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Abstract

In recent years, sintering of powdered materials in microwaves has emerged as a manu-
facturing technique with many potential advantages over conventional sintering methods, in-
cluding the possibility of faster processing and finer microstructure, along with the potential
for vast energy savings. However, the technique remains on the level of laboratory studies and
is underutilized in industry, mostly due to the difficulty of controlling the process: the intrin-
sically nonuniform temperature pattern that results from microwave heating routinely induces
nonuniform mechanical deformation. Mathematical models and computer simulations can
help to clarify the factors that influence this process and aid experimentalists in the design of ef-
ficient processing equipment. Although a number of modelling techniques have been reported
to this end, they appear to inadequately represent the entire chain of related physical phenom-
ena, which involves interaction of the electromagnetic field with the material, heat transfer, and
mechanical deformation, each of which is coupled with both of the others, and all of which oc-
cur on different time scales. In this work, we present an original comprehensive mathematical
formulation that accounts for the chain of physical processes comprising microwave sintering
in one- and two-dimensional scenarios. We develop models for simulating the coupled electro-
magnetic, thermal, andmechanical phenomena at their appropriate time and spatial scales, and
in addition, we account for the temperature and density dependence of the full set of thermal
and dielectric properties of the material undergoing sintering. The electromagnetic and tem-
perature fields are approximated using finite difference methods, and the mechanical problem
is solved using the Master Sintering Curve representation of the density kinetics, which gives
a way of accounting for the effect of microscale transport on the macroscopic property of rela-
tive density. For constant-rate sintering trials, we use the exponential integral to compute the
work of sintering, which reduces computation time. The presented algorithms are all imple-
mented and shown in MATLAB and python. Simulation of density and temperature evolution
of the sintered sample shows processing times and shrinkage rates comparable to experimental
results. This work lays a theoretical and computational foundation for modelling the general
three-dimensional problem and computer-aided design of efficient sintering processes.
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Mr. Palomar’s rule had gradually been changing: now he needed a great variety of models, whose ele-
ments could be combined in order to arrive at the one that would best fit reality, a reality that, for its
own part, was always made up of many different realities, in time and in space.

—Italo Calvino1

1Mr. Palomar, Copyright 1983 byGiulio Einaudi editore s.p.a., Torino. English translation copyright 1985 byHarcourt
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Units of Interest

For an in-depth discussion of the various systems of units and dimensions used both historically and
presently in electromagnetism, the reader is referred to [8]. In this dissertation, we use basic units
from the Système International d’Unités (SI); that is, the four fundamental dimensions M (mass),
L (length), T (time), and Θ (temperature) are expressed in meters (m), kilograms (kg), seconds
(s), and Kelvin (K), respectively, and a fifth unit, I , is the electric current—the amount of elec-
tric charge passing a point in an electric circuit per unit time—expressed in amperes (A). A sixth
fundamental dimension, introduced to the SI in 1971, is the mole, which we denote with the corre-
sponding basic unit mol, and which is defined as the amount of a chemical substance that contains
as many elementary entities (e.g., atoms, molecules, ions, electrons, or photons) as there are atoms
in 12 grams of carbon-12 (this amount is expressed by Avogadro’s constantNA). The following table
includes relevant units derived from these base units, described in terms of the base units and with
their relationships to the other derived units given where this provides insight into their physical
meaning. Also included are the natural and base-10 logarithmic units.

Sym-
bol

Unit Describes Equivalent Units

C coulomb quantity of electricity carried in one second by
a current of one ampere

C = A·s

dB decibel base-10 logarithmic unit: LdB = 10 log10
P1
P0

1 dB = 1 Np
20 log10 e

≈ 0.115129Np

F farad 1 F of capacitance produces a potential differ-
ence of 1 V when it has been charged by 1 C

F = A·s
V = J

V2 = W·s
V2 = C

V = C2

J
= C2

N·m = s2 ·C2

m2 ·kg = s
Ω = s4 ·A2

m2 ·kg

xx
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Sym-
bol

Unit Describes Equivalent Units

H henry inductance of a circuit is 1 H if the rate of
change of current is 1 A/s and resulting EMF
is 1 V

H = J
A2 = Wb

A = V·s
A = s2

F

= Ω · s= m2 ·kg
C2 = m2 ·kg

s2 ·A2

J joule energy transferred (or work done) to an ob-
ject when a force of one newton acts on that
object in the direction of its motion through a
distance of one meter

J = kgm2

s2

Np neper natural logarithmic unit: LNp = ln x1
x2

1 Np = 20 dB
ln 10 ≈ 8.6858897 dB

N newton the force needed to accelerate one kilogram
of mass at the rate of one meter per second
squared in direction of the applied force

N = kgm
s2

Ω ohm resistance between two points of a conductor
when a constant potential difference of 1V,
applied to these points, produces in the con-
ductor a current of 1A, the conductor not be-
ing the seat of any EMF

Ω = 1
S = s

F = V
A = J·s

C2 = J
s·A2

= m2 ·kg
s·C2 = kg·m2

s3 ·A2

P poise viscosity; if a fluid with a viscosity of 1P is
placed between two plates, and one plate is
pushed sideways with a shear stress of 1Pa, it
moves a distance equal to the thickness of the
layer between the plates in 1s

1P = 1 g
cms = 0.1Pa · s

Pa pascal the pressure exerted by a force of magnitude
one newton perpendicularly upon an area of
one square meter

Pa = N
m2 = kg

m·s2

S siemens for a device with a conductance of 1S, the elec-
tric current through the devicewill increase by
1 A for every increase of 1V of electric poten-
tial across the device

S = 1
Ω =

A
V =

A2s3
kgm2

T tesla a particle carrying 1 C of charge passing
through a magnetic field of 1 T at 1 m/s per-
pendicularly to the field experiences a force of
1 N.

T = N·s
C·m = N

A·m = V·s
m2 = Wb

m2

= kg
C·s = kg

A·s2
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Sym-
bol

Unit Describes Equivalent Units

V volt 1 V is the difference in electric potential across
a wire when 1 W of power is dissipated by an
electric current of 1 A

V = W
A = A · Ω=

√
W · Ω = J

C
= J

A·s = N·m
A·s = N·m

C = T·m2

s
= kg·m2

C·s2 = kg·m2

A·s3
W watt measures power; 1W is the rate at which work

is done when 1 A of current flows through an
electric potential difference of 1 V

W = V · A = V2

Ω = A2 · Ω = J
s

= kg·m2

s3

Wb weber a flux changing at 1 Wb/sec induces an EMF
of 1 V across two open-circuited terminals

Wb = V · s = T ·m2 = J
A = kg·m2

A·s2



Physical Constants

Where final digits are given in parentheses, they represent the uncertainty in the last two digits of
the value.

Constant Name Symbol Constant Value

Speed of light c = 2.997 924 58 × 108 ms−2 (exact)
Boltzmann constant kB = R

NA
= 1.38064852(79) × 10−23 JK−1

Avogadro’s constant NA = 6.022140857(74) × 1023 mol−1
Gas constant2 R = 8.3144598(48) Jmol−1K−1

Electrical permittivity in a vacuum ε0 = 107

4πc2 ≈ 8.854 × 10−12 Fm−1
Magnetic permeability in a vacuum µ0 = 4π × 10−7 ≈ 1.256 × 10−6 Hm−1
Ratio of circle circumference to diameter π ≈ 3.141592 . . .
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Symbols

Following the convention in [9], the dimensions which appear in this table in script-style capital
letters denote the fundamental dimensions M (mass), L (length), T (time), Θ (temperature), and
I (electrical current). The units used here and in the text to quantify these dimensions are written
with Roman-style letters, and are included so that the reader might easily relate the fundamental
dimensions with standard units often found in textbooks and handbooks. A discussion of units in
general may be found in the preface to the Units of Interest section.

Symbol Name Unit Dimensions

a grain radius m L
a width of waveguide cross-section m L
A surface/interfacial area m2 L 2

b height of waveguide cross-section m L
B piecewise smooth surface bounding

a volume
B⃗ magnetic field T
cp specific heat capacity JK−1 L 2T −2Θ−1

C closed curve in space
D⃗ electric displacement field Cm−2 I T L −2

da surface element
dℓ⃗ line element
Dŝ directional derivative in the direc-

tion of ŝ
dV volume element
Db coefficient for grain boundary diffu-

sion in MSC model
(unitless)

Dv coefficient for volume diffusion in
MSC model

(unitless)

e specific internal energy J ML 2T −2

E1 (x ) exponential integral function

xxiv
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Symbol Name Unit Dimensions

Ei (x ) exponential integral function
Einc electric field incident at port-side

wall
Vm−1 ML I −1T −3

E⃗ electric field Vm−1 ML I −1T −3

E⃗τ tangential component of electric
field

Vm−1 ML I −1T −3

E phasor form of electric field Vm−1 ML I −1T −3

F⃗ Lorentz force N ML T −2

f frequency of electromagnetic wave Hz T −1

f (x⃗ ,t ) source term in heat equation Ks−1 ΘT −1

fc cutoff frequency of electromagnetic
wave

Hz T −1

f := 1−ρrel porosity (unitless)
д1 normalized shear viscosity for open

porosity
P ML −1T −1

д2 normalized shear viscosity for closed
porosity

P ML −1T −1

дm amplification factor (unitless)
G shear viscosity P ML −1T −1

Glin parameter in viscosity equations (unitless)
G (ρ) mean grain diameter m L
h1 distance along x-axis from lower

computational domain boundary to
nearest air/insulation interface

m L

h2 distance along x-axis from lower
computational domain boundary to
farthest insulation/air interface

m L

H height of microwave cavity or com-
putational domain (Cartesian coor-
dinates)

m L

H⃗ magnetic field intensity Am−1 I L −1

H phasor form of magnetic field Am−1 I L −1

i imaginary unit
√
−1

Ienc electric current A I

J⃗ volume density of total current Am−2 I L −2

J⃗bound volume density of bound current Am−2 I L −2

J⃗free volume density of free current Am−2 I L −2



SYMBOLS xxvi

Symbol Name Unit Dimensions

J⃗ind volume density of induced current Am−2 I L −2

J⃗pol volume density of polarization cur-
rent

Am−2 I L −2

J⃗s electric source current Am−2 I L −2

k thermal conductivity Wm−1K−1 ML T −3Θ−1

k1 distance along x-axis from lower
computational domain boundary to
nearest insulation/material interface

m L

k2 distance along x-axis from lower
computational domain boundary to
farthest material/insulation interface

m L

k1 normalized bulk viscosity for open
porosity

P ML −1T −1

k2 normalized bulk viscosity for closed
porosity

P ML −1T −1

kc := ω2εµ cutoff constant of wave propagation (unitless)
K bulk viscosity P ML −1T −1

Klin parameter in viscosity equations (unitless)
ℓ1 distance along z-axis from left-hand

computational domain boundary to
nearest air/insulation interface

m L

ℓ2 distance along z-axis from left-hand
computational domain boundary to
farthest insulation/air interface

m L

L length of microwave cavity or com-
putational domain (Cartesian coor-
dinates)

m L

m mass g M
m1 distance along z-axis from left-hand

computational domain boundary to
nearest insulation/material interface

m L

m2 distance along z-axis from left-hand
computational domain boundary to
farthest material/insulation interface

m L

M number of spatial nodes in x-
direction

M⃗ magnetization density Am−1 I L −1
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Symbol Name Unit Dimensions

N number of spatial nodes in z-
direction

N set of natural numbers,
N = {1,2,3, · · · }

n⃗ outward-pointing vector normal to a
surface

n̂ unit outward-pointing vector nor-
mal to a surface

q point electrical charge C
q⃗ heat flux vector W ML 2T −3

Q activation energy J ML 2T −2

P power W ML 2T −3

Pdiss power dissipated inside object W ML 2T −3

P J Joule power W ML 2T −3

Po power flowing outward through sur-
face

W ML 2T −3

Ps power delivered by sources inside
surface

W ML 2T −3

Pv power delivered to charge density W ML 2T −3

pex external pressure Pa ML −1T −2

∆p change in hydrostatic pressure Pa ML −1T −2

P⃗ electric polarization density Cm−2 I T L −2

R set of real numbers, R = (−∞,∞)
ŝ unit vector pointing in any direction
S surface in space
S := E ×
H ∗

Poynting vector

T0 initial temperature K Θ
Tamb ambient temperature K Θ
u temperature K Θ
U factor describing effect of grain rear-

rangement
(unitless)

v volume fraction of mixture compo-
nent

(unitless)

vold,vnew volume m3 L 3

v⃗ velocity ms−1 L T −1

vp phase velocity of electromagnetic
wave

ms−1 L T −1
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Symbol Name Unit Dimensions

V volume in space
W width of microwave cavity (Carte-

sian coordinates)
m L

We time-average energy stored in elec-
tric field

J ML 2T −2

Wm time-average energy stored in mag-
netic field

J ML 2T −2

Z set of integers, Z =

{. . . ,−3,−2,−1,0,1,2,3, . . .}

α constant parameter determining de-
viation of viscosities from linearity

(unitless)

β := π
L propagation constant of incident

waves
m−1 L −1

γ surface/interfacial energy J ML 2T −2

γs surface/interfacial tension N ML T −2

γb grain boundary tension N ML T −2

Γ curve bounding cross-section of
waveguide

Γ(a,z) incomplete gamma function
Γb scaling parameter in MSC model (unitless)
Γport port-side waveguide boundary
Γv scaling parameter in MSC model (unitless)
Γwall waveguide wall boundary
δ width of grain boundary m L
δi j Kroenecker delta
δDb product of grain boundary diffusion

coefficient and the thickness of the
grain boundary

m L

δDb0 pre-exponential factor in Arrhenius-
type expression for ∆Db

m L

δDs product of grain surface diffusion
coefficient and the thickness of the
grain boundary

m L

δDs0 pre-exponential factor in Arrhenius-
type expression for ∆Db

m L

δ unit tensor
tanδ := ε ′′

ε ′ loss tangent (unitless)



SYMBOLS xxix

Symbol Name Unit Dimensions

ε ε := ε ′ − iε ′′ electrical permittivity Fm−1 T 4I 2L −2M −1

εeff effective electrical permittivity of a
mixture

Fm−1 T 4I 2L −2M −1

εL Wiener’s lower limit on electrical
permittivity

Fm−1 T 4I 2L −2M −1

εr := ε
ε0

relative electrical permittivity (unitless) 1
εU Wiener’s upper limit on electrical

permittivity
Fm−1 T 4I 2L −2M −1

ε ′ dielectric constant Fm−1 T 4I 2L −2M −1

ε ′′ loss factor Fm−1 T 4I 2L −2M −1

ε strain tensor (unitless)
ε̇ strain rate tensor m−1 L −1

ε̇e elasticity strain rate tensor m−1 L −1

ε̇t thermal expansion strain rate tensor m−1 L −1

ε̇s free sintering strain rate tensor m−1 L −1

ε̇v viscous deformation strain rate ten-
sor

m−1 L −1

θ parameter ranging from 0 to 1 (unitless)
Θ work of sintering parameter in MSC

model
sK−1 T Θ−1

κ thermal diffusivity m2s−1 L 2T −1

λ wavelength in free space m L
λc cutoff wavelength in m L
λд wavelength in waveguide m L
µ magnetic permeability Hm−1 L MT −2I −2

ρ mass density gm−3 ML −3

ρ̇ free sintering densification rate gm−3s−1 ML −3T −1

ω angular frequency of electromag-
netic wave

Hz T −1

ωc angular cutoff frequency of electro-
magnetic wave

Hz T −1

Ω cross-section of waveguide
Ω atomic (molecular, molar) volume m3mol−1 L 3−1

ρbulk mass density of bulk material gm−3 ML −3

ρcl relative density at which transition
from open to closed porosity occurs

(unitless)

ρrel :=
ρ

ρbulk
relative mass density of powder ma-
terial

(unitless)



SYMBOLS xxx

Symbol Name Unit Dimensions

ρ volume density of total charge Cm−3 I T M −3

ρbound volume density of bound charge Cm−3 I T M −3

ρfree volume density of free charge Cm−3 I T M −3

σ electrical conductivity Sm−1
σe von Mises stress equivalent Pa ML −1T −2

σm mean (hydrostatic) stress Pa ML −1T −2

σs sintering stress Pa ML −1T −2

σ stress tensor Pa ML −1T −2

σ ′ deviatoric stress tensor Pa ML −1T −2

σ effective stress Pa ML −1T −2

φ phase reference of wave rad
ψ dihedral angle rad
Ψ expression accounting for mi-

crostructural and material proper-
ties in MSC model

ω angular frequency sec−1rad T −1
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Chapter 1

Introduction

Sintering is a process by which several different transport mechanisms influence the microstructure
of a granular material during the course of thermal processing, causing the welding of particles and
the growth of interfaces or “necks” between particles. For solid particulate materials that do not
undergo phase changes, we refer to the process as “solid-phase sintering”1 . Potters have used this
technique for millennia in kiln-firing of ceramic materials, and in the 1940s, tools were commonly
forged via sintering of sponge iron [10]. Today, sintering is used in forming various ceramic and
metal parts andmaterials from pre-compressed powders [10, 11], and is finding a keen use inmanu-
facturing technologies for biomedical materials, including scaffolds for bone tissues [12] and dental
implants [13], and is also used in the creation of metal foams [14]. The range of possible applica-
tions of sintering in manufacturing is broad, but this study is motivated by the fact that sintering has
not fully realized its potential as an innovative manufacturing technology. Among the potential ad-
vantages sintering has over other forms of thermal processing is the possibility of creating materials
whose thermal and mechanical properties do not occur in nature [15–17].

In recent years, strong interest has developed in sintering dielectric and metal powders using
microwaves as the heat source [18–20]. This manufacturing technique may prove fundamentally
different from sintering in conventional ovens, with key differences including faster processing,
greater shrinkage of metal powder compacts, finer microstructure and otherwise differing prop-
erties of the resulting new materials, and—in well-designed systems—the potential for vast energy
savings [20–25].

Despite these promising results and the strong growing interest in the use of microwaves, the
technique remains underutilized in industry, due in part to the difficulty of controlling the pro-
cess, as the intrinsically nonuniform temperature pattern that results from microwave heating also
induces nonuniform mechanical deformation. As a result, the design of systems for carrying out

1Liquid-phase sintering, in which parts of solid materials may temporarily take on a liquid phase, can result in a
cheaper and easier control over the microstructure but also frequently leads to unpredictable material properties [10].
Transient liquid-phase sintering (in which the liquid disappears as densification progresses), and viscous flow sintering
(when the volume fraction of liquid is high, and densification is achieved without shape change of the grains) are other
applications of conventional and microwave sintering, but this study is primarily concerned with solid-phase sintering.

32
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microwave sintering currently involves extensive and repetitive experimentation, in which repro-
ducibility of resultsmay be difficult to achieve [26]. Mathematicalmodels and computer simulations
employing those models would offer the possibility to better study this process, which may lead to
improvements of the theory of microwave sintering. A comprehensive model covering all relevant
physical phenomena entailed by the process would help to test different geometrical configurations
of microwave sintering applicators and, if judiciously used in the design of such systems, could pro-
vide a means of rectifying the challenges that have prevented microwave sintering from fulfilling its
potential as a green and efficient industrial manufacturing technology.

A number of modelling techniques to treat microwave sintering have been reported [27–33],
but these are not comprehensive models, as each gives insufficient treatment of at least one of the
multiphysics processes involved with sintering, and each ignores the dependence of dielectric and
thermal properties on density and temperature. As a result, various aspects of microwave sinter-
ing have not yet received the especially careful mathematical treatment they warrant, including the
strong multiphysical coupling, the vastly different time and spatial scales on which the processes
evolve, and the impact of material parameters on the course of sintering.

In this study, we demonstrate the treatment of some of these issues by providing a simpli-
fied, mathematically consistent, dimensionally reduced model of microwave sintering that is imple-
mented numerically in a single iterative routine involving each of the key multiphysics processes.
The physical configurations of the scenarios described by the one- and two-dimensional models
of microwave cavities loaded with a sample of the material undergoing sintering, surrounded by
insulation, can be seen in Figures 1.1 and 1.2, respectively. The model presented herein, together
with its computational implementation, addresses the multiphysics nature of microwave sintering
by coupling the electromagnetic, thermal, and mechanical deformation portions of the problem.
This routine does not require the transfer of data between the different meshes that various solu-
tion methods relying on conceptually different solvers for each portion of the problem require. Our
routine addresses the multi-scale nature of the mechanical deformation problem by relying on an
auxiliary Master Sintering Curve (MSC) model whose output is a parameter on which the density of
the material depends. For the first time, this model considers the dielectric and thermal properties
of the material undergoing microwave sintering as functions not only of the material’s temperature,
but of the material’s relative density. The multi-scale nature of the problem in time is resolved either
by assuming a time-harmonic electric field and using the Helmholtz equation to represent electro-
magnetic phenomena, or by simulating the transient evolution of the electric field using the wave
equation until the length of one thermal time step passes.

The remainder of the dissertation is structured as follows. In Chapter 2, we provide a review
of the electromagnetic problem, including a description of Maxwell’s equations, the electromag-
netic wave equation, and the Helmholtz equation as related to the problem of propagation within a
waveguide, and we formulate corresponding initial boundary value problems to describe the elec-
tromagnetic phenomenon as it relates to microwave sintering in practical equipment. In Chapter 3,
we review the classical derivation of the heat equation and discuss how its source term, when de-
scribing the microwave heating problem, depends on the magnitude of the electric field; we then
formulate the initial boundary value problem describing thermal diffusion in the insulation and
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ℓ1 m1 m2 ℓ2 L
z

x

Figure 1.1: Physical scenario for the one-dimensional model of microwave sintering, where the
space occupied by apricot-colored grid lines is assumed to be filled by the material undergoing
sintering, the space occupied by diagonal blue lines is assumed to be filled by insulation, and the
remainder of the cavity is assumed to be filled by air. The source of microwaves is on the left-hand
boundary.

material in the one- and two-dimensional domains. In Chapter 4, we provide a review of the driv-
ing forces of sintering and their contribution to densification, and the MSC method is shown as a
way of synthesizing the described energy considerations into a formulation of the density kinetics
along a known temperature cycle.

InChapter 5, we present two novelmethods of accounting for the density dependence of thermal
and dielectric material properties throughout the course of simulated sintering, one of which relies
on the inversion of some classical and contemporary formulas for determining effective dielectric
properties of mixtures, along with other classical approximation formulas for the thermal proper-
ties. In Chapter 6, we describe an original experiment in assessing the applicability of the classical
and contemporary mixture models to the case where the materials involved are comprised of metal
powders. In Chapter 7, we discuss the solution of the wave equation and Helmholtz equation us-
ing finite difference methods, and compare our results to those obtained using the finite element
method, analytical methods, and to results that exist in literature. In Chapter 8, we discuss the fi-
nite difference method for solving the heat equation, providing details of our implementation. In
Chapter 9, we discuss the way that our solver finds the Master Sintering Curve that describes the
relation of density kinetics to the thermal cycle, and we propose a novel use of the exponential in-
tegral function for speeding up the determination of activation energy in certain heating scenarios.
We also discuss the use of the Master Sintering Curve in determining density and volume change
during processing, and how to account for changing geometry in our coupled model.

In Chapter 10, we describe the way in which our solvers are incorporated into one coupled
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Figure 1.2: Physical scenario for the two-dimensional model of microwave sintering, where the
space occupied by apricot-colored grid lines is assumed to be filled by the material undergoing
sintering, the space occupied by diagonal blue lines is assumed to be filled by insulation, and the
remainder of the cavity is assumed to be filled by air. The source of microwaves is on the left-hand
boundary.

routine for transient simulation ofmicrowave sintering. Weprovide several computational examples
in Chapter 11 as an illustration of the model’s operation, via one- and two-dimensional simulations
of the microwave sintering of zirconia (ZiO2) surrounded by alumina (Al2O3) insulation. Some
concluding remarks addressing the theoretical and computational foundation that this work lays
for modelling the general three-dimensional problem, and prospects on computer-aided design of
efficient sintering processes, are given in Chapter 12, alongside some comments on possible future
directions for this work.



Chapter 2

TheElectromagnetic Problem

Within the microwave cavity in which sintering experiments are performed, the rapidly changing
electric field results in a field of power dissipated into the sample, which in turn results in tempera-
ture change. In this chapter, we present the physical considerations leading to Maxwell’s equations,
and use constitutive equations to arrive at the wave equations and the Helmholtz equations describ-
ing the electric and magnetic fields.

2.1 Maxwell’s Equations and Constitutive Relations

In 1873, James Clerk Maxwell first described the electromagnetic wave propagation phenomenon
[34], synthesizing a basis for the foundations of modern electromagnetic theory from existing frag-
ments of empirical and theoretical evidence developed by Carl Friedrich Gauss [35, 36], André-
Marie Ampère [37], and Michael Faraday [38–40]. Oliver Heaviside [41–43] would later use vector
calculus to combine and simplify Maxwell’s contributions into four physical laws that correspond
to the ones that have come to be known as “Maxwell’s equations,” which we present and discuss in
the context of modelling electric and magnetic fields inside of a microwave heating cavity.

Gauss’s Law for Electric Fields

Gauss’s law for electric fields arises from consideration of a point electrical charge q, surrounded by
an arbitrary closed surface S . Such a point charge will produce an electric field E⃗, and the flux of
that field passing through S is proportional to the charge. This holds equally true when considering
not only a single point charge, but the total sum of charges (both bound and free) enclosed by S , as
characterized by the volume integral of the continuous charge density function ρ (x⃗ ). We thus write
Gauss’s law for electric fields in its integral form as in [8]:∮

S
E⃗ ◦ n̂ da = ε−1q = ε−1

∫
V
ρ (x⃗ ) dV , (2.1)

36
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whereV is the volume enclosed by S , n̂ is an outward-pointing unit vector normal to S originating
at the center of the infinitesimal area element da, and where the proportionality factor ε is referred
to as the permittivity. The permittivity is, most generally, a function ε : R3 → R3 of the spatial vari-
able, and depends on the medium in which the wave propagates. In case we consider the scenario
in a vacuum, ε represents the constant vacuum permittivity ε0, whose value is given in the List of
Constants. In matter, the permittivity depends on temperature and density, and varies with the fre-
quency of radiation as well. In isotropic media—that is, in case the polarization and magnetization
of the material do not depend on the directions—the permittivity is simply a real-valued function,
i.e., ε : R3 → R, but in anisotropic media, such as crystal structures and ionized gases, in order to
account for the more complicated relation between the various field components, ε is a rank-two
tensor with nondiagonal matrix representation.

Applying the divergence theorem1 to the electric flux on the left-hand side of Equation 2.1, we
obtain ∫

V
∇⃗ ◦ E⃗ dV = ε−1

∫
V
ρ (x⃗ ) dV ,

and for equality to hold over all surfaces and the volumes they enclose, it must be true in general
that

∇ ◦ E⃗ = ε−1ρ . (2.2)

Equation 2.2 is a simple way of writing Gauss’s law for electric fields.
However, if the charge q or charge density ρ and surrounding surface S exist within matter, as

opposed to within free space, then the notion of bound charge exists, and contributes to q or ρ as
well as the free charge2 in any metals or through free space, so it may result—as we will see—in a
more fundamental statement of Gauss’s Law when we write

ρ = ρfree + ρbound. (2.3)

Bound charge occurs within matter when electrons are displaced inside their atoms by the pres-
ence of the electric field; these electrons cannot move freely through the matter, but still, the sum of
the microscopic shifts of the electrons within each atom results in a macroscopic change in the total
distribution of charge, and it is this quantity of charge that is referred to as the bound charge [46]. It
is differences in the electric polarization P⃗ of a material that generate accumulation of charge within
the material, with the resulting volume density of bound charge given by the quantity

ρbound = −∇⃗ ◦ P⃗ . (2.4)

1The Divergence Theorem, also known as Gauss’s theorem or Ostrogradsky’s theorem, states that for a continu-
ously differentiable vector field A⃗(x⃗ ,t ) and for a compact volume V enclosed within a piecewise smooth surface S ,∫
V
∇⃗ ◦ A⃗dV =

∮
S
A⃗ ◦ n̂ da, where n̂ is an outward-pointing unit vector normal to S originating at the center of the in-

finitesimal area element da [44].
2The free charge density ρfree is sometimes referred to in the literature as the conductive charge density ρc [45].
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The proof of this statement is given in [47]. Using Equation 2.4 and Equation 2.3 together, Equa-
tion 2.2 becomes

∇⃗ ◦ E⃗ = (ρfree + ρbound) ε
−1 = ρfreeε

−1 −
(
∇⃗ ◦ P⃗

)
ε−1.

Multiplying by ε , which we now assume to be invariant under the divergence, and collecting terms
with the divergence operator, we obtain

∇⃗ ◦ (εE⃗ + P⃗ ) = ρfree. (2.5)

The argument of the divergence operator is often denoted D⃗, and is referred to as the displacement
of the electric field:

D⃗ = εE⃗ + P⃗ . (2.6)
In polarizable matter, D⃗ may differ significantly from E⃗ depending on the material’s polarization P⃗ ;
however, in free space, P⃗ = 0⃗, and so the electric field displacement has the same direction as E⃗ with
magnitude scaled by the constant ε0 (in this case, bound charges are also zero, and the equivalence of
Equations 2.7 and 2.2 follows immediately). Typically, D⃗ is directly computed only in certain simple
physical scenarios where the free charge is known and where symmetry may be exploited, and in
these cases, is subsequently used in finding E⃗.

We may therefore write the differential form of Gauss’s law for electric fields in matter as

∇⃗ ◦ D⃗ = ρfree. (2.7)

Gauss’s Law for Magnetic Fields

Gauss’s law for electric fields has its analogue in magnetism, with the key difference arising from the
fact that opposing (positive and negative) electric charges may occur separately from one another,
whereas in nature there exist no free magnetic charges; i.e., opposing (north and south) magnetic
charges always occur in pairs [48], or as the basic entity that is referred to in magnetic studies as
the magnetic dipole. This crucial difference in basic behavior between electricity and magnetism
precluded the scientific community’s connecting the two phenomena until after 1820, when the
French physicists Jean-Baptiste Biot and Félix Savart began working, followed shortly thereafter by
Ampère, to establish experimental laws relating magnetic induction to currents [8].

Gauss’s law for magnetic fields is independent of the electric phenomena, and stems from this
basic observation that magnetic monopoles cannot exist; in particular, if we consider a surface S
enclosing a volume V in a vacuum as in the case of Gauss’s law for electric fields, we may deduce
from this basic observation that the net flux of the magnetic induction B⃗ through this surface must
be zero: ∮

S
B⃗ ◦ n̂ da = 0.

Once again, applying the divergence theorem,

∇⃗ ◦ B⃗ = 0. (2.8)

These are the integral and differential forms, respectively, of Gauss’s law for magnetic fields.
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The Ampère-Maxwell Law

Inspired by an 1819 observation byHans Christian Øersted that wires carrying electric current were
capable of deflecting magnetic compass needles in their vicinity [49], Ampère conducted elaborate
and thorough experiments for the following five years, eventually synthesizing his results into a
quantitative characterization of the relationship between electric current and magnetic fields [37].
Maxwell would further develop this characterization via his observation that it is not only the en-
closed electric current Ienc that affects the circulatingmagnetic field, but also a changing electric flux,
which crucially accounts for the time-dependence of such fields; these two phenomena correspond
to the terms on the right-hand side of the following integral form of the Ampère-Maxwell equation
[48]: ∮

C
B⃗ ◦ dℓ⃗ = µ0

(
Ienc + ε0

d
dt

∫
S
E⃗ ◦ n̂ da

)
,

where B⃗, C , dℓ⃗, E⃗, S , da, n̂, and ε are as before, and where µ is referred to as the permeability. The
permeability is an analogue concept to the permittivity, and as such shares with it some fundamental
defining characteristics: it is typically a function µ : R3 → R3×3 of the spatial variable, and in the
case of isotropic media, is also simply a real-valued function µ : R3 → R. In case we consider the
scenario in a vacuum, we also have an analogue constant vacuum permeability µ0, whose value is
given in the List of Constants. In matter, the permeability of a material depends on the material’s
temperature and density, and varies with the frequency of radiation as well.

Applying Stokes’ theorem3 to the magnetic field circulation on the left-hand side yields∫
S

(
∇⃗ × B⃗

)
◦ n̂ da = µ

(
Ienc + ε

d
dt

∫
S
E⃗ ◦ n̂ da

)
,

and the enclosed currentmay be written as the integral of the normal component of the total current
density J⃗ , i.e.,

Iinc =

∫
S
J⃗ ◦ n̂ da,

so that the Ampère-Maxwell law becomes∫
S

(
∇⃗ × B⃗

)
◦ n̂ da = µ *,

∫
S
J⃗ ◦ n̂ da + ε

∫
S

∂E⃗

∂t
◦ n̂ da+- ,

under the assumption that both E⃗ and ∂E⃗
∂t are continuous with respect to time. For equality to hold

over all surfaces, it must be true in general that

∇⃗ × B⃗ = µ *, J⃗ + ε ∂E⃗∂t +- . (2.9)

3Stokes’ theorem states that for an arbitrary vector field A⃗(x⃗ ,t ) and for any surface S bounded by a closed curve C ,∫
S

(
∇⃗ × A⃗

)
◦ n̂ da =

∮
C
A⃗ ◦ dℓ, where n̂ is an outward-pointing unit vector normal to S originating at the center of the

infinitesimal area element da, and where dℓ⃗ is an infinitesimal line element onC .
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In an analogue scenario to the one considered in our discussion of Gauss’s law for electric fields, in
magnetic materials, bound currents may act as the source of additional magnetic fields. Therefore,
following [48], we write the bound current density, which is caused by the motion of bound charges
discussed in Section 2.1, as the curl of the magnetization:

J⃗bound = ∇⃗ × M⃗ , (2.10)

just as the bound charge density is the divergence of the polarization in dielectric materials. That is,
the curl of the magnetization gives the equivalent volume electric current density resulting from
alignment of microscopic magnetic dipoles in a magnetic medium [45]. However, in scenarios
where the polarization changes with time, since this quantity, called the polarization current den-
sity, generates accumulation of (moving) charge, it will also contribute to the electric current density,
which is expressed by

J⃗pol =
∂P⃗

∂t
. (2.11)

In conductive materials or in free space, a free current density, which is comprised by the motion of
the free charges discussed in Section 2.1, may also exist in the presence of an electric field, and we
refer to this portion of the current J⃗ as the conduction current J⃗free.

Since J⃗ in Equation 2.9 refers to the total density of the bound, free, and polarization currents,
we may therefore write

J⃗ = J⃗free + J⃗bound + J⃗pol, (2.12)

and using Equations 2.10, 2.11, and 2.12 together, Equation 2.9 may be rewritten as

∇⃗ × B⃗ = µ *, J⃗free + J⃗bound + J⃗pol + ε ∂E⃗∂t +- = µ *, J⃗free + ∇⃗ × M⃗ + ∂P⃗∂t + ε ∂E⃗∂t +- .
Multiplying by the inverse of µ, collecting the arguments of the divergence operator on the right-
hand side, and collecting those of the time derivative on the left-hand side, we obtain

∇⃗ ×
(
µ−1B⃗ − M⃗

)
= J⃗free +

∂(εE⃗ + P⃗ )

∂t
,

into which we substitute Equation 2.6 for the displacement to obtain

∇⃗ ×
(
µ−1B⃗ − M⃗

)
= J⃗free +

∂D⃗

∂t
. (2.13)

As in the case of the displacement, we may rewrite the argument of the curl operator as its own
physical quantity H⃗ , referred to as the magnetic field intensity, expressed as

H⃗ = µ−1B⃗ − M⃗ . (2.14)
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As is the case with displacement in dielectric matter, H⃗ may differ from B⃗ significantly in magnetic
matter; however, in free space, H⃗ has the same direction as B⃗, with magnitude scaled by the constant
µ0. The Ampère-Maxwell law may therefore be written in differential form in terms of H⃗ as

∇⃗ × H⃗ = J⃗free +
∂D⃗

∂t
. (2.15)

Faraday’s Law of Induction

Following a series of experiments on the behavior of currents in circuits exposed to time-varying
magnetic fields, Faraday first demonstrated the relationship between time-dependent electric and
magnetic fields [38–40]. The principal observation that Faraday contributed to this area was that
changingmagnetic flux through a surface induces an electromotive force around that surface, which
in turn causes a current flow according toOhm’s law. Faraday’s law is thus expressed in integral form
as [48] ∮

C
E⃗ ◦ dℓ⃗ = − d

dt

∫
S
B⃗ ◦ n̂ da, (2.16)

where S , E⃗, B⃗, n̂, and da are as defined in the preceding subsections on Gauss’s laws, and whereC is
a closed curve bounding S and dℓ⃗ an infinitesimal line element ofC . This form is equivalent [50] to
the form ∮

C

(
E⃗ + v⃗ × B⃗

)
◦ dℓ⃗ = − d

dt

∫
S
B⃗ ◦ n̂ da,

where on each element ofC , in the presence of E⃗ and B⃗, the force F⃗ acting on a point charge q that
moves with velocity v⃗ (t , x⃗ ) is given by the Lorentz force law as

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
. (2.17)

The quantity
(
E⃗ + v⃗ × B⃗

)
is the Lorentz force acting on a unit-charged carrier in the circuit and is

sometimes referred to as the effective electric field [51].
Applying Stokes’ theorem to the electric field circulation on the left-hand side of Equation 2.16

yields ∫
S

(
∇⃗ × E⃗

)
◦ n̂ da = − d

dt

∫
S
B⃗ ◦ n̂ da,

and for geometries that are stationary, the time derivative may be moved inside of the integral in the
electromotive force term on the right-hand side, yielding∫

S

(
∇⃗ × E⃗

)
◦ n̂ da = −

∫
S

*,∂B⃗∂t ◦ n̂+- da.

For equality to hold over all surfaces, it must be true in general that

∇⃗ × E⃗ = −∂B⃗
∂t
. (2.18)

This is the differential form of Faraday’s law.
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Maxwell’s Equations

Together, Equations 2.7, 2.8, 2.18, and 2.15 comprise what are known as Maxwell’s equations, and
they are reproduced here in differential form.

∇⃗ ◦ D⃗ = ρfree
∇⃗ ◦ B⃗ = 0

∇⃗ × E⃗ = −∂B⃗
∂t

∇⃗ × H⃗ = J⃗free +
∂D⃗

∂t
.

(2.19)

These four equations constitute the synthesis of electromagnetic theory, and as such are applica-
ble to electromagnetic phenomena at all frequencies. Figure 2.1 shows the names andmost common
applications of electromagnetic waves at various frequencies along the electromagnetic spectrum.
The microwave frequency range is from 0.3 to 300 GHz, which includes waves used for mobile tele-
phone communication, radar, and television satellite communications [52]. The frequencies most
commonly used for microwave sintering are 915 MHz and 2.45 GHz [53], but other frequencies
in the microwave range have reportedly been used for sintering with varying results, including 5.8
GHz [54], 22.00 GHz [55], 24.12 GHz [56], 28 GHz [57, 58], 60 GHz [59], and 300 GHz [53].

In the statement of Maxwell’s equations, it is sometimes useful to consider induced and exter-
nally impressed motion of microscopic charges as separate phenomena. In this section, we follow
the approach of [45] in formulating a restatement of Equations 2.19 that will later be useful in de-
scribing energy phenomena.

As we observed in Section 2.1, in dielectricmedia, the presence of electric ormagnetic fields can,
by instantaneously altering the positions of electrons within their atoms, create bound charge within
amaterial. Through the action of the Lorentz force, the electric andmagnetic fields are said to induce
a motion of these microscopic charges, which is called induced current and is denoted by J⃗ind; on the
other hand, sometimes the configuration of the medium itself or the action of non-electromagnetic
forces can cause distributions of current in a material that are called externally impressed, or im-
pressed [45]. The free current J⃗free, the polarization P⃗ , and the magnetization density M⃗ are the
sources of the electric and magnetic fields, and in general, both induced and impressed current may
result from each source; we may therefore write each of these as the sum of two terms, as follows:

J⃗free = J⃗free,ind + J⃗free,ext (2.20)

P⃗ = P⃗ind + P⃗ext (2.21)

M⃗ = M⃗ind + M⃗ext (2.22)

where the subscript ind denotes the induced sourceswhile ext denotes the externally impressed sources
[45]. We also split the free charge density ρfree:

ρfree = ρfree,ind + ρfree,ext, (2.23)
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Figure 2.1: The electromagnetic spectrum.

and we assume that ρfree,ind and J⃗free,ind themselves satisfy the law of conservation of charge, which
can be derived from Maxwell’s Equations and is, for these quantities,

∇ ◦ J⃗free,ind +
∂ρfree,ind
∂t

= 0. (2.24)

We also assume that D⃗ind satisfies the modified constitutive relation

D⃗ind = εE⃗ + P⃗ind +

∫
J⃗free,ind dt , (2.25)

and that B⃗ext = µM⃗ext, so that B⃗ind satisfies

B⃗ind = B⃗ − µM⃗ext. (2.26)

Taking the divergence of Equation 2.25, we obtain

∇ ◦ D⃗ind = ∇ ◦
(
εE⃗ + P⃗ind +

∫
J⃗free,ind dt

)
,
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and using the linearity of the divergence together with Equations 2.2 and 2.21, we obtain

∇ ◦ D⃗ind = ρ + ∇ ◦
(
P⃗ − P⃗ext

)
+ ∇ ◦

(∫
J⃗free,ind dt

)
.

To the first term on the right-hand side, we apply Equations 2.3 and 2.4 to obtain

∇ ◦ D⃗ind = ρfree − ∇ ◦ P⃗ + ∇ ◦
(
P⃗ − P⃗ext

)
+ ∇ ◦

(∫
J⃗free,ind dt

)
,

and once more exploiting the linearity of the divergence operator, we obtain

∇ ◦ D⃗ind = ρfree − ∇ ◦ P⃗ext + ∇ ◦
(∫

J⃗free,ind dt

)
.

If we assume that all of the quantities J⃗free,ind,
∂ J⃗free,ind
∂x

,
∂ J⃗free,ind
∂y

, and
∂ J⃗free,ind
∂z

are continuous over

the entire spatial and time domains, then the Leibniz rule applies [60], and we may rewrite the final
term on the right-hand side to obtain

∇ ◦ D⃗ind = ρfree − ∇ ◦ P⃗ext +
∫
∇ ◦ J⃗free,ind dt ,

and using Equation 2.24 together with the fundamental theorem of calculus gives rise to

∇ ◦ D⃗ind = ρfree − ∇ ◦ P⃗ext − ρfree,ind.

Finally, after applying Equation 2.23, we obtain

∇ ◦ D⃗ind = ρfree,ext − ∇ ◦ P⃗ext, (2.27)

which is considered an analogue expression of Gauss’s law for electric fields. Now, when we take the
divergence of Equation 2.26, we obtain

∇ ◦ B⃗ind = ∇ ◦
(
B⃗ − µM⃗ext

)
,

and applying the linearity property of the divergence, together with Equation 2.8, we obtain

∇ ◦ B⃗ind = −∇ ◦
(
µM⃗ext

)
, (2.28)

which is considered an analogue expression of Gauss’s law for magnetic fields. Applying Equa-
tions 2.20, 2.21, and 2.6 to Equation 2.15, we obtain

∇ × H⃗ = J⃗free,ind + J⃗free,ext +
∂

∂t

(
εE⃗ + P⃗ind + P⃗ext

)
,
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to which applying Equation 2.25 results in

∇ × H⃗ = J⃗free,ind + J⃗free,ext +
∂

∂t

(
εE⃗ + D⃗ind − εE⃗ −

∫
J⃗free,ind dt + P⃗ext

)
.

We now apply the linearity of the partial derivative, together with the fundamental theorem of cal-
culus, to obtain

∇ × H⃗ = J⃗free,ind + J⃗free,ext +
∂D⃗ind
∂t

− J⃗free,ind +
∂P⃗ext
∂t
,

which is equivalent to

∇ × H⃗ = J⃗free,ext +
∂D⃗ind
∂t
+
∂P⃗ext
∂t
, (2.29)

the analogue expression of the Ampère-Maxwell law. Finally, under the assumption given by Equa-
tion 2.26, Faraday’s law, stated in Equation 2.18, becomes

∇ × E⃗ = −∂B⃗ind
∂t
− µ ∂M⃗ext

∂t
. (2.30)

Wemay synthesize these expression ofMaxwell’s equations by defining some quantities using an
equivalence principle to be described at the end of this section. We define the equivalent impressed
electric current density as

J⃗eq,ext := J⃗free,ext +
∂P⃗ext
∂t
, (2.31)

the equivalent impressed magnetic current density as

M⃗eq,ext := µ
∂M⃗ext
∂t
, (2.32)

the corresponding equivalent impressed magnetic charge density as

ρm,eq,ext := −∇ ◦
(
µM⃗ext

)
, (2.33)

and the impressed electric charge density (not under the equivalence principle) as

ρexp := ρfree,ext − ∇ ◦ P⃗ext. (2.34)

Substituting Equation 2.34 into Equation 2.27, Equation 2.33 into Equation 2.28, Equation 2.31
into Equation 2.29, and Equation 2.32 into Equation 2.30, we obtain, finally,

∇ ◦ D⃗ind = ρext

∇ ◦ B⃗ind = ρm,eq,ext

∇ × H⃗ = J⃗eq,ext +
∂D⃗ind
∂t

∇ × E⃗ = −∂B⃗ind
∂t
− M⃗eq,ext,
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from which subscripts are customarily dropped to yield

∇ ◦ D⃗ = ρ
∇ ◦ B⃗ = ρm

∇ × H⃗ = J⃗ + ∂D⃗
∂t

∇ × E⃗ = −∂B⃗
∂t
− M⃗ .

(2.35)

The equivalence principle used in naming the subscripted quantities arises from the fact that the
solution of Equations 2.35 for B⃗ and E⃗ using the impressed sources yields, in this modified case, not
the true B⃗ and E⃗, but rather B⃗ind and E⃗, fromwhich the true B⃗ may be recovered using Equation 2.26
only when the magnetization density M⃗ext is known [45].

2.2 Energy, Power, and Poynting’sTheorem

The common explanation of the physical phenomenon of microwave heating depends on the fact
that the energy required for dipolar molecules to remain in the presence of an electric field is mini-
mized when the molecules are physically oriented so that their poles align with that of the field. In
a microwave cavity, the electric field changes rapidly in time according to a standing wave pattern,
which causes dipolar molecules within materials residing in the cavity to reverse their orientation
so quickly that the friction from this action generates heat within materials. The rate at which this
occurs depends on the frequency of radiation, and on the temperature and molecular composition
of the material in the cavity, and will be discussed in the rest of this section in the frame of [61].

In general, a source of electromagnetic energy sets up fields that store electric and magnetic
energy and carry power that may be transmitted or dissipated as loss [62]. The time-average energy
stored in the sinusoidal, steady-state electric field that exists in a volumeV is given by

We =
1
4
Re

{∫
V
D⃗ ◦ E⃗∗ dV

}
, (2.36)

and correspondingly, the time-average energy stored in the magnetic field is

Wm =
1
4
Re

{∫
V
B⃗ ◦ H⃗ ∗ dV

}
, (2.37)

where the asterisk (∗) denotes the complex conjugate, and the factor 1
2 on each of the fields, from

which arises the coefficient 1
4 in each of the above expressions, is due to the averaging over a sin-

gle time interval. This formulation is valid for media without dissipation (which allows a relation
between energy and work done on the system), and for media in which ε and µ do not depend on
ω.
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Poynting’s theorem leads to energy conservation for electromagnetic fields and sources, and we
derive the theorem here according to [45] and [62]. In the presence of the Lorentz force F⃗ in Equa-
tion 2.17, conversion of energy between electromagnetic and non-electromagnetic forms results in
a motion of charges; therefore, the power being delivered to a single test charge q is equal to the rate
of work being done against the Lorentz force to move the charge [45], which results in

P = F⃗ ◦ v⃗ = q
(
E⃗ + v⃗ × B⃗

)
◦ v⃗ = qE⃗ ◦ v⃗ + q

(
v⃗ × B⃗

)
◦ v⃗ = qE⃗ ◦ v⃗,

since v⃗ × B⃗ ⊥ v⃗ (and therefore
(
v⃗ × B⃗

)
◦ v⃗ = 0). In case the volumetric charge density function ρ

is continuous, there will be a power PvdV delivered to the charge density in the differential volume
element dV , where

Pv := F⃗v ◦ v⃗ = ρE⃗ ◦ v⃗ = E⃗ ◦ J⃗ ,

using the definition of the volumetric current density in terms of the charge density: J⃗ := ρv⃗ . There-
fore, in order to maintain a current density J⃗ within the volumeV , the power that must be delivered
is

P J =

∫
V
Pv dV =

∫
V
E⃗ ◦ J⃗ dV , (2.38)

which is referred to as the Joule power [45]. If P J is positive, then energy is being delivered to the
system, and is dissipated—that is, it is converted to a non-electromagnetic form of energy, such as
heat. Alternatively, if P J is negative, then energy is coming from the system—that is, it is being
generated from some non-electromagnetic form, such as chemical energy in the case of a battery
[45]. It is the former case that we are interested in.

We assume a time-harmonic version of Maxwell’s equations, where

E⃗ (x⃗ ,t ) = Re
{
E⃗ (x⃗ )e jωt

}
and H⃗ (x⃗ ,t ) = Re

{
H⃗ (x⃗ )e jωt

}
,

and E⃗ := ⟨E1,E2,E3⟩ and H⃗ := ⟨H1,H2,H3⟩ are functions of space only. Under this cosine-based
phasor representation, where φ⃗ := ⟨φ1,φ2,φ3⟩ is the phase reference of the wave, the electric field is

E⃗ =
⟨
E1 cos(ωt + φ1),E2 cos(ωt + φ2),E3 cos(ωt + φ3)

⟩
,

and the average of the square of the magnitude of the electric field over the time interval [0,T ] may
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be calculated as

|E⃗ |2avg =
1
T

∫ T

0
E⃗ ◦ E⃗ dt

=
1
T

∫ T

0

[
E21 cos

2 (ωt + φ1) + E
2
2 cos

2 (ωt + φ2)+

+ E23 cos
2 (ωt + φ3)

]
dt

=
1
T

∫ T

0

1
2

[
E21 + E

2
1 cos(2ωt + 2φ1) + E

2
2 + E

2
2 cos(2ωt + 2φ2)+

+ E23 + E
2
3 cos(2ωt + 2φ3)

]
dt

=
1
2T

E21t +
E21
2ω

sin(2ωt + 2φ1) + E
2
2t +

E22
2ω

sin(2ωt + 2φ2)+

+ E23t +
E23
2ω

sin(2ωt + 2φ3)

T

0

=
1
2T

E21T +
E21
2ω

sin(2ωT + 2φ1) −
E21
2ω

sin(2φ1) + E
2
2T+

+
E22
2ω

sin(2ωT + 2φ2) −
E22
2ω

sin(2φ2) + E
2
3T+

+
E23
2ω

sin(2ωT + 2φ3) −
E31
2ω

sin(2φ3)


=
1
2T

[
E21T + E

2
2T + E

2
3T

]
= E21 + E

2
2 + E

2
3

=
1
2
|E⃗ |2.

(2.39)

The |E⃗ |2avg representation of this quantity will be useful when E⃗ is calculated directly using the elec-
tromagnetic wave equation, as in Section 2.4, whereas the 1

2 |E⃗ |2 representation will be useful when
the phasor form of the electric field is computed using the Helmholtz equation, as in Section 2.5.
Whichever way it is computed and represented, this quantity is used as a factor in the source term
of the heat equation, which will be discussed in Section 3.2.

In the phasor representation, the partial derivative in time is replaced by jω, and, assuming linear
media where ε and µ do not depend on E orH , Faraday’s law and the Maxwell-Ampère law become

∇ × E⃗ = −jωµH⃗ − M⃗s (2.40)

and
∇ × H⃗ = −jωε E⃗ + J⃗ . (2.41)
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Taking the dot product of Equation 2.40 with H⃗ ∗, the complex conjugate of H⃗ , and of the complex
conjugate of Equation Equation 2.41 with E⃗, we obtain

H⃗ ∗ ◦
(
∇ × E⃗

)
= −jωµ |H⃗ |2 − H⃗ ∗ ◦ M⃗s

E⃗ ◦ (∇ × ∗⃗) = −jωε∗ |E⃗ |2 + E⃗ ◦ J⃗ ∗ = −jωε∗ |E⃗ |2 + E⃗ ◦ J⃗ ∗s + σ |E⃗ |2, (2.42)

using a modified phasor form of Ohm’s law in Equation 2.51 and considering the electric source
current J⃗s separately from the conduction current σ E⃗. Using the vector identity

A⃗ ◦
(
A⃗ × B⃗

)
= B⃗ ◦

(
∇ × A⃗

)
− A⃗ ◦

(
∇ × B⃗

)
,

we see that Equations 2.42 lead to

∇ ◦
(
E⃗ × H⃗ ∗

)
= H⃗ ∗ ◦

(
∇ × E⃗

)
− E⃗ ◦

(
∇ × H⃗ ∗

)
= −jωµ |H⃗ |2 − H⃗ ∗ ◦ M⃗s + jωε |E⃗ |2 − E⃗ ◦ J⃗ ∗s − σ |E⃗ |2

= −σ |E⃗ |2 + jω
(
ε∗ |E⃗ |2 − µ |H⃗ |2

)
−

(
E⃗ ◦ J⃗ ∗s + H⃗ ∗ ◦ M⃗s

)
.

We integrate over the volumeV , so that∫
V
∇ ◦

(
E⃗ × H⃗ ∗

)
dV = −

∫
V
σ |E⃗ |2 dV +

∫
V
jω

(
ε∗ |E⃗ |2 − µ |H⃗ |2

)
dV−

−
∫
V

(
E⃗ ◦ J⃗ ∗s + H⃗ ∗ ◦ M⃗s

)
dV ,

and using the Divergence theorem to rewrite the left-hand side, we obtain∮
S

(
E⃗ × H⃗ ∗

)
◦ n̂ dA = −

∫
V
σ |E⃗ |2 dV +

∫
V
jω

(
ε∗ |E⃗ |2 − µ |H⃗ |2

)
dV−

−
∫
V

(
E⃗ ◦ J⃗ ∗s + H⃗ ∗ ◦ M⃗s

)
dV ,

where S is the closed surface enclosing the volume V , and n̂ is an outward-pointing unit vector
normal to S originating at the center of the infinitesimal area element dA. Now, accounting for
dielectric losses by writing the complex permittivity and permeability as

ε := ε ′ − jε ′′ and µ := µ ′ − jµ ′′,

we obtain

−1
2

∫
V

(
E⃗ ◦ J⃗ ∗s + H⃗ ∗ ◦ M⃗s

)
dV =

1
2

∮
S

(
E⃗ × H⃗ ∗

)
◦ n̂ dA +

σ

2

∫
V
|E⃗ |2 dV+

+
ω

2

∫
V

(
ε ′′ |E⃗ |2 + µ ′′ |H⃗ |2

)
dV + j

ω

2

∫
V

(
µ ′ |H⃗ |2 − ε ′ |E⃗ |2

)
dV .

(2.43)
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This result is known as Poynting’s theorem, and is a power-balance equation where the integral on
the left-hand side represents the complex power, Ps , delivered by the sources J⃗s and M⃗s inside S :

Ps := −
1
2

∫
V

(
E⃗ ◦ J⃗ ∗s + H⃗ ∗ ◦ M⃗s

)
dV .

The first integral on the right-hand side of Equation 2.43 represents complex power flow out of the
closed surface S . The time-average complex power flow Po out of the closed surface S is given by the
integral of the complex Poynting vector S⃗ over that surface, i.e., the first term on the right-hand side
of Equation 2.43:

Po =
1
2

∮
S

(
E⃗ × H⃗ ∗

)
◦ n̂ dA :=

1
2

∮
S
S⃗ ◦ n̂ dA.

The real parts of Ps and Po represent time-average powers. The second and third integrals on the
right-hand side of Equation 2.43 are real quantities representing the time-average power dissipated
in the volume V due to conductivity, dielectric, and magnetic losses. If we define this dissipated
power as Pdiss, we have

Pdiss :=
σ

2

∫
V
|E⃗ |2 dV + ω

2

∫
V

(
ε ′′ |E⃗ |2 + µ ′′ |H⃗ |2

)
dV , (2.44)

which is sometimes referred to as Joule’s law. The last integral in Equation 2.43 is related to the stored
electric and magnetic energies, as defined in Equations 2.36 and 2.37, and so, using these together
with the preceding definitions of Pdiss, Po , and Ps , Poynting’s theorem may be rewritten as

Ps = Po + Pdiss + 2jω (Wm −We ). (2.45)

This power balance equation states that the power delivered by the sources is equal to the sum of the
power transmitted through the surface, the power lost to heat in the volume, and 2ω times the net
reactive energy stored in the volume.

2.3 Propagation of GuidedMicrowaves

As the previous sections have discussed problems related to the propagation of waves in free space,
we discuss briefly some aspects of propagation of guided microwaves. Typically, in systems for
microwave heating, waves are guided from the generator (which may be of various types, including
magnetrons, which are traditional in domestic microwave ovens, or solid state generators, which are
found in systems requiring a high degree of precision) into the cavity, where they come into contact
with the specimen to be heated. Before describing the problem of computing electric and magnetic
fields within the cavity, it will be necessary to discuss some aspects of propagation of guided waves
in particular.

Waveguides are, in their most basic description, tubes that consolidate and guide waves; waveg-
uides of various types are used in practice, and the most common are metal waveguides with cir-
cular, elliptical, or rectangular cross-sections. The distribution of the field inside of the waveguide
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Figure 2.2: Propagation of an electromagnetic plane wave in free space. Here, E⃗ represents the
electric field, and H⃗ represents the magnetic field.

is highly dependent on the geometry, which influences the evolution of multiple wave reflections
from perfectly conducting walls. In this work, we are interested in metal waveguides with rectan-
gular cross-section.

Typical waveguides have fixed dimensions, dependent on the frequency of radiation with which
they are intended to work, and on the mode of propagation and polarization of the fields. The two
fundamental polarizations of the electromagnetic field associated with a given direction of propaga-
tion are referred to as the transverse electric, or TE-polarization, and the transverse magnetic, or TM-
polarization⁴. With the TE-polarization, the electric field is perpendicular to the direction of propa-
gation, and the incident field in this direction is assumed to be zero; that is, if E⃗ := ⟨Ex ,Ey ,Ez⟩, then
Ez ≡ 0 in the TE-polarization; in the three-dimensional TE-polarization, themagnetic field H⃗ exists
in the plane perpendicular to E⃗, as seen in Figure 2.2, and soHz . 0. With the TM-polarization, the
magnetic field is perpendicular to the direction of propagation, and so if H⃗ := ⟨Hx ,Hy ,Hz⟩, then
Hz ≡ 0, and correspondingly, Ez , 0.

In this work, we study the TE mode of propagation. For a TE-polarized wave in a guide, the
function that describes the displacement of a wave in the direction of propagation is Hz , which
satisfies the Helmholtz equation

∆Hz + k
2
cHz = 0,

where k2c = ω2εµ is referred to as the cutoff constant of wave propagation, subject to the boundary
condition

∂Hz

∂n⃗
= 0,

where n⃗ is an outward-pointing vector normal to the surface of the metal waveguide.
The problem described above has a solution only when kc takes on the values

kc =

√(mπ
a

)2
+

(nπ
b

)2
, m,n ∈ N, (2.46)

⁴The TM-polarization is sometimes also referred to as the E-polarization, and the TE-polarization is sometimes also
referred to as the H-polarization.
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where the waveguide has rectangular cross-section of width a and height b. These values of kc are
referred to as eigenvalues of the boundary value problem, and their corresponding eigenfunctions—
that is, for each pair (m,n), the function Hz which satisfies the boundary value problem and the
corresponding Hx , Hy , Ex , Ey , and Ez that satisfy Maxwell’s equations in the cavity—are given by

Hz = H0 cos
(mπx

a

)
cos

(nπy
b

)
,

Ex (y,z) = H0
jωµ

k2c

nπ

b
cos

(mπx
a

)
sin

(nπy
b

)
Ey (y,z) = −H0

jωµ

k2c

mπ

a
sin

(mπx
a

)
cos

(nπy
b

)
Hx (y,z) = H0

γ

k2c

mπ

a
sin

(mπx
a

)
cos

(nπy
b

)
Hy (y,z) = H0

γ

k2c

nπ

b
cos

(mπx
a

)
sin

(nπy
b

)
.

Here, γ refers to the propagation constant of the wave. Each pair (m,n) of natural numbers is re-
ferred to as a “fundamental mode” of propagation, which is written as TEmn , and corresponds to
a single eigenvalue and solution of the electric and magnetic fields. In our computations, we use
the TE10 mode, also called the fundamental mode because its corresponding wavelength is equal
to the maximum. When the operating frequency is such that the TE10 mode is the dominant one,
the maximum value of the electric field occurs in the center of the waveguide, and if samples are
heated directly in the guide, then they may be placed here in order to most efficiently utilize the
field’s energy.

The length of the guided wave may be determined according to the relation( 1
λ

)2
=

(
1
λc

)2
+

(
1
λд

)2
, (2.47)

where λ is the length of the wave in free space, and λc is the quantity referred to as the cutoff wave-
length, computed using

λc =
c

fc
=

2πc
ωc
=

2π
kc
. (2.48)

The cutoff frequencies andwavelength are, therefore, characteristics of themode of propagation,
and when they are determined, the propagation conditionsmay be described according to Table 2.1.
These conditions of propagation show that the waveguide acts as a high-pass frequency filter, in
which only those frequencies greater than the cutoff frequency may propagate. Knowledge of λ
and λc , or λ and (m,n), along with the dimensions of the cross-section of the waveguide, permits
calculation of λд , and in case the sample is to be heated inside the waveguide itself, rather than
in a separate cavity, the waveguide’s optimal length may be calculated as an integer-plus-one-half
multiple of λд , in order that the maximum value of the electric field be located in the center of the
waveguide, where the sample would be placed.
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• If λ < λc , then the mode is called evanescent, and the wave does not propagate;

• If λ = λc , then the wave propagates with speed equal to 1√
µε ′

;

• If λ > λc , then the wave may propagate with no attenuation, with a speed vд := f λд =
ω
2π λд .

Table 2.1: Propagation conditions when the operating wavelength λ takes various values in relation
to the cutoff frequency λc .

2.4 The Electromagnetic Wave Equations

Maxwell’s equations may be combined to form a single wave equation through the use of the consti-
tutive relations. This process gives us a way of evaluating fields within macroscopic media in space
using the basic information that Maxwell’s equations provide about electromagnetic fields in a vac-
uum, and deriving the wave equations also provides us a method of eliminating two field quantities
from the system of Maxwell’s equations.

In scenarios involving certain media on varying spatial scales (e.g., situations involving ferro-
electric or ferromagnetic media, or those consideringmicroscopicmaterial interactions), these con-
stitutive relations can take different forms [63]. However, the ones we use correspond to the scenario
of non-ferroelectric and non-ferromagnetic media on the macroscopic scale that may nevertheless
be inhomogeneous or anisotropic. The two constitutive relations are, therefore, derived from Equa-
tions 2.6 and 2.14 under the assumptions that P⃗ ≡ 0 and M⃗ ≡ 0, and take the forms

D⃗ = εE⃗ (2.49)

and
B⃗ = µH⃗ , (2.50)

together with Ohm’s law, which describes how the electric field induces a current in conducting
media (we consider the case where the external current density is zero):

J⃗ = σ E⃗, (2.51)

where σ is generally a bounded function of position, σ : R3 → R, and may be represented as a
rank-two tensor.

We may rewrite Equations 2.5–2.13 using Equations 2.49, 2.50, and 2.51, in order to remove the
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dependency on B⃗, E⃗, and J⃗ , as follows:

∇ ◦ E⃗ = ρ

ε
(2.52)

∇⃗ ◦ H⃗ = 0 (2.53)

∇⃗ × E⃗ = −∂(µH⃗ )

∂t
(2.54)

∇⃗ × (µH⃗ ) = µ *,σ E⃗ + ε ∂E⃗∂t +- . (2.55)

The system of Maxwell’s equations and the three constitutive relations may be combined into a
single wave equation via the following procedure. Equation 2.54 implies that

∇⃗ ×
(
∇⃗ × E⃗

)
= ∇⃗ × *,−∂(µH⃗ )

∂t
+- ,

and when µ is assumed to be constant in space, and when H⃗ is assumed to be sufficiently smooth to
permit interchanging the orders of the curl and differential operators, then we obtain

∇⃗ ×
(
∇⃗ × E⃗

)
= −
∂

(
∇⃗ × (µH⃗ )

)
∂t

. (2.56)

We note here the useful vector operator identity

∇⃗ ×
(
∇⃗ × A⃗

)
= ∇⃗

(
∇⃗ ◦ A⃗

)
− ∆A⃗,

where A⃗ is an arbitrary vector field, and where ∆ is the vector Laplace operator⁵. Applying this
identity to Equation 2.56, we obtain

∇⃗
(
∇⃗ ◦ E⃗

)
− ∆E⃗ = −

∂
(
∇⃗ × (µH⃗ )

)
∂t

,

and into this, we substitute Equations 2.52 and 2.55, obtaining

∇⃗
(ρ
ε

)
− ∆E⃗ = − ∂

∂t

µ *,σ E⃗ + ε ∂E⃗∂t +-
 = −µ ∂(σ E⃗)∂t − µε ∂

2E⃗

∂t2
,

⁵In Cartesian coordinates, for x⃗ = ⟨x ,y,z⟩ and A⃗ = ⟨Ax (x⃗ ),Ay (x⃗ ),Az (x⃗ )⟩, the vector Laplace operator or the vector
Laplacian, denoted ∆A⃗ or ∇2A⃗, is expressed as ∆A⃗ :=: ∇2A⃗ := ⟨∆Ax ,∆Ay ,∆Az ⟩, where for a scalar field B = B (x⃗ ) in
Cartesian coordinates, the scalar Laplace operator, alternatively called the scalar Laplacian, of B⃗ is denoted either ∆B or
∇ ◦ ∇B, and is defined as ∆B :=: ∇ ◦ ∇B := ∂2B

∂x 2 +
∂2B
∂y2 +

∂2B
∂z2 .
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or, rearranging terms,

∆E⃗ = ∇⃗
(ρ
ε

)
+ µ
∂(σ E⃗)

∂t
+ µε
∂2E⃗

∂t2
.

Assuming that the charge density function ρ is identically zero, this reduces to the wave equation
for the electric field:

∆E⃗ = µ
∂(σ E⃗)

∂t
+ µε
∂2E⃗

∂t2
. (2.57)

In general, a first-order derivative term in a second-order wave equation corresponds to damping
or attenuation; the electromagnetic wave equation is no exception, as its first-order derivative term
accounts for the attenuation of the electromagnetic waves in media, where the conductivity σ de-
scribes the transformation of electromagnetic energy of the incident field into internal electrical
currents [64].

In three dimensions, where x⃗ = ⟨x ,y,z⟩ and E⃗ = ⟨Ex (x⃗ ,t ),Ey (x⃗ ,t ),Ez (x⃗ ,t )⟩, Equation 2.57
becomes 

∂2Ex
∂x 2 +

∂2Ex
∂y2 +

∂2Ex
∂z2

∂2Ey
∂x 2 +

∂2Ey
∂y2 +

∂2Ey
∂z2

∂2Ez
∂x 2 +

∂2Ez
∂y2 +

∂2Ez
∂z2


= µσ


∂Ex
∂t
∂Ey
∂t
∂Ez
∂t

 + µε

∂2Ex
∂t 2
∂2Ey
∂t 2
∂2Ez
∂t 2


, (2.58)

which corresponds to three equations—one for each of the x , y, and z coordinates.
The equation for the magnetic field can be derived in an analogous way from Equations 2.18

and 2.13, and is expressed as

∆H⃗ = µ
∂ J⃗

∂t
+ µε
∂2H⃗

∂t2
,

but as no one- or two-dimensional force vector arising from the electric field interacts with electric
charges [65], we do not consider the magnetic field in our simulation.

Initial and Boundary Conditions for the Electromagnetic Wave Equations

Our boundary conditions model the situation where we have only one port of input for electromag-
netic energy, located at the left-hand boundaries of the one- and two-dimensional domains shown
in Figures 1.1 and 1.2, and denoted here as Γport. In particular, we assume that the value of the elec-
tromagnetic field on Γport is equal to the value of the incident field at that point; that is, on the left
boundary, the field value is the constant

Ei (x⃗ ,t ) :=
2
L

√
2P

(
ω · µ0
β

)
, x⃗ ∈ Γport, t ∈ [0,∞), (2.59)

where L is the length of the waveguide in m; P is the power supplied by the magnetron in W; ω is
the angular frequency of the incident waves in Hz (or 1

s ); µ0 = 4π × 10−7 N
A2 is the permeability of

free space; and β = π
L is the propagation constant of the incident waves in 1

m .
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We assume that, initially, the amplitude of the wave is zero except at the port-side boundary;
that is,

E⃗ (x⃗ ,0) =

0, x < Γport,
2
L

√
2P

(ω ·µ0
β

)
, x ∈ Γport.

(2.60)

At the right-hand boundary of the domain, which we denote Γwall, we may alternatively apply
two different conditions. The assumption that this boundary represents a waveguidewallmade from
a material that perfectly conducts electricity leads to the Dirichlet condition

E⃗ (x⃗ ,t ) ≡ 0, x⃗ ∈ Γwall, t ∈ [0,∞), (2.61)

whereas, alternatively, we may wish to simulate a real-life domain longer than our computational
scenario allows. In this case, we assume that the length of the actual domain is infinite, and that the
right-hand boundary of our computational domain allows full propagation with no reflection. It is
this scenario that is simulated by the absorbing boundary condition [2], and in one dimension, this
condition is represented by

∂Ey

∂z

������z=L= −
1
c

∂Ey

∂t

������z=L, t ∈ [0,∞), (2.62)

where the use of variable z and electric field Ey is explained in Section 2.4 and shown in Figure 2.3.
For a general two-dimensional problem, no exact absorbing boundary condition exists, but we

may write an approximation in the form of the second-order absorbing boundary condition, also
referred to as the Engquist-Majda absorbing boundary condition, which takes the following form
[2]:

∂2Ey

∂t∂z

������z=L≈ −
1
c

∂2Ey

∂t2

������z=L +
c

2

∂2Ey

∂x2

������z=L , t ∈ [0,∞), x ∈ [0,H ]. (2.63)

One- and Two-Dimensional Initial Boundary Value Problems

In one dimension, we follow the scenario in Figure 2.3, and we assume that the electric field E⃗
consists of awave propagating along thez-axis that has a nonzero component only in they-direction.
We therefore define E⃗ to be

E⃗ (x⃗ ,t ) = E⃗ (z,t ) = ⟨0,Ey (z,t ),0⟩,

and observe that in this case, the three equalities corresponding to the respective coordinates of
Equation 2.58 all reduce to a single equation, and we restate the initial and boundary conditions
given by Equations 2.60 and 2.62, respectively, to obtain the following initial boundary value prob-
lem.
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ℓ1 m1 m2 ℓ2 L
z

x

Figure 2.3: One-dimensional domain, where the interval [m1,m2] (red) is assumed to be filled by
thematerial undergoing sintering, [ℓ1,m1]∪ [m2, ℓ2] (blue) is assumed to be filled by insulation, and
[0, ℓ1) ∪ (ℓ2,L] (white) is assumed to be filled by air.

Problem 1. Find Ey (z,t ) that satisfies



∂2Ey
∂z2 −

µr εr
c2

∂2Ey
∂t 2 − µσ

∂Ey
∂t = 0, z ∈ (0,L), t ∈ (0,∞),

Ey (z,0) = 0, z ∈ (0,L]

Ey (0,t ) = 2
L

√
2P

(ω ·µ0
β

)
, t ∈ [0,∞),

∂Ey
∂z

������z=L= − 1
c
∂Ey
∂t

������z=L , t ∈ [0,∞),

(2.64)

where we have written µ = µr µ0 and ε = εr ε0, and have used the relation between the speed of light
and the permittivity and permeability of free space, i.e., c2 = 1/

√
µ0ε0.

In two dimensions, we assume the scenario in Figure 2.4, where plane waves propagate along the
z-axis with transverse variation in the x-direction. We assume that the electric field has a nonzero
component only in the y-direction, and so

E⃗ (x⃗ ,t ) = E⃗ (x ,z,t ) = ⟨0,Ey (x ,z,t ),0⟩.

In this scenario the three equalities corresponding to the respective coordinates of Equation 2.58 also
all reduce to a single equation, which is shown with its initial and boundary conditions. Boundary
conditions for the two transverse walls are derived from Equation 2.61.
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ℓ1 m1 m2 ℓ2 L

h2

k2

k1

h1

H

z

x

Figure 2.4: Two-dimensional domain, where the interval [m1,m2] × [k2,k1] (red) is assumed to
be filled by the material undergoing sintering, ([ℓ1, ℓ2] × [h2,h1]) \ ([m1,m2] × [k2,k1]) (blue) is
assumed to be filled by insulation, and ([0,L] × [0,H ]) \ ([ℓ1, ℓ2] × [h2,h1]) (white) is assumed to be
filled by air.

Problem 2. Find Ey (x ,z,t ) that satisfies



∂2E⃗y
∂x 2 +

∂2E⃗y
∂z2 −

µr εr
c2

∂2E⃗y
∂t 2 − µ

∂(σ E⃗y )
∂t = 0, z ∈ (0,L), x ∈ (0,H ), t ∈ (0,∞)

Ey (x ,z,0) = 0, (x ,z) ∈ [0,H ] × (0,L],

Ey (x ,0,t ) = 2
L

√
2P

(ω ·µ0
β

)
, x ∈ [0,H ], t ∈ [0,∞),

∂2Ey
∂t∂z

������z=L≈ − 1
c
∂2Ey
∂t 2

������z=L+ c
2
∂2Ey
∂x 2

������z=L, x ∈ [0,H ], t ∈ (0,∞),

Ey (0,z,t ) = Ey (H ,z,t ) = 0, z ∈ (0,L), t ∈ [0,∞).

(2.65)

Nondimensionalized Initial Boundary Value Problems

We now proceed to nondimensionalize Problems 1 and 2 using the method proposed in [9]. Al-
though we use the dimensional Problems 1 and 2 with the numerical solvers described in Chap-
ter 7, we present the nondimensionalized versions here for completeness. In Table 2.2, we provide
the dimensions of the quantities involved in Equation 2.64, along with typical units and names for
reference.

In order to nondimensionalize the problem, we transform the variables and functions into di-
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Symbol Name Units Dimensions
Ey (z,t ) electric field Vm−1 ML T −3I −1

z space variable m L
t time variable sec T
c speed of light m·sec−1 L T −1

µr :=
µ
µ0

relative permeability 1 1
µ0 permeability of free space Hm−1 ML T −2I −2

εr := ε
ε0

relative permittivity 1 1
σ electrical conductivity Sm−1 M −1L −3T 3I 2

Table 2.2: Dimensions of physical quantities in Equations Equation 2.64 and Equation 2.65.

mensionless quantities through the judicious choice of scales. We let

ẑ :=
z

L∗
, t̂ :=

t

T∗
, and Êy (ẑ, t̂ ) :=

Ey (z,t )

E∗
, (2.66)

whereL∗ is a constant with fundamental dimensionL ,T∗ is a constant with fundamental dimension
T , and E∗ is a constant with fundamental dimension ML T −3I −1. Values for L∗,T∗, and E∗ will
be chosen after a cursory analysis of the result of applying these scales to Problem 1, as follows.

We consider the time and spatial derivatives involved in Equation 2.64, and rewrite them in
terms of the dimensionless variables by use of the chain rule:

∂Ey

∂t
=
∂

∂t

(
E∗Êy (ẑ, t̂

)
= E∗
∂û

∂t
= E∗
∂Êy

∂t̂

dt̂
dt
=

E∗
T∗

∂Êy

∂t̂
,

∂Ey

∂z
=
∂

∂z

(
E∗Êy (ẑ, t̂

)
= E∗
∂Êy

∂z
= E∗
∂Êy

∂ẑ

dẑ
dz
=

E∗
L∗

∂Êy

∂ẑ
,

∂2Ey

∂t2
=
∂

∂t
*,E∗T∗
∂Êy

∂t̂
+- = E∗

T∗

∂2Êy

∂t∂t̂
=

E∗
T∗

∂2Êy

∂t̂2
dt̂
dt
=

E∗
T 2
∗

∂2Êy

∂t̂2
,

∂2Ey

∂z2
=
∂

∂z
*,E∗L∗
∂Êy

∂ẑ
+- = E∗

L∗

∂2Êy

∂z∂ẑ
=

E∗
L∗

∂2Êy

∂ẑ2
dẑ
dz
=

E∗
L2∗

∂2Êy

∂ẑ2
.

(2.67)

Substituting Equations 2.66 and 2.67 into Equation 2.64, we obtain the governing equation

E∗
L2∗

∂2Êy

∂ẑ2
− µr εrE∗

c2T∗

∂2Êy

∂t̂2
− µr µ0σE∗

T∗

∂Êy

∂t̂
= 0, ẑ ∈

(
0,

L

L∗

)
, t̂ ∈ (0,∞),

which simplifies to

∂2Êy

∂t̂2
− T 2

∗ c
2

L2∗µr εr

∂2Êy

∂ẑ2
+
T∗c2µ0σ

εr

∂Êy

∂t̂
= 0, ẑ ∈

(
0,

L

L∗

)
, t̂ ∈ (0,∞). (2.68)
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This simplified version suggests that an appropriate time scale may be the choice

T∗ :=
L∗
c

√
µr εr = L∗

√
µr µ0εr ε0 = L∗

√
µε =:

L∗
vp
, (2.69)

where we have used c = 1√
ε0µ0

, together with the definitions of the relative permittivity and perme-
ability, along with the definition of 1

vp
:=
√
µε as the phase velocity of the wave propagating through

the media with permittivity ε and permeability µ [66]. This choice of scale has physical meaning:
L∗
vp

is the time it takes for a wave to propagate the entire length of the spatial domain.
Since it is sometimes convenient to choose a spatial scale over which the nondimensionalized

space domain becomes the interval [0,1], Equation 2.68 also suggests a choice of space scaling con-
stant. For the computational domain to be [0,1], we should take

L∗ := L. (2.70)

Equation 2.68 does not, however, suggest anything about an appropriate choice for the scale on the
electric field. We may, instead, look to the initial and boundary conditions in Problem 1 for some
guidance. Using Equation 2.66, the initial condition becomes

Êy (ẑ,0) = 0, ẑ ∈ (0,1], (2.71)

and the boundary conditions become

Êy (0, t̂ ) =
2

E∗L

√
2P

(
ωµ0
β

)
, t̂ ∈ [0,∞),

∂Êy

∂ẑ

�����ẑ=1= −vpc ∂Êy∂t̂
�����ẑ=1, t̂ ∈ (0,∞).

(2.72)

It is also sometimes convenient to choose a scale for the electric field over which a nondimensional
constant in the boundary and initial conditions may become identically 1. For this, we observe the
left-hand boundary condition, and set

E∗ := E⃗inc
���z=0= L

2

√
β

2Pωµ0
, (2.73)

so that, using Equations 2.68–2.73, Problem 1 reduces to the following.

Problem 3. Find Êy (ẑ, t̂ ) that satisfies

∂2Êy
∂t̂ 2 −

∂2Êy
∂ẑ2 +

Lσ
εvp

∂Êy
∂t̂ = 0, ẑ ∈ (0,1) , t̂ ∈ (0,∞),

Êy (ẑ,0) = 0, ẑ ∈ (0,1],

Êy (0, t̂ ) = 1, t̂ ∈ [0,∞),
∂Êy
∂ẑ

���ẑ=1= −vpc ∂Êy
∂t̂

���ẑ=1, t̂ ∈ (0,∞).

(2.74)
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For the two-dimensional problem, we use a similar process to nondimensionalize the governing
equation, initial condition, and boundary conditions in Problem 2. Consider the scales on time,
length, and temperature shown in Equations 2.69, 2.70, and 2.73, respectively; setting one more
dimensionless variable x̂ := x

L∗
and applying these to Equation 2.65 results in the following problem.

Problem 4. Find Êy (x̂ , ẑ, t̂ ) that satisfies



∂2Êy
∂t̂ 2 −

∂2Êy
∂x̂ 2 −

∂2Êy
∂ẑ2 +

Lσ
εvp

∂Êy
∂t̂ = 0, x̂ ∈

(
0, HL

)
, ẑ ∈ (0,1) , t̂ ∈ (0,∞),

Êy (x̂ , ẑ,0) = 0, x̂ ∈
[
0, HL

]
, ẑ ∈ (0,1],

Êy (x̂ ,0, t̂ ) = 1, x̂ ∈
[
0, HL

]
, t̂ ∈ [0,∞),

Êy (0, ẑ, t̂ ) = Êy
(
H
L , ẑ, t̂

)
= 0, ẑ ∈ (0,1), t̂ ∈ [0,∞),

∂2Êy
∂t̂∂ẑ

���ẑ=1≈ −vpc ∂2Êy
∂t̂ 2

���ẑ=1+ c
2vp

∂2Êy
∂x̂ 2

���ẑ=1, x̂ ∈
[
0, HL

]
, t̂ ∈ (0,∞).

(2.75)

2.5 Time-Harmonic Electromagnetic Waves in theWaveguide

This section follows the procedure in [67] of deriving the system of equations to solve in a resonant
cavity under the assumption of a time-harmonic electric and magnetic field. This assumption is
valid because the electric and magnetic fields are induced by oscillating charges that produce inci-
dent waves of a fixed angular frequency. To this end, we introduce the dimensionless variables and
parameters

ω
√
µ0ε0x → x ;

√
µ0/ε0H⃗ → H⃗ ; E⃗ → E⃗,

where ε0 and µ0 are the permittivity and permeability of free space, and their values are given in the
List of Physical Constants.

We consider electromagnetic waves in a waveguide of cross section Ω, which is assumed to be
a two-dimensional domain bounded by a smooth curve Γ, but which is otherwise arbitrary. The
waveguide is assumed to be parallel to the z-axis in the cartesian coordinate system where x⃗ =
⟨x ,y,z⟩. In this case, the homogeneous system of time-harmonic Maxwell’s equations written in
the normalized form, with E⃗ representing only the spatially dependent quantity in the expression
E⃗ (x⃗ ,t ) = E⃗ (x⃗ )e−jωt and with H⃗ representing only the spatially dependent quantity in H⃗ (x⃗ ,t ) =

H⃗ (x⃗ )e−jωt , is given by:

∇⃗ × E⃗ = −iH⃗ , x⃗ ∈ Σ,
∇⃗ × H⃗ = iε E⃗,
E⃗ (x⃗ ) = ⟨Ex (x⃗ ′) Ey (x⃗

′) Ez (x⃗
′)⟩eiγ z ,

H⃗ (x⃗ ) = ⟨Hx (x⃗
′) Hy (x⃗

′) Hz (x⃗
′)⟩eiγ z ,

x⃗ ′ = (x ,y),
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with the boundary conditions for the tangential electric field components on the perfectly conduct-
ing surfaces of the waveguide given by

E⃗τ
���Γwall = 0. (2.76)

Written componentwise, these are equivalent to the system

∂H3

∂x2
− iγH2 = iεE1,

∂E3
∂x2
− iγE2 = −iεH1, iγH1 −

∂H3

∂x1
= iεE2,

iγE1 −
∂E3
∂x1
= −iεH2,

∂H2

∂x2
− ∂H1

∂x2
= iεE3,

∂E2
∂x1
− ∂E1
∂x2
= −iεH3.

Combining these and setting k̃2 := ε − γ 2, we obtain

E1 =
i

k̃2

(
γ
∂E3
∂x1
− ∂H3

∂x2

)
, E2 =

i

k̃2

(
γ
∂E3
∂x2
− ∂H3

∂x1

)
,

H1 =
i

k̃2

(
ε
∂E3
∂x2
+ γ
∂H3

∂x1

)
, H2 =

i

k̃2

(
−ε ∂E3
∂x1
+ γ
∂H3

∂x2

)
,

which is valid when γ 2 , ε2 and γ 2 , ε2.
From Equation 2.76, we note that the field of a normal wave can be expressed via two scalar

functions
Π(x1,x2) = E3 (x1,x2), Ψ(x1,x2) = H3 (x1,x2).

For the TE-polarization, the particular solutions [E⃗,H⃗ ] are found by setting E3 ≡ 0, whereas
for the TM-polarization, the solutions are found by setting H3 ≡ 0.

When we set γ = 0 in Equation 2.5, this is equivalent to removing the dependence of the elec-
tric and magnetic fields on the longitudinal coordinate x3, and in this case, the two fundamental
polarizations provide two separate problems for the sets of component functions—in the case of
TE-polarization, we solve for component functions [E1,E2,H3], and in the case of TM-polarization,
we solve for component functions [H1,H2,E3]. In this way, the problem on normal waves is reduced
to a boundary eigenvalue problem for functions Π and Ψ:

Problem 5. Find γ ∈ C such that there exist nontrivial solutions of the Helmholtz equations

∆Π + k̃2Π = 0, x⃗ ′ = (x1,x2) ∈ Ω,

∆Ψ + k̃2Ψ = 0, k̃2 = ε − γ 2,

satisfying the boundary conditions on Γ0

Π
�����Γ0= 0,

∂Ψ

∂n

������Γ0= 0.
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0 • // • L

Figure 2.5: One-dimensional domain on which Helmholtz equation is described.

