
Reinventing Bomblab

A Major Qualifying Project submitted to the faculty

of the Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Logan Brown

Gavin Hayes

Tejas Rao

Submitted to
Professor Hugh C. Lauer,

Department of Computer Science

February 28, 2017

Acknowledgements

We would like to extend our sincere thanks to Professor Lauer for his guid-
ance in this project. Additionally, we would like to thank Steven Malis
and Fredric Silberberg for their assistance in testing the new Bomblab.

The group would also like to thank John Stegeman for his insistence that
the old Bomblab could, in fact, be auto-solved without a naive solution,
which led to the creation of this project in the first place.

Finally, we would like to thank Professors Professors Randal E. Bryant and
David R. O’Hallaron, as well as Chris Colohan of Carnegie Mellon Univer-
sity for designing the most interesting and most fulfilling undergraduate
assignment we have ever experienced.

ii

Contents

1 Introduction 1
1.1 Vulnerabilities in the Original Bomblab 3

2 Methodology 7
2.1 Server-side Bomb Production 9

2.1.1 Phase Generation 12
2.1.2 Seed Generation . 12
2.1.3 Data Generation 13

2.2 Bomblab Server Architecture 14
2.2.1 Bomb Distribution 14
2.2.2 User Interface . 16

2.3 Phases . 17
2.3.1 The Fourth Phase 18
2.3.2 The Secret Phase 19

3 Testing 21
3.1 Methods . 21
3.2 Software Testing . 22
3.3 Student Testing . 25

4 Conclusion 27

A Bomblab Description: For the Instructor 31
A.1 Overview . 31
A.2 Bomb Terminology . 34
A.3 Offering Bomblab . 35

A.3.1 Create a Bomblab Directory 36
A.3.2 Configure the Bomblab 36

iii

A.3.3 Starting the Bomblab (Online) 37
A.3.4 Grading the Bomblab (Online) 37
A.3.5 Running the Bomblab (Offline) 37

A.4 Frequently Asked Questions 39

B Bomblab Description: For the Student 41

C Testing Results 47
C.1 Scoreboard Request Performance 47
C.2 Bomb Generation Performance 49

D Survey Contents 51

iv

Chapter 1

Introduction

Bomblab[1] is a take-home project assigned to computer science students

which is intended to teach the basics of debugging and navigating assembly

code. Each student is provided a randomly generated executable program

referred to as a “binary bomb” which consists of six “phases” and one

additional “secret phase”, the latter of which is only accessible via a special

key in one of the phases. This bomb is able to communicate scoring

information via the Internet to a running Bomblab server specified by the

instructor. The Bomblab server automatically records students’ progress

and maintains a public scoreboard that shows the progress of every bomb.

Each phase requires a “key” — a line of text which “disarms” the phase,

allowing the student to progress to the next phase. To solve a phase,

the student must reverse engineer the phase’s object code to determine

the correct key. This key is then entered on standard input, potentially

1

disarming the phase. If the student enters an incorrect key, the bomb

“explodes” which notifies the student of the incorrect entry and sends a

message to the Bomblab server, potentially causing the student to lose

points on the assignment’s grade. There are three different variants for

each regular phase in the original Bomblab, with only one version of the

secret phase.

In their paper Introducing Computer Systems from a Programmers Per-

spective[1], Professors Randal E. Bryant and David R. OHallaron describe

Bomblab as:

...a beautiful assignment in many ways. For the instructors,

it is entirely self grading. For the students, it makes learning

machine-level programming feel more like a game than a chore.

It also forces students to learn to use a debugger. The only way

to defuse a bomb is to disassemble it and then use the debug-

ger to explore the program behavior. The bomb lab teaches

students about machine language in the context they will most

likely encounter in their professional lives: using a debugger to

reverse engineer machine code generated by a compiler.

This posed a slight problem, as it turned out that the debugger is not the

only way to defuse a bomb.

One of the authors, without any prior knowledge of or access to Bomblab’s

source code, wrote an auto-solver in April 2016 that inspects the bomb us-

2

ing the Linux objdump program as a disassembler and finds the answers

to all seven phases by identifying patterns within that code and the data

present in the bomb itself.1 The existence of this auto-solver not only

introduces a new way to cheat that is nearly undetectable, it also poses

a significant threat to the pedagogical potential of the assignment. The

fact that the solver is able to determine the keys to the bomb statically

(without executing and debugging it) shows that the assignment has se-

rious design flaws. Due to the design of Bomblab, all of the data used to

check correctness is generated at compile-time and readily available to be

inspected in the data sections of the executable. This makes it possible

for a student to only inspect the bomb with objdump and avoid using the

debugger altogether, violating the design intentions of the original authors.

The goal of this project is to mitigate any potential for a static auto-

solver to be created. In this report, we examine the vulnerabilities of the

original Bomblab, determine which options which are available to remedy

these vulnerabilities, and discuss the implementation of our enhancements.

1.1 Vulnerabilities in the Original Bomblab

In the original Bomblab, bombs were generated by a Perl script that mod-

ified a set of phase templates — incomplete C source code files — and

compiled the resulting code into an executable. For each phase, the script

1The auto-solver has not been released to the general public.

3

would randomly select one of three different phase templates and replace a

number of placeholder values with solution data. Because all of this data

is compiled directly into the executable, it is possible for the bomb to be

solved without ever executing it.

The auto-solver searches for specific patterns in the disassembled ma-

chine code of a target bomb to determine the compiled variants of each

phase. Once a phase variant is determined, the solver can “look up” the

solution to the current phase in the executable. After the phase is “de-

fused”, the auto-solver continues on to the next phase until the bomb is

completed. A brief description of the original phases and their vulnerabil-

ities are as follows

1. In phase one, the student must identify a string stored in memory

as a character array. The student’s input is compared to this string,

and if the two do not match, the bomb explodes. This phase of the

Bomblab is trivial to solve statically, since the string is present within

the executable’s data section and is directly operated on with a mov

instruction. Accordingly, not only could a student use the strings

command to find it, he could find the offset into the executable in

which the string resides, and simply read it from there. Both can be

done without ever having to execute the Bomblab and risk having it

explode.

