter in 2D is the one provided in [Muralikrishnan 

and Raja 2009, chapter 5 page 34].  

 

This project modified the code in the following manner. The actual implementation of 

the 3D capable filter is done in the file filterimg.m. The m-function, filterimg.m, has the 

two options of filtering in frequency domain and convolution in spatial domain. Each is 

done by a designated sub-function.  The sub-function in line 166, getfiltdatavec, 

multiplies the FFT of the data and the filter and takes the inverse FFT. It applies the filter 

in one direction. Therefore, it is called twice to filter the horizontal and vertical 

directions in sequence. The other sub-function is getfiltdatavec2. It is also called twice in 

like manner. 

 

Both methods can filter the data in sections when the data is too large. The variables ns 

in line 168 and nns in lines 175, 240, 252, and 272 determine how many rows and 

columns to use at a time.  

 

The vector, Lambdam, contains the spatial cutoffs. Note that this method uses twice the 

cutoff as the filter length and applies the floor function in contrast the SCOUT code. This 

ensures a symmetric odd length filter. The relatively extra points included might cause 
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the sampled Gaussian’s FFT distribution to be more like samples of its continuous 

Fourier transform. 

 

In the filterimg.m code, n is the data’s length in the vertical direction and m1 is the 

filter’s length in the vertical direction. In the event that the filter is longer than the data 

along any dimension, the filter’s discrete Fourier series (DFS) is used instead of the FFT 

to resample the filter’s frequency distribution at 2n-1 points instead of using the n+m1-1 

points the FFT would have given. This conditional is implemented in lines 80 to 114 of 

filterimg.m. (See Appendix B.1 for some explanation about convolution and frequency 

domain filtering.) 

 

The 3D Zero-Order Gaussian Regression Filter 

The zero-order Gaussian regression filter takes care of the edge effect that happens 

during smoothing. This is illustrated in figure 3 below. Here, a section of a sine wave 

with random noise added is filtered.  
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Figure 7:   The edge behaviors of the zero order Gaussian regression filter and the 
regular Gaussian filter [as has been shown in 2D by Muralikrishnan and Raja (2009)] 

 

The zero-order Gaussian regression filter [Muralikrishnan and Raja, 2009, pages 68 to 69 

and 73] is obtained by solving for a constant weighting function in 3D that minimizes the 

discretized energy functional: 

 

 

The filtered result, , is a constant function here,  

 

And  is defined as: 

. 
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The exponential of a sum is factored here.  

 

The associated formula for it is obtained as follows:  

 

 

Since . 

 

The resulting filtering process is not shift invariant due to the fact that the normalizing 

factors,  and , vary with each . The 

combined factor enables the sum to be a weighted average of only data values and 

keeps the filtered result from escaping at the ends. This way, we do not need to worry 

about cropping out corrupted parts of the filtered result as we do with regular 

convolution with zero-padded data (see [Muralikrishnan and Raja, 2009, chapter 3] for 

an explanation of discrete convolution). 

 

The m-file function that implements the zero order Gaussian regression filter is called 

zerogaussreg.m and the filtertype name for calling it in other functions is the string 

'zerogaussreg'. The subfunction that does the convolution is called getzerogaussreg2 in 

line 105 of zerogaussreg.m. This one uses a forloop similar to the one provided in 

[Muralikrishnan and Raja, 2009, page 74]. Another subfunction, getzerogaussreg in line 

153, is similar to getfiltdatavec in filterimg.m having the ability to do the summations on 

selected number of rows and number of columns at a time.  

 

The 3D Second-Order Gaussian Regression Filter 

The 3D second order Gaussian regression filter is left as an exercise in [Muralikrishnan 

and Raja, 2009, page 74]. So it was derived and implemented in this project. The filter is 



  

Page 25 
  

obtained by solving for a quadratic weighting function that minimizes the discretized 

energy functional1

 

 

: 

The filtered result, , is a quadratic function determined at each  

point. Its general expression is found in [Muralikrishnan and Raja, 2009, page 74]. 

 

 

 

And  is the same Gaussian function defined section 4.3. 

 

We obtain a system of equations when we differentiate to find the minimum:  

 

 

 

 

 

 

                                                      
1 Chapter 9.2, page 74 of Computational Surface and Roundness Metrology by Bala Muralikrishnan and 
Jay Raja. Copyright 2009, Springer-Verlag  London Limited 
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The function, secgaussreg.m, solves this system. It has two options for how to solve it. 

That option is the input setting Dirsw. Dirsw = 1 will make it use the subfunction, 

getQM2, which ignores the xy interaction embodied in the equation for . On the other 

hand, changing the setting to 0 will cause it to use another subfunction, getQM. This 

one solves the entire problem including the interaction. Dirsw = 1 is faster because it 

uses less number of calculations.  

 

In the secgaussreg.m code, the matrix, M, represents the dot multiplication of the 

Gaussian with terms in the expression for . The vector, Q, represents the filtering of 

the data with the Gaussian function. These two variables, M and Q are obtained by 

distributing   in the equations above. 