Theγ for which there existΠ andΨ satisfying the above conditions are referred to as eigenvalues
of normal waves in a waveguide filled by a homogeneous substance. Again, here, ε is the permittivity
of the matter filling the waveguide, and k̃2 = ε − γ 2. Here, Ω is the cross section of the waveguide,
and Γ is the smooth curve that bounds Ω. We assume Γ0 ⊂ Γ. The waveguides that we consider are,
nevertheless, not filled homogeneously.

For a one-dimensional domainwhere z ∈ [0,L], as in Figure 2.5, where the electric field depends
on the space variable z and the time variable t , and exists only in the x-direction, the assumption of
a time-harmonic electric field leads to the phasor representation

E⃗ (z,t ) =
⟨
Re

{
E (z)eiωt

}
,0,0

⟩
, (2.77)

where E (z) satisfies the Helmholtz equation

∂

∂z

(
µ−1
∂E (z)
∂z

)
= µω2εE (z), (2.78)

derived from Problem 5.
In two dimensions, the Helmholtz equation describes the x-component of the electric field that

varies in the yz-plane and with time:

E⃗ (x ,z,t ) =
⟨
Re

{
E (x ,z)eiωt

}
,0,0

⟩
, (2.79)

where E (y,z) satisfies (
∂2E (x ,z)
∂z2

+
∂2E (x ,z)
∂x2

)
= µ2ω2εE (x ,z), (2.80)

assuming that µmay be taken outside of the space derivatives, andwhere ε and µ refer to the absolute
permittivity and permeability, respectively, rather than the relative permittivity and permeability εrel
and µrel.

In the two-dimensional case, the boundaries representing transverse walls are assumed to satisfy
the perfect electric conducting condition in Equation 2.61, which implies

E (x ,z)���(x,z )∈Γwall= 0. (2.81)

For both the one- and two-dimensional problems, the right-hand boundary of the computa-
tional domain is assumed to represent the far-side wall in a physical scenario, and so either the
absorbing boundary condition, or the perfect electric conductor condition represents a physically
plausible scenario. For our simulations, we apply the perfect electric conductor condition from
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Equation 2.81. In both one- and two-dimensional scenarios, the left-hand boundary is assumed to
represent the port-side wall in a physical scenario, and so we apply the Dirichlet condition

E (x ,z)���(x,z )∈Γwall= Einc, (2.82)

where Einc is the value of the incident field at the port.



Chapter 3

TheThermal Problem

The process of sintering is driven by the addition of thermal energy to a system. In this chapter, we
derive a way of modelling temperature within the sample under certain assumptions on the domain
and the nature of the solutions, and we discuss the limitations of our model in its physical context.

3.1 Physical Derivation of Heat Conduction

The problem of heat conduction within media begins with energy considerations. The law of con-
servation of energy, applied to the specific case of thermal energy in an arbitrary volume V is as
follows.

Law 1 (Conservation ofThermal Energy [68]). The rate of change of thermal energy inV with respect
to time is equal to the net flow of energy across the surface ofV , plus the rate at which heat is generated
withinV .

This statement involves the consideration of three quantities, which we define in the following
way. Let x⃗ := ⟨x ,y,z⟩ denote a point within V , let ρ := ρ (x⃗ ,Θ) denote the density of the matter
withinV , whereΘ is the work of sintering parameter discussed in Section 4.3, and let e (x⃗ ,t ) denote
the specific internal energy of the solid; i.e., the energy per unit mass. Then the amount of thermal
energy inV is given by the expression

(Total thermal energy withinV ) =
∫
V
ρ (x⃗ ,Θ)e (x⃗ ,t ) dV .

For many materials, over fairly wide but not large temperature ranges, the function e (x⃗ ,t ) depends
nearly linearly on the temperature [68]. If we denote temperature by the function u (x⃗ ,t ), then the
amount of thermal energy inV becomes

(Total thermal energy withinV ) =
∫
V
ρ (x⃗ ,Θ)cpu (x⃗ ,t ) dV , (3.1)

65
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where cp is the constant of proportionality referred to as the specific heat capacity. The specific heat
capacity depends on the material fillingV , and is defined as the amount of energy required to raise
a unit mass of this material by one unit in temperature [69].

From this expression, we may derive the one defined in Law 1 by differentiating with respect to
time:

(Rate of change of thermal energy withinV ) =
d
dt

[∫
V
ρ (x⃗ ,Θ)cpu (x⃗ ,t ) dV

]
=

∫
V

∂

∂t

[
ρ (x⃗ ,Θ)cpu (x⃗ ,t )

]
dV

=

∫
V
ρ (x⃗ ,Θ)cp

∂u (x⃗ ,t )

∂t
+
∂ρ (x⃗ ,Θ)

∂t
cpu (x⃗ ,t ) dV ,

(3.2)

assuming the hypotheses of the Leibniz theorem, which allows us to differentiate under the integral
only when both u⃗ (x⃗ ,t ), ∂u (x⃗,t )

∂t , and ∂ρ (x⃗,Θ)
∂t are continuous with respect to t .

To obtain mathematical expressions for the other two terms defined in Law 1, we first assume
that the arbitrary volume V is bounded by the piecewise smooth surface B, and let q⃗ := q⃗(x⃗ ,t ) :=
⟨q1 (x⃗ ,t ),q2 (x⃗ ,t ),q3 (x⃗ ,t )⟩ denote the heat flux vector. Then the amount of heat per unit time flowing
intoV across B is given by the expression

(Thermal energy flowing intoV ) = −
∮
B
q⃗ ◦ n̂ dS ,

where n̂ denotes a unit vector pointing outward normally from B on the area element dS at the point
x⃗ . The negative sign in front of the surface integral accounts for the concept that if more heat flows
out ofV than intoV , the energy inV decreases.

Now, under the assumption that B is piecewise smooth,V is compact, and q⃗(x⃗ ,t ) is continuously
differentiable with respect to each of its spatial variables, we may apply the Divergence Theorem1 to
obtain

(Thermal energy flowing intoV ) = −
∫
V
∇ ◦ q⃗(x⃗ ,t ) dV . (3.3)

We may use Fourier’s law of conduction to write q⃗ in terms of the temperature. Fourier’s law
accounts for two facts that are easily observed in nature: first, that heat flows from areas of higher
temperature to areas of lower temperature, and second, that the rate of heat flow from a hot area to a
cold one depends on the difference in temperature between those two areas, with a greater temper-
ature difference yielding a faster rate of heat transfer. In order to cast Fourier’s law in mathematical
notation, we let ŝ represent a unit vector, pointing in any direction, with its tail at x⃗ . Then the rate
of heat flow at x⃗ in the direction of ŝ is given by q⃗ ◦ ŝ , and the rate of change of temperature at x⃗ in
the direction of ŝ is given by the directional derivative Dŝ (u) :=: ∇ŝ :=: ∂u

∂ŝ = ∇u ◦ ŝ . With these
notions in place, we may recast Fourier’s law as follows.

1See Footnote 1 on Page 37 for the statement of the Divergence Theorem.
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Law 2 (Fourier’s Law of Conduction [68]). The rate of heat transfer through a point x⃗ in the direction
of an arbitrary unit vector ŝ is proportional to the rate of change in temperature at x⃗ in the direction of
ŝ , i.e.,

q⃗ ◦ ŝ = −k∇u ◦ ŝ,

and as the direction ŝ is arbitrary, the temperature flux must be generally proportional to the temper-
ature gradient, i.e.,

q⃗(x⃗ ,t ) = −k∇u (x⃗ ,t ).

The constant k of proportionality in Law 2 is referred to as the thermal conductivity, and is a
property of the matter that occupies V . In general, the matter in V may be inhomogeneous and
anisotropic, in which case k = k (x⃗ ) may be either a scalar or tensor function of position. However,
we consider the case of homogeneous, isotropic media. A detailed discussion of the physical proof
of Fourier’s law, and how to measure k for a variety of materials, may be found in [70].

Using Law 2, Equation 3.3 may be rewritten as

(Thermal energy flowing intoV ) =
∫
V
k∇ ◦ ∇u (x⃗ ,t ) dV =:

∫
V
k∆u (x⃗ ,t ) dV , (3.4)

using the symbol ∆ to denote the scalar Laplace operator2.
Finally, heat may also be generated within V by various physical mechanisms, of which we as-

sume a priori knowledge. We account for these by letting f (x⃗ ,t ) denote the rate at which heat is
produced by these sources of sinks per unit volume, and we refer to the following expression as the
corresponding source term, which is the final quantity of interest from Law 1:

(Rate at which heat is generated withinV ) =
∫
V
f (x⃗ ,t ) dV . (3.5)

Using Equations 3.2, 3.4, and 3.5, Law 1 may be recast mathematically as∫
V
ρ (x⃗ ,Θ)cp

∂u (x⃗ ,t )

∂t
+
∂ρ (x⃗ ,Θ)

∂t
cpu (x⃗ ,t ) dV =

∫
V
k∆u (x⃗ ,t ) dV +

∫
V
f (x⃗ ) dV ,

and since all integrals are over the same volume, we obtain∫
V
ρ (x⃗ ,Θ)cp

∂u (x⃗ ,t )

∂t
+
∂ρ (x⃗ ,Θ)

∂t
cpu (x⃗ ,t ) − k∆u (x⃗ ,t ) − f (x⃗ ,t ) dV = 0.

Because the volumeV was initially supposed to be arbitrary, we conclude that

ρ (x⃗ ,Θ)cp
∂u (x⃗ ,t )

∂t
+
∂ρ (x⃗ ,Θ)

∂t
cpu (x⃗ ,t ) − k∆u (x⃗ ,t ) − f (x⃗ ,t ) = 0,

2 The scalar Laplace operator, also known as the scalar Laplacian, is as defined in Footnote 5 on Page 54; that is, for
B = B (x⃗ ), ∆B :=: ∇ ◦ ∇B := ∂2B

∂x 2 +
∂2B
∂y2 +

∂2B
∂z2 .
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Applying the chain rule to the partial derivative in the second term, we obtain

cpu (x⃗ ,t )
∂ρ (x⃗ ,Θ)

∂t
= cpu (x⃗ ,t )

∂ρ (x⃗ ,Θ)

∂Θ(t ,u)

∂Θ(t ,u)

∂t

= cpu (x⃗ ,t )
∂ρ (x⃗ ,Θ)

∂Θ(t ,u)

∂

∂t

[∫ t

0

1

u (x⃗ ,τ )
exp

(
−Q

Ru (x⃗ ,τ )

)
dτ

]
= cpu (x⃗ ,t )

∂ρ (x⃗ ,Θ)

∂Θ(t ,u)

[
1

u (x⃗ ,τ )
exp

(
−Q

Ru (x⃗ ,τ )

)]
= cp
∂ρ (x⃗ ,Θ)

∂Θ(t ,u)
exp

(
−Q

Ru (x⃗ ,τ )

)
.

Because the activation energyQ is, for our materials, so large in comparison with the universal gas
constant R, and because the densification of materials typically occurs relatively slowly, this term
becomes small enough to neglect in our consideration of the thermal problem. Neglecting this
term, the heat equation becomes

ρ (x⃗ ,Θ)cp
∂u (x⃗ ,t )

∂t
− k∆u (x⃗ ,t ) − f (x⃗ ,t ) = 0, (3.6)

which is sometimes written
∂u (x⃗ ,t )

∂t
− κ∆u (x⃗ ,t ) = F (x⃗ ,t ),

where κ := k
ρ (x⃗ )cp

is referred to as the thermal diffusivity, and F (x⃗ ,t ) := 1
ρ (x⃗ )cp

f (x⃗ ,t ).
Equation 3.6 is referred to as the heat equation, but also appears in a great variety of problems

in mathematical physics, e.g., the concentration of diffusing material, the motion of tidal waves in
long channels, transmission in electrical cables, and unsteady boundary layers in viscous fluid flows
[71].

3.2 Source Term

The physical scenario we consider in the microwave heating problem is one where the source of
heat in the load is the power dissipated by the changing electric field. This stands in contrast to
the heating scenario in a conventional oven, where the mechanism responsible for adding thermal
energy to the load is convection; in the microwave scenario, heat does not enter the load through
its boundaries due to surrounding hot air, but rather is generated directly within the interior of the
object [72]. Therefore, in this scenario, the source term f (x⃗ ,t ) must account for dissipated power.
The time-averaged power dissipated into the domain is represented by the quantity

Pdiss = −
1
2
Re

{∮
S
E⃗ × H⃗ ∗ ◦ n̂ dS

}
, (3.7)
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and as discussed in Section 2.2, this integral may be rewritten under the assumptions that the mag-
netic field does not affect the course of heating, and that the electric field is harmonic in time. In
this case, Equations 2.44 and 2.39 may be used to rewrite Equation 3.7 as

Pavg =
1
2
ωε ′′ |E⃗ |2 = ωε ′′ |E⃗ |2avg. (3.8)

It is this quantity that is used as the source term f (x⃗ ,t ) in Equation 3.6, so that for the case of
microwave heating,

ρ (x⃗ )c
∂u (x⃗ ,t )

∂t
− k∆u (x⃗ ,t ) = ωε ′′ |E⃗ |2avg. (3.9)

3.3 Initial and Boundary Conditions

The initial condition applied to the situation of microwave sintering is that the entire domain starts
at room temperature; that is,

u (x⃗ ,0) = T0, (3.10)

whereT0 is the constant room temperature.
The heat equation can be used with various kinds of boundary conditions tomodel certain phys-

ical scenarios. Here, as in Section 2.5, we assume a three-dimensional domain that is bounded by a
smooth, two-dimensional curve Γ, but which is otherwise arbitrary.

Common boundary conditions for simple scenarios include combinations of the Dirichlet con-
dition, where the boundary is held at a fixed temperature:

u (x⃗ ,t )���x⃗ ∈Γ = G (x⃗ ,t ) (3.11)

whereG (x⃗ ,t ) specifies the temperature at which the boundary is fixed, and the Neumann condition,
where the flux is held fixed on the boundary:

∇u (x⃗ ,t )���x⃗ ∈Γ◦ n̂ = H (x⃗ ,t ), (3.12)

where n̂ represents the unit vector pointing outward from Ω, normal to Γ at x⃗ , and where H (x⃗ ,t )
specifies the heat flux at the boundary. For our case, we use Newton’s law of cooling, stated below
and confirmed by numerous physical experiments over centuries [73], to derive a mixed boundary
condition.

Law 3 (Newton’s Law of Cooling [73]). The rate of change of temperature of an object is proportional
to the difference between its own temperature and the ambient temperature.

To state Newton’s law of cooling quantitatively, we let q⃗(x⃗ ) represent the heat flux vector, and
we defineTamb as the ambient temperature (typically, this is the same asT0 in the initial condition).
Then Newton’s law of cooling states

q⃗(x⃗ ,t ) ◦ n̂ = h (
u (x⃗ ,t ) −Tamb

)
,
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where, again, n̂ is the unit vector pointing outward from Ω, normal to Γ at x⃗ , and where h is a
constant of proportionality with dimensions M −1. Applying Law 2 to this formulation, we obtain

−k∇u (x⃗ ,t ) ◦ n̂ = h (
u (x⃗ ,t ) −Tamb

)
,

from which we rewrite the proportionality constant h̃ := h
k to obtain the boundary condition

∇u (x⃗ ,t ) ◦ n̂ = −h̃ (
u (x⃗ ,t ) −Tamb

)
. (3.13)

3.4 One- and Two-Dimensional Initial Boundary Value Problems

In one space dimension, we consider the spatial variable x⃗ = ⟨0,0,z⟩, where z ∈ [ℓ1, ℓ2] as shown in
Figure 2.3, and the time variable t ∈ [0,∞). Note that we are interested only in modelling tempera-
ture within the insulation and the load, and so we exclude [0, ℓ1)∪ (ℓ2,L] from the spatial domain. In
this case, Equation 3.6, with the source term in Equation 3.9 and the initial and boundary conditions
in Equations 3.10 and 3.13, respectively, reduces to the following initial boundary value problem.

Problem 6. Find u (z,t ) that satisfies

ρcp
∂u
∂t − k

∂2u
∂z2 = ωε

′′ |E⃗ |2avg, z ∈ (ℓ1, ℓ2), t ∈ (0,∞),

u (z,0) = T0, x ∈ [ℓ1, ℓ2],
∂u
∂z

���z=ℓ1 = h̃ (u (ℓ1,t ) −Tamb) , t ∈ (0,∞),

∂u
∂z

���z=ℓ2 = −h̃ (u (ℓ2,t ) −Tamb) , t ∈ (0,∞).

(3.14)

In two space dimensions, we consider the spatial variable x⃗ = ⟨x ,0,z⟩, where z ∈ [ℓ1, ℓ2] and
x ∈ [h1,h2] as shown in Figure 2.4, and the time variable t ∈ [0,∞). Note that, again, we are
interested in modelling temperature within only the insulation and load, so we exclude the other
regions from the spatial domain. In this case, Equation 3.6, with the source term in Equation 3.9
and the initial and boundary conditions in Equations 3.10 and 3.13, respectively, reduces to the
following initial boundary value problem.

Problem 7. Find u (x ,z,t ) that satisfies

ρcp
∂u
∂t − k

∂2u
∂x 2 − k ∂2u

∂z2 = ωε
′′ |E⃗ |2avg, z ∈ (ℓ1, ℓ2), x ∈ (h1,h2), t ∈ (0,∞),

u (x ,z,0) = T0, z ∈ [ℓ1, ℓ2], x ∈ [h1,h2],
∂u
∂z

����z=ℓ1= h̃ (u (x , ℓ1,t ) −Tamb) , x ∈ [m1,m2], t ∈ (0,∞),

∂u
∂z

����z=ℓ2= −h̃ (u (x , ℓ2,t ) −Tamb) , x ∈ [m1,m2], t ∈ (0,∞),

∂u
∂x

����x=m1

= h̃ (u (m1,z,t ) −Tamb) , z ∈ [ℓ1, ℓ2], t ∈ (0,∞),

∂u
∂x

����x=m2

= −h̃ (u (m2,z,t ) −Tamb) , z ∈ [ℓ1, ℓ2], t ∈ (0,∞).

(3.15)

Analytical and numerical techniques for solving and approximating the solutions of these prob-
lems will be discussed in Chapter 8.
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3.5 Nondimensionalized Initial Boundary Value Problems

In this section, we nondimensionalize Problems 6 and 7 using the method proposed in [9]. Though
the problems whose computer simulation routines are discussed in Chapter 8 are the dimensional
ones in Problems 6 and 7, the nondimensionalization process is presented here for completeness.

One-Dimensional Problem

In Table 3.1, we provide the dimensions of the quantities involved in Equation (3.14), along with
typical units and names for reference. In order to nondimensionalize the problem, we transform
the variables and functions into dimensionless quantities through the judicious choice of scales. We
let

ẑ :=
z − λ∗
L∗
, t̂ :=

t

T∗
, û (ẑ, t̂ ) :=

u (z,t )

U∗
, and q̂(ẑ, t̂ ) :=

q(z,t )

U∗
, (3.16)

where q(z,t ) := ωε ′′ |E⃗ |2avg is the source term, L∗ and λ∗ are constants with fundamental dimension
L ,T∗ is a constant with fundamental dimension T , andU∗ is a constant with fundamental dimen-
sionΘ. Values for L∗,T∗, andU∗ will be chosen after a cursory analysis of the result of applying these
scales to Problem 6, as follows.

Symbol Name Units Dimensions
u (z,t ) temperature K Θ

z space variable m L
t time variable sec T
ρ mass density gm−3 ML −3

cp specific heat capacity JK−1 L 2T −2Θ−1

k thermal conductivity Wm−1K−1 ML T −3Θ−1

ω angular frequency sec−1rad T −1

ε electrical permittivity Fm−1 T 4I 2L −2M −1

E⃗ electric field Vm−1 ML T −3I −1

Table 3.1: Dimensions of physical quantities in Equations 3.14 and 3.15.

We consider the time and spatial derivatives involved in Equation 3.14, and rewrite them in
terms of the dimensionless variables by use of the chain rule:

∂u

∂t
=
∂

∂t

(
U∗û (ẑ, t̂

)
= U∗

∂û

∂t
= U∗

∂û

∂t̂

dt̂
dt
=
U∗
T∗

∂û

∂t̂
∂u

∂z
=
∂

∂z

(
U∗û (ẑ, t̂

)
= U∗

∂û

∂z
= U∗

∂û

∂ẑ

dẑ
dz
=
U∗
L∗

∂û

∂ẑ

∂2u

∂z2
=
∂

∂z

(
U∗
L∗

∂û

∂ẑ

)
=
U∗
L∗

∂2û

∂z∂ẑ
=
U∗
L∗

∂2û

∂ẑ2
dẑ
dz
=
U∗
L2∗

∂2û

∂ẑ2
.

(3.17)
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Substituting Equations 3.16 and 3.17 into Equation 3.14, we obtain the governing equation

U∗k

L2∗

∂2û

∂ẑ2
−
U∗ρcp
T∗

∂û

∂t̂
= U∗q̂(ẑ, t̂ ), ẑ ∈

[
ℓ1 − λ∗
L∗
,
ℓ2 − λ∗
L∗

]
, t ∈ (0,∞),

which simplifies to

∂û

∂t̂
− T∗k

L2∗ρcp

∂2û

∂ẑ2
=

T∗
ρcp

q̂(ẑ, t̂ ), ẑ ∈
[
ℓ1 − λ∗
L∗
,
ℓ2 − λ∗
L∗

]
, t ∈ (0,∞) (3.18)

This simplified version suggests that an appropriate time scale may be the choice

T∗ :=
L2∗ρcp
k
, (3.19)

which indeed has the correct dimensions of T . Since it is sometimes convenient to choose a spatial
scale over which the nondimensionalized space domain becomes the interval [0,1], Equation 3.18
also suggests a choice of space scaling constants. For the computational domain to be [0,1], we
should take

λ∗ := ℓ1, and L∗ := ℓ2 − ℓ1. (3.20)
Equation 3.18 does not, however, suggest anything about an appropriate choice for the temperature
scale. We may, instead, look to the initial and boundary conditions in Problem 6 for some guidance.
Using Equation 3.16, the initial condition becomes

û (ẑ,0) =
T0
U∗
, ẑ ∈

[
ℓ1 − λ∗
L∗
,
ℓ2 − λ∗
L∗

]
= [0,1], (3.21)

and the boundary conditions become

∂û

∂ẑ
���ẑ=0 = h̃L∗

(
û (0, t̂ ) − Tamb

U∗

)
, t̂ ∈ (0,∞),

∂û

∂ẑ
���ẑ=1 = −h̃L∗

(
û (1, t̂ ) − Tamb

U∗

)
, t̂ ∈ (0,∞).

(3.22)

It is, again, sometimes convenient to choose a temperature scale over which a nondimensional con-
stant in the boundary and initial conditions may become identically 1. Since it is typically the case
thatT0 ≡ Tamb, we may let

U∗ := T0, (3.23)
so that, using Equations 3.18–3.23, Problem 6 reduces to the following.

Problem 8. Find a function û (ẑ, t̂ ) that satisfies the following:

∂û
∂t̂ −

∂2û
∂ẑ2 =

(ℓ2−ℓ1)2
k q̂(ẑ, t̂ ), ẑ ∈ (0,1) , t ∈ (0,∞),

û (ẑ,0) = 1, ẑ ∈ [0,1] ,
∂û
∂ẑ

���ẑ=0 = h̃(ℓ2 − ℓ1) (û (0, t̂ ) − 1) , t̂ ∈ (0,∞),
∂û
∂ẑ

���ẑ=1 = −h̃(ℓ2 − ℓ1) (û (1, t̂ ) − 1) , t̂ ∈ (0,∞).

(3.24)
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Two-Dimensional Problem

For the two-dimensional problem, we use a similar process to nondimensionalize the governing
equation, initial condition, and boundary conditions in Problem 7. Consider the scales on time,
length, and temperature shown in Equations 3.19, 3.20, and 3.23, respectively; setting one more
dimensionless variable x̂ := x

L∗
and applying these to Equation 3.15 results in the following problem.

Problem 9. Find a function û (x̂ , ẑ, t̂ ) that satisfies the following:



∂û
∂t̂ −

∂2û
∂ẑ2 −

∂2û
∂x̂ 2 =

(ℓ2−ℓ1)2
k q̂(ẑ, t̂ ), ẑ ∈ (0,1) , x̂ ∈

(
h1−ℓ1
ℓ2−ℓ1 ,

h2−ℓ1
ℓ2−ℓ1

)
t ∈ (0,∞),

û (ẑ, x̂ ,0) = 1, ẑ ∈ [0,1] , x̂ ∈
[
h1−ℓ1
ℓ2−ℓ1 ,

h2−ℓ1
ℓ2−ℓ1

]
,

∂û
∂ẑ

���ẑ=0 = h̃(ℓ2 − ℓ1) (û (x̂ ,0, t̂ ) − 1) , x̂ ∈
[
h1−ℓ1
ℓ2−ℓ1 ,

h2−ℓ1
ℓ2−ℓ1

]
, t̂ ∈ (0,∞),

∂û
∂ẑ

���ẑ=1 = −h̃(ℓ2 − ℓ1) (û (x̂ ,1, t̂ ) − 1) , x̂ ∈
[
h1−ℓ1
ℓ2−ℓ1 ,

h2−ℓ1
ℓ2−ℓ1

]
, t̂ ∈ (0,∞),

∂û
∂x̂

���x̂=h1−ℓ1ℓ2−ℓ1
= h̃(ℓ2 − ℓ1)

(
û

(
h1−ℓ1
ℓ2−ℓ1 , ẑ, t̂

)
− 1

)
, ẑ ∈ [0,1] , t̂ ∈ (0,∞),

∂û
∂x̂

���x̂=h2−ℓ1ℓ2−ℓ1
= −h̃(ℓ2 − ℓ1)

(
û

(
h2−ℓ1
ℓ2−ℓ1 , ẑ, t̂

)
− 1

)
, ẑ ∈ [0,1] , t̂ ∈ (0,∞).

(3.25)



Chapter 4

Mechanical Deformation in the Course of
Sintering

Sintering is a process through which particulate materials undergo thermal treatment and change
their microstructure via granular growth, grain merging and neck formation, and growth of the
necks between particles. This microstructural change leads to altered effective material properties,
including density and strength, yet the medium undergoing sintering does not necessarily undergo
any phase changes, and may or may not be pressurized during sintering. This thermal processing
has traditionally been done in conventional ovens, but increasing interest has been shown in using
microwaves as the heat source instigating this process [21, 53]. Mechanical deformation due to
sintering can be observed on the macroscale (i.e., by the naked eye), but is caused by microscale
changes within the material undergoing processing (i.e., changes on the spatial scale around the
grain size, typically micro- or nanometers, and invisible without the use of imaging technology), via
the action of several different transport mechanisms [74]. There may be up to six different paths of
matter transport during solid-state sintering, and in practice, more than one of these mechanisms
may operate simultaneously during processing [75].

In this chapter, we discuss some of these physical phenomena that influence the process of mi-
crowave sintering, and some of the ways of accounting for mechanical deformation in terms of the
microstructural variables involved with the process, as accurate determination of the relationship
between temperature, relative density and the microstructural variables remains one of the most
challenging aspects of modelling sintering. Finally, we discuss the use of the Master Sintering Curve
as a method of representing the density kinetics along a thermal cycle.

4.1 Physical Mechanisms Influencing the Progress of Sintering

The forces that give rise to the phenomenon of sintering, and its resulting reduction in the free
energy of the system, are referred to as driving forces of sintering [75]. In this work, we characterize
the curvature of particle forces as the principal driving force of sintering, because we assume the

74
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Mechanism Contribution
Surface diffusion Coarsening, neck growth
Lattice diffusion from surface Coarsening, neck growth
Vapor transport Neck growth
Grain boundary diffusion Densification, neck growth
Lattice diffusion from boundary Densification, neck growth
Viscous flow Densification, neck growth

Table 4.1: Physical mass transport mechanisms occurring during sintering.

absence of the two other most commonly observed driving forces: externally applied pressures and
chemical reactions. Because the decrease in free surface energy is accompanied by an increase in
the energy associated with the grain boundaries, these boundaries influence the magnitude of the
driving force.

For polycrystalline materials, the driving force of sintering occurs when matter is transported
along definite paths, from regions of higher chemical potential to those of lower chemical potential
[75]. There are at least six known mechanisms for this transport, shown in Table 4.1 along with a
depiction in Figure 4.1.

The mechanisms may be classified as those which contribute to densification, and those which
contribute to grain coarsening, processes that are visualized in Figure 4.2. Coarsening reduces the
driving force necessary for densification—but the coarseningmechanisms also reduce the curvature
of the neck surface between the particles, and in this way they reduce the rate of the densifyingmech-
anisms [75]. Coarsening and densification may be individually characterized by the contribution
they make to the total reduction of energy in the system [10]:

∆(γA) = ∆(γ )A + γ∆(A),

where γ refers to the surface/interfacial energy, and A refers to the surface/interfacial area. On the
right-hand side, ∆(γ )A refers to the contribution of densification via reduction in interfacial energy,
and γ∆(A) refers to the contribution of grain coarsening via reduction in the interfacial area. A
seventh operating mechanism of sintering, atomic diffusion, has been proposed and studied, but
the process may invoke chemical reactions and phase changes [24], which are beyond the scope of
practical tools for modelling free solid-phase sintering.

4.2 The Constitutive Equation

One of the main challenges of modelling the sintering process lies in determining an appropriate
phenomenological constitutive relation that preserves the integrity ofmicrostructural changes while
accurately characterizing the resulting effects on the material’s macrostructural configuration. Such
a constitutive relation obeys laws governing the process of grain coarsening and densification, char-
acterizing all macroscale changes in terms of the effect of the microstructural variables on the strain
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grain boundary diffusion
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Figure 4.1: Particles undergoing sintering, with material transport paths indicated by colored,
dashed arrows, and with the grain boundary γb tension, surface tensions γs , and dihedral angle
ψ indicated.
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Coarsening

D
ensification

Densification and Coarsening

Figure 4.2: Densification and grain coarsening during sintering.

rate tensor.
Mechanical deformation in the course of sintering ismodelled by examining the effect of thermal

processing on the strain rate tensor inside the powder being sintered. The decomposition of the
strain rate tensor is the following [24]:

ε̇ = ε̇e + ε̇t + ε̇s + ε̇v , (4.1)

where ε̇e is the elasticity strain rate tensor; ε̇t is the thermal expansion strain rate tensor; ε̇s is the
free sintering strain rate tensor; and ε̇v is the viscous deformation strain rate tensor. We examine
the latter two quantities individually, and determine

ε̇s = −ρ̇
δ

3
=
−σs
K

δ

3
, (4.2)
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where δ is the unit tensor, σs is the sintering stress (σs = K ε̇s ), ρ̇ is the free sintering densification
rate, and K is the bulk viscosity.

The viscous strain rate is described by the Newtonian law

ε̇v = −∆p
3K

δ +
σ ′

2G
, (4.3)

where ∆p is the hydrostatic pressure, σ ′ is the deviatoric stress tensor, andG is the shear viscosity.
A constitutive equation describing sintering will express ε̇t , ρ̇, K , andG as functions of temper-

ature, green density, relative density, grain size, and other parameters that should be either mea-
sured experimentally, or simulated by modelling [24]. The approach of [32] is an integrated one,
combining the continuum theory of sintering with a kinetic Monte-Carlo model that simulates mi-
crostructural evolution in order to determine grain growth, poremigration, and densification; these
parameters determine the sintering stress and normalized bulk viscosity that are subsequently used
in the continuum-scale model.

Combining Equations 4.1, 4.2, and 4.3 gives the strain rate tensor in the course of sintering as

ε̇ =
σ ′

2G
+ δ
−σs + ∆p

3K
, (4.4)

which agrees with the model in [33] for simulating second (open porosity) and third (closed poros-
ity) stage sintering and grain growth in porous solids. This model provides one way of utilizing the
information that the MSC method provides about the density kinetics along temperature cycles,
which we discuss in Section 4.3. In the subsections that follow, we discuss the key features of sinter-
ing that this model is capable of incorporating, with each subsection dedicated to a parameter that
is an input to Equation 4.4.

Densification rate

The densification rate during sintering is described by

ρ̇ = ρ
σs − σm − ∆p

K
,

where ρ represents the density of the sample, and σm represents the mean (hydrostatic) stress. In
the case of pressureless sintering, σm ≡ 0.

Bulk and Shear Viscosities

If we assume that grain boundaries are not perfect sources and sinks for vacancies, then there arises a
nonlinear effect referred to as source-controlled diffusion or interface reaction-controlled diffusion [76,
77], which influences the description of the bulk and shear viscosities. The viscosities are expressed,
respectively, as the quadratic terms

K = Klin

(
1 +

α

σa2

)
and G = Glin

(
1 +

α

σa2

)
,
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wherea is the grain radius,α is a constant parameter determining the deviation from linearity, where

σ =
1
2
|σm − σs + ∆p | +

1
2
σe

is referred to as an effective stress, and where σe is the von Mises stress equivalent. The factors Klin
andGlin are given by

Klin =
kBua

3

Ω(δDb )
[(1 − θ )k1 + θk2]U , and Glin =

kBua
3

Ω(δDb )
[(1 − θ )д1 + θд2]U ,

where kB is the Boltzmann constant, u is the absolute temperature, Ω is the atomic (or molecular)
volume, δDb is the grain boundary diffusion coefficient times the thickness of the grain boundary,
θ is a parameter ranging from 0 to 1 that is introduced in order to represent a smooth transition
from open to closed porosity, k1 and k2 are the normalized bulk viscosities for open and closed
porosity, respectively, д1 and д2 are the normalized shear viscosities for open and closed porosities,
respectively, andU is a factor describing the effect of grain rearrangement.

The parameter δDb follows an Arrhenius-type dependence on temperature, with activation en-
ergyQ and pre-exponential factor δDb0. The relative density at which transition from open to closed
porosity occurs is ρcl = 1.05 − 0.115ψ , where cosψ = γb

2γs
defines the dihedral angle, as shown in

Figure 4.1, and γb andγs are the interfacial tensions of the grain boundary and surface, respectively.

Grain Boundary Diffusion

Grain boundary diffusion is the primary mechanism by which densification occurs, and is similar
to Coble creep, which is diffusional creep by grain boundary diffusion [78]. With this interpretation,
the normalized bulk viscosities k1 and k2 assume the forms

ki =
kib + kis

kib + kis + kiv
,

where the subscript v indicates volume (bulk) diffusion, b indicates grain boundary diffusion, s
indicates surface boundary diffusion, and i ∈ {1,2} indicates, as before, open or closed porosity.

The values at the open porosity stage are [79–81]

k1b =
A0 +A1 f +A2 f

2, if ρrel ≥ 0.68,

A9 exp (−A10 (0.32 − f )) , if ρrel < 0.68,

k1s =
δDb

δDs

(
−2 lnΦ − (3 − Φ)(1 − Φ)

2(1 − Φ)2

)
,

k1v =
δDb

0.6aDv
k1b ,

(4.5)

where f := 1 − ρrel is referred to as the porosity, δDs is the surface diffusion coefficient, which also
exhibits an Arrhenius-like dependence on temperature: δDs := δDs0 exp

(−Q
Ru

)
, where Dv is the
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bulk diffusion coefficient, where Φ := 2(A3 +A4 f )
2, and where the expressions A0 through A10 are

given in Appendix C.
At the closed porosity stage, the normalized bulk viscosities are as follows:

k2b =
1

18ρrel
*,−2 lnωb − 33

64
+ ωb −

ω2
b

16
+- ,

k2s =
δDb

δDs

1
ρrel

(A5 +A6ωb +A7ω
2
b )

k2v =
δDb

0.6aDv

1
18ρrel

*,−2 lnω − 33
64
+ ω −

ω2
b

16
+- ,

where ωb := A8 f
2/3
b is the area fraction of grain boundaries covered by pores, ω := A8 f

2/3 is a
factor. The distinction between ω and ωb is made since during grain growth, pores may detach
from migrating grain boundaries. The volume fraction of pores that remain on grain boundaries is
given by

fb =


f , if ρrel < ρcl or f > fd ,

β0 f − (β0 − 1) fd , if ρrel > ρcl and fd > f >
β0−1
β0

fd ,

0, if f < β0−1
β0

fd ,

where β0 describes the width of the range over which pore detachment occurs. The authors of [82]
chose β0 = 1.3, fd is the porosity at which detachment occurs theoretically according to the condi-
tion [28, 83]

a2 fd
1 − f 1/3d

1 − ωd
= 4.5

ΩδDs

kBuMb
,

where ωd := A8 f
2/3
d , andMb is a factor accounting for the grain boundary mobility.

For open porosity [79, 84], д1 = β1k1, where β1 is the ratio of shear (д1) to bulk (k1) viscosity
and has the estimated upper bound β1 ≤ 0.668 ≈ 8.21 × 10−16 for freely sliding grain boundaries,
and β1 = 0.2754 ≈ 1.97 × 10−31 as a self-consistent estimate.

For closed porosity,

д2 = β2
(д2b + д2s)д2v
д2b + д2s + д2v

,

where

д2b =
1
ρrel

(0.029 − 0.022√ωb)

д2s =
k2s
k2b

д2b

д2v =
1
ρrel

(0.029 − 0.022
√
ω)

δDb
0.6aDv

,

and by the self-consistent estimate in [80], β2 = 1.
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Interpolation between open and closed porosity

The transition parameter θ varies from 0 to 1 in a density range from ρlo to ρhi:

θ =


0 for ρrel ≤ ρlo
1 − cos

(
π
2
ρrel−ρlo
ρhi−ρlo

)
for ρlo < ρrel < ρhi

1 for ρrel ≥ ρhi.

In [82], the values of ρlo and ρhi are taken to be ρlo = ρcl − 0.04 and ρhi = ρcl + 0.04, where 0.04 is
the arbitrarily chosen width of the transition range, and the relative density at pore closure obtained
from ρcl = 1.05 − 0.115ψ , with cosψ = γb

2γs
.

Particle rearrangement

The phenomenological term for grain rearrangement takes the form

U :=

( ρrel−ρ0+0.02
0.63−ρ0+0.02

)ζ
for ρrel < 0.63

1 for ρrel > 0.63,

where ρ0 is the initial (‘green’) relative density, and the numbers 0.63 and 0.02 are chosen arbitrarily,
according to [82]. The above formulation accounts for the fact that rearrangement can contribute
to densification and deformation only in the initial sintering stages. Above a certain density (here
63%, the relative density of a random dense sphere packing), rearrangement can make no further
contribution to densification. If the parameter ζ is zero, the rearrangement term has no influence.

Sintering Stress

The sintering stress is given by
σs := ((1 − θ )σs1 + θσs2)

γs
a
,

where

σs1 :=
C0 +C1 f +C2 f

2 for ρrel ≥ 0.68

C5 exp(−C6 (0.32 − f )) for ρrel < 0.68

σs2 := 2

(
C3
ρrel
f

)1/3
+
2
√
3 + 1
2

(3ρrel
π

)1/3
cosψ ,

whereC0–C6 are given in Appendix C.
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Gas Pressure

When gas is entrapped within the microstructure by a closed pore, the overpressure in the pore is

∆p = pex,cl =
1 − ρcl
1 − ρrel

ρrel
ρcl

u

ucl
− pex,

where the subscript cl denotes the values of density, temperature and external pressure, pex, at the
time of pore closure. In [82], the sintering stress in the processing of SiC was found to be on the
order of 3.5 MPa, whereas the gas overpressure is less than 0.3 MPa at relative densities up to 98%,
so we conclude that the effect of gas pressure on the evolution of sintering is negligible.

Grain Coarsening

A model of grain coarsening may be derived from the Hillert law [85]

ȧ =
γbMb

4a
Fd
Fp
,

whereMp is the grain mobility boundary and exhibits the Arrhenius-type temperature dependence
Mb = Mb0 exp

(
− Q
Rдu

)
.

A modification to the Hillert law [82] introduces the factor Fd to account for the fact that the
powder usually does not have the steady-state grain size distribution, which is implicit in the Hillert
solution. Take

Fd :=
1

1 − δa0/a
,

where a0 is the initial average grain radius and δ can lie between −∞ and 1. δ = 0 is sufficient for
simulating the sintering of silicon carbide (SiC) [82], which corresponds to the Hillert law with no
correction.

A secondmodification accounts for the fact that pores can exert drag onmigrating grain bound-
aries, which suggests introduction of the factor Fp . For open porosity (ρrel < ρcl), we set

Fp := 1 − D3

√
f + D2a

2 f 3/2
kBuMb

ΩδDs
,

while for closed porosity (ρ > ρcl):

Fp := 1 − ωb + D1a
2 f 4/3b

kBuMb

ΩδDs
,

where the D terms are found in Appendix C.
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4.3 Master Sintering Curve

Assuming an isotropic free sintering strain rate, the stress tensor will depend on the relative density.
Because it gives a way of defining the relationship between temperature cycle and density evolution,
the Master Sintering Curve (MSC) method [74] provides a way of describing ε̇s along any thermal
cycle.

In order to characterize the relationship between relative density, temperature, and heating rate
in our model, we use the MSC, in which the parameters comprising the sintering rate equation are
separated, with those related to the microstructure isolated from those related to the temperature;
the two sides of the equation are then related to each other experimentally.

The combined-stage sintering model gives the instantaneous rate of linear shrinkage of material
as [74]

− dL
Ldt
=
γΩ

kBu

( ΓvDv

G3 +
ΓbDb

16a4

)
, (4.6)

where, as before, γ is the surface energy, Ω the atomic volume, kB the Boltzmann constant, u the
absolute temperature, a the grain radius,Db andDv the coefficients for grain boundary and volume
diffusion, respectively, and δ is the width of the grain boundary. G (ρ) represents the mean grain
diameter, and is assumed to be a function only of the density ρ. The scaling parameters Γv and Γb
relate the instantaneous linear shrinkage rate to the diffusion coefficient and other material param-
eters, and to the mean grain radius [86]. These values may be determined experimentally or with
the use of simplified sintering models, but, with few exceptions, are typically independent of the
thermal cycle [86–88].

For isotropic shrinkage, the linear shrinkage rate can be converted to the densification rate by

− dL
Ldt
=

dρrel
3ρreldt

,

where, again ρrel represents the relative density of the sample. If there exists only one dominant
diffusionmechanism (either volume diffusion or grain boundary diffusion) in the sintering process,
then Equation 4.6 can be simplified to

dρ

3ρdt
=
γΩ(Γ(ρrel))D0

kBu (G (p))n
exp

(
− Q

Ru

)
,

whereQ is the apparent activation energy, R is the gas constant, D0 := (Dv )0 and n = 3 for volume
diffusion, D0 := (δDb )0 and n = 4 for grain boundary diffusion, and where Γ represents a lumped
scaling parameter incorporating the components Γv and Γb above. It is assumed here that G and Γ
are functions of only density. Integrating, we obtain∫ ρrel

ρ0

G (r ))n

3ρrelΓ(r )
dr =

∫ t

0

γΩD0

kBu
exp

(
− Q

Ru

)
dτ , (4.7)

where ρ0 is the green density of the material.
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All terms on the left-hand side of this equation are quantities related tomicrostructural evolution
of the sample, and ifG (ρrel) and Γ(ρrel) are functions only of density, then the individual terms on
the left-hand side are independent of thermal history. With further rearrangement, the left-hand
side of Equation 4.7 becomes

Ψ(ρrel) ≡
kB

γΩD0

∫ ρrel

ρ0

G (r ))n

3ρrelΓ(r )
dr , (4.8)

an expression which includes all microstructural and material properties, except for Q . The right-
hand side of Equation 4.7 contains terms related to the dominant atomic diffusion process, which
are independent of the material properties except Q . With rearrangement, the right-hand side of
Equation 4.7 becomes

Θ(t ,u (t )) ≡
∫ t

0

1
u
exp

(
− Q

Ru

)
dτ , (4.9)

so that Equation 4.7 may finally be written as

Ψ(ρrel) = Θ(t ,u (t )). (4.10)

Because Ψ incorporates both the microstructure scale G (ρrel) and the scaling parameter Γ(ρrel), it
may be considered a characteristic that quantifies the effects of microstructural evolution on the
sintering kinetics as densification occurs. The effects of starting particle size distribution, pore size
distribution, and green structure on the sintering behavior are included in the MSC [74].

Alternative, generalized formulations of theMSC corresponding to several different expressions
of the constitutive equations given in the literature have also been formulated [89], though for our
purposes, we find the classical MSC to be sufficient. Expressions similar to Θ(t ,u (t )) appear in
Arrhenius-type equations and laws that model the influence of temperature on reaction rates, in-
cluding such a model in [90]. The practical use of the classical MSC in the context of its use in our
coupled model is discussed in Chapter 9.



Chapter 5

Density and Temperature Dependence of
Dielectric andThermal Properties

A feature that several of the existing models of microwave sintering [28, 30, 32, 33] lack is a way
of modelling the dependence of thermal and dielectric properties of the material being sintered on
temperature of the sample, and currently, there do not exist models that account for dependence of
these properties on both temperature and relative density. In this chapter, we discuss two ways of
characterizing the dependence of material properties on density, and we give mixture models for
dielectric properties, along with linear models for the thermal properties.

5.1 Models for Determining Dielectric Properties of Mixtures

In this section, we discuss theory and practical tests of several models for determining the complex
permittivity and permeability of mixtures of dielectric media.

Lichtenecker’s Logarithmic Mixture Formula

Lichtenecker’s logarithmic mixture formula for dielectrics [91, 92] has been used since the 1930s to
calculate effective complex permittivity for various mixtures of dielectric substances such as silica
and ferrite powders [93], pavementmixtures [94], polyelectric sensors [95], and biological cells [96].

Lichtenecker and Rother [92] presented the formula in its logarithmic form, which can be used
to compute the permittivity most efficiently as follows:

εeff =
N∏
n=1

εvnn , (5.1)

where the nth component of the N substances comprising the mixture is said to have effective per-
mittivity εn and volume fractionvn .

85
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VFrac 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Neel’s 2.00 2.89 4.17 6.01 8.67 12.51 18.06 26.06 37.60 54.26 78.3
Ours 2 2.89 4.17 6.01 8.67 12.51 18.06 26.06 37.60 54.26 78.3
Diff 0 0 0 0 0 0 0 0 0 0 0

Table 5.1: Comparison of results from [6] to those obtained by our MATLAB code implementing
Lichtenecker’s logarithmic mixture formula.

Some recent efforts have been focused on developing a physical foundation for the original
Lichtenecker mixture formula, including a 1998 work by Zakri, Laurent, and Vauclin [97] that as-
sumes a beta function distribution of inclusion shapes andmakes use of the effectivemedium theory
to construct a physical foundation for the formula.

In 2000, Goncharenko, Lozovski, andVenger [98] analyzed the formula in the context of spectral
representation, attempting to characterize more precisely the range of anisotropic systems to which
it is applicable. In particular, they showed using graphic representation for ε in the complex plane,
along with Bergman’s analytical representation based on resonance spectral density formalism [99],
that Lichtenecker’s formula has a wider area of applicability than Bruggeman’s formula (Section 5.1)
or the Maxwell Garnett equations (Section 5.1).

Recently, Simpkin [100] showed that the Lichtenecker formula may be of a still “more funda-
mental nature than previously regarded”, by deriving the formula directly from Maxwell’s equations
and the principle of charge conservation under the assumption of a random spatial distribution of
shapes and orientations of inclusions in a dielectric mixture. This characterization indicates that the
closer the spatial distribution of components is to being random, the more accurate will be Lichte-
necker’s approximation of effective permittivity, which may account for the errors noted in previous
work. Simpkin also showed how the Maxwell Garnett equations and Bruggeman’s formula are de-
rived from Lichtenecker’s equations under certain conditions.

Neelakantaswamy et al. [6] compared results of their implementation of Lichtenecker’s formula
to computations performed by Boned and Peyrelasse [7] in the table reproduced in Table 5.1. These
computations are supposed to represent the permittivity of a dielectric mixture of two components
with permittivities ε1 = 78.3+0i and ε2 = 2.0+0i respectively, where the ellipsoidal inclusions have
a varying ratio of major to minor axis (a/b), as shown.

For the case where a/b = 1 (the only case listed where the classical Lichtenecker formula can be
applied), we compare the results to those obtained by applying our own MATLAB code, which can be
found in Appendix G.1, with results of the comparison shown in Table 5.1.

Reynolds and Hough [101] charged in 1957 that the theoretical justification of the Lichtenecker
formulas [92] was based on the incorrect assumption that the final dielectric constant of a mixture
is independent of the method of preparation of the mixture. In particular, they cited two assump-
tions made in derivation of the formula which they assert can hold simultaneously neither in the
case when “particles” of two materials are formed during two-stage mixing, nor in the case when
particles are not formed. This assertion was reinforced by Dukhin and Shilov in 1974 [102], where
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they reformulated this statement as the result of erroneous consideration of a disperse system as
simultaneously both ordered and chaotic.

In 1985, Neelakantaswamy, Turkman, and Sarkar [6] proposed corrections to the Lichtenecker
mixture formula to address these concerns by considering εeff not as a logarithmic mean, but as a
different form of weighted geometric mean that accounts for Wiener’s upper and lower limits [103].
The final formulation they present for a mixture of two substances is as follows:

εeff =



X (v )/2, ε1 > ε2

Y (v )/2, ε1 < ε2
, 0 ≤ v ≤ v1


1
2

[
A(v1)
2C (v1)

+
B (v2 )
2C (v2)

]
C (v )Z (v ), ε1 > ε2

1
2

[ B (v1 )
2C (v1)

+
A(v2)
2C (2)

]
C (v )Z (v ), ε1 < ε2

, v1 ≤ v ≤ 2

Y (v )/2, ε1 > ε2

X (v )/2, ε1 < ε2
, v2 ≤ v ≤ 1,

where X (v ) = Z (v ) + 1/εL , Y (v ) = Z (v ) + εU , Z (v ) = εnU /ε
n−1
L , A(v ) = 1 + 1/εnU ε

n
L , B (v ) =

1+1/εn−1U εn−1L , andC (v ) =
√
εL/εU ε

v
1 ε

1−v
2 . Here, εL and εU denoteWiener’s upper and lower limits,

respectively. This formulation is based on results presented by Kisdanasamy and Neelakantaswamy
in 1984 [104] with estimates related to eccentricity of ellipsoidal inclusions taken fromCoelho [105],
and is valid only when

ε1ε2
(ε1 − ε2)2

− ε1 + ε2
2(ε1 − ε2) ln(ε1/ε2)

≥ −1
4
,

in order for Wiener’s upper and lower limits both to be positive.
The dependence of the formula on eccentricity takes into account not only the volume fraction

of the inclusions, but also their shape. In particular, unlike the original Lichtenecker formula, it is
intended to be used not for randomly-shaped inclusions, but for ellipsoidal ones where the dimen-
sions of the ellipsoids are known. Neelekantaswamy’s correction can thus be thought of as, rather,
an extension of Lichtenecker’s formula.

Rayleigh Mixture Formula for Complex Permittivity

In 1892, Lord Rayleigh introduced a mixture formula describing the effective transport coefficients
of mixtures where cylindrical or spherical particles were embedded within a matrix in a rectangular
lattice structure [106]. The formula arose from the explicit solution of electric potentials inside and
outside of the particles, which was obtained using the spectral method and imposing a conservation
of flux law at the boundaries of the particles, as well as continuity of the potential. The formulation
takes into consideration the models of Lorentz [107] and Lorenz [108] for the refractive index as a
function of material density, and its predicted values lie within the Wiener limit [103]. Rayleigh’s
formula for these mixtures is

εeff − ε1
εeff + 2ε1

= v
ε2 − ε1
2ε1 + ε2

, (5.2)
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where εeff represents the effective permittivity of the mixture, ε1 and ε2 represent, respectively, the
permittivity of the first and second components of the mixture, and v represents the percent of the
mixture occupied by the second component of the mixture (v ∈ [0,1]).

Maxwell Garnett Mixing Rule for Complex Permittivity

First presented by J. C. Maxwell Garnett1 in 1904 [110, 111], the Maxwell Garnett formulas were
developed to determine the optical properties of a substance called gold ruby glass, which contains
minute spherical particles of gold. As such, this model is considered suitable to describe mixtures
involving metal particles, provided that those mixtures satisfy validity conditions discussed below.
The formulation of the Maxwell Garnett mixing rule for a mixture of two materials is as follows:

εeff = ε1

(
ε2 (1 + 2v ) − ε1 (2v − 2)
ε1 (2 +v ) + ε2 (1 −v )

)
, (5.3)

wherev is the volume ratio of the embedded material, ε2 is the permittivity of the embedded mate-
rial, and ε1 is the permittivity of the matrix material. Simpkin has shown that, under the condition
that the value 2αε2 − ε1ε2 + 2ε1 is small, the Maxwell Garnett equations may be derived as an ap-
proximation to Lichtenecker’s formula [100].

In general, the model is valid for mixtures that have the following qualities [112]:

• the mixture is electrodynamically isotropic;

• the mixture is linear, that is, none of its constitutive parameters depends on the intensity of
the electromagnetic field;

• the mixture is non-parametric, that is, its parameters do not change in time as a result of
external forces;

• inclusions are separated by distances greater than their characteristic size;

• the characteristic size of inclusions is small compared to thewavelength in the effectivemedium;

• inclusions are arbitrary, randomly oriented ellipsoids;

• if there are conducting inclusions, their concentration should be lower than the percolation
threshold.

Since its original formulation, the model has been used to calculate permittivity of various mix-
tures, including those of glass spheres, quartz sand grains and their mixtures [1], and snow [113].
The dependence of εeff of the mixture on the permittivity of its fluid matrix was computed in [1]
using the Maxwell Garnett model, and is replicated in Figure 5.1a, alongside the version in Fig-
ure 5.1b created using our own implementation of the Maxwell Garnett formula in MATLAB (code
can be found in Appendix G.3).

1James Clerk Maxwell Garnett was the son of William Garnett, James Clerk Maxwell’s scientific demonstrator at the
Cavendish Laboratory[109].
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cially when the contrast between the fluid and in-
clusion is high (>5). The strength of the proposed
method is that these effects do not influence the
determination of the solid permittivity, unlike the
estimates obtained from repacking powders at
different bulk densities in air [11–13].

2.2. Mixtures of solids with different permittivities

Rocks and soils are nearly always a mixture of
different minerals. The mixing model approach can
be used to demonstrate the effective permittivity of
a granular material with a mixture of inclusions
with different permittivities. The effective permit-
tivity of a mixture of inclusions is not that which is
computed with the solid permittivity as a linear
function of their volume fractions and their re-
spective permittivities. This is demonstrated using
a Maxwell Garnett based model for multiple in-
clusions with different permittivity values [8].

eeff ¼ e0 þ 3e0
f1 e1a#e0

e1aþ2e0

! "

þ f2 e1b#e0
e1bþ2e0

! "h i

1# f1 e1a#e0
e1aþ2e0

! "

þ f2 e1b#e0
e1bþ2e0

! "h i ; ð2Þ

where f1 is the fraction of solid with permittivity
e1a and f2 is the volume fraction of solid with a
permittivity e1b This is illustrated in Fig. 2 for two
solids, one with a permittivity of 5 and the other
with increasing permittivity, 10, 15, 20 and 50. The
corresponding effective permittivity in water (e0 ¼
80) is demonstrated in Fig. 2(a) according to Eq.
(2). The overestimate using an arithmetic mean e1
for different contrasts (e1b=e1a) is given as a func-
tion of volume fraction of solid A mixed with solid
B in water (Fig. 2(b)). A negligible effect for con-
trasts of 2 and lower is observed which means in
the case of most soils, sediments and rocks the
effective permittivity is almost that related to a
matrix permittivity which is a linear combination
of the volumetric fractions of the minerals and
their respective permittivities. Even for a contrast
of 10 between the inclusions the deviation of the
linearly weighted e1 from the proper Maxwell
Garnett prediction for the mixture is not very
striking.

3. Materials and methods

3.1. Granular media

Two dielectric materials were chosen to test the
method of immersing the granular media in differ-
ent dielectric fluids: spherical glass beads made of
soda lime silicate glass (Trime-IMKO, Germany)
and acid washed quartz sand (Yerucham Crater,
Negev desert, Israel). Their properties are listed in
Table 1 with the particle densities determined using
the standard excluded volume method.

3.2. Dielectric immersion fluids and packing

One of the difficulties in applying this type of
method is finding fluids whose permittivities lie
within a low permittivity range between 1 and 25.
The fluids must not exhibit relaxation at the fre-
quency of measurement and they must have a

Fig. 1. Effective permittivity as a function of background per-
mittivity modeled using the Maxwell Garnett formula. A solid
with a permittivity of 5 is modeled with three porosity values
demonstrating the porosity independence of the crossing point
between the effective permittivity and the 1:1 line.

D.A. Robinson, S.P. Friedman / Journal of Non-Crystalline Solids 305 (2002) 261–267 263

(a) Figure from [1], showing the ef-
fective permittivity of a mixture of
quartz sand grains.
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(b) Replication using in-house MATLAB code.

Figure 5.1: Comparison of our implementation of the Maxwell Garnett mixture formula, with the
results obtained in [1].

In 1984, Thériault and Boivin [114] extended the Maxwell Garnett theory to include the shape
factor and size of themetal particles suspended in a dielectric matrix, and observed good agreement
with reality for volume fractions ranging from 0 to 0.12. Their formula for εeff is given implicitly as
follows:

εeff − εm
f εeff + (1 − f )εm

= v
εi − εm

f εi + (1 − f )εm
,

where εm is the permittivity of the matrix; εi is the permittivity of the inclusion; v is the volume
fraction of the inclusion; and f is the shape factor of the metal particles, given below as a function
of εeff.

f = εm
vεi (a) − εeff + (1 −v )εm

(1 −v ) (εeff − εm ) (εi (a) − εm )
,

where a is the radius of the inclusions.
In 2006, Koledintseva et al. [115] applied a Maxwell Garnett model to engineer microwave-

absorbing materials containing an arbitrary number of different types of carbon particles, using the
following formula:

εeff = εm +

1
3

∑n
i=1vi (εi − εm )

∑3
k=1

εm
εm+Nik (εi−εm )

1 − 1
3

∑n
i=1vi (εi − εm )

∑3
k=1

Nik
εm+Nik (εi−εm )

,

where εm is the relative permittivity of the matrix dielectric; εi is the permittivity of the ith type of
inclusion;vi are the volume fractions occupied by the i th type of inclusion;Nik are the depolarization
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VFrac 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
MG 2 2.61 3.37 4.31 5.54 7.18 9.52 13.1 19.2 32.2 78.3
Corr 2 2.61 3.37 4.31 5.54 7.18 9.52 13.1 19.2 32.2 78.3
Diff 0 0 0 0 0 0 0 0 0 0 0

Table 5.2: Koledintseva’s extension compared with the original Maxwell Garnett equation for the
case of a mixture of only two components, where the ratio of the major to minor axis length of the
ellipsoidal inclusions is 1 (which represents spherical inclusions).

factors of the ith type of inclusion; and the index k = 1, 2, 3 corresponds to x , y, and z in Cartesian
coordinates.

Validation of Koledintseva’s extension against the original Maxwell Garnett equation can be car-
ried out easily by assuming amixture of only two components and setting the ratio ofmajor tominor
axis length of the ellipsoidal inclusions to be 1 (this represents spherical inclusions). In that case,
the permittivity calculated by the extension should be the same as that calculated by the original
Maxwell Garnett formula. Running the two corresponding MATLAB codes (found in Appendices G.3
and G.4 respectively) yields the results shown in Table 5.2.

Bruggeman’s Models

Bruggeman’s symmetric mixture formula for a two-part mixture, introduced in 1935 [116], was
stated by Reynolds and Hough [101] to be a “fairly obvious” extension of Lichtenecker’s formulas
to the more complicated cases of mixtures that could be anisotropic or could have random spatial
distributions. Simpkin [100] recently showed that Bruggeman’s symmetric mixture formula results
from the classical Lichtenecker formula for a mixture of two components, under the assumption
that the Clausius-Mossotti factors F1 and F2,

F1 =

(
ε1 − εeff
ε1 + 2εeff

)
F2 =

(
ε2 − εeff
ε2 + 2εeff

)
,

are small enough in magnitude for the dependence on F1 and F2 to be taken as linear. This, as
Simpkin states, is equivalent to considering only first-order interactions between each component of
the mixture embedded in a homogeneous effective medium. Bruggeman’s model and its theoretical
basis are explained in English in [117].

Bruggeman’s symmetric mixture formula for a two-part mixture is as follows.

v

(
ε1 − εeff
ε1 + 2εeff

)
+ (1 −v )

(
ε2 − εeff
ε2 + 2εeff

)
= 0, (5.4)

wherev is the volume fraction of the second component, the components have permittivities ε1 and
ε2 respectively, and the mixture has permittivity εeff.
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5.2 Implementation of Mixture Models for Density- and
Temperature-Dependent Material Properties

In order to determine the effective relative dielectric constant ε ′eff,rel, electrical conductivity σeff, or
relative permeability µeff,rel as functions of temperature and density, we assume that experimental
data obtained during a trial processing of the material consists of a set of measurements of temper-
ature u, density ρrel, the effective relative dielectric constant ε ′eff,rel, electrical conductivity σeff, and
relative permeability µeff,rel.

To use the mixture models discussed above, we treat the porous dielectric medium as a two-
component mixture of the bulk solid and air. In this case, the relative density ρrel of the granular
sample is equal to the volume fraction of media. We first “invert” the mixture formula in order to
determine a function relating the desired property of the bulk material to its temperature—that is,
we find expressions for ε ′rel,bulk (u), σbulk (u), and µrel,bulk (u) by interpolating the measured data, and
we then use the “forward” mixture formula to compute the desired property of the porous medium
using the relative density and the desired bulk property value determined using the inversion.

This process is repeated for each of ε ′rel, µrel, and σrel individually, to construct each as a function
of ρrel and u.

Implementation of Lichtenecker’s Formula

When we treat the particulate sample as a mixture of bulk solid and air, assuming that air is the
first component of the mixture, we obtain ε1 ≈ 1, and v = ρrel, and so Lichtenecker’s formula in
Equation 5.1 reveals the two equations

ε ′eff,bulk (u) = ε
′
eff,rel (u)

1/ρrel (u ) (5.5)

and
ε ′eff,rel (ρrel,u) = ε

′
eff,bulk (u)

ρrel . (5.6)

In order to determine ε ′eff,rel (ρrel,u) given the measured data on ε ′eff, temperatureu, and density ρrel,
we first compute the discrete ε ′bulk values using Equation 5.5 for each of the measured data points,
and we then perform interpolation to reveal the function ε ′eff,bulk (u).

Once this function is known, we may find ε ′eff,rel (ρrel,u) using Equation 5.6. This procedure is
also assumed to be an accurate way of determining the relative effectivemagnetic permeability µrel,eff
of the porous medium during sintering.

Implementation of Rayleigh’s Formula

As above, we treat the particulate sample as a mixture of bulk solid and air, assuming that air is the
first component of the mixture, and obtain ε1 ≈ 1, and v = ρrel. Rayleigh’s formula in Equation 5.2
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reveals the two equations

ε ′eff,bulk (u) =
1 + 2

ρrel (u )

(
ε ′eff,rel (u )−1
ε ′eff,rel (u )+1

)
1 − 1

ρrel (u )

(
ε ′eff,rel (u )−1
ε ′eff,rel (u )+1

) (5.7)

and

ε ′eff,rel (ρrel,u) =
ε ′eff,bulk (u) (2ρrel + 1) − (2ρrel − 2)
ε ′eff,bulk (u) (1 − ρrel) + (ρrel − 2)

. (5.8)

In order to determine ε ′eff,rel (ρrel,u) given the measured data on ε ′eff, temperatureu, and density ρrel,
we first compute the discrete ε ′bulk values using Equation 5.7 for each of the measured data points,
and we then perform interpolation to reveal the function ε ′eff,bulk (u).

Once this function is known, we may find ε ′eff,rel (u,ρrel) using Equation 5.8. This procedure is
also assumed to be an accurate way of determining the relative effectivemagnetic permeability µrel,eff
of the porous medium during sintering.

Implementation of the Maxwell Garnett Formula

As above, we treat the particulate sample as a mixture of bulk solid and air, assuming that air is the
first component of the mixture, and obtain ε1 ≈ 1, and v = ρrel. Maxwell Garnett’s formula in
Equation 5.3 reveals the two equations

ε ′eff,bulk (u) =
(1 + ρrel (u)) (ε ′eff,rel (u) − 1)

2ρrel (u) − (1 − ρrel (u)) (ε ′eff,rel (u) − 1)
(5.9)

and

ε ′eff,rel (ρrel,u) =
ε ′eff,bulk (u) − 1

ε ′eff,bulk + 1 − ρrelε
′
eff,bulk (u) + ρrel

. (5.10)

In order to determine ε ′eff,rel (ρrel,u) given the measured data on ε ′eff, temperatureu, and density ρrel,
we first compute the discrete ε ′bulk values using Equation 5.9 for each of the measured data points,
and we then perform interpolation to reveal the function ε ′eff,bulk (u).

Once this function is known, we may find ε ′eff,rel (u,ρrel) using Equation 5.10. This procedure
is also assumed to be an accurate way of determining the relative effective magnetic permeability
µrel,eff of the porous medium during sintering.

Implementation of Bruggeman’s Formula

As above, we treat the particulate sample as a mixture of bulk solid and air, assuming that air is
the first component of the mixture, and obtain ε1 ≈ 1, and v = ρrel. Bruggeman’s formula in
Equation 5.4 reveals the two equations

ε ′eff,bulk (u) =
(1 − 3ρrel (u))ε ′eff,rel (u) + 2(ε

′
rel,eff (u))

2

1 + (2 − 3ρrel (u))ε ′rel,eff (u)
, (5.11)
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and

ρrel *,
1 − ε ′eff,rel
1 + 2ε ′eff,rel

+- + (1 − ρrel) *,
ε ′eff,bulk (u) − ε

′
eff,rel

ε ′eff,bulk (u) + 2ε
′
eff,rel

+- = 0. (5.12)

In order to determine ε ′eff,rel (ρrel,u) given the measured data on ε ′eff, temperatureu, and density ρrel,
we first compute the discrete ε ′bulk values using Equation 5.11 for each of the measured data points,
and we then perform interpolation to reveal the function ε ′bulk (u).

Once this function is known, we may find ε ′eff,rel (u,ρrel) using Equation 5.12, together with ei-
ther Newton’s method, or directly using the quadratic formula and restricting consideration to the
positive branch:

ε ′eff,rel (u,ρrel) =
1
2

(
1 + 3ρrel (1 − 3ε ′eff,bulk)

)
∓ 1
2

√
4ε ′eff,bulk +

(
1 + 3ρrel (1 − 3ε ′eff,bulk)

)2
.

This procedure is also assumed to be an accurate way of determining the relative effective magnetic
permeability µrel,eff of the porous medium during sintering.

5.3 Porosity Models forThermal Properties

We refer here to the density ρ, the specific heat capacity cp , and the thermal conductivity k as
“thermal properties” of matter, because these properties all appear in the heat equation (Equa-
tions 3.24 and 3.25). We discuss how to determine the density as a function of temperature and
rate of heating using the Master Sintering Curve method in Section 4.3. In the remainder of this
chapter, we discuss how to handle the density dependence of the other thermal properties of the
material undergoing sintering, using the technique described in [118].

The porosity of matter, denoted here as p, is defined as the volume of pores, relative to the total
volume of the porousmaterial; in terms of the relative density ρrel expressed as a percentage between
0 and 1, we therefore have p = 1 − ρrel.

At any given temperature u, for a powder material undergoing sintering, the specific heat ca-
pacity and the thermal conductivity change with porosity. If the specific heat capacity of air within
the pores is neglected, then that of the porous material scales linearly as

cp (ρrel,u) = (1 − p)cp,bulk (u) = ρrelcp,bulk (u), (5.13)

where cp,bulk (u) denotes the specific heat capacity of the bulk material at the temperature u. We
discuss in Section 10.2 how to use this model in practice.

The thermal conductivity depends on the material’s microstructure, and in general, may be
determined using the same mixture formulas that are used in approximating dielectric properties
[118]. However, if we neglect the thermal conductivity of air, then that of the porous material may
be approximated as

k (ρrel,u) =
(
1 − 3

2
p
)
kbulk (u) =

(3
2
ρrel −

1
2

)
kbulk (u), (5.14)
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where, as before, kbulk (u) represents the thermal conductivity of the bulk material at temperature
u. This expression is not valid for highly porous materials in which heat transfer through air is
significant, but we consider materials that start at a “green” density above 50% of bulk density, and
so this model suffices.

In order to use the model in Equations 5.13 and 5.14 with experimental data that consist of
measurements of temperature u, relative density ρrel, and the specific heat capacity cp and ther-
mal conductivity k , we use alternative expressions of Equations 5.13 and 5.14 to compute the bulk
properties as functions of temperature:

cp,bulk (u) =
cp (u)

ρrel (u)
, and kbulk (u) =

k (u)(
3
2ρrel (u) −

1
2

) ,
which are substituted into Equations 5.13 and 5.14 to obtain expressions for the properties that
depend on both temperature and relative density. The interpolation functions for finding the bulk
properties are computed using third-order b-spline interpolants of the values of ρrel with the variable
u.

5.4 Θ-BasedModels for Both Dielectric andThermal Properties

An alternative characterization of the evolution of dielectric and thermal properties by assuming
their dependence on the work of sintering Θ has only a phenomenological basis; however, it pro-
vides accurate results, as shown in Section 11.2. This method assumes that if the density may be
characterized as a function of Θ, the work of sintering parameter defined in Section 4.3, and if Θ
is, itself, a function of the temperature and its evolution, then the dielectric and thermal material
properties, which are assumed to depend on density and temperature, may also be characterized as
functions of Θ. That is, if discussing the effective dielectric constant of the mixture, for example,

ε ′eff = ε
′
eff (ρrel,u) = ε

′
eff (ρrel (Θ),u) = ε

′
eff (ρrel (Θ(u),u)) = ε

′
eff (Θ).

The input data needed to produce functions for the dielectric and thermal properties in this case are
measurements of those properties throughout the full temperature range of a processing experiment,
with reference times and temperatures also recorded. Once these are known, and once the activation
energyQ has been computed, theΘ-values corresponding to the experiment inwhich the property of
interest was measured is computed, and these are used as the independent variable in a third-degree
b-spline interpolation to determine the function that yields the dielectric or thermal property of
interest.



Chapter 6

Mixture Formulas for Determining the
Effective Complex Permittivity ofMetal
Powders

As long as the sintering progress may still be characterized by densification, and as long as the Mas-
ter Sintering Curve discussed in Section 4.3 provides a valid characterization of densification, our
multiphysics simulation routine remains applicable to various materials, including metal powders,
and this necessitates the computation of effective dielectric properties of those powders. This chap-
ter contains describes a series of tests of the variousmixturemodels for effective dielectric properties
metal powders, and has been previously published by the author [119].

While reports on measurements of the dielectric constant and loss factors of dielectric materials
may be found in literature, data on the effective complex permittivity of metal powders can often
not be found so readily, and even when they can be, conflicting values (sometimes up to orders of
magnitude) often exist [120]. With this in mind, we focus on development of simple and practical
computational routines based on classical and contemporarymodels for those determining complex
permittivity of composites or mixtures whose applications may be extended to metal powders. We
briefly review the most notable models, present them in closed form, examine the ranges of validity
of their input parameters, demonstrate their computational implementations and discuss their ap-
plicability with reference to original measurements of effective complex permittivity of a mixture of
titanium and stearic acid, in addition to previously reported [121] measurements of the loss factor
of a mixture of tungsten and Teflon®. We discuss the reasons for discrepancies between the results
obtained from the models and the experimental measurements. Under the identified limitations for
their use, the classical Bruggeman mixture model [116] and the core-shell mixture model proposed
by Buchelnikov et al. [122–124] are shown to produce the most accurate results for mixtures of
metal powders in which the volume fraction of bulk metal is below the percolation threshold.

When Lichtenecker’s or Maxwell Garnett’s model is used for estimating εeff := ε ′ − jε ′′ of a
mixture inwhich the i th component is ametal powder, then εi should represent the effective property
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of themetal powder in air, as bulkmetals do not behave like dielectrics and thus do not have effective
dielectric properties.

6.1 Bruggeman’s Model with CompactedMetal Powders

Ignatenko et al. [125] give Bruggeman’s formula differently for compacted metal powders of the
type shown in Figure 6.1, asserting

v

(
εp − εeff
εp + 2εeff

)
+ (1 −v )

(
εд − εeff
εд + 2εeff

)
= 0,

where v is the volume fraction of the particles, εд is the permittivity of gas in pores, and εp = ε2F2,
with the coefficient F2 defined as:

F2 = 2
1 − (r1/r2)

3F1
1 + 2(r1/r2)3F1

, F1 = 2
1 − (ε1/ε2)

3F0
1 + 2(ε1/ε2)3F0

, F0 = 2
−y cosy + siny

y cosy − siny + y2 siny ,

where r1,2 are the radii of the core and shell of the particle and ε1,2 are the permittivities of the
core and shell respectively. The argument of the factor F0 is y = k1r1, where k1,2 = ω (ε1,2µ1,2)

1/2,
ω = 2π f , and f is the frequency of the electromagnetic wave irradiating the sample. The skin depth
of highly conductive non-magnetic core material can be accounted for by setting y = (1 + i )R1/δ ,
where δ is the skin depth.

Figure 6.1: Core-shell concept of metal particles.

Numerical Verification of Bruggeman’s Model

Kärkkäinen, Sihvola, and Nikoskinen carried out in 2000 a verification of Bruggeman’s formula in
random dielectric materials, with specific tests run for raisin pudding and swiss cheese [126]. Their
verification was based on calculations of the effective permittivity of the mixtures using FDTD sim-
ulations of the sample in a TEM waveguide, and was carried out with an eye toward the validation
of not only Bruggeman’s formula, but also the Wiener [103] and Hashin-Shtrikman [127] limits.
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VolFrac 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Boned [7] 2 3.02 4.25 5.00 7.50 11.00 17.01 26.96 40.52 58.3 78.3
Licht 2 2.89 4.17 6.01 8.67 12.51 18.06 26.06 37.60 54.26 78.3
MG 2 7.32 13.02 19.12 25.68 32.75 40.39 48.67 57.68 67.52 78.3
Brugg 2 2.75 4.23 7.55 14.2 23.4 33.8 44.7 55.8 67 78.3

Table 6.1: Effective dielectric constants of a two-medium mixture, comparing results from [7] with
those obtained using our implementations of the Lichtenecker, Maxwell Garnett, and Bruggeman
formulas.

Comparison of Bruggeman’s Model to Lichtenecker and Maxwell Garnett

Table 6.1 lists the effective permittivities of a mixture of two materials with, respectively, ε1 = 78.3
and ε2 = 2.0. The effective permittivity has been computed using three methods, and the first row
contains the values computed by Boned and Peyrelasse [7].

6.2 Buchelnikov’s Model

Like themodel presented by Ignatenko [125], themodel presented by Buchelnikov et al. [124], [123]
considers spherical core-shell particles randomly distributed in the effective medium. They deter-
mine a relationship between the effective permittivity of the mixture and the radii of the spherical
inclusions, the permittivities of the core and shell of the inclusions, and the value of the external
electric field E0:

vζ
ε2 [3ε1 + (ζ − 1)(ε1 + 2ε2)] − εeff [3ε2 + (ζ − 1)(ε1 + 2ε2)]

2aεeff + bε2
+ (1 −vζ )

εд − εeff
εд + εeff

= 0, (6.1)

where v is the volume fraction of the metal inclusions, εд is the permittivity of the gas or vacuum,
ε1,2 are the permittivities of the metallic core and shell respectively, and the expressions for ζ , a, and
b are:

ζ = (R2/R1)
3 = (1 + l )3, l = (R2 − R1)/R1,

a = (ζ − 1)ε1 + (2ζ + 1)ε2, b = (2 + ζ )ε1 + 2(ζ − 1)ε2,

where R1,2 are the radii of the metallic core and shell respectively.
In [123] it is observed that in the limiting case R1 → 0, this reduces to the formula:

v1
ε2 − εeff
ε2 + 2εeff

+ (1 −v1)
εд − εeff
εд + 2εeff

= 0,

where v1 is the volume fraction of the dielectric consisting of the shell material. They also discuss
the parallel case where R2 → R1, where they obtain the formula for determining the permittivity of
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(a) Dielectric constant as a function of the volume frac-
tion of iron oxide powder, produced using our MAT-
LAB implementation of Buchelnikov’s formula in Equa-
tion 6.1.
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(b) Loss factor as a function of the volume fraction of
iron oxide powder, produced using our MATLAB imple-
mentation of Buchelnikov’s formula in Equation 6.1.

the mixture of pure metallic and dielectric spherical particles:

v
ε1 − εeff
ε1 + 2εeff

+ (1 −v )
εд − εeff
εд + 2εeff

= 0.

Note that these formulae are exactly the Bruggeman equations; in this respect, Buchelnikov’s model
can be considered an extension of the Bruggeman formula to the case where spherical inclusions are
themselves comprised of a core and shell.

Verification of Our Implementation

Buchelnikov et al. presented in [124] graphs showing the dependence of εeff on the volume fraction
of core-shell particles of iron powder in oxide shells. This figure is replicated in Figure ??, which
was produced using our implementation of Buchelnikov’s formula in the MATLAB code shown in
Appendix G.6.

Alternative Models

There are also other, different, mixing formulas to be considered. Sihvola [128] presented in 1989 a
method of using one equation with a dimensionless parameter ν to characterize the results of several
different mixing formulas, including the Rayleigh formula [129] (Section 5.1), the Maxwell Garnett
Formula (Section 5.1), the Bruggeman formula (Section 5.1) the Böttcher mixing formula [130], the
Polder-van Santen formula [131], and the QCA (quasi-crystalline approximation) formula [131].
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The Looyenga model [113, 132] and other so-called “power-law models” can also be derived from
this equation.

The equation is as follows:

εeff − ε1
εeff + ε1 + ν (εeff − ε1)

= v
ε2 − ε1

ε2 + ε1 + ν (εeff − ε1)
= 0,

where v is the volume fraction of the second component, the components have permittivities ε1
and ε2 respectively, and the mixture has permittivity εeff. Note that ν = 0 gives the Maxwell Garnett
equation, and ν = 1 gives Bruggeman’s formula. We should investigate this equation and the various
models it is capable of describing.

Sheen et al. [133] present six different “mixture rules”, corresponding to ceramic powders with
alumina inclusions that are spherical, cylindrical, or rod-, lamella-, or disk-shaped. Their six rules
correspond to various combinations of knownmixture formulas, and should be investigated as such.

Also useful to us will be a consideration of all the abovemodels in the context of the well-known
Wiener [103] and Hashin-Shtrikman bounds [127], the latter of which is used for statistically ho-
mogeneous and isotropic mixtures.

6.3 Experimental Results

We describe the results of two attempts to evaluate the effective complex permittivity of mixtures
involving metal powders. The results of these experiments are used to test some of the models de-
scribed in this chapter.

Tungsten-Teflon® mixture

In [121], Zimmerman et al.dealt with samples of powders made with varying volume fractions of
tungsten in Teflon® powder. The mixtures were formed into cylindrical pellets of diameter 41 mm
and height 64 mm, with varying particle sizes, and the authors determined the effective complex
permittivity and permeability of each sample using cavity perturbation techniques.

Titanium-stearic acid mixture

In our experiment [119], we mechanically mixed gas atomized spherical titanium particles with
radius 25 µm (obtained from Pyrogenesis Inc., Canada) with stearic acid (Sigma-Aldrich Co., 95%)
in various volume fractions. These mixtures were compacted uniaxially into cylindrical pellets of
diameter 10 mm and height 20 mm.

For this and the boron nitride/graphite mixture, the cavity perturbation approach [134–136]
involves the transverse magnetic mode TM010 of a cylindrical resonator with two coaxial holes. The
cylindrical samples, longer than the cavity height, are inserted coaxially and maintained in the cen-
ter of the cavity. The variations of resonant frequency of the cavity as well as its quality factor due to
the presence of the sample are determined with an HP 8720D vector network analyzer. As certain
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commonly used numerical methods can present large uncertainties for high permittivity, the com-
plex permittivity of the sample is evaluated instead using a calibration method based on standard
samples. These experimentally obtained results are used in testing the core-shell models described
in this chapter.

Hexagonal boron nitride/graphite mixture

As also reported in [119], graphite particles (flakes, 4 µm, TIMCAL Ltd.) and hexagonal boron ni-
tride powder (10 µm, Kennametal Sintec Keramic GmbH, Germany) were mixed in an agate mortar
in various volume fractions and pressed uniaxially to form cylindrical samples of 10 mm diameter
and 20 mm in height. We also used the cavity perturbation techniques to determine the effective
complex permittivity of these samples.

6.4 Experimental results compared with modeling results

These above experimentally obtained results are used in testing the mixture and core-shell models
described in this chapter.

Mixture Models

Taking the effective complex permittivity of tungsten to be constant at 30 + 8j [137], and the com-
plex permittivity of Teflon® to be 2.29 + 0.03j [138], we use the Lichtenecker, Maxwell Garnett,
and Bruggeman models to reconstruct the dielectric constant and the loss factor of the mixture
for different values of the volume fraction v of tungsten in Teflon®. The corresponding curves are
shown in Figure 6.3a. The mixture exhibits distinct percolation behaviors, characterized by a peak
in tanδ := ε ′/ε ′′ at volume fractions that depend on the average particle size. The location of this
peak is shown in Figure 6.3b by the appropriate values of tanδ for particles of diameter 2.3 µm,
alongside the same tanδ values predicted by the mixture models.

Assuming that ε ′ and ε ′′ are smooth functions of volume fraction, a peak in tanδ may occur
only at those critical volume fractionsvp for which the first derivative of tanδ is zero; that is,

ε ′′(vp )
dε ′(vp )

dv
= ε ′(vp )

dε ′′(vp )

dv
.

Using the expression for complex permittivity predicted by Lichtenecker’s model, the only time this
situation occurs is independent of volume fraction, when ε ′1ε ′2 = ε ′′1 ε ′′2 . In this case, all subsequent
derivatives of tanδ are also zero—so no peak occurs for any mixture whose permittivity is found
using the Lichtenecker model. Using the expression predicted by the Maxwell Garnett model, no
zeros of the first derivative of tanδ exist for any mixture, and so neither the Maxwell Garnett nor
the Lichtenecker model can accurately predict effective properties of mixtures of metal powders at
volume fractions beyond the percolation threshold. The Bruggeman model, applied to the mixture
of tungsten and Teflon®, also did not predict any peaks.
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(a) (b)

Figure 6.3: Complex permittivity (a) and tanδ (b) of tungsten/Teflon® mixture—models and exper-
iment.

Core-Shell Models

The effective complex permittivity of core-shell titanium particles in a stearic acid matrix was com-
puted using Buchelnikov’s model, and the complex permittivity of the titanium and stearic acid
mixture, ignoring the presence of the titanium oxide layer, was computed using various mixture
models, with the results shown in Figure 6.4. Values used for the complex permittivity of titanium
and the complex permittivity of stearic acid were taken directly from the experiment, and they were
10.55+ 1.0j and 3.95+ 0.006j, respectively. The permittivity of the oxide layer was picked, in accor-
dance with [139], as 114 + 0.003j. The conductivity of titanium was taken to be 4.2 × 109 S/m, in
accordance with [140].

Since the radius of the oxide layer on the titanium particles is a necessary input to Buchelnikov’s
formula but is not known for the titanium particles we study, this parameter was chosen through
golden selection search and parabolic interpolation to be the one which produced the permittivity
curve closest to the experimentally obtained data.

In our experiments, themeasuredmaterial properties also exhibit distinct percolation behaviors,
where both ε ′ and ε ′′ of the mixture exceed the values of the corresponding parameters for pure
stearic or for tapped titanium powder. However, it is seen that neither the core-shell nor any of the
conventional mixture models is capable of accurately predicting permittivity at volume fractions
beyond the percolation threshold of the mixture. Yet, it should be noted that before the percolation
threshold, all of the curves obtained are a good fit to the experimental data obtained. The minimum
error taken using only the first five data points (that is, those before the percolation threshold) is
0.441 (using Buchelnikov’s model) for the ε ′ curve, and 0.101 (using Bruggeman’s model) for the ε ′′
curve.

Our experiment was the source of the data on the effective complex permittivity of graphite
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(a) (b)

Figure 6.4: Real (a) and imaginary (b) parts of effective complex permittivity of titanium/stearic
acid mixture—models and experimental measurements.

(which was found to be 25.5 + 0.15j) and of boron nitride (3.05 + 0.006j). The conductivity of bulk
boron nitride was estimated at 1 × 109 S/m, as shown in the graphs of [141].



Chapter 7

Numerical and Analytical Techniques for
Solving the Electromagnetic Problem

As we saw in Chapter 2, the electromagnetic problem of microwaves within a waveguide may be
framed as awave equation problem, or as aHelmholtz equation problem. In this chapter, we describe
several numerical and analytical techniques for solving each of those two problems in one and two
dimensions.

7.1 Techniques for Solving the One-Dimensional Wave Equation

This section provides techniques for solving the one-dimensional wave equation in Problem 3.
We begin with two techniques based on finite difference methods, and proceed to a transient

solution using finite element methods. We then explore some classical analytical techniques for a
simplified scenario, and compare our numerical results to these.