2. In the second phase, the student must find a sequence of six num-

4

bers generated by a loop. One of three predetermined sequences is

randomly selected at compile time. This phase was even simpler to

solve statically than phase one as the solver does not have to read

from a location in the executable; once the variant is determined,

the solver inputs the predetermined solution.

3. In the third phase, the student must read a jump table generated by

a switch statement in order to find both the format and the identity

of the values required for the key. The structure of this phase is

completely predictable, which allows a static auto-solver to assume

the presence of the jump table, and simulate its operation.

4. In all but one variant of the fourth phase, the student must step

through a helper function (fun4), which simulates searching for a

node in a binary search tree. The student must enter the value of

the node and the sum of the nodes traversed to reach it. However,

because fun4 accepts a finite range of inputs (integers between 0

and 14), this phase is vulnerable to brute-force solution, as noted by

teaching assistants during the Spring 2016 release of Bomblab.

The other variant of the fourth phase requires the student to enter

two numbers s and b, such that s = f(n, b) where n is an integer be-

tween 5 and 9 (inclusive), and f is a recursive function. Ultimately,

this phase is vulnerable to auto-solution simply because n is gener-

ated at compile-time instead of runtime, and f is easily simulated.

5

5. The fifth phase’s puzzle consists of an array that the student must

identify and jump through to construct a solution. Depending on

the variant, the solution may be in the form of a number or a short

string. Both the array and the “starting point” of the computation

are generated at compile-time, which allows an auto-solver to simu-

late the execution of this phase and statically determine its solution.

6. In the sixth phase, the student must identify a data structure in

memory as a linked list, and determine the order in which to shuffle

the elements such that the list is in sorted order (either ascending

or descending). The list is always located at the same offset in the

executable file, and the different variants were easily distinguishable

based on the instructions thereafter. Because of this design, simu-

lating the execution of this phase is trivial.

7. In the original secret phase, the student must determine the correct

traversal of a binary search tree in order to end up at some target

leaf, determined at compile-time. The tree is located at the same

offset in the executable file for all bombs, and contains the same

data, making this phase trivial to attack.

6

Chapter 2

Methodology

We determined that simplest way to mitigate potential static auto-solvers

is to make the information necessary to determine the keys for each phase

only available at runtime, which we accomplished by using the random

number generator present in the C standard library. In order to validate

submitted solutions, each bomb must still be deterministic – it must have

the same solutions every time it is launched. The new Bomblab initializes

the random number generator to a known state by “seeding” it, using

the srand standard library function, with a value that is generated at

compile time. Doing this forces the random number generator to produce

the same sequence of numbers every time it is run. In order to defeat

this type of parameter generation without using a debugger, the student

would have to determine how the seed value is calculated and predict the

sequence of numbers generated, in addition to Bomblab’s actual challenge:

7

to determine how each phase makes use of those numbers. Any student

capable of that kind of reverse engineering and analysis is overqualified for

the lessons that Bomblab is designed to teach.

Part of our reimplementation centered around rewriting the entire

Bomblab server framework in Python. The original Bomblab server was

written in Perl, with development beginning during the Fall of 1998[1]. The

age of the assignment and the use of Perl seriously hinder Bomblab’s main-

tenance due to Perl’s declining popularity and the fact that the Bomblab

server made heavy use of custom implementations of functionality that is

nowadays found in Python’s (and Perl’s, for that matter) standard library.

In an attempt to reduce the use of non-standard Perl modules, Bomblab’s

code depended on custom implementations of common operations, such

as date management functions. Our Python version of these scripts lever-

ages well-tested functions present in Python’s standard library. Standard

library functions are maintained as the language evolves, minimizing the

effort required to keep Bomblab functional in the future.

In addition to maintenance troubles, Bomblab had several performance

problems that had to be resolved to ensure the success of the assignment

in the future. The server consisted of four separate scripts that were each

responsible for part of the functionality the assignment required. Each

of these scripts ran independently of the others, which made debugging

problems exceedingly difficult. In addition, each script was single threaded

and thus could only process a single request at a time. This rendered it

8

unable to generate bombs fast enough for all students at the start of a

lab session. This four script system was sufficient when Bomblab was

originally written, but advances in technology have rendered it inadequate

for modern environments. Our rewrite is intended to make the code more

readable, improve performance, and facilitate future improvements.

2.1 Server-side Bomb Production

The new Bomblab server consists of two main components: makebomb and

bomblab server. The makebomb script was a component of the original

Bomblab design that facilitated functionality we felt was critical to pre-

serve: It allowed the instructor to generate binary bombs from the com-

mand line with custom parameters. The bomblabserver script replaces

the original four-script system with a single multi-threaded server. This

allows the server to service numerous students’ requests simultaneously

and makes debugging far simpler.

The makebomb tool is used to generate bombs for distribution. It is

designed to be invoked in two ways: manually using the command-line, or

by Bomblab’s server. A variety of options are exposed to the command-

line interface, but only two are required: Bomblab’s source directory (src)

and the directory in which to place generated bomb distributions. All

other data is retrieved from the configuration file, bomblab.conf, which is

interpreted by a configuration parser module present by default in Python

9

2.7. As a plaintext configuration file, it is considerably easier to inspect

and modify than the old distribution’s configuration file, which took the

form of a Perl module, and also segregates the script’s data and behavior

for more straightforward customization.

A large portion of makebomb is focused on evaluating command-line

arguments and configuration settings to protect against invalid settings.

Most options are provided as defaults or within the configuration script;

when invoked using the command-line, it only requires two options: -s,

which indicates the directory containing Bomblab’s source files, and -b,

which indicates the directory in which to generate and store bombs. The

Bomblab server must also invoke makebomb; since it normally generates

notifying bombs for use by students, it also consumes the necessary bomb

ID number, the phases string (possibly blank), and the user’s name and e-

mail address. makebomb can optionally function in “quiet mode”, in which

all messages are redirected to a log-file or sent to /dev/null so that it can

be operated without a terminal session.