 

Also, unlike the zero-order Gaussian regression code, this project allows secgaussreg.m 

to use only those points falling within the filter cutoffs instead of the entire number of 

points determined by the horizontal and vertical lengths of the data. This restriction is 

created in lines 91 to 117. Although this spatial domain windowing helps to speed up 

the calculation, it increases the oscillation amplitude at non-zero center frequencies 

when the modulation method is used. When used a low-pass filter, it exhibits better 

edge behavior than the zero-order Gaussian regression filter. 

 

The Robust 3D Zero-Order Gaussian Regression Filter 

The robust zero-order Gaussian regression filter is a weighted zero-order Gaussian 

regression filter. It is an iterative filter with weights calculated after each iteration. See 

[Brinkmann et. al, 2000 and 2001] for explanations about the filter. It is used to reduce 

or remove unwanted spikes from filtered data. 

 

The filtertype is the string ‘robustgauss’. The code used is in robustgauss.m. It is similar 

to the 2D case provided in [Muralikrishnan and Raja, 2009, page 90]. The actual filtering 

code is the zero-order Gaussian regression code modified to accept a weighting function 
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called delta before convolution. This function is applied on the data first before the filter 

is applied. It was extended to handle 3D data by using matrix assignments instead of 

vector assignments.  

 

The code in robustgauss.m, however, foregoes the original filtering forloop and uses 

matrix multiplications to apply the filter. The sub-function, getzerogaussregwithdelta 

given in line 160, applies the filter matrix on the weighted data. 

 

The filter matrix and the delta matrix are created before getzerogaussregwithdelta is 

called in line 107. The sub-function, getS11 given in line 204 and called in line 101, 

creates the non-normalized filter matrix. Another sub-function, getS given in line 291 

and called in line 106, creates a matrix of normalizing coefficients, taking delta into 

account. The normalization is applied in lines 186 and 190. This normalization makes the 

filtering akin to an averaging process.   

 

In order to calculate the weights in the entries of the delta matrix, averages are 

estimated along each row and each column in line 133. The row averages are repeated 

across the columns to create a matrix of row averages, called My. Likewise, the column 

averages are repeated down the rows to make a matrix of column averages, called Mx. 

These two matrices are added to create an overall matrix of averages that is used in the 

eventual calculation of the delta matrix in lines 134 to 143. 

The Non-periodic Spline Filter 

The non-periodic spline filter code in [Muralikrishnan and Raja, 2009, pages 80 to 81] is 

largely left intact. The m-file is called npspline2.m. The only changes inserted were 

modulation in lines 24 to 31 and 63. Also, all the vector assignments were made into 

matrix assignment to allow for when the data is a matrix. The horizontal and vertical 

directions are kept independent, allowing this filter to be called twice in order to filter 

both directions. 
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CHAPTER 5: Two Band-Pass Filtering Techniques 

This chapter first presents two methods for generating a band-pass filter. It then goes 

on to derive equations used to convert from the bandwidth and center wavelength to 

either upper and lower wavelength cutoffs or to upper and lower frequency cutoffs, or 

to center frequency and frequency bandwidth. 

Using a sequence of low and high pass filters (Method A) 

In this case, a low pass filter is first applied using the upper wavelength cutoff, .  

Then, that result is filtered with a high pass filter at the lower wavelength cutoff, . 

The cutoffs refer to the wavelength where the filter has approximately 50% 

transmission. The resulting overall 50% cutoff for the new filter is drastically different 

from the original specifications. This is caused by the resulting multiplication of the 

previous two filters in the frequency domain. Thus, it is difficult to specify the overall 

cutoff for this method. 

This method was implemented using the SCOUT gau_filt.m code. The code treats the 

cutoff as the full width of the spatial filter, whereas, the next method treats it as half the 

spatial width. Two maintain positive upper and lower cutoffs,, they are not allowed to 

go below twice the spacing. If any of them goes below this threshold, it is set equal to 

twice the spacing. Likewise, they are not allowed to exceed the data spatial lengths in 

their corresponding directions. When any of them exceeds the corresponding length, its 

value is reduced to that length. This is implemented in lines 45 to 87 of the bndfilt.m 

code.  
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Figure 8:   Combination of high and low pass filters to create a band pass filter 

 

 

Figure 9:   filtered data using traditional Gaussian band-pass 
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Using cosine modulation to attain frequency shift (Method B) 

In this case, the given low-pass filter is spatially modulated with a discrete cosine 

function at a particular center frequency. This shifts the center of the filter’s frequency 

response from zero frequency to the new center by even symmetry.  

 

When the filter changes as its spatial center is translated during convolution, as can be 

seen in all the non-Gaussian filters used in this project, the data is modulated instead of 

the filter. This is accomplished at the beginning of each filtering code and at the end. In 

this case, the complex exponential is employed instead of the cosine function. Then the 

real part of the result is taken at the end. This is the same as cosine modulation. See 

Appendix B for explanations about using spatial modulation to implement frequency 

shift.  

 

The filter transmission graph using Method A is shown in Figure 10 while the 

corresponding graph for Method B is shown in Figure 11. These were created using a 

center wavelength of  and a cutoff (prior to shifting) of . 