Finite Difference Methods

For each of the following two methods, we discretize the domain [0,L] shown in Figure 2.3 into
N − 1 many intervals using N many nodes for the endpoints of those intervals, which need not be
of uniform length. This discretization is shown in Figure 7.1. We are not concerned with whether
the boundary of the insulation or the load is located at a node, or between two nodes (the latter is
typically the case with our solver).

z0

0◦
z1
◦ ◦ · · · ◦

zN−1
L◦

Figure 7.1: Discretization of the one-dimensional computational domain for the wave equation.
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Enj−1 Enj Enj+1

En+1j

En−1j

Figure 7.2: Computational stencil of the explicit finite difference scheme for solving the one-
dimensional heat equation. Here, j ∈ [1,N −2]∩N represents the position along the spatial domain,
and n ∈ N represents the current time step. The nodes in black are ones at which the solution E is
known, and the one in red may be solved for with knowledge of the ones in black.

We assume a time-marching schemewith uniform time steps of length∆tE⃗ , which, for simplicity
of expression, we denote in this chapter as ∆t .

Explicit, Second-Order Method

We use the second-order, explicit centered difference approximations

∂2E

∂z2

������z=zjt=tn

≈
Enj−1 − 2Enj + Enj+1

(zj+1 − zj )(zj − zj−1)
,

∂2E

∂t2

������z=zjt=tn

≈
En−1j − 2Enj + 2En+1j

(∆t )2
, and

∂E

∂t

������z=zjt=tn

≈
En+1j − En−1j

2∆t
,

where the solution Ey (z,t ) to Equation 2.64 has been renamed as E (z,t ) for convenience, and where
the subscripts denote field values in space and the superscripts those in time, so that, e.g., Enj :=
E (zj ,tn ). These approximations are valid for j ∈ [1,N − 2]∩N and n ∈ N, and when the field values
are plotted as a grid, the “stencil” for this scheme looks as in Figure 7.2. Applying the approximations
in Equations 7.1 to the governing equation in Equation 2.64, we obtain the approximation

Enj−1 − 2Enj + Enj+1
(zj+1 − zj )(zj − zj−1)

−
µε ′

(
En−1j − 2Enj + 2En+1j

)
(∆t )2

−
µσ

(
En+1j − En−1j

)
2∆t

= 0,
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where we have used the dimensional representations ε ′ and µ of absolute permittivity and perme-
ability, and the fact that 1

c2 = ε
′
0µ0. Keeping the term at time level n + 1 on the left-hand side and

moving all others to the right-hand side, we obtain(
µσ

2∆t
+

µε ′

(∆t )2

)
En+1j =

(
µσ

2∆t
− µε ′

(∆t )2

)
En−1j +

+

(
1

(zj+1 − zj )(zj − zj−1)

)
Enj−1 +

(
2µε ′

(∆t )2
− 2

(zj+1 − zj )(zj − zj−1)

)
Enj +

+

(
1

(zj+1 − zj )(zj − zj−1)

)
Enj+1.

(7.1)

Using the abbreviations

a :=
µσ

2∆t
+

µε ′

(∆t )2
,

b :=
µσ

a(2∆t )
− µε ′

a(∆t )2
,

sj :=
2µε ′

a(∆t )2
− 2
a(zj+1 − zj ) (zj − zj−1)

, and

tj :=
1

a(zj+1 − zj ) (zj − zj−1)
,

and isolating the term En+1j on the left-hand side, Equation 7.1 becomes

En+1j = bEn−1j + tjE
n
j−1 + sjE

n
j + tjE

n
j+1, (7.2)

for each j ∈ [1,N − 2] ∩ N.
To examine the stability of this second-order scheme, we follow the energy considerations sug-

gested in [142] by the von Neumann stability analysis; namely, by the law of conservation of energy,
the energy contained in the field over the solution domain should not increase with time, and in
fact, due to loss within the medium, the energy should decrease. To examine the energy of the field,
we expand the field in terms of a Fourier series:

Enj :=
∞∑

m=−∞
An
me

ikm j∆z , (7.3)

where km := mπ
L , and ∆z is the minimum node spacing in the domain. The energy of the field is

proportional to the sum of the squares of the amplitudes of the Fourier modes, and so to ensure that
the energy does not increase with time, we examine the way these amplitudes behave within our
time-stepping scheme. When Equation 7.3 is substituted into Equation 7.1 with the source term
removed, the following relationship betweenAn−1

m ,An
m , andAn+1

m , for n ∈ N andm ∈ [0,N − 1]∩Z,
arises:

An+1
m = 2

(
1 − 2r j sin2

(
km∆z

2

))
An
m −An−1

m ,
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and so the amplification factor дm , defined as дm := An+1m
Anm

, will satisfy

д2m − 2
(
1 − 2r j sin2

(
km∆z

2

))
дm + 1 = 0,

where
r j :=

∆t

µε ′(zj+1 − zj )(zj − zj−1)
.

The quadratic formula gives a solution where |дm | < 1 only in the case where(
1 − 2r j sin2

(
km∆z

2

))2
< 1,

where ∆z represents the smallest spatial step in the domain. This yields the stability condition
|1 − 2r j | < 1, which yields

∆t ≤ ∆z
√
µε ′ =

∆z

vp
. (7.4)

When simulating wave propagation with finite difference methods, an important consideration
is that because of the numerical discretization, the simulated wave propagates at a velocity slightly
different from the exact velocity; this kind of error is referred to as the dispersion error, and to quan-
tify the error for our difference scheme, we test the simulation of a plane wave, computing its nu-
merical wavenumber based on our scheme following the procedure in [142]. Such a plane wavemay
be expressed, as discussed in Chapter 2, as

E (z,t ) := Re
{
E0e

i (ωt−kz )} ,
whereω is the angular frequency of the plane wave, andk = ω √µε is referred to as the wavenumber.
Assuming (∆z)j := zj − zj−1, the simulated wave may be expressed as

Enj := Re
{
E0e

i (ωn∆t−k ∑j
J=1 (∆z )J )

}
,

which may be substituted into Equation 7.1 to approximate the numerical wavenumber. Stipulating
that this numerical wavenumber equal the exact wavenumber, we obtain the condition

∆t = ∆z
√
µε ′ =

∆z

vp
, (7.5)

under which dispersion error is controlled.
To implement the boundary condition in Equation 2.74 at the left-hand endpoint z = j = 0, we

set

En0 =
2
L

√
2P

(
ω · µ0
β

)
, (7.6)
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for all n ∈ N.
At the right-hand endpoint z = L, j = N − 1, Equation 2.74 gives us two possible conditions to

impose. The perfect electric conductor condition is implemented via

EnN−1 = 0, (7.7)

for all n ∈ N.
On the other hand, the absorbing boundary condition is implemented as themodifiedNeumann

condition in Equation 2.62, whose incorporation into our scheme requires the temporary use of
the “ghost node” zN . The ghost node is placed to the right of the computational domain, so that
zN − zN−1 = zN−1 − zN−2, as seen in Figure 7.3. Using the ghost node, we substitute the difference

z0

0◦
z1
◦ ◦ · · · ◦

zN−1
L◦

zN
◦

Figure 7.3: Discretization of the one-dimensional computational domain for the wave equation.

approximations
∂E

∂z

�����j=N−1≈ EnN − EnN−2
zN − zN−2

,
∂E

∂t

�����j=N−1≈ En+1N−1 − En−1N−1
2∆t

into Equation 2.62 to obtain the approximation

EnN = EnN−2 −
(zN − zN−2)

2c∆t
En+1N−1 +

(zN − zN−2)
2c∆t

En−1N−1. (7.8)

Meanwhile, using the ghost node, the approximation of the governing equation according to Equa-
tion 7.2 is

En+1N−1 = bE
n−1
N−1 + tN−1E

n
N−2 + sN−1E

n
N−1 + tN−1E

n
N ,

into which we substitute Equation 7.8 to obtain

En+1N−1

(
1 +

sN−1 (zN − zN−2)
2c (∆t )

)
= EnN−2 (tN−1 + sN−1) + sN−1E

n
N−1 +

(
b +

sN−1 (zN − zN−2)
2c (∆t )

)
EnN−1,

which may be rewritten using the coefficients

dN−1 := 1 +
sN−1 (zN − zN−2)

2c (∆t )
,

eN−1 :=
tN−1 + sN−1

dN−1
,

fN−1 :=
sN−1
dN−1

,

дN−1 :=
b

dN−1
+
sN−1 (zN − zN−2)

2cdN−1 (∆t )
,
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as
En+1N−1 = eN−1E

n
N−2 + fN−1E

n
N−1 + дN−1E

n−1
N−1. (7.9)

Gathering Equations 7.6, 7.2, and 7.9, we obtain the linear system

En+10 = En0 ,

En+11 = t1E
n
0 + s1E

n
1 + t1E

n
2 + bE

n−1
1 ,

En+12 = t2E
n
1 + s2E

n
2 + t2E

n
3 + bE

n−1
2 ,

...

En+1N−2 = sN−2E
n
N−3 + rN−2E

n
N−2 + sN−2E

n
N−1 + bE

n−1
N−2,

En+1N−1 = eN−1E
n
N−2 + fN−1E

n
N−1 + дN−1E

n−1
N−1,

which may be represented by the system



En+10
En+12
...

En+1j
...

En+1N−1


= b



0
En−11
En−12
...

En−1j
...

En−1N−2дN−1
b En−1N−1



+



1 0 · · · · · · · · · · · · · · · 0
0 t1 s1 t1 0 · · · · · · 0
... 0 t2 s2 t2 0 · · ·

...
...

. . .
. . .

. . .
...

... tN−2 sN−2 tN−2 0
0 · · · · · · · · · · · · 0 eN−1 fN−1





En0
En1
En2
...

Enj
...

EnN−1


. (7.10)

Using the initial condition in Equation 2.71, which is interpreted according to our difference
scheme as E0j = 0 for j ∈ [1,N − 1] ∩ N, and E00 =

2
L

√
2P

(ω ·µ0
β

)
, the electric field may be di-

rectly computed using the one matrix multiplication and the vector addition in Equation 7.10, for
all subsequent time steps.

Implicit, Second-Order Method

As an alternative to the explicit method, our codes also implement an implicit finite difference
method, which, as will be shown, involves solving a linear system at each time step, but on the
other hand, allows for the use of a longer time step. This method employs the second-order, implicit
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En−1j

Enj

En+1j−1 En+1j En+1j+1

Figure 7.4: Computational stencil of the implicit finite difference scheme for solving the one-
dimensional wave equation. Here, j ∈ [1,N − 2] ∩ N represents the position along the spatial
domain, and n ∈ N represents the current time step. The nodes in black are ones at which the
solution E is known, and the ones in red may be solved for with knowledge of the ones in black.

centered difference approximations

∂2E

∂z2

������z=zjt=tn

≈
En+1j−1 − 2En+1j + En+1j+1

(zj+1 − zj )(zj − zj−1)
,

∂2E

∂t2

������z=zjt=tn

≈
En−1j − 2Enj + 2En+1j

(∆t )2
, and

∂E

∂t

������z=zjt=tn

≈
En+1j − En−1j

2∆t
,

where, as before, the solution Ey (z,t ) to Equation 2.64 has been renamed as E (z,t ) for convenience,
and where the subscripts denote field values in space and the superscripts those in time, so that, e.g.,
Enj := E (zj ,tn ). These approximations are valid for j ∈ [1,N − 2]∩N and n ∈ N, and when the field
values are plotted as a grid, the “stencil” for this scheme looks as in Figure 7.4.

Applying the approximations in Equations 7.1 to the governing equation in Equation 2.64, we
obtain the approximation

En+1j−1 − 2En+1j + En+1j+1

(zj+1 − zj )(zj − zj−1)
−
µε ′

(
En−1j − 2Enj + 2En+1j

)
(∆t )2

−
µσ

(
En+1j − En−1j

)
2∆t

= 0,

where, as in the explicit case, we have used the dimensional representations ε ′ and µ of absolute
permittivity and permeability, and the fact that 1

c2 = ε
′
0µ0. Keeping the terms at time level n + 1 on
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the left-hand side and moving all others to the right-hand side, we obtain

En+1j−1
(zj+1 − zj ) (zj − zj−1)

+ En+1j

(
− 2
(zj+1 − zj )(zj − zj−1)

− 2µε ′

(∆t )2
− µσ

2∆t

)
+

+
En+1j+1

(zj+1 − zj )(zj − zj−1)
= En−1j

(
µε ′

(∆t )2
− µσ

2∆t

)
−
2µε ′Enj
(∆t )2

.

(7.11)

Using the abbreviations

(∆z)2j := (zj+1 − zj )(zj − zj−1),

sj := −
2

(zj+1 − zj ) (zj − zj−1)
− 2µε ′

(∆t )2
− µσ

2∆t
,

aj :=
µε ′

(∆t )2
− µσ

2∆t
,

bj :=
2µε ′

(∆t )2
,

the difference approximation becomes

En+1j−1

(∆z)2j
+ sjE

n+1
j +

En+1j+1

(∆z)2j
= ajE

n−1
j − bjEnj . (7.12)

To implement the boundary condition at the left-hand endpoint z = j = 0, we use the expres-
sion in Equations 7.6. To implement the absorbing boundary condition at the right-hand side, the
approximation will differ from Equation 7.8, because the approximation of the spatial derivative
in Equation 2.62 should, in this case, be taken at the (n + 1)st time step. Using the ghost node in
Figure 7.3, we substitute the difference approximations

∂E

∂z

�����j=N−1≈ En+1N − En+1N−2
2(∆z)N−1

,
∂E

∂t

�����j=N−1≈ En+1N−1 − En−1N−1
2∆t

into Equation 2.62 to obtain the approximation

En+1N = En+1N−2 +
(∆z)N−1
c∆t

En+1N−1 −
(∆z)N−1
c∆t

En−1N−1. (7.13)

Using the ghost node, the approximation of the governing equation at the right-hand endpoint,
according to Equation 7.12, is

En+1N−2
(∆z)2N−1

+ sN−1E
n+1
N−1 +

En+1N

(∆z)2N−1
= aN−1E

n−1
N−1 − bN−1

2µε ′EnN−1
(∆t )2

,
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into which Equation 7.8 may be substituted to obtain the expression

En+1N−2
(∆z)2N−1

+ sN−1E
n+1
N−1 +

En+1N−2 +
(∆z )N−1
c∆t En+1N−1 −

(∆z )N−1
c∆t En−1N−1

(∆z)2N−1
= aN−1E

n−1
N−1 − bN−1EnN−1,

which simplifies to

2

(∆z)2N−1
En+1N−2 + dN−1E

n+1
N−1 = eN−1E

n−1
N−1 − bN−1EnN−1,

where

dN−1 := sN−1 +
1

c (∆z)N−1∆t
, eN−1 := aN−1 +

1
c (∆z)N−1∆t

. (7.14)

Taken together, Equations 7.6, 7.12, and 7.14 result in the linear system

En+10 =
2
L

√
2P

(
ω · µ0
β

)
En+10

(∆z)21
+ s1E

n+1
1 +

En+12

(∆z)21
= a1E

n−1
1 − b1En1

En+11

(∆z)22
+ s2E

n+1
2 +

En+13

(∆z)22
= a2E

n−1
2 − b2En2

...

En+1N−3
(∆z)2N−2

+ sN−2E
n+1
N−2 +

En+1N−1
(∆z)2N−2

= aN−2E
n−1
N−2 − bN−2EnN−2

2

(∆z)2N−1
En+1N−2 + dN−1E

n+1
N−1 = eN−1E

n−1
N−1 − bN−1EnN−1,

which has N many equations in N many unknowns, and is equivalent to its matrix representation



1 0 · · · · · · · · · · · · · · · 0
0 t1 s1 t1 0 · · · · · · 0
... 0 t2 s2 t2 0 · · ·

...
...

. . .
. . .

. . .
...

... tN−2 sN−2 tN−2 0
0 · · · · · · · · · · · · 0 2

(∆z )2N−1
dN−1





En+10
En+12
...

En+1j
...

En+1N−1


=



0
a1E

n−1
1

a2E
n−1
2
...

ajE
n−1
j
...

aN−2En−1N−2
eN−1En−1N−1



+



En0
b1E

n
1

b2E
n
2
...

bjE
n
j
...

bN−1EnN−1


, (7.15)
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0
z0
◦

z1
◦ ◦ · · · ◦

zN−1
L◦

Figure 7.5: Discretization of the one-dimensional spatial domain for the finite element solution.

where tj := 1
(∆z )2j

.
Using the initial condition in Equation 2.71, which is interpreted according to our difference

scheme as E0j = 0 for j ∈ [1,N − 1]∩N, and E00 =
2
L

√
2P

(ω ·µ0
β

)
, the electric field may be computed

by solving the matrix system in Equation 7.15, for all subsequent time steps.

Finite Element Methods

Weak Formulation of the Governing Equation

We formulate a single matrix equation that, given an initial electric field, can be solved at each time
step for a transient solution.

Spatial Discretization

We use N many nodes, not necessarily evenly spaced, to discretize the domain into N − 1 many
elements, as shown in Figure 7.5

On this domain, we assume that our solutionsE (z,t ) are separable, so thatE (z,t ) :=
∑N−1

j=0 Tj (t )Ej (z)
for some functionsTj (t ) and Ej (z), and we plug this into Equation 2.64, multiply by the test function
W (z) :=

∑N−1
i=0 Wi (z), where for i ∈ [0,N − 1] ∩ N,Wi (z) is some known function, and integrate

over the domain [z0,zN−1]:

N−1∑
i=0

N−1∑
j=0

{
Tj (t )

∫ zn

z0
Wi (z)

d
dz

(
1

µ (z,t )

dEj
dz

)
dz+

+

∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2Tj
dt2

)
Wi (z)Ej (z)dz

}
= 0.

We integrate the second spatial derivative term by parts:∫ zN−1

z0
Wi (z)

d
dz

(
1

µ (z,t )

dEj
dz

)
dz =

Wi (z)

µ (z,t )

dEj
dz

������
zN−1

z0

−
∫ zn

z1

1
µ (z,t )

dWi

dz

dEj
dz

dz,

and we move the first term of the result (henceforth called the “boundary term”) to the right-hand
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side of the governing equation to obtain the form:
N−1∑
i=0

N−1∑
j=0

{
−Tj (t )

∫ zn

z1

1
µ (z,t )

dWi

dz

dEj
dz

dz +
∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2Tj
dt2

)
Wi (z)Ej (z)dz

}
=

= −
N−1∑
i=0

N−1∑
j=0

Tj (t )
Wi (z)

µ (z,t )

dEj
dz

������
zN−1

z0

.

(7.16)

We now explicitly state the definition of our functions Ei , noting that since we will proceed with
a Galerkin formulation,Wi (z) ≡ Ei (z) for all i ∈ [0,N − 1] ∩ N. For each i ∈ [1,N − 2] ∩ N, we
define Ei (z) to be the hat function

Ei (z) :=


z−zi−1
zi−zi−1 , if z ∈ [zi−1,zi ]
zi+1−z
zi+1−zi , if z ∈ [zi ,zi+1]
0, if z < [zi−1,zi+1]

:=


z−zi−1
hi−1
, if z ∈ [zi−1,zi ]

zi+1−z
hi
, if z ∈ [zi ,zi+1]

0, if z < [zi−1,zi+1]
, (7.17)

and

E0 (z) =


z1−z
z1−z0 , if z ∈ [z0,z1],
0, if z < [z0,z1]

:=

z1−z
h0
, if z ∈ [z0,z1],

0, if z < [z0,z1]
(7.18)

and

EN−1 (z) =


z−zN−2
zN−1−zN−2 , if z ∈ [zN−2,zN−1],
0, if z < [zN−2,zN−1]

:=

z−zN−2
hN−2

, if z ∈ [zN−2,zN−1],
0, if z < [zN−2,zN−1],

(7.19)

wherewehave definedhi to be the length of the ith element; that is, the length of the interval [zi ,zi+1].

Because of our choice of the Ej as hat functions, and because of our assumption that E (z,t ) was
separable and continuous, we may conclude that the functions Tj (t ) represent the evolution of the
electric field intensity at the nodes j. The hat functions look as shown in Figure 7.6.

Note that for each i ∈ [1,N − 2] ∩ N, the derivatives of the hat functions are:

dEi
dz
=



1
hi−1
, if z ∈ (zi−1,zi )

− 1
hi
, if z ∈ (zi ,zi+1)

0, if z < [zi−1,zi+1],
undefined, if z ∈ {zi−1,zi ,zi+1}

,

and

dE0
dz
=


−1
h0
, if z ∈ (z0,z1),

0, if z < [z0,z1],
undefined, if z ∈ {z0,z1}

and
dEn
dz
=


1

hN−2
, if z ∈ (zN−2,zN−1),

0, if z < [zN−2,zN−1],
undefined, if z ∈ {zN−2,zN−1}.

.
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−1

z0
◦

z1
◦

z2
◦

z3
◦ ◦ · · · ◦

zN−2
◦

zN−1
◦

• • • • • •
E0 E1 E2 E3

· · ·

EN−2 EN−1

Figure 7.6: “Hat functions” Ej used in the finite element solution of the electromagnetic wave equa-
tion.

With this being the case, we note that if |i − j | > 1, thenWi (z)Ej (z) =
dWi
dz

dEj
dz = 0. In case

j = i + 1, i ∈ [0,N − 2] ∩ N, we have that

dWi

dz
dEi+1
dz
=


− 1
h2
i

if z ∈ (zi ,zi+1),

0 if z < [zi ,zi+1],

and in case i = j,

dWi

dz
dEi
dz
=


1

h2
i−1
, if z ∈ (zi−1,zi )

− 1
h2
i
, if z ∈ (zi ,zi+1)

0, if z < [zi−1,zi+1],

and

dW0

dz
dE0
dz
=


1
h2
0
, if z ∈ (z0,z1),

0, if z < [z0,z1]
and

dWN−1
dz

dEN−1
dz

=


1

h2
N−2
, if z ∈ (zN−2,zN−1),

0, if z < [zN−2,zN−1],
.

Moreover, assuming that on the ith element (that is, for z ∈ [zi ,zi+1]) at a fixed time t , µ (z,t ) has
the constant value µi , we may use the values of the derivatives calculated above to obtain:∫ z0

zN−1

1
µ (z,t )

dWi

dz

dEj
dz

dz = 0, if |i − j | > 1,

∫ zN−1

z0

1
µ (z,t )

dWi

dz
dEi−1
∂z

dz =
∫ zi

zi−1

1
µ (z,t )

(
−1
h2i−1

)
dz = − 1

µi−1hi−1
for i ∈ [1,N − 1],∫ zN−1

z0

1
µ (z,t )

dWi

dz
dEi
dz

dz =
∫ zi

zi−1

1
µ (z,t )

1

h2i−1
dz+

∫ zi+1

zi

1
µ (z,t )

1

h2i
dz =

1
µi−1hi−1

+
1

µihi
, for i ∈ [1,N−2],∫ zN−1

z0

1
µ (z,t )

dW0

dz
dE0
dz

dz =
1

µ0h0
, and

∫ zN−1

z0

1
µ (z,t )

dWN−1
dz

dEN−1
dz

dz =
1

µN−2hN−2
;
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and ∫ zN−1

z0

1
µ (z,t )

dWi

dz
dEi+1
dz

dz =
∫ xi+1

xi

1
µ (z,t )

(
−1
h2i

)
dz = − 1

µihi
for i ∈ [0,N − 2].

Also, note that in case j = i + 1, i ∈ [0,N − 2] ∩ N, we have that

Wi (z)Ei+1 (z) =


(z−zi )2
h2
i

if z ∈ [zi ,zi+1],
0 if z < [zi ,zi+1],

and in case i = j,

Wi (z)Ei (z) =


(z−zi−1)2
h2
i−1
, if z ∈ [zi−1,zi ]

(z−zi+1)2
h2
i
, if z ∈ [zi ,zi+1]

0, if z < [zi−1,zi+1],

and

W0 (z)E0 (z) =


(z−z1)
h2
0
, if z ∈ [z0,z1],

0, if z < [z0,z1]
and WN−1 (z)EN−1 (z) =


(z−zN−2)
h2
N−2
, if z ∈ [zN−2,zN−1],

0, if z < [zN−2,zN−1],
.

Moreover, assuming that on the ith element (that is, for z ∈ [zi ,zi+1]) at a fixed time t , σ (z,t ) and
ε ′(z,t ) have the constant values σi and ε ′i respectively, we may use the values calculated above to
obtain: ∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2Tj
dt2

)
WiEjdz = 0, if |i − j | > 1,

and∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2Tj
dt2

)
WiEi−1dz =

(
µ0σi−1

dTj
dt
+
ε ′i−1
c2

d2Tj
dt2

) ∫ zi

zi−1

(zi−1 − z)2
h2i−1

dz

=

(
µ0σi−1

dTj
dt
+
ε ′i−1
c2

d2Tj
dt2

)
(z − zi−1)3

3h2i−1

�����
zi

zi−1

=

(
µ0σi−1

dTj
dt
+
ε ′i−1
c2

d2Tj
dt2

)
hi−1
3
, for i ∈ [1,N − 1],



CHAPTER 7. NUMERICAL AND ANALYTICAL TECHNIQUES FOR SOLVING THE
ELECTROMAGNETIC PROBLEM 116∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2Tj
dt2

)
WiEidz =

(
µ0σi−1

dTj
dt
+
ε ′i−1
c2

d2Tj
dt2

) ∫ zi

zi−1

(z − zi−1)2
h2i−1

dz+

+

(
µ0σi

dTj
dt
+
ε ′i
c2

d2Tj
dt2

) ∫ zi+1

zi

(zi+1 − z)2
h2i

dz

=

(
µ0σi−1

dTj
dt
+
ε ′i−1
c2

d2Tj
dt2

)
(z − zi−1)3

3h2i−1

�����
zi

zi−1
+

+

(
µ0σi

dTj
dt
+
ε ′i
c2

d2Tj
dt2

)
(z − zi )3
3h2i

�����
zi+1

zi

=

(
µ0σi−1

dTj
dt
+
ε ′i−1
c2

d2Tj
dt2

)
hi−1
3
+

(
µ0σi

dTj
dt
+
ε ′i
c2

d2Tj
dt2

)
hi
3
,

for i ∈ [1,N − 2]. Also∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2T
dt2

)
W0E0dz =

(
µ0σ0

dTj
dt
+
ε ′0
c2

d2Tj
dt2

)
h0
3

and∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2T
dt2

)
WN−1EN−1dz =

(
µ0σn−1

dTj
dt
+
ε ′N−2
c2

d2Tj
dt2

)
hN−2
3
,

and∫ zN−1

z0

(
µ0σ (z,t )

dTj
dt
+
ε ′(z,t )

c2
d2Tj
dt2

)
WiEi+1dz =

(
µ0σi

dTj
dt
+
ε ′i
c2

d2Tj
dt2

) ∫ zi−1

zi

(z − zi )2
h2i

dz

=

(
µ0σi

dTj
dt
+
ε ′i
c2

d2Tj
dt2

)
(z − zi )3
3h2i

�����
zi+1

zi

=

(
µ0σi

dTj
dt
+
ε ′i
c2

d2Tj
dt2

)
hi
3
, for i ∈ [0,N − 2].

Using all of the integral values we have just computed in the weak form of the governing equation
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7.16, we obtain

N−2∑
i=1

 Ti−1 (t )

µi−1hi−1
+

(
µ0σi−1

dTi−1
dt
+
ε ′i−1
c2

d2Ti−1
dt2

)
hi−1
3
−

−Ti (t )
(

1
µi−1hi−1

+
1

µihi

)
+

(
µ0σi−1

dTi
dt
+
ε ′i−1
c2

d2Ti
dt2

)
hi−1
3
+

(
µ0σi

dTi
dt
+
ε ′i
c2

d2Ti
dt2

)
hi
3
+

+
Ti+1 (t )

µihi
+

(
µ0σi

dTi+1
dt
+
ε ′i
c2

d2Ti+1
dt2

)
hi
3

−
− T0 (t )

µ0 (t )h0
+

(
µ0σ0

dT0
dt
+
ε ′0
c2

d2T0
dt2

)
h0
3
−

− TN−1 (t )

µN−2 (t )hN−2
+

(
µ0σN−2

dTN−1
dt

+
ε ′N−2
c2

d2TN−1
dt2

)
hN−2
3
=

= −
N−2∑
i=1

Wi (x )

µ (z,t )

(
Ti−1 (t )

dEi−1
dz
+Ti (t )

dEi
dz
+Ti+1 (t )

dEi+1
dz

) 
������
zN−1

z0

−

− W0 (z)

µ (z,t )
T0 (t )

dE0
dz

������
zN−1

z0

−WN−1 (z)

µ (z,t )
TN−1 (t )

dEN−1
dz

������
zN−1

z0

.

As for the boundary term, observe thatWi (z)
���zN−1z0

is zero whenever i < {0,N −1}, and thatW0 (z0) =

WN−1 (zN−1) = 1 andW0 (zN−1) =WN−1 (z0) = 0, and so the right-hand side (henceforth referred to
as “BT”) becomes:

BT =
T0 (t )

µ0 (t )

dE0
dz

������z=z0 −
Tn (t )

µN−2 (t )

dEN−1
dz

������zN−1 .
However, the spatial derivatives dE0

dz
���z=z0 and dEN−1

dz
���z=zN−1 are not defined at their respective evalua-

tion points. Wewill thus wait to evaluate this term until we explicitly apply the boundary conditions.
Note for now, however, that (BT)i = 0 unless i ∈ {0,N − 1}.
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We thus obtain the weak form of the governing equation

N−2∑
i=1

 Ti−1 (t )

µi−1 (t )hi−1
+

(
µ0σi−1

dTi−1
dt
+
ε ′i−1
c2

d2Ti−1
dt2

)
hi−1
3
−

−Ti (t )
(

1
µi−1 (t )hi−1

+
1

µi (t )hi

)
+

(
µ0σi−1

dTi
dt
+
ε ′i−1
c2

d2Ti
dt2

)
hi−1
3
+

(
µ0σi

dTi
dt
+
ε ′i
c2

d2Ti
dt2

)
hi
3
+

+
Ti+1 (t )

µi (t )hi
+

(
µ0σi

dTi+1
dt
+
ε ′i
c2

d2Ti+1
dt2

)
hi
3

−
− T0 (t )

µ0 (t )h0
+

(
µ0σ0

dT0
dt
+
ε ′0
c2

d2T0
dt2

)
h0
3
−

− TN−1 (t )

µN−2 (t )hN−2
+

(
µ0σN−2

dTN−1
dt

+
ε ′N−2
c2

d2TN−1
dt2

)
hN−2
3
= BT.

(7.20)

Time Discretization

Note that the second-order central difference approximation to the first time derivative of Ti (t ) at
the time step t = tk is, for i ∈ [1,∞) ∩ N,

dTi
dt

������t=tk≈
Ti (tk+1) −Ti (tk−1)

tk+1 − tk−1
:=

Ti (tk+1) −Ti (tk−1)
2∆t

,

where ∆t is the (uniform) length of each time step. The central difference approximation to the
second derivative is:

d2Ti
dt2

������t=tk≈
Ti (tk−1) − 2Ti (tk ) +Ti (tk−1)

(∆t )2
.

For t ∈ [tk ,tk+1], we replaceTi (t ) in the weak form of the governing equation by

Ti (t ) ≈ θTi (tk+1) + (1 − θ )Ti (tk ),

for some weighting constant θ ∈ [0,1].
Using these approximations in our governing equation 7.20, keeping all tk+1 terms on the left-

hand side and moving the tk and tk−1 terms to the right-hand side, we obtain
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N−2∑
i=1

Ti−1 (tk+1)
[

θ

µi−1hi−1
+

(
µ0σi−1
2∆t

+
ε ′i−1

c2 (∆t )2

)
hi−1
3

]
+

+Ti (tk+1)

[
−θ

(
1

µi−1hi−1
+

1
µihi

)
+

(
µ0σi−1
2∆t

+
ε ′i−1

c2 (∆t )2

)
hi−1
3
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3

]
+

+Ti+1 (tk+1)

[
θ

µihi
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3

] +
+T0 (tk+1)

[
− θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3

]
+

+TN−1 (tk+1)

[
− θ

µN−2hN−2
+

(
µ0σN−2
2∆t

+
ε ′N−2

c2 (∆t )2

)
hN−2
3

]
=

=

N−2∑
i=1

Ti−1 (tk )
[
θ − 1
µi−1hi−1

+
2ε ′i−1hi−1
3c2 (∆t )2

]
+

+Ti (tk )

[
(1 − θ )

(
1

µi−1hi−1
+

1
µihi

)
+
2ε ′i−1hi−1
3c2 (∆t )2

+
2ε ′ihi

3c2 (∆t )2

]
+

+Ti+1 (tk )

[
θ − 1
µihi

+
2ε ′ihi

3c2 (∆t )2

] +
+T0 (tk )

[
1 − θ
µ0h0

+
2ε ′0h0

3c2 (∆t )2

]
+

+TN−1 (tk )

[
1 − θ

µN−2hN−2
+
2ε ′N−2hN−2
3c2 (∆t )2

]
+

+

N−2∑
i=1

Ti−1 (tk−1)
[(
µ0σi−1
2∆t

−
ε ′i−1

c2 (∆t )2

)
hi−1
3

]
+

+Ti (tk−1)

[(
µ0σi−1
2∆t

−
ε ′i−1

c2 (∆t )2

)
hi−1
3
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3

]
+

+Ti+1 (tk−1)

[(
µ0σi
2∆t

−
ε ′i

c2 (∆t )2

)
hi
3

] +
+T0 (tk−1)

[(
µ0σ0
2∆t

−
ε ′0

c2 (∆t )2

)
h0
3

]
+

+TN−1 (tk−1)

[(
µ0σN−2
2∆t

−
ε ′N−2

c2 (∆t )2

)
hN−2
3

]
+ BT.
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The single equation above will be satisfied when for i = 1:

T0 (tk+1)

[
− θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3

]
+T1 (tk+1)

[
θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3

]
=

= T0 (tk )

[
−1 − θ
µ0h0

+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3

]
+T1 (tk )

[
θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3

]
+

+T0 (tk−1)

[(
µ0σ0
2∆t

−
ε ′0

c2 (∆t )2

)
h0
3

]
+T1 (tk−1)

[(
µ0σ0
2∆t

−
ε ′0

c2 (∆t )2

)
h0
3

]
+ (BT)0,

for i = N − 1,

TN−2 (tk+1)

[
θ

µN−2hN−2
+

(
µ0σN−2
2∆t

+
ε ′N−2

c2 (∆t )2

)
hN−2
3

]
+TN−1 (tk+1)

 − θ

µN−2hN−2
+

(
µ0σN−2
2∆t

+

+
ε ′N−2

c2 (∆t )2

)
hN−2
3

 =
= TN−2 (tk )

[
θ − 1

µN−2hN−2
+
2ε ′N−2hN−2
3c2 (∆t )2

]
+TN−1 (tk )

[
1 − θ

µN−2hN−2
+
2ε ′N−2hN−2
3c2 (∆t )2

]
+

+TN−2 (tk−1)

[(
µ0σN−2
2∆t

−
ε ′N−2

c2 (∆t )2

)
hN−2
3

]
+

+TN−1 (tk−1)

[(
µ0σN−2
2∆t

−
ε ′N−2

c2 (∆t )2

)
hN−2
3

]
+ (BT)N−1,
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and for i ∈ [1,N − 2],

Ti−1 (tk+1)

[
θ

µi−1hi−1
+

(
µ0σi−1
2∆t

+
ε ′i−1

c2 (∆t )2

)
hi−1
3

]
+

+Ti (tk+1)

[
−θ

(
1

µi−1hi−1
+

1
µihi

)
+

(
µ0σi−1
2∆t

+
ε ′i−1

c2 (∆t )2

)
hi−1
3
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3

]
+

+Ti+1 (tk+1)

[
θ

µihi
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3

]
=

= Ti−1 (tk )

[
θ − 1
µi−1hi−1

+
2ε ′i−1hi−1
3c2 (∆t )2

]
+

+Ti (tk )

[
(1 − θ )

(
1

µi−1hi−1
+

1
µihi

)
+
2ε ′i−1hi−1
3c2 (∆t )2

+
2ε ′ihi

3c2 (∆t )2

]
+

+Ti+1 (tk )

[
θ − 1
µihi

+
2ε ′ihi

3c2 (∆t )2

]
+

+Ti−1 (tk−1)

[(
µ0σi−1
2∆t

−
ε ′i−1

c2 (∆t )2

)
hi−1
3

]
+

+Ti (tk−1)

[(
µ0σi−1
2∆t

−
ε ′i−1

c2 (∆t )2

)
hi−1
3
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3

]
+

+Ti+1 (tk−1)

[(
µ0σi
2∆t

−
ε ′i

c2 (∆t )2

)
hi
3

]
.
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Matrix Formulation

The previous system of equations can be represented as a single matrix equation:

a20 a30 0 . . . . . . 0

a11 a21 a31 0 . . .
...

0 a12 a22 a32
...

...
. . .

. . .
. . . 0

... a1N−2 a2N−2 a3N−2
0 . . . . . . 0 a1N−1 a2N−1





T0 (tk+1)
T1 (tk+1)
...

Ti (tk+1)
...

TN−1 (tk+1)


=



b20 b30 0 . . . . . . 0

b11 b21 b31 0 . . .
...

0 b12 b22 b32
...

...
. . .

. . .
. . . 0

... b1N−2 b2N−2 b3N−2
0 . . . . . . 0 b1N−1 b2N−1





T0 (tk )
T1 (tk )
...

Ti (tk )
...

TN−1 (tk )


+

+



c20 c30 0 . . . . . . 0

c11 c21 c31 0 . . .
...

0 c12 c22 c32
...

...
. . .

. . .
. . . 0

... c1N−2 c2N−2 c3N−2
0 . . . . . . 0 c1N−1 c2N−1





T0 (tk−1)
T1 (tk−1)
...

Ti (tk−1)
...

TN−1 (tk−1)


+



(BT)0
0
...

0
(BT)N−1


,

where for i ∈ [1,N − 2],

a1i := −
θ

µi−1hi−1
+

(
µ0σi−1
2∆t

+
ε ′i−1

c2 (∆t )2

)
hi−1
3
,

a2i := −θ
(

1
µi−1hi−1

+
1

µihi

)
+

(
µ0σi−1
2∆t

+
ε ′i−1

c2 (∆t )2

)
hi−1
3
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3
,

a3i :=
θ

µihi
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3
,

b1i :=
θ − 1
µi−1hi−1

+
2ε ′i−1hi−1
3c2 (∆t )2

,

b2i := (1 − θ )
(

1
µi−1hi−1

+
1

µihi

)
+
2ε ′i−1hi−1
3c2 (∆t )2

+
2ε ′ihi

3c2 (∆t )2
,

b3i :=
θ − 1
µihi

+
2ε ′ihi

3c2 (∆t )2
,

c1i :=

(
µ0σi−1
2∆t

−
ε ′i−1

c2 (∆t )2

)
hi−1
3
,

c2i :=

(
µ0σi−1
2∆t

−
ε ′i−1

c2 (∆t )2

)
hi−1
3
+

(
µ0σi
2∆t
+

ε ′i
c2 (∆t )2

)
hi
3
,

c3i :=

(
µ0σi
2∆t

−
ε ′i

c2 (∆t )2

)
hi
3
,



CHAPTER 7. NUMERICAL AND ANALYTICAL TECHNIQUES FOR SOLVING THE
ELECTROMAGNETIC PROBLEM 123

in case i = 0,

a20 := −
θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3
, a30 :=

θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3
,

b20 := −
1 − θ
µ0h0

+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3
, b30 :=

θ

µ0h0
+

(
µ0σ0
2∆t
+

ε ′0
c2 (∆t )2

)
h0
3
,

c20 :=

(
µ0σ0
2∆t

−
ε ′0

c2 (∆t )2

)
h0
3
, c30 :=

(
µ0σ0
2∆t

−
ε ′0

c2 (∆t )2

)
h0
3
,

and in case i = N − 1,

a1N−1 :=
θ

µN−2hN−2
+

(
µ0σN−2
2∆t

+
ε ′N−2

c2 (∆t )2

)
hN−2
3
,

a2N−1 := −
θ

µN−2hN−2
+

(
µ0σN−2
2∆t

+
ε ′N−2

c2 (∆t )2

)
hN−2
3
,

b1N−1 :=
θ − 1

µN−2hN−2
+
2ε ′N−2hN−2
3c2 (∆t )2

, b2N−1 :=
1 − θ

µN−2hN−2
+
2ε ′N−2hN−2
3c2 (∆t )2

,

c1N−1 :=

(
µ0σN−2
2∆t

−
ε ′N−2

c2 (∆t )2

)
hN−2
3
, c2N−1 :=

(
µ0σN−2
2∆t

−
ε ′N−2

c2 (∆t )2

)
hN−2
3
.

Boundary Conditions

Now we consider the boundary conditions, which as discussed in Section 2.4 are the inhomoge-
neous Dirichlet condition at the left-hand endpoint (i.e., at z = 0), and the absorbing boundary
condition at the right-hand endpoint (i.e., at z = L).

Note that Ej (0) = 0 for all j except j = 0, and that E0 (0) = 1; in this case, then, the boundary
condition at a = 0 implies

N−1∑
j=0

Tj (t )Ej (0) = T0 (t ) =
2
a

√
2P

(
ω · µ0
β

)
.

We thus replace the first row of the left-hand side matrix by the first row of the N − 1×N − 1 iden-
tity matrix, replace the first row of each right-hand side matrix by the 1 × N − 1 zero vector, and
replace the first entry of the boundary term vector by the value 2

a

√
2P

(ω ·µ0
β

)
. That is, we let a20 = 1,

a30 = b
2
0 = b

3
0 = c

2
0 = c

3
0 = 0, and (BT)0 = 2

L

√
2P

(ω ·µ0
β

)
.

For the boundary condition at z = L, we have

∂E

∂z

������z=L = −
1
c

∂E

∂t

������z=L ,



CHAPTER 7. NUMERICAL AND ANALYTICAL TECHNIQUES FOR SOLVING THE
ELECTROMAGNETIC PROBLEM 124

and with our assumption of separability and our choice of hat functions so that EN−1 (L) = 1, this
implies

dEN−1
dz

������z=LTN−1 (t ) = −
1
c

dTN−1
dt
,

and with our choice of the centered differencemethod to approximate the time derivative, we obtain

dEN−1
dz

������z=LTN−1 (t ) = −
1

2c∆t
(TN−1 (tk+1) −TN−1 (tk−1)) ,

so that our boundary term becomes

BTN−1 = −
TN−1 (t )

µN−2 (t )

dEN−1
dz

������z=L =
1

2cµN−2∆t
(TN−1 (tk+1) −TN−1 (tk−1)) .

We can implement this in our matrix equation by subtracting the quantity 1/(2cµN−2∆t ) from both
a2N−1 and cN−12 :

a2N−1 ← a2N−1 −
1

2cµN−2∆t
, c2N−1 ← c2N−1 −

1
2cµN−2∆t

.

The resulting system is, finally, the following:

1 0 0 . . . . . . 0

a11 a21 a31 0 . . .
...

0 a12 a22 a32
...

...
. . .

. . .
. . . 0

... a1N−2 a2N−2 a3N−2
0 . . . . . . 0 a1N−1 a2N−1





T0 (tk+1)
T1 (tk+1)
...

Ti (tk+1)
...

TN−1 (tk+1)


=



0 0 0 . . . . . . 0

b11 b21 b31 0 . . .
...

0 b12 b22 b32
...

...
. . .

. . .
. . . 0

... b1N−2 b2N−2 b3N−2
0 . . . . . . 0 b1N−1 b2N−1





T0 (tk )
T1 (tk )
...

Ti (tk )
...

TN−1 (tk )


+

+



0 0 0 . . . . . . 0

c11 c21 c31 0 . . .
...

0 c12 c22 c32
...

...
. . .

. . .
. . . 0

... c1N−2 c2N−2 c3N−2
0 . . . . . . 0 c1N−1 c2N−1





T0 (tk−1)
T1 (tk−1)
...

Ti (tk−1)
...

TN−1 (tk−1)


+



2
L

√
2P

(ω ·µ0
β

)
0
...

0
0


,

where the aℓi , b
ℓ
i , and c

ℓ
1 , for ℓ ∈ {1,2,3} and i ∈ [1,N − 2], are the same ones given above, keeping

in mind our recent modification to a2N−1 and c2N−1.
This method may be used to solve for the electric field at each time step, and its MATLAB imple-

mentation can be found in Appendix D.3.
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j = 0 j = 1 j = 2 j = 3 · · · · · · · · · · · · · · · · · · · · · · · · j = N − 1

k = 0

k = 1

k = 2

...

...

...

k = M − 2

k = M − 1

z0 z1 z2 z3 · · · · · · · · · · · · · · · · · · · · · · · · zN−1
x0

x1

x2

...

...

...

...

xM−1

0 ℓ1 m1 m2 ℓ2 L

0

h1

k1

k2

h2

H

Figure 7.7: Discretization of the spatial domain for the finite difference solution of the two-
dimensional wave equation. Area in blue is occupied by insulation, and area in red is occupied
by material. Boundaries of insulation and material do not necessarily fall on the numbered nodes.

7.2 Techniques for Solving the Two-Dimensional Wave Equation

This section outlines a finite difference technique for solving the two-dimensional wave equation
given in Problem 4. The technique used is a θ-method, where the spatial derivatives employ the
parametersθ ,φ ∈ [0,1], whose values dictatewhether the scheme is explicit or explicit. This removes
the need to write several different codes for these scenarios.

Finite Difference Methods

For the two-dimensional case, we use a time-marching scheme with constant time steps given by
∆tE⃗ , denoted here ∆t , as in the one-dimensional case. The domain is discretized into a spatial grid,
seen in Figure 7.7, whose components are not necessarily of uniform length or height, where the
z-dimension contains N many nodes and N − 1 many intervals, and the x-dimension contains M
many nodes and M − 1 many intervals. We are not concerned with whether the boundary of the
insulation or the load material is located at a node, or between nodes (the latter is typically the case
with our solver).

Let Enj,k := E (xk ,zj ,tn ), for j ∈ [0,N − 1] ∩ N, k ∈ [0,M − 1] ∩ N, and n ∈ {0} ∪ N. Consider
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the θ-scheme that uses difference approximations

∂E

∂t

�����x=xkz=zj
t=tn

≈
En+1j,k − E

n−1
j,k

2∆t
,

∂2E

∂t2

�����x=xkz=zj
t=tn

≈
En−1j,k − 2E

n
j,k + E

n+1
j,k

(∆t )2
,

∂E

∂z2

�����x=xkz=zj
t=tn

≈ (1 − θ )
Enj−1,k − 2E

n
j,k + E

n
j+1,k

(zj+1 − zj ) (zj − zj−1)
+ θ

En+1j−1,k − 2E
n+1
j,k + E

n+1
j+1,k

(zj+1 − zj )(zj − zj−1)
, and

∂E

∂x2

�����x=xkz=zj
t=tn

≈ (1 − φ)
Enj,k−1 − 2E

n
j,k + E

n
j,k+1

(xk+1 − xk )(xk − xk−1)
+ φ

En+1j,k−1 − 2E
n+1
j,k + E

n+1
j,k+1

(xk+1 − xk ) (xk − xk−1)
,

where θ ,φ ∈ [0,1], j ∈ [1,N − 2]∩N, k ∈ [1,M − 2]∩N, and n ∈ N. Here, the fully explicit method
corresponds to taking θ = φ = 0, the fully implicit method corresponds to taking θ = φ = 1, and
the Crank-Nicolson scheme corresponds to θ = φ = 0.5.

Substituting the difference approximations into the governing equation in Equation 2.65, we
obtain

*,(1 − φ)
Enj,k−1 − 2E

n
j,k + E

n
j,k+1

(xk+1 − xk ) (xk − xk−1)
+ φ

En+1j,k−1 − 2E
n+1
j,k + E

n+1
j,k+1

(xk+1 − xk )(xk − xk−1)
+-+

+ *,(1 − θ )
Enj−1,k − 2E

n
j,k + E

n
j+1,k

(zj+1 − zj )(zj − zj−1)
+ θ

En+1j−1,k − 2E
n+1
j,k + E

n+1
j+1,k

(zj+1 − zj )(zj − zj−1)
+-−

− µε ′ *,
En+1j,k − 2E

n
j,k + E

n
j,k

(∆t )2
+- − µσ *,

En+1j,k − E
n−1
j,k

2∆t
+- = 0

where, as in the one-dimensional cases, we have used the dimensional representations ε ′ and µ of
absolute permittivity and permeability, and the fact that 1

c2 = ε
′
0µ0. Keeping the terms at time level
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n + 1 on the left-hand side and moving all others to the right-hand side, we obtain(
2θ

(zj+1 − zj ) (zj − zj−1)
+

2φ

(xk+1 − xk ) (xk − xk−1)
+
µσ

2∆t
+

µε ′

(∆t )2

)
En+1j,k −

− θ

(zj+1 − zj ) (zj − zj−1)
En+1j−1,k −

θ

(zj+1 − zj )(zj − zj−1)
En+1j+1,k −

φ

(xk+1 − xk ) (xk − xk−1)
En+1j,k−1−

− φ

(xk+1 − xk ) (xk − xk−1)
En+1j,k+1 =

(
− µε ′

(∆t )2
+
µσ

2∆t

)
En−1j,k +

+

(
− 2(1 − φ)

(xk+1 − xk )(xk − xk−1)
− 2(1 − θ )

(zj+1 − zj )(zj − zj−1)
+

2µε ′

(∆t )2

)
Enj,k+

+
(1 − φ)

(xk+1 − xk ) (xk − xk−1)
Enj,k−1 +

(1 − φ)
(xk+1 − xk ) (xk − xk−1)

Enj,k+1+

+
(1 − θ )

(zj+1 − zj ) (zj − zj−1)
Enj−1,k +

(1 − θ )
(zj+1 − zj )(zj − zj−1)

Enj+1,k

Using the abbreviations

(∆z)2j := (zj+1 − zj ) (zj − zj−1), (∆x )2k := (xk+1 − xk ) (xk − xk−1),

sj :=
(∆t )2

(∆z)2j
, rk :=

(∆t )2

(∆x )2k
,

the difference approximation becomes(
2θsj + 2φrk + µε

′ +
µσ∆t

2

)
En+1j,k − θsjE

n+1
j−1,k − θsjE

n+1
j+1,k − φrkE

n+1
j,k−1 − φrkE

n+1
j,k+1 =

=

(
− µε ′ + µσ∆t

2

)
En−1j,k +

(
− 2(1 − φ)rk − 2(1 − θ )sj + 2µε ′

)
Enj,k+

+ (1 − φ)rkEnj,k−1 + (1 − φ)rkEnj,k+1 + (1 − θ )sjEnj−1,k + (1 − θ )sjEnj+1,k

(7.21)

To implement the boundary condition in Equation 2.75 on the z = 0 boundary, we set

En0,k =
2
L

√
2P

(
ω · µ0
β

)
, (7.22)

for k ∈ [0,M − 1] ∩ N and for all n ∈ N.
To implement the boundary conditions in Equation 2.75 on the x = 0 and x = H boundaries,

we set
Enj,0 = 0, Enj,H = 0 (7.23)

for j ∈ [1,N − 2] ∩ N and for all n ∈ N.
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E20,0

E20,1

E20,2

E21,0

E21,1

E21,2

E22,0

E22,1

E22,2

n = 2
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E10,1

E10,2
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E11,1

E11,2

E12,0

E12,1

E12,2

n = 1

E00,0

E00,1

E00,2

E01,0

E01,1

E01,2

E02,0

E02,1

E02,2

j = 0 j = 1 j = 2 · · · · · · · · · · · · j = N − 1
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k = 1
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. .
.

. .
.
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Figure 7.8: Computational grids representing the solution space of the wave equation with two spa-
tial dimensions and one time dimension. Here, j ∈ [0,N − 1] ∩N and k ∈ [0,M − 1] ∩N represent
the position within the spatial domain, and n ∈ {0} ∪ N represents the time step. The blue-colored
nodes represent those where the solution is given by the initial condition in Equation 7.28, and the
red-colored nodes represent those whose solution is given by the boundary conditions in Equa-
tions 7.22, 7.23, 7.25, and 7.24, and 7.26, while the solution at the black-colored nodes is given by
Equation 7.21.
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En−1j,k

Enj−1,k Enj,k Enj+1,k

Enj,k−1

Enj,k+1

En+1j−1,k En+1j,k En+1j+1,k

En+1j,k−1

En+1j,k+1

Figure 7.9: Computational stencil of θ-scheme for solving the two-dimensional wave equation.
Here, j ∈ [1,N − 2] ∩ N and k ∈ [1,M − 2] ∩ N represent the position within the spatial do-
main, and n ∈ N represents the current time step. The nodes in black are ones at which the solution
E is known, and the ones in red may be solved for with knowledge of the ones in black.

To implement the absorbing boundary condition in Equation 2.63 on the z = L boundary, as
done in [142] we set(

1
∆zN−1∆t

+
1

c (∆t )2

)
En+1N−1,k −

1
∆zN−1∆t

En+1N−2,k = −
1

c (∆t )2
En−1N−1,k+

+

(
1

∆zN−1∆t
+

2
c (∆t )2

− c

(∆xk )2

)
EnN−1,k −

1
∆zN−1∆t

EnN−2,k +
c

2(∆xk )2
EnN ,k−1 +

c

2(∆xk )2
EnN ,k+1,

(7.24)
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j k Equation
0 0, . . . ,M − 1 7.22

1, . . . ,N − 2 0 7.23
1, . . . ,N − 2 1, . . . ,M − 2 7.21
1, . . . ,N − 2 M − 1 7.23

N − 1 0 7.25
N − 1 1, . . . ,M − 2 7.24
N − 1 M − 1 7.26

Table 7.1: Description of the organization of the linear system for the finite difference approximation
of the two-dimensional wave equation.

for k ∈ [1,M − 2] ∩ N and for all n ∈ N, and at k = 0,(
1

∆zN−1∆t
+

1
c (∆t )2

)
En+1N−1,0 = −

1
c (∆t )2

En−1N−1,0+

+

(
1

∆zN−1∆t
+

2
c (∆t )2

− c

(∆x0)2

)
EnN−1,0 −

1
∆zN−1∆t

EnN−2,0 +
c

2(∆x0)2
EnN ,1,

(7.25)

and, finally, at k = M − 1,(
1

∆zN−1∆t
+

1
c (∆t )2

)
En+1N−1,M−1 = −

1
c (∆t )2

En−1N−1,M−1+

+

(
1

∆zN−1∆t
+

2
c (∆t )2

− c

(∆xM−2)2

)
EnN−1,M−1 −

1
∆zN−1∆t

EnN−2,M−1 +
c

2(∆xM−2)2
EnN ,M−2.

(7.26)

A linear system may be established using the equations described above, with Table 7.1 sum-
marizing which equation corresponds to each coordinate pair (j,k ). As is clear, the system is one of
N ×M many equations in N ×M many unknowns, and so we establish the matrix equation for its
solution at each time step:

AE⃗n+1 = BE⃗n + c⃗E⃗n−1, (7.27)

where the vectors E⃗p and c⃗ , and the matrices A and B, are defined in Appendix A, and where the
initial vector E⃗0 is given by

E⃗0 :=

⟨
Einc, . . . ,Einc︸          ︷︷          ︸

N

,0, . . . ,0

⟩
. (7.28)
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z1
◦

z2
◦ ◦ · · · ◦

zn
◦

Figure 7.10: Discretization of the one-dimensional domain on which the finite element solution for
the Helmholtz equation is described.

7.3 Techniques for Solving the One-Dimensional Helmholtz Equation

Weak Formulation of the Governing Equation

We formulate a single matrix equation that can be solved once to obtain the spatial function E (z),
which can subsequently be multiplied by eiωt for each time step t to obtain a video of the transient
solution.

Spatial Discretization

We use n many nodes, not necessarily evenly spaced, to discretize the domain into n − 1 many
elements, as shown in Figure 7.10.

On this domain, we assume that our solutions E (z) take the form E (z) := ∑n
j=1TjEj (z) for some

constantsTj and functions Ej (z), and we plug this into Equation (7.32), multiply by the test function
W (z) :=

∑n
i=1Wi (z), where for i ∈ [1,n]∩N,Wi (z) is some known function, and integrate over the

domain [z1,zn]:
n∑
i=1

n∑
j=1

Tj

{∫ zn

z1
Wi (z)

d
dx

(
1

µrel (z)

dEj
dz

)
dz −

(
ω2

c2

)∫ zn

z1
µrel (z)ε

′
rel (z)Wi (z)Ej (z)dz

}
= 0.

We integrate the second spatial derivative term by parts:∫ zn

z1
Wi (z)

d
dz

(
1

µrel (z)

dEj
dz

)
dx =

Wi (x )

µ (x )

dEj
dz

������
zn

z1

−
∫ zn

z1

1
µrel (z)

dWi

dz

dEj
dz

dz,

and we move the first term of the result (henceforth called the “boundary term”) to the right-hand
side of the governing equation to obtain the form:
n∑
i=1

n∑
j=1

Tj

{∫ zn

z1

1
µrel (z)

dWi

dz

dEj
dz

dz +

(
ω2

c2

)∫ zn

z1
µrel (z)ε (z)Wi (x )Ej (z)dz

}
=

n∑
i=1

n∑
j=1

Tj
Wi (z)

µrel (z)

dEj
dz

������
zn

z1

.

(7.29)
For the functions Ej andWi , we will use the same definitions as were given in Section 7.1 in

Equations (7.17)–(7.19), namely applying the Galerkin formulation that dictatesWi (z) = Ei (z) for
each i ∈ [1,n] ∩ N, where Ei (z) is the hat function centered at node i.

The derivatives of these function were also calculated in Section 7.1, andwemay use the relevant
integral calculations in that section to obtain the following values of the integrals

∫ zn
z1

1
µrel (x )

dWi
dz

dEj
dz dz

and
∫ zn
z1
µrel (z)εrel (z)WiEjdz for values of i and j in the interval [1,n] ∩ N:
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∫ z1

zn

1
µrel (z)

dWi

dz

dEj
dz

dx = 0, if |i − j | > 1,∫ zn

z1

1
µrel (z)

dWi

dz
dEi−1
∂z

dz =
∫ zi

zi−1

1
µrel (z)

(
−1
h2i−1

)
dz = − 1

µi−1hi−1
for i ∈ [2,n],∫ zn

z1

1
µrel (z)

dWi

dz
dEi
dz

dz =
∫ zi

zi−1

1
µrel (z)

1

h2i−1
dz+

∫ zi+1

zi

1
µrel (z)

1

h2i
dz =

1
µi−1hi−1

+
1

µihi
, for i ∈ [2,n−1],∫ zn

z1

1
µrel (z)

dW1

dz
dE1
dz

dz =
1

µ1h1
, and

∫ zn

z1

1
µrel (z)

dWn

dz
dEn
dz

dz =
1

µn−1hn−1
;

and ∫ zn

z0

1
µrel (z)

dWi

dz
dEi+1
dz

dz =
∫ zi+1

zi

1
µrel (z)

(
−1
h2i

)
dz = − 1

µihi
for i ∈ [1,n − 1],

together with ∫ zn

z1
µrel (z)εrel (z)WiEjdz = 0, if |i − j | > 1,

and ∫ zn

z1
µrel (z)εrel (z)WiEi−1dz = µi−1εi−1

∫ zi

zi−1

(zi−1 − z)2
h2i−1

dz = µi−1εi−1
(z − zi−1)3

3h2i−1

�����
zi

zi−1

= µi−1εi−1
hi−1
3
, for i ∈ [2,n],

∫ zn

z1
µrel (z)εrel (z)WiEidz = µi−1εi−1

∫ zi

zi−1

(z − zi−1)2
h2i−1

dz + µiεi

∫ zi+1

zi

(zi+1 − z)2
h2i

dz

= µi−1εi−1
(z − zi−1)3

3h2i−1

�����
zi

zi−1
+ µiεi

(z − zi )3
3h2i

�����
zi+1

zi
= µi−1εi−1

hi−1
3
+ µiεi

hi
3
,

for i ∈ [2,n − 1]. Also∫ zn

z1
µ (z)ε (z)W1E1dz = µ1ε1

h1
3

and
∫ zn

z1
µrel (z)εrel (z)WnEndz = µn−1εn−1

hn−1
3
,

and∫ zn

z1
µrel (z)εrel (z)WiEi+1dz = µiεi

∫ zi−1

zi

(z − zi )2
h2i

dz = µiεi
(z − zi )3
3h2i

�����
zi+1

zi
= µiεi

hi
3
, for i ∈ [1,n − 1].
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Using all of the integral valueswe have just computed in theweak formof the governing equation
(7.29), we obtain

n−1∑
i=2

Ti−1
[
− 1
µi−1hi−1

+ µi−1εi−1
hi−1
3

]
+Ti

[
1

µi−1hi−1
+

1
µihi
+ µi−1εi−1

hi−1
3
+ µiεi

hi
3

]
+

+Ti+1

[
− 1
µihi
+ µiεi

hi
3

]  +T1
[

1
µ1h1

+
µ1ε1h1

3

]
+Tn

[
1

µn−1hn−1
+
µn−1εn−1hn−1

3

]
=

=

n−1∑
i=2

{
Wi (z)

µi

[
Ti−1

dEi−1
dz
+Ti

dEi
dz
+Ti+1

dEi+1
dz

]} ������
zn

z1

+T1
W1 (z)

µ1

dE1
dz

������
zn

z1

+Tn
Wn (z)

µn−1

dEn
dz

������
zn

z1

.

As for the boundary term, observe thatWi (z)
���znz1 is zero whenever i < {1,n}, and thatW1 (z1) =

Wn (zn ) = 1 andW1 (zn ) =Wn (z1) = 0, and so the right-hand side (henceforth referred to as “BT”)
becomes:

BT =
T1
µ1

dE1
dz

������z=z1 −
Tn
µn−1

dEn
dz

������zn .
However, the spatial derivatives dE1

dz
���z=z1 and dEn

dz
���z=zn are not defined at their respective evaluation

points. We will thus wait to evaluate this term until we explicitly apply the boundary conditions.
Note for now, however, that (BT)i = 0 unless i ∈ {1,n}.

We thus obtain the weak form of the governing equation:

n−1∑
i=2

Ti−1
[
− 1
µi−1hi−1

+ µi−1εi−1
hi−1
3

]
+

+Ti

[
1

µi−1hi−1
+

1
µihi
+ µi−1εi−1

hi−1
3
+ µiεi

hi
3

]
+Ti+1

[
− 1
µihi
+ µiεi

hi
3

] +
+T1

[
1

µ1h1
+
µ1ε1h1

3

]
+Tn

[
1

µn−1hn−1
+
µn−1εn−1hn−1

3

]
= BT.

(7.30)

The single equation above will be satisfied when for i = 1:

T1

[
1

µ1h1
+ µ1ε1

h1
3

]
+T2

[
− 1
µ1h1

+ µ1ε1
h1
3

]
= (BT)1,

for i = n,

Tn−1

[
− 1
µn−1hn−1

+ µn−1εn−1
hn−1
3

]
+Tn

[
1

µn−1hn−1
+ µn−1εn−1

hn−1
3

]
= (BT)n ,
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and for i ∈ [2,n − 1] ∩ N,

Ti−1

[
− 1
µi−1hi−1

+ µi−1εi−1
hi−1
3

]
+Ti

[
1

µi−1hi−1
+

1
µihi
+ µi−1εi−1

hi−1
3
+ µiεi

hi
3

]
+

+Ti+1

[
− 1
µihi
+ µiεi

hi
3

]
= 0.

Matrix Formulation

The previous system of equations can be represented as a single matrix equation:

a21 a31 0 . . . . . . 0

a12 a22 a32 0 . . .
...

0 a13 a23 a33
...

...
. . .

. . .
. . . 0

... a1n−1 a2n−1 a3n−1
0 . . . . . . 0 a1n a2n





T1
T2
...

Ti
...

Tn


=



(BT)1
0
...

0
(BT)n


,

where for i ∈ [2,n − 1] ∩ N,

a1i = −
1

µi−1hi−1
+ µi−1εi−1

hi−1
3
,

a2i =
1

µi−1hi−1
+

1
µihi
+ µi−1εi−1

hi−1
3
+ µiεi

hi
3
, and

a3i = −
1

µihi
+ µiεi

hi
3
,

and for i = 1 and i = n,

a1n = −
1

µn−1hn−1
+ µn−1εn−1

hn−1
3
,

a21 =
1

µ1h1
+ µ1ε1

h1
3
,

a2n =
1

µn−1hn−1
+ µn−1εn−1

hn−1
3
, and

a31 = −
1

µ1h1
+ µ1ε1

h1
3
.

Boundary Conditions

Now we consider the boundary conditions, which are the inhomogeneous Dirichlet condition at
the left-hand endpoint (i.e., at z = 0), and the homogeneous Dirichlet condition at the right-hand
endpoint (i.e., at z = L), shown in Equations 2.81 and 2.82.
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Note that Ej (0) = 0 for all j except j = 1, and that E1 (0) = 1; in this case, then, the boundary
condition at z = 0 implies

n∑
j=1

Tj (t )Ej (0) = T1 (t ) =
2
a

√
2P

(
ω · µ0
β

)
.

We thus replace the first row of the left-hand side matrix by the first row of the n×n identity matrix,
and replace the first entry of the boundary term vector by the value 2

a

√
2P

(ω ·µ0
β

)
. That is, we let

a21 = 1, a31 = 0, and (BT)1 = 2
L

√
2P

(ω ·µ0
β

)
.

For the boundary condition at x = L, we have
n∑
j=1

Tj (t )Ej (L) = Tn (t ) = 0,

and to implement this, we replace the final row of the left-hand side matrix by the final row of the
n × n identity matrix, and replace the final entry of the boundary term vector by 0; that is, we set
a2n = 1, a1n = 0, and (BT)n = 0.

The resulting system is, finally, the following:

1 0 0 . . . . . . 0

a12 a22 a32 0 . . .
...

0 a13 a23 a33
...

...
. . .

. . .
. . . 0

... a1n−1 a2n−1 a3n−1
0 . . . . . . 0 0 1





T1
...

Ti
...

Tn


=



2
L

√
2P

(ω ·µ0
β

)
0
...

0


,

where the aℓi , b
ℓ
i , and c

ℓ
1 , for ℓ ∈ {1,2,3} and i ∈ [2,n − 1], are the same ones given above.

Simulation Results

We have written a MATLAB code (see the full code in Appendix D.7) to solve the above system. For
this simulation, we have used a length L = 1 m, the number of (uniformly spaced) nodes n = 50,
and have assumed that the parameters µ, σ , and ε ′ correspond to those of air in the first and final
thirds of the domain (i.e., for z ∈ [0,L/3) ∪ (2L/3,L]) and to those of water in the second third (i.e.,
for z ∈ [L/3,2L/3]). Namely, we have used the following values:

µair = 1, σair = 0, ε ′air = 1

µwater = 1, σwater = 0.055, ε ′water = 75,

which were taken from [143–145]. The resulting envelope of the electric field intensity calculated
by this routine is as shown in Figure 7.11.
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Figure 7.11: Envelope of electric field with one-dimensional Helmholtz equation solver.

Helmholtz, Laplace, and Poisson Solver Using FEM

Asimilar solver to that described in the beginning of thisChapter, but that is extensible to the Laplace
and Poisson equations as well, is described in Chapter 3 of [2]. This solver finds a solution to the
equation

− d
dz

(
a
du
dz

)
+ bu = f ,

where a and b are known parameters associated with the physical properties of the domain, and f
is a known source or excitation function. The solver is capable of handling Dirichlet, Neumann, or
third-kind boundary conditions at the left- and right-hand endpoints.

Taking a = µref
−1, b = µrefω2εref

c2 , and f = 0, it is not difficult to show that Jin’s solver is mathe-
matically identical to our own Helmholtz solver. Our code implementing Jin’s solver can be found
in Appendix D.7, and we test its accuracy by simulating a solution to Problem 10.
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Figure 7.12: Discontinuity in a parallel plate waveguide [2].

Reflection for the Metal-Backed Dielectric Slab

This problem is fully described in Chapter 3 of [2], but we will reproduce here some basic informa-
tion about its formulation.

We consider the situation shown in Figure 7.12 where a uniform plane wave is incident upon
an inhomogeneous dielectric slab backed by a conducting plane. The dielectric slab has thickness L,
relative permittivity εrel, and permeability µrel; the latter two can be functions of z. The surrounding
medium is free space having εrel = µrel = 1. We are interested in finding the power reflected by the
slab.

It is well known that any plane wave can be decomposed into an Ey-polarized plane wave hav-
ing only a y-component for the electric field, and an Hy-polarized plane wave having only a y-
component for the magnetic field. Therefore, it is sufficient to consider only these two polarization
cases.

For the Ey-polarization case, the Helmholtz equation governing the electric field Ey is

d
dz

(
1
µrel

dEy
dz

)
+ k20

(
εrel −

1
µrel

sin2 θ

)
Ey = 0,
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where k0 = ω
√
ε0µ0, and θ is the angle of incidence shown in Figure 7.12. We will impose the

homogeneous Dirichlet condition at the left-hand boundary (Ey (0) = 0), and at the right-hand
boundary, we will impose the following boundary condition of the third kind:[

1
µrel

dEy
dz
+ jk0 cosθEy

] ������z=L= 2jk0 cosθE0e
jk0L cos θ ,

where E0 is a constant denoting the magnitude of the incident field.
For the Hy-polarization case, the Helmholtz equation governing the magnetic field Hy is

d
dz

(
1
εrel

dEy
dz

)
+ k20

(
µrel −

1
εrel

sin2 θ

)
Ey = 0,

andwewill impose the homogeneousNeumann condition at the left-handboundary:
(
dHy
dz

���z=0 = 0
)
,

and at the right-hand boundary, we will impose the following boundary condition of the third kind:[
1
εrel

dHy

dz
+ jk0 cosθHy

] ������z=L= 2jk0 cosθH0e
jk0L cos θ .

Once we solve the Ey and Hy fields at z = L, the reflection coefficient may be found according
to

R =
Ey (L) − E0e jk0L cos θ

E0e−jk0L cos θ

for Ey-polarization, and similarly for Hy-polarization, according to

R =
Hy (L) − H0e

jk0L cos θ

H0e−jk0L cos θ
.

Problem 10. Find the reflection coefficients for the scenario described above with the metal-backed
dielectric slab.

We carry out a simulation for this problem using out implementation of Jin’s solver, running the
simulation for both 50 nodes and 100 nodes. Code for this problem may be found in Appendix D.7.
We have found that the results from this solver identically replicate those from Chapter 3 of [2], and
our results look as shown in Figure 7.13.

Semi-Analytical Solution Using bvp4c

Startingwith the representation in Equation (2.77), we letS (z) = Re(E (z)), andW (z) = − Im(E (z)),
so that

Re
{
E (z)eiωt

}
= S (z) cosωt −W (z) sinωt . (7.31)
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Figure 7.13: Simulated reflection coefficients for the metal-backed dielectric slab examples in the Ey
and Hy polarizations.
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Recall that the one-dimensional Helmholtz equation is

∂

∂z

(
µ−1rel
∂E (z)
∂z

)
=
µrelω

2

c2
(ε ′ − iε ′′)E (z), (7.32)

where ε ′′ = σ
ωε0

is the material’s (unitless) relative electromagnetic loss factor.
The first and second time derivatives of Equation 7.31 are as follows:

∂E⃗
∂t
= ⟨0,0,−ωS (z) sinωt − ωW (z) cosωt⟩

∂2E⃗
∂t2
= ⟨0,0,−ω2S (z) cosωt + ω2W (x ) sinωt⟩.

Assuming that µrel is isotropic (i.e., constant in space), we may take its inverse outside of the
partial derivatives on the left-hand side of Equation 2.68, and so

∂

∂z
*,µ−1rel ∂E⃗∂z +- = µ−1rel ∂

2E⃗
∂z2
= µ−1rel⟨0,0,

d2S (z)
dz2

cosωt − d2W (z)

dz2
sinωt⟩.

We may plug this into Equation 2.68 to obtain

µ−1rel

⟨
0,0,

d2S (z)

dz2
cosωt − d2W (z)

dz2
sinωt

⟩
=

⟨
0,0,µ0σω

(
S (z) sinωt − ωW (z) cosωt

)
+
ε ′

c2
ω2

(
S (z) cosωt + ω2W (z) sinωt

)⟩
,

so that
d2S (z)
dx2

cosωt − d2W (z)

dz2
sinωt = µrelµ0σω (S (x ) sinωt − ωW (z) cosωt ) +

+ µrelω
2 ε
′

c2

(
S (z) cosωt + ω2W (z) sinωt

)
=

(
µσωS (z) − µrel

ε ′ω2

c2
W (z)

)
sinωt+

+

(
µσωW (z) + µrel

ε ′ω2

c2
S (z)

)
cosωt .

We now employ an alternative definition of the permittivity of free space: ε0 = 1/µ0c2. When
we use this relationship and equate the coefficients of cosωt and sinωt in the above equation, we
obtain

d2S (z)
dz2

= µσωS (z) − µ ε
′ω2

c2
W (z)

=
µω2

c2
(
ε ′W (z) − ε ′′S (z))
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Figure 7.14: Real and imaginary parts of the electric field intensity calculated using bvp4c.

and

d2W (z)

dz2
= µσωW (z) − µrel

ε ′ω2

c2
S (z)

=
µω2

c2

(
ε ′S (z) + ε ′′W (z)

)
,

or, in matrix form,
d2

dz2

[
S (z)
W (z)

]
=
µrelω

2

c2

[
ε ′′ ε ′

ε ′ ε ′′

] [
S (z)
W (z)

]
(7.33)

We solve the above system using MATLAB’s built-in solver bvp4c, with the full code shown in
Appendix D.7. The resulting real and imaginary parts of the electric field intensity calculated with
this code are as shown in Figure 7.14. These same curves, overlaid with those produced by our own
finite element code from Section 7.3, look as shown in Figure 7.15
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Figure 7.15: Comparison of the real and imaginary parts of the electric field intensity calculated
using bvp4c and calculated using finite element method.

7.4 Techniques for Solving the Two-Dimensional Helmholtz Equation

Finite Difference Methods

This section outlines a finite difference technique for solving the two-dimensional Helmholtz equa-
tion given in Equation 2.80. The technique used is a second-order difference method that relies on
the spatial discretization shown in Figure 7.7, and that employs the approximations

∂E
∂x2
|x=xk
z=zj
≈
Ek−1j − 2Ekj + Ek+1j

(xk+1 − xk )(xk − xk−1)
,

∂E
∂z2
|x=xk
z=zj
≈
Ekj−1 − 2Ekj + Ekj+1
(zj+1 − zj )(zj − zj−1)

.

Substituting these equations into Equation 2.80 yields

Ek−1j − 2Ekj + Ek+1j

(xk+1 − xk )(xk − xk−1)
+
Ekj−1 − 2Ekj + Ekj+1
(zj+1 − zj )(zj − zj−1)

+ µ2εω2Ekj = 0,
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j k Equation
0 0, . . . ,M − 1 7.35

1, . . . ,N − 2 0 7.35
1, . . . ,N − 2 1, . . . ,M − 2 7.34
1, . . . ,N − 2 M − 1 7.35

N − 1 0, . . . ,M − 1 7.35

Table 7.2: Description of the organization of the linear system for the finite difference approximation
of the two-dimensional wave equation.

for j ∈ [1,N − 2] ∩ N and k ∈ [1,M − 2] ∩ N, and where ε and µ refer to the absolute (not relative)
permittivity and permeability.

This simplifies to the finite difference scheme

Ekj *,µ2εω2 − 2

(∆z)2j
− 2

(∆x )2k

+- +
Ekj−1 + Ekj+1

(∆z)2j
+
Ek−1j + Ek+1j

(∆x )2k
, (7.34)

where (∆x )2k := (xk+1 − xk ) (xk − xk−1) and (∆z)2j := (zj+1 − zj ) (zj − zj−1).
The boundary conditions in Equations 2.82 and 2.81 are applied at the left-hand wall and on the

remaining three walls, respectively, as

E0j = EM−1j = 0, for j ∈ [1,N − 1] ∩ N, Ek0 = Einc, E
k
N−1 = 0, for k ∈ [0,M − 1]. (7.35)

Together, Equations 7.34 and 7.35 constitute a system of N × M many equations in the same
number of unknowns, andmay therefore be taken as a linear system, where the equations are placed
in the order shown in Table 7.2, which leads to the system

AE⃗ = c⃗, (7.36)

where

E⃗ =
[
E00 , E10 , · · · EM−10 , E01 , E11 , · · · EM−11 , · · · E0N−1, E1N−1, · · · EM−1N−1

]⊤
,

c⃗ =
[
Einc, · · · Einc,︸           ︷︷           ︸

M

0, · · · 0
]⊤
,

andA is given inAppendixA.2. The solution of thismatrix equation yields the phasor representation
of the electric field, which may be squared, according to Equation 2.39, to yield the average of the
square of the magnitude of the electric field over a given time interval, for use as input to the source
term of the heat equation, described in Problem 7.
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Finite Element Methods

Governing Equation

Detailed description of a solver for the general differential equation

− ∂
∂x

(
αx
∂φ

∂x

)
− ∂
∂z

(
αz
∂φ

∂z

)
+ βφ = f ,

where αx , αz , and β are known parameters associated with the physical properties of the domain,
and f is the source or excitation function, is given in [2]. Again, special forms of this equation are
the Helmholtz equation, Laplace equation, and Poisson equation. The boundary conditions on the
two-dimensional domain may be given by

φ = p on Γ1,

and (
αx
∂φ

∂x
x̂ + αz

∂φ

∂z
ẑ

)
· n̂ + γφ = q on Γ2,

where Γ := Γ1+ Γ2 denotes the contour or boundary enclosing the entire domain Ω, n̂ is the outward
unit normal vector, and γ , p, and q are known parameters associated with the physical properties of
the boundary.

This solver is described in detail in [2], but we give here an overview of its structure.

Weak Formulation of the Governing Equation

The variational problem equivalent to the boundary value problem described in the preceding sec-
tion is given by δF (φ) = 0

φ = p on Γ1,

where

F (φ) =
1
2

"
Ω

αx
(
∂φ

∂x

)2
+ αy

(
∂φ

∂z

)2
+ βφ2

 dΩ +
∫
Γ2

(γ
2
φ2 − qφ

)
dΓ −

"
Ω
f φdΩ.

The proof of equivalency of the variational problem and the boundary value problem is given in [2],
along with a discussion of continuity conditions to be imposed in the event of a strongly inhomo-
geneous domain.

Spatial Discretization

The domain Ω is to be divided into a number of two-dimensional elements, and in this formulation,
we choose triangular elements that satisfy the basic requirements of an admissible FEM mesh:
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• There should be neither gaps nor overlaps between any elements;

• Elements should be connected via their vertices;

and additionally, the elements should be generated to satisfy the following constraints, which exist
to ensure quick convergence to the correct solution:

• Narrow elements (those having a very small interior angle) should be avoided, and all elements
should be made as close to equilateral as possible;

• The number of elements should be kept to the minimum for desired accuracy, which may
entail the use of small elements where the solution is expected to have drastic variation, and
larger elements elsewhere.

We label these elements and vertices with integers, and note that since each element is comprised
of three nodes, a node has its own position in the associated element, in addition to its position in the
entire system. This elemental position can also be labelled with an integer, referred to as the “local
number”, in addition to the “global number” indicating its position in the entire system. To relate
these three numbers (the element number, the local node number, and the global node number), we
use a 3 ×M array whose entries are denoted n(i,e ) (where i ∈ {1,2,3} and e ∈ [1,M] × N), where
M is the total number of elements. The entry n(i,e ) is the global number of the node that has local
number i on element e . The local node numbers, it should be noted, must be ordered consistently
for all elements in either a clockwise or counterclockwise way.

In addition to the connectivitymatrix described above, some other inputs necessary for the finite
element formulation include the xi and zi coordinates for each node of the domain; the αx , αz , β ,
and f values on each element; the global numbers of the nodes residing on Γ1 and their p-values on
those nodes; and the values of γ and q for each segment coincident with Γ2.

The unknown function φ is approximated on element e as

φe (x ,z) = ae + bex + cez,

where ae , be , and ce are constant coefficients to be determined. The imposition of this condition at
each of the nodes, together with a condition enforcing continuity of φ, yields

φe (x ,z) =
3∑
i=1

N e
j (x ,z)φ

e
j ,

where for j ∈ {1,2,3}, φej (x ,z) = ae + bex j + cezj , and N e
j are the “hat”-shaped interpolation

functions given by
N e
j (x ,z) =

1
2∆e (a

e
j + b

e
j x + c

e
j z),
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in which

ae1 = xe2z
e
3 − ze2xe3 ; be1 = ze2 − ze3 ; ce1 = xe3 − xe2 ;

ae2 = xe3z
e
1 − ze3xe1 ; be1 = ze3 − ze1 ; ce1 = xe1 − xe3 ;

ae3 = xe2z
e
2 − ze1xe2 ; be1 = ze1 − ze2 ; ce1 = xe2 − xe1 ,

and
∆e =

1
2
(be1c

e
2 − be2ce1 )

is the area of element e .

Matrix Formulation

We consider the function F (φ) as the sum

F (φ) =
M∑
e=1

F e (φe ),

where again,M is the number of elements. Here, F e is the subfunctional

F e (φe ) =
1
2

"
Ωe

αx
(
∂φe

∂x

)2
+ αz

(
∂φe

∂z

)2
+ β (φe )2

 dΩ −
"

Ωe
f φedΩ,

where Ωe denotes the domain of element e .
Introducing the expression for φe derived previously, and differentiating F e with respect to φei

yields the matrix equation {
∂F e

∂φe

}
= [Ke ] {φe } − {be },

where {
∂F e

∂φe

}
=

[
∂F e

∂φe1
,
∂F e

∂φe2
,
∂F e

∂φe3

]⊤
; {φe } = [φe1 ,φ

e
2 ,φ

e
3 ]
⊤,

the elements of the 3 × 3 matrix Ke are given by

Ke
i =

1
4∆e

(
αxb

e
i b

e
j + αzc

e
i c

e
j

)
+
∆e

12
βe (1 + δi j ),

and the elements of the vector be are
bei =

∆e

3
f e .

We arise at these expressions under the assumption that the coefficients αx , αz , β , and the source f
are constant within each element.
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To assemble the global system fromM many local 3 × 3 systems as above, we follow the formu-
lation {

∂F

∂φ

}
=

M∑
e=1

 ∂F
e

∂φe

 =
M∑
e=1

( [
Ke

]
{φe } − {be }

)
= 0⃗, (7.37)

where all vectors be , φe , and the matrix Ke have been expanded so that the element Ke i j is in the
position n(i,e )n(i, j ) in the expanded form, and similarly with the vectors.

In particular, the matrix equation
Kφ = b

results, where

K =
M∑
e=1

Ke , and b =
M∑
e=1

be .

Boundary Conditions

To incorporate the boundary condition of the third kind, we include the functional

Fb (φ) =

∫
Γ2

(γ
2
φ2 − qφ

)
dΓ

into the system by modifying Equation (7.37) as follows:{
∂F

∂φ

}
=

M∑
e=1

 ∂F
e

∂φe

 +
Ms∑
s=1


∂F sb
∂φs

 =
M∑
e=1

( [
Ke

]
{φe } − {be }

)
+

Ms∑
s=1

( [
Ks

]
{φs } − {bs }

)
= 0⃗,

where Γ2 is comprised ofMs many sides or segments, F sb denotes the integral over segment s ,

Fb (φ) =
Ms∑
s=1

F 2b (φ),

and where the local matrices and vectors have been extended to their global versions.
Let ns (i,s ) be a 2 × Ms connectivity matrix similar to n(i,e ), where the entry in position (i,s )

is the global node number of the ith local node on edge s comprising the Γ2 boundary. In practice,
then, the global K matrix may be modified so that for each s ∈ [1,Ms ] ∩ N and for i, j ∈ {1,2}, we
add the quantity

γ s
ls

6
(1 + δi j ),

where ls denotes the length of segment s , to the entry Kns (i,s ),ns (j,s ) , and we add

qs
ls

2

to the entry bns (i,s ) of vector b.
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TheDirichlet conditionmaybe imposed similarly to theway itwas imposed in the one-dimensional
case; namely, if global node number i is on the Dirichlet boundary, then we replace the ith row of K
by the i th row of the identity matrix, and the ith entry of b by the fixed value assumed at node i on
the boundary. In practice, we may be able to reduce the size of the system by imposing the Dirichlet
condition, as may be seen in the discussion of Chapter 4 in [2], and as was implemented in the code
carrying out this simulation.

Simulation Results

Our general solver was based on the previous description, more details of which can be found in
Chapter 4 of [2]. For meshing the domain, we made use of the MATLAB function mesh2d, which may
be found in [146], and which incorporates MATLAB’s built-in Delaunay triangulation capability. Full
code of our solver can be found in Appendix D.9.

Discontinuity in a Parallel-Plate Waveguide

Figure 7.16: Discontinuity in a parallel-plate waveguide [2].

To test our solver, we consider the scenario of a discontinuity in a parallel-plate waveguide, de-
picted in Figure 7.16. This problem is discussed in detail in Section 4.6 of [2], but we will reproduce
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the basic formulation here.
We are interested in calculating the proportion of power that passes by the discontinuity and

continues to propagate along the waveguide, and the related proportion of power that is reflected
and propagates in the opposite direction. We assume that the waveguide is operating at such a
frequency that only the dominant mode can propagate without attenuation. Thus, on the left-hand
side, far enough away from the discontinuity, the wave can be expressed as the summation of the
incident and reflected wave, namely

Hy = H inc
y +H inc

y +H ref
x = H0e

−jk0x + RH0e
jk0x ,

where H0 is a constant, R denotes the reflection coefficient, and k0 is the propagation constant.
Similarly, on the right-hand side, far enough away from the discontinuity, the transmitted wave can
be expressed as

Hy = H trans
y = TH0e

−jk0x ,

whereT denotes the transmission coefficient. The problem is to determine R andT , and for this we
should consider the field near and at the discontinuity; this field can be determined by solving the
differential equation

∂

∂x

(
1
εr

∂Hy

∂x

)
+
∂

∂z

(
1
εr

∂Hy

∂z

)
+ k20µrHy = 0,

togetherwith the homogeneousNeumannboundary condition at thewaveguidewalls
(
i.e., ∂Hy

∂n = 0
)
.