One of our biggest priorities while developing makebomb was to ensure

it could be used in conjunction with a multithreaded server, which would

require it to be written with thread-safety in mind. The original Bomblab

distribution had a single-threaded server, which was incapable of generat-

ing multiple bombs at once. This presented issues when a large group of

students in a recitation or laboratory session would attempt to generate

and download unique bombs all at once. Past instructors have observed

10

that students would frequently become impatient and submit the form

multiple times, bringing the single-threaded server to its knees. To fix

this, makebomb now instantiates a Bomb object that can be stored in each

thread, keeping all the variables involved in the bomb-making process sep-

arate. With modern servers containing dozens of CPU cores, the benefits

of having multiple bombs be generated in parallel far outweigh the pitfalls.

When a new bomb is generated, the bomb ID is generated by either

the server or the command-line caller of makebomb, before any threads are

created. Other parameters, such as the user’s unique, random “passkey”,

are generated in the thread that builds the rest of the bomb. Once these

parameters are generated, a unique directory is created following the nam-

ing convention bombn where n is the bomb ID, and the source directory

is copied in. The purpose of creating a copy of the source files is to allow

multiple bombs to be compiled simultaneously, which would not possible

if the same files were used as makebomb modifies them during compila-

tion. The original Bomblab used a Makefile for compilation which was

exceedingly complex to allow for the substitutions that were required. The

new Bomblab is compiled directly by makebomb, dramatically simplifying

the process. The gcc compiler is invoked directly with various different

parameters for the different modules of the bomb, and then the bomb is

“stripped” for specific references to functions that we refer to as “black

box” functions. “Black box” functions are parts of the bomb that the

student is not intended to debug, such as networking and initialization

11

code.

When a bomb is requested, several executables are generated. These

include the student’s bomb itself, a version called bomb-quiet which does

not contain server code (this is used as a part of the key validation process),

and a version called bomb-solve which outputs valid solutions to itself.

In addition to the executables, the directory also contains a PASSWORD file,

containing the randomly generated password for the bomb that is used for

authentication, an ID file identifying the bomb, and a README file which

identifies the bomb’s user and gives basic instructions on how to use the

bomb.

2.1.1 Phase Generation

Each of the first six phases consists of three source files, while the seventh

phase consists of only one. When makephases generates a phases.c file,

one variant (and accordingly, one .c file) is picked for each of the six

phases. These files, along with phase7.c (the secret phase source file),

are concatenated into a much larger phases.c, which is compiled into the

final bomb executable.

2.1.2 Seed Generation

At compile-time, makebomb and makephases supply the bomb with two

constant strings, userid and user password. The former is (ideally) the

12

student’s username, which is required when downloading a bomb, and

the latter is a unique, randomized 20-character string that consists of al-

phanumeric characters. The user password is generated using Python’s

SystemRandom call, which on Linux employs the cryptographically secure

[2] pseudorandom number generator /dev/urandom. These two strings —

one fixed, and one random — are used to seed the random number genera-

tor. This produces enough variance in the random number generator such

that the chance of two students receiving the same bomb is exceedingly

low1. Since the random number generator is seeded with the same value

every time the bomb is executed, the bomb’s execution is deterministic,

and the student will see the same behavior every time he or she activates

the bomb.

2.1.3 Data Generation

When the bomb is executed, it calls the initialization functions for each of

the six phases (called initialize phase1(), and so forth). The content

of these functions depends on the variant being used. In most cases, these

functions consist solely of calls to the random number generator — for

example, in the first phase it uses the generator to select the sentence that

the user’s input will be checked against. The fourth phase’s initialization

is more complicated, since it must generate a binary tree that appears

sorted. This initialization system effectively mitigates static auto-solvers

1Testing of up to 500 bombs never generated two with identical solutions.

13

from being written, as the solution data is not present in the executable.

The bomb must be executed for the solution data to exist, and it only

exists in the executable’s memory space.

2.2 Bomblab Server Architecture

2.2.1 Bomb Distribution

The original Bomblab employed two servers running on separate ports.

The request server (requestd) handled requests for new bombs and served

a static HTML file containing students’ scores. The result server (resultd)

parsed responses from bombs and logged them to a text file. Every thirty

seconds a script was called that would read the log, validate every submis-

sion individually, and generate the HTML scores file. This architecture

has several performance issues, the biggest of which is the fact that the

entire log file is parsed for results when generating scores. This means

that every submission will be evaluated repeatedly, with each submission

requiring the execution of its corresponding bomb, even if the student has

requested a new bomb to work on. In addition, because the request server

was single-threaded it was not capable of generating a large number of

bombs concurrently, which eventually caused the server to crash under

normal class loads.

The new Bomblab uses only one multi-threaded server (as opposed

14

to the four daemons present in the original Bomblab distribution). This

server spawns a thread for each request so that they can be run in parallel.

The original server could only compile one bomb at a time. In order to

facilitate the compilation of multiple bombs simultaneously, we modified

the build process so it copies the entire source directory into each bomb’s

folder before beginning compilation. This can potentially add a slight

performance penalty, but it is dramatically outweighed by the ability to

compile multiple bombs simultaneously.

During development of the new Bomblab server, we encountered sev-

eral issues specifically related to handling parallel requests. Initially, our

version of makebomb was essentially a direct port of the original. We

changed the specific compilation commands to account for the new bomb

design, but the overall flow was identical. This became a problem when

we attempted to request multiple bombs simultaneously. When multiple

bombs were requested simultaneously, the server would encounter a race

condition and fail to build any bombs.

We then redesigned makebomb to create a Bomb object so each thread

could address its bomb individually. We later ran into another race con-

dition where two threads could both choose the same bomb ID, and fail

to compile any bombs. This issue was solved by adding a python lock on

the bomb ID selection routine. This way, only a single thread can select

an ID at a time, eliminating the race condition.