The resulting upper and lower wavelengths cutoffs where:  and 

 respectively. The explanations for how to convert between Method 

A specifications and Method B specifications are provided in the next section. 
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Figure 10:  Gaussian filter using Method A 
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Figure 11:  Gaussian filter using Method B 
 

Notice how the left tail in Method A relatively resists crossing the vertical axis compared 

to Method B. This is due to the restriction on its upper wavelength cutoff. Method B 

appears to cross more readily due to aliasing. On the other hand, Method B is both 

narrower in general and has more precise upper and lower wavelength cutoffs. Method 

A’s upper and lower wavelength cutoffs are less precise because the cutoff transmission 

of one of the filters involved in the sequence is always corrupted by the nearby values of 

the other filter by multiplication. This multiplication makes the overall wavelength 

cutoffs to be different from the specification. (See Appendix B.1 for the relationship 

between spatial domain convolution and frequency domain multiplication) 

Formulas for converting between band-pass parameter specifications 

In this case, the given low-pass filter is spatially modulated with a discrete cosine 

function at a particular center frequency. This shifts the center of the filter’s frequency 

response from zero frequency to the new center by even symmetry.  
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Care can be taken to control the distribution’s width on the wavelength axis. Simply 

translating the distribution’s center frequency will preserve its width on the frequency 

axis, but will not do so on the wavelength axis. For the same frequency bandwidth, the 

wavelength bandwidth at a higher center wavelength is larger than the wavelength 

bandwidth at a lower center wavelength. We will study and create formulas that help to 

control this issue. 

 

Let the spatial length be , where  is the number of points and  is the 

sampling interval. Let  be the discrete frequency variable. The formula to used to 

convert from the discrete frequency axis to the wave axis is:  with 

. The formula used to convert from the discrete frequency axis to the angular 

frequency axis is: . To obtain the angular frequency cutoff from the spatial 

cutoff, one uses . For a filter with  points, the observable wavelength range 

is  [Muralikrishnan and Raja, 2009, page 26].  

 

One might ask, what is the range available for the cutoff ? At high center frequencies, 

the lower limit of  is too small especially when considering we are using a discrete 

band-pass filter created by frequency translation and with its number of points limited 

by . The filter’s width in the frequency domain can be too wide with the resulting 

aliasing drastically altering the distribution’s shape and bandwidth. We also have a 

similar problem at the higher limit for . In this case, we run the risk of only studying the 

frequency characteristics of the filter instead of obtaining useful frequency information 

from the data.  

 

To control these problems, we use the Gaussian as a model filter and calculate the 

minimum and maximum positions for the center frequency for a given bandwidth that 

satisfies 50% transmission at the cutoffs.  
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To get the minimum center frequency, we apply the following process: 

 

Given the wavelength bandwidth  and the discrete frequency half bandwidth , we 

want to find both  and , where  is the low-pass cutoff before the 

frequency shift is applied. 

 

Set the upper and lower frequency cutoffs as: 

(1)  

(2)  

with  defined as: 

 

(This cutoff is half the wavelength bandwidth) 

Then: 

 

 

 

by substitution of equation (2). 

 

by isolation. We get both  and  as: 

 

 

 

The minimum angular center frequency, with a left tail satisfying a 50% transmission at 

 is then  . Likewise, the maximum angular center 
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frequency that satisfies that condition is . The 

corresponding center wavelength we use is the center of the wavelength interval 

between the lower and upper wavelength cutoffs:  

 

 

Of course, the wavelength peak of the Gaussian is still obtained by the conversion:  

 

 

Now, let us find the maximum center frequency satisfying a 50% transmission at 

. (Note that due to the inverse relation between wavelength and frequency, we 

used  when we were calculating the minimum because that corresponds to the 

maximum observable finite wavelength. Likewise, the minimum observable wavelength 

corresponds to the maximum discrete frequency.) 

 

Given  and , we want to find  and , where  is the low-pass 

cutoff before the frequency shift is applied. 

 

Set the upper and lower frequency cutoffs as: 

(3)  

(4)  

Then: 

 

 



  

Page 36 
  

 

by substitution of equation (3). 

We get both  and  as: 

 

 

 

Note that the transformation from the frequency axis to the wavelength axis is 

nonlinear. In the MATLAB code used, the discrete frequency cutoffs are applied before 

the shift is implemented. To help preserve a certain wavelength width, the spatial 

cutoff, , must be changed before shifting. (That is, the frequency bandwidth of the 

filter should be changed as the distribution is being translated on the frequency axis). 

The wavelength width preserving cutoff formula (in the absence of aliasing) is calculated 

in the following manner:  

 

Given the wavelength bandwidth  and the center frequency , we want to find 

both the discrete frequency half bandwidth  and , where  is the low-pass cutoff 

before the frequency shift is applied. 

 

Set the upper and lower frequency cutoffs as: 

(5)  

(6)  

Then: 
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by substitution of equations (5) and (6). We then obtain the quadratic equation 

 

by rearrangement. We get both  and  as: 

 

(the positive root is chosen here) 

 

 

Finally, we want to be able to determine the center frequency  and the 

wavelength bandwidth , given  and . This is useful when one wants to relate 

the translation method to the subtraction method. 

 

Set the upper and lower wavelength cutoffs as: 

(7)  

(8)  

Define the center wavelength as: 

 

by substituting equations (7) and (8).  

Then: 

 

by substituting equations (5) and (6).  

 

Define  as: 
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We then obtain the following quadratic equation: 

 

by rearrangement. We get  as: 

 

(The positive root is chosen here.) 

