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1 Abstract

In this Major Qualifying Project, we worked with the Boston company DraftK-
ings, an online fantasy sports and sportsbook provider, to build models that pre-
dict NBA players’ performances in an individual game basis (number of points,
assists, and rebounds scored in a single game). We also created models that pre-
dict individual game outcomes in the form of a sportsbook closed line. We built
linear regression, Lasso regression, random forest, and neural network models
which utilized data directly from DraftKings and reputable third-party sources
to predict these performance metrics. Our most successful models reduced the
prediction error by up to 11.46% from the baseline model predictions. When
compared with current sportsbook information and newly developed DraftK-
ings data science models, our results were found to be on par with or surpassing
industry standards.
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3 Executive Summary

This project aimed to develop machine learning models for DraftKings’s online
sportsbook player props betting feature. We were successful in developing mod-
els for player performance predictions in three main player statistics - points,
rebounds, and assists. Our models were compared with current and developing
industry models and performed on par or better in all three statistical categories.

For sportsbooks that look to minimize risk and maximize profits, it is impor-
tant to set strong opening lines. The less a sportsbook’s original line changes
during a game and maintains at least 50% of the money bet above and below the
line, then the sportsbook is less vulnerable to risk and it will probably generate
revenue from the bets. Previously, DraftKings has outsourced their lines pro-
duction to a third party, which is not only costly, but it can also open them up
to potentially risky transactions by causing them to be slightly behind changes
made to the lines. The goal of this project was to use historic data to create
models that predict future player performance, and in turn help generate the
best possible opening lines for DraftKings’s online sportsbook.

From the very beginning of this project we had to adjust and re-format our
data to best suit what we were looking to predict, the models we were trying to
create, and to more effectively run our Python scripts. Through the use of data
frames, cleaning tools, and scraped information from the web, we were able to
effectively use the large amounts of data it takes to successfully predict player
performance. We utilized several machine learning techniques, including linear
and Lasso regression, random forests, and even neural networks, which allowed
us to create several models to work with and compare.

Across all of our models and performance metrics, we discovered one of the
most important steps when building these algorithms was how we defined our
training and testing distributions in order to train and test the models. In our
game line prediction models this was accomplished by re-training the models
every three months of data and testing on the next month. Any less frequently
meant there was not enough data to confidently predict game outcomes, and
any more frequently meant the distributions became too different as postseason
games began to alter the expected outcomes, plus this way we were able to
account for teams that were on streaks or sudden performance changes within
the teams. For our player prop models, we ensured strong distributions by
dividing players into tiers based on skill level and number of games played.
This allowed us to train on enough data to generate accurate predictions for
players of similar skill levels. For example, rather than generating a singular
model for LeBron James, another model for James Harden, a third for Jayson
Tatum, and so on, we can predict each of these players performance just as
accurately by lumping their data into what we called the A tier and only need
one model to encapsulate players that fit the A tier criteria. Plus, this way
we avoided overestimating performance for average players, or underestimating
performance for great ones, since they are all been put together into groups of
players with similar skill levels.

Another key step in building our machine learning models was selecting
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which predictors we wanted to consider and then quantifying which were the
most influential predictors on our models. For our player performance models
we looked at several indicators over the player’s most recent four games to get
a trend instead of just a one game performance indicator, since players can
have an off day and then set personal records the next night. For every model,
from each of the previous four games, we considered the minutes played, steals,
fouls, turnovers, blocks, and player position. Then depending on the statistic
and model, we could add or remove predictors depending on what we are trying
to accomplish. For example, some point-model-specific predictors include the
previous four points scored, rebounds, and assists. For the assists and rebounds
models we considered the base set of predictors as well as the previous four
assists and rebounds respectively. For all our models the minutes played and
the statistic in question tended to be the most indicative predictors for future
performance.

To quantify our models’ performance we looked at the root mean square error
(RMSE: a measure of quality of fit), and standard deviation of our prediction
error to give us a performance evaluation. The standard deviation of the actual
score variation can then be interpreted as the error that would be incurred if
DraftKings were to simply predict the average score each time. This served as
our base case for comparison and if our prediction error had a lower standard
deviation than the base it means we are improving the prediction. In the end
we were able to significantly reduce the standard deviation of the error in all
of our models. To name a few, our game line prediction error was reduced by
39.48%, A Tier point prediction error was reduced by 9.57%, A Tier assists by
7.86%, and A Tier rebound error was reduced by 12.8%.
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4 Introduction

Since its founding in 2012, DraftKings has been widely known as the premier
arena for daily fantasy sports and sportsbook operations. As part of its sports-
book operations, DraftKings offers a variety of lines, or point-spreads which set
the odds for which team is favored in a game, as well as expected performance
by players in key statistics, along with the expected pay out if the user bets on
the correct odds. Prior to this project, DraftKings set many of its player prop
lines from outside sources, a practice the company hopes to move away from.
One of the main driving forces towards internalizing the line generation is the
cost incurred from buying lines from so-called “market makers” - including the
cost of employing people to constantly keep up to date on changes to the market
and adjust lines as necessary. This form of line setting is also risky as the in-
formation and decisions that went into generating the lines being used remains
with another company. Since DraftKings was receiving important information
about line changes at a delay, they were at risk of losing a significant amount in
losses. By controlling the lines they offer, DraftKings would be able to minimize
the risk they face by splitting bets as evenly as possible between both sides of
the line.

In this project, we used machine learning, which combines mathematics,
statistics, and computer science to generate machine learning models that cre-
ate predictions on future events based on data collected from past events. The
goal of this project was to develop predictive models for DraftKings to imple-
ment when setting their player performance lines in hopes of providing the best
starting line possible. Using these techniques, we were able to generate lines in-
ternally based on historic data, including past betting lines and previous player
performance.

To do so we worked through several steps, beginning with getting familiarized
with data science, computer science, and statistical learning concepts as well
as with the world of sports-betting in general. We then implemented what
we learned into building models to predict the closing line for NBA games to
ensure we were able to understand and successfully generate predictions before
moving onto the more complex player performance models. Along the way we
experimented with various model types, training and testing data splits, and
teaming schemes among other techniques. In the end, our player models for
points, rebounds, and assists performed equally well or better than current
industry standards and newly developed models from DraftKings’ own data
science team. Towards the end of this report, we lay out recommendations for
future applications or expansions of the work we began.

8



5 Background

5.1 Sportsbooks

5.1.1 What Is A Sportsbook?

A sportsbook is a place where a gambler can wager on various sports competi-
tions, including football, baseball, hockey, soccer, and most relevantly, basket-
ball. As a sportsbook, DraftKings offers gamblers a variety of bets. In order
for DraftKings to be profitable, DraftKings must find a way to place lines on
bets such that approximately 50% of the money is on each side of the bet. This
section will explain the different types of bets that DraftKings offers and how
DraftKings arrives at their publicly offered lines.

5.1.2 Point Spread

One of the most common bets is a point spread. A point spread is “a bet on
the margin of victory in a game” [5]. Depending on the perceived difference in
quality between the two teams, the point spread will favor the better team by
a certain number of points [5]. Bets that are listed negatively imply a favorite,
while bets that are listed positively imply an underdog.

This is more easily illustrated in the context of an example. In the figure
below, the Memphis Grizzlies are favored to beat the Washington Wizards by
three points in a game between the two respective teams on March 10, 2021.
There are two equivalent ways to describe this line; Wizards +3 and Grizzlies
-3.

Bet Odds
Washington Wizards +3 -109
Memphis Grizzlies -3 -112

Table 1: An example of game line bet. In this example, which was taken from
DraftKings’ website, we show the game line bets available for the March 10
game between the Washington Wizards and the Memphis Grizzlies.

5.1.3 Prop Bet

Another very common bet is a prop bet. A prop bet, also referred to as a player
prop, is defined as any bet “pertaining to player statistics or outcomes” [2]. This
is more easily discussed in the context of an example. In Figure 2, the prop bet
shows an over/under line on how many points Bradley Beal will score in a game
between the Washington Wizards and Memphis Grizzlies on March 10, 2021.
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Bet Odds
Over 32.5 points -115
Under 32.5 points -106

Table 2: An example of a prop bet. In this example, which was taken from
DraftKings’ website, we show the player prop lines available for how many
points Bradley Beal would score in a March 10 game between the Washington
Wizards and the Memphis Grizzlies.

5.1.4 Converting Odds to Percentages

For the rest of this paper, it is crucial that the reader understands how to convert
odds to percentages. While there are multiple ways to list odds (the main ways
being British, European, and American), since most American sportsbooks list
all odds in the American way, we will only be discussing odds listed in the
American way for the remainder of this report [1].

The American way lists odds as a number that is either positive or nega-
tive and whose lowest possible value is 100 [1]. To convert bets to break-even
percentages, we will apply

Break-even percentage = Risk / (Risk + Win) [1] ,

Bets that are listed as negative imply that a bettor on the favorite [1]. For
example, suppose a bettor took a bet listed at -200. This means that the bettor
would have to risk $200 to win $100. Our risk would then be equal to 200 and
our win would then be equal to 100. When we apply the break-even percentage
equation, we get (5.1.4).

BE % = Risk / (Risk + Win) = 200/(200 + 100) = 66.7% ,

Bets listed as positive imply that a bettor is betting on the underdog [1]. For
example, suppose that the bettor took a bet listed at +200. This means that
the bettor would have to risk $100 to win $200. Our risk would then be equal
to 100 and our win would then be equal to 200. When we apply the break-even
percentage equation, we get (5.1.4).

BE % = Risk/(Risk + Win) = 100/(100 + 200) = 33.3% ,

5.1.5 Calculating Break-even Percentages

Another crucial concept is break-even percentages. A break-even percentage “is
the percentage of time a bet must win for you to neither win nor lose money
making the bet over time” [1]. Break-even percentages are based on how much
the bet pays, not how often the bet wins [1].

In other words, if you were to bet on the result of a coin flip, your break-even
percentage would be 50%. That is because you would need a bet to pay as much
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as you risked (i.e. bet $10 to win $10) since the odds of a coin landing on heads
(or tails) is exactly 50%.

If you were to bet on a coin flip at better than even odds (i.e. bet $10 to
win more than $10), you would be taking a bet that wins at a higher percentage
than the break-even percentage. Therefore, you would be taking a winning bet.

Similarly, if you were to bet on a coin flip at worse than even odds (i.e. bet
$10 to win less than $10), you would be taking a bet that wins less often than
the break-even percentage. Therefore, you would be taking a losing bet.

For the remainder of this paper, when evaluating or discussing bets, we will
be converting odds to break-even percentages.

5.1.6 Calculating the Hold

The way that sportsbooks make money is through the hold, which is “the spread
between what [a sportsbook] will buy a bet for and what [a sportsbook will] sell
it for” [1]. In the long run, sportsbooks want bets evenly distributed on both
sides of the bet since that will allow the book to generate dependable revenue
via the hold [1].

It is best to explain with an example. Let’s return to the over/under line
on how many points Bradley Beal will score in a game between the Washington
Wizards and Memphis Grizzlies on March 10, 2021. Using the break-even per-
centage formula above, we deduce that the bettor’s break-even percentage for
this bet is 53.5% when betting that Beal will score over 32.5 points and 51.5%
when betting that Beal will score under 32.5 points. From the sportsbook’s
perspective, that means that the break-even percentage is 46.5% on Beal scor-
ing over 32.5 points and 48.5% on Beal scoring over 32.5 points. Essentially,
the sportsbook is buying the over bet on Beal’s points at 46.5% and selling the
same bet at 53.5%. Likewise, the sportsbook is buying the under bet on Beal’s
points at 48.5% and selling the same bet at 51.5%. If gamblers were to spend
equal amounts of money on each side of this prop bet, then this bet would be
profitable for DraftKings because if sportsbooks “can manage to buy and sell
exactly the same amount of this market, they will simply pocket the difference
with zero risk” [1]. The hold percentage is the difference between the break-even
percentage at which a book sells a bet and the break-even percentage at which
a book buys a bet [1]. Since 53.5% - 46.5% = 7% and 51.5% - 48.5% = 3%,
in the example used here, DraftKing’s hold is 7% on the over and 3% on the
under.

5.1.7 Opening and Closing Lines

Using the example already mentioned, the Washington Wizards played the
Memphis Grizzlies on March 10, 2021. Following the conclusion of Wizards
and Grizzlies’ previous games, the line for the Wizards-Grizzlies game is ini-
tially set at Grizzlies -2. As the day progresses, bettors evaluate the line and
bet accordingly. By the night of March 11th, minutes before opening tip (when
the line is no longer available), the line available is Grizzlies -3. In this example,

11



the opening line would be Grizzlies -2 and the closing line would be Patriots -3.
In general, an opening line is the initial line that is made available for betting
on a sports event and a closing line is “the final line available before a game
actually begins” [3] [4].

5.1.8 Market Makers vs. Retail Books

There are two types of business models for books to follow: the market maker
model and the retail book model [1]. It is worth noting that no book “will ever
operate at either extreme described below,” but will instead “fall on a spectrum
between the extremes” [1]. Additionally, while a book can be a market maker
for one sport, a book can act as a retail book for a different sport [1]. Finally, it
is worth noting in the context of this report that when we use the term revenue,
we mean “how much the business wins betting against their customers” [1].

A market maker is a book that relies on high volume to drive revenue [1].
In order to drive high volume, market makers place as few limits on gambling
as possible, such as higher betting limits, lower hold percentages, and lines that
are released as early as possible [1]. Although market makers do receive a higher
volume of bets than retail books, market makers’ margins tend to be lower than
retail books [1].

A retail book operates on an entirely different business model than a market
maker. While being a market maker offers much higher “boom” potential, it
is also offers a much higher “bust” potential. Many sportsbooks would rather
avoid this risk and instead “count on making a profit on each bet sold” [1].
Rather than focusing on high volume with low margins like market makers, retail
books instead focus on maintaining high margins [1]. Instead of producing their
own lines like market makers, retail books get their lines from a third party,
either by copying the lines or by paying for access to a data feed that provides
lines [1]. Since the retail book does not know how the lines were produced,
“they’re vulnerable to any bettor who may have more information about their
markets than they do” [1]. This information is “market information like who bet
what, when, and why into the market making sportsbook” rather than “inside
information about players or coaches involved in the sporting event” [1]. To
shield against this risk, retail books “curate their customer pool” and have low
betting limits [1].

For the purposes of this report, the most important difference between mar-
ket makers and retail books is that market makers adjust lines in response to
customer action while retail books frequently “do not move their lines on ac-
tion” [1]. Since DraftKings intends to be a market maker for basketball player
prop bets, we are trying to build a machine learning model that will estimate
opening lines that approximates closing lines as precisely as possible.

5.2 Key Basketball Statistics

For readers to interpret the results, it is important to be familiar with basic
basketball statistics. In basketball, points are used to keep track of a game’s
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score and can be accumulated through two point field goals, three point field
goals, and free throws. An assist is a pass from a player to a teammate who
scores a two point or three point field goal, while a rebound is attributed to a
player who retrieves the ball after a missed field goal or free throw attempt. For
more information, a link to a full glossary of statistics can be found here [6].

While using basketball statistic and data science techniques to set player
prop lines is not novel, due to the proprietary nature the gambling industry,
there is not very much public information available about the best practices.
Rather than hand-crafting an expert model, our approach was to use known data
from past player and team performances as well as machine learning techniques
to optimize prediction accuracy.

5.3 Basic Machine Learning Techniques

Notation Definition
y, ŷ Scalars are non-bold and non-italic
z, w Vectors are lowercase and bold
X Matrices are uppercase and bold

XT T indicates matrix transpose
Xij Matrix elements written as scalars
Xi,: Rows of a matrix
X:,j Columns of a matrix
n Number of examples
p Number of features

5.3.1 What is Machine Learning?

Machine learning is a branch of artificial intelligence that aims to learn from
sample data - called training data - and build algorithms, which are “sequence[s]
of statistical processing step[s]” [10]. These algorithms “use statistics to find
patterns in massive amounts of data” [9]. There are four crucial steps to building
a machine learning model: selecting and preparing a training set, choosing an
algorithm to run on the training set, training the algorithm to create a model,
and using and improving the model [10].