The entire bomb validation system has also been redesigned. As be-

15

fore, the server accepts requests from individual assignments containing

the bomb ID, the phase number, the phase’s solution, and the hidden

user password field, which are used to verify the legitimacy of the so-

lution2. However, it now validates a submission once at response time,

and stores whether or not the phase was successfully disarmed (along with

other student data) in a persistent score database. When the scoreboard is

requested, the server is able to quickly generate a full scoreboard from the

saved progress data on the fly. The new server also delivers valid W3C-

standardized3 HTML and CSS. Since bombs do not need to be executed

repeatedly in order to generate the scoreboard, the Bomblab server has

become significantly faster.

2.2.2 User Interface

The Bomblab server was also updated to make the client-side experience

more intuitive. In order to prevent bombs with non-acceptable input text,

javascript was used to provide feedback to the user and prevent bomb

requests with invalid input text. The submit button can now alert the

student when either the username or email is empty or the email field

does not fit the format of an email. The email format is validated by by a

regular expression.

In order to prevent students from generating multiple bombs at the

2This prevents the Bomblab from being fooled by students who, for example, jump
directly to phase defused.

3World-Wide Web Consortium

16

same time, in javascript the handler for the onclick event was adapted

to disable to the submit button while his or hers bomb is generating.

Detection of download completion was done by attaching to the onload

event of a hidden iframe that performed the request.

2.3 Phases

The first three phases were modified to work with the new phase initializa-

tion system, but are essentially pedagogically equivalent. After discussion

with our advisor, we concluded that two of the three variants of the fourth

phase were inadequate, and would require redesign. We were also some-

what unhappy with the secret phase. The existing secret phase was far

easier than phase five and phase six, allowing most students that made it

to the secret phase to solve it easily. We wished for students who “discov-

ered” the secret phase to be genuinely challenged; not everyone who found

it should be able to solve it.

Instead of designing a new fourth phase and a new secret phase, we

decided that the existing secret phase could be modified and used instead

of phase four. The difficulty of the secret phase was on par with the

original phase four, making it a suitable replacement. We then wrote a

new secret phase that explored new aspects of an earlier assignment in the

curriculum: Datalab.

17

2.3.1 The Fourth Phase

Not only was the fourth phase vulnerable to static auto-solution, variants

A and B were also frequently solved using brute-force methods, defeating

the entire pedagogy of the phase. On more than one occasion, teaching

assistants admitted that students could use brute-force methods instead

of stepping through the recursion and inspecting the call stack using gdb’s

back command. The authors decided to rewrite variants A and B of phase

four in order to fix this. Since phase 4C was structured differently from

the first two, it was still suitable for inclusion.

The secret phase of the original Bomblab required students to find the

value of a node in a predefined binary search tree given a number which

represents the path taken to get to it. Just like the original fourth phase,

it employed the use of a recursive function, so it was slightly modified so

that every node, not just those at the bottom, has a unique value; and

that the binary tree is generated at runtime.

While this now introduces operations on data structures earlier in the

Bomblab assignment, the operations performed on these data structures

are considerably simpler than in the sixth phase, which ought not to sub-

stantially increase the difficulty.

18

2.3.2 The Secret Phase

The secret phase was re-implemented for two reasons. As previously men-

tioned, we modified the original Bomblab’s secret phase and turned it into

the fourth phase of the new Bomblab. Secondly, the secret phase has be-

come something of an open secret: in the past, the secret phase has not

been referred to in Bomblab’s official documentation, and instructors will

often answer, “What secret phase?” when asked about it in person. Offi-

cially, the only way to find it is to find secret phase in the bomb’s symbol

table. Despite this, rumors have flourished; when Bomblab was released

to students in the fall of 2016, many students knew about it, and due to

the ease (relative to the fifth and sixth phases) by which the secret phase

can be solved, many people are able to both find it and solve it, which

defeats the purpose of the extra phase.

Many students who complete the Bomblab do so as part of an intro-

ductory computer systems or machine organization course, modeled on a

course at Carnegie Mellon University originally developed by Profs. Bryant

and O’Hallaron, also the authors of the Bomblab. In the preface of the

latest edition of their book [3], they strongly recommend that the internal

representation of data (presented in the second chapter) be introduced to

students before the analysis of machine code (presented in the third). The

flagship lab assignment of the second chapter is called Datalab, in which

students must “implement simple logical and arithmetic functions using

19

a highly restrictive subset of C [3]”. The specific subset varies based on

the Datalab puzzle being solved, but force students to use mostly (if not

exclusively) bitwise operators. The new Bomblab’s secret phase was de-

rived from the Datalab puzzle float f2i, in which a student must write a

function that converts the 32-bit representation (as an unsigned int) of a

floating-point number into the actual integer it represents, rounding down

to zero, and −231 if the floating-point number is too big.

It is not desirable to have students rewrite float f2i, especially since

they may have already encountered it in Datalab, and it is impossible

within the constraints of the Bomblab. Instead, they are forced to step

through an implementation of float f2i that uses only bitwise opera-

tions. Before the bomb starts, it generates a random integer in the range

(−1000000, 1000000), and expects the students’ input, an integer, to match

that of the 32-bit floating-point representation of that number. This secret

phase is far preferable to one that introduces a new algorithm because it

does not introduce any new concepts (so that all students are capable of

doing it), but it is not so easy that a large group of students will always

complete it, and its input range is not so limited that it is vulnerable to

brute-force attacks.

20

Chapter 3

Testing

3.1 Methods

The new Bomblab was tested in two ways. We started by writing a suite

of software tests to verify the correctness and performance of our code.

After this first round of code-level testing was completed, an instance of

the new Bomblab was made available to undergraduate Computer Science

students at Worcester Polytechnic Institute. This provided insight into the

stability of the server and revealed several bugs in the new server which

were patched.

21

3.2 Software Testing

The original Bomblab server relied on functions that — in Python — would

serve only to reinvent the wheel. This was due to Perl’s inadequate stan-

dard library support for URL and timestamp manipulation at the time of

its creation. In addition, the only test system that existed was a small

script that generated a user-provided number of random bombs and ran

the generated solutions file against them to verify each bomb’s correctness.