To finish, recall that: 

 

 is given and we can get  from , which is also given. Using  and ,  

is calculated as: 

 

This is possible because we derived formulas for calculating  and . So,  is 

now related to both  and  and we have a more precise control. These formulas 

are implemented in the auxiliary function, uniformwidths2.m. 
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CHAPTER 6: Application and Discussion 

This chapter displays results of filtering surface data with the chosen filters explained in 

chapters 4 and 5. The two roughness parameters, Sq and Sa, given in chapter 1, are 

calculated for each. The filtering is performed at a list of center wavelengths and 

bandwidths using both methods discussed in chapter 5 for creating a band-pass filter.   

 

With each filter, the data file, 1-1.sdf from [Berglund, 2009], is filtered at the specified 

bandpass parameters listed in Table 4. Sa and Sq are calculated and listed in Table 5, 

Table 6, and Table 7. Then these Sa and Sq values are plotted against the center 

wavelength in Figure 12 and Figure 13 respectively. The units for the parameters are in 

micrometers. Because it takes too long to analyze a file, results from secgaussreg.m are 

not included below. 

 

cutoffs  
Wavelength 
Bandwidths  

Center 
Wavelengths  

50 552.0797 300 
50 492.3099 270 
50 432.5971 240 
50 372.9657 210 
50 313.4556 180 
50 254.1381 150 
50 195.153 120 
50 136.8154 90 
50 80 60 
50 28.1025 30 

Table 4:   Band-pass filter parameters 
 
Center 
Wavelengths gau_filt 

  
gaussian 

 
  

Sa  Sq  
 

Sa  Sq  
30 

 
0.219055250 0.384200620 

 
0.011731102 0.019064977 

60 
 

0.425065290 0.671016220 
 

0.116983690 0.147262740 
90 

 
0.618700780 0.906102110 

 
0.227072980 0.277813960 

120 
 

0.800990320 1.107939800 
 

0.301787180 0.365818700 
150 

 
0.975889510 1.295359800 

 
0.352639290 0.425571370 

180 
 

1.134419200 1.460630200 
 

0.388862770 0.468075920 
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210 
 

1.268853300 1.599655900 
 

0.415791130 0.499647480 
240 

 
1.381489300 1.716203000 

 
0.436524760 0.523946120 

270 
 

1.488103900 1.827859300 
 

0.452951060 0.543192170 
300 

 
1.588292700 1.934124800 

 
0.466272900 0.558797630 

Table 5:  gau_filt and gaussian filtertype Sa and Sq results 
 
Center 
Wavelengths npspline 

  
rob_filt 

 
  

Sa  Sq  
 

Sa  Sq  
30 

 
0.016064355 0.046289900 

 
0.149259190 0.226675380 

60 
 

0.106549930 0.183543260 
 

0.307970380 0.457068480 
90 

 
0.216319700 0.323927120 

 
0.522087560 0.743229900 

120 
 

0.302489810 0.429647130 
 

0.753932290 1.009561100 
150 

 
0.366243440 0.506533370 

 
0.982360550 1.259065700 

180 
 

0.413981440 0.563596420 
 

1.173314000 1.467393900 
210 

 
0.450640650 0.607182340 

 
1.339133700 1.649587800 

240 
 

0.479514460 0.641387570 
 

1.482813800 1.808357700 
270 

 
0.502773860 0.668869180 

 
1.600346700 1.939260800 

300 
 

0.521876680 0.691394090 
 

1.697610900 2.048328000 
Table 6:  npspline and rob_filt filtertype Sa and Sq results 
 
Center 
Wavelengths robustgauss 

  
zerogassreg 

 
  

Sa  Sq  
 

Sa  Sq  
30 

 
0.012943818 0.026146479 

 
0.013269034 0.026535190 

60 
 

0.128308370 0.171900270 
 

0.128463260 0.172524390 
90 

 
0.246356730 0.313674320 

 
0.246579930 0.314445620 

120 
 

0.325975570 0.408423800 
 

0.326292470 0.409303290 
150 

 
0.380039420 0.472529760 

 
0.380425550 0.473488230 

180 
 

0.418499590 0.518044860 
 

0.418942370 0.519061700 
210 

 
0.447066850 0.551812010 

 
0.447553840 0.552874160 

240 
 

0.469052220 0.577779170 
 

0.469573710 0.578877030 
270 

 
0.486464940 0.598335080 

 
0.487015320 0.599461640 

300 
 

0.500581740 0.614994660 
 

0.501157130 0.616144850 
Table 7:  robustgauss and zerogauss filtertype Sa and Sq results 
 

 

Center Wavelengths 
gaussian (using a sequence of 
low-pass high-pass and filters) 

  
Sa  Sq  

30 
 

0.2128624900 0.3758557100 
60 

 
0.4197805300 0.6647651300 
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90 
 

0.6158307500 0.9038451500 
120 

 
0.8043552000 1.1134129000 

150 
 

0.9803887900 1.3013416000 
180 

 
1.1443979000 1.4730001000 

210 
 

1.2967199000 1.6320191000 
240 

 
1.4373813000 1.7797502000 

270 
 

1.5661078000 1.9160325000 
300 

 
1.6824037000 2.0400595000 

Table 8:  gaussian filtertype Sa and Sq results (using a sequence of low-pass and high-pass filters) 
 

The Sa and Sq curves seem to be very similar to each other. The gau_filt and rob_filt 

filtertypes used the sequence of low-pass and high-pass filters to create a band-pass 

filter. The other filters used the modulation method to translate the center frequency 

from zero to the new one corresponding to the center wavelength.  