The first step, selecting and preparing a training set, involves choosing “a
data set representative of the data the machine learning model will ingest to
solve the problem it’s designed to solve” [10]. In choosing such a data set,
it is important to clean the data prior to usage, which can include removing
duplicates, fixing structural errors, filtering out unwanted outliers or unrepre-
sentative data, and handling missing data. Finally, it is important to set aside
some of the data to be testing data, where you can assess the accuracy of your
model on data that the model has yet to see. In later sections, the report will
detail specific steps we took to clean our data.
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The second step, choosing an algorithm to run on the training set, consisted
of the group choosing a variety of approaches to experiment with what algorithm
would be most predictive. In later sections, we will explain linear regression,
Lasso regression, random forests, and neural networks in greater detail.

The third step, training the algorithm to create a model, is an “iterative
process” that “involves running variables through the algorithm, comparing the
output with the results it should have produced, adjusting weights and biases
within the algorithm that might yield a more accurate result, and running the
variables again until the algorithm returns the correct result most of the time”
[10].

The fourth step, using and improving the model, is where we evaluated the
accuracy and efficacy of our algorithms by using the model on our testing data
and making improvements and adjustments as needed.

In our specific project, utilizing supervised machine learning is beneficial
as it allowed the computer to learn from the past to predict the future. For
DraftKings, this means using the lines from past games to predict how future
betting will look and using past player performance to predict future player
performance.

5.3.2 Linear Regression

We began by trying to build a linear prediction model for closing lines (and later
for the number of points, rebounds, and assists a player scores in a game). Linear
regression is a useful but simple approach for predicting a quantitative variable
under supervised conditions [7]. Linear regression is also a crucial concept to
understand for more complex statistical methods which will be explained later
in the background chapter. Given p predictors, we represent multiple linear
regression as (13).

y = β0 + β1X:,1 + β2X:,2 + ...+ βpX:,p + ε = f(X, β) + ε, (1)

where ε represents our model’s error since the exact relationship between X and
Y might not be identical in the training and testing data [7]. Consequently, we
represent our estimate of y, ŷ, as (2).

ŷ = β0 + β1X:,1 + β2X:,2 + ...+ βpX:,p = f(X, β), (2)

While there are multiple ways to estimate the coefficients in a linear regres-
sion model, β0,p is most frequently found using ordinary least squares. Ordi-
nary least squares aims to calculate β of each variable such that the sum of
the squared residuals is minimized [7]. Therefore, β0, β1, β2, ... , βp can be
expressed as (3) and (4).

β̂0 = ȳ − β̂1X:,1 − β̂2X:,2 ... − β̂pX:,p, (3)

β̂j =

∑n
i=1(X:,j − x̄)(yi − ȳ)∑n

i=1(X:,j − x̄)2
, where 1 ≤ j ≤ p, (4)
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Figure 1: An image of the output of linear regression and the resulting residuals
[8]

[7]
For our linear regression models, the value of the β is found using the normal

equation, where we let β = {β0, β1, ..., βp}. Equation 2, the equation for linear
regression, can be represented as (5).

ŷ = βTX (5)

Of course, we have yet to discuss how to find the value of the matrix β.
Using the normal equation [17], we find that

β = (XTX)−1XTy (6)

5.3.3 Lasso Regression

Lasso regression is a form of linear regression that utilizes shrinkage, which
is where data values are shrunk towards a central point [7]. Lasso regression
reduces model complexity, prevents overfitting, and assists with variable selec-
tion while maintaining much of the predictability of a standard linear regression
model.

The way that Lasso regression utilizes shrinkage is that Lasso regression as-
signs a penalty, λ, to each additional variable. Then, Lasso regression attempts
to minimize

n∑
i=1

(yi − β0 −
p∑
j=1

βjXi,j)
2 + λ

p∑
j=1

|βj |, (7)

As shown in the picture below, “the least squares solution is marked as
β̂, while the blue diamond... represent[s] the Lasso... regression constraints”

[7]. The red ellipses “that are centered around β̂ represent regions of constant
residual sums squared” [7]. Simply put, every point on a given ellipse has the
same residuals sum squared. The farther away an ellipse is from the least squares
solution, β̂, the larger residuals sum squared that an ellipse represents.
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Figure 2: An image of Lasso regression’s ability to eliminate variables [7]

Depending upon λ’s value, Lasso regression can actually eliminate variables
from the regression by assigning them a coefficient of zero; this happens when
the least squares solution and the constraint region land on a corner of the box
representing the constraint region. For example, we would be able to assign β1
a coefficient of zero in the picture shown in Figure 4.

After testing several values of λ (called α in the python code) thorough trial
and error as well as cross validation sets, we settled on the value of 0.1 across
the board. Lower values tended to return nearly identical results to the linear
model, likely because the number of features we consider was low enough to
keep all βs above zero. Since we wanted to consider both model accuracy and
ease of interpretation, we settled on λ = 0.1 so that we could take advantage of
Lasso assigning unimportant features a coefficient of zero. For the remainder of
this report, all Lasso models feature this value.

5.3.4 Random Forests

A random forest is a method which builds upon a technique called decision
trees. Decision trees, and in our case regression trees specifically, break down
the space containing all predictors into smaller segments and make decisions on
how testing data will perform based on quantifiers such as the mean or mode
of the training data. A simple decision tree can be seen in Figure 3 on the
right generated from the splits in the data seen on the right from “Introduction
to Statistical Learning.” This example tree splits a baseball hitters salary pre-
diction space into three non-overlapping regions, R1, R2, R3, called leaves. The
internal decisions of the tree on each data point determine which terminal node
(leaf) it will end up in.

Each data point in a given leaf receives the same prediction. In this example,
the first split can be seen at the top of the tree and is based on whether or not
the number of years the player has played is less than 4.5, and the second based
on their hits. Where players fall in these regions determines what their predicted
salary is as can be seen at the end of their corresponding branch. For example,
we can write R1 = {X| Years < 4.5}, and see that a player who has been playing
for under 4.5 years will have a predicted salary multiplier of 5.11 [7].
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Figure 3: Left: A visual plot of the partition of Players in the data set [7],
Right: The resulting tree from this partition [7]

The regions R1, R2, ...Rj , for a given problem can be determined in any
way theoretically, but to obtain the best predictions they should be chosen
to minimize the residual sum of squares, or RSS. The RSS sums the squared
differences between the mean for region Rj , ŷRi and true value yRi from all the
data in that region, as seen in equation 8 below [7].

J∑
j=1

∑
i∈Rj

(yi − ŷRi
)2, (8)

This helps to quantify the quality of fit because a small RSS indicates that
predicted values are not far off from the actual result, where as a large RSS
reveals large residuals and a poor model fit. Several splits/nodes can be created
in this way and then “pruned” to prevent over-fitting.

There are several advantages to working with decision trees that contributed
to our use of them in this project. To begin, methods utilizing trees are especially
great for data sets which represent highly nonlinear and complicated relation-
ships. Another notable key benefit is the ease of interpretation with this set up
of model, even compared to simple linear regression. It is far easier to look at
a decision tree and explain what a prediction will be or depend on than to look
at a linear model with multiple features and βs. They also easily handle both
quantitative variables and qualitative ones without having to feature engineer
as much as in other classical modeling techniques.

Unfortunately, on its own a single decision tree is likely too simple to capture
the full complexity of most problems, however prediction accuracy can be greatly
improved with additional techniques and approaches to build upon the decision
trees. Since an individual tree can vary greatly based on the training data, a
technique called bagging, a form of bootstrapping for decision trees, is employed
to reduce variance. Rather than taking a single sample with mean µ and variance
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σ2 several trees are generated from n, independent samples of the training data

which reduces the variance to σ2

n . These trees generate predictions from the
bootstrapped samples and the mean of these predictions is then used to obtain
a final result [7]. This can be expressed in equation 9 below,

f̂bag(x) =
1

B

B∑
b=1

f b(x), (9)

where B is the number of bootstrapped samples, f b is the model generated
from fitting sample b, and f b(x) is the prediction for test data point x using the
model generated from sample b [7].

Random forests take this idea one step further. Not only are multiple trees
generated from bootstrapped samples, but each tree only considers a subsec-
tion of the total predictors. This essentially prevents any one predictor from
overpowering the other predictors in the data set. If a particularly strong pre-
dictor is considered in every tree in a set of bagged trees, then the variance will
not actually be reduced as much as it should be. However, if the trees do not
all contain that strong predictor, they can make connections based on some of
the other predictors that might contain key information, therefore making the
overall prediction more accurate and less varying [7].

5.3.5 Neural Networks

In addition to linear regression, Lasso regression, and random forests, we uti-
lized feedforward neural networks when creating models to predict NBA player
performance. Neural networks, named because of their representation as the
composition of many different functions and their initial inspiration being neuro-
science, are extremely important in modern machine learning [11]. Feedforward
neural networks, also called multilayer perceptrons (MLPs), are designed so that
“information flows through the function being evaluated from X, through the
intermediate computations used to define f, and finally to the output Y” [11].
If we assume that the true mapping of X to Y is yj = f∗(X:,j), then the goal
of a neural network is to find a function f with parameters θ such that Y =
f(X:,j ; θ) [11].

In order to find f(X:,j ; θ), we must revisit the representation of neural net-
works as the composition of many different functions. For example, say we
have three functions f1, f2, and f3 connected in a chain, to form f(X:,j) =
f3((f2(f1(X:,j))). In this example, f1 is the first layer of the network, f2 is
the second layer of the network, and f3 is the third layer of the network. The
final layer of the network, f3 in our example, is called the output layer, while
f1 and f2 would be the hidden layers, since the training data does not show the
desired output for f1 and f2 [11]. The depth of the model is simply how many
layers there are in the network.
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Figure 4: A visual representation of the role of a hidden layer
[12]

It is worth noting that “every hidden layer of a model is typically vector-
valued” [11]. We refer to the dimensionality of these hidden layers as the width of
our model [11]. A helpful interpretation is to think of “each element of the vector
... as playing a role analogous to a neuron” [11]. Instead of thinking of each
layer as representing a single vector-to-vector function, it is useful to consider
each layer as “consisting of many units that act in parallel, each representing
a vector-to-scalar function” where “each unit resembles a neuron in the sense
that it receives input from many other units and computes its own activation
value” [11]. While “the learning algorithm must decide how to use those layers
to produce the desired output,” “the training data does not say what each
individual layer should do” [11].

Before proceeding any further, a useful way to understand neural networks
is to “begin with linear models and consider how to overcome their limitations”
[11]. Linear models, such as the linear regression and Lasso regression discussed
earlier in the background chapter, are attractive because they are easily and
efficiently fit and simple to interpret, but carry the obvious downside of being
unable to model nonlinear functions well. This brings about the function of
neural networks; “to extend linear models to represent nonlinear functions of
X, we can apply the linear model not to X:,j itself but to a transformed input
φ(X:,j), where φ is a nonlinear transformation” [11]. The ultimate goal of deep
learning is to learn φ and create a neural network represented by y = f(X:,j ;
θ, w) = φ(X:,j ; θ)

Tw, where the parameters θ are used to learn φ and the
parameters w map from φ (Xi,:) to Y.

Though neural networks are more complex and versatile algorithms than the
linear models discussed earlier in the paper, building neural networks requires
following the same four steps necessary to building any machine learning model:
selecting and preparing a training set, choosing an algorithm to run on the
training set, training the algorithm to create a model, and using and improving
the model [10].

In our neural networks, we utilized the ADAM solver because it is widely
used in deep learning and viewed as an effective method for optimizing real
neural networks [14].
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Figure 5: A visual representation of the role of an activation function
[12]

Another crucial concept of neural networks is activation functions. An acti-
vation function is “a mathematical ’gate’ in between the input feeding the cur-
rent neuron and its output going to the next layer” [12]. Activation functions
are useful because they allow a neural network to utilize nonlinear functions
in order to better represent the relationship between the training data and the
testing data, differentiating a neural network from the linear regression models
the group used. The image below shows the role that an activation function
plays in a neuron.

Our entire neural network can be represented as [11]

f(Xi,:; W, c,w,b) = wTmax{0,WTXi,: + c}+ b, (10)

After seeing the results the neural network on the testing data, we quantify
the neural network’s error using a loss function. Note that what makes this
function non-linear is max{0,WTXi,: + c} + b, where W is the weights of a
linear transformation and c the biases and the activation function is applied
element-wise [11]. In the deep learning linear, such non-linearity is called an
activation function. This particular activation is called ReLu [11].

A loss function is “a measure of how wrong the model is in terms of its ability
to estimate the relationship between X and y” that is “typically expressed as
a difference or distance between the predicted value and the actual value” [13].
Therefore, the goal of our neural network is to minimize our loss function. We
used two loss functions; mean absolute error and categorical cross-entropy. We
can represent the mean absolute error loss function as [21]

MAE =

∑n
i=1 |yi − ŷi|

n
, (11)

We used the categorical cross-entropy to represent the error in our neural net-
work when our y was a vector of probabilities for possibilities of events, where
each vector is a bin that represents a possible range of outcomes, rather than a
single numerical projection [11]. In order to do this, we used a concept called
truth labels [22]. For each y, the bin containing the actual outcome was labeled
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1, while every other bin was labeled 0. We could then compare the bins’ truth
labels to the neural network’s prediction of the probabilities of y being in each
bin. Mathematically, we can represent categorical cross-entropy as [22]

LCCE = −
m∑
i=1

tilog(pi), (12)

where m is the number of bins, ti is the truth label and pi is the Softmax
probability for the ith class. For more information, interested readers can learn
more about mean absolute error here and the categorical cross-entropy here.
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6 Methods

6.1 Data Set

DraftKings provided us NBA data ranging between the 2012 and 2019 seasons.
The data came in the form of multiple CSV files, each containing different types
of data. The first file given to us that we used was called Player.csv, which con-
tained all the names of the teams and players, as well as their position number.
Next, we used the TeamSchedule.csv file, in which each game was listed with
the ID, the Home team ID, Away team ID, the date played, and the score. The
Team.csv gave us a compact list of all the teams with their abbreviation, city,
and team ID. Another very important file was the Statistics.csv file which con-
tained all of the statistics with each statistic’s ID, abbreviation, and description.
This file was very useful for us when we got into picking predictors that we used
for predicting player props because we were able to see a comprehensive list of
what was available to us. The last, and most important, file given to us was the
PlayerBoxScore.csv file. This file contained all of the actual game information,
statistics, scores, and more for every team and player. It tied together all of
the other files that we used from DraftKings and made it so we could make
predictions using this information.

When working on team game lines, we decided to focus on a singular sea-
son’s data and settled on working with the 2018-2019 season’s data. The data
provided to us by DraftKings did not have data on the spreads for past games.
To access data with the past game spreads, we went to Sportsbook Reviews
Online and found a data set with data we needed.

When we began working with player data to create player prop models, the
main file we used was the PlayerBoxScore.csv file. This contained all the data
given to us from DraftKings starting from the 2015 season until the beginning
of the 2020 season, including both player and team statistic scores for all the
games listed in the TeamSchedule.csv. We also cross referenced the information
in PlayerBoxScore.csv with information in Statistics.csv file in order to tell what
each statistic ID represented.

6.2 Game Line Predictions

6.2.1 Game Data Cleaning

While going through the data provided to us by DraftKings, we realized there
were pieces of it we did not need or parts that we needed to isolate. With this
knowledge, we decided to create a few tools in Python that would go through
the original files and filter out the data as we needed it.