In order to apply our finite element code, we must truncate the domain, which would otherwise
be infinite in the x-direction. We place artificial boundaries one wavelength from the discontinuity
on the left- and right-hand sides, and at the left-hand boundary we impose the approximate bound-
ary condition

∂Hy

∂x
≈ jk0Hy − 2jk0H0e

−jk0x ,

and at the right-hand boundary, we impose the condition

∂Hy

∂x
≈ −jk0Hy .

Finally, from the expression of theHy field obtained by solving the described equation together with
its boundary conditions, we may calculate the reflection and transmission coefficients as

R =
Hy (x1) −H0e

−jk0x1

H0e jk0x1
,

T =
Hy (x2)

H0e−jk0x2
,

where x1 and x2 denote the positions of the left- and right-hand boundaries, respectively.
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Figure 7.17: Finite element mesh for two-dimensional numerical approximation of the Helmholtz
equation.

We generated the mesh of the domain as shown in Figure 7.17, where it can be seen that the
mesh is kept finer inside the dielectric inclusion than it is outside of the inclusion.

We have used the code in Appendix D.9 to compute equi-Hy contours for the case with the
following physical parameters: the height of the dielectric inclusion is h = 1.75 cm, the height of
the waveguide is 3.5 cm, the wavelength is λ = 10 cm, µr = 2 − j0.1, H0 = 1, and we have varied
the value of εr as can be seen in the equi-Hy contours in Figure 7.18. From these contours, it is
evident that our evaluations Hy (x1) and Hy (x2) are well-defined, as at these boundaries, the field
varies only insignificantly in the z-direction. The equi-Hy contours calculated by Jin are shown in
Figure 7.19 for comparison, and they show agreement with those calculated in our routine.
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Figure 7.18: Equi-Hy contours generated by finite element method solution.
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Figure 7.19: Equi-Hy contours from [2].



Chapter 8

Numerical and Analytical Techniques for
Solving theThermal Problem

In this chapter, we develop a numerical technique for solving the one- and two-dimensional thermal
problems formulated and discussed in Chapter 3.

8.1 Techniques for Solving the One-Dimensional Heat Equation

Finite Difference Method

As in Section 7.1, the domain is discretized into spatial intervals that are not necessarily of uniform
length, and this discretization is the same one used in Figure 7.1. However, as discussed in Sec-
tion 3.4, we exclude the portions of the computational domain that do not contain sample material
or insulation, and so the size of the computational domain is decreased; we label the first node of
our domain as z0 and the last node zN−1, so that the domain contains N many nodes and N − 1
many intervals, as shown in Figure 8.1. This labelling scheme for the spatial nodes is different than
the one introduced in Section 7.1, although the nodes themselves also appear in the computational
domain of that larger scheme.

We assume a time-marching schemewith uniform time steps of length∆tu , which, for simplicity
of expression, we denote in this chapter as ∆t .

Letunj := u (zj ,tn ), for j ∈ [0,N −1]∩N, andn ∈ {0}∪N. Consider the θ-schemewith difference

z0

ℓ1◦
z1
◦

z2
◦ · · · ◦

zN−1

ℓ2◦

Figure 8.1: Discretization of the one-dimensional computational domain for the heat equation.
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approximations

∂u

∂t

�����z=zjt=tn

≈
un+1j − unj

∆t
and

∂u

∂z2

�����z=zjt=tn

≈ (1 − θ )
unj−1 − 2unj + unj+1

(zj+1 − zj )(zj − zj−1)
+ θ

un+1j−1 − 2un+1j + un+1j+1

(zj+1 − zj )(zj − zj−1)
,

where θ ∈ [0,1], j ∈ [1,N − 2] ∩ N, and n ∈ N. In this scheme, the fully explicit FTCS (forward
in time, centered in space) method corresponds to taking θ = 0, the fully implicit BTCS (backward
in time, centered in space) method corresponds to taking θ = 1, and the Crank-Nicolson scheme
corresponds to θ = 0.5. For θ = 0.5, the scheme is second-order accurate, but for any other value of
θ , the scheme is only first-order accurate [147]. For θ ≥ 0.5, the scheme is unconditionally stable,
but for θ < 0.5, the scheme is stable only when, for all spatial steps j ∈ [1,N − 2] ∩ N,

∆t

(zj+1 − zj ) (zj − zj−1)
≤ 1

2 − 4θ .

Substituting the difference approximations into the governing equation in Equation 3.14, we
obtain

ρcp *,
un+1j − unj

∆t
+- − k *,(1 − θ )

unj−1 − 2unj + unj+1
(zj+1 − zj ) (zj − zj−1)

+ θ
un+1j−1 − 2un+1j + un+1j+1

(zj+1 − zj )(zj − zj−1)
+- = ωε ′′ |E⃗ |2avg.

Arranging the equation so that the “unknown” values at the (n + 1)st time step are on the left-hand
side, and all “known” values are on the right-hand side, we obtain

un+1j−1

(
− kθ

(zj+1 − zj ) (zj − zj−1)

)
+ un+1j

(
ρcp

∆t
+

2kθ
(zj+1 − zj ) (zj − zj−1)

)
+ un+1j+1

(
− kθ

(zj+1 − zj ) (zj − zj−1)

)
=

=unj

(
ρcp

tn+1 − tn
− 2k (1 − θ )

(zj+1 − zj ) (zj − zj−1)

)
+ k (1 − θ )

( unj−1 + u
n
j+1

(zj+1 − zj ) (zj − zj−1)

)
+ ωε ′′ |E⃗ |2avg,

which may be rewritten using the shorthand abbreviations

sj :=
k (2∆t )

ρcp (zj+1 − zj )(zj − zj−1)
and qj := ωε

′′ |E⃗ |2avg
(2∆t )
ρcp

as

−un+1j−1 sjθ + u
n+1
j (1 + 2sjθ )−un+1j+1 sjθ =

=unj−1sj (1 − θ ) + unj (1 − 2sj (1 − θ )) + unj+1sj (1 − θ ) + qj .
(8.1)

The computational grid, representing the solution space with one spatial and one time dimension,
is shown in Figure 8.2, and the computational stencil, representing the θ-scheme described by the
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j = 0 j = 1 j = 2 j = 3 j = 4 . . .

j = N − 2
j = N − 1n = 0

u00 u01 u02 u03 u04 · · · u0N−2 u0N−1

n = 1
u10 u11 u12 u13 u14 · · · u1N−2 u1N−1

n = 2
u20 u21 u22 u23 u24 · · · u2N−2 u2N−1

n = 3
u30 u31 u32 u33 u34 · · · u3N−2 u3N−1

...

...
...

...
...

...
...

...

Figure 8.2: Computational grid representing the solution space of the one-dimensional heat equa-
tion. Here, j ∈ [0,N − 1] ∩ N represents the position along the spatial domain, and n ∈ {0} ∪ N
represents the time step. The blue-colored nodes represent those where the solution is given by the
initial condition in Equation 8.6, and the red-colored nodes represent those whose solution is given
by the boundary conditions in Equation 8.2, while the solution at the black-colored nodes is given
by Equation 8.1.

unj−1 unj unj+1

un+1j−1 un+1j un+1j+1

Figure 8.3: Computational stencil of θ-scheme for solving the one-dimensional heat equation. Here,
j ∈ [1,N −2]∩N represents the position along the spatial domain, andn ∈ N represents the current
time step. The nodes in black are ones at which the solutionu is known, and the ones in red may be
solved for with knowledge of the ones in black.
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z−1
◦

z0

ℓ1◦
z1
◦

z2
◦ · · · ◦

zN−1

ℓ2◦ ◦
zN

Figure 8.4: Location of the “ghost nodes” for approximating the solution of the heat equation at the
boundaries.

above governing equation, may be seen in Figure 8.3. To solve for the unknown values un+1K and
un+1K+N+1, we consider the general boundary conditions

α1,1
∂u

∂z

�����z=ℓ1+ α2,1u (ℓ1,t ) = д1 and α1,2
∂u

∂z

�����z=ℓ2+ α2,2u (ℓ2,t ) = д2, (8.2)

where α1,i , α2,i and дi are assumed constant. Using this representation, the case when


α1,1 = 0

α2,1 = 1

д1 = T0

and

α1,2 = 0

α2,2 = 1

д2 = T0

represents the Dirichlet condition in Equation 3.11, where the temperature on the corresponding
border is explicitly fixed; the case when


α1,1 = 1

α2,1 = 0

д1 = 0

and


α1,2 = 1

α2,2 = 0

д2 = 0

represents the Neumann condition in Equation 3.12, where the heat flux is fixed; and the case where


α1,1 = 1

α2,1 = −h
д1 = −hTamb

and

α1,2 = 1

α2,2 = h

д2 = hTamb

represents the radiative boundary condition discussed in Equation 3.13.
To implement these boundary conditions, we must temporarily assume the presence of the

“ghost nodes” z−1 and zN , so that the solution at z0 and zN−1 may still be approximated using
second-order difference formulas [148]. The placement of these ghost nodes is shown in Figure 8.4.

Using the ghost node, the second-order finite difference equation approximating the boundary
condition from Equation 8.2 at time tp and at the left-hand (z = ℓ1) endpoint is

α1,1 *,
u
p
1 − u

p
−1

z1 − z−1
+- + α2,1up0 = д1,
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which may be rearranged as

u
p
−1 = u

p
1 +

(z1 − z−1)α2,1
α1,1

u
p
0 −

(z1 − z−1)д1
α1,1

. (8.3)

Meanwhile, using the ghost node, the governing equation may be approximated, as in Equation 8.1,
at the left-hand endpoint by

−un+1−1 sn0 θ + u
n+1
0 (1 + 2sn0 θ )+ − un+11 sn0 θ =

=un−10 + un−1s
n
0 (1 − θ ) + un0 (1 − 2sn0 (1 − θ )) + un1 sn0 (1 − θ ) + qn0 ,

where the value of sn0 is computed assuming that the space between z−1 and z0 is the same as the
space between z0 and z1. Substituting Equation 8.3 into this equation, we obtain

−
(
un+11 +

(z1 − z−1)α2,1
α1,1

un+10 − (z1 − z−1)д1
α1,1

)
sn0 θ + u

n+1
0 (1 + 2sn0 θ ) − un+11 sn0 θ =

= un−10 +

(
un1 +

(z1 − z−1)α2,1
α1,1

un0−

− (z1 − z−1)д1
α1,1

)
sn0 (1 − θ ) + un0 (1 − 2sn0 (1 − θ )) + un1 sn0 (1 − θ ) + qn0 ,

which may be rearranged as

un+10

(
1 + 2sn0 θ −

sn0 θ (z1 − z−1)α2,1
α1,1

)
− un+11

(
2sn0 θ

)
=

= un0

(
1 − 2sn0 (1 − θ ) +

sn0 (1 − θ )(z1 − z−1)α2,1
α1,1

)
+ un1

(
2sn0 (1 − θ )

)
+ qn0 −

sn0 (z1 − z−1)д1
α1,1

.

The right-hand endpoint may be treated similarly; the second-order finite difference equation ap-
proximating the boundary condition from Equation 8.2 at time tp and at the right-hand (z = ℓ2)
endpoint is

α1,2 *,
u
p
N − u

p
N−2

zN − zN−2
+- + α2,2upN−1 = д2,

which may be rearranged as

u
p
N = u

p
N−2 +

(zN − zN−2)д2
α1,2

− (zN − zN−2)α2,2
α1,2

u
p
N−1. (8.4)

Using the ghost node zN , the governing equation may be approximated, as in Equation 8.1, at the
right-hand endpoint by

−un+1N−2s
n
N−1θ + u

n+1
N−1 (1 + 2s

n
N−1θ ) − un+1N snN−1θ =

=unN−2s
n
N−1 (1 − θ ) + unN−1 (1 − 2snN−1 (1 − θ )) + unN snN−1 (1 − θ ) + qnN−1,
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where sN−1 is computed assuming the space between zN and zN−1 to be the same as the space be-
tween zN−1 and zN−2. Equation 8.4 may be substituted to obtain

−un+1N−2s
n
N−1θ + u

n+1
N−1 (1 + 2s

n
N−1θ ) − snN−1θ

(
un+1N−2 +

(zN − zN−2)д2
α1,2

−

− (zN − zN−2)α2,2
α1,2

un+1N−1

)
=

=unN−2s
n
N−1 (1 − θ ) + unN−1 (1 − 2snN−1 (1 − θ ))+

+snN−1 (1 − θ )
(
unN−2 +

(zN − zN−2)д2
α1,2

− (zN − zN−2)α2,2
α1,2

unN−1

)
+ qnN−1,

which may be rearranged as

− 2un+1N−2s
n
N−1θ + u

n+1
N−1

(
1 + 2snN−1θ +

snN−1θ (zN − zN−2)α2,2
α1,2

)
= 2unN−2s

n
N−1 (1 − θ )+

+unN−1

(
1 − 2snN−1 (1 − θ ) −

snN−1 (1 − θ ) (zN − zN−2)α2,2
α1,2

)
+
snN−1 (zN − zN−2)д2

α1,2
+ qnN−1.

(8.5)

The initial condition in Equation 3.10 is equivalent to setting

u0j ≡ T0 for j ∈ [0,N − 1] ∩ N. (8.6)

Now, Equations 8.1,8.1, and 8.5 may be cast as a linear system with the unknown values being
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uj , j ∈ [0,N − 1] ∩ N, and this linear system may be written as the matrix equation

a0,0 −2sn0 θ 0 . . . . . . 0

−sn1 θ 1 + 2sn1 θ −sn1 θ 0 . . .
...

0 −sn2 θ 1 + 2sn2 θ −sn2 θ
...

...
. . .

. . .
. . . 0

... −snN−2θ 1 + 2snN−2θ −snN−2θ
0 . . . . . . 0 −2snN−1θ aN−1,N−1





un+10
un+11
...

un+1j
...

un+1N−1


=

=



b0,0 2sn0 (1 − θ ) 0 . . . . . . 0

sn1 (1 − θ ) 1 − 2sn1 (1 − θ ) sn1 (1 − θ ) 0 . . .
...

0 sn2 (1 − θ ) 1 − 2sn2 (1 − θ ) sn2 (1 − θ )
...

...
. . .

. . .
. . . 0

... snN−2 (1 − θ ) 1 − 2snN−2 (1 − θ ) snN−2 (1 − θ )
0 . . . . . . 0 2snN−1 (1 − θ ) bN−1,N−1





un0
un1
...

unj
...

unN−1


+

+



qn0 −
sn0 (z1−z−1)д1

α1,1

qn1
qn2
...

qj
...

qnN−2
qnN−1 +

snN−1 (zN −zN−2)д2
α1,2



,

(8.7)

where we have used the shorthand values

a0,0 = 1 + 2sn0 θ −
sn0 θ (z1 − z−1)α2,1

α1,1
, aN−1,N−1 =1 + 2s

n
N−1θ +

snN−1θ (zN − zN−2)α2,2
α1,2

,

b0,0 = 1 − 2sn0 (1 − θ ) +
sn0 (1 − θ ) (z1 − z−1)α2,1

α1,1
, bN−1,N−1 =1 − 2snN−1 (1 − θ ) −

snN−1 (1 − θ )(zN − zN−2)α2,2
α1,2

.

Equation 8.7 is used, together with the initial condition
u00
u01
...

u0N−1


=


T0
...

T0


,
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

j = 0 j = 1 j = 2 j = 3 · · · · · · · · · · · · · · · · · · · · · · · · · · · j = N − 1

k = 0

k = 1

k = 2

...

...

...

k = M − 2

k = M − 1

z0 z1 z2 z3 · · · · · · · · · · · · · · · · · · · · · · · · · · · zN−1
x0

x1

x2

...

...

...

...

xM−1

ℓ1 m1 m2 ℓ2

h1

k1

k2

h2

Figure 8.5: Discretization of the spatial domain for the finite difference solution of the two-
dimensional heat equation. Area in blue is occupied by insulation, and area in red is occupied by
material.

derived from Equation 8.6, to solve the heat equation at each time step.

8.2 Techniques for Solving the Two-Dimensional Heat Equation

Finite Difference Methods

For the two-dimensional case, we use a time-marching schemewith time steps given by∆tu , denoted
here ∆t , as in the one-dimensional case. The domain is discretized into a spatial grid whose com-
ponents are not necessarily of uniform length or height, and this discretization is the same one used
in Figure 7.7. However, as discussed in Section 3.5, we exclude the portions of the computational
domain that do not contain sample material or insulation, and so the size of the computational
domain is decreased; we label the first z-node as z0 and the last as zN−1, so that the z-dimension
contains N many nodes and N − 1many intervals, and similarly, we label the first x-node as x0 and
the last as xM−1, so that the x-dimension contains M many nodes and M − 1 many intervals. Note
that this labelling scheme for the spatial nodes is different than the one introduced in Section 7.2 for
the solution of the wave equation, although the nodes themselves also appear in the computational
domain of that larger scheme. The nodes and their numbering scheme are shown in Figure 8.5.
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Let unj,k := u (xk ,zj ,tn ), for j ∈ [0,N − 1] ∩ N, k ∈ [0,M − 1] ∩ N, and n ∈ {0} ∪ N. Consider
the θ-scheme that uses difference approximations

∂u

∂t

�����x=xkz=zj
t=tn

≈
un+1j,k − u

n
j,k

∆t
,

∂u

∂z2

�����x=xkz=zj
t=tn

≈ (1 − θ )
unj−1,k − 2u

n
j,k + u

n
j+1,k

(zj+1 − zj ) (zj − zj−1)
+ θ

un+1j−1,k − 2u
n+1
j,k + u

n+1
j+1,k

(zj+1 − zj ) (zj − zj−1)
, and

∂u

∂x2

�����x=xkz=zj
t=tn

≈ (1 − φ)
unj,k−1 − 2u

n
j,k + u

n
j,k+1

(xk+1 − xk ) (xk − xk−1)
+ φ

un+1j,k−1 − 2u
n+1
j,k + u

n+1
j,k+1

(xk+1 − xk )(xk − xk−1)
,

where θ ,φ ∈ [0,1], j ∈ [1,N − 2] ∩ N, k ∈ [1,M − 2] ∩ N, and n ∈ N. As in the one-dimensional
case, the fully explicit FTCS (forward in time, centered in space) method corresponds to taking
θ = φ = 0, the fully implicit BTCS (backward in time, centered in space) method corresponds to
taking θ = φ = 1, and the Crank-Nicolson scheme corresponds to θ = φ = 0.5. For θ = φ = 0.5,
the scheme is second-order accurate, but for any other value of θ ,φ, the scheme is only first-order
accurate [147]. For θ ,φ ≥ 0.5, the scheme is unconditionally stable, but for θ ,φ < 0.5, the scheme is
stable only when, for all time stepsn ∈ N and for all spatial steps j ∈ [1,N −2]∩N, k ∈ [1,M−2]∩N

∆t

(zj+1 − zj )(zj − zj−1)
≤ 1

2 − 4θ and
∆t

(xk+1 − xk )(xk − xk−1)
≤ 1

2 − 4φ .

Substituting the difference approximations into the governing equation of Equation 3.15, we obtain

ρcp *,
un+1j,k − u

n
j,k

∆t
+- − k *,(1 − φ)

unj,k−1 − 2u
n
j,k + u

n
j,k+1

(xk+1 − xk )(xk − xk−1)
+ φ

un+1j,k−1 − 2u
n+1
j,k + u

n+1
j,k+1

(xk+1 − xk ) (xk − xk−1)
+-−

− k *,(1 − θ )
unj−1,k − 2u

n
j,k + u

n
j+1,k

(zj+1 − zj )(zj − zj−1)
+ θ

un+1j−1,k − 2u
n+1
j,k + u

n+1
j+1,k

(zj+1 − zj )(zj − zj−1)
+- = ωε ′′ |E⃗ |2avg.

Arranging the equation so that the “unknown” values at the (n + 1)st time step are on the left-hand
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side, and all “known” values are on the right-hand side, we obtain

un+1j,k

(
ρcp

∆t
+

2kφ

(xk+1 − xk ) (xk − xk−1)
+

2kθ
(zj+1 − zj ) (zj − zj−1)

)
−

− un+1j,k−1
kφ

(xk+1 − xk ) (xk − xk−1)
− un+1j,k+1

kφ

(xk+1 − xk ) (xk − xk−1)
−

− un+1j−1,k
kθ

(zj+1 − zj )(zj − zj−1)
− un+1j+1,k

kθ

(zj+1 − zj ) (zj − zj−1)
=

= unj,k

(
ρcp

∆t
+

2k (1 − φ)
(xk+1 − xk )(xk − xk−1)

+
2k (1 − θ )

(zj+1 − zj )(zj − zj−1)

)
+

+ unj,k−1
k (1 − φ)

(xk+1 − xk )(xk − xk−1)
+ unj,k+1

k (1 − φ)
(xk+1 − xk )(xk − xk−1)

+

+ unj−1,k
k (1 − θ )

(zj+1 − zj ) (zj − zj−1)
+ unj+1,k

k (1 − θ )
(zj+1 − zj )(zj − zj−1)

+ ωε ′′ |E⃗ |2avg,

which may be rewritten using the shorthand abbreviations

rk :=
k (2∆t )

ρcp (xk+1 − xk ) (xk − xk−1)
,

sj :=
k (2∆t )

ρcp (zj+1 − zj )(zj − zj−1)
, and

qnj,k := ωε ′′ |E⃗ |2avg
(2∆t )
ρcp

as

un+1j,k

(
1 + 2φrk + 2θsj

)
− un+1j,k−1 (φrk ) − u

n+1
j,k+1 (φrk ) − u

n+1
j−1,k (θsj ) − u

n+1
j+1,k (θsj ) =

= unj,k

(
1 + 2(1 − φ)rk + 2(1 − θ )sj

)
+ unj,k−1 ((1 − φ)rk ) + u

n
j,k+1 ((1 − φ)rk )+

+ unj−1,k ((1 − θ )sj ) + u
n
j+1,k ((1 − θ )sj ) + q

n
j,k ,

(8.8)

To solve for the unknown valuesun+10,k , un+1N−1,k , u
n+1
j,0 , andun+1j,M−1 we consider the general bound-

ary conditions

α1,1
∂u

∂z

�����z=ℓ1+ α2,1u (x , ℓ1,t ) = д1, α1,2
∂u

∂z

�����z=ℓ2+ α2,2u (x , ℓ2,t ) = д2, (8.9)

α1,3
∂u

∂x

�����x=h1+ α2,3u (h1,z,t ) = д3, α1,4
∂u

∂x

�����x=h2+ α2,4u (h2,z,t ) = д4, (8.10)

where α1,i , α2,i and дi are assumed constant. As before, the case when
α1,i = 0

α2,i = 1

дi = T0,
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u20,0

u20,1

u20,2

u21,0

u21,1

u21,2

u22,0

u22,1

u22,2

n = 2

u10,0

u10,1

u10,2

u11,0

u11,1

u11,2

u12,0

u12,1

u12,2

n = 1

u00,0

u00,1

u00,2

u01,0

u01,1

u01,2

u02,0

u02,1

u02,2

j = 0 j = 1 j = 2 · · · · · · · · · · · · j = N − 1
k = 0

k = 1

k = 2

...

...

k = M − 1

n = 0

. .
.

. .
.

. .
.

Figure 8.6: Computational grids representing the solution space of the two-dimensional heat
equation. Here, j ∈ [0,N − 1] ∩ N and k ∈ [0,M − 1] ∩ N represent the position within
the spatial domain, and n ∈ {0} ∪ N represents the time step. The blue-colored nodes rep-
resent those where the solution is given by the initial condition in Equation 8.25, and the red-
colored nodes represent those whose solution is given by the boundary conditions in Equa-
tions 8.17, 8.16, 8.18, 8.22, 8.8, 8.23, 8.20, 8.19, and 8.21, while the solution at the black-colored
nodes is given by Equation 8.8.
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unj−1,k unj,k unj+1,k

unj,k−1

unj,k+1

un+1j−1,k un+1j,k un+1j+1,k

un+1j,k−1

un+1j,k+1

Figure 8.7: Computational stencil ofθ-scheme for solving the two-dimensional heat equation. Here,
Here, j ∈ [1,N − 2] ∩ N and k ∈ [1,M − 2] ∩ N represent the position within the spatial domain,
and n ∈ N represents the current time step. The nodes in black are ones at which the solution u is
known, and the ones in red may be solved for with knowledge of the ones in black.

where i ∈ {1,2,3,4}, represents the Dirichlet condition in Equation 3.11, where the temperature on
the corresponding border is explicitly fixed; the case when

α1,i = 1

α2,i = 0

дi = 0,

where i ∈ {1,2,3,4}, represents the Neumann condition in Equation 3.12, where the heat flux is
fixed; and the case where 

α1,i = 1

α2,i = −h
дi = −hTamb

and

α1,j = 1

α2,j = h

дj = hTamb,
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

0,−1

1,−1

2,−1

...

M − 2,−1

M − 1,−1

0,N

1,N

2,N

...

M − 2,N

M − 1,N

−1,0 −1,1 −1,2 −1,3 · · · −1,N − 2 −1,N − 1

M ,0 M ,1 M ,2 M ,3 · · · M ,N − 2 M ,N − 1

Figure 8.8: Discretization of the spatial domain for the finite difference solution of the two-
dimensional heat equation. Area in blue is occupied by insulation, and area in red is occupied by
material.

where i ∈ {1,3} and j ∈ {2,4}, represents the radiative boundary condition discussed in Equa-
tion 3.13.

To implement these boundary conditions, similarly to the one-dimensional case in Section 8.1,
we must temporarily assume the presence of the “ghost nodes” at j = −1, j = N , k = −1, and k = M ,
so that the solution on the boundaries may still be approximated using second-order difference
formulas. The placement of these ghost nodes is shown in Figure 8.8.

Using the ghost nodes, the second-order finite difference equation approximating the boundary
condition in Equation 8.9 for the z = ℓ1 boundary at time tp , where p > 0, is

α1,1 *,
u
p
1,k − u

p
−1,k

z1 − z−1
+- + α2,1up0,k = д1,

for k ∈ [0,M − 1] ∩ N. This may be rearranged as

u
p
−1,k = u

p
1,k +

(z1 − z−1)α2,1
α1,1

u
p
0,k −

(z1 − z−1)д1
α1,1

. (8.11)

Similarly, Equation 8.9 for the z = ℓ2 boundary yields

u
p
N ,k = u

p
N−2,k −

(zN − zN−2)α2,2
α1,2

u
p
N−1,k +

(zN − zN−2)д2
α1,2

, (8.12)
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for the x = h1 boundary

u
p
j,−1 = u

p
j,1 +

(x1 − x−1)α2,3
α1,3

u
p
j,0 −

(x1 − x−1)д3
α1,3

, (8.13)

and for the x = h2 boundary,

u
p
j,M = u

p
j,M−2 −

(xM − xM−2)α2,4
α1,4

u
p
j,M−1 +

(xM − xM−2)д4
α1,4

. (8.14)

At the nodes where j = 0 (i.e., where z = ℓ1), the governing equation may be approximated
according to Equation 8.8 by

un+10,k
(
1 + 2φrk + 2θs

n
0
) − un+10,k−1 (φrk ) − u

n+1
0,k+1 (φrk ) − u

n+1
−1,k (θs

n
0 ) − un+11,k (θsn0 ) =

= un0,k
(
1 + 2(1 − φ)rk + 2(1 − θ )sn0

)
+ un0,k−1 ((1 − φ)rk ) + u

n
0,k+1 (k (1 − φ)rk )+

+ un−1,k ((1 − θ )s
n
0 ) + u

n
1,k ((1 − θ )s

n
0 ) + q

n
0,k ,

(8.15)

where the value of sn0 is computed assuming that the space between z−1 and z0 is the same as the
space between z0 and z1. For k ∈ [1,M − 2] ∩ N, we substitute Equation 8.11 into Equation 8.15 to
obtain

un+10,k
(
1 + 2φrk + 2θs

n
0
) − un+10,k−1 (φrk ) − u

n+1
0,k+1 (φrk ) − θs

n
0

(
un+11,k +

(z1 − z−1)α2,1
α1,1

un+10,k −

− (z1 − z−1)д1
α1,1

)
− un+11,k (θsn0 ) = u

n
0,k

(
1 + 2(1 − φ)rk + 2(1 − θ )sn0

)
+ un0,k−1 ((1 − φ)rk ) + u

n
0,k+1 ((1 − φ)rk )+

(1 − θ )sn0
(
un1,k +

(z1 − z−1)α2,1
α1,1

un0,k −
(z1 − z−1)д1

α1,1

)
+

+ un1,k ((1 − θ )s
n
0 ) + q

n
0,k ,

which may be rearranged as

un+10,k

(
1 + 2φrk + 2θs

n
0 −

θsn0 (z1 − z−1)α2,1
α1,1

)
− un+10,k−1 (φrk ) − u

n+1
0,k+1 (φrk ) − 2θs

n
0u

n
1,k

= un0,k

(
1 + 2(1 − φ)rk + 2(1 − θ )sn0 +

(1 − θ )sn0 (z1 − z−1)α2,1
α1,1

)
+ un0,k−1 ((1 − φ)rk )+

+ un0,k+1 ((1 − φ)rk ) + 2((1 − θ )s
n
0 )u

n
1,k + q

n
0,k −

sn0 (z1 − z−1)д1
α1,1

.

(8.16)
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For the case when j = 0 and k = 0, we substitute both Equations 8.11 and 8.13 into Equation 8.15
to obtain

un+10,0
(
1 + 2φrn0 + 2θs

n
0
) − φrn0 (

un+10,1 +
(x1 − x−1)α2,3

α1,3
un+10,0 −

(x1 − x−1)д3
α1,3

)
− un+10,1 (φrn0 )−

− θsn0
(
un+11,0 +

(z1 − z−1)α2,1
α1,1

un+10,0 −
(z1 − z−1)д1

α1,1

)
− un+11,0 (θsn0 ) =

= un0,0
(
1 + 2(1 − φ)rn0 + 2(1 − θ )sn0

)
+ (1 − φ)rn0

(
un0,1 +

(x1 − x−1)α2,3
α1,3

un0,0 −
(x1 − x−1)д3

α1,3

)
+

+ un0,1 ((1 − φ)rn0 ) + (1 − θ )sn0
(
un1,0 +

(z1 − z−1)α2,1
α1,1

un0,0 −
(z1 − z−1)д1

α1,1

)
+

+ un1,0 ((1 − θ )sn0 ) + qn0,0,

which may be rearranged as

un+10,0

(
1 + 2φrn0 + 2θs

n
0 −

φrn0 (x1 − x−1)α2,3
α1,3

−
θsn0 (z1 − z−1)α2,1

α1,1

)
− 2φrn0 un+10,1 − 2θsn0un+11,0 =

= un0,0

(
1 + 2(1 − φ)rn0 + 2(1 − θ )sn0 +

(1 − φ)rn0 (x1 − x−1)α2,3
α1,3

+
(1 − θ )sn0 (z1 − z−1)α2,1

α1,1

)
+

+ 2(1 − φ)rn0 un0,1 + 2(1 − θ )sn0un1,0 + qn0,0 −
rn0 (x1 − x−1)д3

α1,3
−
sn0 (z1 − z−1)д1

α1,1
.

(8.17)

Similarly, for the case when j = 0 and k = M − 1, we substitute both Equations 8.11 and 8.14 into
Equation 8.15 and rearrange to obtain

un+10,M−1

(
1 + 2φrnM−1 + 2θs

n
0 +

φrnM−1 (xM − xM−2)α2,4
α1,4

−
θsn0 (z1 − z−1)α2,1

α1,1

)
−

− 2φrnM−1un+10,M−2 − 2θsn0un+11,M−1 =

= un0,M−1

(
1 + 2(1 − φ)rnM−1 + 2(1 − θ )sn0 −

(1 − φ)rnM−1 (xM − xM−2)α2,4
α1,4

+

+
(1 − θ )sn0 (z1 − z−1)α2,1

α1,1

)
+ 2(1 − φ)rnM−1un0,M−2 + 2(1 − θ )sn0un1,M−1+

+ qn0,M−1 −
rnM−1 (xM − xM−2)д4

α1,4
−
sn0 (z1 − z−1)д1

α1,1
.

(8.18)

To model the right-hand boundary z = ℓ2, j = N − 1, we substitute Equation 8.12 into Equa-
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tion 8.8 to obtain

un+1N−1,k

(
1 + 2φrk + 2θs

n
N−1 +

θsnN−1 (zN − zN−2)α2,2
α1,2

)
− un+1N−1,k−1 (φrk ) − u

n+1
N−1,k+1 (φrk )−

− 2θsnN−1unN−2,k = u
n
N−1,k

(
1 + 2(1 − φ)rk + 2(1 − θ )snN−1 −

(1 − θ )snN−1 (zN − zN−2)α2,2
α1,2

)
+

+ unN−1,k−1 ((1 − φ)rk ) + u
n
N−1,k+1 ((1 − φ)rk ) + 2((1 − θ )s

n
N−1)u

n
N−2,k+

+ qnN−1,k +
snN−1 (zN − zN−2)д2

α1,2
.

(8.19)

For the case when j = N−1 andk = 0, we substitute both Equations 8.12 and 8.13 into Equation 8.15
to obtain

un+1N−1,0

(
1 + 2φrn0 + 2θs

n
N−1 −

φrn0 (x1 − x−1)α2,3
α1,3

+
θsnN−1 (zN − zN−2)α2,2

α1,2

)
−

− 2φrn0 un+1N−1,1 − 2θsnN−1un+1N−2,0 =

= unN−1,0

(
1 + 2(1 − φ)rn0 + 2(1 − θ )snN−1 +

(1 − φ)rn0 (x1 − x−1)α2,3
α1,3

−
(1 − θ )snN−1 (zN − zN−2)α2,2

α1,2

)
+

+ 2(1 − φ)rn0 unN−1,1 + 2(1 − θ )snN−1unN−2,0 + qnN−1,0 −
rn0 (x1 − x−1)д3

α1,3
+
snN−1 (zN − zN−2)д2

α1,2
.

(8.20)

For the case when j = N − 1 and k = M − 1, we substitute both Equations 8.12 and 8.14 into
Equation 8.15 and rearrange to obtain

un+1N−1,M−1

(
1 + 2φrnM−1 + 2θs

n
N−1 +

φrnM−1 (x1 − x−1)α2,4
α1,4

+
θsnN−1 (zN − zN−2)α2,2

α1,2

)
−

− 2φrnM−1un+1N−1,M−2 − 2θsnN−1un+1N−2,M−1 =

= unN−1,M−1

(
1 + 2(1 − φ)rnM−1 + 2(1 − θ )snN−1 −

(1 − φ)rnM−1 (xM − xM−2)α2,4
α1,4

−

−
(1 − θ )snN−1 (zN − zN−2)α2,2

α1,2

)
+ 2(1 − φ)rnM−1unN−1,M−2 + 2(1 − θ )snN−1unN−2,M−1+

+ qnN−1,M−1 −
rnM−1 (xM − xM−2)д4

α1,4
+
snN−1 (zN − zN−2)д2

α1,2
.

(8.21)
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j k Equation
0 0 8.17
0 1, . . . ,M − 2 8.16
0 M − 1 8.18

1, . . . ,N − 2 0 8.22
1, . . . ,N − 2 1, . . . ,M − 2 8.8
1, . . . ,N − 2 M − 1 8.23

N − 1 0 8.20
N − 1 1, . . . ,M − 2 8.19
N − 1 M − 1 8.21

Table 8.1: Description of the organization of the linear system for the finite difference approximation
of the two-dimensional heat equation.

At the lower boundary x = h1, k = 0, we substitute Equation 8.13 into Equation 8.8 to obtain

un+1j,0

(
1 + 2φrn0 + 2θsj −

φrn0 (x1 − x−1)α2,3
α1,3

)
− 2un+1j,1 (φrn0 ) − un+1j−1,0 (θsj ) − un+1j+1,0 (θsj ) =

= unj,0

(
1 + 2(1 − φ)rn0 + 2(1 − θ )sj +

(1 − φ)rn0 (x1 − x−1)α2,3
α1,3

)
+ 2unj,1 ((1 − φ)rn0 )+

+ unj−1,0 ((1 − θ )sj ) + unj+1,0 ((1 − θ )sj ) + qnj,0 −
rn0 (x1 − x−1)д3

α1,3
,

(8.22)

for j ∈ [1,N − 2]∩N. Finally, at the upper boundary x = h2, k = M − 1, we substitute Equation 8.14
into Equation 8.8 to obtain

un+1j,M−1

(
1 + 2φrnM−1 + 2θsj +

φrnM−1 (xM − xM−2)α2,4
α1,4

)
− 2un+1j,M−2 (φr

n
M−1) − un+1j−1,M−1 (θsj )−

− un+1j+1,M−1 (θsj ) = u
n
j,M−1

(
1 + 2(1 − φ)rnM−1 + 2(1 − θ )sj −

(1 − φ)rnM−1 (xM − xM−2)α2,4
α1,4

)
+

+ 2unj,M−2 ((1 − φ)rnM−1) + unj−1,M−1 ((1 − θ )sj ) + unj+1,M−1 ((1 − θ )sj )+

+ qnj,M−1 +
rnM−1 (xM − xM−2)д4

α1,4
,

(8.23)

for j ∈ [1,N − 2] ∩ N.
A linear system may be established using the equations described above, with Table 8.1 sum-

marizing which equation corresponds to each coordinate pair (j,k ). As is clear, the system is one of
N ×M many equations in N ×M many unknowns, and so we establish the matrix equation for its
solution at each time step:

Au⃗n+1 = Bu⃗n + Q⃗n , (8.24)



CHAPTER 8. NUMERICAL AND ANALYTICAL TECHNIQUES FOR SOLVING THE THERMAL
PROBLEM 170

where the vectors u⃗p and Q⃗p , and the matrices A and B together with their entries, are shown in
Appendix B. The starting value of temperature is assumed to be the room temperature, so that

u⃗0j,k ≡ Tamb, (8.25)

whereTamb represents the ambient temperature.
The computer implementation of this code is shown in Appendix E.



Chapter 9

Numerical Techniques for Solving the
Mechanical Deformation Problem

Sintering has been modelled on various spatial scales and by different methods depending on those
scales [24, 30]. Microscale modelling of sintering, typically representing a heat source external to
the object being sintered, has represented the mechanical changes of the sample using molecular
dynamics [149] or various other analytical and numerical techniques including the discrete element
method [150–153]. Such models can be loosely classified into those concerned with the early-to-
intermediate stages of sintering, where interparticle behavior is dominant, and those concerned
with late-stage sintering, which actively simulate not the particles, but the pores (i.e., the spaces
between particles) [154]. These models explicitly represent the current state of knowledge on the
thermal dynamics of sintering, such as densification kinetics, influence of externally applied forces
and structure heterogeneities [155]; however, many rely on simplifications, such as the assumption
of uniform particle size and shape, that may not be valid in reality, making them of limited prac-
tical use for the powder metallurgy industry. Such industries are typically more concerned with
accurately depicting macroscale evolution of components and parts, along with simulating their
densities, rather than particle-pore interactions. On the macro scale, modelling has been done us-
ing the finite element method [24, 33]. Our focus is primarily limited to modelling sintering on a
component scale, rather than on a molecular scale.

The component-scale models of sintering have traditionally represented an external heat source,
assuming that the temperature on the boundary of the material is the only factor that dictates the
interior temperature of the material. These solvers typically use the finite element method for nu-
merical simulation, and may rely on software packages such as Abaqus [24, 156, 157], ANSYS [158–
160], or COMSOL Multiphysics [161–164] to implement the continuum mechanical simulations
together with a constitutive equation that determines evolution of the material properties and the
geometrical configuration of the sample.

Component-scalemodels, including the one first described by Riedel and Blug [33], may employ
microstructure variables and obey the law for grain coarsening, and their characterization of sin-

171
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tering progress relies on a constitutive equation such as the one in Equation 4.4; this equation may
be used as input for routines driven by commercially available software packages such as Abaqus,
in which simple formulations may rely on the CREEP subroutine, and more complex formulations
rely on the UMAT subroutine [24, 79–82, 165]. Other models that explicitly employ microstructure
variables can be found in [30, 149, 155].

In this work, we remain concerned with sintering on the component scale, but instead of em-
ploying the model in Equation 4.4, we make the simplifying assumption that sintering progress may
be entirely characterized by evolution of density, which allows the simulation of mechanical defor-
mation based on the principle of conservation of mass, and we therefore avoid the need to simulate
the evolution of microstructural properties. This approach eliminates the need for numerical inte-
gration of the strain rate tensor, and therefore provides the possibility of more expedient simulation
than the existing solvers [79–82, 165]. For typical material involved with industrial sinterforming
processes, such as alumina and zirconia, density is, indeed, a good characterization of the process
of sintering.

9.1 Master Sintering Curve Model

The basic formulation of the Master Sintering Curve theory was given in Section 4.3, and here, we
describe its use in constructing an empirical relationship between a prescribed or simulated thermal
cycle and the resulting relative density of a sample.

Equation 4.10 is a unique relationship for a given powder and sintering scenario, and it reveals
that the evolution of relative density along the sintering path may be characterized as

ρrel = Ψ−1 (Θ(u,u (t ))) =: ρrel (Θ(u,u (t ))) , (9.1)

where the work of sintering parameter Θ is the one defined in Equation 4.9. The integral in Equa-
tion 4.9 may be easily computed for a given thermal cycle, provided that the activation energyQ is
known or may be easily approximated [74].

One of the limitations of the MSC is its dependence on Q , because this parameter is highly
variable not only among materials, but among different preparations of green-body samples of even
the same material; indeed, different powders produced by green-body processing methods such as
milling or pressing may result in different particle sizes and size distributions, different initial pore
sizes, and different packing properties, all of which affect densification behavior [74]. The MSC can,
however, be used to determine activation energy, as described in Subsection 9.1.

Form and Construction of the MSC

When values of relative density are computed1 over the course of an experiment where the heating
cycle is known andΘ-values are obtained from Equation 4.9, then the curve defined in Equation 9.1
is the one traced out when the pairs of Θ and ρrel are plotted as points on a coordinate plane.

1Relative density values are typically computed using recorded data on shrinkage obtained using in-situ dilatometry.
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In [86], the idea of interpolating these points to construct a piecewise polynomial approximation
of ρrel as a function of ln(Θ) was presented, and later in [3], a sigmoid-type curve was proposed as
a method of obtaining a more accurate fit to the data. The following model appears in [3] and has
been successfully used tomodel both conventional andmicrowave sintering of alumina and zirconia
composites [166–168].

ρ = ρ0 +
a[

1 + exp
(
− lnΘ−lnΘ0

b

)]c . (9.2)

An alternative formulation for the sigmoid curve with adjustable parameters is the one given in
[169–172] as

ρ = ρ0 +
1 − ρ0

1 + exp
[
− lnΘ−a

b

] . (9.3)

Our implementation, shown in Appendix F.2, is capable of constructing a best fit to either of
these sigmoid curve models using Levenberg-Marquardt multiparameter optimization [173, 174].
The curves obtained using data from [3], together with an assumed activation energy ofQ = 660.1
kJ/mol, are shown in Figure 9.1, and these show good agreement with the sigmoid curve computed
in [3]. In the case where we use the sigmoid function representation fromEquation 9.2, the optimal-
fit sigmoid function was

ρrel = 0.525624 +
0.464563[

1 + exp
(
− lnΘ−(−51.4957)

1.68507

)]0.630385 , (9.4)

and in the case where we use the sigmoid function representation from Equation 9.3, the optimal-fit
sigmoid function was

ρrel = 0.536209 +
(1 − 0.536209)

[1 + exp(− lnΘ−(−52.5271)
2.01868 )]

. (9.5)

The data for the three sintering trials described in [3] is plotted in Figure 9.2. The curves obtained
using data from [4], together with an assumed activation energy of Q = 660.1 kJ/mol, are shown
in Figure 9.3, and these show good agreement with the sigmoid curve computed in [4]. In the
case where we use the sigmoid function representation from Equation 9.2, the optimal-fit sigmoid
function was

ρrel = 0.461737 +
0.428151[

1 + exp
(
− lnΘ−(−54.3133)

1.17888

)]0.439561 , (9.6)

and in the case where we use the sigmoid function representation from Equation 9.3, the optimal-fit
sigmoid function was

ρrel = 0.427313 +
(1 − 0.427313)

[1 + exp(− lnΘ−(−55.0611)
3.31359 )]

. (9.7)

The data for the three sintering trials described in [4] is plotted in Figure 9.4.
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Computing the Activation Energy using the MSC

If the activation energy Q is not known for a particular preparation of material, then it may be
approximated using the MSC [74].

Initially, an estimate ofQ is made, and the Θ-values for several sintering experiments are com-
puted using this value of Q ; the process in Subsection 9.1 is carried out to construct the sigmoid
function whose graph optimally approximates the curve defined by the (lnΘ,ρrel) data points, and
the error in this optimal fit is computed as a sum of the squares of the differences between the ρrel
values and the sigmoid function value at the corresponding lnΘ-values.

Another value ofQ is chosen, and the process outlined above is repeated to find the correspond-
ing optimal sigmoid function and the resulting sum of squared residuals. The best estimate of Q is
the one that minimizes this sum of squared residuals, and in our implementation, we use Nelder-
Mead optimization [173, 174] to find the bestQ-value. Codes carrying out this optimization can be
seen in Appendix F.2.

Quicker Computation of Θ for Constant Heating Rate

Many sintering experiments are conducted at constant rates of heating, which appears to diminish
the inhibiting effect of surface diffusion on the process of sintering during its advanced stages [74].
In this case, there exists a closed-form elementary integral for computingΘ(t ,T (t )), whichmay help
to reduce computation time during in-situ control routines, and during the optimization process
used in findingQ .

In particular, assume that the heating rate is constant α—that is,

u (t ) = αt + u0

Substituting this into Equation (4.9) yields

Θ(t ,u (t )) =

∫ t

0

1
ατ + u0

exp

(
−Q

Rατ + Ru0

)
dτ ,

to which applying the substitution


u := Q

Rατ+Ru0
⇐⇒ τ := Q−uRu0

Rαu

du := − Qα
R (ατ+u0)2

dτ ⇐⇒ dτ := − Q
Rαu2 du

yields

Θ(t ,u (t )) = − 1
Rα

∫ Q
R (α t+u0 )

Q
Ru0

e−u

u
du . (9.8)

This is a special case of the exponential integral

Ei(x ) := −
∫ +∞

−x

e−t

t
dt ,
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a non-elementary function whose value for positive x is typically understood in terms of the Cauchy
principal value by taking a branch cut along the negative real axis; the curve that results from eval-
uating this non-elementary integral is shown in [175].

The exponential integral is included as a function in the scipy.special module of python, as
well as withmany other scientific computing softwares, such as MATLAB (via the built-in function ex-

pint), Wolfram Mathematica (via ExpIntegralEi), and fortran (via the routines in [176]), which
makes its computation in numerical routines especially simple. An example of the function val-
ues drawn using the python implementation is shown in Figure 9.5, and these function values are
identical to the ones shown in [175].

For negative real values of x , which lie directly on the branch cut and for which Ei(x ) cannot be
computed in the traditional way, Ei(x ) is computed using the relation

lim
ε→0+

E1 (−x ± iε ) = −Ei(x ) ∓ iπ , (9.9)

where E1 (x ) := Γ(0,x ) :=
∫ ∞
x

e−u
u du is also referred to as an exponential integral function, and

Γ(a,z) is an incomplete gamma function [175]. The scipy.special module computes the expo-
nential integral Ei(x ) for negative values of x using Equation 9.9. With this method, one may de-
termine the Θ values for a given constant-rate heating experiment knowing only the rate constant,
and the times at which the measurements of density were taken. Crucially, this method avoids the
use of alternative techniques of numerical integration, such as the trapezoidal rule. A short python
script testing the expediency of this method is given in Appendix F.1, and its results show that the
exponential integral method runs in 60% of the time that the cumulative integral function in the
scipy.integrate module for python requires.

The use of the exponential integral expression for constant heating rates in non-isothermal ki-
netics, such as in the theory of thermogravimetry, thermal desorption, and thermoluminescence,
has been studied in [177, 178], and alternative methods for the approximation and solution of the
exponential integral equation have been shown in [179–182]. However, this appears to be the first
time such an expression has been proposed for speeding up the optimization routine for finding the
activation energy of a material using experimental measurements of sintering data.

9.2 Conservation of Mass and Relative Density-BasedModel

A simple model of mechanical deformation is appropriate for our situation, where the initial dis-
tribution of material parameters within the material being processed is assumed to be uniform,
and that material is assumed to be anisotropic. In most scenarios of this type, we do not expect to
have nonuniform stresses and strains on the material, and we may rely on conservation of mass and
a computation of relative density change to simulate mechanical deformation, rather than on the
constitutive relation given in Equation 4.4.

Namely, we use the curve found by method described in Section 9.1 to compute the change
in relative density within each cell of the one- or two-dimensional computational domain. These
density changes are averaged over the entire sample, and we assume that the law of conservation of
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mass holds, so that, wherem refers to mass, vold and vnew refer to the initial and updated volumes,
and ρold and ρnew refer to the initial and updated average absolute densities,

m = ρold · vold and m = ρnew · vnew,

which leads to
vnew =

ρold
ρnew

vold.

In the one-dimensional case, the right-hand endpoints of both insulation and material are as-
sumed to be fixed during processing, as is the amount of insulation to the left and right of the mate-
rial; the material, however, changes length as its density changes, and so, as the material shrinks (or
undergoes slight thermal expansion), and as the insulation shifts to the right (or slightly to the left)
to accommodate this material change, the left-hand endpoints of the material and the insulation
move.

In the two-dimensional case, the upper boundaries of both insulation and material are the only
ones that are not fixed during processing, and the amount of insulation surrounding the material is
also fixed, except for the portions to the left and right of the material, residing above the material.
As thematerial shrinks (or undergoes slight thermal expansion), thematerial’s upper boundary falls
(or slightly rises), and the insulation’s upper boundary falls commensurately everywhere, including
in the areas to the left and to the right of the material boundaries2.

The computational grid on which the electromagnetic and thermal problems remains fixed
throughout the simulation, and affects the capability of the model to account for material shrinkage,
in the sense that each node in the grid is assigned a particular set of dielectric and thermal properties
that are used in the solution of the governing equations. In case the amount of shrinkage predicted
by the law of conservation of mass after a given thermal time step is greater than the length of the
spatial cell immediately to the left of the location of the maximum density in the sample (in the
one-dimensional case), or greater than the height of the row of spatial cells immediately above the
location of themaximumdensity value in the sample (in the two-dimensional case), then a threshold
is placed at the spatial node nearest to the location ofmaximumdensityminus the predicted amount
of shrinkage (in the one-dimensional case), and at the row of spatial nodes nearest to the location
of maximum density plus the predicted amount of shrinkage (in the two-dimensional case). Our
model accounts for shrinkage by replacing the temperature, density, and material property values
immediately to the left of the location of the maximum density by those to the left of the threshold,
as shown in Figure 9.6.

In case the predicted shrinkage of the material over a given thermal time step is less than the
length of one spatial grid cell immediately adjacent to the position of maximum density, then the
model has no way of accounting for the change in the material boundary position; in this case, the
predicted shrinkage over this time step is set back to zero, and the relative density in the medium
is set to that of the previous time step, so that in the event of further densification after future time

2This violates conservation of mass, but as we are not concerned with tracking the physical deformation of the insu-
lation during processing, this does not affect the validity of the model.
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steps, the accurate level of commensurate shrinkage may be executed, as described above and as
shown in Figure 9.6.
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(a) Demonstration of sigmoid curve fitting using themodel in Equation 9.3. Best fit was
computed using the Levenberg-Marquardt optimization method, and has least-squares
error 0.00144663.
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(b) Demonstration of sigmoid curve fitting using themodel in Equation 9.2. Best fit was
computed using the Levenberg-Marquardt optimization method, and has least-squares
error 0.00116233.

Figure 9.1: Demonstration of the sigmoid curve-fitting methods carried out for zirconia data from
[3] and an activation energy of Q = 660.1 kJ/mol. Optimal sigmoid functions are shown in Equa-
tions 9.4 and 9.5.
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Figure 9.2: Plots of the densification data for the three constant-rate sintering trials performed in
[3].
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(a) Demonstration of sigmoid curve fitting using themodel in Equation 9.3. Best fit was
computed using the Levenberg-Marquardt optimization method, and has least-squares
error 0.0373143.
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(b) Demonstration of sigmoid curve fitting using themodel in Equation 9.2. Best fit was
computed using the Levenberg-Marquardt optimization method, and has least-squares
error 0.00786899.

Figure 9.3: Demonstration of the sigmoid curve-fitting methods carried out for zirconia data from
[4] and an activation energy of Q = 660.1 kJ/mol. Optimal sigmoid functions are shown in Equa-
tions 9.6 and 9.7.
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Figure 9.4: Plots of the densification data for the three constant-rate sintering trials performed in
[4].
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Figure 9.5: Exponential integral function Ei(x ) for x > 0, found using scipy.special module.
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t = tn

t = tn+1

ρmax

shrink

Figure 9.6: Example of execution of shrinkage by the mechanical model for the one-dimensional
case. Area of domain occupied by air is shown in white, by insulation in blue (diagonal lines), and
bymaterial in apricot (squares). Physical scenario is depicted at time level t = tn above, and t = tn+1
below. Sample numerical grid for the solution of the electromagnetic and thermal equations is fixed,
and is shown at both time levels with gray tick marks. ρmax indicates the location of maximum den-
sity within the sample, and the amount of shrinkage, computed using conservation of mass together
with the average density change in the sample, is labelled “shrink”, and is taken to the left of the
maximum density.



Chapter 10

CoupledMultiscaleModel ofMicrowave
Sintering

Microwave sintering can be described by a model that couples representations of the electromag-
netic, thermal, and mechanical phenomena, while considering the multiscale nature of the problem
in both space and time. The operation of such a model is illustrated in Figure 10.1.

This chapter describes the operation of themodel, whose correspondingPython implementation
can be found in Appendix H.

10.1 Input Data

The user may input two basic kinds of data to the simulator: material data and process data. Ma-
terial data refers to measurements of dielectric and thermal properties taken during experimental
processing of samples of the material and insulation the user wishes to simulate, while process data
refers to certain adjustable parameters of the simulated sintering experiment, such asmicrowave fre-
quency, input power, total sintering time, the temperature or relative density at which the material
is considered sintered, or data on the geometrical configuration of the experiment to be simulated.
In this section, we discuss these input properties.

Experimentally Obtained Material Data

Before running the model, experiments should be run in order to generate input data for the model.
Experiments should be done both for the material to undergo sintering, and for the material that
comprises the surrounding insulation, and these experiments should consist of separate trials that
involve heating at rates as close to constant as possible, during which the measurements of the nec-
essary dielectric and thermal material properties should be recorded along with the temperature
and elapsed processing time.

184
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Figure 10.1: Flowchart showing operation of the coupled multiphysics, multiscale model of microwave sintering.



CHAPTER 10. COUPLED MODEL 186

Since the insulation material does not undergo sintering, we do not expect its densification be-
havior to be predictable using the MSC method discussed in Sections 4.3 and 9.1. Moreover, the
dielectric and thermal properties of the insulation material can be adequately characterized by only
their temperature dependence, and so only one trial of microwave heating is necessary to produce
the data necessary for constructing predictive functions for these properties. For the insulation ma-
terial, the experimental measurements should consist of a table with six or seven columns: temper-
ature u, dielectric constant ε ′, electrical conductivity σ , density ρ, thermal conductivity cp , specific
heat capacity k , and permeability µ in the case of magnetic material (for non-magnetic material,
µ ≈ µ0 is a valid assumption). The i th measured value of each of the latter five (or, in the case of
magnetic materials, six) quantities should be taken at the ith temperature value, and the temperature
values should span the range of those that are expected to be encountered during processing. Such
a table is given in [5] for high-temperature processing of alumina and zirconia1, and is reproduced
in Table 10.1.

For the material to undergo sintering, the dielectric and thermal properties are assumed to de-
pend on both temperature and density of the sample during processing. As discussed in Chapter 4,
the density of the sample is computed from the temperature evolution function using the Master
Sintering Curve method, once the activation energy is known. We therefore need sufficient input
data to compute the activation energy; following [74], we require measurements of time, temper-
ature, and sample density from at least three trials of heating—preferably, microwave heating—at
constant rates. The requirement that the heating rates be constant for the trials generating the input
data is not a mathematical one, but rather, is intended to minimize the possible effects of surface
diffusion, which may result in incorrect measurements, during the sintering process [74]. Such data
is given in [3] and in [4] for zirconia and various other materials, with that of [4] reproduced in
Table 10.2.

For the other dielectric and thermal material properties, which depend on temperature and
density, this work incorporates, for the first time, two different methods of characterizing their evo-
lution. The first such method involves the inversion of the mixture formulas, and is discussed in
Chapter 5. This method necessitates measurements of dielectric and thermal properties throughout
the full temperature range, with reference densities and temperatures also recorded, as shown in
Table 10.1.

The secondmethod of characterizing the evolution of dielectric and thermal properties has only
a phenomenological basis, and assumes that if the density may be characterized as a function of
Θ, the work of sintering defined in Section 4.3, and if Θ is, itself, a function of the temperature
and its evolution, then the dielectric and thermal material properties may also be characterized as
functions ofΘ. This process of determining these functions is discussed in Section 10.2, but here, we
simply state that the input data needed in this case are measurements of the dielectric and thermal
properties throughout the full temperature range of a processing experiment, with reference times
and temperatures also recorded.

1Measurements taken by Ron Hutcheon of Microwave Properties North, Inc.
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Table 10.1: Experimental measurements of temperature, dielectric constant, electrical conductivity,
specific heat capacity, absolute density, and thermal conductivity for zirconia and alumina. Repro-
duced from [5].
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Table 10.2: Measurements of time, temperature, and relative density of Yttria-stabilized zirconia
during sintering trials at three constant heating rates [4].

Simulated Process Data

As discussed, certain information about the process data is necessary to replicate the experiment
the user wishes to simulate, beginning with geometrical properties. The user may, in addition to the
size of the domain, also specify the placement of the insulation and material, in both the one- and
two-dimensional scenarios. In the one-dimensional case, the user may specify the lengths and the
right-hand endpoints of both thematerial and the insulation, while in the two-dimensional case, the
user may, in addition to the lengths and right-hand boundaries, also specify the heights and lower
boundaries of both the material and insulation.

The user should also specify the desired input power and frequency of microwave radiation,
along with the ambient temperature of the room in which the simulated experiment is carried out.

As stopping conditions, our algorithm checks the elapsed time against the total time the user
desires for the simulated experiment, and also checks the maximum temperature in the material
against a prescribed maximum temperature that the user defines—and, so, the total time and max-
imum temperature are also necessary input parameters to the simulation.

10.2 Tasks Completed Before Iterative Loop

The tasks described in this section are completed once before the solver enters the iterative loop.
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Computing the Activation Energy

After the user inputs the experimental data, the solver computes the activation energyQ of themate-
rial to be sintered using themethod discussed in Section 4.3. The user has the option of representing
the sigmoid curve by the model described in Equation 9.2, or by the model in Equation 9.3; once
the sigmoid curve model is chosen, the activation energy is found using the Levenberg-Marquardt
method to minimize the error in the sigmoid curve that best fits the data found experimentally; the
best fit curve is fund using the Nelder-Mead method.

Finding the Material Density Function

The activation energy is found concurrently with the best-fit sigmoid curve, which we refer to as the
function for computing material density. This function takes the parameter Θ as input, and yields
the corresponding density of the sample, relative to the bulk density (the relative density ρrel is in
the range (0,1)).

Dielectric and Thermal Properties of Insulation

After the material density function is computed, the functions determining the dielectric and ther-
mal properties of both the insulation and the sintering material are found. The functions for the
insulation properties, including the density, are assumed to be dependent only on temperature, and
so these are computed from the single set of experimentalmeasurements using third-degree b-spline
interpolation.

Dielectric and Thermal Properties of Sintered Material

For the sintered material, the properties (other than density) are assumed to be dependent on both
density and temperature, and are found using either the method discussed in Chapter 5, which
involves either the first method of inverting various mixture formulas, or the second method men-
tioned in Section 10.1 of this chapter, where properties are all assumed to depend onΘ. If the inver-
sion of the mixture formulas is used, then the property functions take as input both the temperature
and the relative density.

If the user indicates the first method, then the thermal properties cp andk are computed accord-
ing to Equations 5.13 and 5.14. The user then has the choice of whether to use the Lichtenecker,
Rayleigh, Maxwell Garnett, or Bruggeman formulas for computing the dielectric properties; these
formulas are found in Equations 5.6, 5.8, 5.12, and 5.10, respectively.

If the user indicates the second, Θ-based method, then the activation energy Q is used, along
with the time and temperature measurements taken during the physical sintering experiment, to
compute values of Θ for the experiment. These Θ values are then used, along with the measured
property values, to construct interpolating functions using themethod of third-order b-splines. The
functions created using this method take Θ values as inputs.
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Determining Spatial and Time Steps

Both the implicit and explicit finite difference methods for the electromagnetic wave equation, dis-
cussed in Chapter 7, require that the spatial step be proportional to the wavelength in media, with a
typical simulation requiring approximately 10 to 20 spatial cells per wavelength [2, 183, 184]. How-
ever, the wavelength λ in media depends on the relative values of the dielectric constant ε ′ and the
permittivity µ to those in free space, according to

λ =
c

f
√
ε ′relµrel

, (10.1)

where c is the speed of light, and f is the frequency of radiation (in Hz). Because ε ′rel and µrel in the
insulation depend on temperature, and in the material to be sintered depend on both temperature
and relative density, the code first estimates the largest value of ε ′rel and µrel that are expected to be
encountered during processing (in practice, it chooses the largest values from the input experimental
data, which is assumed to cover the entire sintering range). Once the largest expected values of
ε ′rel and µrel are determined for the insulation and for the material, each of these values is used in
Equation 10.1 to find the smallest wavelength λins and λmat expected in the insulation and in the
material, respectively. Using these, together with λair, which is directly computed using the value
ε ′rel,air ≈ 1, the required sizes of the spatial steps in air (∆z)air, insulation (∆z)ins and the material to
be sintered (∆z)mat are determined. In two dimensions, we assume that ∆x = ∆z in air, insulation,
and material.

For an explicit difference method approximating the solution of the electromagnetic wave equa-
tion to accurately simulate the wave velocity, the time step should also be restricted, with dispersion
analysis resulting in Equation 7.5. The physical interpretation of this condition is that over the
course of one time step, the wave should not propagate more than the length of one spatial cell [2].
We therefore compute (∆t )E⃗ according to

(∆t )E⃗ < min

{
(∆z)air

c
,
(∆z)ins
vp,ins

,
(∆z)mat
vp,mat

}
, (10.2)

wherevp represents the velocity of the wave, which, as noted in Section 2.4, is given byvp := 1√
ε µ =

c√
εrelµrel

. In practice, this condition is satisfied by setting (∆t )E⃗ =
1
2f .

The time step for the approximate solution to the heat equation need not be as small as that
required for the electromagnetic solver. Because code, as discussed in Chapter 8, implements the
finite difference method as a θ-scheme, the user has the choice of what becomes, in practice, a fully
implicit scheme (θ = 1), a fully explicit scheme (θ = 0), a Crank-Nicolson scheme (θ = 1

2 ), or
something in between. For θ < 1

2 , the scheme is conditionally stable, as discussed in Section 8.1. For
θ ≥ 1

2 , the numerical scheme is unconditionally stable, but still may suffer from spurious oscillations
if the time step is too large compared to the spatial step. We therefore determine the size of the time
step by setting

(∆t )u = min

(∆z)2air

2
,
(∆z)2ins

2
,
(∆z)2mat

2

 .
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10.3 Tasks CompletedWithin the Iterative Loop

With the pre-processing tasks completed, the iterative loop begins. We describe here one iteration of
the process. To initialize the loop, the elapsed time is set to zero, the current temperature is assumed
to be room temperature everywhere, the parameter value Θ is assumed to be one, and the electric
field is assumed zero except on the left-hand boundary, where it takes the value of the incident field,
as discussed in Section 2.4.

Setting the Material Property Vectors

First, the vector of density values is populated according to the current values of Θ in the material,
the current values of temperature in the insulation, and according to the current location of the
material, insulation, and air; that is, according to which nodes are currently occupied by which kind
of matter. If a node—call it node number [i, j], with coordinate value (zi ,yj )—is occupied by air,
then its density is assumed to be the constant value of the density of air:

ρ[i, j] = ρair.

If the node is occupied by insulation, then its density is computed using the temperature-dependent
function found by the procedure described in Section 10.2 of this chapter:

ρ[i, j] = ρins (u (zi ,yj )).

If the node is occupied by material, then its density is computed using the Θ-dependent function
found by the procedure described in Section 10.2 of this chapter, whichwill yield the value of relative
density ρrel,mat; this value is then multiplied by the constant bulk density of the material to obtain
the correct absolute density value:

ρ[i, j] = ρbulk,mat · ρmat (Θ(zi ,yj )).

In summary, the density vector is populated according to:

ρ[i, j] =


ρair, if node [i, j] is in air
ρins (u (zi ,yj )), if node [i, j] is in insulation
ρbulk,mat · ρmat (Θ(zi ,yj )), if node [i, j] is in material.

Once the density values are known, the other material property vectors may be populated; for
example, the value of the dielectric constant vector at position [i, j] is as follows, if the density-
dependent properties of the material are accounted for by inverting mixture formulas:

ε ′[i, j] =


ε ′air, if node [i, j] is in air
ε ′ins (u (zi ,yj )), if node [i, j] is in insulation
ε ′mat (u (zi ,yj ),ρ[i, j]), if node [i, j] is in material,



CHAPTER 10. COUPLED MODEL 192

and as follows, if the density-dependent properties of the material are accounted for under the as-
sumption that they are Θ-dependent:

ε ′[i, j] =


ε ′air, if node [i, j] is in air
ε ′ins (u (zi ,yj )), if node [i, j] is in insulation
ε ′mat (Θ(zi ,yj )), if node [i, j] is in material.

Here, the function ε ′ins (u) is the one discussed in Section 10.2 of this chapter, and ε ′mat (u,ρ) is, in
the first case, the function defined in Chapter 5, and in the second case, the function defined in
Section 10.2 of this chapter.

The vectors σ , cp , k , and, in the case of magnetic material or insulation, µ are also populated in
a similar fashion.

Computing the Electric Field and Dissipated Power

Once thematerial property vectors are populated, the dissipated power is set to zero, and the electric
field E⃗ is solved using the methods described in Chapter 7. The user may choose the finite differ-
ence or finite element method, though the examples in Chapter 11 were generated using the finite
difference code.

The electric field solver takes as input the vectors µ, σ , and ε ′, along with the vectors hz and hy
of spatial differences, and the time steps (∆t )E⃗ and (∆t )u . At each electromagnetic time step (∆t )E⃗ ,
the solver computes the electric field once, using the method discussed in Chapter 7, then uses the
trapezoid rule to approximate the addition to the cumulative integral in Equation 2.44. This process
continues until the elapsed time passes (∆t )u , and the value of Pdiss is passed to the thermal solver.

Computing the Temperature Field

The thermal solver, described in Chapter 8, takes as input the vectors cp , ρ, and k , and a source
term vector, which is computed according to Equation 3.9 and depends on Pdiss and σ . The spatial
difference vectors hz and hy are also input to the thermal solver, along with the size of the thermal
time step (∆t )u . The heat equation is solved only within the nodes that are occupied by either insu-
lation or material, and the air in the cavity is assumed to remain at room temperature; therefore, the
input vectors to the thermal solver are restricted to only those portions corresponding to nodes in
insulation or air. Depending on the user’s choice of boundary condition, the ambient temperature
should also be input to the thermal solver.

The user has the choice of either the finite difference or the finite element method, though the
examples in Chapter 11 were generated using the finite difference code. If the user chooses to use the
finite difference method, then the θ parameter may also be chosen, which determines whether the
method is implicit (θ = 1), explicit (θ = 0), Crank-Nicolson (θ = 1

2 ), or something in between. The
user may also choose whether to use the Dirichlet boundary condition, in which the edges of the
insulation are fixed at the ambient temperature, theNeumannboundary condition, inwhich the heat
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flux out of the insulation’s boundary is fixed at zero, or the radiative condition, in which the heat flux
through the insulation’s boundary is proportional to the difference between ambient temperature
and the temperature at the boundary; these boundary conditions are described in Section 3.3. Once
the user specifies these settings, the solver is run, and the temperature distribution within insulation
and material is output.

Computing Mechanical Deformation

Using the new temperature distribution, together with the temperature distribution from the previ-
ous thermal timestep, the cumulative integral in Equation 4.9 is approximated within the material
using the trapezoidal rule, and is used in computing the value of the parameterΘ. OnceΘ is known
at each node within material, the average value is taken, and is input to the function ρmat (Θ) to yield
the average relative density within the material.

The amount of shrinkage (or thermal expansion) of the material is computed using the con-
servation of mass law described in Section 9.2, and the labels on the nodes occupied by material,
insulation, and air change commensurately with this deformation, before the iterative loop begins
once more.

10.4 Tasks Completed after Iterative Loop Ends

The iterative loop ends once the elapsed time has exceeded the simulated processing time requested
by the user, or once the maximum temperature or relative density with the material has exceeded
thresholds requested by the user at the beginning of the simulation. When at least one of these
conditions is met, the simulation halts, printing its final results to a log file and saving relevant plots
and videos in the simulation directory.



Chapter 11

Computational Example: Sintering of
Zirconia

In order to demonstrate the functionality of the model described in Chapter 10, we used it for simu-
lating themicrowave thermal processing ofmaterial that is dealt with in practical laboratory settings.
In this chapter, we describe simulations corresponding to different types of boundary conditions,
and different ways of handling density dependence of material properties, in both the one- and
two-dimensional scenarios.

11.1 One-Dimensional Simulation withΘ-Dependent Dielectric
Properties

Input Measurements and Parameters

Our trial simulated the microwave thermal processing of zirconia (ZrO2) surrounded by alumina
(Al2O3) insulation. This choice is motivated by the availability of experimentally measured input
data to themodel in the literature; this data includesmeasurements of ε , µ,σ , cp , ρ, andk throughout
the temperature range of sintering experiments described in [5] and performed by Ron Hutcheon
at Microwave Properties North, which is reproduced in Table 10.1. The data required for the Master
Sintering Curve method was obtained from [3] and [4], and is reproduced in Table 10.2.

The frequency of radiation was assumed to be 2.45 GHz, and the input power level was set to 1
kW. The domain length was set to be 43.35 cm, which was 2.5 times one wavelength in the waveg-
uide, where length of the guided wave was computed according to Equations 2.46, 2.47, and 2.48,
assuming that the cross-section of the waveguide was an 86.36×43.18 mm rectangle (this corre-
sponds to the typical measurements of a D-band, WR-340 waveguide [62, 185]).

A sample of zirconia 4.82 cm long was centered in the waveguide’s length, and the zirconia was
assumed to be surrounded on either side by 4.82 cm of alumina insulation. The initial density of
the zirconia was assumed to be 52.38 % of bulk density, in accordance with the value of bulk density

194
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of solid zirconia taken from [186]. Ambient temperature, which was assumed to be the same as the
initial temperature of zirconia and alumina, was set to 20◦C. The simulation was set to stop when
the processing time reached 3600 seconds.

Insulation and Material Property Functions

Activation energy Q for zirconia was approximated using the Nelder-Mead algorithm, where the
objective function was the error in the optimal sigmoid curve describing the relationship between
density and Θ(t ,T (t )), where Θ was computed as a function of Q using the experimental data on
time and temperature taken from [3]. At each evaluation of the objective function, the optimal-fit
sigmoid curve was found using Levenberg-Marquardt optimization to minimize the error between
the function [166]

ρrel (Θ) = ρ0 +
A[

1 + exp
(
− ln(Θ)−ln(Θ0)

B

)]C
and the measured density values through the course of sintering, where ρ0 and Θ0 are the initial
values of relative density and Θ at the start of the sintering experiments, and where A, B, andC are
the parameters adjusted in the course of Nelder-Mead optimization. The entire routine for finding
the optimal activation energy took a total of 65 function evaluations and required approximately
80.1 CPU-seconds to perform, including overhead for plotting and saving results. The optimal Q
value was found to be approximately 674214 J/mol, which is within the range of values (615 ± 80
kJ/m) found in [187], and is also within the range of values found in [186, 188–192]. Using this
value ofQ , corresponding optimal sigmoid curve hit the data points with a mean relative residual of
0.001157. This curve, which was found using the data in [3], is shown in Figure 11.3a, and is given
by

ρrel = 0.52536 +
0.464799[

1 + exp
(
− lnΘ+52.5762

1.71725

)]0.627238 . (11.1)

The dielectric and thermal properties of zirconia were determined as functions of temperature
and density by assuming a dependence on the work of sintering, Θ. These functions of Θ were de-
termined using third-degree b-splines, and the functions, along with the measured data points they
interpolate, are shown in Figures 11.1a, 11.2a, 11.4a, and 11.5a. Because zirconia is not a magnetic
material, the magnetic permeability µ was assumed to be the same as free space; that is, µ = µ0, or
µrel = 1.

The dielectric and thermal properties of alumina insulation were determined as functions of
temperature using interpolation by third-degree b-splines, and the functions, along with the mea-
sured data points they interpolate, are shown in Figures 11.1b, 11.2b, 11.3b, 11.4b, and 11.5b. Be-
cause alumina is not a magnetic material, the magnetic permeability µ was assumed to be the same
as free space; that is, µ = µ0, or µrel = 1.

The evolution of the material properties in the entire domain through time can be seen in Fig-
ures 11.6, 11.7, 11.8, 11.9, and 11.10.
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Electric and Temperature Fields

Inside the simulation loop, the electric field was solved using the θ-finite difference method with
θ = 0.5, and with a time step of 0.001 seconds, computed according to Equation 10.2. The absorbing
boundary condition was used at the right-hand side. The envelope of the electric field at the end of
processing is shown in Figure 11.11, and this did not change significantly during processing, despite
the dielectric properties changing. The maximum, minimum, and mean values of the electric field
at regular time intervals throughout the simulation can be found in the simulation output log file,
partially reproduced in Appendix I.1.

There were clear peaks in the temperature field during processing, which, by the end of pro-
cessing, smoothed to the distribution seen in Figure 11.12. The evolution of the temperature dis-
tribution through time may be seen in Figure 11.13, and the evolution of the maximum and mean
temperatures within the load may be seen in Figure 11.14.

After 650 seconds of simulated processing, the zirconia showed slight thermal expansion, and
after 3600 seconds, showed shrinkage to 98% of its green length, with the relative density increasing
to 52.54% of bulk density with amaximum zirconia temperature of 920.8◦ C.This appears to be con-
sistent with the shrinkage results for three-dimensional samples of zirconia sintered by microwaves
[4], which report densification to 53.6% of bulk density at 1099◦C. The evolution of density with the
work of sintering Θ can be seen in Figure 11.14.

The entire simulation took 25399.9 CPU seconds to complete, including overhead for logging
and plotting results.
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(a) Evolution of ε ′rel with the work of sintering Θ for zirconia.
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(b) Evolution of ε ′rel with temperature for alumina.

Figure 11.1: The curves, found using third-degree b-splines, describing the evolution of the di-
electric constant ε ′rel, relative to ε0, of zirconia material and alumina insulation. Points represent
measured input data from [5].
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(a) Evolution of σ with the work of sintering Θ for zirconia.
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(b) Evolution of σ with temperature for alumina.

Figure 11.2: The curves, found using third-degree b-splines, describing the evolution of the electrical
conductivity σ [S/m] of zirconia material and alumina insulation. Points represent measured input
data from [5].



CHAPTER 11. COMPUTATIONAL EXAMPLE: SINTERING OF ZIRCONIA 199

−62 −60 −58 −56 −54 −52 −50 −48 −46 −440.5

0.6

0.7

0.8

0.9

1

ln(Θ(t ,T (t )))
[
ln( sK )

]

Re
la
tiv

eD
en

sit
y

Master Sintering Curve (Fantozzi) for Zirconia

2 degC/min
5 degC/min
8 degC/min
Best fit sigmoid curve

(a) The optimal-fit sigmoid curve describing the relationship between the work of sin-
teringΘ and the [unitless] density ρrel of zirconia, relative to its bulk density, using data
from [3] and the sigmoid curve described in Equation 11.1.
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(b) The curves, found using third-degree b-splines, describing the evolution of absolute
density ρ [g/m3] of alumina insulation with temperature. Points represent measured
input data from [5].

Figure 11.3: The functions describing the evolution of the density of zirconia material and alumina
insulation.
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(a) Evolution of cp with the work of sintering Θ for zirconia.

0 200 400 600 800 1,000 1,200
0.7

0.8

0.9

1.0

1.1

1.2

1.3

Temperature [degC]

c p
[J
/(
gK

)]

Specific heat capacity for alumina insulation

Function approximation
Experimental measurements

(b) Evolution of cp with temperature for alumina insulation.

Figure 11.4: The curves, found using third-degree b-splines, describing the evolution of the specific
heat capacity cp [J/◦C] of zirconiamaterial and alumina insulation. Points representmeasured input
data from [5].
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(a) Evolution of k with work of sintering Θ for zirconia.
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(b) Evolution of k with temperature for alumina insulation.

Figure 11.5: The curves, found using third-degree b-splines, describing the evolution of the thermal
conductivity k [W/(m·◦C)] of zirconia material and alumina insulation. Points represent measured
input data from [5].
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Figure 11.6: Simulated distribution of [unitless] relative permittivity ε ′rel in one-dimensional domain
during processing; if using Adobe Reader to view the current PDF file, click ‘play’ button to view
video of the evolution.

11.2 One-Dimensional Simulation with Lichtenecker Computation of
Properties

This section describes the material property function results obtained for a one-dimensional simu-
lation of sintering with process parameters and geometry identical to the one in Section 11.1, but
with the zirconia parameters assumed to be calculable using an inversion of Lichtenecker’s formula,
rather than assumed to be functions of the work of sintering Θ.

Insulation and Material Property Functions

Activation energy Q for zirconia was approximated using the Nelder-Mead algorithm, where the
objective function was the error in the optimal sigmoid curve describing the relationship between
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Figure 11.7: Simulated distribution of electrical conductivity σ [S/m] in one-dimensional domain
during processing; if using Adobe Reader to view the current PDF file, click ‘play’ button to view
video of the evolution.

density and Θ(t ,T (t )), where Θ was computed as a function of Q using the experimental data on
time and temperature taken, this time, from [4]. At each evaluation of the objective function, the
optimal-fit sigmoid curve was found using Levenberg-Marquardt optimization to minimize the er-
ror between the function [166]

ρrel (Θ) = ρ0 +
A[

1 + exp
(
− ln(Θ)−ln(Θ0)

B

)]C
and the measured density values through the course of sintering, where ρ0 and Θ0 are the initial
values of relative density and Θ at the start of the sintering experiments, and where A, B, andC are
the parameters adjusted in the course of Nelder-Mead optimization. The entire routine for finding
the optimal activation energy took a total of 66 function evaluations and required approximately
77.8 CPU-seconds to perform, including overhead for plotting and saving results. The optimal Q
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Figure 11.8: Simulated distribution of absolute density ρ [g/m3] in one-dimensional domain during
processing; if using Adobe Reader to view the current PDF file, click ‘play’ button to view video of
the evolution.

value was found to be approximately 653298 J/mol, which is within the range of values (615 ± 80
kJ/m) found in [187], and is also within the range of values found in [186, 188–192]. Using this value
of Q , the corresponding optimal sigmoid curve hit the data points with a mean relative residual of
0.007867. This curve, which was found using the data in [3], is shown in Figure 11.18a, and is given
by

ρrel = 0.461781 +
0.428178[

1 + exp
(
− lnΘ+53.758

1.7004

)]0.441256 . (11.2)

The dielectric and thermal properties of zirconia were determined as functions of temperature
and density by assuming explicit dependence on temperature and density and using the Lichtenecker
formula as described in Section 5.2. The interpolated values of effective bulk properties were deter-
mined using third-degree b-splines, and the functions for the properties of the mixture, along with
the measured data points they interpolate, are shown in Figures 11.16a, 11.17a, 11.19a, and 11.20a.
Because zirconia is not a magnetic material, the magnetic permeability µ was assumed to be the
same as free space; that is, µ = µ0, or µrel = 1.

The dielectric and thermal properties of alumina insulation were determined as functions of
temperature using interpolation by third-degree b-splines, and the functions, along with the mea-
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Figure 11.9: Simulated distribution of specific heat capacity cp [J/◦C] in one-dimensional domain
during processing; if using Adobe Reader to view the current PDF file, click ‘play’ button to view
video of the evolution.

sured data points they interpolate, are shown in Figures 11.1b, 11.2b, 11.3b, 11.4b, and 11.5b. Be-
cause alumina is not a magnetic material, the magnetic permeability µ was assumed to be the same
as free space; that is, µ = µ0, or µrel = 1.
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Figure 11.10: Simulated distribution of thermal conductivity k [W/(m·◦C)] in one-dimensional do-
main during processing; if using Adobe Reader to view the current PDF file, click ‘play’ button to
view video of the evolution.

11.3 Two-Dimensional Simulation

Input Measurements and Parameters

Our trial again simulated the microwave thermal processing of zirconia (ZrO2) surrounded by alu-
mina (Al2O3) insulation, this time with a two-dimensional domain as shown in Figure 1.2. Ex-
perimentally measured input data to the model included measurements of ε , µ, σ , cp , ρ, and k
throughout the temperature range of sintering experiments described in [5] and performed by Ron
Hutcheon at Microwave Properties North, which is reproduced in Table 10.1. The data required for
the Master Sintering Curve method was obtained from [3] and [4], and is reproduced in Table 10.2.

The frequency of radiation was assumed to be 2.45 GHz, and the input power level was set to 1
kW. The domain length was set to be 43.35 cm, which was 2.5 times one wavelength in the waveg-
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Figure 11.11: Simulated root mean square of electric field after processing.

uide, where length of the guided wave was computed according to Equations 2.46, 2.47, and 2.48,
assuming that the cross-section of the waveguide was an 86.36×43.18 mm rectangle (this corre-
sponds to the typical measurements of a D-band, WR-340 waveguide). The domain height was
assumed to be 86.36 mm.

A sample of zirconia 4.82 cm long and 0.96 cm tall was centered in the waveguide’s length, and
the zirconia was assumed to be the center of an otherwise solid block of alumina insulation 14.45
cm long and 4.80 cm tall. The initial density of the zirconia was assumed to be 52.38 % of bulk
density, in accordance with the value of bulk density of solid zirconia taken from [186]. Ambient
temperature, which was assumed to be the same as the initial temperature of zirconia and alumina,
was set to 20◦C. The simulation was set to stop when the processing time reached 3600 seconds.

Insulation and Material Property Functions

As in the case of the one-dimensional simulation described in Section 11.1, the activation energy
and MSC for zirconia were determined with the use of data from [3], and the resulting sigmoid
function is identical to the one described in Equation 11.1. The properties of zirconia were again
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Figure 11.12: Simulated distribution of temperature in one-dimensional domain after processing.

assumed to depend on the work of sintering parameter Θ, and identical functions to those in Fig-
ures 11.1a, 11.2a, 11.4a, and 11.5awere found. Again here, themagnetic permeability µ was assumed
to be the same as free space; that is, µ = µ0, or µrel = 1.

The dielectric and thermal properties of alumina insulation were also determined as functions
of temperature using interpolation by third-degree b-splines, as in Section 11.1, and the functions,
along with the measured data points they interpolate, are identical to those shown in Figures 11.1b,
11.2b, 11.3b, 11.4b, and 11.5b. For alumina, we also assume that µ = µ0, or µrel = 1.

The evolution of the material properties in the entire domain through time can be seen in Fig-
ures 11.21, 11.22, 11.23, 11.24, and 11.25.

Electric and Temperature Fields

Inside the simulation loop, the electric field was solved using the finite difference method for the
Helmholtz equation, computed according to Equation 7.36. The perfect electric conducting bound-
ary conditions were used on both the shorting and transverse walls, and the Dirichlet condition
was used at the left-hand side. The evolution of the electric field during processing is shown in Fig-
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Figure 11.13: Simulated distribution of temperature in one-dimensional domain during processing;
if using Adobe Reader to view the current PDF file, click ‘play’ button to view video of the heating
process.
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Figure 11.14: Simulated evolution of maximum and mean of temperature within zirconia sample
during processing.

ure 11.26. The maximum, minimum, and mean values of the electric field at regular time intervals
throughout the simulation can be found in the simulation output log file, partially reproduced in
Appendix I.2.

There were clear peaks in the temperature field during processing, which, by the end of pro-
cessing, smoothed to the distribution seen in Figure 11.27. The evolution of the temperature dis-
tribution through time may be seen in Figure 11.28, and the evolution of the maximum and mean
temperatures within the load may be seen in Figure 11.29.

After 3600 seconds, the zirconia did not exhibit shrinkage, as the change in relative density to
52.54% of bulk density accounted for a physical shrinkage smaller than the height of one spatial grid
cell. The maximum zirconia temperature reached during this processing was 454.7◦ C.