While this was adequate to ensure bombs were being generated and com-

piling correctly (and thus testing the system’s installation of gcc and Perl,

and the code within the bombs themselves), there was nothing present to

validate the functionality of the server. Following best practices in soft-

ware design, the new Bomblab makes considerable use of the well-tested

Python standard library, instead of relying on custom written functions.

This did not entirely remove the need for unit testing: there were two

functions that needed to be validated: the URL lexer (urlParser) and

the scoreboard generator (genScores).

urlParser is a wrapper around the Python standard library function

urlparse.parse qsl which performs additional manipulation on specific

tokens. First, urlparse.parse qsl is called on a request string, return-

ing a list of arguments and values. Results strings have + symbols re-

placed with spaces for solution verification, and spaces are stripped from

usernames as the bomb expects usernames to contain no spaces. This is

22

validated using a series of unit tests.

genScores is the function responsible for reading our scores file and

parsing them into an array to be presented on the scoreboard page. It

contains the logic for scoring phases and deducting points for explosions.

Testing for this function consisted of several unit tests that call genScores

on a Scores.db file that contains a series of known scores. These unit tests

check the output of genScores against manually calculated output.

The remainder of our codebase is not suitable for unit testing. Unit

testing is suitable for functions in which a function changes an internal

state in a way that can be verified. The majority of our code calls on

external tools like gcc or the user’s web browser which are out of the

scope of this project. Instead, we wrote two scripts that test the external

functionality of the program.

The first script, bombsTest, is an enhanced port of the original Bomblab

test program. It calls upon functions from makebomb to generate a user-

defined number of bombs and runs each against its respective solutions

file. In addition to reporting how many bombs successfully compiled and

ran, it checks each solution for uniqueness by hashing each solutions file

using SHA-1[4] and storing the resulting hash as a string. At the end of

the run, bombsTest counts the number of unique hashes, which represents

the number of unique solutions.

In addition to testing code, we also performance tested the running

server. Our initial performance tests revolved around testing scoreboard

23

generation as that was the only component of the server we felt could have

been negatively impacted by our rewrite. The original bomblab scoreboard

was a static file that was transmitted at a student’s request, whereas the

new server generates the page dynamically for each request. We were

unsure how many concurrent requests the server would be able to handle.

Our initial performance tests used httperf to send large numbers of

requests for the submissions page. Unfortunately, we encountered an un-

foreseen issue. httperf is a single threaded event-based program[5] which

is only able to use a single core for testing. In testing on a moderately

powerful laptop, we were only able to submit between 500 and 700 re-

quests per second before the program fully consumed the resources of one

CPU core. These requests barely impacted the processor utilization of

bomblab-server, remaining below 10 percent for the duration of the test.

After some discussion, we decided that this was sufficient for the environ-

ment bomblab is targeting. An example test run can be seen in Appendix

C.1.

In addition to testing the performance of the scoreboard, we had to

determine if our changes to the server to facilitate multithreading had

improved the performance without negatively impacting reliability. In

practice, the former server would typically be unable to handle the load

of an entire lab section requesting bombs within seconds of each other.

Testing this once again used httperf to submit a lab’s worth of requests.

The test is designed to submit 30 bomb requests at a rate of 10 per second.

24

This batch of bombs took approximately 20 seconds to complete, with an

average bomb compilation time of 1.5 seconds. The average connection

time was approximately 16 seconds. While this is not overwhelmingly fast,

it is fast enough to complete before most browsers timeout. There were no

stability issues with bomblab-server during this test. A demonstrative

set of results can be seen in Appendix C.2.

3.3 Student Testing

Through discussion with our advisor, we determined that suitable candi-

dates for user testing are students who have already completed a previous

version of Bomblab. At Worcester Polytechnic Institute, Bomblab is the

second assignment in CS2011, entitled “Machine Organization and As-

sembly Language” [6], which is taught twice per year, mainly to first-

and second-year computer science students. Computer Science students

of several levels of competency were recruited for testing by sending an

email to the general mailing list of computer science undergraduates at

the university.

The test server was monitored closely for the first week so we could ob-

serve any potential bugs that occurred. By watching the logfile and shell

output, we uncovered several bugs that we missed in testing. The first

bug that was discovered was minor but made finding other bugs unnec-

essarily difficult. The server would log all requests to the logfile, but did

25

not log errors, only throwing them to standard error. This was resolved

by overriding the log message function so that it would log any messages

to the logfile in addition its previous behavior. The second bug that was

discovered occurred when a student seemingly submitted a manual request

to get a bomb with no parameters or credentials. While the HTML at-

tribute required was applied to both the username and email fields on

the form, we had not protected against manually crafted requests. We had

not tested for this case, as the request form always includes the parameters

even when the arguments are empty.

Unfortunately, a large number of bombs were made irrelevant during

testing due to a configuration mix-up. During a patch, the configuration

file was mistakenly updated to reference a laptop that was being used

for development. This resulted in the bombs generated during this period

being unable to submit solutions. The problem was remedied, but our pool

of test subjects was severely degraded. Over the course of our testing, 70

bombs were requested. Of the 70 bombs that were delivered to students,

30 were invalidated by the aforementioned misconfiguration. Of the 40

remaining bombs, only 4 had any logged submissions. We contacted the

four students that had interacted with the downloaded bombs, but none

of them responded to the survey before this writing. The questions on the

survey are listed in Appendix D.

26

Chapter 4

Conclusion

Our goal in this project was to mitigate the possible creation of static

auto-solvers for Bomblab. We fulfilled this goal by redesigning the all

the phases to no longer rely on statically compiled solutions. This was

achieved by using a seeded random number generator to instantiate so-

lutions deterministically at runtime. The server was rewritten in part to

accommodate this change in bomb design.

Additionally, we rewrote the Bomblab server in Python for future main-

tainability and enhanced performance. The new server architecture is far

simpler and is capable of handling workloads that crippled the original

server. We replaced the original four-component server with a single multi-

threaded server that takes advantage of robust standard library function-

ality.