Starting with TeamSchedule.csv given to us by DraftKings, we cleaned out
and removed all games where data was completely missing and all the val-
ues for the games’ statistics were zero. To access the data more easily in our
code, we then converted the dates in the CSV from “month/day/year time” to
“month—day”. For example, a game played on February 10th, 2019 at 5:00
would go from “2/10/19 5:00” to “0210”. The team then decided that we would
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focus our attention on the 2018-2019 NBA season as it was the most recent fully
completed season that was unaffected by COVID-19. Therefore, we removed all
the data for games before and after the 2018-2019 season. Next, we decided
to move forward with the 2018-2019 data from Sportsbook Reviews Online,
which had past game lines in its data. We then took the “TeamScheduleId” for
each game from the DraftKings data and assigned them to the corresponding
game in the Sportsbook Reviews Online. This allowed us to connect the two
data sets and access the game data from DraftKings while iterating through
the Sportsbook Reviews Online data. Next, Sportsbook Reviews Online data
recorded “pick’em” games, or games where neither team is favored, as “pk.”
This caused errors as our code expected numerical values instead of text. To
fix this, we changed all instances of “pk” to be zero instead. Lastly, added
a column into the Sportsbook Reviews Online data to note what game of the
season it was for a team. Our model required data from the previous four game
for both teams playing, so this added column would tell us if the teams had
played enough games to run in the model. The cleaned data was saved into
our NBAOddsCleanPk GameNum.csv which was then broken up into different
training and testing CSVs based on what splits we worked with.

6.2.2 Selecting Predictors

An important step of building any model is selecting predictors to use in the
model. When building our initial model, we relied upon a mixture of data
provided to us by DraftKings, data from an outside source containing historical
closing line information, and data from social media websites about NBA teams’
follower information. For linear regression, Lasso regression, and random forest,
the final game lines model, the following predictors were used: average score
differential for the home and away teams for the previous four games, the home
team and away team’s game line for the previous four games, the home and
away status of both teams for both the previous four games and the upcoming
game (whose game line we were trying to predict), and social media information
on both the home and away team from Twitter, Facebook, and Instagram. The
social media information was the ratio of both the home team and away team’s
number of Twitter followers to the Twitter followers of the most popular NBA
team, the ratio of both the home team and away team’s number of Facebook
followers to the Facebook followers of the most popular NBA team, and the
ratio of both the home team and away team’s number of Instagram followers to
the Instagram followers of the most popular NBA team.

We used the average score differential for the home and away teams for the
previous four games as a predictor in an attempt to gauge how well the team
was playing in recent games, with the idea that recent performance would be
predictive of the future performance. We also used the game lines of from both
teams from each of the previous four games as a predictor to gauge how previous
game lines would affect future betting.

On a related note, we include the home and away status of the home and
away teams for both the previous four games and the upcoming upcoming game
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(whose game line we were trying to predict) because home court is usually a
significant advantage in the NBA, with the home team winning between 56%
and 58% of the time [15]. Since we were always trying to predict the game line
of the home team, the home/away status of the upcoming game was always set
to home.

Finally, we used social media information from Twitter, Facebook, and In-
stagram information to evaluate the relative popularity of NBA teams among
NBA fans. Twitter, Facebook, and Instagram were chosen as those are plat-
forms that are popular among NBA fans and cover different demographics, with
Facebook generally having an older user base than Twitter or Instagram. We
input the predictors as ratios between a team’s number of followers and the
number of followers from the most popular team on the respective platform in
order to give observers a better view of the relative popularity of various NBA
teams. The social media information was primarily added to test how important
a team’s popularity was to that team’s game line.

6.2.3 Baseline

We began building out models by writing a function, which we called our base-
line function, that would read in the csv file(s) containing the predictors we
planned on using in our models and extracting/formatting the data we were ac-
tually interested in. For game line predictions, we wanted the baseline function
to extract the home and away team, their last four game scores, and the last
four point differentials (how much the team won or lost the game by) for each
point of data (a game). We also pulled out our response variable, the actual
closed line for that game, for each corresponding entry.

As we got results at this step, we wanted to consider predictors outside of
the game in an attempt to better model the human side of sports-betting. To
accomplish this, we also incorporated the closed lines of the past four games for
each team to show betting trends, and a ratio of social media popularity. The
idea behind these was that historic betting and overall popularity may be more
predictive of future betting than how the team is actually performing.

6.2.4 Initial Predictions

In our initial attempt we decided to predict the spread of a game for the Miami
Heat based on data from the previous (2018-2019) season. To do this, we fit a
linear regression model in Python. The model took the form of the equation
below

y = β0 + β1X:,1 + β2X:,2 + ...+ βpX:,p + ε (13)

where our predictors, X = {X:,1,X:,2, ...X:,p}, were the Heat’s scores of the final
four games they played in 2019 and a binary variable to represent home versus
away status [7]. Our response, y, was the spread of the corresponding game at
the close of betting.
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Once our simple model was fit, we could input an expected score (the median
of historic scores) as well as home versus away status to generate a prediction
of the point spread for the Miami Heat.

This setup was able to run correctly in Python, but upon further consider-
ation we realized the prediction was based on assumptions that we could not
make, and so we decided to re-frame the inputs to our baseline model. We con-
tinued to use a linear regression with input data from both the home team and
the opposing team, but adapted the data that was used to generate the model
and prediction.

Before, we had used the number of points a team had scored in the previous
four matches as a way to measure the team’s strength and their opponent’s
strength. However, this was not an effective piece of input data for a few
reasons. The first being that we could not use the points scored in a game to
predict the spread simply because the game itself had not happened yet and this
would only lead to extrapolation and poor predictions. Secondly, a team could
score 90 points in one game, for example, and beat the opponent handily but
score 110 points in another game which they lose. To adjust for this we decided
to use a team’s average point differential as our new baseline for strength.

To calculate this differential we created a function in Python. If we wanted to
calculate the Boston Celtics’ strength, for example, the function would subtract
the Celtics’ number of points scored in each of the four games from the number
of points that the opposing team scored in each of four games, and then take
the sum of those four numbers (point differentials) and find the average.

As mentioned earlier, the model also incorporated game lines from the home
team and the away team. In order to retrieve this information, we wrote a
function that retrieved game lines for both the home and opposing team’s game
lines for last four games of the 2018-2019 season.

At this point, the team introduced our rolling baseline model. The rolling
baseline model simply modified our baseline model to allow for the pulling of
data from the four most recent games, rather than from four set games. This
allowed a game in April to have different predictors than a game in December.

After our initial predictions, we wanted to incorporate NBA teams’ social
media information to see if that would improve our model’s performance. Our
hypothesis was that a team’s popularity on Facebook, Twitter, and Instagram
would be predictive of a team’s game line. In order to do this, we manually
gathered data from Facebook.com, Twitter.com, and Instagram.com.

6.3 Player Prop Predictions

The main focus of this project was to generate predictions for player performance
props. Once we felt comfortable with predicting game lines, moving into player
predictions became much easier.

25



6.3.1 Player Data Cleaning

When we initially started working with the Player data, we began by doing some
initial predictions using only a few predictors, such as minutes played and last
game points scored. By doing this, we were able to see that some players had
various zeros for their statistics that should not have been counted in for their
predictions. For example, if someone did not play any minutes in the game,
their statistic for minutes played would be 0 along with all their other statis-
tics. After discussing this with DraftKings, we were told that if a player does
not touch the court (plays zero minutes) all bets for that player are cancelled
and returned. We decided to then clean out the PlayerBoxScore.csv file of all
zero games. These zero games included the games where the minutes played
equaled zero as well as games where the “Played” statistic equaled zero. After
cleaning out all lines where these conditions were met, we continued making
predictions with our newly cleaned data. We called the file we used to do this
PlayerZeroGamesDataCleaner.py.

Since we were focusing on specific statistics for the Player Props, we cre-
ated different cleaners for each of the statistics. We made one file for each
statistic (Assists, Points, and Rebounds). For each of the statistics, the file
would take the PlayerBoxScore.csv file and, for each player, would average the
statistic being looked at. It would then rank the players based on their statis-
tic’s average. These files would then be used for our player tiers. The files
are called AssistsCleaner.py for assists, PlayerTierCleaner.py for points, and
ReboundsCleaner.py for rebounds.

6.3.2 Tier vs. Individual Models

Once we had working baselines and models, the main question that came up was
how to train them. Should an individual model be generated for each player?
Was this even possible - would all players have enough games under their belt
to properly train a model? For the most elite players - take LeBron James for
example - we were able to easily fit a model and train on two thirds of the games
he played in and still have nearly 100 games to test on. However, this is not the
case for all players.

Initially we were unsure of implementing a “tiered structure” to team compa-
rable players for model training since it made sense that predictions for LeBron
James’ performance should be made based on LeBron James’ previous perfor-
mances. However, we decided to experiment with a tiered set up in order to
allow access to more data for predictions on players that may not be the top of
the top but would still warrant a point prop line from DraftKings. This also
helps to account for Rookies, players who have been injured and missed several
games, or other extenuating circumstances.

It’s important to note that to limit the amount of data our baselines and
models had to run through we only considered players that averaged around 10
points per game since it was determined by DraftKings that players who score
too far below this would not get a prop line anyway. Using this idea of a cut-off
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we devised the following tiers: the top 5% of point scorers on average were put
into the “A Tier,” the next 15% were put in “B Tier,” and the next 15% were
put in “C Tier.” Any players not in any of these models were removed from the
data set.

To generate a prediction for specific players, the model type desired was
trained on all data for the tier in which that player fell. Going back to our
LeBron James example, this means our model was fit with all the data from all
A Tier players then predictions were generated based on the new data (LeBron’s
next game) we put in. This ended up giving us fairly consistent results across
all models and tiers - even outperforming the individual model for LeBron. It
also presented the advantage that we could begin considering predictors that
had been made irrelevant in an individual model such as position - does a guard
out score a center?

6.3.3 Selecting Predictors

As mentioned during the game line section, an important step of building any
model is selecting predictors to use in the model. Due to data quality issues,
we were limited by the data available in the DraftKings data set when selecting
predictors. When building our initial model, we relied upon individual player
statistics that were in the data provided to us by DraftKings. For the points,
assist, and rebound models, these predictors included the following predictors
for each of the previous four games: minutes played, assists, rebounds, steals,
blocks, turnovers, and fouls. We also included points scored as a predictor in
the player points model. Additionally, for all player prop models, we included
the player’s position as a predictor.

For all player prop models, minutes played is a good way to predict how
much a player will play. This is important since a player will obviously be
unable to accumulate points, assists, or rebounds if they are not playing.

Since a basketball team has five players on the court at the same time, we
included assists in all models since assists are generally a good way to assess how
involved a player is in his team’s offense. For the assists model, in particular, we
once again figured that the best descriptor of a player’s ability to accumulate
assists would be the number of assists a player had in previous games.

Rebounds were included as a predictor because we thought that rebounds
were a good proxy for whether a player’s game was more focused near the rim or
around the perimeter (especially on defense, since most rebounds are defensive
rebounds). This could help us have the model adjust for a player’s role on the
team. For the rebounds model, in particular, we once again figured that the best
descriptor of a player’s ability to accumulate rebounds would be the number of
rebounds a player had in previous games.

While defensive statistics in basketball are not nearly as detailed as offensive
statistics, blocks and steals are the best approximation we have of a player’s de-
fensive prowess. While this is most important for the rebound models (since a
player can get a rebound on defense), we thought it would be best to include
some defensive statistics in all of our models in order to find the correlation be-
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tween a player’s defensive skill (represented by blocks and steals) and a player’s
skill at scoring points or getting assists or rebounds.

Turnovers and fouls were included as an attempt to model previous negative
play. The idea here was to attempt to have the model pick up on bad per-
formance to anticipate a player’s minutes possibly decreasing in the upcoming
game. Admittedly, this was a flawed metric since players who play more min-
utes tend to accumulate more fouls and players who handle the ball more tend
to accumulate more turnovers.

We included points scored as a predictor in the points model since we figured
that the best descriptor of a player’s scoring ability would be the number of
points a player has scored in previous games.

Additionally, we used a player’s position as a predictor to explore the re-
lationship between a player’s position and the number of points, assists, and
rebounds a player accumulates. The table below explains how we labeled player
positions, using a position numbering system that is very popular among bas-
ketball players, fans, and coaches.

Position Number
Point Guard 1
Point Guard/Shooting Guard 1.5
Shooting Guard 2
Shooting Guard/Small Forward 2.5
Small Forward 3
Small Forward/Power Forward 3.5
Power Forward 4
Power Forward/Center 4.5
Center 5

Table 3: A table containing the values used in our models for player positions
in Basketball. Some players play more than one position. In those cases, we
took the average of the two positions. This results in the values above.

When selecting predictors, we initially incorporated the limited team data
and more detailed player data from DraftKings. However, as we will discuss
further in the Results chapter, we found that including more data actually
caused our linear regression model to fail by creating linearly dependent columns
without improving any of our other models.

6.3.4 Baselines

To begin, we used the same model types as for game line predictions - linear
regression, Lasso regression, and random forests - to generate predictions for
player performance props. Specifically we wanted to predict props for points,
rebounds and assists. For each of these statistics, a unique baseline function
was written to organize the data going into training the models.
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Using the predictors listed in the 6.3.3, we built similar functions to the ones
in the game line model in order to retrieve the relevant information. Just like
the rolling baseline function that we used for the game line model, the rolling
baseline for the player prop models would read in the csv file(s) containing the
predictors we planned on using in our models and extracting/formatting the
data we were actually interested in, namely the relevant player data from the
last four games.

6.4 Data Visualization & Analysis

6.4.1 Statistics Package

To quantify important aspects of the distributions of our data/predictions, we
hand-coded several common statistics including mean, median, mode, and stan-
dard deviation. This step allowed us to be more confident in the results when
performing quantitative analyses on our predictions and errors. These statistic
functions were also called in the scatter-plot and histogram tools we created to
visually analyze our data.

Perhaps the most well know statistical measure is the mean. We calculated
the mean, also called the average, by giving a list of numbers as input, adding
up the total value of all of them, and dividing by the number of entries in the
list. This gives us one way to identify a “center” of the data. Another way
to find a center of the data is the median. This can be found by arranging all
numbers in a list in ascending order then selecting the middle value. If the list
is comprised of an even number of entries, the middle two can be averaged to
calculate the median.

Another important measurement is the standard deviation which lets us
understand how spread out the data is. This is because the standard deviation
represents the average amount that values in the list differ from the mean. To
calculate the standard deviation, the mean is subtracted from each value in the
list and the resulting difference is squared. Each of these terms is then added
up and the sum is divided by the number of entries again. The square root of
this values gives the final standard deviation.

Our last statistical quantifier is the mode which is simply the most commonly
appearing value in the list.

6.4.2 Scatter-plots

To help determine what might be useful predictors in our models, we utilized
scatter-plots to visually identify linear correlations. For example, one of the
initial predictor we wanted to test was if a teams previous point differential was
closely correlated with its upcoming closing lines. To look for this potential
correlation, we created a scatter-plot where the x-coordinate of the points rep-
resent the closed spread of the game and the y-coordinate is the previous point
differential. The resulting scatter-plot can be seen in Figure 6, surprisingly the
correlation was not as strong as expected.
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Figure 6: A scatter-plot showing the correlation between closed spread and
point differential.

Despite this proving to be a less-than-useful predictor, it helped prompt us
to investigate other predictors like previous closed lines - for example, are past
betting trends more indicative of future trends than actual game results?

We also used this scatter-plot tool to help visualize how well our models
ended up predicting player performance. An example of this can be seen in
Figure 17 in the Results section as well.

6.4.3 Histograms

To look at the distributions of our predictions, the actual scores or lines, and our
prediction error - which we defined to be the actual score/line subtracted from
our prediction - we created a tool to generate various histograms. The height
of each bar is determined by the number of data points that fall in that bin,
allowing us to see how our data, predictions, and errors are distributed. We also
incorporated the statistics functions we coded into our histograms by plotting
vertical lines where the mean and median were, as well as a set of vertical lines
that showed one standard deviation above and below the mean. The bin with
the most data points was also highlighted green to further emphasize the mode.

Ideally we were looking for Gaussian distributions in our predictions with
small standard deviations, and a mean/median close to zero for our errors.

6.5 Optimization

Because of the size of the files that we were working with and the amount of
data we would have to comb through, optimizing run time and structured data
was very important to us.
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6.5.1 Pandas and Data Frames

One of the best ways we began trying to optimize our performance and code was
by using the Pandas python package and its built in Data Frames[18]. We were
able to read in our large .csv files in a single line and transform them into large
tables that were easy to iterate through and get information from. Pandas has
a built-in function that reads a csv file into a pandas.DataFrame. The Pandas
Data Frames are like a table and are able to be iterated through by row or
column. We used the Data Frames to iterate by row and get the information
stored in each column for each row. This was more efficient because each row
was like a different game or a different player, allowing us to quickly go through
the games instead of using for-loops.