The entire simulation took 8902 CPU seconds to complete, including overhead for logging and
plotting results.
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Figure 11.15: Evolution of ρ with the work of sintering Θ.
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(a) Evolution of ε ′rel for zirconia with temperature for various values of densityzirconia.
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(b) Evolution of ε ′rel with temperature for alumina.

Figure 11.16: The curves, found using third-degree b-splines, describing the evolution of the di-
electric constant ε ′rel, relative to ε0, of zirconia material and alumina insulation. Points represent
measured input data from [5].
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(a) Evolution of σ for zirconia with temperature for various values of density.
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(b) Evolution of σ with temperature for alumina.

Figure 11.17: The curves, found using third-degree b-splines, describing the evolution of the elec-
trical conductivity σ [S/m] of zirconia material and alumina insulation. Points represent measured
input data from [5].
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(a) The optimal-fit sigmoid curve describing the relationship between the work of sin-
teringΘ and the [unitless] density ρrel of zirconia, relative to its bulk density, using data
from [3] and the sigmoid curve described in Equation 11.2.
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(b) The curves, found using third-degree b-splines, describing the evolution of absolute
density ρ [g/m3] of alumina insulation with temperature. Points represent measured
input data from [5].

Figure 11.18: The functions describing the evolution of the density of zirconia material and alumina
insulation.
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(a) Evolution of cp for zirconia with temperature for various values of density.
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(b) Evolution of cp with temperature for alumina insulation.

Figure 11.19: The curves, found using third-degree b-splines, describing the evolution of the specific
heat capacity cp [J/◦C] of zirconiamaterial and alumina insulation. Points representmeasured input
data from [5].
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(a) Evolution of k for zirconia with temperature for various values of density.
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(b) Evolution of k with temperature for alumina insulation.

Figure 11.20: The curves, foundusing third-degree b-splines, describing the evolution of the thermal
conductivity k [W/(m·◦C)] of zirconia material and alumina insulation. Points represent measured
input data from [5].
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Figure 11.21: Simulated distribution of [unitless] relative permittivity ε ′rel in one-dimensional do-
main during processing.
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Figure 11.22: Simulated distribution of electrical conductivity σ [S/m] in one-dimensional domain
during processing.
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Figure 11.23: Simulated distribution of absolute density ρ [g/m3] in one-dimensional domain during
processing.
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Figure 11.24: Simulated distribution of specific heat capacity cp [J/◦C] in one-dimensional domain
during processing.
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Figure 11.25: Simulated distribution of thermal conductivity k [W/(m·◦C)] in one-dimensional do-
main during processing.
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Figure 11.26: Simulated root mean square of electric field after processing.
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Figure 11.27: Simulated distribution of temperature in two-dimensional domain after processing.
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Figure 11.28: Simulated distribution of temperature in one-dimensional domain during processing;
if using Adobe Reader to view the current PDF file, click ‘play’ button to view video of the heating
process.
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Figure 11.29: Simulated evolution of maximum and mean of temperature within zirconia sample
during processing.



Chapter 12

Conclusions and FutureWork

In Chapters 2, 3, and 4, we have described the electromagnetic, thermal, and mechanical phenom-
ena that occur during microwave sintering. We presented algorithms for the solution of each of
these problems, and synthesized these into a coupled, iterative routine described in Chapter 10. In
Chapter 7, we showed finite difference solvers for the one- and two-dimensional wave equations,
and finite element and analytical solutions for the one- and two-dimensional Helmholtz equation,
and in Chapter 8, we show finite difference solvers for the one- and two-dimensional heat equation.
In Chapter 9, we demonstrate the use of the Master Sintering Curve to simulate the density kinetics
of matter undergoing sintering, and we provide a novel use of the exponential integral function in
order to speed up computation of the work of sintering parameter Θ that is an input to the MSC.

In formulating the coupled multiphysics routine, we have discussed several physical and tech-
nical aspects of microwave sintering that warrant careful treatment, including strong multiphysics
coupling via material parameter dependence on temperature and/or relative density, whose treat-
ment via inversions of classical and contemporary mixture formulas is described in Chapter 5; the
vastly different time scales on which the three key physical processes evolve, whose resolution is
described in Section 10.2; and the wide spectrum of physically relevant spatial scales, which we
synthesize using the MSC as described in Chapter 4.

The extremely important role played by the accurate and adequate determination of material
parameters and their temperature and density dependence was also emphasized, as well as its par-
ticular importance in the context of microwave sintering.

We have described and presented computer implementations comprehensive models of mi-
crowave sintering in one and two dimensions that rely on a small set of simplifying assumptions,
and these models, for the first time, accounts for density dependence of material properties as well
as temperature dependence. Results of these simulations were presented in Chapter 11 for the simu-
lated sintering of zirconia surrounded by alumina insulation, and the resulting temperature increase
and percent of shrinkage appear to be consistent with experimental results reported in literature.

This work also lays a theoretical and computational foundation for modelling the general three-
dimensional problem and computer-aided design of efficient sintering processes. Certain improve-
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ments, though, could still widen the range of materials to which our model applies, and other tech-
niques may improve its computer implementation.

For certain materials, the expectation of anisotropy or nonuniformity of the stress tensor may
be a valid one, and in these cases, the conservation of mass technique described in Section 9.2 is
a less valid way of determining mechanical deformation. For these scenarios, the MSC should be
used to determine density kinetics, and this should be used together with the constitutive relation
in Equation 4.4 to directly simulate the mechanical deformation as a result of changes to the strain
rate tensor. Preliminary work has already been done toward this end, as three MATLAB codes in
Appendix F.3 are capable of converting the strain rate tensor to mechanical deformation in one,
two, and three dimensions.

The explicit incorporation of the strain rate tensor into these routines would also enable the
solver to account for deformation in the two-dimensional case that is not uniform; that is, the
currently-used solution method, described in Section 9.2, based on an averaging of the relative den-
sity change throughout the entire sample, is incapable of accounting for the situation when certain
portions of the material may shrink more than other portions.

Given the wide variety of techniques that are currently used for modelling conventional sin-
tering on a spectrum of spatial scales, there are several future directions that this work could take.
The work would benefit from mathematical homogenization techniques applied to the problem of
mechanical deformation, because the explicit inclusion of certain micromechanical variables in the
analysis could help to clarify the role of these variables on the outcome of the sintering process.

The nature of the solution method we present in Chapter 10 for the coupled routine also lends
itself readily to alternative solution methods for either of the electromagnetic or thermal problems
to be swapped in as substitutes for the finite difference methods described in Chapters 7 and 8.
Integral equation solutions of the wave equation have been studied [193] and may be applicable in
the scenarios we consider, and in simple cases, analytical solutions of the Helmholtz equation may
also be employed for the one- and two-dimensional problems [67].

Indeed, finite element methods may prove more useful when the three-dimensional applica-
tions of this model are studied, as these methods may prove to more adequately handle certain ir-
regularities in the geometrical configurations most likely to be encountered during actual sintering
experiments and trials. The three-dimensional electromagnetic and thermal problems have been
thoroughly studied in this context, and the problem of mechanical deformation in three dimen-
sions would also be readily solved by integration of the strain rate tensor using, for example, the
preliminary work in Appendix F.3.

Another avenue for expansion of this work could be in the incorporation of nonthermal effects
of microwaves on the process of sintering. In crystalline solids such as those typically considered
in studies of sintering, mass transport has been demonstrated to proceed preferentially along the
electric field vector [194], which results in elongation of pores in comparison to traditional sintering
experiments [195]. Indeed, experimental comparisons of microwave and conventional sintering
reveal different patterns even under control of the heating rate [167]. The ponderomotive effect in
microwave sintering has been studied in the context of modelling [196], but not extensively, and the
present model would benefit from future investigation of this phenomenon.



Appendix A

Vector andMatrix Entries in the Finite
Difference Approximation for the Solution of
the Two-DimensionalWave Equation

This appendix contains the vectors and matrices of Equation 7.27.

228



APPENDIX A. 2D ELECTROMAGNETICS SOLVER VECTOR ANDMATRIX ENTRIES 229

A.1 Coefficients for the Finite Difference Solver of theWave Equation

E⃗p :=



E
p
0,0

E
p
0,1
...

E
p
0,M−1

E
p
1,0

E
p
1,1
...

E
p
1,M−1
...

E
p
N−1,0

E
p
N−1,1
...

E
p
N−1,M−1



,
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where

c⃗ :=



0
...

0

0

−µε ′ + µσ∆t
2

...

−µε ′ + µσ∆t
2

0
...

0

−µε ′ + µσ∆t
2

...

−µε ′ + µσ∆t
2

0

− 1
c (∆t )2
...

− 1
c (∆t )2



,
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and the multiplication c⃗E⃗n−1j,k is component-wise, and where matricesA and B are given by

A :=



1
1
. . .

1
1

0 1 0
a1 c1 b1,1 c1 a1
. . .

. . .
. . .

. . .
. . .

a1 cM−2 b1,M−2 cM−2 a1
0 1 0

. . .
. . .
. . .
. . .

. . .

0 1 0
aN−2 c1 bN−2,1 c1 aN−2

. . .
. . .

. . .
. . .

. . .

aN−2 cM−2 bN−2,M−2 cM−2 aN−2
0 1 0

1
1
. . .

1
1



,
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B :=



1
1
. . .

1
1

0 0 0
d1 f1 e1,1 f1 d1
. . .

. . .
. . .

. . .
. . .

d1 fM−2 e1,M−2 fM−2 d1
0 0 0

. . .
. . .
. . .
. . .

. . .

0 0 0
dN−2 f1 dN−2,1 f1 dN−2

. . .
. . .

. . .
. . .

. . .

dN−2 fM−2 eN−2,M−2 fM−2 dN−2
0 0 0

0
0
. . .

0
0



,

where

aj := −θsj

bj,k := 2θsj + 2φrk + µε
′ +

µσ∆t

2
ck := −φrk
dj := (1 − θ )sj

ej,k := −2(1 − θ )sj − 2(1 − φ)rk + 2µε ′

fk := (1 − φ)rk
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A.2 Coefficients for the Finite Difference Solver of the Helmholtz
Equation

The matrixA from Equation 7.36 is

A =



1
1
. . .

1
1

0 1 0
a1 b1 c11 b1 a1
. . .

. . .
. . .

. . .
. . .

a1 bM−1 cM−11 bM−1 a1
0 0 1 0

. . .
. . .
. . .
. . .

. . .

0 1 0
aN−1 b1 c

1
N−1 b1 aN−1

. . .
. . .

. . .
. . .

. . .

aN−1 bM−1 cM−1N−1 bM−1 aN−1
0 1 0

1
1
. . .

1
1



,

where aj := 1
(∆z )2j

, bk := 1
(∆x )2k

, and ckj := µ2εω2 − 2
(∆z )2j

− 2
(∆x )2k

.



Appendix B

Vector andMatrix Entries in the Finite
Difference Approximation for the Solution of
the Two-Dimensional Heat Equation

This appendix contains the vectors and matrices of Equation 8.24.

u⃗p :=



u
p
0,0

u
p
0,1
...

u
p
0,M−1

u
p
1,0

u
p
1,1
...

u
p
1,M−1
...

u
p
N−1,0

u
p
N−1,1
...

u
p
N−1,M−1



,
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Q⃗p :=



q
p
0,0 −

sn0 (z1−z−1)д1
α1,1

− rn0 (x1−x−1)д3
α1,3

q
p
0,1 −

sn0 (z1−z−1)д1
α1,1

...

q
p
0,M−2 −

sn0 (z1−z−1)д1
α1,1

q
p
0,M−1 −

sn0 (z1−z−1 )д1
α1,1

+
rnM−1 (xM−xM−2)д4

α1,4

q
p
1,0 −

rn0 (x1−x−1)д3
α1,3

q
p
1,1
...

q
p
1,M−2

q
p
1,M−1 +

rnM−1 (xM−xM−2 )д4
α1,4

...

q
p
N−2,0 −

rn0 (x1−x−1)д3
α1,3

q
p
N−2,1
...

q
p
N−2,M−2

q
p
N−2,M−1 +

rnM−1 (xM−xM−2)д4
α1,4

q
p
N−1,0 +

snN−1 (zN −zN−2)д2
α1,2

− rn0 (x1−x−1)д3
α1,3

q
p
N−1,1 +

snN−1 (zN −zN−2 )д2
α1,2

...

q
p
N−1,M−2 +

snN−1 (zN −zN−2)д2
α1,2

q
p
N−1,M−1 +

snN−1 (zN −zN−2)д2
α1,2

+
rnM−1 (xM−xM−2)д4

α1,4



,



APPENDIX B. 2D HEAT EQUATION VECTOR ANDMATRIX ENTRIES 236

A =



c1 d1 e1
b1 c2 d2 e2
. . .
. . .
. . .

. . .

b1 c2 d2 e2
b2 c3 e3

a1 c4 d3 e4
a2 b3 c5 d4 e5
. . .

. . .
. . .
. . .

. . .

a2 b3 c5 d4 e5
a3 b4 c6 e6

. . .
. . .
. . .
. . .

. . .

a1 c4 d3 e4
a2 b3 c5 d4 e5
. . .

. . .
. . .
. . .

. . .

a2 b3 c5 d4 e5
a3 b4 c6 e6

a4 c7 d5
a5 b5 c8 d6
. . .

. . .
. . .
. . .

a5 b5 c8 d6
a6 b6 c9


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B =



h1 i1 j1
д1 h2 i2 j2
. . .
. . .
. . .

. . .

д1 h2 i2 j2
д2 h3 j3

f1 h4 i3 j4
f2 д3 h5 i4 j5
. . .

. . .
. . .
. . .

. . .

f2 д3 h5 i4 j5
f3 д4 h6 j6

. . .
. . .
. . .
. . .

. . .

f1 h4 i3 j4
f2 д3 h5 i4 j5
. . .

. . .
. . .
. . .

. . .

f2 д3 h5 i4 j5
f3 д4 h6 j6

f4 h7 i5
f5 д5 h8 i6
. . .

. . .
. . .
. . .

f5 д5 h8 i6
f6 д6 h9


where

a1 = a2 = a3 = −θsnj , f1 = f2 = f3 = (1 − θ )snj
a4 = a5 = a6 = −2θsnN−1, f4 = f5 = f6 = 2(1 − θ )snN−1,

b1 = b3 = b5 = −φrnk , д1 = д3 = д5 = (1 − φ)rnk
b2 = b4 = b6 = −2φrnM−1, д2 = д4 = д6 = 2(1 − θ )rnM−1,
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d1 = d3 = d5 = −2φrn0 , i1 = i3 = i5 = 2(1 − θ )rn0 ,
d2 = d4 = d6 = −φrnk , i2 = i4 = i6 = (1 − φ)rnk ,

e1 = e2 = e3 = −2θsn0 , j1 = j2 = j3 = 2(1 − θ )sn0 ,
e4 = e5 = e6 = −θsnj , j4 = j5 = j6 = (1 − θ )snj ,

c1 = 1 + 2φrn0 + 2θs
n
0 −

φrn0 (x1 − x−1)α2,3
α1,3

−
θsn0 (z1 − z−1)α2,1

α1,1
,

c2 = 1 + 2φrnk + 2θs
n
0 −

θsn0 (z1 − z−1)α2,1
α1,1

c3 = 1 + 2φrnM−1 + 2θs
n
0 +

φrnM−1 (x1 − x−1)α2,4
α1,4

−
θsn0 (z1 − z−1)α2,1

α1,1

c4 = 1 + 2φrn0 + 2θs
n
j −

φrn0 (x1 − x−1)α2,3
α1,3

,

c5 = 1 + 2φrnk + 2θs
n
j ,

c6 = 1 + 2φrnM−1 + 2θs
n
j +

φrnM−1 (xM − xM−2)α2,4
α1,4

,

c7 = 1 + 2φrn0 + 2θs
n
N−1 −

φrn0 (x1 − x−1)α2,3
α1,3

+
θsnN−1 (zN − zN−2)α2,2

α1,2
,

c8 = 1 + 2φrnk + 2θs
n
N−1 +

θsnN−1 (zN − zN−2)α2,2
α1,2

,

c9 = 1 + 2φrnM−1 + 2θs
n
N−1 +

φrnM−1 (xM − xM−2)α2,4
α1,4

+
θsnN−1 (zN − zN−2)α2,2

α1,2
,
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h1 = 1 + 2(1 − φ)rn0 + 2(1 − θ )sn0 +
(1 − φ)rn0 (x1 − x−1)α2,3

α1,3
+

(1 − θ )sn0 (z1 − z−1)α2,1
α1,1

,

h2 = 1 + 2(1 − φ)rnk + 2(1 − θ )s
n
0 +

(1 − θ )sn0 (z1 − z−1)α2,1
α1,1

,

h3 = 1 + 2(1 − φ)rnM−1 + 2(1 − θ )sn0 −
(1 − φ)rnM−1 (xM − xM−2)α2,4

α1,4
+

(1 − θ )sn0 (z1 − z−1)α2,1
α1,1

,

h4 = 1 + 2(1 − φ)rn0 + 2(1 − θ )snj +
(1 − φ)rn0 (x1 − x−1)α2,3

α1,3
,

h5 = 1 + 2(1 − φ)rnk + 2(1 − θ )s
n
j ,

h6 = 1 + 2(1 − φ)rnM−1 + 2(1 − θ )snj −
(1 − φ)rnM−1 (xM − xM−2)α2,4

α1,4
,

h7 = 1 + 2(1 − φ)rn0 + 2(1 − θ )snN−1 +
(1 − φ)rn0 (x1 − x−1)α2,3

α1,3
−

(1 − θ )snN−1 (zN − zN−2)α2,2
α1,2

,

h8 = 1 + 2(1 − φ)rnk + 2(1 − θ )s
n
N−1 −

(1 − θ )snN−1 (zN − zN−2)α2,2
α1,2

,

h9 = 1 + 2(1 − φ)rnM−1 + 2(1 − θ )snN−1 −
(1 − φ)rnM−1 (xM − xM−2)α2,4

α1,4
−

(1 − θ )snN−1 (zN − zN−2)α2,2
α1,2

.



Appendix C

Coefficients of the Phenomenological
Sintering Law

Here, we give values for the coefficients of Equation 4.5, reproduced from [82]. These are functions
of the dihedral angle φ, which is shown in Figure 4.1, measured in radians.

A0 = 0.014573 + 0.0063822φ + 0.0009983φ2

A1 = −0.092348 − 0.028098φ + 0.016495φ2

A2 = 0.16242 − 0.0062352φ − 0.022826φ2

A3 = 0.5998 + 0.00533φ

A4 = −1.271 + 0.4144φ

A5 =
−48 ln

(
cos φ

2

)
− 12 + 6 cosφ + 14 cos2 φ − 9 cos3 φ + cos5 φ
9(2 + cosφ)2 (1 − cosφ)4

A6 =
3 + cosφ

18(2 + cosφ)(1 + cosφ)

A7 =
2 + cosφ

144(1 + cosφ)2

A8 =
3 sin2 φ

2C2/3
3

A9 = A0 + 0.32A1 + 0.1024A2

A10 =
A1 + 0.64A2

A9
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C0 = −4.069 + 6.557φ + 0.0253φ2

C1 = 26.75 − 42.58φ + 5.986φ2

C2 = −51.01 + 82.12φ − 18.56φ2

C3 =
3
2

(
2 − 3 cosφ + cos3 φ

)
C4 = 3

(
φ − π

6

)
− 2
√
3 cosφ sin

(
φ − π

6

)
C5 = C0 + 0.32C1 + 0.1024C2

C6 =
C1 + 0.64C2

C5

D1 =
1

C1/3
3

D2 = 0.7
2C4 +

(
φ − π

6

) (
4 cos2 φ − 3

)
C3/2
4

D3 = 2
√
2
sin

(
φ − π

6

)
C1/2
4



Appendix D

Computer Implementations in python and
MATLAB of the Solvers for the One- and
Two-DimensionalWave andHelmholtz
Equations

D.1 python Implementation of the Transient Finite Difference Method
for the One-Dimensional Wave Equation

1 from pylab import * # so we know what pi is, etc

2 import scipy.sparse as sp # for using sparse matrix tools

3
4 def finite_diff_implicit(E_old,E_older,x,mu,sig,eps1,h,dt,tsim,starttime,bc):

5 """finite_diff_implicit(E_old,E_older,x,mu,sig,eps1,h_sq,dt,tsim,starttime,bc):

Implicit finite difference solver for iteratively solving the electromagnetic

wave equation over a period of time. Requires solving linear system at each

timestep−−use with caution! This solution method allows the user to choose a
longer timestep than the alternative explicit method below, but may take longer

time.

6
7 Inputs:

8 E_old The electric field at (n−1)st time step. A vector (array) of length N
.

9 E_older The electric field at (n−2)nd time step. A vector (array) of length
N.

10 x The x−coordinate values [m]. A vector (array) of length N.
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11 mu The magnetic permeability at the x−values. A vector (array) of length N.
12 sig The electric conductivity at the x−values. A vector (array) of length N

.

13 eps1 The electric permittivity at the x−values. A vector (array) of length
N.

14 h The differences between x−values [m]. A vector (array) of length N−1.
15 dt The length of the electromagnetic timestep [sec]. A scalar.

16 tsim The length of the simulation [sec]. A scalar.

17 starttime The start time of the simulation [sec], used only for printing the

title of the graph. A scalar.

18 bc The type of boundary condition to use at right−hand endpoint. A string
that takes either of the two values ’pec’ (perfect electric conductor) or

’abs’ (absorbing).

19
20 Outputs:

21 E_new The new electric field−−−that is, the field at the nth timestep
22 E_old The old electric field−−−that is, the field at the (n−s)st timestep
23 eavg The total power dissipated at each point of the system over the course

of processing. A vector (array) of length N.

24
25 """

26
27 mu0=pi*4e−7 # permeability of free space [N/A^2]
28 c=299792458 # speed of light [m/s]

29
30 h_sq = r_[h[0]**2 , h[1:]*h[:−1] , h[−1]**2] # represents h_left * h_right for each

gridpoint (except that the left− and right−hand endpoints are just h_right
and h_left, respectively, squared)

31
32 if bc == ’abs’: # implement absorbing (Neumann) boundary condition at right−hand

endpoint by changing last row of A and last entry of RHS scaling vector of

first older solution

33 q_n = sqrt(h_sq[−1])/(c*dt)
34 A_nn = 1+q_n

35 A_nm = −1
36 elif bc == ’pec’: # implement perfect electric conductor (homogeneous Dirichlet)

condition at right−hand endpoint by changing last row of A
37 A_nn = 1

38 A_nm = 0

39 q_n = 0

40 else: # throw an error if bc is neither of those strings
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41 print "The input variable ’bc’ must be either the string ’abs’ or the string

’pec’"

42 input()

43 import sys

44 sys.exit(1)

45
46 r = 2/(h_sq) + mu*eps1/((c*dt)**2) + mu*mu0*sig*0.5/dt # entries on the main

diagonal of A

47 s = mu*mu0*sig*0.5/dt − mu*eps1/((c*dt)**2) # multiplier for second older solution
48 s = r_[1,s[1:−1],0] # accounting for boundary conditions
49 q = 2*mu*eps1/((c*dt)**2) # multiplier for first older solution

50 q = r_[0,q[1:−1],q_n] # accounting for boundary conditions
51
52 # A = diag(r_[1,r,1]) + diag(r_[1/(x[1]−x[0])**2 , 1/(h[0:−1]*h[0:−1]) , 0],−1) + diag(r_

[0 , 1/(h*h)],1) # the non−sparse version (for testing speed−up)
53 diagonals = [r_[1,r[1:−1],A_nn] , r_[1/h_sq[1:−1] , A_nm] , r_[0 , 1/h_sq[1:−1]] ]
54 A = sp.diags(diagonals,[0,−1,1]).toarray() # make A directly as a sparse matrix
55
56 time=0

57 eavg = 0

58 eavg_old = 0

59 while time < tsim:

60 E_new = linalg.solve(A,np.multiply(s,E_older)+np.multiply(q,E_old))

61 time = time + dt

62 E_older = E_old

63 E_old = E_new

64
65 eavg_new = 0.5*abs(E_new*E_new)

66 eavg = eavg + 0.5*dt*(eavg_new+eavg_old)

67 eavg_old = eavg_new

68
69 # uncomment these lines if we want a plot at each timestep of EM solve (this

could get expensive!)

70 # Plot e−field average in whole cavity
71 #plt.ion()

72 #plt.figure(4)

73 #plt.clf()

74 #plt.plot(100*x,E_new)

75 #plt.xlabel(’Position along domain [cm]’)

76 #plt.title(’E−field Average [V/m]’)
77
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78 return E_new,E_old,eavg

79
80 def finite_diff_explicit(E_old,E_older,x,mu,sig,eps1,h_sq,dt,tsim,starttime,bc):

81 """finite_diff_explicit(E_old,E_older,x,mu,sig,eps1,h_sq,dt,tsim,starttime,bc):

82
83 Explicit finite difference solver for the one−dimensional electromagnetic wave

equation.

84
85 Inputs:

86 E_old The electric field at (n−1)st time step. A vector (array) of length N
.

87 E_older The electric field at (n−2)nd time step. A vector (array) of length
N.

88 x The x−coordinate values [m]. A vector (array) of length N.
89 mu The magnetic permeability at the x−values. A vector (array) of length N.
90 sig The electric conductivity at the x−values. A vector (array) of length N

.

91 eps1 The electric permittivity at the x−values. A vector (array) of length
N.

92 h_sq The squares of the differences between x−values [m]. A vector (array)
of length N−1.

93 dt The length of the electromagnetic timestep [sec]. A scalar.

94 tsim The length of the simulation [sec]. A scalar. In the coupled routine,

this should be equal to one timestep of the HEAT equation.

95 starttime The start time of the simulation [sec], used exclusively for

printing the title of the graph. A scalar.

96 bc The type of boundary condition to use at right−hand endpoint. A string
that takes either of the two values ’pec’ (perfect electric conductor) or

’abs’ (absorbing).

97
98 Outputs:

99 eavg The total power dissipated into each point of the domain over the

course of processing. A vector (array) of length N.

100
101
102 """

103
104 mu0=pi*4e−7 # permeability of free space [N/A^2]
105 c=299792458 # speed of light [m/s]

106
107 a = mu*mu0*sig/(2*dt) + mu*eps1/((c*dt)**2) # for quickly setting r, s, and A
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108 r = −2/(h_sq) + 2*mu*eps1/((c*dt)**2)
109 s = mu*mu0*sig*0.5/dt − mu*eps1/((c*dt)**2)
110 s = r_[0,s[1:−1],0] # multiplier for older e−field vector
111
112 # Implement right−hand boundary condition by setting values of A[n,n] A[n,n−1], and

possibly s[n]

113 if bc == ’abs’: # absorbing (inhomogeneous Neumann) boundary condition

114 A_nn = a[−1]*(1−c*dt/sqrt(h_sq[−1]))
115 A_nm = a[−2]*c*dt/sqrt(h_sq[−1])
116 elif bc == ’pec’: # perfect electric conductor (homogeneous Dirichlet) condition

117 A_nn = 0

118 A_nm = 0

119 else: # throw an error if bc is neither of those strings

120 print "The input variable ’bc’ must be either the string ’abs’ or the string

’pec’"

121 input()

122 import sys

123 sys.exit(1)

124
125 # Create A−matrix
126 maindiag = r_[a[0],r[1:−1],A_nn]
127 lowerdiag = r_[1/h_sq[1:−1],A_nm]
128 upperdiag = r_[0,1/h_sq[1:−1]]
129
130 diagonals = [ maindiag , lowerdiag , upperdiag ]

131 A = sp.diags(diagonals, [0,−1,1]).toarray() # build A as a sparse matrix
132
133 # Initialize and begin solution routine

134 time=0

135 eavg = 0

136 eavg_old = 0

137 while time < tsim:

138 E_new = (1/a)*(multiply(s,E_older)+dot(A,E_old)) # compute the new field

139 time = time + dt # update time

140 E_older = E_old # update older

141 E_old = E_new # update old

142
143 eavg_new = 0.5*abs(E_new*E_new) # compute new dissipated power as root mean

square of electric field

144 eavg = eavg + 0.5*dt*(eavg_new+eavg_old) # numerical integration (trapezoid

rule) of dissipated power
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145 eavg_old = eavg_new # update eavg_old term

146
147 return E_new,E_old,eavg

D.2 MATLAB Implementation of the Transient Finite Difference Method
for the One-Dimensional Wave Equation

1 function [E_old,E_older]=emsolve1_fd(E_old,E_older,x,mu,sig,eps1,h,dt,tsim,starttime)

2 mu0=pi*4e−7; %[N/A^2] permeability of free space
3 c=299792458; % [m/s] speed of light

4
5 h=h(2:end);

6 eps1=eps1(2:end−1); mu=mu(2:end−1); sig=sig(2:end−1);
7
8 r=(−4*c*c*dt*dt−2*mu.*eps1.*h.*h−c*c*dt*mu0.*mu.*sig.*h.*h)./(2*c*c*dt*dt*h.*h);
9 s=(2*mu.*eps1−c*c*dt*mu0*mu.*sig)./(2*c*c*dt*dt); s=[1;s’;1];

10 q=2*mu.*eps1./(c*c*dt*dt); q=[0;q’;0];

11
12 A=diag([1,r,1])+...

13 diag([1/(x(2)−x(1))^2 , 1./(h(1:end−1).*h(1:end−1)) , 0],−1)+...
14 diag([0 , 1./(h.*h)],1);

15 A=sparse(A);

16 time=0;

17 while time < tsim

18 % Plot current field distribution

19 % figure(1);

20 % plot(100*x,E_old);

21 % title(strcat(’Field distribution at t=’,num2str(starttime+time,’%11.3g’),’ seconds’));

22 % xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m]’);

23
24 E_new=A\(s.*E_older−q.*E_old);
25 time=time+dt;

26 E_older = E_old;

27 E_old = E_new;

28 end

29
30 end

D.3 MATLAB Implementation of the Transient Finite Element Method for
the One-Dimensional Wave Equation
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1 %function emag1D()

2 % function emag1D()

3 %

4 % Performs transient FEM analysis of the electric field for a

5 % one−dimensional domain with a constant power source at the left−hand
6 % side. See problem description in PDF file of same directory.

7 % Uses a constant time step and uniform node spacing.

8 %

9 % Outputs: Saves figure at the end of process for embedding in PDF writeup.

10
11 % Physical setup

12 L=0.248; %length of domain [m]

13 P=1; % [W] power supplied by magnetron at left−hand endpoint
14 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves

15 beta=pi/L; % [1/m] propagation constant

16
17 % Nodes and spacing

18 n=50; % number of (uniformly spaced) spatial nodes

19 x=linspace(0,L,n); %vector of x−values
20 h=x(2:end)−x(1:n−1); %h−values (as spacing is uniform, h is a multiple of ones vector)
21
22 % Time scenario

23 dt=0.1; % length of time step [sec]

24 time=0; % starting time [sec]

25 tsim=60; % time for which to perform the simulation [sec]

26
27 % Physical constants

28 mu0=pi*4e−7; %[N/A^2] permeability of free space
29 c=299792458; % [m/s] speed of light

30
31 % Load materials

32 mu_wat=1; % (unitless) relative permeability of water

33 sigma_wat=0.055; % [S/m] electrical conductivity of water

34 sigma_wat=345.66; %turn water into beef!

35 eps1_wat=75; % (unitless) relative permittivity of water

36 eps1_wat=33.6; % turn water into beef!

37 mu_air=1; % (unitless) relative permeability of air

38 sigma_air=0; % [S/m] electrical conductivity of air

39 eps1_air=1; % (unitless) relative permittivity of air

40
41 % Simulation values
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42 theta=0.5; % weighting value−−for the current time step, let T(t) be the
43 %weighted combination T(t) = theta*T(t_{k+1}) + (1−theta)*T(t_k)
44
45 % Elemental values of physical properties

46 lim1=floor((n−1)/3); lim2=ceil(2*(n−1)/3); % limits for L/3 and 2L/3
47 mu=[mu_air*ones(lim1,1); mu_wat*ones(lim2−lim1,1); mu_air*ones((n−1)−lim2,1)]’;
48 sigma=[sigma_air*ones(lim1,1); sigma_wat*ones(lim2−lim1,1); sigma_air*ones((n−1)−lim2,1)

]’;

49 eps1=[eps1_air*ones(lim1,1); eps1_wat*ones(lim2−lim1,1); eps1_air*ones((n−1)−lim2,1)]’;
50
51 % Set up left−hand side and right−hand side matrices, boundary condition, and forcing

vector

52 parterm=((mu0.*sigma)./(2*dt)+eps1./((c*dt)^2)); % a helpful term

53 a2n=−theta/(mu(n−1)*h(n−1))−1/(2*c*mu(n−1)*dt); %a^2_n
54 A1=−theta.*(1./(h(1:n−1).*mu(1:n−1)))+parterm(1:n−1).*(h(1:n−1)./3); % subdiagonal
55 A2=[1, −theta.*(1./(mu(1:n−2).*h(1:n−2))+1./(mu(2:n−1).*h(2:n−1))) + ...
56 parterm(1:n−2).*(h(1:n−2)./3)+parterm(2:n−1).*(h(2:n−1)./3), a2n]; % diagonal
57 A3=[0, theta.*(1./(h(2:n−1).*mu(2:n−1)))+parterm(2:n−1).*(h(2:n−1)./3)]; %superdiagonal
58 A=diag(A1,−1)+diag(A2,0)+diag(A3,1); %LHS
59
60 term=(2.*eps1.*h)./(3*(c*dt)^2); % a helpful term

61 b2n=−(theta−1)/(mu(n−1)*h(n−1))+term(n−1); %b^2_n
62 B1=(theta−1)./(h(1:n−1).*mu(1:n−1))+term(1:n−1); %subdiagonal
63 B2=[0, (1−theta).*(1./(mu(1:n−2).*h(1:n−2))+1./(mu(2:n−1).*h(2:n−1)))+ ...
64 term(1:n−2)+term(2:n−1), b2n]; %diagonal
65 B3=[0, (theta−1)./(mu(2:n−1).*h(2:n−1))+term(2:n−1)]; % superdiagonal
66 B=diag(B1,−1)+diag(B2,0)+diag(B3,1); %RHS1
67
68 c2n=parterm(n−1)*h(n−1)/3−1/(2*c*mu(n−1)*dt);
69 C1=parterm(1:n−1).*h(1:n−1)./3; % subdiagonal
70 C2=[0, parterm(1:n−2).*h(1:n−2).*3+parterm(2:n−1).*h(2:n−1).*3 , c2n]; % diagonal
71 C3=[0, parterm(2:n−1).*h(2:n−1).*3]; % superdiagonal
72 C=diag(C1,−1)+diag(C2,0)+diag(C3,1); %RHS2
73
74 bc=[(2/L)*sqrt(2*P*(omega*mu0/beta)); zeros(n−1,1)]; %boundary condition vector
75
76 % Set up and perform the transient analysis

77 Tkm=zeros(n,1); %initial field distribution T(t_1)−−will represent T(t_{k−1}) in the loop
78 Tk=Tkm; % field distribution at first time step T(t_2)−−will represent T(t_k) in the loop
79 time=time+dt; % we start by plotting T(t_2), so time is already at second increment

80 while time<tsim
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81 %Plot current field distribution

82 figure(1); clf; hold on

83 plot(100*x,Tk);

84 title(strcat(’Field distribution at t=’,num2str(time,’%11.3g’),’ seconds’));

85 xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m]’);

86
87 %Update time = t_{k+1}

88 time=time+dt;

89
90 %Solve for next field distribution

91 rhs=B*Tk+C*Tkm+bc; % sets up RHS

92 Tkp=A\rhs; % calcaultes T(t_{k+1})

93
94 %Update T(t_k), T(t_{k−1})
95 Tkm=Tk; %T(t_{k−1}) <−− T(t_k)
96 Tk=Tkp; % T(t_k) <−− T(t_{k+1})
97 end %while time<tsim

98
99 % Plot final field distribution

100 figure(1); clf; hold on

101 plot(x*100,Tk);

102 title(strcat(’Field distribution at t=’,num2str(time,’%11.3g’),’ seconds’));

103 xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m ]’);

104 saveas(1,’End_fig.jpg’,’jpg’);

105
106 %end %function

D.4 python Implementation of the Transient Finite Difference Method
for the Two-Dimensional Wave Equation

1 import collections

2 from pylab import *

3 import matplotlib.pyplot as plt

4 import scipy.sparse as sp

5
6 def finite_diff(E_old,E_older,hx,hz,dt,tsim,theta,phi,L,Z,X,sig,eps,mu):

7 """finite_diff(E_old,E_older,hx,hz,dt,tsim,p,vp,theta,phi,E_inc,L): Finite

difference solver for iteratively solving the nondimensionalized

electromagnetic wave equation over a period of time. Requires solving linear

system at each timestep. Method is a theta−method where if theta=phi=1, method
is fully implicit, if theta=phi=0 then method is fully explicit, and if theta=
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phi=0.5, then method is C−N−like. Uses trapezoidal rule to approximate
integral for eavg.

8
9 Inputs:

10 E_old The electric field at nth time step. A vector (array) of length (N+1)

*(M+1).

11 E_older The electric field at (n−1)st time step. A vector (array) of length
(N+1)*(M+1).

12 hx The differences between unitless x−values. A vector (array) of length M
+1.

13 hz The differences between unitless z−values. A vector (array) of length N
+1.

14 dt The length of the electromagnetic timestep. A unitless scalar.

15 tsim The length of the simulation. A unitless scalar.

16 theta The parameter for the theta−method in the z−direction. A scalar that
varies from 0 to 1. Take theta = 0 for a fully explicit method, theta = 1

for a fully implicit method, and theta = 0.5 for a Crank−Nicolson
method.

17 phi The parameter for the theta−method in the x−direction. A scalar that
varies from 0 to 1. Take phi = 0 for a fully explicit method, phi = 1 for

a fully implicit method, and phi = 0.5 for a Crank−Nicolson method.
18 E_inc The value of the incident field at the port [V/m]. Used for computing

eavg. A scalar.

19 L The length of the domain in the z−direction [m]. Used for computing eavg.
A scalar.

20
21 Outputs:

22 E_new The nondimensional e−field values at (n+1)st timestep. A vector (
array) of length (N+1)*(M+1).

23 E_old The nondimensional e−field values at (n+1)st timestep. A vector (
array) of length (N+1)*(M+1).

24 eavg The average dissipated power [V/m] over the time interval of the

simulation. A vector (array) of length (N+1)*(M+1).

25
26 """

27
28 # Useful parameters

29 c = 299792458.0 # speed of light [m/s]

30 hx_sq = hx[1:]*hx[:−1]
31 hz_sq = hz[1:]*hz[:−1]
32 s = dt**2/(hz_sq)
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33 r = dt**2/(hx_sq)

34 N = np.size(s)+1

35 M = np.size(r)+1

36
37 A = np.zeros(((N+1)*(M+1),(N+1)*(M+1)))

38 B = np.zeros(((N+1)*(M+1),(N+1)*(M+1)))

39 v = np.array([0]*(N+1)*(M+1))

40 v[−1−M:]=−1.0/(c*dt*dt)
41
42 for k in range(0,M+1):

43 A[k,k]=1

44 A[(N)*(M+1)+k,(N)*(M+1)+k]=1

45 B[k,k]=1

46
47 for j in range(1,N):

48 A[j*(M+1),j*(M+1)]=1

49 for k in range(1,M):

50 #print "j="+str(j)+", k="+str(k)

51 A[j*(M+1)+k,j*(M+1)+k]=2*theta*s[j−1]+2*phi*r[k−1]+mu[j,k]*eps[j,k
]+0.5*mu[j,k]*sig[j,k]*dt

52 B[j*(M+1)+k,j*(M+1)+k]=−2*(1−theta)*s[j−1]−2*(1−phi)*r[k−1]+2*mu[j,
k]*eps[j,k]

53
54 A[j*(M+1)+k,(j−1)*(M+1)+k]=−theta*s[j−1]
55 B[j*(M+1)+k,(j−1)*(M+1)+k]=(1−theta)*s[j−1]
56
57 A[j*(M+1)+k,(j+1)*(M+1)+k]=−theta*s[j−1]
58 B[j*(M+1)+k,(j+1)*(M+1)+k]=(1−theta)*s[j−1]
59
60 A[j*(M+1)+k,j*(M+1)+k−1]=−phi*r[k−1]
61 B[j*(M+1)+k,j*(M+1)+k−1]=(1−phi)*r[k−1]
62
63 A[j*(M+1)+k,j*(M+1)+k+1]=−phi*r[k−1]
64 B[j*(M+1)+k,j*(M+1)+k+1]=(1−phi)*r[k−1]
65
66 v[j*(M+1)+k] = −1.0*mu[j,k]*eps[j,k]+0.5*mu[j,k]*sig[j,k]*dt
67
68 A[j*(M+1)+M,j*(M+1)+M]=1

69
70 time=0

71 eavg = 0
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72 eavg_old = 0

73 while time < tsim:

74 # Solve equation A*E_new = B*E_old + v*E_older

75
76 E_new = linalg.solve(A,np.dot(B,E_old)+v*E_older)

77 time = time + dt

78 E_older = E_old

79 E_old = E_new

80
81 # Numerical integration (using trapezoidal rule) to compute eavg over

solution interval

82 eavg_new = 0.5*abs(E_new*E_new)

83 eavg = eavg + 0.5*dt*(eavg_new+eavg_old)

84 eavg_old = eavg_new

85
86 # uncomment these lines if we want a plot at each timestep of EM solve (this

could get expensive!)

87 # Plot e−field average in whole cavity
88 #plt.ion()

89 #plt.figure(4)

90 #plt.clf()

91 #plt.contourf(100*Z,100*X,np.flipud(np.transpose(np.reshape(E_new,(N+1,M+1)))

),100)

92 #plt.colorbar()

93 #plt.xlabel(’Position along domain [cm]’)

94 #plt.ylabel(’Position along domain [cm]’)

95 #plt.title(’E−field Average [V/m], ’+str(time)+’ sec’)
96 #plt.draw()

97 return E_new,E_old,eavg

98
99

100 def helmsolve(hx,hz,K,E_inc):

101 mu0=pi*4e−7 # permeability of free space [N/A^2]
102
103 hx_sq = 1/(hx[1:]*hx[:−1])
104 hz_sq = 1/(hz[1:]*hz[:−1])
105
106 M = np.size(hx_sq)+2

107 N = np.size(hz_sq)+2

108
109 A = np.zeros((N*M,N*M))
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110
111 #print "number of xnodes is "+str(M)

112 #print "number of znodes is "+str(N)

113
114 #print "size of A is"

115 #print np.shape(A)

116
117 for k in range (0,M):

118 A[k,k] = 1.0

119 A[(N−1)*M+k,(N−1)*M+k] = 1.0
120 #print "Changed the values of A["+str(k)+","+str(k)+"] and A["+str((N−1)*M+k

)+","+str((N−1)*M+k)+"]"
121
122 for j in range (1,N−1):
123 #print "j="+str(j)

124 A[j*M,j*M]=1.0

125 A[(j+1)*M−1,(j+1)*M−1]=1.0
126 #print "Changed the values of A["+str(j*M)+","+str(j*M)+"] and A["+str((j+1)*

M−1)+","+str((j+1)*M−1)+"]"
127 for k in range (1,M−1):
128 #print "k="+str(k)

129 A[j*M+k,j*M+k]=K[k−1,j−1]−2*hx_sq[k−1]−2*hz_sq[j−1]
130 A[j*M+k,(j−1)*M+k] = hz_sq[j−1]
131 A[j*M+k,(j+1)*M+k] = hz_sq[j−1]
132 A[j*M+k,j*M+k+1] = hx_sq[k−1]
133 A[j*M+k,j*M+k−1] = hx_sq[k−1]
134 #print "Changed the values of A on row "+str(j*M+k)

135
136 b = np.array([0.0]*N*M)

137 b[:M]=E_inc

138
139 E = linalg.solve(A,b)

140
141 return 0.5*E*E

D.5 MATLAB Implementation of the Transient Finite Difference Method
for the Two-Dimensional Wave Equation

1 function [E_old,E_older]=emsolve2_fd(E_old,E_older,X,Y,Nx,Ny,mu,sigma,eps1,hx,hy,dt,tsim,

starttime)

2 mu0=pi*4e−7; %[N/A^2] permeability of free space
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3 c=299792458; % [m/s] speed of light

4
5 a_up=[zeros(1,Nx), repmat([0,(1./(hx(2:end).^2)),0],[1 Ny−2]), zeros(1,Nx−1)];
6 a_lo=[zeros(1,Nx−1), repmat([0,(1./(hx(1:end−1).^2)),0],[1 Ny−2]), zeros(1,Nx)];
7
8 b_up=[zeros(1,Nx), reshape([zeros(size(hy(2:end)));repmat((1./(hy(2:end)).^2),[Nx−2,1]);

zeros(size(hy(2:end)))],1,[]) ];

9 b_lo=[reshape([zeros(size(hy(1:end−1)));repmat((1./(hy(1:end−1)).^2),[Nx−2,1]);zeros(size
(hy(1:end−1)))],1,[]), zeros(1,Nx) ];

10
11 q_int=repmat([0,(−2./(hx(2:end)).^2),0],[1 Ny−2])...
12 +reshape([zeros(size(hy(2:end)));repmat(−2./(hy(2:end)).^2,[Nx−2,1]);zeros(size(hy(2:

end)))],1,[])...

13 −(reshape(mu(2:end−1,:)’,1,[])).*(reshape(eps1(2:end−1,:)’,1,[]))/(c*c*dt*dt)...
14 −(reshape(mu(2:end−1,:)’,1,[])).*(reshape(sigma(2:end−1,:)’,1,[]))*mu0/(2*dt);
15
16 q=[ones(1,Nx),q_int,ones(1,Nx)];

17 q((1:Ny−1)*Nx+1)=1; % electric field is fixed at pow on input port side
18 q((1:Ny)*Nx)=1; % electric field is fixed at 0 on output port side

19
20 A=diag(q,0) + diag(a_up,1) + diag(a_lo,−1) + diag(b_up,Nx) + diag(b_lo,−Nx);
21 A=sparse(A);

22
23 t=−2*(reshape(mu’,1,[])).*(reshape(eps1’,1,[]))./(c*c*dt*dt);
24 s=−0.5*t−(reshape(mu’,1,[])).*(reshape(sigma’,1,[]))*mu0/(2*dt);
25
26 s(1:Nx)=0; s(end−Nx:end)=0; % electric field fixed at 0 on top and bottom
27 s((1:Ny−1)*Nx+1)=0; % electric field is fixed at pow on input port side
28 s((1:Ny)*Nx)=0; % electric field is fixed at 0 on output port side

29 t(1:Nx)=1; t(end−Nx:end)=1; % electric field fixed at 0 on top and bottom
30 t((1:Ny−1)*Nx+1)=1; % electric field is fixed at pow on input port side
31 t((1:Ny)*Nx)=1; % electric field is fixed at 0 on output port side

32
33 time=0;

34 while time <= tsim

35 % Plot current field distribution

36 % figure(1); hold off;

37 % surf(100*X,flipud(100*Y),reshape(E_old,Nx,Ny)’); view(0,90); colorbar;

38 % title(strcat(’Field distribution at t=’,num2str(starttime+time,’%11.3g’),’ seconds’));

39 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Electric field
intensity [V/m]’);
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40
41 E_new=A\(s’.*E_older+t’.*E_old);

42
43 time=time+dt;

44 E_older = E_old;

45 E_old = E_new;

46 end

47
48 end

D.6 MATLAB Implementation of the Transient Finite Element Method for
the Two-Dimensional Wave Equation

1 function T=jin2D(nodefile,elfile,bc1file,bc2file)

2 % function T=jin2D(nodefile,elfile,bc1file,bc2file)

3 %

4 % Performs FEM analysis of the 2D electromagnetic scenario decribed in Jin,

5 % Chapter 4. Solves the differential equation:

6 %

7 % −d/dx(alpha_x * du/dx) − d/dy(alpha_y * du/dy) + beta*u = f,
8 %

9 % Where a_x, a_y, and b are known parameters associated with the physical

10 % properties of the domain, and f is a known source or excitation function.

11 % The standard two−dimensional Laplace, Poisson, and Helmholtz equations
12 % are special forms of this equation.

13 %

14 % This solver takes a list of elements and nodes for a given domain as

15 % inputs, and provides the solution on that domain.

16 %

17 % Inputs: nodefile − name of file containing node coordinates. Should be
18 % formatted as follows (without the header):

19 %

20 % (x−coord) (y−coord)
21 % 0 0

22 % . .

23 % . .

24 % . .

25 %

26 % elfile − name of file containing element definitions.
27 % Contains information about alpha_x, alpha_y, beta,

28 % and f at each element as well. Should be formatted
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29 % as follows (without the header):

30 %

31 % (node1) (node2) (node3) (ax) (ay) (beta) (f)

32 % 1 2 5 1 3 1 0

33 % . . . . . . .

34 % . . . . . . .

35 % . . . . . . .

36 %

37 % bcfile1 − name of file containing the nodes on the
38 % Dirichlet boundary and their values. Should be

39 % formatted as follows:

40 %

41 % (node number) (value)

42 % 1 118

43 % . .

44 % . .

45 % . .

46 %

47 % bcfile2 − name of file containing the edges on the
48 % third−kind boundary. Should be formatted as follows:
49 %

50 % (node1) (node2) (g) (q)

51 % 1 2 5 1

52 % . . . .

53 % . . . .

54 % . . . .

55
56 % Read in elements, nodes, and boundary conditions to matrices

57
58 N=dlmread(nodefile); % nodes

59 nn=length(N(:,1)); %number of nodes

60 E=dlmread(elfile); % elements

61 el=length(E(:,1)); %number of elements

62 % E(:,5)=ones(size(E(:,5))); % alpha_x

63 % E(:,6)=E(:,5); % alpha_y

64 % E(:,7)=E(:,5); % beta

65 % E(:,8)=E(:,5); % f

66
67 % Assemble the LHS matrix and RHS vector

68
69 s=zeros(1,3); x=s; y=s; b=s; c=s; % Initialize the vectors that store local



APPENDIX D. COMPUTER IMPLEMENTATIONS IN PYTHON AND MATLAB OF THE 1D AND 2D
WAVE AND HELMHOLTZ EQUATION SOLVERS 258

70 % node numbers and coordinate values

71 K=zeros(nn,nn); % Initialize the LHS matrix

72 rhs=zeros(size(N(:,1)));

73 for k=1:el % for each element

74 % Get the alpha_x, alpha_y, beta, and f values for the current element

75 alpha_x=E(k,4); alpha_y=E(k,5); beta=E(k,6); f=E(k,7);

76
77 % Get the node numbers and coordinates for the current element

78 for m=1:3

79 s(m)=E(k,m); % numbers of the nodes in the order they appear (should be ccw in the list

)

80 x(m)=N(s(m),1); % x−coordinates of nodes in the order they appear
81 y(m)=N(s(m),2); % y−coordinates of nodes in the order they appear
82 end % for m=1:3

83
84 % Calculate the area of the element and all b and c coefficients (a not necessary)

85 Ar=polyarea(x,y); % area of the current element

86 b(1)=y(2)−y(3); b(2)=y(3)−y(1); b(3)=y(1)−y(2); % b−coefficients
87 c(1)=−(x(2)−x(3)); c(2)=−(x(3)−x(1)); c(3)=−(x(1)−x(2)); % c−coefficients
88
89 % Populate the LHS matrix

90 for i=1:3

91 for j=1:3

92 if i==j, delta=1; else delta=0; end

93
94 K(s(i),s(j))=K(s(i),s(j))+(1/(4*Ar))*(alpha_x*b(i)*b(j)+alpha_y*c(i)*c(j)) + ...

95 (Ar/12)*beta*(1+delta);

96 end % for j=1:3

97
98 rhs(s(i))=rhs(s(i))+Ar*f/3;

99
100 end % for i=1:3

101 end % for k=1:el

102
103 % Boundary conditions and solving

104
105 if ~isempty(bc2file)

106 % Impose the Third−kind condition
107 BC2=dlmread(bc2file); % Third−kind boundary
108 s=zeros(1,2); % Initialize the vector that stores local node numbers

109 for k=1:length(BC2(:,1)) % for each edge on the boundary
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110 s(1)=BC2(k,1); s(2)=BC2(k,2); % get universal node numbers

111 g=BC2(k,3); q=BC2(k,4); % get gamma and q values

112 l=sqrt((N(s(1),1)−N(s(2),1))^2+(N(s(1),2)−N(s(2),2))^2); % get length of segment
113 for i=1:2

114 for j=1:2

115 if i==j, delta=1; else delta=0; end

116 K(s(i),s(j))=K(s(i),s(j))+g*l*(1+delta)/6; % modify K at the two nodes

117 end % for j=1:2

118 rhs(s(i))=rhs(s(i))+q*l; % modify rhs

119 end % for i=1:2

120 end % for k=1:length(BC2(:,1))

121 end % if ~isempty(bcfile2)

122
123 if ~isempty(bc1file)

124 % Impose the Dirichlet boundary condition

125 BC1=dlmread(bc1file);

126 for i=1:length(BC1(:,1))

127 nn=BC1(i,2);

128 rhs=rhs−K(:,nn)*BC1(i,3);
129 rhs(j)=[];

130 K(:,j)=[]; K(j,:)=[];

131 end % for i=1:length(BC1(:,1))

132
133 % Solve the system

134 T_small=K\rhs;

135
136 % Clean up the solution (re−insert the values on the Dirichlet boundary)
137 flag=max(BC1(:,3))+10; % a flag that we know is not one of the boundary values

138 T=flag*ones(size(N(:,1))); % temporarily set all T entries to the flag

139
140 T(BC1(i,2))=BC1(i,3); % replace the flags with the values on the Dirichlet

141 % boundary in those positions

142 T(T==flag)=T_small; % use the remaining flags put the values calculated

143 % in the matrix where they belong

144 else

145 % No Dirichlet condition to impose, just solve the system

146 T=K\rhs;

147 end % if ~isempty(bc1file)

148
149 end % function
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MATLAB Test: Equi-Hz Fields for the Parallel Plate Waveguide with Dielectric Inclusion

1 function []=parallelplate()

2
3 lambda=0.10; % wavelgnth [m]

4 objx=0.05; % length of the domain (x−direction) [m]
5 hml=1; % how many wavelengths the artificial boundary is from the inclusion

6 H=(0:0.05:0.35)*lambda; % h−values to use in generating the graph on p. 110 of Jin
7
8 mgx=0:0.025:2*hml*lambda+0.05; % domain in x−direction
9 mgy=0:0.005:0.035; % domain in y−direction

10
11 %% eps2=4

12
13 eps2=4;

14
15 % For R,T plots

16 Re1=zeros(size(H));

17 Te1=zeros(size(H));

18 for j=1:length(H)

19 h=H(j);

20 [R,T,Hz,p,t]=findRT(h,eps2,lambda,objx,hml);

21 Re1(j)=abs(R);

22 Te1(j)=abs(T);

23 end

24
25 % For equi−Hz contour
26 h=0.0175;

27 [RHz1,THz1,Hz1,p1,t1]=findRT(h,eps2,lambda,objx,hml);

28
29 %% eps2=4−i
30
31 eps2=4−1j;
32
33 % For R,T plots

34 Re2=zeros(size(H));

35 Te2=zeros(size(H));

36 for j=1:length(H)

37 h=H(j);

38 [R,T,Hz,p,t]=findRT(h,eps2,lambda,objx,hml);

39 Re2(j)=abs(R);
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40 Te2(j)=abs(T);

41 end

42
43 % For equi−Hz contour
44 h=0.0175;

45 [RHz2,THz2,Hz2,p2,t2]=findRT(h,eps2,lambda,objx,hml);

46
47 %% eps2=4−10i
48
49 eps2=4−1j*10;
50
51 % For R,T plots

52 Re3=zeros(size(H));

53 Te3=zeros(size(H));

54 for j=1:length(H)

55 h=H(j);

56 [R,T,Hz,p,t]=findRT(h,eps2,lambda,objx,hml);

57 Re3(j)=abs(R);

58 Te3(j)=abs(T);

59 end

60
61 % For equi−Hz contour
62 h=0.0175;

63 [RHz3,THz3,Hz3,p3,t3]=findRT(h,eps2,lambda,objx,hml);

64
65
66 %% Plotting equi−Hz contours
67
68 figure(1); clf; hold on;

69 subplot(6,1,1),

70 F=TriScatteredInterp(p1(:,1),p1(:,2),real(Hz1));

71 [xq,yq]=meshgrid(mgx,mgy);

72 vq = F(xq,yq);

73 contour(xq,yq,vq,15);

74 % mesh(xq,yq,vq); hold on; plot3(p1(:,1),p1(:,2),real(Hz1),’o’); hold off;

75 % trisurf(t1(:,1:3),p1(:,1),p1(:,2),real(Hz1),’facecolor’,’interp’);

76 view(2);

77 set(gca,’plotboxaspectratio’,[16 2 1]);

78 title(’Real Part, \epsilon=4.0−0i’);
79 subplot(6,1,2),

80 % trisurf(t1(:,1:3),p1(:,1),p1(:,2),imag(Hz1),’facecolor’,’interp’);
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81 F=TriScatteredInterp(p1(:,1),p1(:,2),imag(Hz1));

82 [xq,yq]=meshgrid(mgx,mgy);

83 vq = F(xq,yq);

84 contour(xq,yq,vq,15);

85 title(’Imaginary Part, \epsilon=4.0−0i’);
86 set(gca,’plotboxaspectratio’,[16 2 1]);

87 view(2);

88 subplot(6,1,3),

89 F=TriScatteredInterp(p2(:,1),p2(:,2),real(Hz2));

90 [xq,yq]=meshgrid(mgx,mgy);

91 vq = F(xq,yq);

92 contour(xq,yq,vq,15);

93 % trisurf(t2(:,1:3),p2(:,1),p2(:,2),real(Hz2),’facecolor’,’interp’);

94 set(gca,’plotboxaspectratio’,[16 2 1]);

95 title(’Real Part, \epsilon=4.0−1i’);
96 view(2);

97 subplot(6,1,4),

98 F=TriScatteredInterp(p2(:,1),p2(:,2),imag(Hz2));

99 [xq,yq]=meshgrid(mgx,mgy);

100 vq = F(xq,yq);

101 contour(xq,yq,vq,15);

102 % trisurf(t2(:,1:3),p2(:,1),p2(:,2),imag(Hz2),’facecolor’,’interp’);

103 set(gca,’plotboxaspectratio’,[16 2 1]);

104 title(’Imaginary Part, \epsilon=4.0−1i’);
105 view(2);

106 subplot(6,1,5),

107 F=TriScatteredInterp(p3(:,1),p3(:,2),real(Hz3));

108 [xq,yq]=meshgrid(mgx,mgy);

109 vq = F(xq,yq);

110 contour(xq,yq,vq,15);

111 % trisurf(t3(:,1:3),p3(:,1),p3(:,2),real(Hz3),’facecolor’,’interp’);

112 set(gca,’plotboxaspectratio’,[16 2 1]);

113 title(’Real Part, \epsilon=4.0−10i’);
114 view(2);

115 subplot(6,1,6),

116 F=TriScatteredInterp(p3(:,1),p3(:,2),imag(Hz3));

117 [xq,yq]=meshgrid(mgx,mgy);

118 vq = F(xq,yq);

119 contour(xq,yq,vq,15);

120 % trisurf(t3(:,1:3),p3(:,1),p3(:,2),imag(Hz3),’facecolor’,’interp’);

121 set(gca,’plotboxaspectratio’,[16 2 1]);
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122 title(’Imaginary Part, \epsilon=4.0−10i’);
123 view(2);

124
125 %% Plots for SIAM Cover Photo

126
127 figure(4); clf; hold on;

128 F=TriScatteredInterp(p1(:,1),p1(:,2),real(Hz1));

129 [xq,yq]=meshgrid(mgx,mgy);

130 vq = F(xq,yq);

131 contour(xq,yq,vq,15);

132 mesh(xq,yq,vq); hold on; plot3(p1(:,1),p1(:,2),real(Hz1),’o’); hold off;

133 trisurf(t1(:,1:3),p1(:,1),p1(:,2),real(Hz1),’facecolor’,’interp’);

134 set(gca,’plotboxaspectratio’,[16 2 1]);

135 title(’Real Part, \epsilon=4.0−0i’);
136
137
138 %% Plotting reflection and transmission

139 H=H/lambda;

140
141 figure(2); clf; hold on; grid on;

142 plot(H,Re1,’k−’,H,Re2,’b−−’,H,Re3,’r−.’);
143 xlabel(’h/\lambda’); ylabel(’|R|’);

144 legend(’\epsilon = 4 − 0i’,’\epsilon = 4 − 1i’,’\epsilon = 4 − 10i’,’Location’,’NorthWest
’);

145
146 figure(3); clf; hold on; grid on;

147 plot(H,Te1,’k−’,H,Te2,’b−−’,H,Te3,’r−.’);
148 xlabel(’h/\lambda’); ylabel(’|T|’);

149 legend(’\epsilon = 4 − 0i’,’\epsilon = 4 − 1i’,’\epsilon = 4 − 10i’,’Location’,’SouthWest
’);

150
151 end

152
153 function [R,T,Hz,p,t]=findRT(objy,eps2,lambda,objx,hml)

154 % Solves the problem described from Page 105 of Jin: solves for the

155 % electric and magnetic fields near a discontinuity in a parallel−plate
156 % waveguide.

157
158 %% Initializing −− problem setup
159
160 % Delete old data files
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161
162 delete ’*.dat’

163
164 % Physical constants

165
166 mu0=pi*4e−7; %[N/A^2] permeability of free space
167 eps0=8.854e−12; %[F/m] permittivity of free space
168 c=299792458; % [m/s] speed of light in a vacuum

169
170 %lambda=0.1; % [cm] wavelength

171 omega=2*pi*c/lambda; % [Hz] angular frequency of microwaves

172 k0=omega*sqrt(eps0*mu0);

173 H0=10; % magnitude of incidence field

174
175 % Dielectric properties and coefficient values

176 mu1=1; % (unitless) relative permeability of air

177 sigma1=0; % [S/m] electrical conductivity of air

178 eps11=1; % (unitless) relative dielectric constant of air. See Wikipedia

179 % article: http://en.wikipedia.org/wiki/Relative_permittivity

180 tan1=0; % (unitless) loss tangent of air. See:

181 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

182 % substrate_tables/tablelosstan.htm

183 eps12=(tan1*(omega*eps11)−sigma1)/omega; % (unitless) relative loss factor of air
184 eps1=eps11+1j*eps12;

185
186 mu2=2−0.1*1j;
187
188 ax1=1/eps1; ay1=1/eps1; beta1=−k0^2*mu1; f=0;
189 ax2=1/eps2; ay2=1/eps2; beta2=−k0^2*mu2;
190
191 % Geometrical setup

192
193 %objx=0.05; % [cm] object length (x−dir)
194 domx=2*hml*lambda+objx;

195 domy=0.035;

196
197 % Filenames for node and element lists

198
199 nodefile=’n.dat’;

200 elfile=’e.dat’;

201 bc2file=’bc2.dat’;
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202
203 %% Meshing and saving lists

204
205 % Meshing

206
207 node = [0,0;domx,0;domx,domy;0,domy]; % coordinates of corners of domain (to use in mesh2d)

208 hdata.fun = @hfun; % function specifying size of mesh (to be used in mesh2d)

209 hdata.args={lambda,objx,objy,hml}; % arguments for hfun in addition to x,y (to use in

mesh2d)

210 %options.mlim=0.02; % The convergence tolerance. The maximum percentage change in edge

211 % length per iteration must be less than mlim

212 %options.maxit=20; % The maximum allowable number of iterations.

213 %options.dhmax=0.30; % The maximum allowable (relative) gradient in the size function

214 options.output=false; % suppresses output for mesh generation

215
216 [p,t] = mesh2d(node,[],hdata,options); % generates mesh of domain

217
218 % Element−varying properties
219
220 p(:,3)=0; % flag indicating node is outside dielectric rod

221 chgind=intersect(intersect(find(p(:,1)>=hml*lambda),...

222 find(p(:,1)<=hml*lambda+objx)),find(p(:,2)<=objy)); % indices of nodes in the rod

223 p(chgind,3)=1; % flag indicating node is inside dielectric rod

224
225 eltsin=intersect(intersect(find(p(t(:,1),3)==1),find(p(t(:,2),3)==1)),...

226 find(p(t(:,3),3)==1)); % indices of elements in the rod

227
228 t(:,4)=ax1; t(:,5)=ay1; t(:,6)=beta1; t(:,7)=f; % putting material properties of air in

place

229 t(eltsin,4)=ax2; t(eltsin,5)=ay2; t(eltsin,6)=beta2; % put properties of dielectric in

place

230
231 % Writing node and element lists

232 %p=[(1:1:length(p(:,1)))’,p]; % putting node numbers in leftmost column

233 p=p(:,1:2);

234 dlmwrite(nodefile,p,’delimiter’,’\t’,’precision’,’%.6f’); % save nodes

235 dlmwrite(elfile,t,’delimiter’,’\t’,’precision’,’%.6f’); % save elements

236
237 % Third kind condition at left−hand boundary
238
239 ABg=1j*k0*ax1;
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240 ABq=2*1j*k0*H0*ax1;

241
242 ABnodes=find(p(:,1)==0); % find nodes on the left−hand aboundary
243 for i=1:length(t(:,1))

244 A=t(i,1:3);

245 a1=any(ABnodes==A(1));

246 a2=any(ABnodes==A(2));

247 a3=any(ABnodes==A(3));

248
249 anysum=a1+a2+a3;

250
251 if anysum==2

252 % Then an edge is on the boundary

253 if a1==1

254 if a2==1

255 % Then nodes 1 and 2 are on the boundary

256 writebc=[A(1),A(2),ABg,ABq];

257 elseif a3==1

258 % Then nodes 1 and 3 are on the boundary

259 writebc=[A(1),A(3),ABg,ABq];

260 end % if a2==1

261 elseif a2==1

262 % Then nodes 2 and 3 are on the boundary

263 writebc=[A(2),A(3),ABg,ABq];

264 end % if a1==1

265 dlmwrite(bc2file,writebc,’−append’,’delimiter’,’\t’,’precision’,’%.6f’)
266 end % if anysum==2

267 end % for i=1:length(t(:,1))

268
269 % Third kind condition at right−hand boundary
270
271 CDg=1j*k0*ax1;

272 CDq=0;

273
274 CDnodes=find(p(:,1)==domx); % find nodes on the right−hand aboundary
275 for i=1:length(t(:,1))

276 A=t(i,1:3);

277 a1=any(CDnodes==A(1));

278 a2=any(CDnodes==A(2));

279 a3=any(CDnodes==A(3));

280
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281 anysum=a1+a2+a3;

282
283 if anysum==2

284 % Then an edge is on the boundary

285 if a1==1

286 if a2==1

287 % Then nodes 1 and 2 are on the boundary

288 writebc=[A(1),A(2),CDg,CDq];

289 elseif a3==1

290 % Then nodes 1 and 3 are on the boundary

291 writebc=[A(1),A(3),CDg,CDq];

292 end % if a2==1

293 elseif a2==1

294 % Then nodes 2 and 3 are on the boundary

295 writebc=[A(2),A(3),CDg,CDq];

296 end % if a1==1

297 dlmwrite(bc2file,writebc,’−append’,’delimiter’,’\t’,’precision’,’%.6f’)
298 end % if anysum==2

299 end % for i=1:length(t(:,1))

300
301 %% FEM Solve

302
303 Hz = jin2D(nodefile,elfile,[],bc2file);

304
305
306 %% Plotting mesh and equi−Hz curves and calculating R, T
307
308 figure(4); clf; hold on;

309 trimesh(t(:,1:3),p(:,1),p(:,2));

310 title(’Sample Finite Element Mesh’);

311 set(gca,’plotboxaspectratio’,[6 1 1]);

312
313 x1=intersect(find(p(:,1)==0),find(p(:,2)==0)); % Get number of the node at bottom left

314 x2=intersect(find(p(:,1)==domx),find(p(:,2)==0)); % Get number of the node at bottom right

315
316 R=(Hz(x1)−H0*exp(−1j*k0*0.1))/(H0*exp(1j*k0*0.1));
317 T=(Hz(x2))/(H0*exp(−1j*k0*domx));
318
319 fprintf(’|R|^2+|T|^2=%g,\n’,abs(R)^2+abs(T)^2);

320
321
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322 end % parallelplate

323
324
325 %% Mesh refinement function

326 function h=hfun(x,y,lambda,objx,objy,hml)

327 % User defined size function

328
329 h=0.01*ones(size(x,1),1); % size 0.001 outside the dielectric rod

330
331 in=(x>=hml*lambda)&(x<=hml*lambda+objx)&(y<=objy); % size 0.0001 inside

332 h(in)=0.005;

333
334 end % hfun

D.7 MATLAB Implementation ofThree Solvers for the One-Dimensional
Helmholtz Equation

Finite Element Method for the One-Dimensional Helmholtz Equation

1 function []=helm1D()

2 % function helm1D()

3 %

4 % Performs FEM analysis of the electric field for a

5 % one−dimensional domain with a constant power source at the left−hand
6 % side. See problem description in PDF file of same directory.

7 % Uses uniform node spacing.

8 %

9
10 % Physical setup

11 L=0.248; %length of domain [m]

12 P=40e3; % [W] power supplied by magnetron at left−hand endpoint
13 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves

14 beta=pi/L; % [1/m] propagation constant

15
16 % Nodes and spacing

17 n=50; % number of (uniformly spaced) spatial nodes

18 x=linspace(0,L,n); %vector of x−values
19 h=x(2:end)−x(1:n−1); %h−values (as spacing is uniform, h is a multiple of ones vector)
20
21 % Time scenario

22 dt=1; % length of time step [sec]
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23 time=0; % starting time [sec]

24 tsim=60; % time for which to perform the simulation [sec]

25
26 % Physical constants

27 mu0=pi*4e−7; %[N/A^2] permeability of free space
28 c=299792458; % [m/s] speed of light in a vacuum

29
30 magnetron=(2/L)*sqrt(2*P*(omega*mu0/beta)); % value of field at RHS

31
32 % Load materials

33 mu_wat=1; % (unitless) relative permeability of water

34 sigma_wat=0.055; % [S/m] electrical conductivity of water

35 eps1_wat=78.54; % (unitless) relative dielectric constant of water. See:

36 % http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html , 25C

37 tan_wat=0.16; %(unitless) loss tangent of water. See:

38 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

39 % substrate_tables/tablelosstan.htm

40 eps2_wat=(tan_wat*(omega*eps1_wat)−sigma_wat)/omega; %(unitless) relative loss factor of
water

41 mu_air=1; % (unitless) relative permeability of air

42 sigma_air=0; % [S/m] electrical conductivity of air

43 eps1_air=1; % (unitless) relative dielectric constant of air. See Wikipedia

44 % article: http://en.wikipedia.org/wiki/Relative_permittivity

45 tan_air=0; % (unitless) loss tangent of air. See:

46 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

47 % substrate_tables/tablelosstan.htm

48 eps2_air=(tan_air*(omega*eps1_air)−sigma_air)/omega; % (unitless) relative loss factor of
air

49
50 % Elemental values of physical properties

51 lim1=floor((n−1)/3); lim2=ceil(2*(n−1)/3); % limits for L/3 and 2L/3
52 mu=[mu_air*ones(lim1,1); mu_wat*ones(lim2−lim1,1); mu_air*ones((n−1)−lim2,1)]’;
53 %sigma=[sigma_air*ones(lim1,1); sigma_wat*ones(lim2−lim1,1); sigma_air*ones((n−1)−lim2,1)

]’;

54 eps1=[eps1_air*ones(lim1,1); eps1_wat*ones(lim2−lim1,1); eps1_air*ones((n−1)−lim2,1)]’;
55 eps2=[eps2_air*ones(lim1,1); eps2_wat*ones(lim2−lim1,1); eps2_air*ones((n−1)−lim2,1)]’;
56 eps=eps1+1i*eps2;

57
58 % Set up left−hand side and right−hand side matrices, boundary condition, and forcing

vector

59 % subdiagonal
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60 A1=[−1./(h(1:n−2).*mu(1:n−2))+((omega^2.*mu(1:n−2).*eps(1:n−2).*h(1:n−2))./(3*c^2)),0];
61 % diagonal

62 A2=[1, 1./(mu(1:n−2).*h(1:n−2))+1./(mu(2:n−1).*h(2:n−1)) + ...
63 (omega^2.*h(1:n−2).*mu(1:n−2).*eps(1:n−2))./(3*c^2) + ...
64 (omega^2.*h(2:n−1).*mu(2:n−1).*eps(2:n−1))./(3*c^2), 1];
65 % superdiagonal

66 A3=[0, −1./(h(2:n−1).*mu(2:n−1))+(omega^2.*mu(2:n−1).*eps(2:n−1).*h(2:n−1))./(3*c^2)];
67 A=diag(A1,−1)+diag(A2,0)+diag(A3,1); %LHS
68
69 bc=[magnetron; zeros(n−1,1)]; %boundary condition vector
70
71 T=A\bc;

72 S=real(T); W=imag(T);

73
74 % Display the field through time

75 %while time<tsim

76 %Plot current field distribution

77 figure(1); clf; hold on

78 plot(100*x,S,’b’,100*x,W,’r’);%S*cos(omega*time));

79 legend(’Re(E)’,’Im(E)’);

80 % plot(100*x, S*cos(omega*time)+W*sin(omega*time));

81 % title(strcat(’Field distribution at t=’,num2str(time,’%11.3g’),’ seconds’));

82 xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m] or [N/C]’);

83 title(’Homecooked FEM method for Helmholtz’);

84 grid on

85
86 %Update time = t_{k+1}

87 time=time+dt;

88 %end %while time<tsim

89 saveas(1,’helm1D_fig.jpg’,’jpg’);

90 end
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bvp4c Solver for the One-Dimensional Helmholtz Equation

1 function [yvals]=onedembvp()

2 %ONEDEMBVP uses bvp4c to solve for the electromagnetic field over a

3 %one−dimensional object, and returns the square of the modulus of that
4 %field.

5 %

6 %The physical situation is a one−dimensional, nonhomogeneous rod of length
7 %L, with a source of electromagnetic energy at the left−hand boundary of
8 %the rod. The rod is comprised of two different materials, with the middle

9 %third of the domain comprised of water, and the outer two thirds comprised

10 %of air. When we assume the electromagnetic field

11 %(E(x,t)) is harmonic in time, we say that E(x,t) = S(x)cos(omega*t) +

12 %W(x)sin(omega*t), where omega is the angular frequency of the incident

13 %microwaves.

14 %

15 %We apply Maxwell’s Equations to obtain a coupled system of second−order
16 %ordinary differential equations for S and W,

17 % S’’ = a*S + b*W

18 % W’’ = −b*S + a*W
19 %where a = eps’*mu*omega^2/c^2 and b=eps’’*mu*omega^2/c^2,

20 %subject to the boundary conditions,

21 % S(0) = s0, W(0) = w0, S(L) = 0, W(L) = 0

22 %where at the right−hand boundary (L), the tangential component of the EM
23 %field, in our case the field itself, is zero because we assume that the

24 %boundary is conducting, and at the left−hand boundary (0), the magnitude
25 %of the field is equal to the magnitude of the field induced by the

26 %magnetron at that end.

27 %

28 % In order to solve this system, we convert to a first order system:

29 % y(1) = S

30 % y(2) = K where S’ = K

31 % y(3) = W

32 % y(4) = M where W’ = M

33 %

34 % The converted system is as follows:

35 % y(1)’ = y(2)

36 % y(2)’ = a*y(1) + b*y(3)

37 % y(3)’ = y(4)

38 % y(4)’ = −b*y(1) + a*y(3)
39 %
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40 % And due to the nature of boundary value problems, where often more than

41 % one solution exists, bvp4c requires that we input a guess for the

42 % solution; in this case, we guess that the solutions for both S and W are

43 % constant values of s0 and w0 respectively.

44
45 % Physical setup

46 L=0.248; % length of domain [m]

47 P=40e3; % [W] power supplied by magnetron at left−hand endpoint
48 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves

49 beta = pi/L; % [1/m] propagation constant

50
51 % Nodes and spacing

52 n=50;

53 x=linspace(0,L,n); % x−values for which bvp4c will solve the bvp
54
55 % Physical constants

56 c=299792458; %speed of light in a vacuum [m/s]

57 mu0=pi*4e−7; %permeability of free space [N/A^2]
58
59 Magnetron = (2/L)*sqrt(2*P*omega*mu0/beta); %initial E−field at left−hand
60 % boundary (magnetron)

61
62 gamma = 1;

63 s0 = gamma*Magnetron; %Left−hand boundary condition
64 w0 = (1−gamma)*Magnetron; %Right−hand boundary condition
65 guess = [s0; 0; w0; 0]; % guess constant solutions for S, W

66 solinit = bvpinit(linspace(0,L,n),guess); %use bvpinit for the initial guess

67 omegac = omega^2/c^2;

68
69 sol = bvp4c(@onedemode,@onedembc,solinit,[],[s0, w0], omega,omegac,L);

70
71 %xvals = linspace(0,L,n); %same as xvals = [0:dx:L] where dx = L/(Nx−1)
72 %these are the x−values for which we’ll solve the
73 %equations for y1, y2, y3, and y4

74 yvals = deval(sol, x); %returns an Nx−by−4 matrix containing values of
75 %y1, y2, y3, and y4 (columns) at each of the

76 %points specified in xvals (rows)

77 %Plotting solution

78 figure(1); hold on;

79 plot(x*100, yvals(1,:),’c*−’, x*100,yvals(3,:),’m*−’)
80 legend(’Re(E)’, ’Im(E)’)



APPENDIX D. COMPUTER IMPLEMENTATIONS IN PYTHON AND MATLAB OF THE 1D AND 2D
WAVE AND HELMHOLTZ EQUATION SOLVERS 273

81 xlabel(’Length [cm]’)

82 ylabel(’Electric field intensity [V/m] or [N/C]’)

83 % %axis([0 1.001*L 0 0.001])

84 grid on

85 %

86 eavg = (yvals(1,:).^2 + yvals(3,:).^2); %the square of the modulus of the e−field
87 %

88 % figure(2);

89 % plot(xvals, eavg)

90 % ylabel(’S^2 + W^2’)

91 % xlabel([’Distance from Left−Hand Boundary of Object (L =’, num2str(L), ’)’])
92 % ylabel(’|E| _{avg} ^2’)

93 % title([ num2str(Material1Name), ’ | ’, num2str(Material2Name)])

94 % %axis([0 1.001*L 0 0.001])

95 % grid on

96 return

97
98 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

99 function dydx = onedemode(x,y,S0,omega,omegac,L) %#ok<*INUSL>

100 % ONEDEMODE Evaluate the function f(x,y)

101
102 % Load materials

103 mu_wat=1; % (unitless) relative permeability of water

104 sigma_wat=0.055; % [S/m] electrical conductivity of water

105 eps1_wat=78.54; % (unitless) relative dielectric constant of water. See:

106 % http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html ( 25 C )

107 tan_wat=0.16; %(unitless) loss tangent of water. See:

108 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

109 % substrate_tables/tablelosstan.htm )

110 eps2_wat=(tan_wat*(omega*eps1_wat)−sigma_wat)/omega; % (unitless) relative
111 % loss factor of water

112 mu_air=1; % (unitless) relative permeability of air

113 sigma_air=0; % [S/m] electrical conductivity of air

114 eps1_air=1; % (unitless) relative dielectric constant of air. See Wikipedia

115 % article: http://en.wikipedia.org/wiki/Relative_permittivity

116 tan_air=0; % (unitless) loss tangent of air. See:

117 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

118 % substrate_tables/tablelosstan.htm

119 eps2_air=(tan_air*(omega*eps1_air)−sigma_air)/omega; % (unitless) relative
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120 % loss factor of air

121
122
123 if x<=L/3 || x>=2*L/3 % x is in air part

124 a=omegac*mu_air*eps1_air;

125 b=omegac*mu_air*eps2_air;

126 else % x is in water part

127 a=omegac*mu_wat*eps1_wat;

128 b=omegac*mu_wat*eps2_wat;

129 end

130
131 %y(1)=S, y(2)=S’, y(3)=W, y(4)=W’

132 dydx = [ y(2);

133 a*y(1) + b*y(3);

134 y(4);

135 −b*y(1) + a*y(3)];
136 return

137
138 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

139 function res = onedembc(ya, yb, S0, omega,omegac,L) %#ok<*INUSD>

140 % ONEDEMBC Evaluate the residual in the boundary conditions

141 s0 = S0(1); w0 = S0(2);

142 res = [ ya(1) − s0; % S(0) = s0
143 ya(3) − w0; % W(0) = w0
144 yb(1) − 0; % S(L) = sL
145 yb(3) − 0]; % W(L) = wL
146 return
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MATLAB Finite Element Method for the One-Dimensional Helmholtz, Laplace, and
Poisson Equations

1 function T=jinsolve(x,l,a,b,f,lcond,rcond)

2 % function T=jinsolve(x,l,a,b,f,lcond,rcond)

3 %

4 % Performs FEM analysis of the 1D electromagnetic scenario decribed in Jin,

5 % Chapter 3. Solves the differential equation:

6 %

7 % −d/dx(a * du/dx) + b*u = f,
8 %

9 % Where a, b are known parameters associated with the physical properties

10 % of the domain, and f is a known source or excitation function. The

11 % standard one−dimensional Laplace, Poisson, and Helmholtz equations are
12 % special forms of this equation.

13 %

14 % Inputs: x − Domain on which solution is found (should be a vector)
15 % l − Node spacing (should be of length length(x)−1)
16 % a − See equation above (for each element−−length should match that of h)
17 % b − See equation above (for each element−−length should match that of h)
18 % f − See equation above (for each element−−length should match that of h)
19 % lcond − Left−hand boundary condition.
20 % If Dirichlet, give a the value;

21 % If Third kind, give the row vector [g q], where

22 % [a*(du/dx) + g*u](x=0) = q.

23 % rcond − RIght−hand boundary condition.
24 % If Dirichlet, give a the value;

25 % If Third kind, give the row vector [g q], where

26 % [a*(du/dx) + g*u](x=L) = q.

27
28 n=length(x);

29 m=n−1;
30
31 % Construct the K matrix

32 K=zeros(n,n);

33 K(1,1)=a(1)/l(1)+b(1)*l(1)/3;

34 K(n,n)=a(m)/l(m)+b(m)*l(m)/3;

35 for i=2:n−1
36 K(i,i)=a(i−1)/l(i−1)+b(i−1)*l(i−1)/3+a(i)/l(i)+b(i)*l(i)/3;
37 K(i+1,i)=−a(i)/l(i)+b(i)*l(i)/6;
38 K(i,i+1)=−a(i)/l(i)+b(i)*l(i)/6;
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39 end

40 for i=[1,n−1]
41 K(i+1,i)=−a(i)/l(i)+b(i)*l(i)/6;
42 K(i,i+1)=−a(i)/l(i)+b(i)*l(i)/6;
43 end

44
45 % Construct the right−hand side
46 rhs=zeros(n,1);

47 rhs(1)=f(1)*l(1)/2;

48 rhs(n)=f(m)*l(m)/2;

49 for i=2:n−1
50 rhs(i)=f(i−1)*l(i−1)/2+f(i)*l(i)/2;
51 end

52
53 % Modify the matrix and rhs to account for boundary conditions

54 if length(lcond)==1

55 % Incorporate the Dirichlet condition at the left−hand endpoint
56 rhs=rhs−K(:,1).*lcond; rhs=rhs(2:end);
57 K=K(2:n,2:n);

58 elseif length(lcond)==2

59 % Incorporate the third−kind BC at the left−hand endpoint
60 K(1,1)=K(1,1)+lcond(1);

61 rhs(1)=rhs(1)+lcond(2);

62 else

63 error(’Check left−hand boundary condition. Type \n>> help jinsolve\n for details’);
64 end

65
66 if length(rcond)==1

67 % Incorporate the Dirichlet condition at the right−hand endpoint
68 rhs=rhs−K(:,end).*rcond; rhs=rhs(1:end−1);
69 K=K(1:end−1,1:end−1);
70 elseif length(rcond)==2

71 % Incorporate the third−kind BC at the right−hand endpoint
72 K(end,end)=K(end,end)+rcond(1);

73 rhs(end)=rhs(end)+rcond(2);

74 else

75 error(’Check right−hand boundary condition. Type \n>> help jinsolve\n for details’);
76 end

77
78 % Solve the system

79 T=K\rhs;
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80
81 % Correct vector lengths in the event of Dirichlet conditions

82 if length(lcond)==1, T=[lcond;T]; end

83 if length(rcond)==1, T=[T;rcond]; end
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MATLAB Test: Reflection for the Metal-Backed Dielectric Slab

1 function [ER,HR]=jin1Dslab(n,thetavec)

2
3 % Physical constants

4 mu0=pi*4e−7; %[N/A^2] permeability of free space
5 eps0=8.854e−12; %[F/m] permittivity of free space
6 c=299792458; % [m/s] speed of light in a vacuum

7
8 % Physical setup

9 nu=2.45e9; % [Hz] frequency of microwaves

10 omega=2*pi*nu; % [Hz] angular frequency of microwaves

11 lambda=c/nu; % [m] wavelength of microwaves

12 k0=omega*sqrt(eps0*mu0);

13 L=5*lambda; %length of domain [m]

14 P=40e3; % [W] power supplied by magnetron at left−hand endpoint
15 beta=pi/L; % [1/m] propagation constant

16 E0=1;%(2/L)*sqrt(2*P*(omega*mu0/beta)); % magnitude of incidence field

17 H0=1; % magnitude of incidence field

18
19 % Nodes and spacing

20 %n=50; % number of (uniformly spaced) spatial nodes

21 x=linspace(0,L,n); %vector of x−values
22 l=x(2:end)−x(1:n−1); %h−values (as spacing is uniform, h is a multiple of ones vector)
23
24 % Material properties

25 mu=2−0.1*1i*ones(size(x));
26 eps=4+(2−0.1*1i).*(1−x/L).^2;
27
28 % Solutions

29 ER=zeros(size(thetavec)); HR=zeros(size(thetavec));

30 for ii=1:length(thetavec);

31 theta=thetavec(ii);

32 % Ez−polarization FEM first
33 a=1./mu; b=−k0^2*(eps−(sin(theta))./mu); f=zeros(size(x));
34 lcond=0; % Homogeneous Dirichlet at left−hand boundary
35 g=1j*k0*cos(theta); q=2*g*E0*exp(L*g);

36 rcond=[g q]; % Third kind at right−hand boundary
37 E=jinsolve(x,l,a,b,f,lcond,rcond);

38 R=(E(n)−E0*exp(L*g))/(E0*exp(−L*g));
39 ER(ii)=R;
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40
41 % Hz−polarization FEM next
42 a=1./eps; b=−k0^2*(mu−(sin(theta))./eps); f=zeros(size(x));
43 lcond=[0 0]; % Homogeneous Neumann at left−hand boundary
44 g=1j*k0*cos(theta); q=2*g*H0*exp(L*g);

45 rcond=[g q]; % Third kind at right−hand boundary
46 H=jinsolve(x,l,a,b,f,lcond,rcond);

47 R=(H(n)−H0*exp(L*g))/(H0*exp(−L*g));
48 HR(ii)=R;

49 end
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1 function []=jin1D()

2 % function []=jin1D()

3 %

4 % Performs FEM analysis of the 1D electromagnetic scenario decribed in Jin,

5 % Chapter 3. Solves the differential equation:

6 %

7 % −d/dx(a * du/dx) + b*u = f,
8 %

9 % Where a, b are known parameters associated with the physical properties

10 % of the domain, and f is a known source or excitation function. The

11 % standard one−dimensional Laplace, Poisson, and Helmholtz equations are
12 % special forms of this equation; we take the parameters a and b here to

13 % be:

14 %

15 % a= 1/mu and b=mu*(omega/c)^2*eps

16 %

17 % Which correspond to the Helmholtz equation in one dimension. The boundary

18 % conditions are taken to be the inhomogeneous Dirichlet condition at the

19 % right−hand endpoint (where the magnetron is located), and the homogeneous
20 % Dirichlet condition at the right−hand endpoint (where there is a
21 % perfectly electrically conducting wall).