 

 
Figure 12:  Sa versus center wavelength plots of filtered data 
 

In Figures 12 and 13, the curves produced by SCOUT’s Gaussian (gaufilt legend, with 

gau_filt as the filtertype) and robust Gaussian (robfilt legend, with rob_filt as the 

filtertype) codes are colored dark blue and cyan respectively. These two curves were 

Method A 

Method B 
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produced using Method A, which is band-pass filtering with a sequence of low-pass and 

high-pass filters as discussed in chapter 5. The other curves are produced using Method 

B, which is band-pass filtering with the center frequency translation method.  

 

 
Figure 13:  Sq versus center wavelength plots of filtered data 
 

The gau_filt and the rob_filt graphs are growing faster than the others. They seem to 

have a higher limit close than the rest as the center wavelength is increased. This seems 

to be mostly due to the band-pass method because when the gaussian filtertype was 

used with the sequence of filters, it gave results that were very similar to the one from 

gau_filt. This is shown in Figure 14 and Figure 15. For the gaussian filitertype, the 

corresponding table for this band-pass method is Table 8. 

 

Method A 

Method B 
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Figure 14:  Sa plots for the gau_filt versus the gaussian filtertype, using a sequence of low-pass and high-
pass filters 
 

 
Figure 15:  Sq plots for the gau_filt versus the gaussian filtertype, using a sequence of low-pass and high-
pass filters 
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The following figures below give a pictorial illustration of the effect of band-pass 

filtering on surface data. These were create with a cutoff of 50  and a center 

wavelength of 120 . The last figure is original surface data.  

 

The SCOUT filters, gau_filt and rob_filt look more similar to the original because they are 

not modified to use the center frequency translation method. They do not attenuate 

low frequencies as well as the other filtering method does. This is due to the fact that 

the overall filter, obtained by the sequence of low-pass and high-pass filtering, has a 

broader frequency distribution than that obtained by center frequency translation. (See 

Figures 10 and 11 in chapter 5 for a comparison of the filters’ shapes.) 

 
Figure 16:  Filtered surface data using the SCOUT Gaussian filter 
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Figure 17:  Filtered surface data using the SCOUT robust Gaussian filter 
 

 
Figure 18:  Filtered surface data using the non-SCOUT Gaussian filter 
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Figure 19:  Filtered surface data using the non-periodic spline filter 
 

 
Figure 20:  Filtered surface data using the non-SCOUT robust Gaussian filter 
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Figure 21: Filtered surface data using the 0-order Gaussian regression filter 
 

 
Figure 22:  Original raw surface data 
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CHAPTER 7: Conclusion 

Band-pass filtering with a variety of filters to filter both two and three dimensional 

surface data was explored. The software that collects and makes available these filtering 

methods to support a larger project, done by [Berglund et al.  2010], was developed. It 

uses band-pass filtering to find strong correlations [Berglund et al 2010]. The software 

described in this report is used to automate the filtering procedure.  The workflow of 

the program, explaining how each filter was implemented, has been presented. The 

filters have been demonstrated by applying them to surface data provided by Berglund 

(2009). The two methods for forming a band-pass filter were shown to produce 

different curves when using either the Sa or the Sq roughness parameters. Explanations 

of the mathematical development of the filtering procedures as obtained from literature 

have been given. One filtering procedure, the second-order Gaussian regression filter, 

was developed as part of this project. Additionally, all filtering procedures from the 

literature were extended from 2D to 3D. 
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APPENDIX A: Description of important Inputs and Outputs of 

major functions in the Program 

This chapter contains comments for the major functions called in the program (See 

chapter 3 for further explanations). 

The grandforloop.m function: 

 % Example of how to use the command: [IIb,filenames,List,  

% directory_name] = 

% grandforlooptest(filtertype,I,centwave, bndwths,sw,sw2,disgraphs); 

  

% sw2 is used to specify how many files are analyzed. Otherwise, it  

% will use all the WPI format data files present in the data folder. 

% Example: let the center wavelengths be:[200 105] and the bandwidth be  

% 50. 

% When sw = 0 (filtering with frequency translation) 

% grandforlooptest('gaussian',I,[200 105], 

% 50,0); 

% When sw = 1 (filtering with addition and subtraction method) 

% grandforlooptest('gau_filt',I,[200 105],50,1);  

% IIb = bandpass filtered data 

The bndfilt.m function: 

 % Example of how to use the command: [IIL,II2L,IIH,II2H,IIb] = 

% bndpfilt(filtertype,I,centwave,Lambdamn,sw,disgraphs); 

  

% To use translation by modulation, let use sw = 0 

% To use the subtraction method, let sw = 1.  

% II = leveled 

% II2 = non-leveled 
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% L and H modifying IIL and IIH refers to low-pass and high-pass  

% filtered data respectively when sw = 1. 

% IIb = bandpass filtered data 

The getwavelengthcos.m function: 

 % Example of how to use the command: [II, II2] =  

% getwavelength2cos(filtertype,I,centerfreq,Lambdam,... 