Pandas also has another built-in function that was very helpful for getting
through large amounts of data quickly. This function is the .loc function. This
function takes in a condition that is being looked for within the Data Frame
and returns a new Data Frame containing only lines where the condition is true.
This was especially useful for the Player Props because we were able to get only
the lines in the PlayerBoxScore.csv file where the PlayerId was the one we were
focusing on. This cut down run time since we no longer needed to use for-loops
and check every line for a condition. Using methods like this allowed us to cut
down the run time of our Tier Player Props from multiple hours to less than
one hour.

6.5.2 Data Restructuring

Along with using Pandas, we also decided to restructure the data that DraftK-
ings gave us. In the original DraftKings data given to us in the PlayerBoxS-
core.csv file, every 10-15 lines would be all the information for one player for one
game. This is because each line would be for one statistic and that statistsics
score for the game. Figure 7 shows an example of how the PlayerBoxScore was
originally organized. Notice how all of the lines in the figure are all from the
same TeamScheduleID, meaning from the same game. This caused our run time
to be longer since we had to iterate through more lines to get information for
the predictions.
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Figure 7: A screenshot of the original PlayerBoxScore.csv file for one of the
players. It includes the PlayerId, TeamScheduleId, StatisticId, and Score where
the Score field refers to amount of the statistic occurred for that game

We decided to rearrange the information in the PlayerBoxScore.csv file so
that each game would only take up a single line and that all the statistics would
be in columns. This allowed us to get all the data from one game for one player
in one line instead of having to iterate through 10-15 lines per game. As seen
in Figure 8, each game only requires us to look at one line to get all of the
information. This cut down run time immensely. We were able to get multiple
predictors at once using this method. For example, if we needed rebounds,
points, and assists scored in the 3rd most recent game to the one we were
looking at, we were able to just find the TeamScheduleId that made this true
and get the scores for statistics 22, 32, and 27.

Figure 8: A screenshot of the new restructured data for one of the players. It
includes the PlayerId, TeamScheduleId, and all the statistics that are available
to us through the Statistics.csv that appear in the PlayerBoxScore.csv.

6.6 Training/Testing Splits

When doing any sort of machine learning, it is crucial to divide the data into
sets of training and testing data. We use the training data to train the machine
learning algorithms, generating a model that best fits the data points in the
training data. Since we are using supervised learning, meaning we know the
dependent variables in our training (and testing) data points, we allow the
model to see these and learn from the dependent variable in the training data.
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Once the model is fit, we used the testing data to make sure the model is able
to accurately calculate predictions on another set of data that it has not seen.
Since the model was not fit using the testing data, we can feed the independent
variables of this set into the model and generate predictions for each entry.
Then, using the actual results, we can use various statistical measurements
to compare the predicted outcomes with the true outcomes and quantify the
model’s performance.

An important thing to note when splitting data into training and testing sets
is the distributions of the resulting splits. If the distributions of the new data
sets differs too greatly, the model fit on a set of training data will generate very
poor predictions on the testing set. Over the course of this project, our team
brainstormed and tried multiple data splits, which will be discussed in further
detail in a later section.

Once a training/testing split is decided on, there comes the question of what
type of model to fit. Our team looked at several types of models and was able
to use the resulting predictions from our testing data to quantify how each
performed. We began with a simple linear regression model to verify that the
data was actually predictable to some degree, then moved on to Lasso linear
regression models, random forests, and lastly a feedforward neural network.
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7 Results

This section will cover our results both both our game line and our player props
models. We begin by discussing different splits we experimented with for our
training and testing data. Later on, we discuss our model’s results, as well as
what we learned from the linear and Lasso regressions’ predictor coefficients
and the random forest model’s feature importance. Finally, we discuss other
methods we tried, including normalization, the addition of team data in the
player props models, breaking up the data by season, and our feedforward neural
network that predicted A Tier points.

7.1 Error Metrics

In order to understand our results, it’s important to recall some statistical mea-
surements. First, the RMSE (root mean squared error) is a measure of how close
the predicted values are from the true response variable values. The calculation
for this is [20]:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (14)

adapted from “Introduction to Statistical Learning” by James, et. al. [7], where
n is the number of data points, yi is the actual value for point i, and ŷi is our
predicted value of point i. A smaller RMSE indicates a better because the
predictions are closer to the true values.

Next are the mean and standard deviation, which were briefly explained in
the Methods section, applied here to our prediction error. Our prediction error is
how far off our prediction was from the actual value. The mean error was near
zero for all models, meaning on average we predicted fairly close to the true
value. The standard deviation of this error shows how much our predictions
tended to differ when they were wrong. We then compared these standard
deviations with the standard deviation from the true data.

The standard deviation of the prediction error is calculated as [23]

Standard Deviation of Prediction Error =

√√√√ 1

n− 1

n∑
1

(ŷi − yi)2, (15)

In some cases, our standard deviation of the prediction error is larger than the
RMSE. Due to Bayes’ Correction, we calculated the RMSE by dividing by n, as
shown in (14), whereas we calculated the standard deviation of the prediction
error by dividing by n − 1, as shown in (15). For more information, interested
readers can look at “Introduction to Statistics” by David M. Lane.

The last quantitative measurements we included were the percent reduction
in the standard deviation as just mentioned, as well as the RMSE. We calculated
this for each model as

% Reduction =
σbase − σmodel

σbase
, (16)
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where σbase is the base standard deviation and σmodel is the standard deviation
of the model being considered. The same calculation can be performed for
RMSE reduction by replacing σs in the formula with the base and model RMSEs
respectively. This is an indicator of how much we were able to reduce the base
error incurred from simply predicting the average each time.

In future sections it is important to note that our “best” performing models
were selected based on standard deviation of the prediction error and of the
RMSE reduction rather than having the mean closest to zero. This is because
all our model means were sufficiently close to zero and differed between model
types by less than 0.1 most often. This would not be enough of a change to
drastically alter the actual predictions, therefore we chose to focus on more
consistently accurate predictions which is measured by our standard deviation
of the error.

For comparison, we created a “base” case for each statistic and tier. These
cases were what would happen if one were to simply predict the mean for that
data set every time they needed a new prediction. We could then use the base
standard deviation to compare and quantify improvements in the amount of
error from the “dumb” method. If our model has a lower standard deviation,
that means it is more useful in predicting the game line or player performance
than guessing the average. In reality, this method was actually smarter than it
should have been since the mean for each tier/statistic combination was calcu-
lated over the entire data set, resulting in an instance of data snooping and an
acausal relationship. This makes it even more impressive when our models were
able to out perform the base cases because those predictions were technically
“cheating” since they had some information from the future. This also accounts
for why the RMSE and standard deviation for our base cases are the same,
because the acausal relationship is unbiased.

7.2 Training and Testing Data

7.2.1 Game Line Data

A key aspect of machine learning is having comparable distributions on your
training and testing data. If the distributions are drastically different, a model
will make inaccurate predictions for the testing data since it has been trained on
an entirely different distribution. For example, if your training data is mostly
negative numbers but your testing data is mainly positive numbers, there will
be a high prediction error because the model is trained on the negative data and
will, therefore, predict a negative value. To resolve this, the data can be split so
that predicting negative data, for example, is trained on mostly negative data.

When beginning to generate predictions, we split our full set of game data
into training and testing data. The first 80% of the season we used to train the
various models, then tested our work on the last 20% of the season. The initial
predictions for this testing set were fairly inconsistent and not as accurate as we
had been expecting. After trying to change predictors and model types, we tried
plotted the training data and the testing data. Doing this visualized the real
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problem behind our inaccurate and inconsistent results. By looking at Figure
10, we could tell that the training data had a much more even distribution while
the testing data had a more negative distribution. As it was, our testing data
took into account much of the NBA post-season which featured the best teams
competing in the play-offs. Because of this, the models trained on early season
performances were under-performing on the testing games.

To remedy this, we considered a few different approaches to splitting our
training and testing data into more comparable sets. A first thought was to
train on an entire season and use this to predict the next season. Ultimately,
this was not the direction we went in as it would mean waiting an entire season
to re-train models and predicting current play-off matches based on preseason
data from over a year prior. The next split we discussed was a random 80-20
split or some other random percentage based split. The idea behind this choice
was that a random split of the full season would more equally distributed early,
mid and late season games. However, we again decided not to pursue this split
because it would likely lead to training on future games. For example, if one of
our testing games took place in January, we should not be able to train on data
from February or March, which may occur with a random split of this nature.

Since we wanted our models to use the past to predict the future, we tried
splitting the data by month, using three previous months of game data to predict
the next month. For example, to predict closing lines in the month of April,
models would be trained on data from January, February, and March. To predict
lines in May, models would be re-trained with data from February, March, and
the new April data. This not only keeps the models up to date, but it was found
to yield much more comparable distributions than the original 80-20 split.

7.2.2 Player Props Data

When we began looking at our player data and started making predictions, we
had to first start with what training and testing splits we were going to use.
Since we had worked with distributions for the game data, we already were
aware of what the distributions needed to look like to get the best results. The
main problem we faced with the player data was what data to use for each
player. We decided to go with a two-thirds training and one-third testing split.
As seen in Figure 9, it was a very even distribution between the two data sets.
We found this to be the case across our different tiers and statistics. After
working with game lines, we did not have to test out many splits for the player
data since the distributions of the 2/3 training 1/3 testing split were so even.
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Figure 9: The training (left) and testing (right) distributions for the player
props points used in our models for the A Tier. The red dotted lines represent
the standard deviation of the data. The black line is the mean and the orange
line is the mode.

7.3 Game Line Predictions

The first thing our team predicted was closing lines for the home team in NBA
games. To predict game lines in the 2018-2019 NBA season, we built linear
regression, Lasso regression, and random forest models. In order to improve
our models and utilize the best practices in machine learning, we normalized
the data DraftKings that provided us. Using the normalized DraftKings data
from the home team and opposing team’s previous four games. The testing and
training distribution we tried first was an 80%-20% split of the 2018-2019 season
where the first 80% of games were the training data and the last 20% was the
testing data. As seen in the table below, the results of all three models were
virtually identical. The worst performing model, a random forest, reduced the
standard deviation of the prediction error by 37.45% while the best performing
model, Lasso regression, only slightly outperformed random forest by reducing
the standard deviation of the prediction error by 39.48%.

Method RMSE σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 5.21 4.25 38.32% 24.38%
Lasso Regression 5.22 4.17 39.48% 24.23%
Random Forest 5.20 4.31 37.45% 24.53%
Base 6.89 6.89 N/A N/A

Table 4: Displays the RMSE (Root Mean Square Error), the mean of the er-
ror, the standard deviation of the prediction error (σ), the percent reduction
for standard deviation, and the percent reduction for RMSE for each of our
models for the Game Line predictions. Base is the actual data given to us from
DraftKings. The best performing fields are in bold.
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Figure 10: The training (left) and testing (right) distributions for the game lines
used in our models. The red dotted lines represent the standard deviation of
the data. The black line is the mean and the orange line is the mode.

Figure 11: The predictions (left) and prediction error (right) for our Lasso
Linear Regression game line model. The red dotted lines represent the standard
deviation of the data. The black line is the mean and the orange line is the
median. If the black line is not visible, the mean and median are equal or very
close.
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Figure 12: A scatter-plot showing the residuals of the Lasso Linear Regression
model for Game Lines.

The team then examined our training and testing data closer and noticed
that their closing spread distributions were shaped differently as seen in Figure
10. A possibility for the differently shaped distributions is the fact that the
testing data contains the NBA playoffs which skews what teams are playing
and how they behave and perform during the games. We then decided to alter
our training/testing split to now be where the testing data were all the NBA
games played in a particular month and the training data was all the NBA games
played during the three months prior. For example, we would have all the games
in January be the testing data and all the games in October, November, and
December be the training data for the split. Below shows some examples of the
training and testing distributions when split by the months.
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Figure 13: Histograms for training data (left) and testing data (right) game line
distributions where testing is on games in January and training is on games in
the prior three months (October, November, and December). The red dotted
lines represent the standard deviation of the data. The black line is the mean
and the orange line is the median.

Figure 14: Histograms for training data (left) and testing data (right) game line
distributions where testing is on games in February and training is on games in
the prior three months (November, December, and January). The red dotted
lines represent the standard deviation of the data. The black line is the mean
and the orange line is the median.

After redefining the testing and training data, we ran the Linear Regression,
Lasso Regression, and Random Forest models again on the new splits. The
standard deviation of each month’s game lines were around the same as the 80%-
20% split (6.89) as they were 6.83, 6.84, 6.94, and 7.43 for January, February,
March, and April respectively. The best performing model varied on the month
as seen in Table 5. The best performing model on any given month was the
Linear Regression model that reduced the standard deviation by 47.11%. The
best performing model for January was the linear regression model that had

40



a 45.68% standard deviation reduction, February’s best was both the Linear
and Lasso Regression models that had a 29.68% reduction, March’s best was
the Linear Regression model that had a 47.11% reduction, and April’s best
was the Random Forest model that had a 43.88% reduction. The models all
performed better in the new training and testing splits for January, March, and
April except for the Random Forest model in January. The models however
performed poorer for February which reduced the standard deviation by less
than 30% for all three models. One notable factor that may have contributed
to this is that the sample size for February’s testing data was only 79 games
while January, March, and April had 116, 153, and 60 games respectively.

Figure 15: Histograms containing the prediction error for our Linear Regres-
sion, Lasso Regression, and Random Forest models using the January month
training/testing splits. The red dotted lines represent the standard deviation of
the data. The black line is the mean and the orange line is the median.
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Month Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
January Base 6.83 N/A 6.83 N/A N/A
January Linear Reg. 3.71 0.28 3.71 45.68% 45.68%
January Lasso Reg. 3.78 0.45 3.78 44.66% 44.66%
January Random Forest 4.35 0.58 4.33 36.60% 36.31%

February Base 6.84 N/A 6.84 N/A N/A
February Linear Reg. 5.05 -1.62 4.81 29.68% 26.17%
February Lasso Reg. 4.96 -1.36 4.81 29.68% 27.48%
February Random Forest 5.15 -1.34 5.01 26.75% 24.71%

March Base 6.94 N/A 6.94 N/A N/A
March Linear Reg. 3.67 0.30 3.67 47.12% 47.12%
March Lasso Reg. 3.72 0.52 3.69 46.83% 46.40%
March Random Forest 3.81 0.45 3.79 45.39% 45.10%

April Base 7.43 N/A 7.43 N/A N/A
April Linear Reg. 4.89 1.94 4.52 39.17% 34.19%
April Lasso Reg. 4.96 2.30 4.43 40.38% 33.24%
April Random Forest 4.88 2.58 4.17 43.88% 34.32%

Table 5: Shows the RMSE, Standard Deviation of the Prediction Errors (σ),
the Percent Reduction in Standard Deviation, and the Percent Reduction in
RMSE for each month split. The bold numbers are the best performing model
for each month and each category.

7.4 Player Models

Due to a lack of historical player prop line data, we built models that predicted
the actual number of points, rebounds, and assists that players would have
rather than the player prop lines themselves. DraftKings will be able to use
that information to help create player prop lines in the future via an equation
they have which can transform predicted performance to expected or estimated
lines.

To predict player prop lines from January 2015 until October 2020, we built
linear regression, Lasso regression, and random forest models, as well as a feed-
forward neural network for our A Tier point scorers. The vast majority of player
prop bets that DraftKings receives is on A Tier players, which would include
headlining NBA stars such as LeBron James and James Harden. Accordingly,
when creating models, we prioritized our A Tier results, and especially our
results for A Tier points.

7.4.1 Points

A Tier Points
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Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 8.54 0.46 8.61 9.46% 10.12%
Lasso Regression 8.54 0.45 8.61 9.46% 10.12%
Random Forest 8.52 0.45 8.60 9.57% 10.41%
Neural Network 11.34 -8.52 7.48 N/A N/A
Base 9.51 -0.31 9.51 N/A N/A

Table 6: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for A Tier Points. The bold numbers are the best performing model for each of
the categories.