22 %

23
24
25 % Physical setup

26 L=0.248; %length of domain [m]

27 P=40e3; % [W] power supplied by magnetron at left−hand endpoint
28 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves

29 beta=pi/L; % [1/m] propagation constant

30
31 % Nodes and spacing

32 n=50; % number of (uniformly spaced) spatial nodes

33 x=linspace(0,L,n); %vector of x−values
34 l=x(2:end)−x(1:n−1); %h−values (as spacing is uniform, h is a multiple of ones vector)
35
36 % Time scenario

37 dt=1; % length of time step [sec]

38 time=0; % starting time [sec]

39 tsim=60; % time for which to perform the simulation [sec]

40
41 % Physical constants
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42 mu0=pi*4e−7; %[N/A^2] permeability of free space
43 c=299792458; % [m/s] speed of light in a vacuum

44
45 magnetron=(2/L)*sqrt(2*P*(omega*mu0/beta)); % value of field at RHS

46
47 % Load materials

48 mu_wat=1; % (unitless) relative permeability of water

49 sigma_wat=0.055; % [S/m] electrical conductivity of water

50 eps1_wat=78.54; % (unitless) relative dielectric constant of water. See:

51 % http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html ( 25 C )

52 tan_wat=0.16; %(unitless) loss tangent of water. See:

53 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

54 % substrate_tables/tablelosstan.htm

55 eps2_wat=(tan_wat*(omega*eps1_wat)−sigma_wat)/omega; % (unitless) relative
56 % loss factor of water

57 mu_air=1; % (unitless) relative permeability of air

58 sigma_air=0; % [S/m] electrical conductivity of air

59 eps1_air=1; % (unitless) relative dielectric constant of air. See Wikipedia

60 % article: http://en.wikipedia.org/wiki/Relative_permittivity

61 tan_air=0; % (unitless) loss tangent of air. See:

62 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

63 % substrate_tables/tablelosstan.htm

64 eps2_air=(tan_air*(omega*eps1_air)−sigma_air)/omega; % (unitless) relative
65 % loss factor of air

66
67 % Elemental values of physical properties

68 lim1=floor((n−1)/3); lim2=ceil(2*(n−1)/3); % limits for L/3 and 2L/3
69 mu=[mu_air*ones(lim1,1); mu_wat*ones(lim2−lim1,1); mu_air*ones((n−1)−lim2,1)]’;
70 %sigma=[sigma_air*ones(lim1,1); sigma_wat*ones(lim2−lim1,1); sigma_air*ones((n−1)−lim2,1)

]’;

71 eps1=[eps1_air*ones(lim1,1); eps1_wat*ones(lim2−lim1,1); eps1_air*ones((n−1)−lim2,1)]’;
72 eps2=[eps2_air*ones(lim1,1); eps2_wat*ones(lim2−lim1,1); eps2_air*ones((n−1)−lim2,1)]’;
73 eps=eps1−1i*eps2;
74
75
76 a=1./mu;

77 b=(omega/c)^2*mu.*eps;

78 f=zeros(n−1,1);
79 lcond=magnetron;

80 rcond=0;

81
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82 T=jinsolve(x,l,a,b,f,lcond,rcond);

83 S=real(T); W=imag(T);

84
85 % Display the field through time

86 %while time<tsim

87 %Plot current field distribution

88 figure(2); clf; hold on

89 plot(100*x,S,’b’,100*x,W,’r’);%S*cos(omega*time));

90 legend(’Re(E)’,’Im(E)’);

91 % plot(100*x, S*cos(omega*time)+W*sin(omega*time));

92 % title(strcat(’Field distribution at t=’,num2str(time,’%11.3g’),’ seconds’));

93 xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m] or [N/C]’);

94 title(’Jin’’s method’);

95 grid on

96
97 %Update time = t_{k+1}

98 time=time+dt;

99 %end %while time<tsim

100 end

D.8 python Implementation of the Finite Difference Method for the
Two-Dimensional Helmholtz Equation

1 def helmsolve(hx,hz,K,E_inc):

2 mu0=pi*4e−7 # permeability of free space [N/A^2]
3
4 hx_sq = 1/(hx[1:]*hx[:−1])
5 hz_sq = 1/(hz[1:]*hz[:−1])
6
7 M = np.size(hx_sq)+2

8 N = np.size(hz_sq)+2

9
10 A = np.zeros((N*M,N*M))

11
12 #print "number of xnodes is "+str(M)

13 #print "number of znodes is "+str(N)

14
15 #print "size of A is"

16 #print np.shape(A)

17
18 for k in range (0,M):
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19 A[k,k] = 1.0

20 A[(N−1)*M+k,(N−1)*M+k] = 1.0
21 #print "Changed the values of A["+str(k)+","+str(k)+"] and A["+str((N−1)*M+k

)+","+str((N−1)*M+k)+"]"
22
23 for j in range (1,N−1):
24 #print "j="+str(j)

25 A[j*M,j*M]=1.0

26 A[(j+1)*M−1,(j+1)*M−1]=1.0
27 #print "Changed the values of A["+str(j*M)+","+str(j*M)+"] and A["+str((j+1)*

M−1)+","+str((j+1)*M−1)+"]"
28 for k in range (1,M−1):
29 #print "k="+str(k)

30 A[j*M+k,j*M+k]=K[k−1,j−1]−2*hx_sq[k−1]−2*hz_sq[j−1]
31 A[j*M+k,(j−1)*M+k] = hz_sq[j−1]
32 A[j*M+k,(j+1)*M+k] = hz_sq[j−1]
33 A[j*M+k,j*M+k+1] = hx_sq[k−1]
34 A[j*M+k,j*M+k−1] = hx_sq[k−1]
35 #print "Changed the values of A on row "+str(j*M+k)

36
37 b = np.array([0.0]*N*M)

38 b[:M]=E_inc

39
40 E = linalg.solve(A,b)

41
42 return 0.5*E*E

D.9 MATLAB Implementation of the Finite Element Method for the
Two-Dimensional Helmholtz Equation

1 function T=jin2D(nodefile,elfile,bc1file,bc2file)

2 % function T=jin2D(nodefile,elfile,bc1file,bc2file)

3 %

4 % Performs FEM analysis of the 2D electromagnetic scenario decribed in Jin,

5 % Chapter 4. Solves the differential equation:

6 %

7 % −d/dx(alpha_x * du/dx) − d/dy(alpha_y * du/dy) + beta*u = f,
8 %

9 % Where a_x, a_y, and b are known parameters associated with the physical

10 % properties of the domain, and f is a known source or excitation function.

11 % The standard two−dimensional Laplace, Poisson, and Helmholtz equations
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12 % are special forms of this equation.

13 %

14 % This solver takes a list of elements and nodes for a given domain as

15 % inputs, and provides the solution on that domain.

16 %

17 % Inputs: nodefile − name of file containing node coordinates. Should be
18 % formatted as follows (without the header):

19 %

20 % (x−coord) (y−coord)
21 % 0 0

22 % . .

23 % . .

24 % . .

25 %

26 % elfile − name of file containing element definitions.
27 % Contains information about alpha_x, alpha_y, beta,

28 % and f at each element as well. Should be formatted

29 % as follows (without the header):

30 %

31 % (node1) (node2) (node3) (ax) (ay) (beta) (f)

32 % 1 2 5 1 3 1 0

33 % . . . . . . .

34 % . . . . . . .

35 % . . . . . . .

36 %

37 % bcfile1 − name of file containing the nodes on the
38 % Dirichlet boundary and their values. Should be

39 % formatted as follows:

40 %

41 % (node number) (value)

42 % 1 118

43 % . .

44 % . .

45 % . .

46 %

47 % bcfile2 − name of file containing the edges on the
48 % third−kind boundary. Should be formatted as follows:
49 %

50 % (node1) (node2) (g) (q)

51 % 1 2 5 1

52 % . . . .
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53 % . . . .

54 % . . . .

55
56 % Read in elements, nodes, and boundary conditions to matrices

57
58 N=dlmread(nodefile); % nodes

59 nn=length(N(:,1)); %number of nodes

60 E=dlmread(elfile); % elements

61 el=length(E(:,1)); %number of elements

62 % E(:,5)=ones(size(E(:,5))); % alpha_x

63 % E(:,6)=E(:,5); % alpha_y

64 % E(:,7)=E(:,5); % beta

65 % E(:,8)=E(:,5); % f

66
67 % Assemble the LHS matrix and RHS vector

68
69 s=zeros(1,3); x=s; y=s; b=s; c=s; % Initialize the vectors that store local

70 % node numbers and coordinate values

71 K=zeros(nn,nn); % Initialize the LHS matrix

72 rhs=zeros(size(N(:,1)));

73 for k=1:el % for each element

74 % Get the alpha_x, alpha_y, beta, and f values for the current element

75 alpha_x=E(k,4); alpha_y=E(k,5); beta=E(k,6); f=E(k,7);

76
77 % Get the node numbers and coordinates for the current element

78 for m=1:3

79 s(m)=E(k,m); % numbers of the nodes in the order they appear (should be ccw in the list

)

80 x(m)=N(s(m),1); % x−coordinates of nodes in the order they appear
81 y(m)=N(s(m),2); % y−coordinates of nodes in the order they appear
82 end % for m=1:3

83
84 % Calculate the area of the element and all b and c coefficients (a not necessary)

85 Ar=polyarea(x,y); % area of the current element

86 b(1)=y(2)−y(3); b(2)=y(3)−y(1); b(3)=y(1)−y(2); % b−coefficients
87 c(1)=−(x(2)−x(3)); c(2)=−(x(3)−x(1)); c(3)=−(x(1)−x(2)); % c−coefficients
88
89 % Populate the LHS matrix

90 for i=1:3

91 for j=1:3

92 if i==j, delta=1; else delta=0; end
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93
94 K(s(i),s(j))=K(s(i),s(j))+(1/(4*Ar))*(alpha_x*b(i)*b(j)+alpha_y*c(i)*c(j)) + ...

95 (Ar/12)*beta*(1+delta);

96 end % for j=1:3

97
98 rhs(s(i))=rhs(s(i))+Ar*f/3;

99
100 end % for i=1:3

101 end % for k=1:el

102
103 % Boundary conditions and solving

104
105 if ~isempty(bc2file)

106 % Impose the Third−kind condition
107 BC2=dlmread(bc2file); % Third−kind boundary
108 s=zeros(1,2); % Initialize the vector that stores local node numbers

109 for k=1:length(BC2(:,1)) % for each edge on the boundary

110 s(1)=BC2(k,1); s(2)=BC2(k,2); % get universal node numbers

111 g=BC2(k,3); q=BC2(k,4); % get gamma and q values

112 l=sqrt((N(s(1),1)−N(s(2),1))^2+(N(s(1),2)−N(s(2),2))^2); % get length of segment
113 for i=1:2

114 for j=1:2

115 if i==j, delta=1; else delta=0; end

116 K(s(i),s(j))=K(s(i),s(j))+g*l*(1+delta)/6; % modify K at the two nodes

117 end % for j=1:2

118 rhs(s(i))=rhs(s(i))+q*l; % modify rhs

119 end % for i=1:2

120 end % for k=1:length(BC2(:,1))

121 end % if ~isempty(bcfile2)

122
123 if ~isempty(bc1file)

124 % Impose the Dirichlet boundary condition

125 BC1=dlmread(bc1file);

126 for i=1:length(BC1(:,1))

127 nn=BC1(i,2);

128 rhs=rhs−K(:,nn)*BC1(i,3);
129 rhs(j)=[];

130 K(:,j)=[]; K(j,:)=[];

131 end % for i=1:length(BC1(:,1))

132
133 % Solve the system
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134 T_small=K\rhs;

135
136 % Clean up the solution (re−insert the values on the Dirichlet boundary)
137 flag=max(BC1(:,3))+10; % a flag that we know is not one of the boundary values

138 T=flag*ones(size(N(:,1))); % temporarily set all T entries to the flag

139
140 T(BC1(i,2))=BC1(i,3); % replace the flags with the values on the Dirichlet

141 % boundary in those positions

142 T(T==flag)=T_small; % use the remaining flags put the values calculated

143 % in the matrix where they belong

144 else

145 % No Dirichlet condition to impose, just solve the system

146 T=K\rhs;

147 end % if ~isempty(bc1file)

148
149 end % function

MATLAB Test: Discontinuity in a Parallel-Plate Waveguide

1 function []=parallelplate()

2
3 lambda=0.10; % wavelgnth [m]

4 objx=0.05; % length of the domain (x−direction) [m]
5 hml=1; % how many wavelengths the artificial boundary is from the inclusion

6 H=(0:0.05:0.35)*lambda; % h−values to use in generating the graph on p. 110 of Jin
7
8 mgx=0:0.025:2*hml*lambda+0.05; % domain in x−direction
9 mgy=0:0.005:0.035; % domain in y−direction

10
11 %% eps2=4

12
13 eps2=4;

14
15 % For R,T plots

16 Re1=zeros(size(H));

17 Te1=zeros(size(H));

18 for j=1:length(H)

19 h=H(j);

20 [R,T,Hz,p,t]=findRT(h,eps2,lambda,objx,hml);

21 Re1(j)=abs(R);

22 Te1(j)=abs(T);
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23 end

24
25 % For equi−Hz contour
26 h=0.0175;

27 [RHz1,THz1,Hz1,p1,t1]=findRT(h,eps2,lambda,objx,hml);

28
29 %% eps2=4−i
30
31 eps2=4−1j;
32
33 % For R,T plots

34 Re2=zeros(size(H));

35 Te2=zeros(size(H));

36 for j=1:length(H)

37 h=H(j);

38 [R,T,Hz,p,t]=findRT(h,eps2,lambda,objx,hml);

39 Re2(j)=abs(R);

40 Te2(j)=abs(T);

41 end

42
43 % For equi−Hz contour
44 h=0.0175;

45 [RHz2,THz2,Hz2,p2,t2]=findRT(h,eps2,lambda,objx,hml);

46
47 %% eps2=4−10i
48
49 eps2=4−1j*10;
50
51 % For R,T plots

52 Re3=zeros(size(H));

53 Te3=zeros(size(H));

54 for j=1:length(H)

55 h=H(j);

56 [R,T,Hz,p,t]=findRT(h,eps2,lambda,objx,hml);

57 Re3(j)=abs(R);

58 Te3(j)=abs(T);

59 end

60
61 % For equi−Hz contour
62 h=0.0175;

63 [RHz3,THz3,Hz3,p3,t3]=findRT(h,eps2,lambda,objx,hml);
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64
65
66 %% Plotting equi−Hz contours
67
68 figure(1); clf; hold on;

69 subplot(6,1,1),

70 F=TriScatteredInterp(p1(:,1),p1(:,2),real(Hz1));

71 [xq,yq]=meshgrid(mgx,mgy);

72 vq = F(xq,yq);

73 contour(xq,yq,vq,15);

74 % mesh(xq,yq,vq); hold on; plot3(p1(:,1),p1(:,2),real(Hz1),’o’); hold off;

75 % trisurf(t1(:,1:3),p1(:,1),p1(:,2),real(Hz1),’facecolor’,’interp’);

76 view(2);

77 set(gca,’plotboxaspectratio’,[16 2 1]);

78 title(’Real Part, \epsilon=4.0−0i’);
79 subplot(6,1,2),

80 % trisurf(t1(:,1:3),p1(:,1),p1(:,2),imag(Hz1),’facecolor’,’interp’);

81 F=TriScatteredInterp(p1(:,1),p1(:,2),imag(Hz1));

82 [xq,yq]=meshgrid(mgx,mgy);

83 vq = F(xq,yq);

84 contour(xq,yq,vq,15);

85 title(’Imaginary Part, \epsilon=4.0−0i’);
86 set(gca,’plotboxaspectratio’,[16 2 1]);

87 view(2);

88 subplot(6,1,3),

89 F=TriScatteredInterp(p2(:,1),p2(:,2),real(Hz2));

90 [xq,yq]=meshgrid(mgx,mgy);

91 vq = F(xq,yq);

92 contour(xq,yq,vq,15);

93 % trisurf(t2(:,1:3),p2(:,1),p2(:,2),real(Hz2),’facecolor’,’interp’);

94 set(gca,’plotboxaspectratio’,[16 2 1]);

95 title(’Real Part, \epsilon=4.0−1i’);
96 view(2);

97 subplot(6,1,4),

98 F=TriScatteredInterp(p2(:,1),p2(:,2),imag(Hz2));

99 [xq,yq]=meshgrid(mgx,mgy);

100 vq = F(xq,yq);

101 contour(xq,yq,vq,15);

102 % trisurf(t2(:,1:3),p2(:,1),p2(:,2),imag(Hz2),’facecolor’,’interp’);

103 set(gca,’plotboxaspectratio’,[16 2 1]);

104 title(’Imaginary Part, \epsilon=4.0−1i’);
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105 view(2);

106 subplot(6,1,5),

107 F=TriScatteredInterp(p3(:,1),p3(:,2),real(Hz3));

108 [xq,yq]=meshgrid(mgx,mgy);

109 vq = F(xq,yq);

110 contour(xq,yq,vq,15);

111 % trisurf(t3(:,1:3),p3(:,1),p3(:,2),real(Hz3),’facecolor’,’interp’);

112 set(gca,’plotboxaspectratio’,[16 2 1]);

113 title(’Real Part, \epsilon=4.0−10i’);
114 view(2);

115 subplot(6,1,6),

116 F=TriScatteredInterp(p3(:,1),p3(:,2),imag(Hz3));

117 [xq,yq]=meshgrid(mgx,mgy);

118 vq = F(xq,yq);

119 contour(xq,yq,vq,15);

120 % trisurf(t3(:,1:3),p3(:,1),p3(:,2),imag(Hz3),’facecolor’,’interp’);

121 set(gca,’plotboxaspectratio’,[16 2 1]);

122 title(’Imaginary Part, \epsilon=4.0−10i’);
123 view(2);

124
125 %% Plots for SIAM Cover Photo

126
127 figure(4); clf; hold on;

128 F=TriScatteredInterp(p1(:,1),p1(:,2),real(Hz1));

129 [xq,yq]=meshgrid(mgx,mgy);

130 vq = F(xq,yq);

131 contour(xq,yq,vq,15);

132 mesh(xq,yq,vq); hold on; plot3(p1(:,1),p1(:,2),real(Hz1),’o’); hold off;

133 trisurf(t1(:,1:3),p1(:,1),p1(:,2),real(Hz1),’facecolor’,’interp’);

134 set(gca,’plotboxaspectratio’,[16 2 1]);

135 title(’Real Part, \epsilon=4.0−0i’);
136
137
138 %% Plotting reflection and transmission

139 H=H/lambda;

140
141 figure(2); clf; hold on; grid on;

142 plot(H,Re1,’k−’,H,Re2,’b−−’,H,Re3,’r−.’);
143 xlabel(’h/\lambda’); ylabel(’|R|’);

144 legend(’\epsilon = 4 − 0i’,’\epsilon = 4 − 1i’,’\epsilon = 4 − 10i’,’Location’,’NorthWest
’);
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145
146 figure(3); clf; hold on; grid on;

147 plot(H,Te1,’k−’,H,Te2,’b−−’,H,Te3,’r−.’);
148 xlabel(’h/\lambda’); ylabel(’|T|’);

149 legend(’\epsilon = 4 − 0i’,’\epsilon = 4 − 1i’,’\epsilon = 4 − 10i’,’Location’,’SouthWest
’);

150
151 end

152
153 function [R,T,Hz,p,t]=findRT(objy,eps2,lambda,objx,hml)

154 % Solves the problem described from Page 105 of Jin: solves for the

155 % electric and magnetic fields near a discontinuity in a parallel−plate
156 % waveguide.

157
158 %% Initializing −− problem setup
159
160 % Delete old data files

161
162 delete ’*.dat’

163
164 % Physical constants

165
166 mu0=pi*4e−7; %[N/A^2] permeability of free space
167 eps0=8.854e−12; %[F/m] permittivity of free space
168 c=299792458; % [m/s] speed of light in a vacuum

169
170 %lambda=0.1; % [cm] wavelength

171 omega=2*pi*c/lambda; % [Hz] angular frequency of microwaves

172 k0=omega*sqrt(eps0*mu0);

173 H0=10; % magnitude of incidence field

174
175 % Dielectric properties and coefficient values

176 mu1=1; % (unitless) relative permeability of air

177 sigma1=0; % [S/m] electrical conductivity of air

178 eps11=1; % (unitless) relative dielectric constant of air. See Wikipedia

179 % article: http://en.wikipedia.org/wiki/Relative_permittivity

180 tan1=0; % (unitless) loss tangent of air. See:

181 % http://cp.literature.agilent.com/litweb/pdf/genesys200801/elements/

182 % substrate_tables/tablelosstan.htm

183 eps12=(tan1*(omega*eps11)−sigma1)/omega; % (unitless) relative loss factor of air
184 eps1=eps11+1j*eps12;
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185
186 mu2=2−0.1*1j;
187
188 ax1=1/eps1; ay1=1/eps1; beta1=−k0^2*mu1; f=0;
189 ax2=1/eps2; ay2=1/eps2; beta2=−k0^2*mu2;
190
191 % Geometrical setup

192
193 %objx=0.05; % [cm] object length (x−dir)
194 domx=2*hml*lambda+objx;

195 domy=0.035;

196
197 % Filenames for node and element lists

198
199 nodefile=’n.dat’;

200 elfile=’e.dat’;

201 bc2file=’bc2.dat’;

202
203 %% Meshing and saving lists

204
205 % Meshing

206
207 node = [0,0;domx,0;domx,domy;0,domy]; % coordinates of corners of domain (to use in mesh2d)

208 hdata.fun = @hfun; % function specifying size of mesh (to be used in mesh2d)

209 hdata.args={lambda,objx,objy,hml}; % arguments for hfun in addition to x,y (to use in

mesh2d)

210 %options.mlim=0.02; % The convergence tolerance. The maximum percentage change in edge

211 % length per iteration must be less than mlim

212 %options.maxit=20; % The maximum allowable number of iterations.

213 %options.dhmax=0.30; % The maximum allowable (relative) gradient in the size function

214 options.output=false; % suppresses output for mesh generation

215
216 [p,t] = mesh2d(node,[],hdata,options); % generates mesh of domain

217
218 % Element−varying properties
219
220 p(:,3)=0; % flag indicating node is outside dielectric rod

221 chgind=intersect(intersect(find(p(:,1)>=hml*lambda),...

222 find(p(:,1)<=hml*lambda+objx)),find(p(:,2)<=objy)); % indices of nodes in the rod

223 p(chgind,3)=1; % flag indicating node is inside dielectric rod

224
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225 eltsin=intersect(intersect(find(p(t(:,1),3)==1),find(p(t(:,2),3)==1)),...

226 find(p(t(:,3),3)==1)); % indices of elements in the rod

227
228 t(:,4)=ax1; t(:,5)=ay1; t(:,6)=beta1; t(:,7)=f; % putting material properties of air in

place

229 t(eltsin,4)=ax2; t(eltsin,5)=ay2; t(eltsin,6)=beta2; % put properties of dielectric in

place

230
231 % Writing node and element lists

232 %p=[(1:1:length(p(:,1)))’,p]; % putting node numbers in leftmost column

233 p=p(:,1:2);

234 dlmwrite(nodefile,p,’delimiter’,’\t’,’precision’,’%.6f’); % save nodes

235 dlmwrite(elfile,t,’delimiter’,’\t’,’precision’,’%.6f’); % save elements

236
237 % Third kind condition at left−hand boundary
238
239 ABg=1j*k0*ax1;

240 ABq=2*1j*k0*H0*ax1;

241
242 ABnodes=find(p(:,1)==0); % find nodes on the left−hand aboundary
243 for i=1:length(t(:,1))

244 A=t(i,1:3);

245 a1=any(ABnodes==A(1));

246 a2=any(ABnodes==A(2));

247 a3=any(ABnodes==A(3));

248
249 anysum=a1+a2+a3;

250
251 if anysum==2

252 % Then an edge is on the boundary

253 if a1==1

254 if a2==1

255 % Then nodes 1 and 2 are on the boundary

256 writebc=[A(1),A(2),ABg,ABq];

257 elseif a3==1

258 % Then nodes 1 and 3 are on the boundary

259 writebc=[A(1),A(3),ABg,ABq];

260 end % if a2==1

261 elseif a2==1

262 % Then nodes 2 and 3 are on the boundary

263 writebc=[A(2),A(3),ABg,ABq];
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264 end % if a1==1

265 dlmwrite(bc2file,writebc,’−append’,’delimiter’,’\t’,’precision’,’%.6f’)
266 end % if anysum==2

267 end % for i=1:length(t(:,1))

268
269 % Third kind condition at right−hand boundary
270
271 CDg=1j*k0*ax1;

272 CDq=0;

273
274 CDnodes=find(p(:,1)==domx); % find nodes on the right−hand aboundary
275 for i=1:length(t(:,1))

276 A=t(i,1:3);

277 a1=any(CDnodes==A(1));

278 a2=any(CDnodes==A(2));

279 a3=any(CDnodes==A(3));

280
281 anysum=a1+a2+a3;

282
283 if anysum==2

284 % Then an edge is on the boundary

285 if a1==1

286 if a2==1

287 % Then nodes 1 and 2 are on the boundary

288 writebc=[A(1),A(2),CDg,CDq];

289 elseif a3==1

290 % Then nodes 1 and 3 are on the boundary

291 writebc=[A(1),A(3),CDg,CDq];

292 end % if a2==1

293 elseif a2==1

294 % Then nodes 2 and 3 are on the boundary

295 writebc=[A(2),A(3),CDg,CDq];

296 end % if a1==1

297 dlmwrite(bc2file,writebc,’−append’,’delimiter’,’\t’,’precision’,’%.6f’)
298 end % if anysum==2

299 end % for i=1:length(t(:,1))

300
301 %% FEM Solve

302
303 Hz = jin2D(nodefile,elfile,[],bc2file);

304
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305
306 %% Plotting mesh and equi−Hz curves and calculating R, T
307
308 figure(4); clf; hold on;

309 trimesh(t(:,1:3),p(:,1),p(:,2));

310 title(’Sample Finite Element Mesh’);

311 set(gca,’plotboxaspectratio’,[6 1 1]);

312
313 x1=intersect(find(p(:,1)==0),find(p(:,2)==0)); % Get number of the node at bottom left

314 x2=intersect(find(p(:,1)==domx),find(p(:,2)==0)); % Get number of the node at bottom right

315
316 R=(Hz(x1)−H0*exp(−1j*k0*0.1))/(H0*exp(1j*k0*0.1));
317 T=(Hz(x2))/(H0*exp(−1j*k0*domx));
318
319 fprintf(’|R|^2+|T|^2=%g,\n’,abs(R)^2+abs(T)^2);

320
321
322 end % parallelplate

323
324
325 %% Mesh refinement function

326 function h=hfun(x,y,lambda,objx,objy,hml)

327 % User defined size function

328
329 h=0.01*ones(size(x,1),1); % size 0.001 outside the dielectric rod

330
331 in=(x>=hml*lambda)&(x<=hml*lambda+objx)&(y<=objy); % size 0.0001 inside

332 h(in)=0.005;

333
334 end % hfun



Appendix E

Computer Implementation in MATLAB and
python of the Solvers for the 1D and 2DHeat
Equations

E.1 python Implementation of the Finite Difference Method for the
One-Dimensional Heat Equation

1 from pylab import * # so we know what sqrt is

2 import scipy.sparse as sp # for using sparse matrix tools

3
4 def finite_diff_theta(T_old,h,c_p,rho,kappa,eavg,h_dt,sig,theta,bc,htil,T0):

5 """finite_diff_theta(T_old,h,c_p,rho,kappa,eavg,h_dt,sig,theta,bc,htil,T0):

Implements a single timestep of the theta−scheme for solving the heat equation
using the finite difference method.

6
7 Inputs:

8 T_old The initial temperature field. A vector (array) of length n.

9 h The differences between x−values [m]. A vector (array) of length n−1.
10 c_p The specific heat capacity [J/(gC)]. A vector (array) of length n.

11 rho The density [g/m^3]. A vector (array) of length n.

12 kappa The thermal conductivity [W/(mC)]. A vector (array) of length n.

13 eavg The power dissipated into each point of the simulated domain. A vector

(array) of length n.

14 h_dt The length of the thermal timestep [sec]. A scalar.

15 sig The electrical conductivity [S/m]. A vector (array) of length n.

296
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16 theta The parameter for the theta−method. A scalar that varies from 0 to 1.
Take theta = 0 for a fully explicit method, theta = 1 for a fully

implicit method, and theta = 0.5 for a Crank−Nicolson method.
17 bc The type of boundary condition to use at the left− and right−hand

endpoints. A string that takes either the value ’ins’ (for the insulated

boundary conditions; i.e., homogeneous Neumann), ’fix’ (for the fixed

temperature boundary conditions; i.e., inhomogeneous Dirichlet), or ’rad’

(for the radiative boundary conditions; i.e., third−kind or mixed
conditions).

18 htil The heat transfer coefficient for insulation material (if using

radiative BC). A scalar.

19 T0 The initial and ambient temperature of air surrounding sample and

insulation. Scalar, degC.

20
21 Outputs:

22 T_new The temperature field after a single timestep. A vector (array) of

length n.

23
24
25 """

26
27 # Important constants

28 eps0 = 8.8541878176e−12 # permittivity of free space
29
30 h_sq = h[1:]*h[:−1]
31 # Useful parameter

32 s = h_dt*kappa/(rho*c_p*h_sq)

33
34 # Implement the boundary conditions−−choice of Dirichlet, Neumann, or radiative.

Each BC can be written in the mixed formulation a1*T_x(0,t) + a2*T(0,t) = g1(t)

and a3*T_x(L,t) + a4*T(L,t) = g2(t), with some or other parameters being zero,

strategically

35 if bc == ’ins’: # insulated boundary at both left and right−hand endpoints:
homogeneous Neumann condition

36 a1 = 1

37 a2 = 0

38 g1 = 0

39 a3 = 1

40 a4 = 0

41 g2 = 0

42 A00 = 1+2*s[0]*theta*(1−sqrt(h_sq[0])*a2/a1)
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43 A01 = −2*s[0]*theta
44 Ann = 1+2*s[−1]*theta*(1+sqrt(h_sq[−1])*a4/a3)
45 Anm = −2*s[−1]*theta
46 B00 = 1+2*s[0]*(1−theta)*(sqrt(h_sq[0])*a2/a1−1)
47 B01 = 2*(1−theta)*s[0]
48 Bnn = 1−2*s[0]*(1−theta)*(sqrt(h_sq[−1])*a4/a3+1)
49 Bnm = 2*(1−theta)*s[−1]
50 q0 = −2*g1*s[0]*sqrt(h_sq[0])/a1 + eavg[0]*h_dt/(rho[0]*c_p[0])
51 qn = 2*g2*s[−1]*sqrt(h_sq[−1])/a3 + eavg[−1]*h_dt/(rho[−1]*c_p[−1])
52 elif bc == ’rad’: # radiative BC at both left and right−hand endpoints
53 a1 = 1

54 a2 = −htil # represents a1*T_x = −h(T−T_inf)
55 g1 = −htil*T0
56 a3 = 1

57 a4 = htil

58 g2 = htil*T0

59 A00 = 1+2*s[0]*theta*(1−sqrt(h_sq[0])*a2/a1)
60 A01 = −2*s[0]*theta
61 Ann = 1+2*s[−1]*theta*(1+sqrt(h_sq[−1])*a4/a3)
62 Anm = −2*s[−1]*theta
63 B00 = 1+2*s[0]*(1−theta)*(sqrt(h_sq[0])*a2/a1−1)
64 B01 = 2*(1−theta)*s[0]
65 Bnn = 1−2*s[0]*(1−theta)*(sqrt(h_sq[−1])*a4/a3+1)
66 Bnm = 2*(1−theta)*s[−1]
67 q0 = −2*g1*s[0]*sqrt(h_sq[0])/a1 + eavg[0]*h_dt/(rho[0]*c_p[0])
68 qn = 2*g2*s[−1]*sqrt(h_sq[−1])/a3 + eavg[−1]*h_dt/(rho[−1]*c_p[−1])
69 elif bc == ’fix’: # fixed temperature at both endpoints (Dirichlet condition)

70 a1 = 0

71 a2 = 1

72 g1 = T0

73 a3 = 0

74 a4 = 1

75 g2 = T0

76 A00 = 1

77 A01 = 0

78 Ann = 1

79 Anm = 0

80 B00 = 0

81 B01 = 0

82 Bnn = 0

83 Bnm = 0
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84 q0 = g1

85 qn = g2

86 else: # throw an error if bc is none of those strings

87 print "The input variable ’bc’ must be either the string ’ins’ or the string

’rad’ or the string ’fix’"

88 input()

89 import sys

90 sys.exit(1)

91
92 # Create A−matrix (for solving A*T_new = B*T_old + q)
93 maindiag = r_[A00,1+2*theta*s[1:−1],Ann]
94 lowerdiag = r_[−theta*s[1:−1],Anm]
95 upperdiag = r_[A01,−theta*s[1:−1]]
96 diagonals = [ maindiag , lowerdiag , upperdiag ]

97 A = sp.diags(diagonals,[0,−1,1]).toarray() # make A directly as a sparse matrix
98
99 # Create B−matrix (for solving A*T_new = B*T_old + q)

100 maindiag = r_[B00,1−2*(1−theta)*s[1:−1],Bnn]
101 lowerdiag = r_[(1−theta)*s[1:−1],Bnm]
102 upperdiag = r_[B01,(1−theta)*s[1:−1]]
103 diagonals = [ maindiag , lowerdiag , upperdiag ]

104 B = sp.diags(diagonals,[0,−1,1]).toarray() # make B directly as a sparse matrix
105
106 # Create q (for solving A*T_new = B*T_old + q)

107 q = (h_dt/(rho*c_p))*eavg # source term

108 q = r_[q0,q[1:−1],qn] # replace first and last entries depending on boundary
conditions

109
110 # Solve equation A*T_new = B*T_old + q

111 T_new = linalg.solve(A,dot(B,T_old)+q)

112 return T_new

E.2 MATLAB Implementation of the Finite Difference Method for the
One-Dimensional Heat Equation

1 function Tk=thermsolve1_fd(temp,h,c_p,rho,kappa,eavg,h_dt,sig)

2
3 eps_0 = 8.8541878176e−12; %permittivity of free space
4
5 n=length(temp);

6 kappa1=kappa(1:n−1); rho1=rho(1:n−1); c_p1=c_p(1:n−1);
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7
8 dd=h_dt*kappa1./(rho1.*c_p1.*h.*h);

9
10 % BC: left and right−hand endpoints insulated and fixed at room temperature (the initial

temperature)

11 % so row 1 should be [1 0...0] and row n should be [0...0 1]

12
13 a0 = [1,1+2*dd(2:n−1),1]’ ; %main diagonal
14 a1 = [−dd(2:n−1),0]’ ; %lower/left diagonal
15 a2 = [0,−dd(2:n−1)]’ ; %upper/right diagonal
16 % aaa0 = [ ones(IN,1); 1 + dd*2*K_R(Temp(IN+1:Nx−1)); 1 + dd*K_R(Temp(Nx))];
17 % aaa1 = [ zeros(IN−1,1); −dd*K_R(Temp(IN+1:Nx))];
18 % aaa2 = [ zeros(IN−1,1); −1; −dd*K_R(Temp(IN+1:Nx−1))];
19 A = diag(a0) + diag(a1,−1)+ diag(a2,1);
20 A=sparse(A);

21 %%Source Term %need neg sign?

22 q = h_dt*0.5*sig’.*eavg’./(rho’.*c_p’); % includes multiplying by dt/(rho*c_p)

23 %eavg(1:IN−1)’*omega*eps_0.*eps_2L(Temp(1:IN−1))./a_L(Temp(1:IN−1));
24
25 %mean(q)

26
27 %%Solve equation

28 Tk = A\(temp + q); % Solve A*T^(n+1) = T^n + q

29
30 end

E.3 python Implementation of the Finite Difference Method for the
Two-Dimensional Heat Equation

1 from pylab import *

2 import matplotlib.pyplot as plt

3 import scipy.sparse as sp

4
5 def finite_diff_theta(T_old,hx,hz,eavg,h_dt,theta,phi,bc,h):

6 """finite_diff_theta(T_old,h,c_p,rho,kappa,eavg,h_dt,sig,theta,bc): Implements a

single timestep of the theta−scheme for solving the heat equation using the
finite difference method.

7
8 Inputs:

9 T_old The initial temperature field. A vector (array) of length (N+1)*(M+1).

10 hx The differences between x−values [m]. A vector (array) of length N.
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11 hz The differences between z−values [m]. A vector (array) of length M.
12 eavg The power dissipated into each point of the simulated domain. A vector

(array) of length (N+1)(M+1).

13 h_dt The length of the thermal timestep [sec]. A scalar.

14 theta The parameter for the theta−method in the z−direction. A scalar that
varies from 0 to 1. Take theta = 0 for a fully explicit method, theta = 1

for a fully implicit method, and theta = 0.5 for a Crank−Nicolson
method.

15 phi The parameter for the theta−method in the x−direction. A scalar that
varies from 0 to 1. Take phi = 0 for a fully explicit method, phi = 1 for

a fully implicit method, and phi = 0.5 for a Crank−Nicolson method.
16 bc The type of boundary condition to use at the left− and right−hand

endpoints. A string that takes either the value ’ins’ (for the insulated

boundary conditions; i.e., homogeneous Neumann), ’fix’ (for the fixed

temperature boundary conditions; i.e., inhomogeneous Dirichlet), or ’rad’

(for the radiative boundary conditions; i.e., third−kind or mixed
conditions).

17 h Coefficient for radiative BC.

18 Outputs:

19 T_new The temperature field after a single timestep. A vector (array) of

length n.

20
21
22 """

23
24 # Useful parameters

25 hx_sq = hx[1:]*hx[:−1]
26 hz_sq = hz[1:]*hz[:−1]
27 s = h_dt/(hz_sq)

28 r = h_dt/(hx_sq)

29 N = np.size(hz)

30 M = np.size(hx)

31
32 # Implement the boundary conditions−−choice of Dirichlet, Neumann, or radiative.

Each BC can be written in the mixed formulation a1*T_x(0,t) + a2*T(0,t) = g1(t)

and a3*T_x(L,t) + a4*T(L,t) = g2(t), with some or other parameters being zero,

strategically

33 if bc == ’ins’: # insulated boundary at both left and right−hand endpoints:
homogeneous Neumann condition

34 a11 = 1.0

35 a12 = 0
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36 g1 = 0

37 a21 = 1.0

38 a22 = 0

39 g2 = 0

40 a31 = 1.0

41 a32 = 0

42 g3 = 0

43 a41 = 1.0

44 a42 = 0

45 g4 = 0

46 elif bc == ’rad’: # radiative BC at both left and right−hand endpoints
47 a11 = 1.0

48 a12 = h # represents a1*T_x = −h(T−1)
49 g1 = h

50 a21 = 1.0

51 a22 = −h
52 g2 = −h
53 a31 = 1.0

54 a32 = h # represents a1*T_x = −h(T−1)
55 g3 = h

56 a41 = 1.0

57 a42 = −h
58 g4 = −h
59 else: # throw an error if bc is neither of those strings

60 print "The input variable ’bc’ must be either the string ’ins’ or the string

’rad’"

61 input()

62 import sys

63 sys.exit(1)

64 # Coefficients

65
66 # j=1,...N−1, k=1,...M−1
67 # c1 is not inputted here, because it needs to be done ITERATIVELY

68 Aa1 = Ae1 = −theta*s # vector, length N−1, ITERATIVELY
69 Ab1 = Ad1 = −phi*r # vector, length M−1
70 Ba1 = Be1 = (1−theta)*s # vector, length N−1, ITERATIVELY
71 Bb1 = Bd1 = (1−phi)*r # vector, length M−1
72
73 # j=0, k=1...M−1
74 Ac2 = 1+2*theta*s[0]*(1−(2*hz[0]*a12/a11))+2*phi*r # vector, length M−1
75 Ab2 = Ad2 = −phi*r # vector, length M−1
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76 Ae2 = −2*theta*s[0] # scalar
77 Bc2 = 1+2*(theta−1)*s[0]*(1−(2*hz[0]*a12/a11))+2*(phi−1)*r # vector, length M−1
78 Bb2 = Bd2 = (1−phi)*r # vector, length M−1
79 Be2 = 2*(1−theta)*s[0] # scalar
80
81 # j=N, k=1...M−1
82 Ac3 = 1+2*theta*s[−1]*(1+(2*hz[−1]*a22/a21))+2*phi*r # vector, length M−1
83 Ab3 = Ad3 = −phi*r # vector, length M−1
84 Aa3 = −2*theta*s[−1] # scalar
85 Bc3 = 1+2*(theta−1)*s[−1]*(1+(2*hz[−1]*a22/a21))+2*(phi−1)*r # vector, length M−1
86 Bb3 = Bd3 = (1−phi)*r # vector, length M−1
87 Ba3 = 2*(1−theta)*s[−1] # scalar
88
89 # j=1...N−1, k=0
90 Aa4 = Ae4 = −theta*s # vector, length N−1 , to be taken from ITERATIVELY
91 Ac4 = 1+2*theta*s+2*phi*r[0]*(1−2*hx[0]*a32/a31) # vector, length N−1, ITERATIVE
92 Ad4 = −2*phi*r[0] # scalar
93 Ba4 = Be4 = (1−theta)*s # vector, length N−1 , to be taken from ITERATIVELY
94 Bc4 = 1+2*(theta−1)*s+2*(phi−1)*r[0]*(1−2*hx[0]*a32/a31) # vector, length N−1,

ITERATIVE

95 Bd4 = 2*(1−phi)*r[0] # scalar
96
97 # j=1...N−1, k=M
98 Aa5 = Ae5 = −theta*s # vector, length N−1 , to be taken from ITERATIVELY
99 Ac5 = 1+2*theta*s+2*phi*r[−1]*(1+2*hx[−1]*a42/a41) # vector, length N−1, ITERATIVE

100 Ab5 = −2*phi*r[−1] # scalar
101 Ba5 = Be5 = (1−theta)*s # vector, length N−1 , to be taken from ITERATIVELY
102 Bc5 = 1+2*(theta−1)*s+2*(phi−1)*r[−1]*(1+2*hx[−1]*a42/a41) # vector, length N−1,

ITERATIVE

103 Bb5 = 2*(1−phi)*r[−1] # scalar
104
105 # j=k=0

106 Ac6 = 1+2*theta*s[0]*(1−(2*hz[0]*a12/a11))+2*phi*r[0]*(1−2*hx[0]*a32/a31) # scalar
107 Ad6 = −2*phi*r[0] # scalar
108 Ae6 = −2*theta*s[0] # scalar
109 Bc6 = 1+2*(theta−1)*s[0]*(1−(2*hz[0]*a12/a11))+2*(phi−1)*r[0]*(1−2*hx[0]*a32/a31)

# scalar

110 Bd6 = 2*(1−phi)*r[0] # scalar
111 Be6 = 2*(1−theta)*s[0] # scalar
112
113 # j=N, k=0
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114 Ac7 = 1+2*theta*s[−1]*(1+(2*hz[−1]*a22/a21))+2*phi*r[0]*(1−2*hx[0]*a32/a31) #
scalar

115 Aa7 = −2*theta*s[−1] # scalar
116 Ad7 = −2*phi*r[0] # scalar
117 Bc7 = 1+2*(theta−1)*s[−1]*(1+(2*hz[−1]*a22/a21))+2*(phi−1)*r[0]*(1−2*hx[0]*a32/

a31) # scalar

118 Ba7 = 2*(1−theta)*s[−1] # scalar
119 Bd7 = 2*(1−phi)*r[0] # scalar
120
121 # j=0, k=M

122 Ac8 = 1+2*theta*s[0]*(1−(2*hz[0]*a12/a11))+2*phi*r[−1]*(1−2*hx[−1]*a42/a41) #
scalar

123 Ab8 = −2*phi*r[−1] # scalar
124 Ae8 = −2*theta*s[0] # scalar
125 Bc8 = 1+2*(theta−1)*s[0]*(1−(2*hz[0]*a12/a11))+2*(phi−1)*r[−1]*(1−2*hx[−1]*a42/

a41) # scalar

126 Bb8 = 2*(1−phi)*r[−1] # scalar
127 Be8 = 2*(1−theta)*s[0] # scalar
128
129 # j=N, k=M

130 Ac9 = 1+2*theta*s[−1]*(1+(2*hz[−1]*a22/a21))+2*phi*r[−1]*(1−2*hx[−1]*a42/a41) #
scalar

131 Aa9 = −2*theta*s[−1] # scalar
132 Ab9 = −2*phi*r[−1] # scalar
133 Bc9 = 1+2*(theta−1)*s[−1]*(1+(2*hz[−1]*a22/a21))+2*(phi−1)*r[−1]*(1−2*hx[−1]*a42

/a41) # scalar

134 Ba9 = 2*(1−theta)*s[−1] # scalar
135 Bb9 = 2*(1−phi)*r[−1] # scalar
136
137
138 # Create diagonals of A−matrix (for solving A*T_new = B*T_old + q)
139 zer = np.zeros(np.shape(Ac3)) # M−1 long array of zeros
140
141 a_diag = np.r_[np.reshape(np.c_[Aa4,np.transpose([Aa1]*(M−1)),Aa5],(N−1)*(M+1)),Aa7

,[Aa3]*(M−1),Aa9]
142 b_diag = np.r_[Ab2,Ab8,np.tile(np.r_[0,Ab1,Ab5],N−1),0,Ab3,Ab9]
143 c_diag = np.r_[Ac6,Ac2,Ac8]

144 for j in range(1,N):

145 Ac1 = 1+2*theta*s[j−1]+2*phi*r
146 c_diag = np.r_[c_diag,Ac4[j−1],Ac1,Ac5[j−1]]
147 c_diag = np.r_[c_diag,Ac7,Ac3,Ac9]
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148 d_diag = np.r_[Ad6,Ad2,np.tile(np.r_[0,Ad4,Ad1],N−1),0,Ad7,Ad3]
149 e_diag = np.r_[Ae6,[Ae2]*(M−1),Ae8,np.reshape(np.c_[Ae4,np.transpose([Ae1]*(M−1)),

Ae5],(M+1)*(N−1))]
150
151 diagonals = [ a_diag , b_diag , c_diag, d_diag, e_diag ]

152
153 # Create A−matrix (for solving A*T_new = B*T_old + q)
154 A = sp.diags(diagonals,[−(M+1),−1,0,1,M+1]).toarray() # make A directly as a sparse

matrix

155
156 # Create diagonals of B−matrix (for solving A*T_new = B*T_old + q)
157 zer = np.zeros(np.shape(Bc3)) # M−1 long array of zeros
158 a_diag = np.r_[np.reshape(np.c_[Ba4,np.transpose([Ba1]*(M−1)),Ba5],(N−1)*(M+1)),Ba7

,[Ba3]*(M−1),Ba9]
159 b_diag = np.r_[Bb2,Bb8,np.tile(np.r_[0,Bb1,Bb5],N−1),0,Bb3,Bb9]
160 c_diag = np.r_[Bc6,Bc2,Bc8]

161 for j in range(1,N):

162 Bc1 = 1+2*theta*s[j−1]+2*phi*r
163 c_diag = np.r_[c_diag,Bc4[j−1],Bc1,Bc5[j−1]]
164 c_diag = np.r_[c_diag,Bc7,Bc3,Bc9]

165 d_diag = np.r_[Bd6,Bd2,np.tile(np.r_[0,Bd4,Bd1],N−1),0,Bd7,Bd3]
166 e_diag = np.r_[Be6,[Be2]*(M−1),Be8,np.reshape(np.c_[Be4,np.transpose([Be1]*(M−1)),

Be5],(M+1)*(N−1))]
167
168 diagonals = [ a_diag , b_diag , c_diag, d_diag, e_diag ]

169
170 # Create B−matrix (for solving A*T_new = B*T_old + q)
171 B = sp.diags(diagonals,[−(M+1),−1,0,1,M+1]).toarray() # make B directly as a sparse

matrix

172
173 # Create q (for solving A*T_new = B*T_old + q)

174 q = h_dt*eavg # source term

175 q[:M+1]=q[:M+1] − 2*s[0]*hz[0]*g1/a11 # accounts for z=0 boundary
176 q[−M:]=q[−M:] + 2*s[−1]*hz[−1]*g2/a21 # accounts for z=L boundary
177 q[np.arange(0,(M+1)*N+1,(M+1))] = q[np.arange(0,(M+1)*N+1,(M+1))] − 2*r[0]*hx[0]*g3

/a31 # accounts for x=0 boundary

178 q[np.arange(M+1,(M+1)*(N+1)+1,(M+1))−1] = q[np.arange(M+1,(M+1)*(N+1)+1,(M+1))−1] +
2*r[−1]*hx[−1]*g4/a41 # accounts for x=H boundary

179
180 # Solve equation A*T_new = B*T_old + q

181 T_new = linalg.solve(A,dot(B,T_old)+q)
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182 return T_new

183
184
185 def second_try_nondiml(T_old,hx,hz,eavg,h_dt,theta,phi,bc,h,T_init,k,rho,c_p):

186 """second_try_diml(T_old,h,c_p,rho,kappa,eavg,h_dt,sig,theta,bc): Implements a

single timestep of the theta−scheme for solving the heat equation using the
finite difference method.

187
188 Inputs:

189 T_old The initial temperature field. A vector (array) of length (N+1)*(M+1).

190 hx The differences between x−values [m]. A vector (array) of length N.
191 hz The differences between z−values [m]. A vector (array) of length M.
192 eavg The power dissipated into each point of the simulated domain. A vector

(array) of length (N+1)(M+1).

193 h_dt The length of the thermal timestep [sec]. A scalar.

194 theta The parameter for the theta−method in the z−direction. A scalar that
varies from 0 to 1. Take theta = 0 for a fully explicit method, theta = 1

for a fully implicit method, and theta = 0.5 for a Crank−Nicolson
method.

195 phi The parameter for the theta−method in the x−direction. A scalar that
varies from 0 to 1. Take phi = 0 for a fully explicit method, phi = 1 for

a fully implicit method, and phi = 0.5 for a Crank−Nicolson method.
196 bc The type of boundary condition to use at the left− and right−hand

endpoints. A string that takes either the value ’ins’ (for the insulated

boundary conditions; i.e., homogeneous Neumann), ’fix’ (for the fixed

temperature boundary conditions; i.e., inhomogeneous Dirichlet), or ’rad’

(for the radiative boundary conditions; i.e., third−kind or mixed
conditions).

197 h Coefficient for radiative BC.

198 Outputs:

199 T_new The temperature field after a single timestep. A vector (array) of

length n.

200 """

201
202 # Useful parameters

203 mu0=pi*4e−7 # permeability of free space [N/A^2]
204 c = 299792458.0 # speed of light [m/s]

205 hx_sq = hx[1:]*hx[:−1]
206 hz_sq = hz[1:]*hz[:−1]
207 s = h_dt/(hz_sq)

208 r = h_dt/(hx_sq)
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209 N = np.size(hz)

210 M = np.size(hx)

211
212 # Implement the boundary conditions−−choice of Dirichlet, Neumann, or radiative.

Each BC can be written in the mixed formulation a1*T_x(0,t) + a2*T(0,t) = g1(t)

and a3*T_x(L,t) + a4*T(L,t) = g2(t), with some or other parameters being zero,

strategically

213 if bc == ’ins’: # insulated boundary on all four walls: homogeneous Neumann

condition

214 a11 = 1.0

215 a12 = 0

216 g1 = 0

217 a21 = 1.0

218 a22 = 0

219 g2 = 0

220 a31 = 1.0

221 a32 = 0

222 g3 = 0

223 a41 = 1.0

224 a42 = 0

225 g4 = 0

226 elif bc == ’rad’: # radiative BC on all four walls

227 a11 = 1.0

228 a12 = −h
229 g1 = −h*T_init
230 a21 = 1.0

231 a22 = −h
232 g2 = −h*T_init
233 a31 = 1.0

234 a32 = −h
235 g3 = −h*T_init
236 a41 = 1.0

237 a42 = −h
238 g4 = −h*T_init
239 elif bc == ’fix’: # fixed temperature on all four walls

240 #these are dummy values for now, and boundary rows will be changed after

matrices created

241 a11 = 1.0

242 a12 = 0

243 g1 = 0

244 a21 = 1.0
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245 a22 = 0

246 g2 = 0

247 a31 = 1.0

248 a32 = 0

249 g3 = 0

250 a41 = 1.0

251 a42 = 0

252 g4 = 0

253 else: # throw an error if bc is neither of those strings

254 print "The input variable ’bc’ must be either the string ’fix’, ’ins’, or ’

rad’"

255 input()

256 import sys

257 sys.exit(1)

258
259 # Create diagonals of A−matrix and B−matrix (for solving A*T_new = B*T_old + v*q)
260 Aa_diag = Ba_diag = np.array([])

261
262 Ab_diag = Ad_diag = −theta*s
263 Ab_diag = np.r_[Ab_diag, −2*theta*s[−1]]
264 Ad_diag = np.r_[−2*theta*s[0], Ad_diag]
265
266 Bb_diag = Bd_diag = (1−theta)*s
267 Bb_diag = np.r_[Bb_diag, 2*(1−theta)*s[−1]]
268 Bd_diag = np.r_[2*(1−theta)*s[0], Bd_diag]
269
270 Ac_diag = np.r_[1+2*theta*s[0]*(1−(2*hz[0]*a12/a11))+2*phi*r[0]*(1−(2*hx[0]*a32/a31

)) , 1+2*theta*s+[2*phi*r[0]*(1−(2*hx[0]*a32/a31))]*(N−1) , 1+2*theta*s
[−1]*(1+(2*hz[−1]*a22/a21))+2*phi*r[0]*(1−(2*hx[0]*a32/a31))]

271 Bc_diag = np.r_[1+2*(theta−1)*s[0]*(1−(2*hz[0]*a12/a11))+2*(phi−1)*r[0]*(1−(2*hx
[0]*a32/a31)) , 1+2*(theta−1)*s+[2*(phi−1)*r[0]*(1−(2*hx[0]*a32/a31))]*(N−1) ,
1+2*(theta−1)*s[−1]*(1+(2*hz[−1]*a22/a21))+2*(phi−1)*r[0]*(1−(2*hx[0]*a32/
a31))]

272
273 Ae_diag = np.r_[ [−2*phi*r[0]]*(N+1)]
274 Be_diag = np.r_[ [2*(1−phi)*r[0]]*(N+1)]
275
276 for k in range(1,M):

277 Aa_diag = np.r_[Aa_diag, [−phi*r[k−1]]*(N+1)]
278 Ba_diag = np.r_[Ba_diag, [(1.0−phi)*r[k−1]]*(N+1)]
279
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280 Ab_diag = np.r_[Ab_diag, 0.0, −theta*s , −2.0*theta*s[−1] ]
281 Bb_diag = np.r_[Bb_diag, 0.0, (1.0−theta)*s , 2.0*(1.0−theta)*s[−1] ]
282
283 Ac_diag = np.r_[Ac_diag, 1+2.0*phi*r[k−1]+2*theta*s[0]*(1−(2*hz[0]*a12/a11))

, 1+2.0*phi*r[k−1]+2*theta*s , 1+2.0*phi*r[k−1]+2*theta*s[−1]*(1+(2*hz
[−1]*a22/a21)) ]

284 Bc_diag = np.r_[Bc_diag, 1+2.0*(phi−1)*r[k−1]+2*(theta−1)*s[0]*(1−(2*hz[0]*
a12/a11)) , 1+2.0*(phi−1)*r[k−1]+2*(theta−1)*s , 1+2.0*(phi−1)*r[k
−1]+2*(theta−1)*s[−1]*(1+(2*hz[−1]*a22/a21)) ]

285
286 Ad_diag = np.r_[Ad_diag, 0.0, −2.0*theta*s[0] , −theta*s ]
287 Bd_diag = np.r_[Bd_diag, 0.0, 2.0*(1.0−theta)*s[0] , (1.0−theta)*s]
288
289 Ae_diag = np.r_[Ae_diag, [−phi*r[k−1]]*(N+1)]
290 Be_diag = np.r_[Be_diag, [(1.0−phi)*r[k−1]]*(N+1) ]
291
292 Aa_diag = np.r_[Aa_diag, [−2*phi*r[−1]]*(N+1) ]
293 Ba_diag = np.r_[Ba_diag, [2*(1−phi)*r[−1]]*(N+1) ]
294
295 Ab_diag = np.r_[Ab_diag, 0.0, −theta*s , −2*theta*s[−1] ]
296 Bb_diag = np.r_[Bb_diag, 0.0, (1.0−theta)*s, 2*(1−theta)*s[−1] ]
297
298 Ac_diag = np.r_[Ac_diag, 1.0+2.0*theta*s[0]*(1.0−(2*hz[0]*a12/a11))+2.0*phi*r

[−1]*(1.0+(2.0*hx[−1]*a42/a41)) , 1.0+2.0*theta*s+2*phi*r[−1]*(1+(2*hx[−1]*a42
/a41)) , 1.0+2*theta*s[−1]*(1.0+(2*hz[−1]*a22/a21))+2.0*phi*r[−1]*(1.0+(2.0*hx
[−1]*a42/a41)) ]

299 Bc_diag = np.r_[Bc_diag, 1.0+2.0*(theta−1)*s[0]*(1.0−(2*hz[0]*a12/a11))+2.0*(phi
−1)*r[−1]*(1.0+(2.0*hx[−1]*a42/a41)) , 1.0+2.0*(theta−1)*s+2*(phi−1)*r
[−1]*(1+(2*hx[−1]*a42/a41)) , 1.0+2.0*(theta−1.0)*s[−1]*(1.0+(2.0*hz[−1]*a22/
a21))+2.0*(phi−1)*r[−1]*(1.0+(2.0*hx[−1]*a42/a41)) ]

300
301 Ad_diag = np.r_[Ad_diag, 0.0, −2.0*theta*s[0] , −theta*s ]
302 Bd_diag = np.r_[Bd_diag, 0.0, 2.0*(1.0−theta)*s[0] , s*(1−theta) ]
303
304 Adiagonals = [ Aa_diag , Ab_diag , Ac_diag, Ad_diag, Ae_diag ]

305 Bdiagonals = [ Ba_diag , Bb_diag , Bc_diag, Bd_diag, Be_diag ]

306
307 # Make A and B directly as sparse matrices

308 A = sp.diags(Adiagonals,[−(N+1),−1,0,1,N+1]).toarray() # make A directly as a
sparse matrix
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309 B = sp.diags(Bdiagonals,[−(N+1),−1,0,1,N+1]).toarray() # make B directly as a
sparse matrix

310
311 # Create v (for solving A*E_new = B*E_old + v*E_older)

312 v = eavg*h_dt

313
314 v[0] = v[0] −2*r[0]*hx[0]*g3/a31− 2*s[0]*hz[0]*g1/a11
315 v[1:N] = v[1:N]−2*r[0]*hx[0]*g3/a31
316 v[N] = v[N] − 2*r[0]*hx[0]*g3/a31+ 2*s[−1]*hz[−1]*g2/a21
317 for k in range(1,M):

318 v[k*(N+1)] = v[k*(N+1)] − 2*s[0]*hz[0]*g1/a11
319 v[(k+1)*(N+1)−1] = v[(k+1)*(N+1)−1] + 2*s[−1]*hz[−1]*g2/a21
320 v[−(N+1)] = v[−(N+1)] +2*r[−1]*hx[−1]*g4/a41 − 2*s[−1]*hz[0]*g1/a11
321 v[−N:−1] = v[−N:−1] + 2*r[−1]*hx[−1]*g4/a41
322 v[−1] = v[−1] + 2*r[−1]*hx[−1]*g4/a41+ 2*s[−1]*hz[−1]*g2/a21
323
324 if bc == ’fix’:

325 for j in range(0,N):

326 A[j,:] = B[j,:] = 0

327 A[j,j] = 1

328 v[j] = T_init

329
330 A[−(j+1),:] = B[−(j+1),:] = 0
331 A[−(j+1),−(j+1)] = 1
332 v[−(j+1)] = T_init
333 for k in range(1,M):

334 A[k*(N+1),:] = B[k*(N+1),:] = 0

335 A[k*(N+1),k*(N+1)] = 1

336 v[k*(N+1)] = T_init

337
338 A[(k+1)*(N+1)−1,:] = B[(k+1)*(N+1)−1,:] = 0
339 A[(k+1)*(N+1)−1,(k+1)*(N+1)−1] = 1
340 v[(k+1)*(N+1)−1] = T_init
341
342 # Solve equation A*E_new = B*E_old + v*E_older

343 T_new = linalg.solve(A,np.dot(B,T_old)+v)

344
345 return T_new

346
347 def second_try_diml(T_old,hx,hz,eavg,h_dt,theta,phi,bc,h,T_init,k,rho,c_p):
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348 """second_try_diml(T_old,h,c_p,rho,kappa,eavg,h_dt,sig,theta,bc): Implements a

single timestep of the theta−scheme for solving the heat equation using the
finite difference method.

349
350 Inputs:

351 T_old The initial temperature field. A vector (array) of length (N+1)*(M+1).

352 hx The differences between x−values [m]. A vector (array) of length N.
353 hz The differences between z−values [m]. A vector (array) of length M.
354 eavg The power dissipated into each point of the simulated domain. A vector

(array) of length (N+1)(M+1).

355 h_dt The length of the thermal timestep [sec]. A scalar.

356 theta The parameter for the theta−method in the z−direction. A scalar that
varies from 0 to 1. Take theta = 0 for a fully explicit method, theta = 1

for a fully implicit method, and theta = 0.5 for a Crank−Nicolson
method.

357 phi The parameter for the theta−method in the x−direction. A scalar that
varies from 0 to 1. Take phi = 0 for a fully explicit method, phi = 1 for

a fully implicit method, and phi = 0.5 for a Crank−Nicolson method.
358 bc The type of boundary condition to use at the left− and right−hand

endpoints. A string that takes either the value ’ins’ (for the insulated

boundary conditions; i.e., homogeneous Neumann), ’fix’ (for the fixed

temperature boundary conditions; i.e., inhomogeneous Dirichlet), or ’rad’

(for the radiative boundary conditions; i.e., third−kind or mixed
conditions).

359 h Coefficient for radiative BC.

360 Outputs:

361 T_new The temperature field after a single timestep. A vector (array) of

length n.

362 """

363
364 # Useful parameters

365 mu0=pi*4e−7 # permeability of free space [N/A^2]
366 c = 299792458.0 # speed of light [m/s]

367 hx_sq = hx[1:]*hx[:−1]
368 hz_sq = hz[1:]*hz[:−1]
369 s = h_dt/(hz_sq)

370 r = h_dt/(hx_sq)

371 N = np.size(hz)

372 M = np.size(hx)

373 s,r = np.meshgrid(s,r)

374 kappa = k/rho*c_p
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375 kappa = np.reshape(kappa,(M+1,N+1))

376
377 s = s*kappa[1:−1,1:−1]
378 r = r*kappa[1:−1,1:−1]
379
380 # Implement the boundary conditions−−choice of Dirichlet, Neumann, or radiative.

Each BC can be written in the mixed formulation a1*T_x(0,t) + a2*T(0,t) = g1(t)

and a3*T_x(L,t) + a4*T(L,t) = g2(t), with some or other parameters being zero,

strategically

381 if bc == ’ins’: # insulated boundary on all four walls: homogeneous Neumann

condition

382 a11 = 1.0

383 a12 = 0

384 g1 = 0

385 a21 = 1.0

386 a22 = 0

387 g2 = 0

388 a31 = 1.0

389 a32 = 0

390 g3 = 0

391 a41 = 1.0

392 a42 = 0

393 g4 = 0

394 elif bc == ’rad’: # radiative BC on all four walls

395 a11 = 1.0

396 a12 = h

397 g1 = h*T_init

398 a21 = 1.0

399 a22 = −h
400 g2 = −h*T_init
401 a31 = 1.0

402 a32 = −h
403 g3 = −h*T_init
404 a41 = 1.0

405 a42 = h

406 g4 = h*T_init

407 elif bc == ’fix’: # fixed temperature on all four walls

408 #these are dummy values for now, and boundary rows will be changed after

matrices created

409 a11 = 1.0

410 a12 = 0
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411 g1 = 0

412 a21 = 1.0

413 a22 = 0

414 g2 = 0

415 a31 = 1.0

416 a32 = 0

417 g3 = 0

418 a41 = 1.0

419 a42 = 0

420 g4 = 0

421 else: # throw an error if bc is neither of those strings

422 print "The input variable ’bc’ must be either the string ’fix’, ’ins’, or ’

rad’"

423 input()

424 import sys

425 sys.exit(1)

426
427 # Create diagonals of A−matrix and B−matrix (for solving A*T_new = B*T_old + v*q)
428 Aa_diag = Ba_diag = np.array([])

429
430 Ab_diag = Ad_diag = −theta*s[0,:]
431 Ab_diag = np.r_[Ab_diag, −2*theta*s[0,−1]]
432 Ad_diag = np.r_[−2*theta*s[0,0], Ad_diag]
433
434 Bb_diag = Bd_diag = (1−theta)*s[0,:]
435 Bb_diag = np.r_[Bb_diag, 2*(1−theta)*s[0,−1]]
436 Bd_diag = np.r_[2*(1−theta)*s[0,0], Bd_diag]
437
438 Ac_diag = np.r_[1+2*theta*s[0,0]*(1−(2*hz[0]*a12/a11))+2*phi*r[0,0]*(1−(2*hx[0]*a32

/a31)) , 1+2*theta*s[0,:]+2*phi*r[0,:]*(1−(2*hx[0]*a32/a31)) , 1+2*theta*s
[0,−1]*(1+(2*hz[−1]*a22/a21))+2*phi*r[0,−1]*(1−(2*hx[0]*a32/a31))]

439 Bc_diag = np.r_[1+2*(theta−1)*s[0,0]*(1−(2*hz[0]*a12/a11))+2*(phi−1)*r[0,0]*(1−(2*
hx[0]*a32/a31)) , 1+2*(theta−1)*s[0,:]+2*(phi−1)*r[0,:]*(1−(2*hx[0]*a32/a31))
, 1+2*(theta−1)*s[0,−1]*(1+(2*hz[−1]*a22/a21))+2*(phi−1)*r[0,−1]*(1−(2*hx[0]*
a32/a31))]

440
441 Ae_diag = np.r_[ −2*phi*r[0,0], −2*phi*r[0,:], −2*phi*r[0,−1] ]
442 Be_diag = np.r_[ 2*(1−phi)*r[0,0], 2*(1−phi)*r[0,:] , 2*(1−phi)*r[0,−1] ]
443
444 for k in range(1,M):

445 Aa_diag = np.r_[Aa_diag, −phi*r[k−1,0], −phi*r[k−1,:], −phi*r[k−1,−1] ]
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446 Ba_diag = np.r_[Ba_diag, (1.0−phi)*r[k−1,0], (1.0−phi)*r[k−1,:], (1.0−phi)
*r[k−1,−1] ]

447
448 Ab_diag = np.r_[Ab_diag, 0.0, −theta*s[k−1,:] , −2.0*theta*s[k−1,−1] ]
449 Bb_diag = np.r_[Bb_diag, 0.0, (1.0−theta)*s[k−1,:] , 2.0*(1.0−theta)*s[k

−1,−1] ]
450
451 Ac_diag = np.r_[Ac_diag, 1+2.0*phi*r[k−1,0]+2*theta*s[k−1,0]*(1−(2*hz[0]*

a12/a11)) , 1+2.0*phi*r[k−1,:]+2*theta*s[k−1,:] , 1+2.0*phi*r[k
−1,−1]+2*theta*s[k−1,−1]*(1+(2*hz[−1]*a22/a21)) ]

452 Bc_diag = np.r_[Bc_diag, 1+2.0*(phi−1)*r[k−1,0]+2*(theta−1)*s[k
−1,0]*(1−(2*hz[0]*a12/a11)) , 1+2.0*(phi−1)*r[k−1,:]+2*(theta−1)*s[k
−1,:] , 1+2.0*(phi−1)*r[k−1,−1]+2*(theta−1)*s[k−1,−1]*(1+(2*hz[−1]*
a22/a21)) ]

453
454 Ad_diag = np.r_[Ad_diag, 0.0, −2.0*theta*s[k−1,0] , −theta*s[k−1,:] ]
455 Bd_diag = np.r_[Bd_diag, 0.0, 2.0*(1.0−theta)*s[k−1,0] , (1.0−theta)*s[k

−1,:]]
456
457 Ae_diag = np.r_[Ae_diag, −phi*r[k−1,0], −phi*r[k−1,:], −phi*r[k−1,−1] ]
458 Be_diag = np.r_[Be_diag, (1.0−phi)*r[k−1,0], (1.0−phi)*r[k−1,:], (1.0−phi)

*r[k−1,−1] ]
459
460 Aa_diag = np.r_[Aa_diag, −2.0*phi*r[−1,0], −2.0*phi*r[−1,:], −2.0*phi*r[−1,−1] ]
461 Ba_diag = np.r_[Ba_diag, 2.0*(1.0−phi)*r[−1,0], 2.0*(1.0−phi)*r[−1,:] , 2.0*(1.0−

phi)*r[−1,−1] ]
462
463 Ab_diag = np.r_[Ab_diag, 0.0, −theta*s[−1,:] , −2.0*theta*s[−1,−1] ]
464 Bb_diag = np.r_[Bb_diag, 0.0, (1.0−theta)*s[−1,:], 2.0*(1.0−theta)*s[−1,−1] ]
465
466 Ac_diag = np.r_[Ac_diag, 1.0+2.0*theta*s[−1,0]*(1.0−(2*hz[0]*a12/a11))+2.0*phi*r

[−1,0]*(1.0+(2.0*hx[−1]*a42/a41)) , 1.0+2.0*theta*s[−1,:]+2*phi*r[−1,:]*(1+(2*
hx[−1]*a42/a41)) , 1.0+2*theta*s[−1,−1]*(1.0+(2*hz[−1]*a22/a21))+2.0*phi*r
[−1,−1]*(1.0+(2.0*hx[−1]*a42/a41)) ]

467 Bc_diag = np.r_[Bc_diag, 1.0+2.0*(theta−1)*s[−1,0]*(1.0−(2*hz[0]*a12/a11))+2.0*(
phi−1)*r[−1,0]*(1.0+(2.0*hx[−1]*a42/a41)) , 1.0+2.0*(theta−1)*s[−1,:]+2*(phi
−1)*r[−1,:]*(1+(2*hx[−1]*a42/a41)) , 1.0+2.0*(theta−1.0)*s[−1,−1]*(1.0+(2.0*
hz[−1]*a22/a21))+2.0*(phi−1)*r[−1,−1]*(1.0+(2.0*hx[−1]*a42/a41)) ]

468
469 Ad_diag = np.r_[Ad_diag, 0.0, −2.0*theta*s[−1,0], −theta*s[−1,:] ]
470 Bd_diag = np.r_[Bd_diag, 0.0, 2.0*(1.0−theta)*s[−1,0] , s[−1,:]*(1−theta) ]
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471
472 Adiagonals = [ Aa_diag , Ab_diag , Ac_diag, Ad_diag, Ae_diag ]

473 Bdiagonals = [ Ba_diag , Bb_diag , Bc_diag, Bd_diag, Be_diag ]

474
475 # Make A and B directly as sparse matrices

476 A = sp.diags(Adiagonals,[−(N+1),−1,0,1,N+1]).toarray() # make A directly as a
sparse matrix

477 B = sp.diags(Bdiagonals,[−(N+1),−1,0,1,N+1]).toarray() # make B directly as a
sparse matrix

478
479 # Create v (for solving A*E_new = B*E_old + v*E_older)

480 v = eavg*h_dt/(c_p*rho)

481
482 # print M

483 # print N

484
485 # print (M+1)*(N+1)−1
486 # print M*(N+1)−1
487
488 v[0] = v[0] −2*r[0,0]*hx[0]*g3/a31− 2*s[0,0]*hz[0]*g1/a11
489 # print "v[0] −g3 −g1"
490 v[1:N] = v[1:N]−2*r[0,:]*hx[0]*g3/a31
491 # print "v[1:"+str(N)+"] −g3"
492 v[N] = v[N] − 2*r[0,−1]*hx[0]*g3/a31+ 2*s[0,−1]*hz[−1]*g2/a21
493 # print "v["+str(N)+"] −g3 + g2"
494 for k in range(1,M):

495 v[k*(N+1)] = v[k*(N+1)] − 2*s[k−1,0]*hz[0]*g1/a11
496 # print "v["+str(k*(N+1))+"] − g1"
497 v[(k+1)*(N+1)−1] = v[(k+1)*(N+1)−1] + 2*s[k−1,−1]*hz[−1]*g2/a21
498 # print "v["+str((k+1)*(N+1)−1)+"] + g2"
499 v[−(N+1)] = v[−(N+1)] +2*r[−1,0]*hx[−1]*g4/a41 − 2*s[−1,0]*hz[0]*g1/a11
500 # print "v["+str(np.size(v)−N)+"] +g4 −g1"
501 v[−N:−1] = v[−N:−1]+2*r[−1,:]*hx[−1]*g4/a41
502 # print "v["+str(np.size(v)−N+1)+":"+str(np.size(v)−1)+"] +g4"
503 v[−1] = v[−1] + 2*r[−1,−1]*hx[−1]*g4/a41+ 2*s[−1,−1]*hz[−1]*g2/a21
504 # print "v["+str(np.size(v)−1)+"] +g4 +g2"
505
506 if bc == ’fix’:

507 for j in range(0,N):

508 A[j,:] = B[j,:] = 0

509 A[j,j] = 1
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510 v[j] = T_init

511
512 A[−(j+1),:] = B[−(j+1),:] = 0
513 A[−(j+1),−(j+1)] = 1
514 v[−(j+1)] = T_init
515 for k in range(1,M):

516 A[k*(N+1),:] = B[k*(N+1),:] = 0

517 A[k*(N+1),k*(N+1)] = 1

518 v[k*(N+1)] = T_init

519
520 A[(k+1)*(N+1)−1,:] = B[(k+1)*(N+1)−1,:] = 0
521 A[(k+1)*(N+1)−1,(k+1)*(N+1)−1] = 1
522 v[(k+1)*(N+1)−1] = T_init
523
524 # Solve equation A*E_new = B*E_old + v*E_older

525 T_new = linalg.solve(A,np.dot(B,T_old)+v)

526
527 return T_new

E.4 MATLAB Implementation of the Finite Difference Method for the
Two-Dimensional Heat Equation

1 function temp_new=thermsolve2_fd(temp,hx,hy,Nx,Ny,X,Y,cp,rho,k,eavg,dt,sigma,time)

2
3 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves at 2.45GHz

4 eps0 = 8.8541878176e−12; %permittivity of free space
5
6 k=(reshape(k’,1,[]));

7
8 % BC: all walls insulated and fixed at room temperature (the initial temperature)

9
10 a_up=−k(1:end−1).*[zeros(1,Nx), repmat([0,(1./(hx(2:end).^2)),0],[1 Ny−2]), zeros(1,Nx−1)

];

11 a_lo=−k(2:end).*[zeros(1,Nx−1), repmat([0,(1./(hx(2:end).^2)),0],[1 Ny−2]), zeros(1,Nx)];
12
13 b_up=−k(1:end−Nx).*[zeros(1,Nx), reshape([zeros(size(hy(2:end)));repmat((1./(hy(2:end))

.^2),[Nx−2,1]);zeros(size(hy(2:end)))],1,[]) ];
14 b_lo=−k(Nx+1:end).*[reshape([zeros(size(hy(1:end−1)));repmat((1./(hy(2:end)).^2),[Nx

−2,1]);zeros(size(hy(1:end−1)))],1,[]), zeros(1,Nx) ];
15
16 q_int=k(Nx+1:end−Nx).*repmat([0,(2./(hx(2:end)).^2),0],[1 Ny−2])...
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17 +k(Nx+1:end−Nx).*reshape([zeros(size(hy(2:end)));repmat(2./(hy(2:end)).^2,[Nx−2,1]);
zeros(size(hy(2:end)))],1,[])...

18 +(reshape(rho(2:end−1,:)’,1,[])).*(reshape(cp(2:end−1,:)’,1,[]))/dt;
19
20 q=[ones(1,Nx),q_int,ones(1,Nx)];

21 q((1:Ny−1)*Nx+1)=1; % temperature is fixed at room temp on left−hand wall
22 q((1:Ny)*Nx)=1; % temperature is fixed at room temp on right−hand wall
23
24 A=diag(q,0) + diag(a_up,1) + diag(a_lo,−1) + diag(b_up,Nx) + diag(b_lo,−Nx);
25 A=sparse(A);

26 %A=spdiags([b_lo a_lo q a_up b_up],[−Nx,−1,0,1,Nx],length(q),length(q));
27
28 s=(reshape(rho’,1,[])).*(reshape(cp’,1,[]))/dt;

29
30 %%Source Term

31
32 Q = 0.5*omega*eps0*(reshape(sigma’,1,[]))’.*eavg;

33
34 Q(1:Nx)=0; % temp is fixed on top wall

35 Q((1:Ny−1)*Nx+1)=0; % temp is fixed on left−hand wall
36 Q((1:Ny)*Nx)=0; % temp is fixed on right−hand wall
37 Q(end−Nx:end)=0; % temp is fixed on bottom wall
38 s(1:Nx)=1; % temp is fixed on top wall

39 s((1:Ny−1)*Nx+1)=1; % temp is fixed on left−hand wall
40 s((1:Ny)*Nx)=1; % temp is fixed on right−hand wall
41 s(end−Nx:end)=1; % temp is fixed on bottom wall
42
43 %%Solve equation

44 temp_new = A\(s’.*temp + Q); % Solve A*T^(n+1) = s*T^n + Q

45
46 % figure(2); hold off; surf(X*100,flipud(Y*100),(reshape(temp_new,Nx,Ny))’−273); view

(0,90); colorbar;

47 % title(strcat(’Temperature distribution at t=’,num2str(time+dt,’%11.3g’),’ seconds’));

48 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Temperature [C
]’);

49
50
51
52 end



Appendix F

Computer Implementation in python and
MATLAB of theMechanical Solvers for the 1D
and 2D Sintering Problems

F.1 Computer Implementation in python of the Exponential Integrals
Method for FindingΘValues

1 #!/usr/bin/python

2 #

3 # Reproduces Figure 5.1 from Abramowitz & Stegun for the thesis;

4 # Computes Theta values for a constant heating rate trial using exponential integrals; this

5
6 from scipy import special # exponential integral functions

7 from scipy import integrate # cumulative trapezoidal integration

8 #from numpy import linalg as la # for computing vector norm

9 import numpy as np # for linspace and regular exponential function

10 import matplotlib.pyplot as plt # for plotting theta−values (and for reproducing
AbramowitzStegun figure for thesis)

11 from matplotlib2tikz import save as tikz_save # for getting a file with tikz data to plot

directly in thesis

12 import timeit # for computing speeds of cumtrapz vs expint

13
14 # Recreate Figure from AbramowitzStegun

15 x = np.linspace(0,1.5,100)

16 x = x[1:] # *positive* x−vals, not zero
17 yi = special.expi(x) # Ei(x)

318
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18 y1 = special.exp1(x) # E_1(x)

19
20 plt.figure(1)

21 plt.clf()

22 plt.plot(x,yi,label=r’$y=$Ei$(x)$’)

23 plt.plot(x,y1,label=r’$y=$E$_1(x)$’)

24 plt.plot(x,np.zeros(np.shape(x)),’k−’) # x−axis (this is the ugliest way of putting the x
−axis here, but ’spines’ isn’t a recognized module in my version of matplotlib−−why?)

25 plt.grid()

26 plt.legend(loc=’lower right’)

27 plt.xlabel(’$x$’)

28 plt.ylabel(’$y$’)

29 plt.title(r’Exponential integrals $y =$ Ei$(x)$ and $y =$ E$_1(x)$ computed with \texttt{

python}’)

30 plt.savefig(’python_ei.png’) # saves the plot as .png without displaying it

31 tikz_save(’python_ei.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\figurewidth’,

show_info = False ) # save data as .tex so plot can be recreated directly in LaTeX

32
33 # Test speed and accuracy of computing Theta values

34 times = np.linspace(500,1000) # time from 500 to 1000 seconds

35 alpha = 5 # 5 degC/min

36 temps = 800+alpha*times # start at 800 degC

37 Q = 650000 # J/mol (for example−−this is approximately the correct value for zirconia)
38 R = 8.314459848 # ideal gas constant [J/(mol*K)]

39 ntimes = 100000

40
41 # Compute using exponential integral function

42 def compute_expi():

43 return (1/alpha)*special.expi(−Q/(R*alpha*times))
44 expitime=timeit.timeit(stmt="compute_expi()",number=ntimes,setup="from __main__ import

compute_expi")

45 eithetas = compute_expi()

46
47 # Compute using cumulative trapezoidal integration

48 def compute_cumtrapz():

49 integrands = np.exp(−Q/(R*temps))/temps # the integrand values
50 return integrate.cumtrapz(integrands,times) # built−in cumulative trapezoidal

integration

51 cumtrapztime = timeit.timeit(stmt="compute_cumtrapz()",number=ntimes,setup="from __main__

import compute_cumtrapz")

52 ctthetas = compute_cumtrapz()
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53
54 print "\nThe Frobenius norm of the difference between Theta−values computed using

exponential integral function and those computed using cumulative trapezoidal

integration is "+str(np.linalg.norm(ctthetas−eithetas[1:]))+" ."
55
56 print "\nExponential integral function method finds theta values in "+str(100*expitime/

cumtrapztime)+" percent of the time that trapezoidal integration does (average over "+

str(ntimes)+" simulations)."

57
58 #plt.figure(2)

59 #plt.plot(times[1:],eithetas[1:],’bs−’,label=’Exponential integral method’)
60 #plt.plot(times[1:],ctthetas,’ro−’,label=’Trapezoidal integral method’)
61 #plt.legend(loc="upper left")

62 #plt.xlabel(’Times [sec]’)

63 #plt.ylabel(’$\Theta$−values’)
64 #plt.title("Values of $\Theta$ computed for constant heating rate")

65 #plt.show()

F.2 Computer Implementation in python of the Master Sintering Curve
Method

1 #!/usr/bin/python

2
3 # Computes coefficients for various representations of the sigmoid curve in MSC method

4
5 # This code requires python 2.7, along with the scipy and numpy packages.

6
7 # Import necessary packages

8 import numpy as np # numpy: ’np’ prefix (because we use sizes of arrays and exp and log)

9 from scipy.optimize import curve_fit # because we use Levenberg−Marquardt
10 from scipy.optimize import minimize # because we use Nelder−Mead
11 import matplotlib.pyplot as plt # for plotting final sigmoid curve and input data

12 from matplotlib2tikz import save as tikz_save # for getting a file with tikz data to plot

directly in thesis

13 from scipy import integrate # so we can use cumulative trapezoidal integration

14 import sys # for exiting after errors

15 import itertools # for plotting with different colors for markers of different experiments

16
17 def find_lnthetas(times,temps,Q):

18 ’’’lnthetas = find_lnthetas(times,temps,Q):

19
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20 Integrates using [Su & Johnson] formula to find ln(Theta) values.