%     frax,Lambda,L,npoints,spacing,disgraphs);  

  

% Inputs: 

% I is the data (in WPI format). You can either input it from the  

% workspace 

% or use the dialogue box option to select the data file. 

% L = [Lx,Lxh] physical profile length (vertical and horizontal  

% respectively). 

% Lambdam = [Lambdamx, Lambdamxh] actual cutoff wavelength in the  

% vertical 

% and in the horizontal directions 

% Lambda = [lambdacn,lambdacnh] integers used to make cutoff wavelength 

% lambdacn = for cutoff wavelength in vertical direction (calculated as  

% lambdacn*dx) 

% lambdacnh = for cutoff wavelength in horizontal direction (calculated  

% as lambdacnh*dxh) 

% frax = 1 or 0. method used to get data. Decide whether to get  

% fraxsurf file by typing 1 or 

% load a raw data matrix by typing 0. 

% This mfile currently applies the Gaussian filter to an image.  

% dispgraphs = 1 to display graphs are displayed to show how the filter 

% behaves on a segment of the data. 

% centerfreq = [n1,n2] where n1 is the multiple of the vertical 
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% center frequency and n2 is the multiple of the horizontal  

% center frequency. 

  

% other variables used later: 

% numpoints = actual number of points on the profile line 

% m1 = size(S1,1) % vertical length of filter 

% m1h = size(S1,2) % horizontal length of filter 

% spacing = [dx,dxh] 

% npoints = [numpoints, numpointsh] number of points in the vertical  

% and horizontal directions 

% I is the data 

% II = leveled 

% II2 = non-leveled 

The secgaussreg.m function: 

% Uses second order Gaussian regression filter 

% Example of how to use the command: II =  

% secgaussreg(I,n,nv,wc1,wc1v,dx,dxv,lambdacn,lambdacnv,Lambdam,Dirsw); 

  

% Dirsw=1; %assuming no xy interaction (much faster and is default) 

% Dirsw=2; %assuming xy interaction (much slower) 

  

% For the other inputs see chapter 3 and the above description for getwavelengthcos.m  

% function. 

The robustgauss.m function: 

% Uses the robust Gaussian filter 

% Example of how to use the command: II = 

% robustgauss(I,n,nh,wc1,wc1h,dx,dxh,lambdacn,lambdacnh,Lambdam,alpha 

% ,CBt,relCB,iterationNo,disgraphs); 
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% alpha = coefficient used in determining CB determine 

% CBt = threshold on elements of the CB matrix 

% relCB = threshold on the absolute difference between the max of two 

% consecutive CB matrices 

% iterationNo = the maximum number of iterations 

  

% CB is an estimate of the standard deviation using the median absolut 

% deviation times alpha. CB is used to calculate weights applied to the % filter before  

% the next iteration. For explanations about the meaning  

% of CB, see: [Brinkmann et al. (2000) pp. 122-132]2,3

  

 

% (It might not make sense to use this filter at very high center  

% frequencies since you ‘introduce’ sharp peaks and valleys). However,  

% if a non zero center frequency is used, the iteration compares the  

% subsequent results to the first filtered result. 

  

% For the other inputs see the above description for getwavelengthcos.m  

% function. 

The npspline2.m function: 

% Uses the nonperiodic spline filter 

% Example of how to use the command:   

% [x,II6] = npspline2(I,dx, Lambdam(1),wc1); %filter vertical direction 

% [xh,II6] = npspline2(II6.',dxh, Lambdam(2),wc1h).'; %filter  

                                                      
2 Brinkmann, S., Bodschwinna, H. and Lemke, H. W. 2000, ‘Development of a robust Gaussian regression 
filter for three-dimensional surface analysis’, Proceedings of the X International Colloquium on Surfaces, 
Chemnitz University of Technology. Chemnitz, pp. 122-132. 
3 Brinkmann, S., Bodschwinna, H. and Lemke, H. W.: Accessing roughness in three-dimensions using 
Gaussian regression filtering’, International Journal of Machine Tools & Manufacture 41 (2001) 2153–
2161 
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% horizontal direction 

% II6 = II6.'; %restore the original orientation 

%  

%  

% For the other inputs see the above description for getwavelengthcos.m  

% function. 

The zerogausreg.m function: 
 % Uses zero order Gaussian regression filter 

% Example of how to use the command:   

% II = zerogaussreg(I,n,nv,wc1,wc1v,dx,dxv,lambdacn,lambdacnv,Lambdam); 

%  

% For description of the inputs see the above description for  

% getwavelengthcos.m function 

The filterimg.m function: 
 % Is not intended to be called independently. (The results of each  

% filter can seen by using getfiltereddat.m) 

The ROB_FILT2.m function (Copy of ROB_FILT.m from SCOUT): 
 %  [ FDATA,FS ] = rob_filt ( DATA, SPACING, CUTOFF ) 

%                                                 

%   Authors : S. Brinkmann, Hannover University (DLLs) 

%             A. Porrino, Brunel University (Matlab) 

%   e-mail  : brinkmann@imr.uni-hannover.de 

%             alessandro.porrino@brunel.ac.uk  

%   Version : 1999.10.18 

% 

%  Input Variables: 