While the random forest model performed best by reducing the standard
deviation of the prediction error by 9.57%, the results of linear regression, Lasso
regression, and random forest models were virtually identical. In fact, all of
the models had a RMSE within 0.02 points of each other and had a standard
deviation of prediction error within 0.01 points of each other. Our random forest
model has a RMSE percent reduction of 10.41% with the other two models not
far behind.

Figure 16: Histogram of the Prediction Error for A Tier Points using Random
Forest. The red dotted lines represent the standard deviation of the data. The
black line is the mean and the orange line is the median.
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Figure 17: A scatter-plot of the Random Forest Predictions vs. the Actual
Points Scored. The orange line in the image shows a slope of approximately
1.12.

Figure 17 shows a scatter-plot of the predictions from our best performing
model (the random forest) compared with the actual points in each game. The
line in the plot has a slope of 1.12 which indicates a strong, positive correlation
between our predictions and the true points scored. Despite such an optimistic
slope, as seen in the plot, the points are still a bit all over the place. This is
because data points on either side of the line can balance each other out, and
goes to show just how difficult these predictions are to make. A player could
be set up perfectly going into a game and predicted to score 40 points only to
have an off day and score 15. The opposite is also true - they could be coming
off a multi-game slump and expect poor performance to instead achieve a new
personal high score.

B Tier Points

Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 6.64 0.0 6.72 11.46% 12.52%
Lasso Regression 6.65 0.01 6.73 11.33% 12.38%
Random Forest 6.67 0.14 6.76 10.94% 12.12%
Base 7.59 0.32 7.59 N/A N/A

Table 7: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for the B Tier Points. The Base is the data given to us by DraftKings. The
bold numbers are the best performing model for each of the categories. The
best performing model was Linear Regression.

While the linear regression model performed best by reducing the standard
deviation of the prediction error by 11.46%, the results of linear regression, Lasso
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regression, and random forest models were very similar. In fact, all of the models
had a RMSE within 0.03 points of each other and had a standard deviation of
prediction error within 0.04 points of each other. Our linear regression model
has a RMSE percent reduction of 12.52% with the other two models being very
close.

Figure 18: Histogram of the Prediction Error for B Tier Points using Linear
Regression. The black line is the mean and the orange line is the median. We
calculated our percent error by doing our prediction - the actual score.

C Tier Points

Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 5.60 -0.15 5.78 8.54% 11.39%
Lasso Regression 5.59 -0.18 5.78 8.54% 11.55%
Random Forest 5.61 0.04 5.79 8.39% 11.23%
Base 6.32 3.69 6.32 N/A N/A

Table 8: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for the C Tier Points. The Base is the data given to us by DraftKings. The
bold numbers are the best performing model for each of the categories. The
best performing model here was Lasso Regression.

While the Lasso regression model performed best by reducing the standard
deviation of the prediction error by 8.54%, the results of linear regression, Lasso
regression, and random forest models were very similar. In fact, all of the models
had a RMSE within 0.02 points of each other and had a standard deviation of
prediction error within 0.01 points of each other. Our Lasso regression model
had a RMSE percent reduction of 11.55% while the other models were very close
to this.
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Figure 19: Histogram of the Prediction Error for C Tier Points using Lasso
Linear Regression. The red dotted lines represent the standard deviation of the
data. The black line is the mean and the orange line is the median.

7.4.2 Assists

A Tier Assists

Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 2.91 0.14 2.93 7.86% 28.78%
Lasso Regression 2.91 0.13 2.93 7.86% 28.78%
Random Forest 2.95 0.19 2.97 6.60% 7.23%
Base 3.18 0.11 3.18 N/A N/A

Table 9: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for the A Tier Assists. The Base is the data given to us by DraftKings. The
bold numbers are the best performing model for each of the categories. The
best performing model was both Linear and Lasso Regression.

For A Tier assists, our linear regression and Lasso regression models per-
formed identically, reducing the standard deviation of the prediction error by
7.86% and reducing the RMSE by 28.78%. Likewise, the results of our random
forest model were very similar to the results of our linear regression and Lasso
regression models. In fact, all of the models had a RMSE within 0.04 assists of
each other and had a standard deviation of prediction error within 0.04 assists
of each other.
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Figure 20: Histogram of the Prediction Error for A Tier Assists using Lasso
Linear Regression. The red dotted lines represent the standard deviation of
the data. The black line is the mean and the orange line is the median. We
calculated our percent error by doing our prediction - the actual score.

B Tier Assists

Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 2.22 -0.16 2.24 7.05% 7.88%
Lasso Regression 2.22 -0.17 2.25 6.64% 7.88%
Random Forest 2.23 -0.09 2.27 5.80% 7.47%
Base 2.41 1.31 2.41 N/A N/A

Table 10: Displays the RMSE (Root Mean Square Error), the mean of the
error, the standard deviation of the prediction error (σ), the percent reduction
for standard deviation, and the percent reduction for RMSE for each of our
models for the B Tier Assists. The Base is the data given to us by DraftKings.
The bold numbers are the best performing model for each of the categories. The
best performing model was both Linear and Lasso Regression.

For B Tier assists, the actual standard deviation of the baseline prediction error
was 2.41 assists. Linear regression was the best performing model, with a stan-
dard deviation of the prediction error of 2.24 assists and RMSE of 2.22 assists.
The linear regression model reduced the standard deviation of the prediction er-
ror by 7.05% and reduced the RMSE by 7.88%. The results of the other models
were very close.

C Tier Assists
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Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 1.64 -0.2 1.72 6.01% 10.38%
Lasso Regression 1.65 -0.21 1.74 4.92% 9.83%
Random Forest 1.64 -0.13 1.72 6.01% 10.38%
Base 1.83 1.60 1.83 N/A N/A

Table 11: Displays the RMSE (Root Mean Square Error), the mean of the
error, the standard deviation of the prediction error (σ), the percent reduction
for standard deviation, and the percent reduction for RMSE for each of our
models for the C Tier Assists. The Base is the data given to us by DraftKings.
The bold numbers are the best performing model for each of the categories. The
best performing model was both Linear Regression and Random Forest.

For C Tier assists, the actual standard deviation of the baseline prediction error
was 1.83 assists. Linear regression and random forest were the best performing
models, with a standard deviation of the prediction error of 1.72 assists and
RMSE of 1.64 assists. The linear regression and random forest models reduced
the standard deviation of the prediction error by 6.01% and reduced the RMSE
by 10.38%.

7.4.3 Rebounds

A Tier Rebounds

Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 3.90 0.19 3.95 12.80% 13.91%
Lasso Regression 3.91 0.19 3.97 12.36% 13.69%
Random Forest 3.95 0.3 4.02 11.26% 12.80%
Base 4.53 -0.19 4.53 N/A N/A

Table 12: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for the A Tier Rebounds. The Base is the data given to us by DraftKings. The
bold numbers are the best performing model for each of the categories. The
best performing statistic here was Linear Regression.

For A Tier Rebounds, the linear regression model performed best by reducing
the standard deviation of the prediction error by 12.80% and reducing the RMSE
by 13.91%. Yet, the results of linear regression, Lasso regression, and random
forest models were very similar. In fact, all of the models had a RMSE within
0.05 rebounds of each other and had a standard deviation of prediction error
within 0.07 rebounds of each other. Also, the percent reductions of the lasso and
linear regression models are nearly identical, meaning these two models perform
the same for A Tier Rebounds.
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Figure 21: Histogram of the Prediction Error for A Tier Rebounds using Linear
Regression. The red dotted lines represent the standard deviation of the data.
The black line is the mean and the orange line is the median. We calculated
our percent error by doing our prediction - the actual score

B Tier Rebounds

Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 2.43 -0.02 2.56 7.65% 25.69%
Lasso Regression 2.93 -0.01 3.03 7.34% 10.40%
Random Forest 2.96 0.07 3.06 6.42% 9.48%
Base 3.27 0.55 3.27 N/A N/A

Table 13: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for the B Tier Rebounds. The Base is the data given to us by DraftKings. The
bold numbers are the best performing model for each of the categories. The
best performing statistic here was Linear Regression.

For B Tier rebounds, the actual standard deviation of the baseline prediction
error was 3.27 rebounds. Linear regression was the best performing model, with
a standard deviation of the prediction error of 2.56 rebounds and RMSE of 2.43
rebounds. The linear regression model reduced the standard deviation of the
prediction error by 7.65% and reduced the RMSE by a stunning 25.69%.

C Tier Rebounds
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Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
Linear Regression 2.43 -0.23 2.56 4.12% 8.99%
Lasso Regression 2.43 -0.25 2.57 3.75% 8.99%
Random Forest 2.45 -0.16 2.58 3.37% 8.24%
Base 2.67 1.84 2.67 N/A N/A

Table 14: Displays the RMSE (Root Mean Square Error), the mean of the error,
the standard deviation of the prediction error (σ), the percent reduction for
standard deviation, and the percent reduction for RMSE for each of our models
for the C Tier Rebounds. The Base is the data given to us by DraftKings. The
bold numbers are the best performing model for each of the categories. The
best performing statistic here was Linear Regression.

For C Tier rebounds, the actual standard deviation of the baseline predic-
tion error was 2.67 rebounds. Linear regression was the best performing model,
with a standard deviation of the prediction error of 2.56 rebounds and RMSE
of 2.43 rebounds. The linear regression model reduced the standard deviation
of the prediction error by 4.12% and reduced the RMSE by 9%.The lasso re-
gression model performed almost identically, reducing the standard deviation of
the prediction error by 3.75% and the RMSE by also 9%.
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Category Method RMSE Mean of the Error σ Percent Reduction σ Percent Reduction RMSE
A Tier Points Linear Regression 8.54 0.46 8.61 9.46% 10.12%
A Tier Points Lasso Regression 8.54 0.45 8.61 9.46% 10.12%
A Tier Points Random Forest 8.52 0.45 8.60 9.57% 10.41%
A Tier Points Neural Network 11.34 -8.52 7.48 N/A N/A
A Tier Points Base 9.51 -0.31 9.51 N/A N/A

B Tier Points Linear Regression 6.64 0.0 6.72 11.46% 12.52%
B Tier Points Lasso Regression 6.65 0.01 6.73 11.33% 12.38%
B Tier Points Random Forest 6.67 0.14 6.76 10.94% 12.12%
B Tier Points Base 7.59 0.32 7.59 N/A N/A

C Tier Points Linear Regression 5.60 -0.15 5.78 8.54% 11.39%
C Tier Points Lasso Regression 5.59 -0.18 5.78 8.54% 11.55%
C Tier Points Random Forest 5.61 0.04 5.79 8.39% 11.23%
C Tier Points Base 6.32 3.69 6.32 N/A N/A

A Tier Assists Linear Regression 2.91 0.14 2.93 7.86% 28.78%
A Tier Assists Lasso Regression 2.91 0.13 2.93 7.86% 28.78%
A Tier Assists Random Forest 2.95 0.19 2.97 6.60% 7.23%
A Tier Assists Base 3.18 0.11 3.18 N/A N/A

B Tier Assists Linear Regression 2.22 -0.16 2.24 7.05% 7.88%
B Tier Assists Lasso Regression 2.22 -0.17 2.25 6.64% 7.88%
B Tier Assists Random Forest 2.23 -0.09 2.27 5.80% 7.47%
B Tier Assists Base 2.41 1.31 2.41 N/A N/A

C Tier Assists Linear Regression 1.64 -0.2 1.72 6.01% 10.38%
C Tier Assists Lasso Regression 1.65 -0.21 1.74 4.92% 9.83%
C Tier Assists Random Forest 1.64 -0.13 1.72 6.01% 10.38%
C Tier Assists Base 1.83 1.60 1.83 N/A N/A

A Tier Rebounds Linear Regression 3.90 0.19 3.95 12.80% 13.91%
A Tier Rebounds Lasso Regression 3.91 0.19 3.97 12.36% 13.69%
A Tier Rebounds Random Forest 3.95 0.3 4.02 11.26% 12.80%
A Tier Rebounds Base 4.53 -0.19 4.53 N/A N/A

B Tier Rebounds Linear Regression 2.43 -0.02 2.56 7.65% 25.69%
B Tier Rebounds Lasso Regression 2.93 -0.01 3.03 7.34% 10.40%
B Tier Rebounds Random Forest 2.96 0.07 3.06 6.42% 9.48%
B Tier Rebounds Base 3.27 0.55 3.27 N/A N/A

C Tier Rebounds Linear Regression 2.43 -0.23 2.56 4.12% 8.99%
C Tier Rebounds Lasso Regression 2.43 -0.25 2.57 3.75% 8.99%
C Tier Rebounds Random Forest 2.45 -0.16 2.58 3.37% 8.24%
C Tier Rebounds Base 2.67 1.84 2.67 N/A N/A

Table 15: Displays the RSME, mean of the error, standard deviation of the
prediction error (σ), the percent reduction of the standard deviation, and the
percent reduction for RMSE for the models for all the notable categories. The
best performing statistics for each is in bold

7.5 Other Methods Tried

Over the course of this project, our team experimented with implementing ad-
ditional techniques to see how our results would change in certain circumstances
and if any yielded improvements. We normalized our data before training our
models, we incorporated team information (total team points scored, etc.) as
new predictors, split our data by season, and even built a neural network. A
brief description of each of these experiments and their results can be found in
the following sections.

7.5.1 Normalization

One of the first experiments we performed was to see how to models performed
when we normalized our data. Normalization helps to scale predictors so that
they are more comparable. Specifically, we used the z-score of each predictor
column to normalize the data. This quantifies how many standard deviations
from the column mean each data point is and the formula for the z-score can
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be seen in Equation 17

Z =
x− µX
σX

(17)

where the score, Z, is calculated from the column X mean, µX subtracted
from observed value, x, all over the column X standard deviation σX . Ulti-
mately, this test proved to have little to no impact on our predictions, however
it was a crucial step in determining feature importance as it brought the infor-
mation within each column to a scale where they could be compared fairly.

When applying this to our data, it originally didn’t change the predictions.
This is because the values in each column were very close to one another so
the model was not thrown off by one being much larger than the others. The
amount of rebounds, assists, and other predictors were close to one another.
When we added in team data is when we ran into the most problems with
not normalizing data. Since team data has much larger values, it threw off
our predictions by causing the model to predict much higher numbers than it
was suppose to. Once we normalized all of the columns which contained our
predictors, it returned the predictors back to more normal numbers with good
standard deviations, means, and medians.

7.5.2 Team Data

Another experiment we performed was to include statistics from team perfor-
mance into our player models. The idea behind this was that players on high
performing teams may score more points or get more assists due to the quality
of the players around them or vice versa. Once again, however, this proved to
be an insignificant change to our models. This could be because players on high
performing teams still have to share court time and ball possession with their
other, equally talented teammates therefore resulting in no net gain in player
performance statistics.

7.5.3 Data by Season

Throughout this project our team worked with data spanning several years and
seasons. Through data cleaning and elimination of unusable data, our final
models were trained and tested on data from 2015 through 2019, however, this
still was not a “perfect” data set. Our team wanted to see how the models
would perform when handed a perfect season worth of information - ie. each
player could be matched to a team for every game, no statistics were missing,
all predictors were fully listed, etc. We were able to clean the 2018-2019 season
data to fit this form and then trained and tested our models. We believe the
models will perform most optimally with full sets of information, however more
than one season of data may be necessary. The single season models did not
out perform our multi-season models, likely because players can show growth
or consistency over many years so one single season cannot fully and accurately
capture their potential performance. We think it would be interesting to keep
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as “perfect” of data as possible for the next few seasons and retry training on
“perfect” data.

7.5.4 Neural Network for Points

An additional machine learning technique our team tried to improve upon the
“base” or mean predictions was to build a neural network for the A Tier points.
Initially we set up the network to return a singular prediction value for each
piece of testing data as in our other models. Once this was running about on
par with our linear, Lasso, and random forest models, we wanted to see if we
could try a bit of a different approach. We altered our final layer to give us
an output that was a probability distribution over a set of point “buckets.”
The idea behind this was that it would more accurately capture the range of
possible points a player could score in a given game, and that that could be
used to find the score at which the network estimated median occurs. Recall
that the median is the point at which 50% of outcomes are above and 50% are
below. Since DraftKings will maximize its profit and minimize its risk when
betting is split evenly on a prop bet, finding the predicted median performance
could prove to be an interesting line to set.