Our code has been validated by extensive testing, using unit test-

27

ing, black-box testing, and performance testing. Code that operated on

testable data had unit tests written. Black-box testing was performed on

the running server as well as the bomb compilation routine. Performance

test were run on the web interface to ensure a class would not be able to

crash the server.

Bomblab is a shining example of the type of engaging project work that

makes the curriculum outlined in Computer Systems: A Programmer’s

Perspective [3] so successful and engaging to students. The assignment

successfully makes learning the complex topic of reverse engineering soft-

ware fun. With the changes we have made, we believe that it can continue

being taught to students of computer science for years to come.

28

Bibliography

[1] R. Bryant and D. O’Hallaron, “Introducing Computer Systems from a

Programmers Perspective,” 2001.

[2] Python Software Foundation, “15.1. os Miscellaneous operating

system interfaces.” https://docs.python.org/2/library/os.html#

os.urandom.

[3] R. Bryant and D. O’Hallaron, Computer Systems: A Programmer’s

Perspective. Pearson, 3rd ed., 2015.

[4] r. Donald E. Eastlake and P. E. Jones, “US Secure Hash Algorithm 1

(SHA1).” https://tools.ietf.org/html/rfc3174, 2001.

[5] L. Brasilino, “[httperf] multi-thread or multi-process.” http:

//www.hpl.hp.com/hosted/linux/mail-archives/httperf/

2009-December/000617.html, 2009.

[6] “Undergraduate Courses in Computer Science.” https://web.wpi.

edu/academics/catalogs/ugrad/cscourses.html.

29

https://docs.python.org/2/library/os.html#os.urandom
https://docs.python.org/2/library/os.html#os.urandom
https://tools.ietf.org/html/rfc3174
http://www.hpl.hp.com/hosted/linux/mail-archives/httperf/2009-December/000617.html
http://www.hpl.hp.com/hosted/linux/mail-archives/httperf/2009-December/000617.html
http://www.hpl.hp.com/hosted/linux/mail-archives/httperf/2009-December/000617.html
https://web.wpi.edu/academics/catalogs/ugrad/cscourses.html
https://web.wpi.edu/academics/catalogs/ugrad/cscourses.html

30

Appendix A

Bomblab Description: For the

Instructor

1 Just like the old one, the new Bomblab teaches students principles of

machine-level programs, as well as general debugger and very basic reverse

engineering skills.

A.1 Overview

A “binary bomb” is a Linux executable program, originally written in C,

that consists of six “phases”. Each phase expects the student to enter a

particular string on standard input. If the student enters the expected

string, then that phase is “disarmed”. Otherwise, the bomb “explodes”

1This section and the next are taken in part from the corresponding description in
the original Bomblab.

31

(you’ll know it when you see it). The goal is for the student to defuse as

many phases as possible.

Each phase tests a different aspect of machine-language programs:

1. a string comparison

2. a basic loop

3. conditionals and switch statements

4. recursive calls and data structures

5. more complex array operations

6. sorting a linked list

7. identifying the representation of floating-point numbers.

The seventh phase is a “secret phase” that is only accessible if students

append a certain string to their solutions of phases 2, 4, 5, or 6 (it depends

on the student’s bomb).

Each phase has three variants: ‘a’, ‘b’, and ‘c’. Each student gets a

bomb with a randomly chosen variant for each phase. In addition, most

phase variants employ runtime-generated constants, using a seed calcu-

lated from the user’s name and email address. Thus, each student gets

a unique, deterministic bomb that he must solve himself. The unique

solution to each bomb is available to the instructor.

32

In order to defuse the bomb, students must use a debugger to disas-

semble the binary and single-step through the machine code in each phase.

The idea is to understand what each assembly-language instruction does,

and then use this knowledge to infer the necessary string. Students earn

points for defusing phases, and they lose points (configurable by the in-

structor, but typically half a point) for each explosion. Thus, they quickly

learn to set breakpoints before each phase and the function that explodes

the bomb. It’s a great lesson and forces them to learn to use a debugger

(especially now since data is generated at runtime, so the bomb cannot be

analyzed using only objdump).

We have created a standalone auto-grading service that handles all as-

pects of the Bomblab for you. The Bomblab server generates new bombs

on-demand, keeping one copy on the server and also packaging it in a tar

file for students to download. When a phase is disarmed or the bomb ex-

plodes, the bomb notifies the same server, which keeps a log of all progress

made on all bombs. The server also generates an HTML scoreboard that

may be used to track students’ progress.

Each time a student defuses a bomb phase or causes an explosion, the

bomb sends a short HTTP message, called an “autoresult string,” to the

same server. It verifies that the autoresult string contains a valid solution

to the phase, then updates the scoreboard accordingly.

33

A.2 Bomb Terminology

• LabID: Each instance (offering) of the lab is identified by a unique

name, e.g., d15 or s17, that the instructor chooses. If a bomb with

a LabID different from that of the server sends it a message, the

message will be ignored. It must not contain any spaces.

• Bomb ID: Each bomb is uniquely identified with a non-negative

number. Generic bombs have a Bomb ID equal to 0, and contain

no user data, and are always quiet. Custom bombs have a nonzero

Bomb ID, and are always associated with a specific user.

• Notifying Bomb: These are compiled with the NOTIFY option,

which causes the bomb to send a message each time the student

explodes or defuses a phase. These bombs must be run on machines

with specific hostnames, which is configurable in the C header file

src/config.h.

• Quiet Bomb: These are compiled without the NOTIFY option, so

the bomb doesn’t send any messages to the server. These bombs can

run on any host.

34

A.3 Offering Bomblab

There are two basic flavors of Bomblab: In the “online” version, the in-

structor uses the auto-grading service to handout a custom notifying bomb

to each student on demand, and to automatically track their progress on

the real-time scoreboard. In the “offline” version, the instructor builds,

hands out, and grades the student bombs manually, without using the

auto-grading service.