% 

%   DATA      : Surface Data  
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%   SPACING   : X,Y spacing (m unit) in one of the following forms: 

%                - [X_SPACING,Y_SPACING] 

%                -  XY_SPACING  (if X_SPACING = Y_SPACING ) 

%   CUTOFF    : X,Y Direction Cut-off lengths (m units) in one of the following forms: 

%                - [X_CUTOFF,Y_CUTOFF] 

%                - XY_CUTOFF  (if X_CUTOFF = Y_CUTOFF ) 

% 

%  Output Variables: 

% 

%   FDATA     : Filtered Data 

%   FS        : Filtered Spacing 

% 

% NOTE: The ROB_FILT libraries were kindly supplied by Hannover University  

%       to the AUTOSURF consortium 

  

SCOUT read and write functions were renamed to Readsdf22.m and Writesdf22.m 

respectively in order to avoid conflict with surfrax read and write files that possess the 

same name.  

The GAU_FILT2.m function (Copy of GAU_FILT.m from SCOUT): 
 %  [ FDATA ] = Gau_filt ( DATA, SPACING, CUTOFF, FTYPE ) 

%                                                 

%   Authors : N. Amini, Volvo Technological Development 

%             A. Porrino, Brunel University 

%   e-mail  : VCC9.AMINI@MEMO.VOLVO.SE 

%             alessandro.porrino@brunel.ac.uk 

%   Version : 1999.11.10 

% 

% variables: 

% 
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%   DATA      : Surface Data  

%   SPACING   : X,Y spacing (m unit) in one of the following forms: 

%                - [X_SPACING,Y_SPACING] 

%                -  XY_SPACING  (if X_SPACING = Y_SPACING ) 

%   CUTOFF    : X,Y Direction Cut-off lentgths in one of the following forms: 

%                - [X_CUTOFF,Y_CUTOFF] 

%                -  XY_CUTOFF  (if X_CUTOFF = Y_CUTOFF ) 

%   FTYPE     : String to indicate lowpass or highpass, 'L'=Lowpass, 'H'=Highpass 

%    

%  Output Variables: 

% 

%   FDATA     : Filtered Data 

  

(SCOUT read and write functions were renamed from Readsdf.m and Writesdf.m to 

Readsdf22.m and Writesdf22.m respectively in order to avoid conflict with the surfrax 

read and write files that possess the same name.)  
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APPENDIX B: Frequency Domain and Spatial Domain Filtering 

B.1 Discrete Convolution 

Frequency domain filtering of data can be represented as convolution in the spatial 

domain. The convolution operation becomes useful especially when the filter’s 

spectrum changes as it changes position. 

We are going to treat the x and y directions as independent, allowing the 3-D filters to 

be products of 2-D filters. In 2-D, the convolution output is represented as4

for a (spatially) invariant system. Here,  is the data and  is the filter (also called 

the system function). We are using the discretized spatial variable,  from . 

 is the filtered data. When the system function varies with location then we only 

have the superposition summation5

:  

 

Discrete frequency domain filtering corresponds to multiplication of the discrete Fourier 

transforms (DFT) of the filter and the data sequences. We are using finite length filters 

and data. The Fourier transform (FT) of a finite length signal is a  periodic function 

defined as

:  

 

6

with  and the corresponding N-point DFT is the uniformly spaced samples 

of the FT:  

:  

 

                                                      
4 Page 76 of Digital Signal Processing Principles, Algorithms, and Applications, 3rd Edition by John G. 
Proakis and Dimitris G. Manolakis. Copyright 1996 by Prentice-Hall, Inc. 
5 Page 76 of Digital Signal Processing Principles, Algorithms, and Applications, 3rd Edition by John G. 
Proakis and Dimitris G. Manolakis. Copyright 1996 by Prentice-Hall, Inc. 
6 Pages 401 of Digital Signal Processing Principles, Algorithms, and Applications, 3rd Edition by John G. 
Proakis and Dimitris G. Manolakis. Copyright 1996 by Prentice-Hall, Inc. 
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with .  The inverse DFT (IDFT) is:  

 

So the IDFTs of samples of the Fourier transforms will yield N-periodic sequences of 

infinite length.  is the periodic repetition of . This repetition makes the linear 

convolution become akin to circular convolution7

The equivalence between zero padded circular convolution and frequency domain 

multiplication is shown by the following calculation: 

. That is, this process is similar to 

placing the spatial data on a circle while the filter slides around the circle during the 

convolution. So, to avoid the filter meeting old data points when it goes past the last 

data point, the data is zero-padded. Sufficient zero-padding then makes the frequency 

domain filtering result the same as what would have occurred if linear convolution was 

performed in the spatial domain.  (In order to reduce computation time, the Fast Fourier 

transform method (FFT) is used to compute a signal’s DFT and IDFT in the filtering codes 

instead of direct implementation of the DFT and the IDFT from definitions).  