We began by finding the mean points scored by all A Tier players, which
came out to approximately 22, then creating single point “buckets” above and
below this mean. We then turned our training (and testing) Y vector into a
probability distribution matrix, where a “1” occurred in the bucket of the true
score - as we knew with 100% certainty that that was the amount of points
scored - and “0” everywhere else in that row. Using our same predictors, we
then trained the network and tested on the separate data. This successfully
gave us a matrix where each row was a probability distribution for the amount
of points that could be scored by the corresponding player in the corresponding
game.

The final step we took to utilize the neural network was to find which
“bucket,” or at which point, the model estimated the median to occur. We
did this by calculating the cumulative probability for each row beginning in the
first column and adding the following one(s) until we reached a total probabil-
ity of at least 50%. To determine if this method yielded useful results and to
effectively compare it to our previous models we used the same error metrics as
before for consistency. The summary of these numbers can be seen in in Table
?? (broken link here) alongside the other models. Despite an apparently low
standard deviation of error and, the neural network ultimately overestimated
the actual points scored by a significant amount - the mean of our error ap-
proximately -7, meaning it predicted 7 points more than the actual score on
average.
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Figure 22: Histograms of the Predictions (left) and Prediction Error (right) for
A Tier Points using a Neural Network to Estimate Median Points Scored. The
red dotted lines represent the standard deviation of the data. The black line is
the mean and the orange line is the median. We calculated our percent error
by doing our prediction - the actual score. If the black line is not visible, that
means the mean and median are approximately equal.

7.6 Feature Importance

Another important characteristic related to our models is that of the feature
importance. Each of our models have their own specific features that were
given as data in order to create our desired predictions. Feature importance
refers to techniques that assign a value to this input features based on how
useful they are at predicting a target value. It is important to identify feature
importance in each model in order to see what features are actually making
an impact on our predictions, and which features are just dead weight that
could/should be removed from the model as a whole. Each model type (linear
regression, random forest, neural network, etc.) has their own way of evaluating
feature importance, since they are all different in nature. So, before presenting
the feature importance for our models, we will quickly overview how feature
importance works on each of our models.

7.6.1 Calculation Methods

Starting out with linear regression, feature importance in linear regression is
represented as the linear regression coefficients. Coefficients have already been
discussed, but as a quick reminder in a linear regression model can be see in
equation 4 the coefficients are represented by the βp values. Each coefficient is
given a weight by the model, and so when new data is inputted, each feature
will be multiplied by their weight coefficient in order to get the corresponding
prediction value.

Along with the coefficients, in linear regression there is another value at-
tached to the coefficients called P-values. P-values for the coefficients show
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whether the features have a statistically significant relationship. This means
that the p-values evaluate whether the relationships one can observe in the
sample data will exist in the larger population. The P-value for each feature
tests if the variable has correlation with the dependent variable. If there is no
correlation, it means the changes in the independent variable have no correla-
tion to those in the dependent, therefore this feature is probably irrelevant. If
the P-value for a feature is less than the significance level of the model, then one
can assume the feature is statically significant and worth keeping in the model.

Lasso regression is also a linear model, so the coefficients can be generated in
much the same way. What differentiates this method however is that a “budget”
when calculating the coefficients, meaning the sum of the absolute values of the
coefficients must be less than or equal to a set amount, as seen in equation
7. To account for this, Lasso regression will send the coefficients of the most
ineffective coefficients to zero, allowing the more predictive features’ coefficients
to be greater. This helps make feature importance even more clear.

In a random forest model, feature importance is represented as a value which
is appropriately called feature importance. Feature Importance values in ran-
dom forest measure how much each of the features contributes to decreasing
the variance. Using the Scikit-Learn feature-importances function, we get the
average decrease in impurity/variance by each feature. [19]

The Sckikit-Learn simple feature importance is not the only indicator to
feature importance for random forests. It is also a biased approach, as it has
a tendency to inflate the importance of certain features. As a result, we also
used a correlation matrix to show how our features correlate with each other
and with our prediction value. That way we were able to efficiently judge each
feature and choose the ones that made our model better.
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7.6.2 Game Line Feature Importance

Predictor Feature Importance
Home or away status 0.126387
Game line for the home team’s most recent game 0.061352
Game line for the home team’s 2nd most recent game 0.107570
Game line for the home team’s 3rd most recent game 0.105891
Game line for the home team’s 4th most recent game 0.066296
Game line for the opposing team’s most recent game 0.054542
Game line for the opposing team’s 2nd most recent game 0.082422
Game line for the opposing team’s 3rd most recent game 0.124657
Closing line for the opposing team’s 4th most recent game 0.067952
Average score differential for the home team 0.042554
Average score differential for the opposing team 0.056470
Home team’s Facebook popularity ratio 0.024657
Opposing team’s Facebook popularity ratio 0.013459
Home team’s Instagram popularity ratio 0.014437
Opposing team’s Instagram popularity ratio 0.026756
Home team’s Twitter popularity ratio 0.011150
Opposing team’s Twitter popularity ratio 0.013447

Table 16: A table showing the feature importance of Random Forest game lines
model. This table includes each of our predictors and how effective each was in
helping us make our predictions.

When evaluating the feature importance of our random forest model and the
predictor coefficients of our linear regression and Lasso regression models, some
interesting trends emerged. For all three models, the most important factor in
predicting the closing line of a game was the home or away status of the team
in question. Additionally, the game lines for the home and away team’s and the
average score differential of the home and away team over the four most recent
games appears to possess much more predictive value than any information from
social media. Finally, interestingly enough, Instagram appears to be about twice
as predictive as Facebook or Twitter.

7.6.3 Points Feature Importance

Table 17 shows the feature importance for our A Tier Points random forest
model as that was the best performing model (to see the feature importance
and regression coefficients for all point models please see the appendix). The
two strongest indicators for future points scored are the points scored in the
last four games and the number of minutes played in those games as well. This
trend of minutes played and previous performance in the statistic in question
being key features continues across our assist and rebound models as well.
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Predictor Random Forest Feature Importance
Points scored in the most recent game 0.07349
Points scored in the 2nd most recent game 0.05380
Points scored in the 3rd most recent game 0.05357
Points scored in the 4th most recent game 0.05050
Minutes played in the most recent game 0.04022
Minutes played in the 2nd most recent game 0.03440
Minutes played in the 3rd most recent game 0.03100
Minutes played in the 4th most recent game 0.03693
Rebounds in the most recent game 0.03386
Rebounds in the 2nd most recent game 0.03213
Rebounds in the 3rd most recent game 0.03589
Rebounds in the 4th most recent game 0.03113
Assists in the most recent game 0.03893
Assists in the 2nd most recent game 0.03151
Assists in the 3rd most recent game 0.03218
Assists in the 4th most recent game 0.03091
Steals in the most recent game 0.01934
Steals in the 2nd most recent game 0.01791
Steals in the 3rd most recent game 0.02073
Steals in the 4th most recent game 0.02820
Turnovers in the most recent game 0.03188
Turnovers in the 2nd most recent game 0.02320
Turnovers in the 3rd most recent game 0.02730
Turnovers in the 4th most recent game 0.03266
Player position 0.01757
Blocks in the most recent game 0.01029
Blocks in the 2nd most recent game 0.01662
Blocks in the 3rd most recent game 0.01218
Blocks in the 4th most recent game 0.01396
Fouls in the most recent game 0.02094
Fouls in the 2nd most recent game 0.02034
Fouls in the 3rd most recent game 0.02541
Fouls in the 4th most recent game 0.02104

Table 17: A Table showing the feature importance of our Random Forest points
model for A Tier players
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Figure 23: Our graph visualizing the feature importance for our A tier points
random forest model

7.6.4 Assists Feature Importance

Our best performing assist model was the Lasso regression model. Therefore,
the feature importance is expressed through the coefficient values. Again we can
see high levels of importance in previous assists scored, but we can also easily
pick out the unimportant features. For example, steals any further back than
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one game tend to be less predictive, so the Lasso model has set their coefficients
to zero. An interesting thing to note is that for each of the sets of statistics
(assists, steals, turnovers, etc.) over the last four games, the most recent game
has the strongest coefficient, indicating that the most recent history is most
predictive of how the next game will go.

Predictor Predictor Coefficient
Assists in the most recent game 0.31151
Assists in the 2nd most recent game 0.06908
Assists in the 3rd most recent game 0.00000
Assists in the 4th most recent game 0.14248
Minutes in the most recent game 0.00000
Minutes in the 2nd most recent game 0.00000
Minutes in the 3rd most recent game 0.00000
Minutes in the 4th most recent game 0.05986
Player position -0.07096
Steals in the most recent game 0.07757
Steals in the 2nd most recent game 0.00000
Steals in the 3rd most recent game 0.00000
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.00623
Turnovers in the 2nd most recent game 0.18668
Turnovers in the 3rd most recent game 0.00000
Turnovers in the 4th most recent game 0.09110
Rebounds in the most recent game 0.08262
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game 0.07496
Rebounds in the 4th most recent game 0.03017
Blocks in the most recent game -0.05237
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game 0.10390
Fouls in the 2nd most recent game 0.07641
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 18: A Table showing the predictor coefficients of our Lasso regression
assists model for A Tier players
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Figure 24: Our graph visualizing the feature importance for our A tier assists
Lasso regression model

7.6.5 Rebounds Feature Importance

For rebounds, our linear model returned the best results with the coefficients
seen in Table 19. Unlike Lasso models, no coefficients are set to zero, so we have
to compare them all to determine which are important or unimportant.
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Predictor Predictor Coefficient
Rebounds in the most recent game -0.08641
Rebounds in the 2nd most recent game 0.75234
Rebounds in the 3rd most recent game 0.30431
Rebounds in the 4th most recent game 0.33001
Assists in the most recent game 0.19037
Assists in the 2nd most recent game 0.02863
Assists in the 3rd most recent game -0.00034
Assists in the 4th most recent game -0.11391
Minutes in the most recent game 0.37877
Minutes in the 2nd most recent game -0.33349
Minutes in the 3rd most recent game -0.07402
Minutes in the 4th most recent game -0.04604
Player position 0.59037
Steals in the most recent game 0.03816
Steals in the 2nd most recent game 0.32705
Steals in the 3rd most recent game 0.22775
Steals in the 4th most recent game 0.02841
Turnovers in the most recent game 0.13440
Turnovers in the 2nd most recent game 0.06633
Turnovers in the 3rd most recent game 0.20325
Turnovers in the 4th most recent game -0.06206
Blocks in the most recent game 0.06230
Blocks in the 2nd most recent game 0.30628
Blocks in the 3rd most recent game 0.20532
Blocks in the 4th most recent game 0.29893
Fouls in the most recent game -0.01391
Fouls in the 2nd most recent game -0.17368
Fouls in the 3rd most recent game 0.06482
Fouls in the 4th most recent game -0.02837

Table 19: A Table showing the predictor coefficients of our linear regression
rebounds model for A Tier players
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Figure 25: Our graph visualizing the feature importance for our A tier rebounds
linear regression model
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8 Recommendations & Future Work

When building our player performance models we wanted to be able to include
predictors based on team and opponent information. For example, it is impor-
tant for us to know if a player is playing on the Los Angeles Lakers alongside
high scorers like LeBron James, since this could increase the number of assists
they will score in a game. Originally however, we had a hard time accessing
this sort of data. From the data given to us by DraftKings, we were able to
verify that a player played in a specific game, however that set of data didn’t
tell us which team they played for. This prevented us from easily incorporating
team statistics or opponent strength. Instead, we had to match up dates and
adjust for time-zone information to match players to teams based on data from
NBA.com in order to access these.

As a result, one of our major recommendations for generating player predic-
tions is to include team data in the player models. We were able to do this in
many of our models, however it required the creation of a fairly complex cleaner
to tie together multiple data sets. In the future, we believe it would be very
beneficial for DraftKings to include a team tag or statistic in their PlayerBoxS-
core.csv data to allow easy mapping of team and player information.

We also recommend restructuring the PlayerBoxScore.csv into a more table-
like structure. This way each game for each person is one line instead of it being
10 or more lines for all of the statistics. Doing it this way will also allow there
to be more statistics added easier, such as adding the team ID of the team each
person played for.

Another recommendation we have is adding in Player Prop lines information
into the models as predictors. When making models for the game line predic-
tions, one of the best predictors was the past four game lines. Unfortunately,
we did not have the Player Prop lines for our models. We highly recommend
adding in these predictors for the models. We also encourage and recommend
the models being applied to more statistics than only points, assists, and re-
bounds.

In the future we think DraftKings could further work on developing the
neural network model we began. Some interesting things to try would include
optimizing the number of epochs and batches to train on, investigating new loss
functions, or experimenting with different layers than dense linear layers like we
used. Due to time constraints, the team was unable to reach the performance
level we had envisioned for this model, but remain hopeful that it can prove to
be a strong prediction tool.

Another, more straightforward, application of this work would be to build
models for other key basketball statistics that DraftKings hopes to offer lines
for. From our work we can conclude that the three model types we tested are
able to effectively reduce prediction error and have a better idea of what features
are most crucial in generating useful predictions. This should be a good starting
space for DraftKings to develop new models.
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9 Appendix A - Game Line Results

Figure 26: Histograms for training data and testing data game line distributions
for March and April where Testing is games in the given month, and training
data is the games from the three months prior.
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Figure 27: Histograms for prediction error for our game line Linear Regression
model when testing data is games in a given month and training data is games
from the three months prior
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Figure 28: Histograms for prediction error for our game line Lasso model when
testing data is games in a given month and training data is games from the
three months prior
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Figure 29: Histograms for prediction error for our game line Random Forest
model when testing data is games in a given month and training data is games
from the three months prior

Predictor Predictor Coefficient
Home or away status heightGame line for the home team’s most recent game
Game line for the home team’s 2nd most recent game
Game line for the home team’s 3rd most recent game
Game line for the home team’s 4th most recent game
Game line for the opposing team’s most recent game
Game line for the opposing team’s 2nd most recent game
Game line for the opposing team’s 3rd most recent game
Closing line for the opposing team’s 4th most recent game
Average score differential for the home team
Average score differential for the opposing team
Home team’s Facebook popularity ratio
Opposing team’s Facebook popularity ratio
Home team’s Instagram popularity ratio
Opposing team’s Instagram popularity ratio
Home team’s Twitter popularity ratio
Opposing team’s Twitter popularity ratio

Table 20: A table showing the predictor coefficients of Lasso regression game
lines model
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10 Appendix B - Additional Points Results

Figure 30: Our graph visualizing the feature importance for our A tier points
Lasso regression model
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Predictor Predictor Coefficient
Points scored in the most recent game 1.04742
Points scored in the 2nd most recent game 0.84790
Points scored in the 3rd most recent game 0.84049
Points scored in the 4th most recent game 0.82153
Minutes played in the most recent game 0.00130
Minutes played in the 2nd most recent game -0.31377
Minutes played in the 3rd most recent game -0.60174
Minutes played in the 4th most recent game 0.17962
Rebounds in the most recent game 0.57344
Rebounds in the 2nd most recent game 0.00110
Rebounds in the 3rd most recent game -0.71007
Rebounds in the 4th most recent game -0.44729
Assists in the most recent game 0.35330
Assists in the 2nd most recent game -0.24812
Assists in the 3rd most recent game 0.20906
Assists in the 4th most recent game 0.17798
Steals in the most recent game 0.28758
Steals in the 2nd most recent game -0.08473
Steals in the 3rd most recent game 0.52785
Steals in the 4th most recent game 0.45636
Turnovers in the most recent game 0.77631
Turnovers in the 2nd most recent game 0.05851
Turnovers in the 3rd most recent game 0.34730
Turnovers in the 4th most recent game -0.12114
Player position 1.06001
Blocks in the most recent game 0.07763
Blocks in the 2nd most recent game -0.04507
Blocks in the 3rd most recent game 0.32894
Blocks in the 4th most recent game 0.06144
Fouls in the most recent game -0.50250
Fouls in the 2nd most recent game -0.13145
Fouls in the 3rd most recent game -0.05575
Fouls in the 4th most recent game -0.08759