While both version give the students a rich experience, we recommend

the online version. It is clearly the most compelling and fun for the stu-

dents (as the authors will tell you from experience), and the easiest for the

instructor to grade. However, it requires that you keep the auto-grading

service running non-stop, because handouts, grading, and reporting oc-

cur continuously for the duration of the lab. We’ve made it very easy

to run the service, but some instructors may be uncomfortable with this

requirement and will opt instead for the offline version.

The following are instructions on how to deploy both versions of the

lab.

35

A.3.1 Create a Bomblab Directory

A.3.2 Configure the Bomblab

Most settings can be configured by modifying Bomblab.conf. It’s divided

into two main sections: the first contains settings that you may need to

modify, and the second contains settings that the instructor should only

modify if you are making changes to the phases or the structure of the lab.

The following settings should be inspected before deploying the Bomblab:

• lab-id under Options, which prevents students from sending old

bombs’ solutions (e.g. from a previous offering) to the server.

• explosion-penalty under Options: By default, the students lose

half a point for each explosion.

• port under Server: The port that the server runs on. By default, it

is 15213, which corresponds to the course number at Carnegie Mellon

(where the Bomblab was originally developed) in which this project

is offered.

• servername under Makebomb: The hostname of the server that

the bombs should report data to. This can also be an IP address, if

the server has no public hostname.

36

A.3.3 Starting the Bomblab (Online)

To launch the Bomblab, simply run Bomblab server.py. Using a Web

browser, navigate to localhost:$PORT to test that it’s running as adver-

tised. To stop the server, simply interrupt it. The server is capable of

being run in the background, but then requires a kill command to stop

it.

A.3.4 Grading the Bomblab (Online)

The Bomblab server’s scoreboard displays the score of every bomb that

the server has generated. It also creates a plain text file, Scores.db, which

contains the information in a format readable by Python’s ConfigParser.

Given the bomb number, it is simple to find the directory containing the

bomb on the server, within which one can find a file containing the stu-

dent’s ID and email address.

A.3.5 Running the Bomblab (Offline)

In this version of the lab, you build your own quiet bombs manually and

then hand them out to the students. The students work on defusing their

bombs offline (i.e., independently of any auto-grading service) and then

hand in their solution files to you, each of which you grade manually. You

may use the makebomb script to build your own bombs individually; doing

so will also generate the bomb’s solution.

37

The simplest approach to offering an offline Bomblab is to build a single

generic bomb that every student will attempt to defuse:

$./makebomb.py -s ./src -b .

This will create a generic bomb in the folder bomb0, as well as bomb.c,

the main source code file (which should be distributed to students), phases.c,

the source code for the phases (which should definitely not be), and solution.txt,

the solution to the bomb. The students will then hand in their solution

files, which you can validate by feeding to the bomb:

$./bomb0/bomb < student_solution.txt

This option is really easy for the instructor, but becaues there’s only

one bomb, it’s very easy for students to cheat, since there’s only one solu-

tion.

The other approach, which mimics the online version, is to build unique

bombs manually for each student:

$./makebomb.py -s ./src -b ./bombs -l Bomblab -u <student’s email> -v <student’s id>

This will create a quiet custom bomb in the folder bombs/bomb<n> for

the student whose information is given on the command line. In addition

to the bomb and bomb.c, you will also give the students ID, which identifies

the student associated with the bomb, and README, which lists the bomb

number, student ID, and student email. The students will then hand in

38

their custom solution files, which you can then validate by feeding to the

bomb:

$./bombs/bomb<n>/bomb < student_solution.txt

makebomb will randomly select phases using both options. If you want

to generate a bomb with a specific set of options, you can pass it the -p

option. For example, -p abcabc will use variant A for phase 1, B for phase

2, C for phase 3, A for phase 4, and so on.

The source code for the different phases can be found in src/phases/

and can also be modified on demand.

A.4 Frequently Asked Questions

• Question: Is there any extra credit for solving the secret phase?

Answer: What secret phase?

39

40

Appendix B

Bomblab Description: For the

Student

The nefarious criminal Dr. Evil has planted a slew of “binary bombs” on

my personal server. A binary bomb is a program that consists of a sequence

of phases. Each phase expects you to type a particular string on standard

input. If you type the correct string, then the phase is “disarmed” and

the bomb proceeds to the next phase. Otherwise, the bomb “explodes”.

The bomb is defused when all phases are disarmed.

There are too many bombs for me to defuse myself, so you get one.

Your mission, if you choose to accept it, is to defuse your bomb before the

due date. (If you don’t accept it, the consequences will be dire.) Good

luck!

41

Step One: Get Your Bomb

Open a Web browser and go to the address your instructor gave you. You

should be able to find it on your course web page. This will display a

binary bomb request form for you to fill in. Enter your user name and

email address and hit the Submit button. The server will build your bomb

and return it to your browser in a tar file called bombk.tar, where k is

the unique number of your bomb.

Save the bombk.tar file to a (protected) directory in which you plan

to do your work. Then give the command:

$ tar xf bombk.tar

This will create a directory called ./bombk with the following files:

• README: Identifies the bomb and its owner – presumably you.

• bomb: The executable binary bomb.

• bomb.c: Source file with the bomb’s main routine and a friendly

greeting from Dr. Evil.

If you don’t like the bomb you’ve been given, that’s no big deal. Some-

one else will pick up the slack; you can always get a new one.

42

Step Two: Defuse Your Bomb

Your job for this assignment is to defuse your bomb. There are many

tamper-proofing devices built into the bomb. There’s also an auto-solver

out there for an older version of the Bomblab – rumor has it that if you

try to use it, the bomb will automatically explode!

You can use many tools to help you defuse your bomb. Please look at

the hints section for some tips and ideas. The best way by far is to use

your favorite debugger to step through the disassembled binary.

Each time your bomb explodes it notifies the Bomblab server, and

you lose some number of points. Also, you could very quickly saturate

the network with these messages, and cause the system administrators to

revoke your computer access. So there are consequences to exploding the

bomb. You must be careful!