21 Uses trapezoidal approximation.

22
23 Inputs: times the times at which temperature and density measurements

24 were taken experimentally. A vector (array) of length N.

25 Units of seconds.

26 temps the temperatures corresponding to the times in ’times’

27 input. A vector (array) of length N. Units of degC.

28 Q activation energy of substance (can be determined from

29 separate optimization routine). A scalar. Units of J/mol

.

30
31 Outputs: lnthetas ln(Theta(t,T(t)) values. A vector (array) of length N−1.
32 Units of ln(s/K).

33 ’’’

34 N = np.size(times)

35 R = 8.314459848 # ideal gas constant [J/(mol*K)]

36
37 # Perform integration to find theta values using trapezoidal method

38
39 dts = times[1:]−times[:−1] # lengths of time intervals (has length N−1)
40 integrands = np.exp(−Q/(R*temps))/temps # the integrand values at each of the nodes

(length N)

41 areas = 0.5*dts*(integrands[1:]+integrands[:−1]) # areas of individual trapezoids
under the curve

42 thetas = np.r_[areas[0],[0]*(N−2)] # values of the integral from 0 to t_i, to be
filled below

43 for i in xrange(1,N−1):
44 thetas[i] = thetas[i−1] + areas[i] # sums the areas of all trapezoids from

first to current

45
46 #thetas = integrate.cumtrapz(integrands,times) # built−in cumulative trapezoidal

integration

47
48 return np.log(thetas)

49
50 def plot_sigmoid(lnthetas,rhos,expnames,rhofun,savestring,funstring,titlestring,show):

51 ’’’plot_sigmoid(lnthetas,rhos,rhofun,savestring,funstring,titlestring,show):

52
53 Plots the sigmoid curve and raw data points.

54
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55 Inputs: lnthetas Generated by find_lnthetas. A vector (array) of length N.

56 Units of ln(s/K).

57 rhos the relative density values corresponding to the times in ’times

’

58 input. A vector (array) of length N. Units of 1.

59 expnames the titles of each experiment corresponding to a column of

60 times/temps/rhos matrices. A length−M list of strings.
61 rhofun function handle outputting rho for a given lntheta value.

62 savestring filepaths to use when saving plots and data. A string.

63 funstring function with optimal parameters. A string.

64 titlestring title of graph. A string.

65 show whether to show the graph, or just save it

66
67 Outputs: lnthetas ln(Theta(t,T(t)) values. A vector (array) of length N−1.
68 Units of ln(s/K).

69 ’’’

70 xs = np.linspace(lnthetas[0],lnthetas[−1]) # input lnthetas for plotting optimal
fit sigmoid

71 ys = rhofun(xs) # output rhos for plotting optimal fit sigmoid

72
73 marker = itertools.cycle((’+’, ’o’, ’*’)) # cycle between these markers for the

experimental data−−one marker for one experiment
74
75 M=len(expnames) # the number of experiments that gave the data in lnthetas and rho

vectors

76 N=np.size(lnthetas)/M # the number of data points in each experiment

77
78 plt.figure(1)

79 plt.clf()

80 for i in range(0,M):

81 plt.plot(lnthetas[(i)*N:(i+1)*N+1],rhos[(i)*N:(i+1)*N+1],linestyle=’’,marker=

marker.next(),label=expnames[i])

82 # plt.plot(lnthetas,rhos,’ro’,label=’Experimental data points’) # use if just one

experiment

83 plt.plot(xs,ys,’b−’,label=’Best fit sigmoid curve’)
84 plt.legend(loc=’upper left’)

85 plt.xlabel(r’$\ln(\Theta(t,T(t)))$ $\left[\ln(\frac{s}{K})\right]$’)

86 plt.ylabel(’Relative Density’)

87 plt.title(titlestring)

88 plt.text(−58,0.54,funstring,fontsize=19) # figure out a better way to place this
text than trial−error
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89 plt.savefig(savestring+’sigmoidplot.png’) # saves the plot as .png without

displaying it

90 tikz_save(savestring+’sigmoidplot.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False ) # save data as .tex so plot can be

recreated directly in LaTeX

91 if show:

92 plt.show() # displays the plot

93 plt.close(1)

94 return()

95
96 def fantozzi(lnthetas,rhos,expnames,Q,savestring,showinfo):

97 ’’’ rhofun,err = fantozzi(lnthetas,rhos,Q,savestring):

98 Finds a, b, c, rho_0, and ln(theta_0) as parameters of the

99 sigmoid curve defined in [Fantozzi et al.] to be

100 rho(theta) = rho_0 + a/[1+exp(−[ln(theta)−ln(theta_0)]/b)]^c.
101
102 Uses Levenberg−Marquardt to solve the nonlinear optimization problem.
103
104 Inputs: lnthetas the ln(thetas) for a given sintering experiment. A vector

105 (array) of length N. Units of ln(s/K).

106 rhos the relative density values corresponding to the values in

107 ’lnthetas’ input. A vector (array) of length N. Units of

1.

108 expnames the titles of each experiment corresponding to a column of

109 times/temps/rhos matrices. A length−M list of strings.
110 Q activation energy of substance (can be determined from

111 separate optimization routine). A scalar. Units of J/mol

.

112 savestring filepaths to use for plots and data when saving

automatically.

113 A string.

114 showinfo Tells whether or not to print information about optimal

115 parameters and error. A boolean.

116
117 Outprints: a parameter in [Fantozzi et al.] model (see above description).

118 A scalar.

119 b parameter in [Fantozzi et al.] model (see above description).

120 A scalar.

121 c parameter in [Fantozzi et al.] model (see above description).

122 A scalar.

123 rho_0 parameter in [Fantozzi et al.] model (see above description).
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124 A scalar.

125 ln(theta_0) parameter in [Fantozzi et al.] model (see above

description).

126 A scalar.

127 Outputs: rhofun A function handle allowing user to input lntheta and get out

rho.

128 err The least squares error in particular sigmoid curve

129 ’’’

130
131 if showinfo:

132 print "Using [Fantozzi et al.] representation of sigmoid curve"

133 logfile = open(savestring+’msc.log’,’w+’)

134 logprint = "Using [Fantozzi et al.] representation of sigmoid curve: \n rho(theta) =

rho_0 + a/[1+exp(−[ln(theta)−ln(theta_0)]/b)]^c \n"
135 logfile.write(logprint)

136
137 # Define sigmoid curve as a function of lnthetas and parameters a, b, c, rho_0, ln(

theta_0)

138
139 def fantozzisigmoid(lnth,a,b,c,rho0,lnth0):

140 ’’’fantozzisigmoid(lnt,a,b,c,rho0,lnth0): the sigmoid curve defined in

Fantozzi et al. as

141 rho(lnth) = rho_0 + a/[1+exp(−[lnth−ln(th0)]/b)]^c.’’’
142 return rho0 + a / ((1 + np.exp(−(lnth−lnth0)/b) )**(c))
143
144 # Levenberg−Marquardt to find optimal a, b, c, rho_0, ln(theta_0) as parameters of

the sigmoid curve

145
146 # THE PROBLEM IS HOW STUPIDLY CLOSE THE INITIAL GUESS HAS TO BE !

147 initguess = np.r_[0.4937,1.0615,0.3995,0.4975,−35.206] # initial guess for a,b,c,
rho_0,lnth0

148 popt, pcov = curve_fit(fantozzisigmoid,lnthetas,rhos,initguess)

149
150 if showinfo:

151 print "Optimal values of [a, b, c, rho0, lntheta0] found using Levenberg−
Marquardt optimization:"

152 print popt

153 logprint = "Optimal parameter values found using Levenberg−Marquardt optimization:\
n \t a = %g\n\t b = %g\n\t c = %g\n\t rho0 = %g\n\t lntheta0 = %g\n"%(popt[0],

popt[1],popt[2],popt[3],popt[4])

154 logfile.write(logprint)
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155
156 # Build a function with one input for ln(theta) using optimal parameters found

157
158 def rhofun(lnth):

159 return fantozzisigmoid(lnth,popt[0],popt[1],popt[2],popt[3],popt[4])

160
161 # Determine least−squares error of optimal sigmoid curve
162
163 err = np.sum((rhos−rhofun(lnthetas))**2)/np.mean(rhos)
164 if showinfo:

165 print "With least−squares error: %g"%(err)
166 logprint = "With least−squares error: %g"%(err)
167 logfile.write(logprint)

168
169 # Plot sigmoid curve along with the measured data points

170 titlestring = "Master Sintering Curve (Fantozzi) for Zirconia"

171 funstring = r’$\rho = %g + \frac{%g}{\left[1+\mathrm{exp}\left(−\frac{\ln\theta−(%g
)}{%g}\right)\right]^{%g}}$’%(popt[3],popt[0],popt[4],popt[1],popt[2])

172 plot_sigmoid(lnthetas,rhos,expnames,rhofun,savestring,funstring,titlestring,showinfo

)

173
174 return (rhofun,err)

175
176 def blaine(lnthetas,rhos,expnames,Q,savestring,showinfo):

177 ’’’ rhofun,err = blaine(lnthetas,rhos,Q,savestring):

178 Finds a, b, c, rho_0, and ln(theta_0) as parameters of the

179 sigmoid curve defined in [Blaine et al.] to be

180 rho(theta) = rho_0 + (1−rho_0)/[1+exp(−[ln(theta)−a]/b)].
181
182 Uses Levenberg−Marquardt to solve the nonlinear optimization problem.
183
184 Inputs: lnthetas the ln(thetas) for a given sintering experiment. A vector

185 (array) of length N. Units of ln(s/K).

186 rhos the relative density values corresponding to the values in

187 ’lnthetas’ input. A vector (array) of length N. Units of

1.

188 expnames the titles of each experiment corresponding to a column of

189 times/temps/rhos matrices. A length−M list of strings.
190 Q activation energy of substance (can be determined from

191 separate optimization routine). A scalar. Units of kJ/

mol.
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192 savestring filepaths to use for plots and data when saving

automatically.

193 A string.

194 showinfo Tells whether or not to print information about optimal

195 parameters and error. A boolean.

196
197 Prints: a parameter in [Blaine et al.] model (see above description).

198 A scalar.

199 b parameter in [Blaine et al.] model (see above description).

200 A scalar.

201 rho0 parameter in [Blaine et al.] model (see above description).

202 A scalar.

203 savestring_Q_path.png .png image file with the chosen Q−values and
204 the optimization path taken to arrive at soln

205 savestring_Q_path.tex same as above, except a .tex file for

plotting

206 in latex instead of just importing graphic

207
208 Outputs: rhofun A function handle allowing user to input lntheta and get out

rho.

209 err The least squares error in particular sigmoid curve

210 ’’’

211 if showinfo:

212 print "Using [Blaine et al.] representation of sigmoid curve"

213 logfile = open(savestring+’msc.log’,’w+’)

214 logprint = "Using [Blaine et al.] representation of sigmoid curve: \n rho(theta) =

rho_0 + (1−rho_0)/[1+exp(−[ln(theta)−a]/b)] \n"
215 logfile.write(logprint)

216
217 # Define sigmoid curve as a function of lnthetas and parameters a, b, rho_0

218
219 def blainesigmoid(lnth,a,b,rho0):

220 ’’’blainesigmoid(lnt,a,b,rho0): the sigmoid curve defined in [Blaine et al.]

as

221 rho(lnth) = rho0 + (1−rho0)/[1+exp(−[lnth−a]/b)].’’’
222 return rho0 + (1−rho0)/(1+np.exp((−lnth+a)/b))
223
224 # Levenberg−Marquardt to find optimal a, b, rho_0 as parameters of the sigmoid

curve

225
226 initguess = np.r_[−25,2,0.8] # initial guess for a,b,c,rho_0,lnth0
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227 # initguess = np.r_[0.5,0.4,0.5] # initial guess for a,b,rho0

228 popt, pcov = curve_fit(blainesigmoid,lnthetas,rhos,initguess)

229
230 if showinfo:

231 print "Optimal values of [a, b, rho0] found:"

232 print popt

233 logprint = "Optimal parameter values found using Levenberg−Marquardt optimization:\
n \t a = %g\n\t b = %g\n\t rho0 = %g\n"%(popt[0],popt[1],popt[2])

234 logfile.write(logprint)

235
236 # Build a function with one input for ln(theta) using optimal parameters found

237
238 def rhofun(lnth):

239 return blainesigmoid(lnth,popt[0],popt[1],popt[2])

240
241 # Determine least−squares error of optimal sigmoid curve
242
243 err = np.sum((rhos−rhofun(lnthetas))**2)/np.mean(rhos)
244
245 if showinfo:

246 print "With least−squares error: %g"%(err)
247 else:

248 logprint = "With least−squares error: %g"%(err)
249 logfile.write(logprint)

250
251 # Plot sigmoid curve along with the measured data points

252
253 titlestring = "Master Sintering Curve (Blaine) for Zirconia"

254 funstring = r’$\rho = %g+\frac{(1−(%g))}{[1+\mathrm{exp}(−\frac{\ln\theta−(%g)}{%g
})]}$’%(popt[2],popt[2],popt[0],popt[1])

255 plot_sigmoid(lnthetas,rhos,expnames,rhofun,savestring,funstring,titlestring,showinfo

)

256
257 return (rhofun,err)

258
259 def find_sigmoid(times,temps,rhos,expnames,Q,method,savestring,showinfo):

260 ’’’ rhofun,err = find_sigmoid(times,temps,rhos,Q,method,savestring,showinfo):

261 Finds a, b, c, rho_0, and ln(theta_0) as parameters of the

262 sigmoid curve defined in method string.

263
264 Inputs: times the times at which temperature and density measurements
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265 were taken experimentally. An N*M array, M = #

experiments

266 Units of seconds.

267 temps the temperatures corresponding to the times in ’times’

268 input. An N*M array. Units of degC.

269 rhos the relative density values corresponding to the times in

270 ’times’ input. An N*M array. Units of 1.

271 expnames the titles of each experiment corresponding to a column of

272 times/temps/rhos matrices. A length−M list of strings.
273 Q activation energy of substance (can be determined from

274 separate optimization routine). A scalar. Units of J/mol

.

275 method which representation of sigmoid curve. A string,

276 either ’blaine’ or ’fantozzi’.

277 savestring filepaths to use for plots and data when saving

automatically.

278 A string.

279 showinfo Should we display the plot of final msc?

280
281 Outputs: rhofun A function handle allowing user to input lntheta and get out

rho.

282 ’’’

283
284 # Check the input values −− do they make sense?
285
286 if np.shape(temps) != np.shape(times) : # if temps isn’t same size as times, throw

an error

287 print "Shape of temps matrix must be the same as shape of times matrix"

288 input()

289 sys.exit(1)

290 elif np.shape(rhos) != np.shape(times) : # if rhos isn’t same size as times, throw

an error

291 print "Shape of rhos matrix must be the same as shape of times matrix"

292 input()

293 sys.exit(1)

294
295 if np.size(np.shape(temps)) == 2: # data comes from several experiments

296
297 # lntheta−ize the times and temps
298 lnthetas = np.zeros(np.shape(times[1:,:]))

299 N = np.shape(lnthetas)[1]
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300 for i in xrange(0,N):

301 lnthetas[:,i] = find_lnthetas(times[:,i],temps[:,i],Q)

302
303 # reshape the lnthetas and rhos into vectors, column−by−column
304 lnthetas = np.reshape(np.transpose(lnthetas),np.size(lnthetas))

305 rhos = np.reshape(np.transpose(rhos[1:,:]),np.size(rhos[1:,:])) #and get rid

of first rho−val in each column
306
307 elif np.size(np.shape(temps)) == 1: # data comes from only one experiment

308
309 lnthetas=find_lnthetas(times,temps,Q) # lntheta−ize the times and temps
310 rhos = rhos[1:] # get rid of first rho−val
311
312 else: # temps is either a scalar, or an array with >= 3 dimensions, so throw an

error

313 print "Temps, rhos, and times must be stored as arrays of two dimensions!"

314 input()

315 sys.exit(1)

316
317 # call sigmoid fitting function

318 rhofun,err = eval(method)(lnthetas,rhos,expnames,Q,savestring,showinfo)

319
320 # plot results

321
322 return rhofun

323
324 def find_Q(times,temps,rhos,expnames,method,savestring,showinfo):

325 ’’’ Q,rhofun = find_Q(times,temps,rhos,method,savestring,showinfo):

326 Finds activation energy (Q) that minimizes the least square error of the

327 sigmoid curve (with parameters defined by ’method’ string) fitted to the

328 experimental data in times, temps, and rhos.

329
330 Uses Nelder−Mead method to solve the optimization problem (because we do not

,

331 unfortunately, have any information about the gradient of the objective

function).

332
333 Inputs: times the times at which temperature and density measurements

334 were taken experimentally. An NxM array, with each col

335 corresponding to a single experiment. Units of seconds.

336 temps the temperatures corresponding to the times in ’times’
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337 input. An NxM array, with each col corresponding to a

338 single experiment. Units of degC.

339 rhos the relative density values corresponding to the times in

340 ’times’ input. An NxM array, with each col corresponding

341 to a single experiment. Units of 1.

342 expnames the titles of each experiment corresponding to a column of

343 times/temps/rhos matrices. A length−M list of strings.
344 method which representation of sigmoid curve. A string,

345 either ’blaine’ or ’fantozzi’.

346 savestring filepaths to use for plots and data when saving

automatically.

347 A string.

348 showinfo Should we display the plot of final msc?

349
350 Prints: savestring_Q_path.png .png image file with the chosen Q−values and
351 the optimization path taken to arrive at soln

352 savestring_Q_path.tex same as above, except a .tex file for plotting

353 in latex instead of just importing graphic

354
355 Outputs: Q the activation energy that minimizes least square

356 error of sigmoid fit

357 rhofun the sigmoid curve that is the fit corresponding to Q

358 ’’’

359 print "Determining optimal activation energy (Q) and corresponding sigmoid curve..."

360
361 # Check the input data

362 if np.shape(times) != np.shape(temps):

363 print "Size of temps must be the same as size of times"

364 input()

365 sys.exit(1)

366 elif np.shape(times) != np.shape(rhos):

367 print "Size of rhos must be the same as size of times"

368 input()

369 sys.exit(1)

370
371 # Define the objective function for optimizing

372 def objectivefun(Q,times,temps,rhos,method):

373
374 # lntheta−ize the times and temps
375
376 lnthetas = np.zeros(np.shape(times[1:,:]))
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377 N = np.shape(lnthetas)[1]

378 for i in xrange(0,N):

379 lnthetas[:,i] = find_lnthetas(times[:,i],temps[:,i],Q)

380
381 # reshape the lnthetas and rhos into vectors, column−by−column
382 lnthetas = np.reshape(np.transpose(lnthetas),np.size(lnthetas))

383 rhos = np.reshape(np.transpose(rhos[1:,:]),np.size(rhos[1:,:]))

384
385 # find the error and the optimal sigmoid curve

386 rhofun,err = eval(method)(lnthetas,rhos,expnames,Q,savestring,showinfo=False)

387
388 return err

389
390 # Callback function for printing/showing optimization results

391 # def callbackF(params):

392 # global itno

393 # global Qs

394 # global errs

395 # Qs = np.r_[Qs, params[0]]

396 # errs = np.r_[errs, ]

397 # itno += 1

398
399 # Perform the optimization using Nelder−Mead
400
401 OptimResult = minimize(objectivefun,660*1000,(times,temps,rhos,method),method=’

Nelder−Mead’,options={’disp’: True})
402
403 if OptimResult.success == True:

404 Q = OptimResult.x

405 print "Optimal Q found: %g"%(Q)

406
407 # Get back the corresponding optimal sigmoid curve

408
409 lnthetas = np.zeros(np.shape(times[1:,:]))

410 N = np.shape(lnthetas)[1]

411
412 for i in xrange(0,N):

413 lnthetas[:,i] = find_lnthetas(times[:,i],temps[:,i],Q)

414 lnthetas = np.reshape(np.transpose(lnthetas),np.size(lnthetas))

415 rhos = np.reshape(np.transpose(rhos[1:,:]),np.size(rhos[1:,:]))

416 rhofun,err = eval(method)(lnthetas,rhos,expnames,Q,savestring,showinfo)
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417
418 return (Q,rhofun)

419 else:

420 print "Optimization with Nelder−Mead failed!!"
421 input()

422 sys.exit(1)

F.3 Computer Implementation in MATLAB of the Solver for the
Stress-Strain Problems

One-Dimensional Deformation

1 function mat_1d_example

2
3 L=10; % length of domain

4 h=0.1; % step size

5 x=(0:h:L)’;

6
7 eps_dot=lintens(x); % create strain rate tensor corresponding to linear thermal

deformations (see Salenon p.78)

8
9 if compat(eps_dot,x) % we pass the compatibility conditions

10 v=resolve(eps_dot,x); % calculate the velocity field

11
12 t=1; %timestep in seconds (?−−units depend on the constants in lintens)
13
14 xd=x+t*v(:,1); % calculate displacement in x−dir
15
16 x=x(2:end); xd=xd(2:end);

17
18 figure(2); clf; hold on;

19 p=plot(x,0.5,’−b’,xd,1,’−r’);
20 set(gca,’YTick’,[0.5 1],’YTickLabel’,{’Original’,’Deformed’});

21 set(p,’LineWidth’,2);

22 axis([min([x;xd])−0.05*max([x;xd]) 1.05*max([x;xd]) 0 1.5]);
23
24 else error(’Failed compatibility conditions’); % WHAT TO DO IN THIS CASE?? CAN WE GET ’

CLOSE ENOUGH’ SOME OTHER WAY??

25 end

26
27 end % function mat_1d_example
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28
29 function eps_dot=lintens(x)

30
31 N=length(x); % number of gridpoints

32 eps_dot=zeros(N,3,3);

33
34 % Constants are arbitrarily chosen

35 a1=1;

36 b=0;

37
38 for i=1:N % There must be a way to vectorize this . . .

39 eps_dot(i,:,:)=(a1*x(i)+b)*eye(3);

40 end % for i=1:N

41
42 end % function eps_dot=lintens(x)

43
44 function pass=compat(e,x)

45 % sees whether eps_dot (an Nx3x3 tensor) satisfies compatibility conditions

46 %

47 % 1D only!

48
49 % Condition 2: e33_11 = 0

50 e33_11 = (e(1:end−2,3,3)−2*e(2:end−1,3,3)+e(3:end,3,3))./((x(2:end−1)−x(1:end−2)).*(x(3:
end)−x(2:end−1)));

51 % Condition 3: e22_11 = 0

52 e22_11 = (e(1:end−2,2,2)−2*e(2:end−1,2,2)+e(3:end,2,2))./((x(2:end−1)−x(1:end−2)).*(x(3:
end)−x(2:end−1)));

53 % Condition 5: e23_11 = 0

54 e23_11 = (e(1:end−2,2,3)−2*e(2:end−1,2,3)+e(3:end,2,3))./((x(2:end−1)−x(1:end−2)).*(x(3:
end)−x(2:end−1)));

55
56 if max([e33_11 e22_11 e23_11]) < 1e−5, pass=1;
57 else pass=0;

58 end % if max([e33_11 e22_11 e23_11]) < 1e−5
59
60 end % function pass=compat(e,x)

61
62 function v=resolve(e,x)

63 % solves integral equations getting eps_dot into a velocity field

64 % assumes left−hand endpoint stays put
65
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66 v=zeros(length(x),3);

67
68 v(2:end,1)=e(1:end−1,1,1)+0.5*(x(2:end)−x(1:end−1)).*(e(2:end,1,1)+e(1:end−1,1,1));
69 v(2:end,2)=2*e(1:end−1,1,2)+(x(2:end)−x(1:end−1)).*(e(2:end,1,2)+e(1:end−1,1,2));
70 v(2:end,3)=2*e(1:end−1,1,2)+(x(2:end)−x(1:end−1)).*(e(2:end,1,3)+e(1:end−1,1,3));
71
72 end % function v=resolve(e,x)

Two-Dimensional Deformation

1 function mat_2d_example

2
3 L1=20; % length in x−dir
4 L2=10; % length in y−dir
5
6 h1=1; % step size in x−dir
7 h2=1; % step size in y−dir
8
9 x=(0:h1:L1)’;

10 y=(0:h2:L2)’;

11
12 eps_dot=lintens(x,y);

13
14 if compat(eps_dot,x,y)

15
16 v=resolve(eps_dot,x,y);

17 t=1; % timestep is 1 second

18 [X,Y]=meshgrid(x,y);

19 XD=X+t*v(:,:,1); % calculate displacement in x−dir
20 YD=Y+t*v(:,:,2); % calculate displacement in y−dir
21
22 figure(1); clf; hold on; surf(X,Y,zeros(size(X)));

23 figure(2); clf; hold on; surf(XD,YD,ones(size(XD)));

24
25 D1=zeros(length(y),length(x));

26 D2=zeros(length(y),length(x));

27 a1=1; a2=1; b=1;

28 r=0; l1=0; l2=0;

29 for i=1:length(x)

30 for j=1:length(y)

31 x1=x(i); x2=y(j);
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32 D1(j,i)=(a1/2)*(x1*x1−x2*x2)+a2*x1*x2+b*x1−r*x2+l1;
33 D2(j,i)=(a2/2)*(x2*x2−x1*x1)+a1*x2*x1+b*x2+r*x1+l2;
34 end

35 end

36
37 figure(3); clf; hold on; surf(X+t*D1,Y+t*D2,zeros(size(X)));

38
39
40 else error(’Failed compatibility conditions’);

41 end

42
43 end

44
45 function eps_dot=lintens(x,y)

46
47 N1=length(x); N2=length(y);

48
49 eps_dot=zeros(N2,N1,3,3);

50
51 % Constants are arbitrarily chosen

52 a1=1;

53 a2=1;

54 b=1;

55
56 for i=1:N1

57 for j=1:N2

58 eps_dot(j,i,:,:)=(a1*x(i)+a2*y(j)+b)*eye(3);

59 end

60 end

61
62 end

63
64 function pass=compat(e,x,y)

65 % sees whether eps_dot (an N1xN2x3x3 tensor) satisfies compatibility conditions

66 %

67 % 2D only!

68
69 N2=length(y);

70 N1=length(x);

71
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72 y_cent_diffs=repmat((y(2:end−1)−y(1:end−2)).*(y(3:end)−y(2:end−1)),1,N1); % size is N2−2
, N1

73 x_cent_diffs=repmat((x(2:end−1)−x(1:end−2))’.*(x(3:end)−x(2:end−1))’,N2,1); % size is N2
, N1−2

74 [X,Y] = meshgrid((x(2:end)−x(1:end−1)),(y(2:end)−y(1:end−1)));
75 xy_diffs = X.*Y; % size should be N1−1 , N2−1
76
77 % Condition 1: e33_22 = 0

78 e33_22 = zeros(N2,N1);

79 e33_22(2:end−1,:) = (e(1:end−2,:,3,3)−2*e(2:end−1,:,3,3)+e(3:end,:,3,3))./(y_cent_diffs)
;

80 %take care of the endpoints! What do e33_22(1,:) and e33_22(end,:) look like?

81 cond1 = max(max(e33_22));

82
83 % Condition 2: e33_11 = 0

84 e33_11 = zeros(N2,N1);

85 e33_11(:,2:end−1) = (e(:,1:end−2,3,3)−2*e(:,2:end−1,3,3)+e(:,3:end,3,3))./(x_cent_diffs);
86
87 cond2 = max(max(e33_11));

88
89 % Condition 3: 2e12_12 = e22_11 + e11_22

90 e12_12=zeros(N2,N1); e22_11=zeros(N2,N1); e11_22=zeros(N2,N1);

91
92 e12_12(1:end−1,1:end−1) = (e(2:end,2:end,1,2)−e(1:end−1,1:end−1,1,2)−e(2:end,1:end

−1,1,2)+e(1:end−1,1:end−1,1,2))./(xy_diffs);
93 e22_11(:,2:end−1) = (e(:,1:end−2,2,2)−2*e(:,2:end−1,2,2)+e(:,3:end,2,2))./(x_cent_diffs);
94 e11_22(2:end−1,:) = (e(1:end−2,:,1,1)−2*e(2:end−1,:,1,1)+e(3:end,:,1,1))./(y_cent_diffs);
95
96 cond3 = max(max(2*e12_12 − e22_11 − e11_22));
97
98 % Condition 4: e33_21 = 0

99 e33_21=zeros(N2,N1);

100 e33_21(1:end−1,1:end−1) = (e(2:end,2:end,3,3)−e(1:end−1,2:end,3,3)−e(2:end,1:end−1,3,3)+
e(1:end−1,1:end−1,3,3))./(xy_diffs);

101
102 cond4 = max(max(e33_21));

103 % Condition 5: e23_11 = e13_12

104 e23_11=zeros(N2,N1); e13_12=zeros(N2,N1);

105 e23_11(:,2:end−1) = (e(:,1:end−2,2,3)−2*e(:,2:end−1,2,3)+e(:,3:end,2,3))./(x_cent_diffs);
106 e13_12(1:end−1,1:end−1) = (e(2:end,2:end,1,3)−e(2:end,1:end−1,1,3)−e(1:end−1,2:end,1,3)+

e(1:end−1,1:end−1,1,3))./(xy_diffs);
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107
108 cond5 = max(max(e23_11 − e13_12));
109
110 % Condition 6: e31_22 = e32_12

111 e31_22=zeros(N2,N1); e32_12=zeros(N2,N1);

112 e31_22(2:end−1,:) = (e(1:end−2,:,3,1)−2*e(2:end−1,:,3,1)+e(3:end,:,3,1))./(y_cent_diffs);
113 e32_12(1:end−1,1:end−1) = (e(2:end,2:end,3,2)−e(2:end,1:end−1,3,2)−e(1:end−1,2:end,3,2)+

e(1:end−1,1:end−1,3,2))./(xy_diffs);
114
115 cond6 = max(max(e31_22 − e32_12));
116
117 d=max([cond1,cond2,cond3,cond4,cond5,cond6]);

118
119 if d < 1e−2, pass=1; else pass=0; end
120
121 end

122
123 function v=resolve(e,x,y)

124 % takes eps_dot and outputs velocity field

125
126 v=zeros(length(y),length(x),3);

127
128 %v(:,:,3) = intgrad2(2*e(:,:,1,3),2*e(:,:,2,3),x,y);

129
130 intfun = zeros(size(y));

131
132 for i=2:length(x)

133 for k=2:length(y)

134 g_x=diff([0;e(2:k,1,2,2)])./(y(2:k)−y(1:k−1));
135 intfun(k) = trapz(y(2:k),g_x,1); % this is needed for the second integration

136 end

137 for j=2:length(y)

138 v(j,i,3) = 2*trapz(x(2:i),e(j,2:i,1,3),2) + 2*trapz(y(2:j),e(2:j,1,2,3),1);

139 v(j,i,2) = trapz(x(2:i),e(j,2:i,1,2),2) + trapz(y(2:j),e(2:j,i,2,2),1);

140 v(j,i,1) = trapz(x(2:i),e(1,2:i,1,1),2) + trapz(y(2:j),e(2:j,i,1,2),1) − trapz(y(2:j),
intfun(2:j),1);

141 end

142 end

143
144 end
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Three-Dimensional Deformation

1 function mat_3d_example

2
3 L1=20; % length in x−dir
4 L2=10; % length in y−dir
5 L3=5; % length in z−die
6
7 h1=1; % step size in x−dir
8 h2=1; % step size in y−dir
9 h3=1;

10
11 x=(1:h1:L1)’;

12 y=(1:h2:L2)’;

13 z=(1:h3:L3)’;

14
15 eps_dot=lintens(x,y,z);

16
17 if compat(eps_dot,x,y,z), v_field=resolve(eps_dot,x,y,z);

18 else error(’Failed compatibility conditions’);

19 end

20
21 end

22
23 function eps_dot=lintens(x,y,z)

24
25 N1=length(x); N2=length(y); N3=length(z);

26
27 eps_dot=zeros(N3,N2,N1,3,3);

28
29 % Constants are arbitrarily chosen

30 a1=2;

31 a2=pi;

32 a3=1;

33 b=1;

34
35 for i=1:N1

36 for j=1:N2

37 for k=1:N3

38 eps_dot(k,j,i,:,:)=(a1*x(i)+a2*y(j)+a3*z(k)+b)*eye(3);

39 end
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40 end

41 end

42
43 end

44
45 function pass=compat(e,x,y,z)

46 % sees whether eps_dot (an N1xN2xN3x3x3 tensor) satisfies compatibility conditions

47 %

48 % 3D

49 %

50 % MAKE THIS LESS MEMORY−INTENSIVE BY COMING UP WITH A FUNCTION TO DIFFERENTIATE ACROSS A
GIVEN DIMENSION

51
52 N3=length(z);

53 N2=length(y);

54 N1=length(x);

55
56 z_cent_diffs=repmat((z(2:end−1)−z(1:end−2)).*(z(3:end)−z(2:end−1)),[1,N2,N1]); % size is

N3−2, N2, N1,
57 y_cent_diffs=repmat((y(2:end−1)−y(1:end−2))’.*(y(3:end)−y(2:end−1))’,[N3,1,N1]); % size

is N3, N2−2 , N1
58 x_cent_diffs=repmat(reshape((x(2:end−1)−x(1:end−2)).*(x(3:end)−x(2:end−1)),[1 1 N1−2]),[

N3,N2,1]); % size is N3, N2 , N1−2
59 [X,Y,Z] = meshgrid((y(2:end)−y(1:end−1)),z,(x(2:end)−x(1:end−1)));
60 xy_diffs = X.*Y; % size should be N3 , N2−1 , N1−1
61 [X,Y,Z] = meshgrid((y(2:end)−y(1:end−1)),(z(2:end)−z(1:end−1)),x);
62 yz_diffs = Y.*Z; % size should be N3−1 , N2−1 , N1
63 [X,Y,Z] = meshgrid(y,(z(2:end)−z(1:end−1)),(x(2:end)−x(1:end−1)));
64 xz_diffs = X.*Z; % size should be N3−1 , N2 , N1−1
65
66 % Condition 1: 2e23_23 = e33_22 + e22_33

67 e23_23=zeros(N3,N2,N1); e33_22=zeros(N3,N2,N1); e22_33 = zeros(N3,N2,N1);

68
69 e33_22(:,2:end−1,:) = (e(:,1:end−2,:,3,3)−2*e(:,2:end−1,:,3,3)+e(:,3:end,:,3,3))./(

y_cent_diffs) ;

70 e22_33(2:end−1,:,:) = (e(1:end−2,:,:,2,2)−2*e(2:end−1,:,:,2,2)+e(3:end,:,:,2,2))./(
z_cent_diffs) ;

71 e23_23(1:end−1,1:end−1,:) = (e(2:end,2:end,:,2,3)−e(1:end−1,1:end−1,:,2,3)−e(2:end,1:end
−1,:,2,3)+e(1:end−1,1:end−1,:,2,3))./(yz_diffs);

72
73 cond1 = max(max(e33_22 + e22_33 − 2*e23_23));
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74
75 % Condition 2: 2e31_31 = e11_33 + e33_11

76 e31_31=zeros(N3,N2,N1); e11_33=zeros(N3,N2,N1); e33_11 = zeros(N3,N2,N1);

77
78 e33_11(:,:,2:end−1) = (e(:,:,1:end−2,3,3)−2*e(:,:,2:end−1,3,3)+e(:,:,3:end,3,3))./(

x_cent_diffs);

79 e11_33(2:end−1,:,:) = (e(1:end−2,:,:,1,1)−2*e(2:end−1,:,:,1,1)+e(3:end,:,:,1,1))./(
z_cent_diffs);

80 e31_31(1:end−1,:,1:end−1) = (e(2:end,:,2:end,3,1)−e(1:end−1,:,1:end−1,3,1)−e(2:end,:,1:
end−1,3,1)+e(1:end−1,:,1:end−1,3,1))./(xz_diffs);

81
82 cond2 = max(max(2*e31_31 − e11_33 − e33_11));
83
84 % Condition 3: 2e12_12 = e22_11 + e11_22

85 e12_12=zeros(N3,N2,N1); e22_11=zeros(N3,N2,N1); e11_22=zeros(N3,N2,N1);

86
87 e12_12(:,1:end−1,1:end−1) = (e(:,2:end,2:end,1,2)−e(:,1:end−1,1:end−1,1,2)−e(:,2:end,1:

end−1,1,2)+e(:,1:end−1,1:end−1,1,2))./(xy_diffs);
88 e22_11(:,:,2:end−1) = (e(:,:,1:end−2,2,2)−2*e(:,:,2:end−1,2,2)+e(:,:,3:end,2,2))./(

x_cent_diffs);

89 e11_22(:,2:end−1,:) = (e(:,1:end−2,:,1,1)−2*e(:,2:end−1,:,1,1)+e(:,3:end,:,1,1))./(
y_cent_diffs);

90
91 cond3 = max(max(2*e12_12 − e22_11 − e11_22));
92
93 % Condition 4: e13_23 − e12_33 − e33_21 + e32_31 = 0
94 e13_23=zeros(N3,N2,N1); e12_33=zeros(N3,N2,N1); e33_21=zeros(N3,N2,N1); e32_31=zeros(N3,N2,

N1);

95
96 e12_33(2:end−1,:,:) = (e(1:end−2,:,:,1,2)−2*e(2:end−1,:,:,1,2)+e(3:end,:,:,1,2))./(

z_cent_diffs);

97 e33_21(:,1:end−1,1:end−1) = (e(:,2:end,2:end,3,3)−e(:,1:end−1,2:end,3,3)−e(:,2:end,1:end
−1,3,3)+e(:,1:end−1,1:end−1,3,3))./(xy_diffs);

98 e32_31(1:end−1,:,1:end−1) = (e(2:end,:,2:end,3,2)−e(1:end−1,:,1:end−1,3,2)−e(2:end,:,1:
end−1,3,2)+e(1:end−1,:,1:end−1,3,2))./(xz_diffs);

99 e13_23(1:end−1,1:end−1,:) = (e(2:end,2:end,:,1,3)−e(1:end−1,1:end−1,:,1,3)−e(2:end,1:end
−1,:,1,3)+e(1:end−1,1:end−1,:,1,3))./(yz_diffs);

100
101 cond4 = max(max(e13_23 − e12_33 − e33_21 + e32_31));
102
103 % Condition 5: e21_31 − e23_11 − e11_32 + e13_12 = 0
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104 e21_31=zeros(N3,N2,N1); e23_11=zeros(N3,N2,N1); e11_32=zeros(N3,N2,N1); e13_12=zeros(N3,N2,

N1);

105
106 e23_11(:,:,2:end−1) = (e(:,:,1:end−2,2,3)−2*e(:,:,2:end−1,2,3)+e(:,:,3:end,2,3))./(

x_cent_diffs);

107 e13_12(:,1:end−1,1:end−1) = (e(:,2:end,2:end,1,3)−e(:,2:end,1:end−1,1,3)−e(:,1:end−1,2:
end,1,3)+e(:,1:end−1,1:end−1,1,3))./(xy_diffs);

108 e21_31(1:end−1,:,1:end−1) = (e(2:end,:,2:end,2,1)−e(1:end−1,:,1:end−1,2,1)−e(2:end,:,1:
end−1,2,1)+e(1:end−1,:,1:end−1,2,1))./(xz_diffs);

109 e11_32(1:end−1,1:end−1,:) = (e(2:end,2:end,:,1,1)−e(1:end−1,1:end−1,:,1,1)−e(2:end,1:end
−1,:,1,1)+e(1:end−1,1:end−1,:,1,1))./(yz_diffs);

110
111 cond5 = max(max(e21_31 − e23_11 − e11_32 + e13_12));
112
113 % Condition 6: e32_12 − e31_22 − e22_13 + e21_23 = 0
114 e32_12=zeros(N3,N2,N1); e31_22=zeros(N3,N2,N1); e22_13=zeros(N3,N2,N1); e21_23=zeros(N3,N2,

N1);

115
116 e31_22(:,2:end−1,:) = (e(:,1:end−2,:,3,1)−2*e(:,2:end−1,:,3,1)+e(:,3:end,:,3,1))./(

y_cent_diffs);

117 e32_12(:,1:end−1,1:end−1) = (e(:,2:end,2:end,3,2)−e(:,2:end,1:end−1,3,2)−e(:,1:end−1,2:
end,3,2)+e(:,1:end−1,1:end−1,3,2))./(xy_diffs);

118 e22_13(1:end−1,:,1:end−1) = (e(2:end,:,2:end,2,2)−e(1:end−1,:,1:end−1,2,2)−e(2:end,:,1:
end−1,2,2)+e(1:end−1,:,1:end−1,2,2))./(xz_diffs);

119 e21_23(1:end−1,1:end−1,:) = (e(2:end,2:end,:,2,1)−e(1:end−1,1:end−1,:,2,1)−e(2:end,1:end
−1,:,2,1)+e(1:end−1,1:end−1,:,2,1))./(yz_diffs);

120
121 cond6 = max(max(e32_12 − e31_22 − e22_13 + e21_23));
122
123 d=max([cond1,cond2,cond3,cond4,cond5,cond6]);

124
125 if d < 1e−2, pass=1; else pass=0; end
126
127 end

128
129 function v=resolve(e,x,y,z)

130
131
132 v=zeros(length(z),length(y),length(x),3);

133
134 %v(:,:,1)=
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135 %v(:,:,2)=

136 %v(:,:,3)=

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165 end



Appendix G

Computer Implementation in MATLAB of
Models for Determining Effective Complex
Permittivity ofMetal Powders

Contains original MATLAB functions to realize each of the models described.

G.1 Lichtenecker’s Mixture Formula

1 function epseff=lichtenecker(epses,vols)

2 %function epseff=lichtenecker(epses,vols)

3 %

4 %Uses Lichtenecker’s mixture formula to compute the effective permittivity

5 %of a mixture comprised of a number of components.

6 %

7 %Inputs: epses − vector of complex permittivity values of materials
8 % comprising the mixture

9 % vols − vector of volume ratios of materials comprising the
10 % mixture. Or for two materals: volume fraction of first

11 %

12 %Outputs: epseff − effective complex permittivity of the mixture.
13
14 if length(vols)==1

15 vols=[vols,1−vols];
16 end

17
18 epseff=prod(epses.^vols);

343
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19 end

G.2 Correction to Lichtenecker’s Formula by Neelakantaswamy et al.

1 function epseff=lichteneckercorr(epses,vol,ecr)

2 %function epseff=lichteneckercorr(epses,vol,ecr)

3 %

4 %Implements the corrected Lichtenecker mixture formulas as presented in

5 %Neelakantaswamy, Turkman, and Sakar (1985) with parts from Kisdnasamy and

6 %Neelakantaswamy (1984).

7 %

8 %Inputs: epses − vector of permittivity values of materials comprising
9 % the mixture. epses(1) is the permittivity of the

10 % inclusions, and epses(2) is the permittivity of the

11 % dielectric matrix

12 % vol − volume ratio of inclusions
13 % ecr − ratio of major/minor axes of ellipsoidal inclusions.
14 % ecr is 1 for spherical inclusions.

15 %

16 %Outputs: epseff − effective permittivity of the mixture.
17
18 e1=epses(1); e2=epses(2);

19
20 %Calculating the value for M found in Kisdnasamy and Neelakantaswamy

21 %f=1−ecr;
22 %ec=sqrt(f*(2−f));
23 ec=1;

24
25 m=ec*ec/(1−sqrt(1−ec*ec)*(asin(ec)/ec));
26
27 if e1>e2, M=2/(m−1); n=(5−M)/4;
28 else M=(m−1)/2; n=(M−1)/4;
29 end

30
31 %Everything that follows can be found in Neelakantaswamy, Turkman, Sakar

32 ed=e1−e2;
33 t=(e1+e2)/(2*ed*log(e1/e2))−(e1*e2)/(ed*ed);
34
35 a1=0.5−0.5*sqrt(1−4*t);
36 a2=1−a1;
37
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38 eu=@(a) a*e1+(1−a)*e2;
39 el=@(a) 1/(a/e1+(1−a)/e2);
40
41 C=@(a) sqrt(el(a)/eu(a))*e1^(a)*e2^(1−a);
42 B=@(a) 1+1/(eu(a)^(n−1)*el(a)^(n−1));
43 A=@(a) 1+1/(eu(a)^(n)*el(a)^(n));

44 Z=@(a) (eu(a)^n)/(el(a)^(n−1));
45 Y=@(a) Z(a)+eu(a);

46 X=@(a) Z(a)+1/el(a);

47
48 av=vol;

49 if av<=a1

50 if e1>e2, epseff=X(av)/2;

51 else epseff=Y(av)/2;

52 end

53 elseif av<=a2

54 if e1>e2, epseff=0.5*(A(a1)/(2*C(a1))+B(a2)/(2*C(a2)))*C(av)*Z(av);

55 else epseff=0.5*(B(a1)/(2*C(a1))+A(a2)/(2*C(a2)))*C(av)*Z(av);

56 end

57 else

58 if e1>e2, epseff=Y(av)/2;

59 else epseff=X(av)/2;

60 end

61 end

62 end

G.3 Maxwell-Garnett Model

1 function epseff=mg(epses,vr)

2 %function epseff=mg(epses,vr)

3 %

4 %Uses the Maxwell−Garnett mixture formula to compute the effective
5 %permittivity of a mixture comprised of two components.

6 %

7 %Inputs: epses − vector of complex permittivity values of materials
8 % comprising the mixture; matrix permittivity comes first

9 % then inclusion permittivity

10 % vr − volume ratio of the inclusion
11 %

12 %Outputs: epseff − effective complex permittivity of the mixture.
13
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14 vr=1−vr;
15 e1=epses(1); e2=epses(2);

16 epseff=e1*(e2+2*e1+2*vr*(e2−e1))/(e2+2*e1−vr*(e2−e1));
17
18 end

G.4 Extension of Maxwell-Garnett Model

1 function epseff=mgcorr(epses,vr,N)

2 %function epseff=mgcorr(epses,vr,N)

3 %

4 %Uses the corrected Maxwell−Garnett mixture formula described by
5 %Koledintseva et al. formula to compute the effective permittivity of a

6 %mixture comprised of arbitrarily many components.

7 %

8 %Inputs: epses − vector of complex permittivity values of materials
9 % comprising the mixture; has length n+1, where n is the

10 % number of types of inclusion, and the permittivity of

11 % the matrix should be the first component.

12 % vr − vector of volume ratios of the inclusions; length n.
13 % N − matrix of the depolarization factors; size 3 x n, with
14 % the rows corresponding to Cartesian dimensions x, y,

15 % and z respectively, and the columns corresponding to

16 % the inclusions. For all spherical particles,

17 % N=1/3*ones(3,n). For rod−shaped particles, see
18 % Koledintseva in references.

19 %

20 %Outputs: epseff − effective complex permittivity of the mixture.
21
22 eb=epses(1);

23
24 s1=@(i) eb*(1/(eb+N(1,i)*(epses(i+1)−eb))+1/(eb+N(2,i)*(epses(i+1)−eb)) ...
25 + 1/(eb+N(3,i)*(epses(i+1)−eb)));
26 s2=@(i) N(1,i)/(eb+N(1,i)*(epses(i+1)−eb))+N(2,i)/(eb+N(2,i)*...
27 (epses(i+1)−eb)) + N(3,i)/(eb+N(3,i)*(epses(i+1)−eb));
28
29 S1=0; S2=0;

30 for i=1:length(vr)

31 S1=S1+vr(i)*(epses(i+1)−eb)*s1(i);
32 S2=S2+vr(i)*(epses(i+1)−eb)*s2(i);
33 end
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34
35 epseff=eb+S1/(3−S2);
36 end

G.5 Bruggeman’s Model

1 function epseff=brugg(epses,alpha)

2 %function epseff=brugg(epses,alpha)

3 %

4 %Uses Bruggeman’s mixture formula to compute the effective permittivity

5 %of a mixture comprised of two components.

6 %

7 %Inputs: epses − vector of complex permittivity values of components
8 % vols − volume ratio of second component
9 %

10 %Outputs: epseff − effective complex permittivity of the mixture.
11
12 e1=epses(1); e2=epses(2);

13
14 alpha=1−alpha;
15 % bruggformula=@(ep) alpha*(e2−ep)/(e2+2*ep)+(1−alpha)*(e1−ep)/(e1+2*ep);
16 % dbrugg=@(ep) −3*alpha*e2/(e2+2*ep)^2+(−3)*(1−alpha)*e1/(e1+2*ep)^2;
17 % epseff=0.5*(e1+e2);

18 % epseff=newtonit(bruggformula,dbrugg,epseff,1e−5);
19 % fprintf(’Newton Method gives epseff=%g\n’,epseff);

20
21 a=−2; b=e1*(2−3*alpha)+e2*(3*alpha−1); c=e1*e2;
22 epseff1=(−b+sqrt(b^2−4*a*c))/(2*a);
23 epseff2=(−b−sqrt(b^2−4*a*c))/(2*a);
24
25 %fprintf(’Quadratic Formula gives epseff1=%g and epseff2=%g\n’,...

26 % epseff1,epseff2);

27
28 %Choose the positive branch

29 epseff=max(epseff1,epseff2);

G.6 Buchelnikov’s Model

1 function [epseff]=buch(e1,e2,eg,p,r1,r2)

2 %function [epseff]=buch(e1,e2,eg,p,r1,r2)

3 %
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4 %Uses Buchelnikov’s model to compute the effective permittivity

5 %of a mixture with inclusions made of core−shell spheres.
6 %

7 %Inputs: e1 − permittivity of metallic core
8 % e2 − permittivity of dielectric shell
9 % eg − permittivity of gas (vacuum)

10 % p − volume fraction of metal in effective medium
11 % r1 − radius of metallic core
12 % r2 − radius of dielectric shell
13 % l − optional; if only five inputs are given, l is the fifth
14 % argument and represents (r2−r1)/r1
15 %

16 %Output: epseff − effective complex permittivity of the mixture.
17
18 if nargin==5

19 l=r1;

20 zeta=(1+l)*(1+l)*(1+l);

21 elseif nargin==6

22 l=(r2−r1)/r1;
23 zeta=(1+l)*(1+l)*(1+l);

24 else

25 error(’Check the number of input arguments!’);

26 end

27
28 alpha=(zeta−1)*e1+(2*zeta+1)*e2;
29 beta=(2+zeta)*e1+2*(zeta−1)*e2;
30
31 A=e2*(3*e1+(zeta−1)*(e1+2*e2));
32 B=3*e2+(zeta−1)*(e1+2*e2);
33
34 C0=eg*(beta*e2+p*zeta*(A−beta*e2));
35 C1=2*alpha*eg−beta*e2+p*zeta*(2*A+beta*e2−eg*(B+2*alpha));
36 C2=2*(p*zeta*(alpha−B)−alpha);
37
38 d=C1*C1−4*C2*C0;
39 if d<0

40 error(’Discriminant <0, no real solutions’);

41 end

42
43 r1=(−C1+sqrt(C1*C1−4*C2*C0))/(2*C2);
44 r2=(−C1−sqrt(C1*C1−4*C2*C0))/(2*C2);
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45
46 %Trial by roots method − just to check
47 %r=roots([C2 C1 C0]);

48 %root1=r(1);

49 %root2=r(2);

50 %d1=r1−root1;
51 %d2=r2−root2;
52
53 if r1>0

54 if r2<=0

55 epseff=r1;

56 else %r2>0

57 fprintf(’For e1=%7.4g, e2=%7.4g, eg=%7.4g, p=%7.4g, l=%7.4g,\n’,e1,e2,eg,p,l);

58 fprintf(’two possible permittivities found: %g and %g\n’,r1,r2);

59 epseff=input(’Please enter the permittivity value to use in this case.’);

60 end

61 elseif r1==0

62 if r2>=0

63 epseff=r2;

64 elseif r2<=0

65 epseff=0;

66 end

67 else %r1<0

68 if r2>0

69 epseff=r2;

70 elseif r2==0

71 epseff=0;

72 else %r2<0

73 fprintf(’For e1=%7.4g, e2=%7.4g, eg=%7.4g, p=%7.4g, l=%7.4g,\n’,e1,e2,eg,p,l);

74 fprintf(’no positive values found; negative values: %9.6g and %9.6g\n’,r1,r2);

75 epseff=input(’Please enter the permittivity value to use in this case.’);

76 end

77 end

78
79 % Trial by Newton’s method − just to check
80 % buchel=@(ep) p*zeta*(e2*(3*e1+(zeta−1)*(e1+2*e2))−ep*(3*e2+...
81 % (zeta−1)*(e1+2*e2)))/(2*alpha*ep+beta*e2)+(1−p*zeta)*(eg−ep)/(eg+2*ep);
82 %

83 % dbuchel=@(ep) p*zeta*(−(2*alpha*ep+beta*e2)*(3*e2+(zeta−1)*(e1+2*e2))−...
84 % (e2*(3*e1+(zeta−1)*(e1+2*e2))−ep*(3*e2+(zeta−1)*(e1+2*e2)))*...
85 % (2*alpha))/((2*alpha*ep+beta*e2)*(2*alpha*ep+beta*e2))+(1−p*zeta)...
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86 % *(−(eg+2*ep)−2*(eg−ep))/((eg+2*ep)*(eg+2*ep));
87 %

88 % epseff=0;

89 %

90 % fprintf(’e1=%g\n’,e1);

91 % fprintf(’buchel(epseff)=%g\n’,buchel(epseff));

92 % fprintf(’dbuchel(epseff)=%g\n’,dbuchel(epseff));

93 % fprintf(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n’);
94 %

95 % [epseff,conv]=newtonit(buchel,dbuchel,epseff,1e−5,500);
96 % fprintf(’Newton Method gives epseff=%g\n’,epseff);



Appendix H

Computer Implementation in python and
MATLAB of the Coupled Solver for the 1D and
2DMWSintering Problems

H.1 python Implementation of the Coupled Solver for the
One-Dimensional Microwave Sintering Problem

1 #!/usr/bin/python

2
3 # outputs: graphs of temperature and root mean square of electric field, full sets of

dielectric and thermal properties, and file fullsolve1.log with detailed output at

each timestep

4 #

5 # Performs transient solution for the electric field in a one−dimensional domain with a
constant power source at the left−hand side. See problem description in file (Thesis.
pdf). Simulation domain has middle third of cavity filled with insulation, and middle

third of insulation filled with material for processing.

6 #

7 # This code requires python 2.7 , and requires ffmpeg or avconv (may need to modify movie−
making parts, depending on your system). ffmpeg can be installed by typing

8 #

9 # > sudo apt−get install ffmpeg
10 #

11 # and avconv may be installed by typing

12 #

13 # > sudo apt−get install avconv

351
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14 #

15 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16 # DEPENDENCY TREE:

17 #

18 # − fullsolve1.py
19 # − matplotlib ( available from http://matplotlib.org/ )
20 # − pyplot ( packaged with matplotlib; documentation available at http://matplotlib.org/

api/pyplot_summary.html )

21 # − matplotlib2tikz ( available from https://github.com/nschloe/matplotlib2tikz )
22 # − numpy ( available from http://www.numpy.org/ )
23 # − matlib ( packaged with numpy; documentation available at http://docs.scipy.org/doc/

numpy/reference/routines.matlib.html )

24 # − scipy ( available at http://www.scipy.org/ )
25 # − interpolate ( packaged with scipy; documentation available at http://docs.scipy.org/

doc/scipy/reference/tutorial/interpolate.html )

26 # − time ( module packaged with python 2.7 ; documentation available at https://docs.
python.org/2/library/time.html )

27 # − os ( module packaged with python 2.7 ; documentation available at https://docs.python.
org/2/library/os.html )

28 # − msc.py ( available from Erin Kiley , emkiley@wpi.edu )
29 # − scipy ( available at http://www.scipy.org/ )
30 # − optimize ( packaged with scipy; documentation available at http://docs.scipy.org/doc

/scipy/reference/tutorial/optimize.html )

31 # − minimize ( packaged with optimize; documentation available at http://docs.scipy.org
/doc/scipy/reference/generated/scipy.optimize.minimize.html )

32 # − curve−fit ( packaged with optimize; documentation available at http://docs.scipy.
org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html )

33 # − integrate ( packaged with scipy; documentation available at http://docs.scipy.org/
doc/scipy/reference/tutorial/integrate.html )

34 # − numpy ( available from http://www.numpy.org/ )
35 # − matplotlib ( available from http://matplotlib.org/ )
36 # −pyplot ( packaged with matplotlib; documentation available at http://matplotlib.org/

api/pyplot_summary.html )

37 # − matplotlib2tikz ( available from https://github.com/nschloe/matplotlib2tikz )
38 # − itertools ( module packaged with python 2.7 ; documentation available at https://docs

.python.org/2/library/itertools.html )

39 # − sys ( module packaged with python 2.7 ; documentation available at https://docs.
python.org/2/library/sys.html )

40 # − emsolve1.py ( available from Erin Kiley , emkiley@wpi.edu )
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41 # − scipy ( available at http://www.scipy.org/ )
42 # − sparse ( packaged with scipy; documentation available at http://docs.scipy.org/doc/

scipy/reference/sparse.html )

43 # − thermsolve1.py ( available from Erin Kiley , emkiley@wpi.edu )
44 # −scipy ( available at http://www.scipy.org/ )
45 # − sparse ( packaged with scipy; documentation available at http://docs.scipy.org/doc/

scipy/reference/sparse.html )

46 #

47 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48
49 total_time = 10000 # total processing time [sec]

50 capture_every = 10 # capture a plot and print to logfile every (this many) seconds

51 theta_dep_params = False

52 mat_params = "Licht" # model to use for dielectric props in case theta_dep_params == False.

either "Licht", "Rayleigh", "MG", or "Bruggeman"

53 magmat = False # True if sintering material is magnetic

54 method = "fantozzi" # model we use for fitting sigmoid to MSC. either ’blaine’ or ’fantozzi

’, see file msc.py for details

55 embc=’abs’ # either ’abs’ for absorbing (inhomogeneous Neumann) boundary condition at right

−hand endpoint, or ’pec’ for perfect electric conductor (homogeneous Dirichlet)
condition

56 tempbc=’rad’ # either ’rad’ for radiative (third−kind), ’ins’ for insulating (homogeneous
Neumann), or ’fix’ for fixed (inhomogeneous Dirichlet)

57 th = 0.5 # 0 = explicit, 0.5 = C−N, 1 = implicit
58 savedir = "./1d_demo_apr4_Theta_"+mat_params+"_"+str(total_time)+"sec/" # directory where

we save plots and logfile

59 saveprefix = "1d_demo_" # prefix for plots and logfile names

60 savestring = savedir+saveprefix

61 hiddensavestring = savedir+’.’+saveprefix # for hiding the individual movie frames we save

62
63 # Import necessary packages

64 import matplotlib as mpl # access matplotlib via shorter ’mpl’ prefix

65 import matplotlib.pyplot as plt # plotting library: ’plt’ prefix

66 from matplotlib2tikz import save as tikz_save # for getting a file with tikz data to plot

directly in thesis

67 import numpy as np # numpy: ’np’ prefix

68 from numpy import * # we use a number of functions and want to make available at toplevel

69 from numpy.matlib import rand,zeros,ones,empty,eye # make these functions accessible

directly at top level, because we use them
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70 import scipy.interpolate as intp # interpolators: ’intp’ prefix. We use b−splines in this
code.

71 import time # for printing times to logfile

72 import os # for issuing commands related to movie−making and auxfile−deleting
73 import pickle # for saving state of simulation

74 mpl.rcParams[’axes.formatter.useoffset’]=False # tell matplotlib not to convert axis tick

labels to scientific notation (was getting weird results)

75
76 # Open log file for writing

77 if not os.path.exists(savedir): # if savedir doesn’t already exist

78 os.makedirs(savedir) # then create it

79 logfile = open(savestring+’fullsolve1.log’,’w+’)

80
81 # Log file header

82 printstring = ("Simulation started "+time.strftime("%A, %B %d, %Y")+" at "+time.strftime("%

H:%M:%S %Z")+".\n\n")

83 logfile.write(printstring)

84 initialstarttime = time.clock()

85
86 # Important constants

87 mu0=pi*4e−7 # permeability of free space [N/A^2]
88 c = 299792458 # speed of light [m/s]

89 R = 8.314459848 # ideal gas constant [J/(mol*K)]

90
91 # Microwave scenario

92 P=1000.0 # power [W] supplied by magnetron at left−hand endpoint
93 a = 86.36e−3 # length of long side of cross−section of 3D waveguide [m] −−this value

corresponds to D−band, WR−340 waveguide
94 b = 43.18e−3 # length of short side of cross−section of 3D waveguide [m]
95 n_mod = 1 # corresponds to TE_nm excitation mode

96 m_mod = 0 # corresponds to TE_nm excitation mode

97
98 f_fs = 2.45e9 # frequency [Hz] of waves in free space

99 omega_fs = 2*pi*f_fs # angular frequency [Hz] or [rad/sec] of waves in free space

100 l_fs = c/f_fs # wavelength [m] in free space

101 omega_c = c*sqrt( (n_mod*pi/a)**2 + (m_mod*pi/b)**2 ) # angular cutoff frequency [Hz] or [

rad/sec]

102 f_c = omega_c/(2*pi) # cutoff frequency [Hz]

103 # TO DO: Throw a warning if freespace frequency is less than cutoff: then we have

evanescent TE_10 mode (wave doesn’t propagate)

104 l_c = c/f_c # cutoff wavelength [m]
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105 l_g = sqrt(1/((1/l_fs)**2 − (1/l_c)**2)) # wavelength [m] in waveguide
106 f_g = c/l_g # frequency [Hz] in waveguide

107 omega_g = 2*pi*f_g # angular frequency [Hz] or [rad/sec] in waveguide

108
109 L = 2.5*l_g # length of waveguide [m], set here equal to 2.5* wavelength in guide, so in

the unloaded wg, using effective frequency of loaded, we have 5 peaks with one in the

center (where the sample will be)

110
111 # Physical setup

112
113 L_mat=L/9 # length of material [m], to be centered within domain

114 L_ins=L/9 # length of insulation [m], to be placed on either side of material (occurs on

both sides, so this is half of the total length of insulation)

115 # TO DO: Throw an error if cavity is too small to contain material + insulation (we do not

really need this)

116
117 # Initial temperature

118 temp_init = 298.0 # room temperature (in kelvin)

119
120 printstring=("Waveguide length is "+str(L*1e2)+" cm\nLength of material is "+str(L_mat*1e2)

+" cm\nLength of insulation on either side of material is "+str(L_ins*1e2)+" cm\nInput

power is "+str(P/1000)+" kW\nFrequency of radiation is "+str(f_fs*1e−9)+" GHz\
nInitial temperature is "+str(temp_init−273.15)+" K\n")

121 logfile.write(printstring)

122
123 # Load material: zirconia, data taken from {}

124 bulkdens_mat = 6.52e6 # density of solid load material [g/m^3]

125
126 # Load material: zirconia, experimental resutls taken from {McCoyThesis}. These are the

ones used in determining activation energy and MSC.

127 # First trial: 1 degC/min

128 times_1 = 1.00*np.array

([17192,20134,23142,26147,29086,32027,35033,38038,41046,44052,46993])

129 temps_1 = 273.15+np.array([900,950,1001,1051,1101,1150,1201,1250,1300,1350,1400])

130 rhos_1 = 0.01*np.array([46.7,47.1,48.3,51.8,58.6,69.7,82.2,89.7,91.0,91.3,91.4])

131
132 # Second trial: 3 degC/min

133 times_3 = 1.00*np.array

([12086,13071,14016,15000,16023,17008,17992,19015,20000,21062,22086])

134 temps_3 = 273.15+np.array([901,951,999,1049,1101,1151,1199,1251,1300,1350,1400])

135 rhos_3 = 0.01*np.array([46.6,46.8,47.6,49.8,54.8,63.5,75.4,85.0,87.2,87.8,88.2])
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136
137 # Third trial: 5 degC/min

138 times_5 = 1.00*np.array

([11271,11818,12398,12978,13559,14140,14754,15335,15916,16564,17247])

139 temps_5 = 273.15+np.array([901,949,1000,1049,1099,1149,1201,1250,1299,1351,1400])

140 rhos_5 = 0.01*np.array([46.6,46.8,47.5,49.4,53.6,61.3,72.7,82.0,84.5,85.3,85.9])

141
142 # Load material: zirconia, results taken from {Teng et al}. These are the ones used in

determining activation energy and the MSC.

143 # First trial: 2 degC/min

144 times_2 = 1.0*np.array([9975,11475,12975,14475,15975,17475,18975,20475,21975,23745,25275])

# times at which the temperatures were measured for the first experiment [s]

145 temps_2 = 273.15+np.array([1050,1100,1150,1200,1250,1300,1350,1400,1450,1500,1550]) #

temperatures for the first experiment[C]

146 rhos_2 = 0.01*np.array([54.43,55.7,60.15,67.53,76.40,85.35,92.71,96.42,97.63,98.79,98.89])

# relative densities for the first experiment[%]

147
148 # Second trial: 5 degC/min

149 #times_5 = 1.0*np.array

([12360,13080,13560,14160,14760,15360,15960,16560,17160,17760,19560]) # times at which

the temperatures were measured for the second experiment

150 #temps_5 = 273.15+np.array([1050,1100,1150,1200,1250,1300,1350,1400,1450,1500,1550]) #

temperatures for the second experiment

151 #rhos_5 = 0.01*np.array

([53.86,55.69,58.01,64.06,72.50,81.44,90.69,94.67,96.46,97.31,98.40]) # relative

densities for the second experiment

152
153 # Third trial: 8 degC/min

154 times_8 = 1.0*np.array([7725,8100,8475,8850,9225,9600,9975,10650,10725,11100,12900]) #

times at which the temperatures were measured for the first experiment

155 temps_8 = 273.15+np.array([1050,1100,1150,1200,1250,1300,1350,1400,1450,1500,1550]) #

temperatures for the third experiment

156 rhos_8 = 0.01*np.array([53.75,54.82,57.14,61.05,69.43,77.40,87.34,93.01,95.10,97.51,99.03])

# relative densities for the third experiment

157
158 # Load material: zirconia, experimental results taken from {Yakovlev & Ceralink}. These are

the ones used in creating property−update functions for everything *except* density,
in case we rely on the mixture formulas. (In case we rely on the function−of−theta
approximation, then we actually construct another sigmoid approximation for density

and we use only the activation energy from the above.
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159 t_mat=273.15+np.array([25, 69, 100, 139, 181, 228, 276, 324, 371, 420, 471, 523, 574, 636,

698, 752, 809, 865, 921, 973, 1019, 1065, 1100]) # temperatures [C−>K] at which each
of (eps,sig,c,rho,k) was measured for load material

160 times_mat=np.zeros(np.shape(t_mat))

161 times_mat[0]=(t_mat[0]−273.15)*(60/20)
162 for i in range(1,np.size(t_mat)):

163 times_mat[i]=times_mat[i−1]+(60/20)*(t_mat[i]−t_mat[i−1]) # simulate constant
heating rate of 20 degC/min, in the absence of better information

164 epses_mat=np.array([6.69, 5.86, 5.78, 5.75, 5.77, 5.82, 5.90, 5.98, 6.08, 6.18, 6.32, 6.47,

6.60, 6.77, 6.97, 7.22, 7.53, 7.93, 8.53, 9.44, 10.46, 12.46, 14.77]) # [unitless]

165 sigmas_mat=np.array([0.0258, 0.0045, 0.0033, 0.0029, 0.0036, 0.0043, 0.0050, 0.0058,

0.0078, 0.0121, 0.0185, 0.0288, 0.0442, 0.0664, 0.0975, 0.1416, 0.2003, 0.2786,

0.4083, 0.5942, 0.8220, 1.2190, 1.6661]) # [S/m]

166 cs_mat=np.array([0.217, 0.324, 0.363, 0.398, 0.426, 0.450, 0.470, 0.487, 0.501, 0.514,

0.526, 0.537, 0.547, 0.558, 0.568, 0.575, 0.583, 0.590, 0.597, 0.603, 0.607, 0.612,

0.615]) # [J/(g C)]

167 rhos_mat=1.0e6*np.array([2.848, 2.844, 2.841, 2.838, 2.834, 2.830, 2.826, 2.821, 2.817,

2.813, 2.809, 2.804, 2.800, 2.794, 2.789, 2.785, 2.780, 2.775, 2.770, 2.766, 2.762,

2.758, 2.755])/bulkdens_mat # RELATIVE

168 #rhos_mat = rhos_mat[::−1] # ZIRCONIA ACTUALLY SHOWS NO DENSIFICATION AT ALL DURING THIS
TRIAL... IT SHOWS THERMAL EXPANSION. We flip the vector here only in order to account

for ’densification’ in the other material property functions, in the event that we don

’t use theta−dependent functions, in the end
169 ks_mat=100.0*np.array([0.00198, 0.00290, 0.00320, 0.00344, 0.00362, 0.00373, 0.00381,

0.00385, 0.00381, 0.00391, 0.00399, 0.00407, 0.00414, 0.00405, 0.00412, 0.00417,

0.00421, 0.00426, 0.00430, 0.00433, 0.00436, 0.00439, 0.00441]) # [W/(m C)]

170 mus_mat=np.ones(shape(t_mat))

171
172 # Insulation material: alumina

173 trans_ins = 500.0 # heat transfer coefficient of insulation material

174
175 # Insulation material: alumina, parameters taken from {Yakovlev & Ceralink}. These will be

used to determine polynomial functions for updating temperature−dependent values and
density−dependent values

176 t_ins=273.15+np.array([25,100,200,300,400,500,600,700,809,900,1000,1100]) # temperatures [C

−>K] at which each of (eps,sig,c,rho,k) was measured for insulation
177 epses_ins=np.array([1.520, 1.520, 1.517, 1.513, 1.523, 1.540, 1.563, 1.573, 1.584, 1.593,

1.600, 1.608])

178 sigmas_ins=np.array([0.00005, 0.00007, 0.00015, 0.00035, 0.00062, 0.00081, 0.00091,

0.00113, 0.00131, 0.00159, 0.00234, 0.00315])
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179 cs_ins=np.array([0.764, 0.950, 1.042, 1.097, 1.135, 1.165, 1.190, 1.210, 1.230, 1.244,

1.258, 1.271])

180 rhos_ins=1.0e6*np.array([0.4400, 0.4392, 0.4382, 0.4371, 0.4361, 0.4350, 0.4340, 0.4329,

0.4318, 0.4309, 0.4299, 0.4288])

181 ks_ins=100.0*np.array([0.000631, 0.000725, 0.00085, 0.000975, 0.0011, 0.001225, 0.00135,

0.001475, 0.0016, 0.0018, 0.0020, 0.0022])

182 mus_ins=np.ones(shape(t_ins))

183
184 # Air material

185 eps_air=1.0 #[unitless] relative permittivity of air

186 sig_air=8.0e−15 # [S/m] electrical conductivity of air
187 c_air=1.0 # [J/g*C] specific heat capacity of air

188 rho_air=2.0 # [g/m^3] density of air

189 k_air=0.024 # [W/g*C] thermal conductivity of air

190 mu_air=1.0 # [unitless] relative permeability of air

191
192 # Determine activation energy and sigmoid function rho = rho(theta(t,T))

193 #msc_times = np.c_[times_2,times_5,times_8]

194 #msc_temps = np.c_[temps_2,temps_5,temps_8]

195 #msc_rhos = np.c_[rhos_2,rhos_5,rhos_8]

196 #msc_expnames = [’2 degC/min’,’5 degC/min’,’8 degC/min’]

197
198 msc_times = np.c_[times_1,times_3,times_5]

199 msc_temps = np.c_[temps_1,temps_3,temps_5]

200 msc_rhos = np.c_[rhos_1,rhos_3,rhos_5]

201 msc_expnames = [’1 degC/min’,’3 degC/min’,’5 degC/min’]

202
203 printstring=("\nDetermining optimal activation energy and density function...\n\tUsing

densification data from {McCoy Thesis}...\n\tAttempting data fit to "+method+" sigmoid

curve...\n")

204 logfile.write(printstring)

205 starttime=time.clock()

206
207 import msc

208 #Q,rhofun = msc.find_Q(msc_times,msc_temps,msc_rhos,msc_expnames,method,savestring,showinfo

=False)

209 #Q = 674214 # this is from result of previous optimization with {Teng} data and Fantozzi

curve

210 Q=653298 # this is from result of previous optimization with {McCoy} data and Fantozzi

curve
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211 rhofun=msc.find_sigmoid(msc_times,msc_temps,msc_rhos,msc_expnames,Q,method,savestring,

showinfo=False)

212 #rhofun=msc.find_sigmoid(times_mat,t_mat,rhos_mat,[’20 degC/min’],Q,method,savestring,

showinfo=False)

213
214 printstring=("\tDone; took "+str(time.clock()−starttime)+" seconds to find optimal

activation energy and MSC.\n\tOptimal activation energy is "+str(Q/1000)+" kJ/mol.\n\

nInterpolating measured data to find dielectric and thermal properties as functions of

temperature and relative density...")

215 logfile.write(printstring)

216 starttime=time.clock()

217
218 sampleplottemp = np.linspace(np.min(np.r_[t_mat,t_ins]),273.15+1200) # for plotting the

material properties

219 tempmin = 24+273.15 # minimum temp we expect to encounter (tells spline interpolator that

its values will eventually need to be extrapolated down to this value)

220 tempmax = 1400+273.15 # maximum temp we expect to encounter (tells spline interpolator that

its values will eventually need to be extrapolated up to this value)

221
222 spldeg = 3 # degree of splines to use for interpolating (cubic recommended)

223
224
225 # Functions for load parameters

226 if theta_dep_params: # Method 1: theta−dependent parameters
227 printstring = "\n\tAssuming parameters are functions of ln(theta)..."

228 logfile.write(printstring)

229
230 sampleplottimes=np.zeros(np.shape(sampleplottemp)) # assume a constant heating rate

of 20 degC/min for sample data

231 sampleplottimes[0]=(sampleplottemp[0]−273.15)*(60/20) # the time it took to get to
the first temperature we have property measurements for

232 for i in range(1,np.size(sampleplottemp)):

233 sampleplottimes[i]=sampleplottimes[i−1]+(60/20)*(sampleplottemp[i]−
sampleplottemp[i−1]) # simulate constant heating rate of 20 degC/min, in
the absence of better information

234 sampleplotlnthetas = msc.find_lnthetas(sampleplottimes,sampleplottemp,Q) # get the

ln(theta) values for plotting functions

235 lnthetas = msc.find_lnthetas(times_mat,t_mat,Q) # get the ln(theta) values for

actually doing the interpolation

236
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237 lntmin = −400 # minimum lntheta we expect to encounter (tells spline interpolator
that its values will eventually need to be extrapolated down to this value)

238 lntmax = 30 # maximum lntheta we expect to encounter (tells spline interpolator that

its values will eventually need to be extrapolated up to this value)

239
240 # Functions for load parameters (these take lntheta as input)

241 epstck = intp.splrep(lnthetas,epses_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

242 def epsfun_mat(lntheta):

243 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

244 n,m=np.shape(lntheta)

245 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),epstck)

246 return np.reshape(splevals,(n,m))

247 else: # lntheta was either a scalar or an array−that’s−a−vector
248 return intp.splev(lntheta,epstck) # spline evaluation

249
250 sigtck = intp.splrep(lnthetas,sigmas_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

251 def sigfun_mat(lntheta):

252 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

253 n,m=np.shape(lntheta)

254 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),sigtck)

255 return np.reshape(splevals,(n,m))

256 else: # lntheta was either a scalar or an array−that’s−a−vector
257 return intp.splev(lntheta,sigtck) # spline evaluation

258
259 ctck = intp.splrep(lnthetas,cs_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

260 def cfun_mat(lntheta):

261 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

262 n,m=np.shape(lntheta)

263 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),ctck)

264 return np.reshape(splevals,(n,m))

265 else: # lntheta was either a scalar or an array−that’s−a−vector
266 return intp.splev(lntheta,ctck) # spline evaluation

267
268 ktck = intp.splrep(lnthetas,ks_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation
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269 def kfun_mat(lntheta):

270 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

271 n,m=np.shape(lntheta)

272 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),ktck)

273 return np.reshape(splevals,(n,m))

274 else: # lntheta was either a scalar or an array−that’s−a−vector
275 return intp.splev(lntheta,ktck) # spline evaluation

276
277 if magmat:

278 mutck = intp.splrep(lnthetas,mus_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) #

spline interpolation

279 def mufun_mat(lntheta):

280 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−
a−vector

281 n,m=np.shape(lntheta)

282 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),mutck)

283 return np.reshape(splevals,(n,m))

284 else: # lntheta was either a scalar or an array−that’s−a−vector
285 return intp.splev(lntheta,mutck) # spline evaluation

286 else:

287 def mufun_mat(lntheta):

288 return np.ones(np.shape(lntheta))

289
290 # Uncomment for simple barycentric interpolation; we don’t like this, though, because of

values extrapolated beyond range of initial data−−diverges quickly to +/− infty
291 # epsfun_mat = intp.BarycentricInterpolator(lnthetas,epses_mat[1:])

292 # sigfun_mat = intp.BarycentricInterpolator(lnthetas,sigmas_mat[1:])

293 # cfun_mat = intp.BarycentricInterpolator(lnthetas,cs_mat[1:])

294 # kfun_mat = intp.BarycentricInterpolator(lnthetas,ks_mat[1:])

295 # mufun_mat = intp.BarycentricInterpolator(lnthetas,mus_mat[1:])

296
297 plt.figure(10) # Plot eps(temp) for material

298 plt.clf()

299 plt.plot(sampleplotlnthetas,epsfun_mat(sampleplotlnthetas),’r−’,label=’Function
approximation’)

300 plt.plot(lnthetas,epses_mat[1:],’ro’,label=’Experimental measurements’)

301 plt.legend(loc=’upper left’)

302 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

303 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

304 plt.title(’Relative electric permittivity for zirconia’)
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305 plt.savefig(savestring+’mat_epsfun.png’)

306 tikz_save(savestring+’mat_epsfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

307 plt.close(10)

308
309 plt.figure(11) # Plot sigma(temp) for material

310 plt.clf()

311 plt.plot(sampleplotlnthetas,sigfun_mat(sampleplotlnthetas),’b−’,label=’Function
approximation’)

312 plt.plot(lnthetas,sigmas_mat[1:],’ro’,label=’Experimental measurements’)

313 plt.legend(loc=’upper left’)

314 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

315 plt.ylabel(’$\sigma$ [S/m]’)

316 plt.title(’Electrical conductivity for zirconia’)

317 plt.savefig(savestring+’mat_sigfun.png’)

318 tikz_save(savestring+’mat_sigfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

319 plt.close(11)

320
321 plt.figure(12) # Plot c_p(temp) for material

322 plt.clf()

323 plt.plot(sampleplotlnthetas,cfun_mat(sampleplotlnthetas),’g−’,label=’Function
approximation’)

324 plt.plot(lnthetas,cs_mat[1:],’ro’,label=’Experimental measurements’)

325 plt.legend(loc=’upper left’)

326 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

327 plt.ylabel(’$c_p$ [J/(gK)]’)

328 plt.title(’Specific heat capacity for zirconia’)

329 plt.savefig(savestring+’mat_cfun.png’)

330 tikz_save(savestring+’mat_cfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

331 plt.close(12)

332
333 plt.figure(13) # Plot k(temp) for material

334 plt.clf()

335 plt.plot(sampleplotlnthetas,kfun_mat(sampleplotlnthetas),’b−’,label=’Function
approximation’)

336 plt.plot(lnthetas,ks_mat[1:],’ro’,label=’Experimental measurements’)

337 plt.legend(loc=’upper left’)

338 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

339 plt.ylabel(’k [W/(mK)]’)
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340 plt.title(’Thermal conductivity for zirconia’)

341 plt.savefig(savestring+’mat_kfun.png’)

342 tikz_save(savestring+’mat_kfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

343 plt.close(13)

344
345 plt.figure(14) # Plot mu(temp) for material

346 plt.clf()

347 plt.plot(sampleplotlnthetas,mufun_mat(sampleplotlnthetas),’g−’,label=’Function
approximation’)

348 plt.plot(lnthetas,mus_mat[1:],’ro’,label=’Experimental measurements’)

349 plt.legend(loc=’upper left’)

350 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

351 plt.ylabel(’$\mu_r$ [unitless]’)

352 plt.title(’Relative magnetic permeability for zirconia’)

353 plt.savefig(savestring+’mat_mufun.png’)

354 tikz_save(savestring+’mat_mufun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

355 plt.close(14)

356
357 else: # Method 2: mixture formula−based load parameter functions (these take temp, rho as

inputs)

358 #rho_rel_init=(intp.BarycentricInterpolator(t_mat,rhos_mat).__call__(temp_init)+0.1)

# relative density; the +0.1 is to make it closer to the density in the data

used for MSC

359
360 printstring = "\n\tUsing inversions of mixture formulas plus interpolation of

parameter along rho−axis to determine functions for dielectric and thermal
properties of load and insulation..."