Table 21: A Table showing the predictor coefficient for our linear regression
points model for A Tier players
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Figure 31: Our graph visualizing the feature importance for our A tier points
linear regression model
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Predictor Predictor Coefficient
Points scored in the most recent game 1.01945
Points scored in the 2nd most recent game 0.73523
Points scored in the 3rd most recent game 0.65425
Points scored in the 4th most recent game 0.79994
Minutes played in the most recent game 0.00000
Minutes played in the 2nd most recent game -0.16636
Minutes played in the 3rd most recent game -0.35232
Minutes played in the 4th most recent game 0.02646
Rebounds in the most recent game 0.46608
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game -0.44050
Rebounds in the 4th most recent game -0.15026
Assists in the most recent game 0.22363
Assists in the 2nd most recent game -0.07894
Assists in the 3rd most recent game 0.00666
Assists in the 4th most recent game 0.04923
Steals in the most recent game 0.20456
Steals in the 2nd most recent game -0.02883
Steals in the 3rd most recent game 0.38395
Steals in the 4th most recent game 0.36447
Turnovers in the most recent game 0.70629
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.23395
Turnovers in the 4th most recent game 0.00000
Player position 0.62234
Blocks in the most recent game 0.01788
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.21759
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game -0.37392
Fouls in the 2nd most recent game -0.03157
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 22: A Table showing the predictor coefficient for our Lasso regression
points model for A Tier players
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Predictor Predictor Coefficient
Points scored in the most recent game 0.56006
Points scored in the 2nd most recent game 0.35022
Points scored in the 3rd most recent game 0.16182
Points scored in the 4th most recent game 0.20800
Minutes played in the most recent game -0.35836
Minutes played in the 2nd most recent game 0.34293
Minutes played in the 3rd most recent game 0.13869
Minutes played in the 4th most recent game 0.31101
Rebounds in the most recent game 0.62994
Rebounds in the 2nd most recent game 0.02173
Rebounds in the 3rd most recent game -0.24730
Rebounds in the 4th most recent game -0.35935
Assists in the most recent game 0.29791
Assists in the 2nd most recent game -0.17404
Assists in the 3rd most recent game 0.34504
Assists in the 4th most recent game 0.34910
Steals in the most recent game -0.14787
Steals in the 2nd most recent game 0.11762
Steals in the 3rd most recent game 0.24214
Steals in the 4th most recent game -0.09396
Turnovers in the most recent game 0.05803
Turnovers in the 2nd most recent game -0.11229
Turnovers in the 3rd most recent game -0.02994
Turnovers in the 4th most recent game 0.02096
Player position 0.43634
Blocks in the most recent game -0.12714
Blocks in the 2nd most recent game -0.15216
Blocks in the 3rd most recent game -0.06962
Blocks in the 4th most recent game 0.02279
Fouls in the most recent game -0.27141
Fouls in the 2nd most recent game -0.16265
Fouls in the 3rd most recent game -0.07094
Fouls in the 4th most recent game -0.20333

Table 23: A Table showing the predictor coefficients of our linear regression
points model for B Tier players
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Figure 32: Our graph visualizing the feature importance for our B tier points
linear regression model
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Predictor Predictor Coefficient
Points scored in the most recent game 0.39960
Points scored in the 2nd most recent game 0.32070
Points scored in the 3rd most recent game 0.11579
Points scored in the 4th most recent game 0.17050
Minutes played in the most recent game 0.00000
Minutes played in the 2nd most recent game 0.20432
Minutes played in the 3rd most recent game 0.00000
Minutes played in the 4th most recent game 0.14697
Rebounds in the most recent game 0.31862
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game 0.00000
Rebounds in the 4th most recent game -0.06500
Assists in the most recent game 0.08232
Assists in the 2nd most recent game 0.00000
Assists in the 3rd most recent game 0.19401
Assists in the 4th most recent game 0.21176
Steals in the most recent game -0.07849
Steals in the 2nd most recent game 0.00000
Steals in the 3rd most recent game -0.12734
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.00000
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.00000
Turnovers in the 4th most recent game 0.00000
Player position 0.00000
Blocks in the most recent game -0.04203
Blocks in the 2nd most recent game -0.06180
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game -0.20917
Fouls in the 2nd most recent game -0.08733
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game -0.11367

Table 24: A Table showing the predictor coefficients of our Lasso Regression
points model for B Tier players
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Figure 33: Our graph visualizing the feature importance for our B tier points
Lasso regression model
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Predictor Random Forest Feature Importance
Points scored in the most recent game 0.05950
Points scored in the 2nd most recent game 0.05668
Points scored in the 3rd most recent game 0.05013
Points scored in the 4th most recent game 0.05041
Minutes played in the most recent game 0.04483
Minutes played in the 2nd most recent game 0.04821
Minutes played in the 3rd most recent game 0.04792
Minutes played in the 4th most recent game 0.04774
Rebounds in the most recent game 0.03690
Rebounds in the 2nd most recent game 0.03404
Rebounds in the 3rd most recent game 0.03280
Rebounds in the 4th most recent game 0.03665
Assists in the most recent game 0.03320
Assists in the 2nd most recent game 0.03108
Assists in the 3rd most recent game 0.03276
Assists in the 4th most recent game 0.03402
Steals in the most recent game 0.01671
Steals in the 2nd most recent game 0.02090
Steals in the 3rd most recent game 0.01689
Steals in the 4th most recent game 0.01966
Turnovers in the most recent game 0.02277
Turnovers in the 2nd most recent game 0.02427
Turnovers in the 3rd most recent game 0.02340
Turnovers in the 4th most recent game 0.02272
Player position 0.01309
Blocks in the most recent game 0.01084
Blocks in the 2nd most recent game 0.01361
Blocks in the 3rd most recent game 0.01023
Blocks in the 4th most recent game 0.01084
Fouls in the most recent game 0.02602
Fouls in the 2nd most recent game 0.02278
Fouls in the 3rd most recent game 0.02513
Fouls in the 4th most recent game 0.02327

Table 25: A Table showing the feature importance of our Random Forest points
model for B Tier players
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Figure 34: Our graph visualizing the feature importance for our B tier points
random forest model
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Predictor Predictor Coefficient
Points scored in the most recent game 0.30554
Points scored in the 2nd most recent game 0.00799
Points scored in the 3rd most recent game 0.16732
Points scored in the 4th most recent game 0.03963
Minutes played in the most recent game 0.32409
Minutes played in the 2nd most recent game 0.19435
Minutes played in the 3rd most recent game 0.28346
Minutes played in the 4th most recent game 0.02614
Rebounds in the most recent game 0.13442
Rebounds in the 2nd most recent game 0.04288
Rebounds in the 3rd most recent game -0.06954
Rebounds in the 4th most recent game 0.06662
Assists in the most recent game 0.01253
Assists in the 2nd most recent game -0.19230
Assists in the 3rd most recent game -0.06702
Assists in the 4th most recent game 0.08346
Steals in the most recent game -0.08867
Steals in the 2nd most recent game 0.16854
Steals in the 3rd most recent game -0.10141
Steals in the 4th most recent game 0.05002
Turnovers in the most recent game 0.03268
Turnovers in the 2nd most recent game 0.03446
Turnovers in the 3rd most recent game 0.12702
Turnovers in the 4th most recent game 0.09863
Player position 0.06724
Blocks in the most recent game 0.01962
Blocks in the 2nd most recent game -0.15816
Blocks in the 3rd most recent game 0.05156
Blocks in the 4th most recent game 0.21868
Fouls in the most recent game -0.04422
Fouls in the 2nd most recent game -0.14803
Fouls in the 3rd most recent game 0.13546
Fouls in the 4th most recent game -0.06797

Table 26: A Table showing the predictor coefficients of our linear regression
points model for C Tier players
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Figure 35: Our graph visualizing the feature importance for our C tier points
linear regression model
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Predictor Predictor Coefficient
Points scored in the most recent game 0.23678
Points scored in the 2nd most recent game 0.00000
Points scored in the 3rd most recent game 0.09306
Points scored in the 4th most recent game 0.00000
Minutes played in the most recent game 0.28838
Minutes played in the 2nd most recent game 0.08206
Minutes played in the 3rd most recent game 0.22396
Minutes played in the 4th most recent game 0.05390
Rebounds in the most recent game 0.11491
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game 0.00000
Rebounds in the 4th most recent game 0.04033
Assists in the most recent game 0.00000
Assists in the 2nd most recent game 0.00000
Assists in the 3rd most recent game 0.00000
Assists in the 4th most recent game 0.00000
Steals in the most recent game 0.00000
Steals in the 2nd most recent game 0.06623
Steals in the 3rd most recent game 0.00000
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.00000
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.03293
Turnovers in the 4th most recent game 0.00557
Player position 0.00000
Blocks in the most recent game 0.00000
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.14990
Fouls in the most recent game 0.00000
Fouls in the 2nd most recent game 0.00000
Fouls in the 3rd most recent game 0.07664
Fouls in the 4th most recent game 0.00000

Table 27: A Table showing the predictor coefficients of our Lasso regression
points model for C Tier players
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Figure 36: Our graph visualizing the feature importance for our C tier points
Lasso regression model
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Predictor Random Forest Feature Importance
Points scored in the most recent game 0.05111
Points scored in the 2nd most recent game 0.05288
Points scored in the 3rd most recent game 0.05396
Points scored in the 4th most recent game 0.05119
Minutes played in the most recent game 0.05822
Minutes played in the 2nd most recent game 0.05468
Minutes played in the 3rd most recent game 0.05723
Minutes played in the 4th most recent game 0.05155
Rebounds in the most recent game 0.03917
Rebounds in the 2nd most recent game 0.03318
Rebounds in the 3rd most recent game 0.03286
Rebounds in the 4th most recent game 0.03531
Assists in the most recent game 0.02737
Assists in the 2nd most recent game 0.02767
Assists in the 3rd most recent game 0.02658
Assists in the 4th most recent game 0.02699
Steals in the most recent game 0.01782
Steals in the 2nd most recent game 0.01836
Steals in the 3rd most recent game 0.01656
Steals in the 4th most recent game 0.01628
Turnovers in the most recent game 0.01956
Turnovers in the 2nd most recent game 0.02118
Turnovers in the 3rd most recent game 0.02205
Turnovers in the 4th most recent game 0.02235
Player position 0.01433
Blocks in the most recent game 0.01281
Blocks in the 2nd most recent game 0.01269
Blocks in the 3rd most recent game 0.01323
Blocks in the 4th most recent game 0.01353
Fouls in the most recent game 0.02514
Fouls in the 2nd most recent game 0.02501
Fouls in the 3rd most recent game 0.02493
Fouls in the 4th most recent game 0.02422

Table 28: A Table showing the feature importance of our Random Forest points
model for C Tier players
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Figure 37: Our graph visualizing the feature importance for our C tier points
random forest model
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11 Appendix C - Additional Assists Results

Predictor Predictor Coefficient
Assists in the most recent game 0.37821
Assists in the 2nd most recent game 0.13468
Assists in the 3rd most recent game 0.00379
Assists in the 4th most recent game 0.17664
Minutes in the most recent game -0.06565
Minutes in the 2nd most recent game -0.06315
Minutes in the 3rd most recent game -0.08694
Minutes in the 4th most recent game 0.15535
Player position -0.26937
Steals in the most recent game 0.16463
Steals in the 2nd most recent game -0.08715
Steals in the 3rd most recent game 0.01755
Steals in the 4th most recent game -0.08046
Turnovers in the most recent game 0.03802
Turnovers in the 2nd most recent game 0.22454
Turnovers in the 3rd most recent game 0.01771
Turnovers in the 4th most recent game 0.14036
Rebounds in the most recent game 0.15504
Rebounds in the 2nd most recent game 0.02748
Rebounds in the 3rd most recent game 0.18596
Rebounds in the 4th most recent game 0.08652
Blocks in the most recent game -0.15135
Blocks in the 2nd most recent game -0.00582
Blocks in the 3rd most recent game 0.06423
Blocks in the 4th most recent game -0.05674
Fouls in the most recent game 0.18649
Fouls in the 2nd most recent game 0.17285
Fouls in the 3rd most recent game -0.10585
Fouls in the 4th most recent game -0.02778

Table 29: A Table showing the predictor coefficients of our linear regression
assists model for A Tier players
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Figure 38: Our graph visualizing the feature importance for our A tier assists
linear regression model
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Predictor Random Forest Feature Importance
Assists in the most recent game 0.05340
Assists in the 2nd most recent game 0.04267
Assists in the 3rd most recent game 0.03851
Assists in the 4th most recent game 0.04638
Minutes in the most recent game 0.05410
Minutes in the 2nd most recent game 0.05854
Minutes in the 3rd most recent game 0.05458
Minutes in the 4th most recent game 0.05953
Player position 0.01174
Steals in the most recent game 0.02450
Steals in the 2nd most recent game 0.02330
Steals in the 3rd most recent game 0.02171
Steals in the 4th most recent game 0.02326
Turnovers in the most recent game 0.03592
Turnovers in the 2nd most recent game 0.04504
Turnovers in the 3rd most recent game 0.04369
Turnovers in the 4th most recent game 0.03170
Rebounds in the most recent game 0.04420
Rebounds in the 2nd most recent game 0.03745
Rebounds in the 3rd most recent game 0.04871
Rebounds in the 4th most recent game 0.04002
Blocks in the most recent game 0.01014
Blocks in the 2nd most recent game 0.01315
Blocks in the 3rd most recent game 0.01010
Blocks in the 4th most recent game 0.01066
Fouls in the most recent game 0.02767
Fouls in the 2nd most recent game 0.03653
Fouls in the 3rd most recent game 0.02613
Fouls in the 4th most recent game 0.02668

Table 30: A Table showing the feature importance of our Random Forest assists
model for A Tier players
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Figure 39: Our graph visualizing the feature importance for our A tier assists
random forest model
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Predictor Predictor Coefficient
Assists in the most recent game 0.23883
Assists in the 2nd most recent game 0.06479
Assists in the 3rd most recent game 0.11329
Assists in the 4th most recent game 0.18067
Minutes in the most recent game 0.10313
Minutes in the 2nd most recent game 0.07116
Minutes in the 3rd most recent game 0.16353
Minutes in the 4th most recent game 0.01151
Player position -0.14307
Steals in the most recent game -0.00382
Steals in the 2nd most recent game -0.02274
Steals in the 3rd most recent game -0.07795
Steals in the 4th most recent game -0.00980
Turnovers in the most recent game 0.10037
Turnovers in the 2nd most recent game 0.24249
Turnovers in the 3rd most recent game -0.01543
Turnovers in the 4th most recent game 0.02509
Rebounds in the most recent game 0.04204
Rebounds in the 2nd most recent game -0.08675
Rebounds in the 3rd most recent game -0.08987
Rebounds in the 4th most recent game 0.04354
Blocks in the most recent game 0.07494
Blocks in the 2nd most recent game -0.05281
Blocks in the 3rd most recent game 0.04765
Blocks in the 4th most recent game 0.00102
Fouls in the most recent game -0.07359
Fouls in the 2nd most recent game -0.01128
Fouls in the 3rd most recent game -0.04212
Fouls in the 4th most recent game -0.04331

Table 31: A Table showing the predictor coefficients of our linear regression
assists model for B Tier players

88



Figure 40: Our graph visualizing the feature importance for our B tier assists
linear regression model
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Predictor Predictor Coefficient
Assists in the most recent game 0.20085
Assists in the 2nd most recent game 0.02653
Assists in the 3rd most recent game 0.07486
Assists in the 4th most recent game 0.13816
Minutes in the most recent game 0.08008
Minutes in the 2nd most recent game 0.00198
Minutes in the 3rd most recent game 0.06604
Minutes in the 4th most recent game 0.00000
Player position -0.02385
Steals in the most recent game 0.00000
Steals in the 2nd most recent game 0.00000
Steals in the 3rd most recent game 0.00000
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.01837
Turnovers in the 2nd most recent game 0.16006
Turnovers in the 3rd most recent game 0.00000
Turnovers in the 4th most recent game 0.00000
Rebounds in the most recent game 0.00000
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game 0.00000
Rebounds in the 4th most recent game 0.00000
Blocks in the most recent game 0.00000
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game 0.00000
Fouls in the 2nd most recent game 0.00000
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 32: A Table showing the predictor coefficient of our Lasso regression
assists model for B Tier players
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Figure 41: Our graph visualizing the feature importance for our B tier assists
Lasso regression model

