
This document’s purpose is to provide an explanation of how the camera system works
as all of the working parts are a little convoluted.

How an ideal camera system should work

● Camera streams data to flight controller, either directly or via a Raspberry Pi
● Flight controller streams information back to ground station so that live image can

be seen
● Image is processed (either onboard or on ground station) and flight controller

moves the drone and/or sprayer to address camera feedback about where has
been sprayed or needs to be sprayed or sprayed more.

How the camera system actually works in its current form

● Camera is attached to Raspberry Pi
● Camera sends data to Pi over I2C
● Pi displays image on desktop using example program
● Screen recording software records the part of the screen that is displaying the

camera
● The recorded screen video is saved locally on the Pi to be retrieved later for

debugging and analysis

Obviously the present setup is not optimal, but it is currently working

Hardware

● There are 4 wires coming out of the camera. Each is labeled on the board but the
wires are also color coded for convenience:

○ Red>Orange - 5V power
○ Black - Ground
○ Green - Data (SDA)
○ Yellow>Orange/Black stripe - Clock (SCL)

● These 4 wires connect to the appropriate GPIO pins on the Raspberry Pi
according to the pin map and as shown in the image below:

https://www.raspberrypi.org/documentation/usage/gpio/

● The pins need to have I2C enabled in the Pi software for them to perform as
those types of inputs

● The GPIO pin layout is the same on the Pi 3 and Pi zero

Software

● The git repository is located at /home/pi/snow-drones
● The mlx90640-library folder is just a (slightly modified) copy of the example

library that is provided by the manufacturer.
○ examples/sdlscale shows a fullscreen image of what you would expect the

output of the thermal camera to look like
○ examples/fbuf is the program the begins on startup that has been modified

to show a grayscale image from the camera, ideal for computer vision
tasks

○ Both of these programs are run by navigating to the mlx90640-library
folder via the terminal and typing “examples/programname”

● Inside /home/pi/.config/autostart there are a number of .desktop files that start
programs once the pi is powered on

○ fbuf.desktop starts displaying the camera feed as described above
○ simplescreenrecorder.desktop starts SimpleScreenRecorder, the program

used to record the video stream
■ SimpleScreenRecorder is preloaded with a profile that captures the

video as we want for this application (only the part of the screen
with camera images, 10 FPS etc.). This can be easily changed to
suit your needs.

○ screenRecord.desktop runs startCameraRecord.sh
■ startCameraRecord.sh is a bash script that automates the process

of starting and saving the recorded videos
■ It is fairly well commented and includes the contents of all of the

.desktop files as well so that they are backed up to git
■ It uses xdotool to move the mouse out of the video frame and

presses the hotkey (q) that tells SimpleScreenRecorder to start
recording

■ The video will not save if power is cut while recording, so every 60
seconds it saves the current recording and starts a new one. This
process takes ~0.2 seconds, so 2 frames will be lost when stitching
each video that makes up a single flight together (If you choose to
do so)

● Recordings from the camera are saved as .mp4 files to /home/pi/Videos

https://github.com/pimoroni/mlx90640-library
https://github.com/pimoroni/mlx90640-library
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout?variant=12536948654163
https://www.maartenbaert.be/simplescreenrecorder/

○ The file name of each video is SnowDrone with the date and time it was
captured appended to the end

Tips

● VNC is installed on the Pi, allowing for remote desktop access which can be
easier than plugging everything in every time you want to do something on it

○ Also note that the SD card can be moved between the Pi 3 and Pi zero
with no issues so it is easier to do work on the Pi 3 as it has a full HDMI
port and standard USB ports, and then move the card into the zero for
flight testing.

● The Pi will not save the current recording when power is cut, so if you want to be
sure you have recorded every second of your flight, wait 60 seconds before
cutting the power to the Pi.

● The Raspberry Pi can be set up as a companion computer (Additional potentially
useful information from Ardupilot) to the flight controller. This is likely the best
way to get them to work together in the future.

● In case of any issues, a full system image of the Pi’s SD card was backed up and
shared with the professors

https://dev.px4.io/v1.9.0/en/companion_computer/pixhawk_companion.html
https://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html
https://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html