 

Let  and  have lengths  and  respectively with  and  equal to zero for 

negative  and for  and  respectively. Define: 

 

Truncate the sum because  and  have finite lengths: 

 

Then apply the effect of zero-padding by inserting zeroes into the sum: 

                                                      
7 Pages 415 to 416 of Digital Signal Processing Principles, Algorithms, and Applications, 3rd Edition by John 
G. Proakis and Dimitris G. Manolakis. Copyright 1996 by Prentice-Hall, Inc. 
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Now, take the  point DFT of : 

 

 

Where 

 

Interchange summations: 

 

Truncate the inner summation since  equal to zero for negative argument: 

 

Apply a change of variables using : 

 

Factor out  from the inner sum: 

 

 

Separate the independent summations into a product of sums: 
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Where  and  are defined as: 

 

 

 

This way the multiplication done in the frequency domain is related to zero-padded 

linear convolution in the spatial domain. Sometimes, as with the Gaussian filter, the 

filter is a symmetric function about the zero position. In this case, filter is ‘circularly’ 

padded with zeroes. The first half of the filter is sent to the end of the vector and the 

middle point along with the second half is kept at the beginning of the modified vector. 

That is, if ,  for negative  and for  

respectively. Then let  , we get . The  point inverse DFT 

of the sampled Fourier transform of   will have a discrete period of . The 

following calculations illustrate this zero-padding method:  

Let 

 

Apply a change of variables : 

 

Break the sum into these two parts: 

 

Factor out : 

 

with 
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Let 

 

Then, 

 

 

Therefore we have that , which is found in 

 

, is the zero-padded second half, and , which is found in 

 

, is the first half now moved to the other end of the vector. That is,  denotes the new 

positions for the points taken from the first half of the filter. 

 

The artificial phase factor, , is thrown away and the zero position is redefined as 

the location of the filter point that was at . The new filter is created as: 

 

This filter is from the same periodic function from which  came. We simply ‘chose’ a 

different interval. 

 

Interpreting the Filtered Result 

At this point we should notice that the purpose of filtering here is to modify the 

frequency or wavelength content of the data, and not to add extra artificial points to it. 
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So, we must throw away points resulting from the zero-padding of both the data. These 

artificial points do not correspond to when the summation involved only data points. So, 

we measure how far the convolving filter has to slide before it is completely within the 

domain of the data. This corresponds to sliding by  places at the beginning and at the 

end. This way, we remove  points if the filter is of even length or we remove  

points if it is of odd length. 

 

B.2 Using Spatial Modulation to implement frequency Shift 

What is important during modulation is the relative shift of the modulated function to 

the other function involved in convolution. It is either that the filter’s center frequency 

is moved to the desired location or the data’s distribution falling within the region of 

interest is translated into the filter’s pass-band and translated back after filtering. 

Modulating the filter becomes difficult when it varies as its spatial center is being shifted 

during convolution. So the modulation is transferred to the data in this case. We move 

from an expression modulating the filter to an expression modulating the data: 

 

 

Factor out  and rearrange factors inside the summand: 

 

Also, note that one can also work backwards in the following way to obtain the same 

result. First, the last two steps above are repeated with more explanations to introduce 

expressions that will connect back to the first equation:  

Define: 
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Factor out : 

 

Expand the complex exponentials: 

 

Distribute the summation: 

 

Simplify: 

 

Now, take the real part: 

 

Apply angle addition formula for cosine: 
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APPENDIX C: The Discrete Fourier Transform of the Gaussian 

We have the 3-D Fourier transform8,9

, 

 of the Gaussian defined as:  

with  

. 

The following calculations below show how to obtain the formula for the transform: 

 

 

Complete the square: 

 

 

Factor out the constants: 

 

 

                                                      
8 Chapter 5, page 33 of Computational Surface and Roundness Metrology by Bala Muralikrishnan and Jay 
Raja. Copyright 2009, Springer-Verlag  London Limited 
9 Chapter 8, page 56 of Computational Surface and Roundness Metrology by Bala Muralikrishnan and Jay 
Raja. Copyright 2009, Springer-Verlag  London Limited 
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Now, by Gauss we have the following integration: 

 

 

 

After substitutions and some simplifications, that: 

 

Therefore,  

 

 

 

Apply the transformations  and  to also get: 

 

  

To obtain the discrete Fourier transform, first, we replace both  and  with  

and respectively in the integral, 
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To get the discrete version, this integral needs to be truncated and discretized. Start by 

replacing  with  and  with , and making the summand, , 

nonzero for  and  and zero outside the region. Then restrict 

the continuous variables,  and , to the sample points at  and 

 where  and . Call the new 

function . 

Algebraically these are the steps: 

 

 

by substitution. 

The integrals have been shown to be equal to one, leaving us with: 

 

Therefore, the discrete Fourier transform of the samples is: 
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The expression, , is the frequency domain 

representation of the actual filter used in the Gaussian filtering code in this project. This 

type of substitution is generally valid either when the error, 

, 

is sufficiently small, or when the function, , is band-limited in frequency and with 

the discrete data samples being collected at a sampling rate that satisfies the Nyquist 

criterion10,11

  

. 

                                                      
10 Chapter 4, page 26 of Computational Surface and Roundness Metrology by Bala Muralikrishnan and Jay 
Raja. Copyright 2009, Springer-Verlag  London Limited 
11 Pages 269 to 276 and 396 to 398 of Digital Signal Processing Principles, Algorithms, and Applications, 3rd 
Edition by John G. Proakis and Dimitris G. Manolakis. Copyright 1996 by Prentice-Hall, Inc. 
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