91



Predictor Random Forest Feature Importance
Assists in the most recent game 0.05062
Assists in the 2nd most recent game 0.04284
Assists in the 3rd most recent game 0.04023
Assists in the 4th most recent game 0.04692
Minutes in the most recent game 0.06957
Minutes in the 2nd most recent game 0.06175
Minutes in the 3rd most recent game 0.06582
Minutes in the 4th most recent game 0.06935
Player position 0.01676
Steals in the most recent game 0.02103
Steals in the 2nd most recent game 0.02170
Steals in the 3rd most recent game 0.01970
Steals in the 4th most recent game 0.02111
Turnovers in the most recent game 0.02993
Turnovers in the 2nd most recent game 0.03876
Turnovers in the 3rd most recent game 0.02925
Turnovers in the 4th most recent game 0.02874
Rebounds in the most recent game 0.03743
Rebounds in the 2nd most recent game 0.03893
Rebounds in the 3rd most recent game 0.04479
Rebounds in the 4th most recent game 0.03847
Blocks in the most recent game 0.01463
Blocks in the 2nd most recent game 0.01238
Blocks in the 3rd most recent game 0.01185
Blocks in the 4th most recent game 0.01110
Fouls in the most recent game 0.03094
Fouls in the 2nd most recent game 0.02684
Fouls in the 3rd most recent game 0.02902
Fouls in the 4th most recent game 0.02957

Table 33: A Table showing the feature importance of our Random Forest assists
model for B Tier players

92



Figure 42: Our graph visualizing the feature importance for our B tier assists
random forest model
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Predictor Predictor Coefficient
Assists in the most recent game 0.07408
Assists in the 2nd most recent game 0.10642
Assists in the 3rd most recent game 0.05396
Assists in the 4th most recent game 0.02993
Minutes in the most recent game 0.04827
Minutes in the 2nd most recent game 0.05739
Minutes in the 3rd most recent game 0.00632
Minutes in the 4th most recent game -0.10974
Player position -0.15045
Steals in the most recent game 0.02928
Steals in the 2nd most recent game 0.01654
Steals in the 3rd most recent game -0.03014
Steals in the 4th most recent game 0.03460
Turnovers in the most recent game 0.02931
Turnovers in the 2nd most recent game 0.00418
Turnovers in the 3rd most recent game -0.01137
Turnovers in the 4th most recent game -0.04312
Rebounds in the most recent game -0.04192
Rebounds in the 2nd most recent game -0.02033
Rebounds in the 3rd most recent game 0.09836
Rebounds in the 4th most recent game 0.11210
Blocks in the most recent game 0.03990
Blocks in the 2nd most recent game -0.00704
Blocks in the 3rd most recent game -0.01589
Blocks in the 4th most recent game -0.05205
Fouls in the most recent game 0.06787
Fouls in the 2nd most recent game -0.02251
Fouls in the 3rd most recent game 0.01571
Fouls in the 4th most recent game -0.02205

Table 34: A Table showing the predictor coefficients of our linear regression
assists model for C Tier players
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Figure 43: Our graph visualizing the feature importance for our C tier assists
linear regression model
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Predictor Predictor Coefficient
Assists in the most recent game 0.01289
Assists in the 2nd most recent game 0.03437
Assists in the 3rd most recent game 0.00000
Assists in the 4th most recent game 0.00000
Minutes in the most recent game 0.00000
Minutes in the 2nd most recent game 0.00000
Minutes in the 3rd most recent game 0.00000
Minutes in the 4th most recent game 0.00000
Player position 0.00000
Steals in the most recent game 0.00000
Steals in the 2nd most recent game 0.00000
Steals in the 3rd most recent game 0.00000
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.00000
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.00000
Turnovers in the 4th most recent game 0.00000
Rebounds in the most recent game 0.00000
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game 0.00000
Rebounds in the 4th most recent game 0.00000
Blocks in the most recent game 0.00000
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game 0.00000
Fouls in the 2nd most recent game 0.00000
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 35: A Table showing the predictor coefficient of our Lasso regression
assists model for C Tier players
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Figure 44: Our graph visualizing the feature importance for our C tier assists
Lasso regression model
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Predictor Random Forest Feature Importance
Assists in the most recent game 0.04150
Assists in the 2nd most recent game 0.03973
Assists in the 3rd most recent game 0.03497
Assists in the 4th most recent game 0.03558
Minutes in the most recent game 0.07083
Minutes in the 2nd most recent game 0.06562
Minutes in the 3rd most recent game 0.06521
Minutes in the 4th most recent game 0.07063
Player position 0.01942
Steals in the most recent game 0.02197
Steals in the 2nd most recent game 0.02550
Steals in the 3rd most recent game 0.01938
Steals in the 4th most recent game 0.02162
Turnovers in the most recent game 0.03241
Turnovers in the 2nd most recent game 0.02765
Turnovers in the 3rd most recent game 0.02742
Turnovers in the 4th most recent game 0.02995
Rebounds in the most recent game 0.04046
Rebounds in the 2nd most recent game 0.04670
Rebounds in the 3rd most recent game 0.04228
Rebounds in the 4th most recent game 0.04194
Blocks in the most recent game 0.01188
Blocks in the 2nd most recent game 0.01187
Blocks in the 3rd most recent game 0.01261
Blocks in the 4th most recent game 0.01322
Fouls in the most recent game 0.03230
Fouls in the 2nd most recent game 0.03185
Fouls in the 3rd most recent game 0.03406
Fouls in the 4th most recent game 0.03144

Table 36: A Table showing the feature importance of our Random Forest assists
model for C Tier players
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Figure 45: Our graph visualizing the feature importance for our C tier assists
random forest model
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12 Appendix D - Additional Rebounds Results

Predictor Predictor Coefficient
Rebounds in the most recent game 0.00000
Rebounds in the 2nd most recent game 0.61850
Rebounds in the 3rd most recent game 0.24132
Rebounds in the 4th most recent game 0.26618
Assists in the most recent game 0.00108
Assists in the 2nd most recent game 0.00000
Assists in the 3rd most recent game 0.00000
Assists in the 4th most recent game 0.00000
Minutes in the most recent game 0.24569
Minutes in the 2nd most recent game -0.11180
Minutes in the 3rd most recent game 0.00000
Minutes in the 4th most recent game 0.00000
Player position 0.41255
Steals in the most recent game 0.00000
Steals in the 2nd most recent game 0.22606
Steals in the 3rd most recent game 0.13299
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.02829
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.11850
Turnovers in the 4th most recent game 0.00000
Blocks in the most recent game 0.03469
Blocks in the 2nd most recent game 0.25681
Blocks in the 3rd most recent game 0.15132
Blocks in the 4th most recent game 0.25885
Fouls in the most recent game 0.00000
Fouls in the 2nd most recent game -0.04516
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 37: A Table showing the predictor coefficients of our Lasso regression
rebounds model for A Tier players
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Figure 46: Our graph visualizing the feature importance for our A tier rebounds
Lasso regression model
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Predictor Predictor Coefficient
Rebounds in the most recent game 0.32979
Rebounds in the 2nd most recent game 0.13222
Rebounds in the 3rd most recent game 0.05348
Rebounds in the 4th most recent game 0.15538
Assists in the most recent game 0.00000
Assists in the 2nd most recent game 0.00000
Assists in the 3rd most recent game 0.00000
Assists in the 4th most recent game 0.01645
Minutes in the most recent game 0.00000
Minutes in the 2nd most recent game 0.00000
Minutes in the 3rd most recent game 0.11017
Minutes in the 4th most recent game 0.06485
Player position 0.13367
Steals in the most recent game 0.00000
Steals in the 2nd most recent game 0.00000
Steals in the 3rd most recent game 0.00000
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.05173
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.00000
Turnovers in the 4th most recent game 0.00000
Blocks in the most recent game 0.00000
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game 0.01915
Fouls in the 2nd most recent game 0.00000
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 38: A Table showing the predictor coefficient of our Lasso regression
rebounds model for B Tier players
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Figure 47: Our graph visualizing the feature importance for our B tier rebounds
Lasso regression model
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Predictor Random Forest Feature Importance
Rebounds in the most recent game 0.05793
Rebounds in the 2nd most recent game 0.05145
Rebounds in the 3rd most recent game 0.04905
Rebounds in the 4th most recent game 0.05029
Assists in the most recent game 0.03039
Assists in the 2nd most recent game 0.03185
Assists in the 3rd most recent game 0.03119
Assists in the 4th most recent game 0.02940
Minutes in the most recent game 0.05853
Minutes in the 2nd most recent game 0.06551
Minutes in the 3rd most recent game 0.06351
Minutes in the 4th most recent game 0.06500
Player position 0.01918
Steals in the most recent game 0.01830
Steals in the 2nd most recent game 0.02070
Steals in the 3rd most recent game 0.02226
Steals in the 4th most recent game 0.02075
Turnovers in the most recent game 0.02607
Turnovers in the 2nd most recent game 0.02946
Turnovers in the 3rd most recent game 0.02458
Turnovers in the 4th most recent game 0.02854
Blocks in the most recent game 0.01854
Blocks in the 2nd most recent game 0.02052
Blocks in the 3rd most recent game 0.02237
Blocks in the 4th most recent game 0.02042
Fouls in the most recent game 0.03509
Fouls in the 2nd most recent game 0.03181
Fouls in the 3rd most recent game 0.02907
Fouls in the 4th most recent game 0.02823

Table 39: A Table showing the feature importance of our Random Forest re-
bounds model for B Tier players
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Figure 48: Our graph visualizing the feature importance for our B tier rebounds
random forest model
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Predictor Predictor Coefficient
Rebounds in the most recent game 0.10304
Rebounds in the 2nd most recent game 0.00000
Rebounds in the 3rd most recent game 0.00000
Rebounds in the 4th most recent game 0.00427
Assists in the most recent game 0.00000
Assists in the 2nd most recent game 0.00000
Assists in the 3rd most recent game 0.00000
Assists in the 4th most recent game 0.00000
Minutes in the most recent game 0.00000
Minutes in the 2nd most recent game 0.00000
Minutes in the 3rd most recent game 0.01235
Minutes in the 4th most recent game 0.00000
Player position 0.00000
Steals in the most recent game 0.00000
Steals in the 2nd most recent game 0.00000
Steals in the 3rd most recent game 0.00000
Steals in the 4th most recent game 0.00000
Turnovers in the most recent game 0.00000
Turnovers in the 2nd most recent game 0.00000
Turnovers in the 3rd most recent game 0.00000
Turnovers in the 4th most recent game 0.00000
Blocks in the most recent game 0.02894
Blocks in the 2nd most recent game 0.00000
Blocks in the 3rd most recent game 0.00000
Blocks in the 4th most recent game 0.00000
Fouls in the most recent game 0.04667
Fouls in the 2nd most recent game 0.00000
Fouls in the 3rd most recent game 0.00000
Fouls in the 4th most recent game 0.00000

Table 40: A Table showing the predictor coefficient of our Lasso regression
rebounds model for C Tier players
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Figure 49: Our graph visualizing the feature importance for our C tier rebounds
Lasso regression model
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Predictor Random Forest Feature Importance
Rebounds in the most recent game 0.04688
Rebounds in the 2nd most recent game 0.04851
Rebounds in the 3rd most recent game 0.04345
Rebounds in the 4th most recent game 0.04519
Assists in the most recent game 0.03308
Assists in the 2nd most recent game 0.02976
Assists in the 3rd most recent game 0.02895
Assists in the 4th most recent game 0.03037
Minutes in the most recent game 0.06802
Minutes in the 2nd most recent game 0.07147
Minutes in the 3rd most recent game 0.07444
Minutes in the 4th most recent game 0.06924
Player position 0.01946
Steals in the most recent game 0.02118
Steals in the 2nd most recent game 0.01887
Steals in the 3rd most recent game 0.01887
Steals in the 4th most recent game 0.01939
Turnovers in the most recent game 0.02696
Turnovers in the 2nd most recent game 0.02374
Turnovers in the 3rd most recent game 0.02455
Turnovers in the 4th most recent game 0.02751
Blocks in the most recent game 0.02064
Blocks in the 2nd most recent game 0.01868
Blocks in the 3rd most recent game 0.01769
Blocks in the 4th most recent game 0.01943
Fouls in the most recent game 0.03203
Fouls in the 2nd most recent game 0.03597
Fouls in the 3rd most recent game 0.03123
Fouls in the 4th most recent game 0.03442

Table 41: A Table showing the feature importance of our Random Forest re-
bounds model for C Tier players
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Figure 50: Our graph visualizing the feature importance for our C tier rebounds
random forest model
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Predictor Predictor Coefficient
Rebounds in the most recent game 0.38480
Rebounds in the 2nd most recent game 0.20278
Rebounds in the 3rd most recent game 0.08093
Rebounds in the 4th most recent game 0.18450
Assists in the most recent game 0.06880
Assists in the 2nd most recent game -0.01284
Assists in the 3rd most recent game -0.02140
Assists in the 4th most recent game 0.09709
Minutes in the most recent game -0.02782
Minutes in the 2nd most recent game -0.01537
Minutes in the 3rd most recent game 0.20899
Minutes in the 4th most recent game 0.12108
Player position 0.38205
Steals in the most recent game 0.01140
Steals in the 2nd most recent game 0.00797
Steals in the 3rd most recent game 0.08319
Steals in the 4th most recent game 0.05837
Turnovers in the most recent game 0.12948
Turnovers in the 2nd most recent game 0.01404
Turnovers in the 3rd most recent game -0.07945
Turnovers in the 4th most recent game 0.03365
Blocks in the most recent game -0.06450
Blocks in the 2nd most recent game 0.00747
Blocks in the 3rd most recent game -0.00924
Blocks in the 4th most recent game 0.05148
Fouls in the most recent game 0.10176
Fouls in the 2nd most recent game -0.12620
Fouls in the 3rd most recent game -0.03522
Fouls in the 4th most recent game -0.05495

Table 42: A Table showing the predictor coefficients of our linear regression
rebounds model for B Tier players
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Figure 51: Our graph visualizing the feature importance for our B tier rebounds
linear regression model
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Predictor Predictor Coefficient
Rebounds in the most recent game 0.19177
Rebounds in the 2nd most recent game -0.02924
Rebounds in the 3rd most recent game 0.00790
Rebounds in the 4th most recent game 0.09814
Assists in the most recent game 0.12077
Assists in the 2nd most recent game -0.02103
Assists in the 3rd most recent game -0.09686
Assists in the 4th most recent game 0.11934
Minutes in the most recent game -0.04913
Minutes in the 2nd most recent game 0.02369
Minutes in the 3rd most recent game 0.21553
Minutes in the 4th most recent game -0.00255
Player position 0.10534
Steals in the most recent game -0.11122
Steals in the 2nd most recent game 0.08539
Steals in the 3rd most recent game -0.02025
Steals in the 4th most recent game -0.11680
Turnovers in the most recent game 0.00931
Turnovers in the 2nd most recent game -0.06552
Turnovers in the 3rd most recent game -0.00874
Turnovers in the 4th most recent game -0.03581
Blocks in the most recent game 0.11142
Blocks in the 2nd most recent game 0.02872
Blocks in the 3rd most recent game -0.03642
Blocks in the 4th most recent game -0.02214
Fouls in the most recent game 0.12657
Fouls in the 2nd most recent game 0.04343
Fouls in the 3rd most recent game -0.04942
Fouls in the 4th most recent game -0.04659

Table 43: A Table showing the predictor coefficients of our linear regression
rebounds model for C Tier players
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Figure 52: Our graph visualizing the feature importance for our C tier Rebounds
linear regression model
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