Each phase is worth ten points of your final grade for the lab. Although

phases get progressively harder to defuse, the expertise you gain as you

move from phase to phase should offset this difficulty. However, the last

phase will challenge even the best students, so please don’t wait until the

last minute to start.

The bomb ignores blank input lines. If you run your bomb with a

command line argument, for example,

$./bomb solution.txt

then it will read the input lines from solution.txt until it reaches EOF

43

(end of file), and then switch over to standard input. Despite the bomber’s

best efforts, I was able to add this feature so you don’t have to keep

retyping the solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how

to single-step through the assembly code and how to set breakpoints. You

will also need to learn how to inspect both the registers and the memory

states. One of the nice side-effects of doing the lab is that you will get

very good at using a debugger. This is a crucial skill that will pay big

dividends the rest of your career (providing the bomb doesn’t ruin it like

it did mine).

Step Three: Hand In Your Bomb

If you downloaded your bomb from a server, the bomb will keep track of

your progress on it, so there may be no explicit hand-in. You can also look

at your progress on the course scoreboard, which is located at /scoreboard

under the main server. This web page is updated in real time.

Hints

• Debuggers like gdb allow you to view an executable’s source code, or

the disassembly if the source code isn’t present. You may find that

useful.

44

• Executables are usually compiled with descriptive function and vari-

able names still present, in the form of symbols. You can see these

within a competent debugger, as well as by issuing objdump -t. For

your sake, I hope the bomber was incompetent enough to leave some

symbols present.

• The TAs are your friends. So is the professor (probably). And most

of all, Google is your friend.

45

46

Appendix C

Testing Results

C.1 Scoreboard Request Performance

This is a test of Scoreboard performance under extreme circumstances

(1000 requests in a single second). As the results below show, the server

was able to handled 515 scoreboard requests per second, although this was

not a limitation of the server. The httperf tool was unable to generate

more than that number of requests per second due to the architecture of

the tool[5].

$ httperf --client=0/1 --server=localhost --port=15213 --uri=/scoreboard

--rate=1000 --send-buffer=4096 --recv-buffer=16384 --num-conns=1000

--num-calls=1

Maximum connect burst length: 1

47

Total: connections 1000 requests 1000 replies 1000 test-duration 1.940 s

Connection rate: 515.4 conn/s (1.9 ms/conn, <=118 concurrent connections)

Connection time [ms]: min 0.7 avg 123.9 max 1612.8 median 7.5 stddev 340.5

Connection time [ms]: connect 107.4

Connection length [replies/conn]: 1.000

Request rate: 515.4 req/s (1.9 ms/req)

Request size [B]: 72.0

Reply rate [replies/s]: min 0.0 avg 0.0 max 0.0 stddev 0.0 (0 samples)

Reply time [ms]: response 14.7 transfer 1.8

Reply size [B]: header 117.0 content 1927.0 footer 0.0 (total 2044.0)

Reply status: 1xx=0 2xx=1000 3xx=0 4xx=0 5xx=0

CPU time [s]: user 0.10 system 1.83 (user 5.2% system 94.3% total 99.5%)

Net I/O: 1065.0 KB/s (8.7*10^6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0

Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

48

C.2 Bomb Generation Performance

This is a test of bomb generation performance under extreme circum-

stances (30 bombs requested in 3 seconds). As the results below show, the

server was able to handle generating approximately 1.5 bombs per second,

with an average connection time of 16372.4 milliseconds.

$ httperf --client=0/1 --server=localhost --port=15213 --uri=/getbomb?

username=****&usermail=****&submit=Submit --rate=10 --send-buffer=4096

--recv-buffer=16384 --num-conns=30 --num-calls=1

Maximum connect burst length: 1

Total: connections 30 requests 30 replies 30 test-duration 19.943 s

Connection rate: 1.5 conn/s (664.8 ms/conn, <=30 concurrent connections)

Connection time [ms]: min 9953.7 avg 16372.4 max 18742.1 median 16806.5

stddev 1876.2

Connection time [ms]: connect 0.0

Connection length [replies/conn]: 1.000

Request rate: 1.5 req/s (664.8 ms/req)

Request size [B]: 127.0

Reply rate [replies/s]: min 0.0 avg 0.3 max 0.8 stddev 0.5 (3 samples)

49

Reply time [ms]: response 25.9 transfer 16346.5

Reply size [B]: header 179.0 content 71680.0 footer 0.0 (total 71859.0)

Reply status: 1xx=0 2xx=30 3xx=0 4xx=0 5xx=0

CPU time [s]: user 1.01 system 17.59 (user 5.0% system 88.2% total 93.2%)

Net I/O: 105.7 KB/s (0.9*10^6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0

Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

50

Appendix D

Survey Contents

The following survey was sent to those who had submitted at least one

successful solution to the new Bomblab during our testing period.

1. What Bomb IDs did you download?

2. Generally, how difficult did you think the original and new Bomblab

were, on a scale of 0 to 100?

3. How far did you get? (with options for each phase)

4. Did any phases take longer than you expected? About how long did

the entire Bomblab take you?

5. Were any phases easier or harder than you expected?

6. How do you think this Bomblab compares to the original?

51

7. Do you think it is reasonable to expect freshmen and sophomores

to complete this new Bomblab as part of CS-2011 (the Machine

Organization class)?

52

	Introduction
	Vulnerabilities in the Original Bomblab

	Methodology
	Server-side Bomb Production
	Phase Generation
	Seed Generation
	Data Generation

	Bomblab Server Architecture
	Bomb Distribution
	User Interface

	Phases
	The Fourth Phase
	The Secret Phase

	Testing
	Methods
	Software Testing
	Student Testing

	Conclusion
	Bomblab Description: For the Instructor
	Overview
	Bomb Terminology
	Offering Bomblab
	Create a Bomblab Directory
	Configure the Bomblab
	Starting the Bomblab (Online)
	Grading the Bomblab (Online)
	Running the Bomblab (Offline)

	Frequently Asked Questions

	Bomblab Description: For the Student
	Testing Results
	Scoreboard Request Performance
	Bomb Generation Performance

	Survey Contents