361 logfile.write(printstring)

362
363 # Estimate values of bulk parameters for interpolating

364 if mat_params == "Licht":

365 e2fn = epses_mat**(1/rhos_mat)

366 s2fn = sigmas_mat**(1/rhos_mat)

367 m2fn = mus_mat**(1/rhos_mat)

368 elif mat_params == "Rayleigh":

369 e2fn = (1+(2/rhos_mat)*((epses_mat−1)/(epses_mat+1)))/(1−(1/rhos_mat)*((
epses_mat−1)/(epses_mat+1)))

370 s2fn = (1+(2/rhos_mat)*((sigmas_mat−1)/(sigmas_mat+1)))/(1−(1/rhos_mat)*((
sigmas_mat−1)/(sigmas_mat+1)))
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371 m2fn = (1+(2/rhos_mat)*((mus_mat−1)/(mus_mat+1)))/(1−(1/rhos_mat)*((mus_mat
−1)/(mus_mat+1)))

372 elif mat_params == "MG":

373 e2fn = (eps_air*(1+rhos_mat)*(epses_mat−eps_air))/(2*rhos_mat*eps_air−(1−
rhos_mat)*(epses_mat−eps_air))

374 s2fn = (sig_air*(1+rhos_mat)*(sigmas_mat−sig_air))/(2*rhos_mat*sig_air−(1−
rhos_mat)*(sigmas_mat−sig_air))

375 m2fn = (mu_air*(1+rhos_mat)*(mus_mat−mu_air))/(2*rhos_mat*mu_air−(1−
rhos_mat)*(mus_mat−mu_air))

376 elif mat_params == "Bruggeman":

377 e2fn = (epses_mat*(1−3*rhos_mat)+2*epses_mat*epses_mat)/(1+epses_mat*(2−3*
rhos_mat))

378 s2fn = (sigmas_mat*(1−3*rhos_mat)+2*sigmas_mat*sigmas_mat)/(1+sigmas_mat
*(2−3*rhos_mat))

379 m2fn = (mus_mat*(1−3*rhos_mat)+2*mus_mat*mus_mat)/(1+mus_mat*(2−3*rhos_mat))
380
381 # Interpolate bulk parameters with temperature

382 epstck = intp.splrep(t_mat,e2fn,xb=tempmin,xe=tempmax,k=spldeg)

383 sigtck = intp.splrep(t_mat,s2fn,xb=tempmin,xe=tempmax,k=spldeg)

384 mutck = intp.splrep(t_mat,m2fn,xb=tempmin,xe=tempmax,k=spldeg)

385
386 # Construct functions

387 if mat_params == "Licht":

388 def epsfun_mat(temp,rho):

389 eps2=intp.splev(temp,epstck)

390 return eps2**rho

391 def sigfun_mat(temp,rho):

392 sig2=intp.splev(temp,sigtck)

393 return sig2**rho

394 def mufun_mat(temp,rho):

395 mu2=intp.splev(temp,mutck)

396 return mu2**rho

397 elif mat_params == "Rayleigh":

398 def epsfun_mat(temp,rho):

399 eps2=intp.splev(temp,epstck)

400 return (eps2*(2*rho+1)−(2*rho−2))/(eps2*(1−rho)+(rho−2))
401 def sigfun_mat(temp,rho):

402 sig2=intp.splev(temp,sigtck)

403 return (sig2*(2*rho+1)−(2*rho−2))/(sig2*(1−rho)+(rho−2))
404 def mufun_mat(temp,rho):

405 mu2=intp.splev(temp,mutck)
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406 return (mu2*(2*rho+1)−(2*rho−2))/(mu2*(1−rho)+(rho−2))
407 elif mat_params == "MG":

408 def epsfun_mat(temp,rho):

409 eps2=intp.splev(temp,epstck)

410 return eps_air+2*rho*eps_air*(eps2−eps_air)/(eps2+eps_air−rho*(eps2−
eps_air))−2

411 def sigfun_mat(temp,rho):

412 sig2=intp.splev(temp,sigtck)

413 return sig_air+2*rho*sig_air*(sig2−sig_air)/(sig2+sig_air−rho*(sig2−
sig_air))

414 def mufun_mat(temp,rho):

415 mu2=intp.splev(temp,mutck)

416 return mu_air+2*rho*mu_air*(mu2−mu_air)/(mu2+mu_air−rho*(mu2−mu_air))
417 elif mat_params == "Bruggeman":

418 def epsfun_mat(temp,rho):

419 eps2=intp.splev(temp,epstck)

420 return 0.5*(1+3*rho*(1−eps2))+0.5*sqrt((1+3*rho*(1−eps2))**(2)+4*eps2
)

421 def sigfun_mat(temp,rho):

422 sig2=intp.splev(temp,sigtck)

423 return 0.5*(1+3*rho*(1−sig2))+0.5*sqrt((1+3*rho*(1−sig2))**(2)+4*sig2
)

424 def mufun_mat(temp,rho):

425 mu2=intp.splev(temp,mutck)

426 return 0.5*(1+3*rho*(1−mu2))+0.5*sqrt((1+3*rho*(1−mu2))**(2)+4*mu2)
427
428 if not magmat:

429 def mufun_mat(temp,rho):

430 return np.ones(np.shape(temp))

431
432 # Specfic heat capacity

433 ctck = intp.splrep(t_mat,cs_mat/rhos_mat,xb=tempmin,xe=tempmax,k=spldeg)

434 def cfun_mat(temp,rho): # takes RELATIVE density as input

435 return intp.splev(temp,ctck)*rho

436
437 # Thermal conductivity

438 ktck = intp.splrep(t_mat,ks_mat/(1.5*rhos_mat−0.5),xb=tempmin,xe=tempmax,k=spldeg)
439 def kfun_mat(temp,rho):

440 return intp.splev(temp,ktck)*(1.5*rho−0.5)
441
442 # For plotting
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443 sampleplotrhovals = np.linspace(rhos_mat[0],rhos_mat[−1])
444
445 sampleploteps=np.zeros(np.shape(sampleplottemp))

446 sampleplotsig=np.zeros(np.shape(sampleplottemp))

447 sampleplotmu=np.zeros(np.shape(sampleplottemp))

448 sampleplotc=np.zeros(np.shape(sampleplottemp))

449 sampleplotk=np.zeros(np.shape(sampleplottemp))

450
451 for ind in range(0,np.size(sampleplottemp)):

452 sampleploteps[ind]=epsfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

453 sampleplotsig[ind]=sigfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

454 sampleplotmu[ind]=mufun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

455 sampleplotc[ind]=cfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

456 sampleplotk[ind]=kfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

457
458 plt.figure(10) # Plot eps(temp) for material

459 plt.clf()

460 # plt.plot(sampleplottemp−273.15,epsfun_mat(sampleplottemp,rhoval),’r−’,label=’Function
approximation’)

461 plt.plot(sampleplottemp−273.15,sampleploteps,’r−’,label=’Function approximation’)
462 plt.plot(t_mat−273.15,epses_mat,’ro’,label=’Experimental measurements (temp only)’)
463 plt.legend(loc=’upper left’)

464 plt.xlabel(’Temperature (degC)’)

465 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

466 plt.title(r’Relative electric permittivity for zirconia’)

467 plt.savefig(savestring+’mat_epsfun.png’)

468 tikz_save(savestring+’mat_epsfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

469 plt.close(10)

470
471 plt.figure(11) # Plot sigma(temp) for material

472 plt.clf()

473 # plt.plot(sampleplottemp−273.15,sigfun_mat(sampleplottemp,rhoval),’b−’,label=’Function
approximation’)

474 plt.plot(sampleplottemp−273.15,sampleplotsig,’b−’,label=’Function approximation’)
475 plt.plot(t_mat−273.15,sigmas_mat,’ro’,label=’Experimental measurements (temp only)’

)

476 plt.legend(loc=’upper left’)

477 plt.xlabel(’Temperature (degC)’)

478 plt.ylabel(’$\sigma$ [S/m]’)

479 plt.title(r’Electrical conductivity for zirconia’)
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480 plt.savefig(savestring+’mat_sigfun.png’)

481 tikz_save(savestring+’mat_sigfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

482 plt.close(11)

483
484 plt.figure(12) # Plot c_p(temp) for material

485 plt.clf()

486 #plt.plot(sampleplottemp−273.15,cfun_mat(sampleplottemp,rhoval),’g−’,label=’
Function approximation’)

487 plt.plot(sampleplottemp−273.15,sampleplotc,’g−’,label=’Function approximation’)
488 plt.plot(t_mat−273.15,cs_mat,’ro’,label=’Experimental measurements (temp only)’)
489 plt.legend(loc=’upper left’)

490 plt.xlabel(’Temperature (degC)’)

491 plt.ylabel(’$c_p$ [J/(gK)]’)

492 plt.title(r’Specific heat capacity for zirconia’)

493 plt.savefig(savestring+’mat_cfun.png’)

494 tikz_save(savestring+’mat_cfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

495 plt.close(12)

496
497 plt.figure(13) # Plot k(temp) for material

498 plt.clf()

499 #plt.plot(sampleplottemp−273.15,kfun_mat(sampleplottemp,rhoval),’b−’,label=’
Function approximation’)

500 plt.plot(sampleplottemp−273.15,sampleplotk,’b−’,label=’Function approximation’)
501 plt.plot(t_mat−273.15,ks_mat,’ro’,label=’Experimental measurements (temp only)’)
502 plt.legend(loc=’upper left’)

503 plt.xlabel(’Temperature (degC)’)

504 plt.ylabel(’$k$ [W/(mK)]’)

505 plt.title(r’Thermal conductivity for zirconia’)

506 plt.savefig(savestring+’mat_kfun.png’)

507 tikz_save(savestring+’mat_kfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

508 plt.close(13)

509
510 plt.figure(14) # Plot mu(temp) for material

511 plt.clf()

512 #plt.plot(sampleplottemp−273.15,mufun_mat(sampleplottemp,rhoval),’g−’,label=’
Function approximation’)

513 plt.plot(sampleplottemp−273.15,sampleplotmu,’g−’,label=’Function approximation’)
514 plt.plot(t_mat−273.15,mus_mat,’ro’,label=’Experimental measurements (temp only)’)
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515 plt.legend(loc=’upper left’)

516 plt.xlabel(’Temperature (degC)’)

517 plt.ylabel(’$\mu_r$ [unitless]’)

518 plt.title(r’Relative magnetic permeability for zirconia’)

519 plt.savefig(savestring+’mat_mufun.png’)

520 tikz_save(savestring+’mat_mufun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

521 plt.close(14)

522
523 plt.figure(15) # Plot all(temp) for material

524 plt.clf()

525 plt.plot(sampleplottemp−273.15,sampleploteps,’r−’,label=’Eps Function’)
526 # plt.plot(t_mat−273.15,epses_mat,’ro’,label=’Eps meas’)
527 plt.plot(sampleplottemp−273.15,sampleplotsig,’b−’,label=’Sig fn’)
528 # plt.plot(t_mat−273.15,sigmas_mat,’bo’,label=’Sig meas’)
529 plt.plot(sampleplottemp−273.15,sampleplotmu,’g−’,label=’Mu func’)
530 # plt.plot(t_mat−273.15,mus_mat,’go’,label=’Mu meas’)
531 plt.plot(sampleplottemp−273.15,sampleplotc,’k−’,label=’cp func’)
532 # plt.plot(t_mat−273.15,cs_mat,’ko’,label=’cp meas’)
533 plt.plot(sampleplottemp−273.15,sampleplotk,’y−’,label=’k func’)
534 plt.plot(t_mat−273.15,ks_mat,’yo’,label=’k meas’)
535 plt.legend(loc=’upper left’)

536 plt.xlabel(’Temperature (degC)’)

537 plt.ylabel(’Fun val’)

538 plt.title(’All functions’)

539 plt.savefig(savestring+’mat_allfuns.png’)

540 tikz_save(savestring+’mat_allfuns.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

541 plt.close(15)

542
543
544 # Functions for insulation parameters (these take temps as inputs)

545 epsinstck = intp.splrep(t_ins,epses_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline

interpolation

546 def epsfun_ins(temp):

547 return intp.splev(temp,epsinstck) # spline evaluation

548
549 siginstck = intp.splrep(t_ins,sigmas_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline

interpolation

550 def sigfun_ins(temp):

551 return intp.splev(temp,siginstck) # spline evaluation
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552
553 cinstck = intp.splrep(t_ins,cs_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline interpolation

554 def cfun_ins(temp):

555 return intp.splev(temp,cinstck) # spline evaluation

556
557 rhoinstck = intp.splrep(t_ins,rhos_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline

interpolation

558 def rhofun_ins(temp):

559 return intp.splev(temp,rhoinstck) # spline evaluation

560
561 kinstck = intp.splrep(t_ins,ks_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline interpolation

562 def kfun_ins(temp):

563 return intp.splev(temp,kinstck) # spline evaluation

564
565 muinstck = intp.splrep(t_ins,mus_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline interpolation

566 def mufun_ins(temp):

567 return intp.splev(temp,muinstck) # spline evaluation

568
569 # Uncomment to use barycentric interpolation instead of b−splines
570 #epsfun_ins = intp.BarycentricInterpolator(t_ins,epses_ins)

571 #sigfun_ins = intp.BarycentricInterpolator(t_ins,sigmas_ins)

572 #cfun_ins = intp.BarycentricInterpolator(t_ins,cs_ins)

573 #rhofun_ins = intp.BarycentricInterpolator(t_ins,rhos_ins)

574 #kfun_ins = intp.BarycentricInterpolator(t_ins,ks_ins)

575 #mufun_ins = intp.BarycentricInterpolator(t_ins,mus_ins)

576
577 plt.figure(20) # Plot eps(temp) for insulation

578 plt.plot(sampleplottemp−273.15,epsfun_ins(sampleplottemp),’r−’,label=’Function
approximation’)

579 plt.plot(t_ins−273.15,epses_ins,’ro’,label=’Experimental measurements’)
580 plt.legend(loc=’upper left’)

581 plt.xlabel(’Temperature [degC]’)

582 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

583 plt.title(’Relative electric permittivity for alumina insulation’)

584 plt.savefig(savestring+’ins_epsfun.png’)

585 tikz_save(savestring+’ins_epsfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

586 plt.close(20)

587
588 plt.figure(21) # Plot sigma(temp) for insulation
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589 plt.plot(sampleplottemp−273.15,sigfun_ins(sampleplottemp),’b−’,label=’Function
approximation’)

590 plt.plot(t_ins−273.15,sigmas_ins,’ro’,label=’Experimental measurements’)
591 plt.legend(loc=’upper left’)

592 plt.xlabel(’Temperature [degC]’)

593 plt.ylabel(’$\sigma$ [S/m]’)

594 plt.title(’Electrical conductivity for alumina insulation’)

595 plt.savefig(savestring+’ins_sigfun.png’)

596 tikz_save(savestring+’ins_sigfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

597 plt.close(21)

598
599 plt.figure(22) # Plot c_p(temp) for insulation

600 plt.plot(sampleplottemp−273.15,cfun_ins(sampleplottemp),’g−’,label=’Function approximation
’)

601 plt.plot(t_ins−273.15,cs_ins,’ro’,label=’Experimental measurements’)
602 plt.legend(loc=’upper left’)

603 plt.xlabel(’Temperature [degC]’)

604 plt.ylabel(’$c_p$ [J/(gK)]’)

605 plt.title(’Specific heat capacity for alumina insulation’)

606 plt.savefig(savestring+’ins_cfun.png’)

607 tikz_save(savestring+’ins_cfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

608 plt.close(22)

609
610 plt.figure(23) # Plot rho(temp) for insulation

611 plt.plot(sampleplottemp−273.15,rhofun_ins(sampleplottemp),’y−’,label=’Function
approximation’)

612 plt.plot(t_ins−273.15,rhos_ins,’ro’,label=’Experimental measurements’)
613 plt.legend(loc=’upper left’)

614 plt.xlabel(’Temperature [degC]’)

615 plt.ylabel(r’$\rho$ [g/(cm^3)]’)

616 plt.title(’Density for alumina insulation’)

617 plt.savefig(savestring+’ins_rhofun.png’)

618 tikz_save(savestring+’ins_rhofun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

619 plt.close(23)

620
621 plt.figure(24) # Plot k(temp) for insulation

622 plt.plot(sampleplottemp−273.15,kfun_ins(sampleplottemp),’b−’,label=’Function approximation
’)
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623 plt.plot(t_ins−273.15,ks_ins,’ro’,label=’Experimental measurements’)
624 plt.legend(loc=’upper left’)

625 plt.xlabel(’Temperature [degC]’)

626 plt.ylabel(’$k$ [W/(mK)]’)

627 plt.title(’Thermal conductivity for alumina insulation’)

628 plt.savefig(savestring+’ins_kfun.png’)

629 tikz_save(savestring+’ins_kfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

630 plt.close(24)

631
632 plt.figure(25) # Plot mu(temp) for insulation

633 plt.plot(sampleplottemp−273.15,mufun_ins(sampleplottemp),’g−’,label=’Function
approximation’)

634 plt.plot(t_ins−273.15,mus_ins,’ro’,label=’Experimental measurements’)
635 plt.legend(loc=’upper left’)

636 plt.xlabel(’Temperature [degC]’)

637 plt.ylabel(’$\mu_r$ [unitless]’)

638 plt.title(’Relative magnetic permeability for alumina insulation’)

639 plt.savefig(savestring+’ins_mufun.png’)

640 tikz_save(savestring+’ins_mufun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

641 plt.close(25)

642
643 printstring=("\n\tDone; took "+str(time.clock()−starttime)+" seconds to find functions for

all dielectric and thermal material and insulation properties.\n\nSetting up

simulation...\n")

644 logfile.write(printstring)

645
646 # Initialize elemental values of load properties (these vectors are updated in the course

of mechanical solution)

647 # Since there is no concept of heating rate at time t=0, must start with only temp−
dependent interpolated parameters

648 eps_mat=intp.BarycentricInterpolator(t_mat,epses_mat).__call__(temp_init) #[unitless]

relative permittivity

649 sig_mat=intp.BarycentricInterpolator(t_mat,sigmas_mat).__call__(temp_init) # [S/m]

electrical conductivity

650 c_mat=intp.BarycentricInterpolator(t_mat,cs_mat).__call__(temp_init) # [J/g*C] specific

heat capacity

651 rho_mat=(intp.BarycentricInterpolator(t_mat,rhos_mat).__call__(temp_init)+0.1)*bulkdens_mat

# [g/m^3] density; the +0.1 is to make it closer to the density in the data used for

MSC
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652 k_mat=intp.BarycentricInterpolator(t_mat,ks_mat).__call__(temp_init) # [W/g*C] thermal

conductivity

653 mu_mat=intp.BarycentricInterpolator(t_mat,mus_mat).__call__(temp_init) # [unitless]

relative permeability

654
655 # Initialize elemental values of insulation properties

656 eps_ins=epsfun_ins(temp_init) #[unitless] relative permittivity of insulation at initial

temperature

657 sig_ins=sigfun_ins(temp_init) # [S/m] electrical conductivity of insulation at initial

temperature

658 c_ins=cfun_ins(temp_init) # [J/g*C] specific heat capacity of insulation at initial

temperature

659 rho_ins=rhofun_ins(temp_init) # [g/m^3] density of insulation at initial temperature

660 k_ins=kfun_ins(temp_init) # [W/g*C] thermal conductivity of insulation at initial

temperature

661 mu_ins=mufun_ins(temp_init) # [unitless] relative permeability of insulation at initial

temperature

662
663 # Nodes and spacing

664 delta_x_air = 0.05*c/(f_g*sqrt(eps_air)) # length of spatial step in air [m]

665 delta_x_mat = 0.05*c/(f_g*sqrt(eps_mat)) # length of spatial step in material [m]

666 delta_x_ins = 0.05*c/(f_g*sqrt(eps_ins)) # length of spatial step in insulation [m]

667
668 ins_left_bdry = 0.5*(L−L_mat)−L_ins # left−hand boundary of insulation [m]
669 mat_left_bdry = ins_left_bdry + L_ins # left−hand boundary of material [m]
670 mat_right_bdry = mat_left_bdry + L_mat # right−hand boundary of material [m]
671 ins_right_bdry = mat_right_bdry + L_ins # right−hand boundary of insulation [m]
672
673 left_air_vec = r_[0:ins_left_bdry:delta_x_air]

674 ins_left_bdry = max(ins_left_bdry,left_air_vec[−1]+delta_x_ins) # makes sure step at
interface is not too small

675 left_ins_vec = r_[ins_left_bdry:mat_left_bdry:delta_x_ins]

676 mat_left_bdry = max(mat_left_bdry,left_ins_vec[−1]+delta_x_mat) # makes sure step at
interface is not too small

677 mat_vec = r_[mat_left_bdry:mat_right_bdry:delta_x_mat]

678 mat_right_bdry = max(mat_right_bdry,mat_vec[−1]+delta_x_mat) # makes sure step at
interface is not too small

679 right_ins_vec = r_[mat_right_bdry:ins_right_bdry:delta_x_ins]

680 ins_right_bdry = max(ins_right_bdry,right_ins_vec[−1]+delta_x_ins) # makes sure step at
interface is not too small

681 right_air_vec = r_[ins_right_bdry:L:delta_x_air]
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682
683 # Finally, create the vector of x−values
684 x = r_[ left_air_vec , left_ins_vec , mat_vec , right_ins_vec , right_air_vec ]

685
686 n=np.size(x) # number of spatial gridpoints

687 h=x[1:]−x[:−1] # h−values
688
689 n_air_left = np.size(left_air_vec) # the number of nodes containing air in left half of the

cavity, initially

690 n_ins_left = np.size(left_ins_vec) # the number of nodes containing insulation in left half

of the cavity, initially

691 n_mat = np.size(mat_vec) # the number of nodes containing material, initially

692 n_ins_right = np.size(right_ins_vec) # the number of nodes containing insulation in right

half of the cavity, initially

693 n_air_right = np.size(right_air_vec) # the number of nodes containing air in right half of

the cavity, initially

694
695 n_ins=n_ins_left+n_mat+n_ins_right

696
697 ins_startind = n_air_left # first index within left−hand insulation
698 mat_startind = n_air_left + n_ins_left # first index within material

699 ins_endind = n − n_air_right # first index within right−hand air
700 mat_endind = ins_endind−n_ins_right # first index within right−hand insulation
701
702 eps = r_[ [eps_air]*n_air_left, [eps_ins]*n_ins_left, [eps_mat]*n_mat, [eps_ins]*

n_ins_right, [eps_air]*n_air_right ]

703 sig = r_[ [sig_air]*n_air_left, [sig_ins]*n_ins_left, [sig_mat]*n_mat, [sig_ins]*

n_ins_right, [sig_air]*n_air_right ]

704 cp = r_[ [c_air]*n_air_left, [c_ins]*n_ins_left, [c_mat]*n_mat, [c_ins]*n_ins_right, [c_air

]*n_air_right ] # called cp to differentiate it from c, the speed of light

705 rho = r_[ [rho_air]*n_air_left, [rho_ins]*n_ins_left, [rho_mat]*n_mat, [rho_ins]*

n_ins_right, [rho_air]*n_air_right ]

706 ks = r_[ [k_air]*n_air_left, [k_ins]*n_ins_left, [k_mat]*n_mat, [k_ins]*n_ins_right, [k_air

]*n_air_right ]

707 mu = r_[ [mu_air]*n_air_left, [mu_ins]*n_ins_left, [mu_mat]*n_mat, [mu_ins]*n_ins_right, [

mu_air]*n_air_right ]

708
709 # UNCOMMENT THESE TO SIMULATE AN EMPTY CAVITY (useful for testing EM solver against known

TE, TM, and TEM patterns)

710 #eps = np.array([eps_air]*n)

711 #sig = np.array([sig_air]*n)
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712 #cp = np.array([c_air]*n)

713 #rho = np.array([rho_air]*n)

714 #ks = np.array([k_air]*n)

715 #mu = np.array([mu_air]*n)

716
717 # Time scenario

718 #em_dt = min(delta_x_air,delta_x_mat,delta_x_ins)/c # length of time step of em solve [sec]

719 em_dt = 1.0e−3 #(use this for speeding up the simulation−−this is permissible when the
dielectric properties are not changing too quickly with temperature)

720 h_dt = 1.0e−2 # length of time step of heat solve (i.e., how long to nuke before solving
heat transfer) [sec]

721
722 # Initialize electric field

723 E_old = np.array([0]*n) # initialize electric field [V/m]

724 beta = pi/L # propagation constant [1/m]

725 pow = (2/L)*sqrt(2*P*omega_fs*mu0/beta) # initialize power at magnetron (left−hand
boundary)

726 E_old[0] = pow # replace first E−field value with power at magnetron (left−hand boundary)
727 E_older = E_old # initialize second oldest electric field

728 eavg = [0]*n

729 import emsolve1

730
731 # Initialize temperature field

732 import thermsolve1

733 temp_old=np.array([temp_init]*n) # K

734
735 # Initialize theta

736 theta_integrand_old = np.array([(np.exp(−Q/(R*temp_init)))/(temp_init)]*(n_mat+1)) # theta
is a cumulative integral; this is the initial value of the integrand

737 theta = np.zeros(np.shape(theta_integrand_old)) # initial value of cumulative integral is

zero

738
739 # Initialize material ’volume’ (in 1D, volume=length)

740 v_old = L_mat

741
742 # Initialize average density in material

743 rho_avg_old = rho_mat/bulkdens_mat

744
745 # Initialize Plots

746
747 #plt.figure(14) # Domain plot
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748 #plt.plot(100*x,eps,’ro’,100*x,sig,’bo’,100*x,cp,’go’,100*x,rho,’yo’,100*x,rho,’rs’,100*x,k

,’bs’,100*x,mu,’gs’)

749 #plt.xlabel(’Position along domain [cm]’)

750 #plt.ylabel(’param vals’)

751 #plt.title(’Geometrical configuration’)

752 #plt.show()

753
754 # Initialize time and iterations

755 loopstarttime=time.clock() # to track computing time

756 elapsed_time = 0.0 # initialize elapsed simulated processing time

757 itno=0 # iteration number (for saving frames of movies)

758 delfiles=[] # for storing names of files containing frames for movies−−want to delete
these files at the end of simulation

759
760 if embc==’abs’:

761 embcprintstring = "absorbing"

762 elif embc==’pec’:

763 embcprintstring = "perfect electric conductor (zero Dirichlet)"

764
765 if tempbc==’rad’:

766 tempbcprintstring="radiative"

767 elif tempbc==’ins’:

768 tempbcprintstring="insulating (zero Neumann)"

769 elif tempbc=="fix":

770 tempbcprintstring="fixed (Dirichlet)"

771
772 printstring = ("\tSpatial cell size in air is "+str(delta_x_air*1e2)+" cm\n\tSpatial cell

size in insulation "+str(delta_x_ins*1e2)+" cm\n\tSpatial cell size in material is "+

str(delta_x_mat*1e2)+" cm\n\tTotal number of cells in entire domain is "+str(n)+"\n\

tTotal number of cells in insulation+material is "+str(n_ins)+"\n\tTotal number of

cells in material is "+str(n_mat)+"\n\tTime step for electromagnetic solve is "+str(

em_dt)+" sec\n\tTime step for thermal solve is "+str(h_dt)+" sec\n\tTotal simulated

processing time will be "+str(total_time)+" sec\n\nStarting simulation loop...\n\

tUsing "+embcprintstring+" boundary condition for electromagnetic solver\n\tUsing "+

tempbcprintstring+" boundary condition for thermal solver\n")

773 logfile.write(printstring)

774
775 instemps = r_[temp_old[ins_startind:mat_startind+1],temp_old[mat_endind:ins_endind

+1]]−273.15
776 printstring = (’\nAt start of simulation...\n\tMax value of electric field is ’ + str(max(

eavg)) + ’ V/m\n\tMin value of electric field is ’ + str(min(eavg)) + ’ V/m\n\tMean
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value of electric field is ’ + str(mean(eavg))+’ V/m\n\tMax temp in insulation is ’ +

str(max(instemps)) + ’ degC\n\tMin temp in insulation is ’ + str(min(instemps)) + ’

degC\n\tMean temp in insulation is ’ + str(mean(instemps)) + ’ degC\n\tMax temp in

load is ’ + str(max(temp_old[mat_startind:mat_endind+1])−273.15) + ’ degC\n\tMin temp
in load is ’ + str(min(temp_old[mat_startind:mat_endind+1])−273.15) + ’ degC\n\tMean
temp in load is ’ + str(mean(temp_old[mat_startind:mat_endind+1])−273.15) + ’ degC\n\
tMean density in material is ’+str(100*rho_mat/bulkdens_mat)+" percent of bulk density

\n")

777 logfile.write(printstring)

778
779 T_maxes = np.array([temp_init−273.15])
780 T_means = np.array([temp_init−273.15])
781 load_rhos = np.array([100*rho_mat/bulkdens_mat])

782 plottingtimes = lntavgs = np.array([0])

783
784 # Simulation loop

785 while elapsed_time<total_time:

786 print_time = str(round(elapsed_time,2))

787
788 # Plot electric field

789 plt.figure(30) # static image of field

790 plt.plot(100*x,eavg)

791 plt.xlabel(’Position along domain [cm]’)

792 plt.ylabel(’Root mean square of electric field [V^2/m^2]’)

793 plt.title(’RMS of electric field at t=’ + print_time + ’ seconds’)

794 plt.draw()

795 plt.savefig(savestring+’efield.png’)

796 # tikz_save(savestring+’efield.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

797
798 plt.figure(31) # save frame for movie

799 plt.cla()

800 plt.plot(100*x,eavg)

801 plt.xlabel(’Position along domain [cm]’)

802 plt.ylabel(’Root mean square of electric field [V^2/m^2]’)

803 plt.title(’RMS of electric field at t=’ + print_time + ’ seconds’)

804 fname = hiddensavestring+’efield’+str(itno)+’.png’

805 plt.savefig(fname)

806 delfiles.append(fname)

807
808 # Plot temperature field
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809 plt.figure(32) # update static image of field

810 plt.plot(100*x,temp_old−273.15)
811 plt.xlabel(’Position along domain [cm]’)

812 plt.ylabel(’Temperature [C]’)

813 plt.title(’Temperature distribution at t=’ + print_time + ’ seconds’)

814 plt.draw()

815 plt.savefig(savestring+’temp_wholecav.png’)

816 # tikz_save(savestring+’temp_wholecav.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

817
818 plt.figure(33) # save frame for movie

819 plt.cla()

820 plt.axis([100*x[0],100*x[−1],25,1400])
821 plt.plot(100*x,temp_old−273.15)
822 plt.xlabel(’Position along domain [cm]’)

823 plt.ylabel(’Temperature [C]’)

824 plt.title(’Temperature distribution at t=’ + print_time + ’ seconds’)

825 fname = hiddensavestring+’temp_wholecav’+str(itno)+’.png’

826 plt.savefig(fname)

827 delfiles.append(fname)

828
829 # Plot shrinkage results

830 #plt.figure(34)

831 #plt.plot(100*x,) # what to actually plot?

832 #plt.xlabel(’Position along domain [cm]’)

833 #plt.ylabel(’’) # figure out how to remove number labels and ticks from y−axis
834 #plt.title(’Shrinkage at t=’ + print_time + ’ seconds’)

835 #plt.draw()

836
837 #plt.figure(35) # save frame for movie

838 #plt.clf()

839 #plt.plot(100*x,)

840 #plt.xlabel(’Position along domain [cm]’)

841 #plt.ylabel(’’)

842 #plt.title(’Shrinkage at t=’ + print_time + ’ seconds’)

843 #fname = hiddensavestring+’mechdef’+str(itno)+’.png’

844 #plt.savefig(fname)

845 #delfiles.append(fname)

846
847 # Plot material properties

848 plt.figure(40)
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849 plt.plot(100*x,eps)

850 plt.xlabel(’Position along domain [cm]’)

851 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

852 plt.title(’Relative permittivity at time t=’ + print_time + ’ seconds’)

853 plt.savefig(savestring+’eps_evol.png’)

854 # tikz_save(savestring+’eps_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

855
856 plt.figure(41) # save frame for movie

857 plt.cla()

858 plt.plot(100*x,eps)

859 plt.xlabel(’Position along domain [cm]’)

860 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

861 plt.title(’Relative permittivity at time t=’ + print_time + ’ seconds’)

862 fname = hiddensavestring+’eps_evol’+str(itno)+’.png’

863 plt.savefig(fname)

864 delfiles.append(fname)

865
866 plt.figure(42)

867 plt.plot(100*x,sig)

868 plt.xlabel(’Position along domain [cm]’)

869 plt.ylabel(r’$\sigma$ [S/m]’)

870 plt.title(’Electrical conductivity at time t=’+print_time + ’ seconds’)

871 plt.savefig(savestring+’sig_evol.png’)

872 # tikz_save(savestring+’sig_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

873
874 plt.figure(43) # save frame for movie

875 plt.cla()

876 plt.plot(100*x,sig)

877 plt.xlabel(’Position along domain [cm]’)

878 plt.ylabel(r’$\sigma$ [S/m]’)

879 plt.title(’Electrical conductivity at time t=’+print_time + ’ seconds’)

880 fname = hiddensavestring+’sig_evol’+str(itno)+’.png’

881 plt.savefig(fname)

882 delfiles.append(fname)

883
884 plt.figure(44)

885 plt.plot(100*x,cp)

886 plt.xlabel(’Position along domain [cm]’)

887 plt.ylabel(’$c_p$ [J/(gK)]’)
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888 plt.title(’Thermal conductivity at time t=’+print_time + ’ seconds’)

889 plt.savefig(savestring+’c_evol.png’)

890 # tikz_save(savestring+’c_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

891
892 plt.figure(45) # save frame for movie

893 plt.cla()

894 plt.plot(100*x,cp)

895 plt.xlabel(’Position along domain [cm]’)

896 plt.ylabel(’$c_p$ [J/(gK)]’)

897 plt.title(’Thermal conductivity at time t=’+print_time + ’ seconds’)

898 fname = hiddensavestring+’c_evol’+str(itno)+’.png’

899 plt.savefig(fname)

900 delfiles.append(fname)

901
902 plt.figure(46)

903 plt.plot(100*x,rho)

904 plt.xlabel(’Position along domain [cm]’)

905 plt.ylabel(r’$\rho$ [g/m^3]’)

906 plt.title(r’$\rho$ at time t=’+print_time + ’ seconds’)

907 plt.savefig(savestring+’rho_evol.png’)

908 # tikz_save(savestring+’rho_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

909
910 plt.figure(47) # save frame for movie

911 plt.cla()

912 plt.plot(100*x,rho)

913 plt.xlabel(’Position along domain [cm]’)

914 plt.ylabel(r’$\rho$ [g/m^3]’)

915 plt.title(r’$\rho$ at time t=’+print_time + ’ seconds’)

916 plt.savefig(hiddensavestring+’rho_evol.png’)

917 fname = hiddensavestring+’rho_evol’+str(itno)+’.png’

918 plt.savefig(fname)

919 delfiles.append(fname)

920
921 plt.figure(48)

922 plt.plot(100*x,ks)

923 plt.xlabel(’Position along domain [cm]’)

924 plt.ylabel(’$k$ [W/(mK)]’)

925 plt.title(’Specific heat capacity at time t=’+print_time + ’ seconds’)

926 plt.savefig(savestring+’k_evol.png’)
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927 # tikz_save(savestring+’k_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

928
929 plt.figure(49) # save frame for movie

930 plt.cla()

931 plt.plot(100*x,ks)

932 plt.xlabel(’Position along domain [cm]’)

933 plt.ylabel(’$k$ [W/(mK)]’)

934 plt.title(’Specific heat capacity at time t=’+print_time + ’ seconds’)

935 fname = hiddensavestring+’k_evol’+str(itno)+’.png’

936 plt.savefig(fname)

937 delfiles.append(fname)

938
939 plt.figure(50)

940 plt.plot(100*x,mu)

941 plt.xlabel(’Position along domain [cm]’)

942 plt.ylabel(r’Relative permeability $\mu$ [unitless]’)

943 plt.title(r’$\mu$ at time t=’+print_time + ’ seconds’)

944 plt.savefig(savestring+’mu_evol.png’)

945 # tikz_save(savestring+’mu_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

946
947 plt.figure(51) # save frame for movie

948 plt.cla()

949 plt.plot(100*x,mu)

950 plt.xlabel(’Position along domain [cm]’)

951 plt.ylabel(r’Relative permeability $\mu$ [unitless]’)

952 plt.title(r’$\mu$ at time t=’+print_time + ’ seconds’)

953 fname = hiddensavestring+’mu_evol’+str(itno)+’.png’

954 plt.savefig(fname)

955 delfiles.append(fname)

956
957 loopits = 0

958 staycount = 0

959 leftcount = 0

960 rightcount = 0

961 # Run coupled solver

962 while loopits<capture_every/h_dt: # print shrinkage every (this many) timesteps,

instead of every single timestep (avoid creating huuuuuuge logfiles)

963
964 # Iterate electromagnetic solver for the duration of one thermal timestep
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965 E_old,E_older,eavg = emsolve1.finite_diff_implicit(E_old,E_older,x,mu,sig,eps

,h,em_dt,h_dt,elapsed_time,embc) # returns modulus of electric field

966
967 # Run thermal solver once, and *only* within the insulation and load

968 mat_start = mat_startind−ins_startind
969 mat_end = mat_endind−ins_startind
970
971 temp_new = thermsolve1.finite_diff_theta(temp_old[ins_startind:ins_endind],h[

ins_startind−1:ins_endind],cp[ins_startind:ins_endind],rho[ins_startind:
ins_endind],ks[ins_startind:ins_endind],eavg[ins_startind:ins_endind],

h_dt,sig[ins_startind:ins_endind],th,tempbc,trans_ins,temp_init) #

returns new temperature field

972
973 # Find theta values corresponding to new temperatures and heating rates *at

each point in load*

974
975 theta_integrand_new = (np.exp(−Q/(R*temp_new[mat_start:mat_end+1])))/(

temp_new[mat_start:mat_end+1])

976 theta = theta + 0.5*(theta_integrand_old + theta_integrand_new)*h_dt

977 theta_integrand_old = theta_integrand_new

978 lntheta = np.log(theta)

979 lnt_avg = np.mean(lntheta)

980
981 # Update density in load using MSC and computed theta

982
983 rho_mat = rhofun(lntheta)

984
985 rho_avg_new = np.mean(rho_mat)

986 rho_mat = rho_mat * bulkdens_mat

987
988 # Find index of the maximum density value in load (if there is more than one

max, this is the left−most one)
989
990 rho_max = mat_startind+np.argmax(rho_mat) # index (IN THE X−VECTOR NUMBERING

) of max dens

991
992 # Compute total shrinkage within material based on density change and

conservation of mass

993
994 v_new = v_old*rho_avg_old/rho_avg_new # new volume of material
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995 x_thr = x[rho_max]−v_old+v_new # material between x_thr and rho_max
disappears

996
997 # Update temperature in insulation + material

998 temp_old[ins_startind:ins_endind] = temp_new # update temperature in

insulation and material

999
1000 if x_thr > x[rho_max−1]: # x_thr is less than one spatial step from rho_max
1001 # Then don’t change the volume this time around; wait for more

possible shrinkage in next time step

1002 v_new = v_old

1003 printstring = "\tShrinkage is less than the length of a single spatial

step in material; not simulating shrinkage\n\tPercent of original

length remains "+str(100*v_new/L_mat)+"\n\tNumber of nodes within

material remains "+str(mat_endind−mat_startind)+"\n"
1004 #logfile.write(printstring)

1005 staycount = staycount + 1

1006
1007 elif x_thr > 5*L/9−v_old: # x_thr is more than one spatial step from rho_max

, but still within material

1008 the_ind = np.max(np.where(x<x_thr)) # index just to left of x_thr

1009 v_new = v_old−(x[rho_max]−x[the_ind]) # the actual new volume (as
x_thr likely landed between nodes) # THIS VIOLATES CONSERVATION OF

MASS, BUT IF SPATIAL GRID SIZE IS SMALL ENOUGH, IT SHOULDN’T BE "

TOO" WRONG

1010 shrink = rho_max−the_ind # number of nodes to shrink by
1011 printstring = "\tShrinkage by deleting material to the left of max

density\n\tMaterial shrinks by "+str(shrink)+" nodes ("+str((v_old

−v_new)*100)+" cm)\n\tNew length is "+str(100*v_new/L_mat)+"
percent of original length\n\tNumber of nodes remaining in

material is "+str(mat_endind−mat_startind−shrink)+"\n"
1012 #logfile.write(printstring)

1013 leftcount = leftcount + 1

1014 temp_old[mat_startind+shrink:rho_max+1]=temp_old[mat_startind:rho_max

+1−shrink] # remove material between x_thr and rho_max, and shift
remaining load material to right

1015 temp_old[ins_startind+shrink:mat_startind+shrink]=temp_old[

ins_startind:mat_startind] # shift insulation to right

1016 temp_old[ins_startind:ins_startind+shrink]=temp_init # add air before

insulation

1017 rho[mat_startind:mat_endind+1] = rho_mat # update load densities
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1018 rho[mat_startind+shrink:rho_max+1]=rho[mat_startind:rho_max+1−shrink]
# remove section from rho

1019 theta = np.r_[theta[:rho_max−mat_startind−shrink+1],theta[rho_max+1−
mat_startind:]] # remove section from theta

1020 lntheta = np.r_[lntheta[:rho_max+1−mat_startind−shrink],lntheta[
rho_max+1−mat_startind:]] # remove section from lntheta

1021 theta_integrand_old = np.r_[theta_integrand_old[:rho_max+1−
mat_startind−shrink],theta_integrand_old[rho_max−mat_startind:]]
# remove section from old theta integrand

1022 ins_startind = ins_startind+shrink # update insulation start index

1023 mat_startind = mat_startind + shrink # update insulation end index

1024 v_old = v_new

1025
1026 elif x_thr < 5*L/9−v_old: # x_thr is *outside* the material! (*Lots* of

shrinkage, or rho_max v close to bdry)

1027 # Just get rid of enough material to the right of mat_startind

1028 x_thr = 5*L/9−v_old+v_new
1029 the_ind = np.min(np.where(x>x_thr)) # index just to the right of x_thr

1030 v_new = v_old − (x[the_ind]−x[mat_startind]) # the actual new volume
(x_thr likely btwn nodes) # VIOLATES CONSERVATION OF MASS, MAKE

SURE SPATIAL GRID SIZE IS SMALL

1031 shrink = the_ind+1−mat_startind # number of nodes to shrink by
1032 printstring = "\tShrinkage by deleting material to the right of left−

hand boundary\n\tMaterial shrinks by "+str(shrink)+" nodes ("+str

((v_old−v_new)*100)+" cm)\n\tNew length is "+str(100*v_new/L_mat)
+" percent of original length\n\tNumber of nodes remaining in

material is "+str(mat_endind−mat_startind−shrink)+"\n"
1033 #logfile.write(printstring)

1034 rightcount = rightcount + 1

1035 temp_old[ins_startind+shrink:mat_startind+shrink+1] = temp_old[

ins_startind:mat_startind+1]

1036 temp_old[ins_startind:ins_startind+shrink] = temp_init

1037 rho[mat_startind+shrink:mat_endind+1] = rho_mat[shrink:]

1038 theta = theta[shrink:]

1039 lntheta = lntheta[shrink:]

1040 theta_integrand_old = theta_integrand_old[shrink:]

1041 mat_startind = mat_startind+shrink

1042 ins_startind = ins_startind+shrink

1043 v_old = v_new

1044
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1045 # Update material parameters, including dielectric properties, according to

temperature change, density change, and shrinkage

1046 # Load parameters

1047 if theta_dep_params: # then load parameters depend on theta

1048 eps[mat_startind:mat_endind+1] = epsfun_mat(lntheta)

1049 sig[mat_startind:mat_endind+1] = sigfun_mat(lntheta)

1050 cp[mat_startind:mat_endind+1] = cfun_mat(lntheta)

1051 ks[mat_startind:mat_endind+1] = kfun_mat(lntheta)

1052 mu[mat_startind:mat_endind+1] = mufun_mat(lntheta)

1053 else: # then load parameters depend on temp and rho

1054 eps[mat_startind:mat_endind+1] = epsfun_mat(temp_old[mat_startind:

mat_endind+1],rho[mat_startind:mat_endind+1]/bulkdens_mat)

1055 sig[mat_startind:mat_endind+1] = sigfun_mat(temp_old[mat_startind:

mat_endind+1],rho[mat_startind:mat_endind+1]/bulkdens_mat)

1056 cp[mat_startind:mat_endind+1] = cfun_mat(temp_old[mat_startind:

mat_endind+1],rho[mat_startind:mat_endind+1]/bulkdens_mat)

1057 ks[mat_startind:mat_endind+1] = kfun_mat(temp_old[mat_startind:

mat_endind+1],rho[mat_startind:mat_endind+1]/bulkdens_mat)

1058 mu[mat_startind:mat_endind+1] = mufun_mat(temp_old[mat_startind:

mat_endind+1],rho[mat_startind:mat_endind+1]/bulkdens_mat)

1059
1060 # Insulation parameters

1061 eps[ins_startind:mat_startind+1] = epsfun_ins(temp_old[ins_startind:

mat_startind+1])

1062 eps[mat_endind:ins_endind] = epsfun_ins(temp_old[mat_endind:ins_endind])

1063 sig[ins_startind:mat_startind+1] = sigfun_ins(temp_old[ins_startind:

mat_startind+1])

1064 sig[mat_endind:ins_endind] = sigfun_ins(temp_old[mat_endind:ins_endind])

1065 rho[ins_startind:mat_startind+1] = rhofun_ins(temp_old[ins_startind:

mat_startind+1])

1066 rho[mat_endind:ins_endind] = rhofun_ins(temp_old[mat_endind:ins_endind])

1067 cp[ins_startind:mat_startind+1] = cfun_ins(temp_old[ins_startind:mat_startind

+1])

1068 cp[mat_endind:ins_endind] = cfun_ins(temp_old[mat_endind:ins_endind])

1069 ks[ins_startind:mat_startind+1] = kfun_ins(temp_old[ins_startind:mat_startind

+1])

1070 ks[mat_endind:ins_endind] = kfun_ins(temp_old[mat_endind:ins_endind])

1071 mu[ins_startind:mat_startind+1] = mufun_ins(temp_old[ins_startind:

mat_startind+1])

1072 mu[mat_endind:ins_endind] = mufun_ins(temp_old[mat_endind:ins_endind])

1073
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1074 # Air parameters

1075 eps[:ins_startind] = eps_air

1076 sig[:ins_startind] = sig_air

1077 rho[:ins_startind] = rho_air

1078 cp[:ins_startind] = c_air

1079 ks[:ins_startind] = k_air

1080 mu[:ins_startind] = mu_air

1081
1082 # Eventually: update spatial grid size here, too, if necessary, depending on

whether the dielectric properties make the wavelength in material

significantly shorter...

1083
1084 elapsed_time = elapsed_time + h_dt

1085 loopits = loopits + 1

1086
1087 # Print text version of results to logfile

1088 printstring = (’\nAt time ’ + str(elapsed_time) + ’ sec...\n\tMax value of electric

field is ’ + str(max(eavg)) + ’ V/m\n\tMin value of electric field is ’ + str(

min(eavg)) + ’ V/m\n\tMean value of electric field is ’ + str(mean(eavg))+’ V/m

\n\tMax temp in insulation is ’ + str(max(r_[temp_old[ins_startind:mat_startind

],temp_old[mat_endind:ins_endind]])−273.15) + ’ degC\n\tMin temp in insulation
is ’ + str(min(r_[temp_old[ins_startind:mat_startind],temp_old[mat_endind:

ins_endind]])−273.15) + ’ degC\n\tMean temp in insulation is ’ + str(mean(r_[
temp_old[ins_startind:mat_startind],temp_old[mat_endind:ins_endind]])−273.15) +
’ degC\n\tMax temp in load is ’ + str(max(temp_old[mat_startind:mat_endind])

−273.15) + ’ degC\n\tMin temp in load is ’ + str(min(temp_old[mat_startind:
mat_endind])−273.15) + ’ degC\n\tMean temp in load is ’ + str(mean(temp_old[
mat_startind:mat_endind])−273.15) + ’ degC\n\tMean density in material is ’+str
(100*rho_avg_new)+" percent of bulk density\n\tSince last printed results,

material boundary did not change "+str(staycount)+" times\n\tSince last printed

results, material immediately to the right of boundary was removed "+str(

rightcount)+" times\n\tSince last printed results, material immediately to the

left of maximum density was removed "+str(leftcount)+" times\n\tNew material

length is "+str(100*v_new/L_mat)+" percent of original length\n\tNumber of

nodes remaining in material is "+str(mat_endind−mat_startind)+"\n")
1089 logfile.write(printstring)

1090 T_maxes = np.r_[T_maxes, np.max(temp_old[mat_startind:mat_endind])−273.15 ]
1091 T_means = np.r_[T_means, np.mean(temp_old[mat_startind:mat_endind])−273.15 ]
1092 load_rhos = np.r_[load_rhos,100*rho_avg_new]

1093 plottingtimes = np.r_[plottingtimes, elapsed_time]

1094 lntavgs = np.r_[lntavgs, lnt_avg]
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1095
1096 # Save state of simulation in case we need to pick up later where we left off

1097 statefile = open(savestring+"state_of_sim.pckl","w")

1098 pickle.dump([E_old, E_older, eavg, temp_old, eps, sig, rho, cp, ks, mu, mat_startind

, mat_endind, ins_startind, ins_endind, h, theta_integrand_old, bulkdens_mat,

rho_avg_old, L_mat, v_old, T_maxes, T_means, load_rhos, lntavgs, plottingtimes,

itno, elapsed_time, h_dt, em_dt, tempbc, embc, th, trans_ins, temp_init, Q ],

statefile)

1099 statefile.close()

1100 # Pick up later with:

1101 # statefile = open(savestring+"state_of_sim.pckl","r")

1102 # E_old, E_older, eavg, temp_old, eps, sig, rho, cp, ks, mu, mat_startind,

mat_endind, ins_startind, ins_endind, h, theta_integrand_old, bulkdens_mat,

rho_avg_old, L_mat, v_old, T_maxes, T_means, load_rhos, lntavgs, plottingtimes,

itno, elapsed_time, h_dt, em_dt, tempbc, embc, th, trans_ins, temp_init, Q =

pickle.load(statefile)

1103 # statefile.close()

1104
1105 itno = itno+1

1106
1107 completetime = time.clock()

1108 printstring = "\n\nSimulation complete. Took "+str(completetime−loopstarttime)+" seconds
to complete simulation loop\n\nSaving animations...\n"

1109 logfile.write(printstring)

1110
1111 # Plot evolution of maximum temperature in load

1112 plt.figure(60)

1113 plt.plot(plottingtimes,T_maxes,’r−’,label=’Max temp in load’)
1114 plt.plot(plottingtimes,T_means,’b−’,label=’Mean temp in load’)
1115 plt.legend(loc=’lower right’)

1116 plt.xlabel(’Time [sec]’)

1117 plt.ylabel(’Temperature [degC]’)

1118 plt.title(’Evolution of mean and maximum temperature in load’)

1119 plt.savefig(savestring+’temp_evol.png’)

1120 tikz_save(savestring+’temp_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

1121
1122 # Plot evolution of density wrt time

1123 plt.figure(61)

1124 plt.plot(plottingtimes,load_rhos)

1125 plt.xlabel(’Time [sec]’)
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1126 plt.ylabel(’Density relative to bulk solid density [%]’)

1127 plt.title(’Evolution of load density’)

1128 plt.savefig(savestring+’dens_time_evol.png’)

1129 tikz_save(savestring+’dens_time_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’

\\figurewidth’,show_info = False )

1130
1131 # Plot evolution of density wrt lnTheta

1132 plt.figure(62)

1133 plt.plot(lntavgs[1:],load_rhos[1:])

1134 plt.xlabel(r’$\ln(\Theta(t,T(t)))$ $\left[\ln(\frac{s}{K})\right]$’)

1135 plt.ylabel(’Density relative to bulk solid density [%]’)

1136 plt.title(’Evolution of load density’)

1137 plt.savefig(savestring+’dens_lnt_evol.png’)

1138 tikz_save(savestring+’dens_lnt_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’

\\figurewidth’,show_info = False )

1139
1140 # Plot final electric field

1141 plt.figure(63) # static image of field

1142 plt.plot(100*x,eavg)

1143 plt.xlabel(’Position along domain [cm]’)

1144 plt.ylabel(’Root mean square of electric field [V$^2$/m$^2$]’)

1145 plt.title(’RMS of electric field at t=’ + str(elapsed_time+h_dt) + ’ seconds’)

1146 plt.draw()

1147 plt.savefig(savestring+’efieldfin.png’)

1148 tikz_save(savestring+’efieldfin.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

1149
1150 # Plot final temperature field

1151 plt.figure(64) # update static image of field

1152 plt.plot(100*x,temp_old−273.15)
1153 plt.xlabel(’Position along domain [cm]’)

1154 plt.ylabel(’Temperature [C]’)

1155 plt.title(’Temperature distribution at t=’ + print_time + ’ seconds’)

1156 plt.draw()

1157 plt.savefig(savestring+’tempfin_wholecav.png’)

1158 tikz_save(savestring+’tempfin_wholecav.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

1159
1160 startmovieclock = time.clock()

1161 # Make movies

1162 #−framerate : number of frames (images) per second
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1163 #−c:v libx264 − the video codec is libx264 (H.264).
1164 #−profile:v high − use H.264 High Profile (advanced features, better quality).
1165 #−crf 20 − constant quality mode, very high quality (lower numbers are higher quality, 18

is the smallest you would want to use).

1166 #−pix_fmt yuv420p − use YUV pixel format and 4:2:0 Chroma subsampling
1167
1168 # Electric field

1169 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’efield%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’efield.mp4’)

1170 logfile.write("\tSaved electric field animation\n")

1171
1172 # Temperature field

1173 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’temp_wholecav%d.png −y −loglevel
quiet −c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’
temp_wholecav.mp4’)

1174 logfile.write("\tSaved temperature field animation\n")

1175
1176 # Mechanical deformation

1177 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’efield%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’efield.mp4’)

1178 logfile.write("\tSaved mechanical deformation animation\n")

1179
1180 # Permittivity

1181 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’eps_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’eps_evol.mp4’)

1182 logfile.write("\tSaved permittivity animation\n")

1183
1184 # Electrical conductivity

1185 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’sig_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’sig_evol.mp4’)

1186 logfile.write("\tSaved electrical conductivity animation\n")

1187
1188 # Density

1189 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’rho_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’rho_evol.mp4’)

1190 logfile.write("\tSaved density animation\n")

1191
1192 # Thermal conductivity

1193 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’c_evol%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’c_evol.mp4’)

1194 logfile.write("\tSaved thermal conductivity animation\n")
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1195
1196 # Specific heat capacity

1197 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’k_evol%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’k_evol.mp4’)

1198 logfile.write("\tSaved specific heat capacity animation\n")

1199
1200 # Permeability

1201 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’mu_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’mu_evol.mp4’)

1202 logfile.write("\tSaved magnetic permeability animation\n")

1203
1204 for fname in delfiles:

1205 os.remove(fname)

1206 logfile.write(’\tDeleted individual frame files.\n\tDone; took ’+str(time.clock()−
startmovieclock)+’ seconds to complete movie processing’)

1207
1208 finaltime=time.clock()

1209 printstring = "\n\nSimulation completed on "+time.strftime("%A, %B %d, %Y")+" at "+time.

strftime("%H:%M:%S %Z")+".\nTook "+str(finaltime−initialstarttime)+" seconds to
complete entire simulation.\n"

1210 logfile.write(printstring)

1211
1212 logfile.close()

1213 print(’Simulation complete; see directory ’+savedir+’ for plots and text outputs of results

.’)

H.2 python Implementation of the Coupled Solver for the
Two-Dimensional Microwave Sintering Problem

1 #!/usr/bin/python

2
3 # Performs transient solution for the electric field in a two−dimensional domain with a

constant power source at the left−hand wall. See problem description in file (Thesis.
pdf). Simulation domain has chunk of cavity filled with insulation, and chunk of

insulation filled with material for processing.

4 #

5 # outputs: graphs of temperature and root mean square of electric field, full sets of

dielectric and thermal properties, and file fullsolve2.log with detailed output at

each timestep

6 #
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7 # This code requires python 2.7 , and requires ffmpeg or avconv (may need to modify movie−
making parts, depending on your system). ffmpeg can be installed by typing

8 #

9 # > sudo apt−get install ffmpeg
10 #

11 # and avconv may be installed by typing

12 #

13 # > sudo apt−get install avconv
14 #

15 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16 # DEPENDENCY TREE:

17 #

18 # − fullsolve2.py
19 # − matplotlib ( available from http://matplotlib.org/ )
20 # − pyplot ( packaged with matplotlib; documentation available at http://matplotlib.org/

api/pyplot_summary.html )

21 # − matplotlib2tikz ( available from https://github.com/nschloe/matplotlib2tikz )
22 # − numpy ( available from http://www.numpy.org/ )
23 # − matlib ( packaged with numpy; documentation available at http://docs.scipy.org/doc/

numpy/reference/routines.matlib.html )

24 # − scipy ( available at http://www.scipy.org/ )
25 # − interpolate ( packaged with scipy; documentation available at http://docs.scipy.org/

doc/scipy/reference/tutorial/interpolate.html )

26 # − time ( module packaged with python 2.7 ; documentation available at https://docs.
python.org/2/library/time.html )

27 # − os ( module packaged with python 2.7 ; documentation available at https://docs.python.
org/2/library/os.html )

28 # − msc.py ( available from Erin Kiley , emkiley@wpi.edu )
29 # − scipy ( available at http://www.scipy.org/ )
30 # − optimize ( packaged with scipy; documentation available at http://docs.scipy.org/doc

/scipy/reference/tutorial/optimize.html )

31 # − minimize ( packaged with optimize; documentation available at http://docs.scipy.org
/doc/scipy/reference/generated/scipy.optimize.minimize.html )

32 # − curve−fit ( packaged with optimize; documentation available at http://docs.scipy.
org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html )

33 # − integrate ( packaged with scipy; documentation available at http://docs.scipy.org/
doc/scipy/reference/tutorial/integrate.html )

34 # − numpy ( available from http://www.numpy.org/ )
35 # − matplotlib ( available from http://matplotlib.org/ )
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36 # −pyplot ( packaged with matplotlib; documentation available at http://matplotlib.org/
api/pyplot_summary.html )

37 # − matplotlib2tikz ( available from https://github.com/nschloe/matplotlib2tikz )
38 # − itertools ( module packaged with python 2.7 ; documentation available at https://docs

.python.org/2/library/itertools.html )

39 # − sys ( module packaged with python 2.7 ; documentation available at https://docs.
python.org/2/library/sys.html )

40 # − emsolve2.py ( available from Erin Kiley , emkiley@wpi.edu )
41 # − scipy ( available at http://www.scipy.org/ )
42 # − sparse ( packaged with scipy; documentation available at http://docs.scipy.org/doc/

scipy/reference/sparse.html )

43 # − thermsolve2.py ( available from Erin Kiley , emkiley@wpi.edu )
44 # −scipy ( available at http://www.scipy.org/ )
45 # − sparse ( packaged with scipy; documentation available at http://docs.scipy.org/doc/

scipy/reference/sparse.html )

46 #

47 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48
49 total_time = 3600 # total processing time [sec]

50 print_every = 100

51 theta_dep_params = True # If false, then invert Lichtenecker’s formula0

52 mat_params = "Licht"

53 magmat = False

54 method = "fantozzi" # Sigmoid function to use in curve fitting ’blaine’ or ’fantozzi’

55 embc=’abs’ # EM bc at RH wall, either ’abs’ for absorbing (inhomogeneous Neumann) boundary

condition at right−hand endpoint, or ’pec’ for perfect electric conductor (homogeneous
Dirichlet) condition.

56 tempbc=’ins’ # Heat bc, either ’rad’ for radiative or ’ins’ for insulated

57 th = phi = 0.5 # th and phi for finite difference method (th,phi = 1 for fully implicit, th

,phi = 0 for explicit, th,phi = 0.5 for Crank−Nicolson) for heat *and* EM eqns
58 savedir = "./2d_demo_"+tempbc+"_helm_"+str(total_time)+"_apr12_75/" # directory where we

save plots and logfiles

59 saveprefix="2d_demo_" # prefix for plots and logfile names

60 savestring = savedir+saveprefix

61 hiddensavestring = savedir+’.’+saveprefix # for hiding the individual movie frames we save

62
63 # Import necessary packages

64 #from pylab import * # of these, we use numpy, scipy, and matplotlib

65 import matplotlib as mpl # access matplotlib via shorter ’mpl’ prefix
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66 import matplotlib.pyplot as plt # plotting library: ’plt’ prefix

67 from matplotlib2tikz import save as tikz_save # for getting a file with tikz data to plot

directly in thesis

68 import numpy as np # numpy: ’np’ prefix

69 from numpy import * # we use a number of functions and want to make available at toplevel

70 #import numpy.matlib as M # make matlib function available at the top level via M.func()

71 from numpy.matlib import rand,zeros,ones,empty,eye # make these functions accessible

directly at top level, because we use them

72 import scipy.interpolate as intp # interpolators: ’intp’ prefix. We use b−splines in this
code.

73 import time # for printing times to logfile

74 import os # for issuing commands related to movie−making and auxfile−deleting
75 mpl.rcParams[’axes.formatter.useoffset’]=False # tell matplotlib not to convert axis tick

labels to scientific notation (was getting weird results)

76 import emsolve2 # electromagnetic solvers (I wrote these; keep in same directory or add to

path)

77 import thermsolve2 # thermal solvers (I wrote these; keep in same directory or add to path)

78 import msc # master sintering curve solvers (I wrote these; keep in same directory or add

to path)

79
80
81 # Open log file for writing

82 if not os.path.exists(savedir): # if savedir doesn’t already exist

83 os.makedirs(savedir) # then create it

84 logfile = open(savestring+’fullsolve2.log’,’w+’)

85
86 # Log file header

87 printstring = ("Simulation started "+time.strftime("%A, %B %d, %Y")+" at "+time.strftime("%

H:%M:%S %Z")+".\n\n")

88 logfile.write(printstring)

89 initialstarttime = time.clock()

90
91 def mat2vec(mat): # reshapes spatial domain matrix into vector

92 return np.reshape(np.flipud(mat),np.size(mat))

93
94 def vec2mat(vec,N,M): # reshapes spatial domain vector into matrix

95 # should have N*M = np.size(vec)

96 return np.flipud(np.reshape(vec,(N,M)))

97
98 # Important constants

99 mu0=pi*4e−7 # permeability of free space [N/A^2]
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100 c = 299792458.0 # speed of light [m/s]

101 c_zero = c

102 eps0=1/(mu0*c**2) # permittivity of free space [F/m]

103 R = 8.314459848 # ideal gas constant [J/(mol*K)]

104
105 # Microwave scenario

106 P=1000.0 # power [W] supplied by magnetron at left−hand endpoint
107 a = 86.36e−3 # length of long side of cross−section of 3D waveguide [m] −−this value

corresponds to D−band, WR−340 waveguide
108 b = 43.18e−3 # length of short side of cross−section of 3D waveguide [m]
109 n_mod = 1 # corresponds to TE_nm excitation mode

110 m_mod = 0 # corresponds to TE_nm excitation mode

111
112 f_fs = 2.45e9 # frequency [Hz] of waves in free space

113 omega_fs = 2*pi*f_fs # angular frequency [Hz] or [rad/sec] of waves in free space

114 l_fs = c/f_fs # wavelength [m] in free space

115 omega_c = c*sqrt( (n_mod*pi/a)**2 + (m_mod*pi/b)**2 ) # angular cutoff frequency [Hz] or [

rad/sec]

116 f_c = omega_c/(2*pi) # cutoff frequency [Hz]

117 # TO DO: Throw a warning if freespace frequency is less than cutoff: then we have

evanescent TE_10 mode (wave doesn’t propagate)

118 l_c = c/f_c # cutoff wavelength [m]

119 l_g = sqrt(1/((1/l_fs)**2 − (1/l_c)**2)) # wavelength [m] in waveguide
120 f_g = c/l_g # frequency [Hz] in waveguide

121 omega_g = 2*pi*f_g # angular frequency [Hz] or [rad/sec] in waveguide

122
123 # Initial temperature

124 temp_init = 298.0 # room temperature (in kelvin)

125
126 # Air properties

127 eps_air=1.0 #[unitless] relative permittivity of air

128 sig_air=0.0 # [S/m] electrical conductivity of air

129 c_air=1.0 # [J/g*C] specific heat capacity of air

130 rho_air=2.0 # [g/m^3] density of air

131 k_air=0.024 # [W/g*C] thermal conductivity of air

132 mu_air=1.0 # [unitless] relative permeability of air

133
134 # Physical setup

135 L = 2.5*l_g # length of waveguide [m], set here equal to 2.5* wavelength in guide, so in

the unloaded wg, using effective frequency of loaded, we have 5 peaks with one in the

center (where the sample will be)
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136 H = 86.36/1000.0 # height of waveguide [m]

137
138 ell_1 = L/3 # start of insulation

139 ell_2 = 4*L/9 # start of material

140 ell_3 = 5*L/9 # end of material

141 ell_4 = 2*L/3 # end of insulation

142 h_1 = H/9 # start of insulation

143 h_2 = H/3 # start of material

144 h_3 = 4*H/9 # end of material

145 h_4 = 2*H/3 # end of insulation

146
147 printstring=("Waveguide length is "+str(L*1e2)+" cm\nWaveguide height is "+str(H*1e2)+" cm\

nLength of insulation + material is "+str((ell_4−ell_1)*1e2)+" cm\nHeight of
insulation + material is "+str((h_4−h_1)*1e2)+" cm\nLength of material is "+str((ell_3
−ell_2)*1e2)+" cm\nHeight of material is "+str((h_3−h_2)*1e2)+" cm\nInput power is "+
str(P/1000)+" kW\nFrequency of radiation is "+str(f_fs*1e−9)+" GHz\nInitial
temperature is "+str(temp_init−273.15)+" degC\n")

148 logfile.write(printstring)

149
150
151 #############################################

152
153 # Load material: zirconia, bulk density of solid material [g/m^3], taken from {}.

154 bulkdens_mat = 6.52e6

155
156 # Load material: zirconia, experimental results taken from {McCoyThesis}. These are the

ones used in determining activation energy and MSC.

157 # First trial: 1 degC/min

158 times_1 = 1.00*np.array

([17192,20134,23142,26147,29086,32027,35033,38038,41046,44052,46993])

159 temps_1 = 273.15+np.array([900,950,1001,1051,1101,1150,1201,1250,1300,1350,1400])

160 rhos_1 = 0.01*np.array([46.7,47.1,48.3,51.8,58.6,69.7,82.2,89.7,91.0,91.3,91.4])

161
162 # Second trial: 3 degC/min

163 times_3 = 1.00*np.array

([12086,13071,14016,15000,16023,17008,17992,19015,20000,21062,22086])

164 temps_3 = 273.15+np.array([901,951,999,1049,1101,1151,1199,1251,1300,1350,1400])

165 rhos_3 = 0.01*np.array([46.6,46.8,47.6,49.8,54.8,63.5,75.4,85.0,87.2,87.8,88.2])

166
167 # Third trial: 5 degC/min
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168 #times_5 = 1.00*np.array

([11271,11818,12398,12978,13559,14140,14754,15335,15916,16564,17247])

169 #temps_5 = 273.15+np.array([901,949,1000,1049,1099,1149,1201,1250,1299,1351,1400])

170 #rhos_5 = 0.01*np.array([46.6,46.8,47.5,49.4,53.6,61.3,72.7,82.0,84.5,85.3,85.9])

171
172 # Load material: zirconia, results taken from {Teng et al}. These are the ones used in

determining activation energy and the MSC.

173 # First trial: 2 degC/min

174 times_2 = 1.0*np.array([9975,11475,12975,14475,15975,17475,18975,20475,21975,23745,25275])

# times at which the temperatures were measured for the first experiment [s]

175 temps_2 = 273.15+np.array([1050,1100,1150,1200,1250,1300,1350,1400,1450,1500,1550]) #

temperatures for the first experiment[C]

176 rhos_2 = 0.01*np.array([54.43,55.7,60.15,67.53,76.40,85.35,92.71,96.42,97.63,98.79,98.89])

# relative densities for the first experiment[%]

177
178 # Second trial: 5 degC/min

179 times_5 = 1.0*np.array([12360,13080,13560,14160,14760,15360,15960,16560,17160,17760,19560])

# times at which the temperatures were measured for the second experiment

180 temps_5 = 273.15+np.array([1050,1100,1150,1200,1250,1300,1350,1400,1450,1500,1550]) #

temperatures for the second experiment

181 rhos_5 = 0.01*np.array([53.86,55.69,58.01,64.06,72.50,81.44,90.69,94.67,96.46,97.31,98.40])

# relative densities for the second experiment

182
183 # Third trial: 8 degC/min

184 times_8 = 1.0*np.array([7725,8100,8475,8850,9225,9600,9975,10650,10725,11100,12900]) #

times at which the temperatures were measured for the first experiment

185 temps_8 = 273.15+np.array([1050,1100,1150,1200,1250,1300,1350,1400,1450,1500,1550]) #

temperatures for the third experiment

186 rhos_8 = 0.01*np.array([53.75,54.82,57.14,61.05,69.43,77.40,87.34,93.01,95.10,97.51,99.03])

# relative densities for the third experiment

187
188 # Load material: zirconia, experimental results taken from {Yakovlev & Ceralink}. These are

the ones used in creating property−update functions for everything *except* density,
in case we rely on the mixture formulas. (In case we rely on the function−of−theta
approximation, then we construct a separate sigmoid approximation for all parameters

from this data here, and we use only the activation energy calculated using the data

from {McCoyThesis}.

189 times_mat=0.5*np.array([0, 69, 100, 139, 181, 228, 276, 324, 371, 420, 471, 523, 574, 636,

698, 752, 809, 865, 921, 973, 1019, 1065, 1100]) # times [sec] at which each of (temp,

eps,sig,c,rho,k) was measured for load material # Currently assumes constant heating

rate of 2 degC/sec



APPENDIX H. COMPUTER IMPLEMENTATION OF THE COUPLED SOLVER FOR THE 1D
AND 2D MW SINTERING PROBLEMS 396

190 t_mat=273.15+np.array([25, 69, 100, 139, 181, 228, 276, 324, 371, 420, 471, 523, 574, 636,

698, 752, 809, 865, 921, 973, 1019, 1065, 1100]) # temperatures [C−>K] at which each
of (eps,sig,c,rho,k) was measured for load material

191 epses_mat=np.array([6.69, 5.86, 5.78, 5.75, 5.77, 5.82, 5.90, 5.98, 6.08, 6.18, 6.32, 6.47,

6.60, 6.77, 6.97, 7.22, 7.53, 7.93, 8.53, 9.44, 10.46, 12.46, 14.77]) # [unitless]

192 sigmas_mat=np.array([0.0258, 0.0045, 0.0033, 0.0029, 0.0036, 0.0043, 0.0050, 0.0058,

0.0078, 0.0121, 0.0185, 0.0288, 0.0442, 0.0664, 0.0975, 0.1416, 0.2003, 0.2786,

0.4083, 0.5942, 0.8220, 1.2190, 1.6661]) # [S/m]

193 cs_mat=np.array([0.217, 0.324, 0.363, 0.398, 0.426, 0.450, 0.470, 0.487, 0.501, 0.514,

0.526, 0.537, 0.547, 0.558, 0.568, 0.575, 0.583, 0.590, 0.597, 0.603, 0.607, 0.612,

0.615]) # [J/(g C)]

194 rhos_mat=1.0e6*np.array([2.848, 2.844, 2.841, 2.838, 2.834, 2.830, 2.826, 2.821, 2.817,

2.813, 2.809, 2.804, 2.800, 2.794, 2.789, 2.785, 2.780, 2.775, 2.770, 2.766, 2.762,

2.758, 2.755])/bulkdens_mat # [g/m^3]

195 #rhos_mat = rhos_mat[::−1] # ZIRCONIA ACTUALLY SHOWS NO DENSIFICATION AT ALL DURING THIS
TRIAL... IT SHOWS THERMAL EXPANSION... SO WE FLIP DENSITY VECTOR TO PRETEND THE DAMNED

THING IS DENSIFYING, EVEN IF JUST A LITTLE BIT

196 ks_mat=100.0*np.array([0.00198, 0.00290, 0.00320, 0.00344, 0.00362, 0.00373, 0.00381,

0.00385, 0.00381, 0.00391, 0.00399, 0.00407, 0.00414, 0.00405, 0.00412, 0.00417,

0.00421, 0.00426, 0.00430, 0.00433, 0.00436, 0.00439, 0.00441]) # [W/(m C)]

197 mus_mat=np.ones(shape(t_mat))

198
199
200 # Insulation material: alumina, heat transfer coefficient of insulation material, taken

from {}

201 # used only in the case of radiative BC for heat eq’n

202 trans_ins = 500.0

203
204 # Insulation material: alumina, parameters taken from {Yakovlev & Ceralink}. These will be

used to determine polynomial functions for updating temperature−dependent values (we
do not assume insulation properties are density−dependent)

205 t_ins=273.0+np.array([25,100,200,300,400,500,600,700,809,900,1000,1100]) # temperatures [C

−>K] at which each of (eps,sig,c,rho,k) was measured for insulation
206 epses_ins=np.array([1.520, 1.520, 1.517, 1.513, 1.523, 1.540, 1.563, 1.573, 1.584, 1.593,

1.600, 1.608])

207 sigmas_ins=np.array([0.00005, 0.00007, 0.00015, 0.00035, 0.00062, 0.00081, 0.00091,

0.00113, 0.00131, 0.00159, 0.00234, 0.00315])

208 cs_ins=np.array([0.764, 0.950, 1.042, 1.097, 1.135, 1.165, 1.190, 1.210, 1.230, 1.244,

1.258, 1.271])

209 rhos_ins=1.0e6*np.array([0.4400, 0.4392, 0.4382, 0.4371, 0.4361, 0.4350, 0.4340, 0.4329,

0.4318, 0.4309, 0.4299, 0.4288])
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210 ks_ins=100.0*np.array([0.000631, 0.000725, 0.00085, 0.000975, 0.0011, 0.001225, 0.00135,

0.001475, 0.0016, 0.0018, 0.0020, 0.0022])

211 mus_ins=np.ones(shape(t_ins))

212
213 # Determine activation energy and sigmoid function rho = rho(theta(t,T))

214 msc_times = np.c_[times_2,times_5,times_8] # put data into matrices for feeding to find_Q

function

215 msc_temps = np.c_[temps_2,temps_5,temps_8]

216 msc_rhos = np.c_[rhos_2,rhos_5,rhos_8]

217 msc_expnames = ["2 degC/min","5 degC/min","8 degC/min"]

218
219 printstring=("\nDetermining optimal activation energy and density function...\n\tUsing

densification data from {Teng et al}...\n\tAttempting data fit to "+method+" sigmoid

curve...\n")

220 logfile.write(printstring)

221 starttime=time.clock()

222
223 import msc

224 #Q,rhofun = msc.find_Q(msc_times,msc_temps,msc_rhos,msc_expnames,method,savestring,showinfo

=False)

225 Q = 674214 # this is from result of previous optimization with {Teng} data and Fantozzi

curve

226 rhofun=msc.find_sigmoid(msc_times,msc_temps,msc_rhos,msc_expnames,Q,method,savestring,

showinfo=False)

227 #rhofun=msc.find_sigmoid(times_mat,t_mat,rhos_mat,[’20 degC/min’],Q,method,savestring,

showinfo=False)

228
229 printstring=("\tDone; took "+str(time.clock()−starttime)+" seconds to find optimal

activation energy and MSC.\n\tOptimal activation energy is "+str(Q/1000)+" kJ/mol.\n\

nInterpolating measured data to find dielectric and thermal properties as functions of

temperature and relative density...")

230 logfile.write(printstring)

231 starttime=time.clock()

232
233 sampleplottemp = np.linspace(np.min(np.r_[t_mat,t_ins]),273.15+1200) # for plotting the

material properties

234 tempmin = 24+273.15 # minimum temp we expect to encounter (tells spline interpolator that

its values will eventually need to be extrapolated down to this value)

235 tempmax = 1400+273.15 # maximum temp we expect to encounter (tells spline interpolator that

its values will eventually need to be extrapolated up to this value)

236 spldeg = 3 # degree of splines to use for interpolating (cubic recommended)
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237
238 # Functions for load parameters

239 if theta_dep_params: # Method 1: theta−dependent parameters
240 printstring = "\n\tAssuming parameters are functions of ln(theta)..."

241 logfile.write(printstring)

242
243 sampleplottimes=np.zeros(np.shape(sampleplottemp)) # assume a constant heating rate

of 20 degC/min for sample data

244 sampleplottimes[0]=(sampleplottemp[0]−273.15)*(60/20) # the time it took to get to
the first temperature we have property measurements for

245 for i in range(1,np.size(sampleplottemp)):

246 sampleplottimes[i]=sampleplottimes[i−1]+(60/20)*(sampleplottemp[i]−
sampleplottemp[i−1]) # simulate constant heating rate of 20 degC/min, in
the absence of better information

247 sampleplotlnthetas = msc.find_lnthetas(sampleplottimes,sampleplottemp,Q) # get the

ln(theta) values for plotting functions

248 lnthetas = msc.find_lnthetas(times_mat,t_mat,Q) # get the ln(theta) values for

actually doing the interpolation

249
250 lntmin = −400 # minimum lntheta we expect to encounter (tells spline interpolator

that its values will eventually need to be extrapolated down to this value)

251 lntmax = 30 # maximum lntheta we expect to encounter (tells spline interpolator that

its values will eventually need to be extrapolated up to this value)

252
253 # Functions for load parameters (these take lntheta as input)

254 epstck = intp.splrep(lnthetas,epses_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

255 def epsfun_mat(lntheta):

256 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

257 n,m=np.shape(lntheta)

258 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),epstck)

259 return np.reshape(splevals,(n,m))

260 else: # lntheta was either a scalar or an array−that’s−a−vector
261 return intp.splev(lntheta,epstck) # spline evaluation

262
263 sigtck = intp.splrep(lnthetas,sigmas_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

264 def sigfun_mat(lntheta):

265 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector
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266 n,m=np.shape(lntheta)

267 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),sigtck)

268 return np.reshape(splevals,(n,m))

269 else: # lntheta was either a scalar or an array−that’s−a−vector
270 return intp.splev(lntheta,sigtck) # spline evaluation

271
272 ctck = intp.splrep(lnthetas,cs_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

273 def cfun_mat(lntheta):

274 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

275 n,m=np.shape(lntheta)

276 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),ctck)

277 return np.reshape(splevals,(n,m))

278 else: # lntheta was either a scalar or an array−that’s−a−vector
279 return intp.splev(lntheta,ctck) # spline evaluation

280
281 ktck = intp.splrep(lnthetas,ks_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) # spline

interpolation

282 def kfun_mat(lntheta):

283 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−a−
vector

284 n,m=np.shape(lntheta)

285 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),ktck)

286 return np.reshape(splevals,(n,m))

287 else: # lntheta was either a scalar or an array−that’s−a−vector
288 return intp.splev(lntheta,ktck) # spline evaluation

289
290 if magmat:

291 mutck = intp.splrep(lnthetas,mus_mat[1:],xb=lntmin,xe=lntmax,k=spldeg) #

spline interpolation

292 def mufun_mat(lntheta):

293 if np.size(np.shape(lntheta)) == 2: # lntheta is an array−that’s−not−
a−vector

294 n,m=np.shape(lntheta)

295 splevals=intp.splev(np.reshape(lntheta,np.size(lntheta)),mutck)

296 return np.reshape(splevals,(n,m))

297 else: # lntheta was either a scalar or an array−that’s−a−vector
298 return intp.splev(lntheta,mutck) # spline evaluation

299 else:

300 def mufun_mat(lntheta):
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301 return 1.0*np.ones(np.shape(lntheta))

302
303 # Uncomment to use barycentric interpolation instead of b−splines; we don’t like this,

though, because values extrapolated beyond range of initial data may diverge quickly

to +/− infty
304 # epsfun_mat = intp.BarycentricInterpolator(lnthetas,epses_mat[1:])

305 # sigfun_mat = intp.BarycentricInterpolator(lnthetas,sigmas_mat[1:])

306 # cfun_mat = intp.BarycentricInterpolator(lnthetas,cs_mat[1:])

307 # kfun_mat = intp.BarycentricInterpolator(lnthetas,ks_mat[1:])

308 # mufun_mat = intp.BarycentricInterpolator(lnthetas,mus_mat[1:])

309
310 plt.figure(10) # Plot eps(temp) for material

311 plt.clf()

312 plt.plot(sampleplotlnthetas,epsfun_mat(sampleplotlnthetas),’r−’,label=’Function
approximation’)

313 plt.plot(lnthetas,epses_mat[1:],’ro’,label=’Experimental measurements’)

314 plt.legend(loc=’upper left’)

315 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

316 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

317 plt.title(’Relative electric permittivity for zirconia’)

318 plt.savefig(savestring+’mat_epsfun.png’)

319 tikz_save(savestring+’mat_epsfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

320 plt.close(10)

321
322 plt.figure(11) # Plot sigma(temp) for material

323 plt.clf()

324 plt.plot(sampleplotlnthetas,sigfun_mat(sampleplotlnthetas),’b−’,label=’Function
approximation’)

325 plt.plot(lnthetas,sigmas_mat[1:],’ro’,label=’Experimental measurements’)

326 plt.legend(loc=’upper left’)

327 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

328 plt.ylabel(’$\sigma$ [S/m]’)

329 plt.title(’Electrical conductivity for zirconia’)

330 plt.savefig(savestring+’mat_sigfun.png’)

331 tikz_save(savestring+’mat_sigfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

332 plt.close(11)

333
334 plt.figure(12) # Plot c_p(temp) for material

335 plt.clf()
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336 plt.plot(sampleplotlnthetas,cfun_mat(sampleplotlnthetas),’g−’,label=’Function
approximation’)

337 plt.plot(lnthetas,cs_mat[1:],’ro’,label=’Experimental measurements’)

338 plt.legend(loc=’upper left’)

339 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

340 plt.ylabel(’$c_p$ [J/(gK)]’)

341 plt.title(’Thermal conductivity for zirconia’)

342 plt.savefig(savestring+’mat_cfun.png’)

343 tikz_save(savestring+’mat_cfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

344 plt.close(12)

345
346 plt.figure(13) # Plot k(temp) for material

347 plt.clf()

348 plt.plot(sampleplotlnthetas,kfun_mat(sampleplotlnthetas),’b−’,label=’Function
approximation’)

349 plt.plot(lnthetas,ks_mat[1:],’ro’,label=’Experimental measurements’)

350 plt.legend(loc=’upper left’)

351 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

352 plt.ylabel(’k [W/(mK)]’)

353 plt.title(’Specific heat capacity for zirconia’)

354 plt.savefig(savestring+’mat_kfun.png’)

355 tikz_save(savestring+’mat_kfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

356 plt.close(13)

357
358 plt.figure(14) # Plot mu(temp) for material

359 plt.clf()

360 plt.plot(sampleplotlnthetas,mufun_mat(sampleplotlnthetas),’g−’,label=’Function
approximation’)

361 plt.plot(lnthetas,mus_mat[1:],’ro’,label=’Experimental measurements’)

362 plt.legend(loc=’upper left’)

363 plt.xlabel(’$\ln(\Theta(t,T(t)))$ log(sec/K)’)

364 plt.ylabel(’$\mu_r$ [unitless]’)

365 plt.title(’Relative magnetic permeability for zirconia’)

366 plt.savefig(savestring+’mat_mufun.png’)

367 tikz_save(savestring+’mat_mufun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

368 plt.close(14)

369
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370 else: # Method 2: mixture formula−based load parameter functions (these take temp, rho as
inputs)

371
372 printstring = "\n\tUsing inversions of mixture formulas plus interpolation of

parameter along rho−axis to determine functions for dielectric and thermal
properties of load and insulation..."

373 logfile.write(printstring)

374
375 # Estimate values of bulk parameters for interpolating

376 if mat_params == "Licht":

377 e2fn = epses_mat**(1/rhos_mat)

378 s2fn = sigmas_mat**(1/rhos_mat)

379 m2fn = mus_mat**(1/rhos_mat)

380 elif mat_params == "Rayleigh":

381 e2fn = (1+(2/rhos_mat)*((epses_mat−1)/(epses_mat+1)))/(1−(1/rhos_mat)*((
epses_mat−1)/(epses_mat+1)))

382 s2fn = (1+(2/rhos_mat)*((sigmas_mat−1)/(sigmas_mat+1)))/(1−(1/rhos_mat)*((
sigmas_mat−1)/(sigmas_mat+1)))

383 m2fn = (1+(2/rhos_mat)*((mus_mat−1)/(mus_mat+1)))/(1−(1/rhos_mat)*((mus_mat
−1)/(mus_mat+1)))

384 elif mat_params == "MG":

385 e2fn = (eps_air*(1+rhos_mat)*(epses_mat−eps_air))/(2*rhos_mat*eps_air−(1−
rhos_mat)*(epses_mat−eps_air))

386 s2fn = (sig_air*(1+rhos_mat)*(sigmas_mat−sig_air))/(2*rhos_mat*sig_air−(1−
rhos_mat)*(sigmas_mat−sig_air))

387 m2fn = (mu_air*(1+rhos_mat)*(mus_mat−mu_air))/(2*rhos_mat*mu_air−(1−
rhos_mat)*(mus_mat−mu_air))

388 elif mat_params == "Bruggeman":

389 e2fn = (epses_mat*(1−3*rhos_mat)+2*epses_mat*epses_mat)/(1+epses_mat*(2−3*
rhos_mat))

390 s2fn = (sigmas_mat*(1−3*rhos_mat)+2*sigmas_mat*sigmas_mat)/(1+sigmas_mat
*(2−3*rhos_mat))

391 m2fn = (mus_mat*(1−3*rhos_mat)+2*mus_mat*mus_mat)/(1+mus_mat*(2−3*rhos_mat))
392
393 # Interpolate bulk parameters with temperature

394 epstck = intp.splrep(t_mat,e2fn,xb=tempmin,xe=tempmax,k=spldeg)

395 sigtck = intp.splrep(t_mat,s2fn,xb=tempmin,xe=tempmax,k=spldeg)

396 mutck = intp.splrep(t_mat,m2fn,xb=tempmin,xe=tempmax,k=spldeg)

397
398 # Construct functions

399 if mat_params == "Licht":
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400 def epsfun_mat(temp,rho):

401 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

402 n,m=np.shape(temp)

403 eps2=intp.splev(np.reshape(temp,np.size(temp)),epstck)

404 rho = np.reshape(rho,np.size(rho))

405 outvals = eps2**rho

406 return np.reshape(outvals,(n,m))

407 else: # temp was either a scalar or an array−that’s−a−vector
408 eps2=intp.splev(temp,epstck)

409 return eps2**rho

410 def sigfun_mat(temp,rho):

411 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

412 n,m=np.shape(temp)

413 sig2=intp.splev(np.reshape(temp,np.size(temp)),sigtck)

414 rho = np.reshape(rho,np.size(rho))

415 outvals = sig2**rho

416 return np.reshape(outvals,(n,m))

417 else:

418 sig2=intp.splev(temp,sigtck)

419 return sig2**rho

420 def mufun_mat(temp,rho):

421 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

422 n,m=np.shape(temp)

423 mu2=intp.splev(np.reshape(temp,np.size(temp)),mutck)

424 rho = np.reshape(rho,np.size(rho))

425 outvals = mu2**rho

426 return np.reshape(outvals,(n,m))

427 else:

428 mu2=intp.splev(temp,mutck)

429 return mu2**rho

430 elif mat_params == "Rayleigh":

431 def epsfun_mat(temp,rho):

432 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

433 n,m=np.shape(temp)

434 eps2=intp.splev(np.reshape(temp,np.size(temp)),epstck)

435 rho = np.reshape(rho,np.size(rho))

436 outvals = (eps2*(2*rho+1)−(2*rho−2))/(eps2*(1−rho)+(rho−2))
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437 return np.reshape(outvals,(n,m))

438 else: # temp was either a scalar or an array−that’s−a−vector
439 eps2=intp.splev(temp,epstck)

440 return (eps2*(2*rho+1)−(2*rho−2))/(eps2*(1−rho)+(rho−2))
441 def sigfun_mat(temp,rho):

442 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

443 n,m=np.shape(temp)

444 sig2=intp.splev(np.reshape(temp,np.size(temp)),sigtck)

445 rho = np.reshape(rho,np.size(rho))

446 outvals = (sig2*(2*rho+1)−(2*rho−2))/(sig2*(1−rho)+(rho−2))
447 return np.reshape(outvals,(n,m))

448 else:

449 sig2=intp.splev(temp,sigtck)

450 return (sig2*(2*rho+1)−(2*rho−2))/(sig2*(1−rho)+(rho−2))
451 def mufun_mat(temp,rho):

452 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

453 n,m=np.shape(temp)

454 mu2=intp.splev(np.reshape(temp,np.size(temp)),mutck)

455 rho = np.reshape(rho,np.size(rho))

456 outvals = (mu2*(2*rho+1)−(2*rho−2))/(mu2*(1−rho)+(rho−2))
457 return np.reshape(outvals,(n,m))

458 else:

459 mu2=intp.splev(temp,mutck)

460 return (mu2*(2*rho+1)−(2*rho−2))/(mu2*(1−rho)+(rho−2))
461 elif mat_params == "MG":

462 def epsfun_mat(temp,rho):

463 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

464 n,m=np.shape(temp)

465 eps2=intp.splev(np.reshape(temp,np.size(temp)),epstck)

466 rho = np.reshape(rho,np.size(rho))

467 outvals = eps_air+2*rho*eps_air*(eps2−eps_air)/(eps2+eps_air−
rho*(eps2−eps_air))

468 return np.reshape(outvals,(n,m))

469 else: # temp was either a scalar or an array−that’s−a−vector
470 eps2=intp.splev(temp,epstck)

471 return eps_air+2*rho*eps_air*(eps2−eps_air)/(eps2+eps_air−rho
*(eps2−eps_air))

472 def sigfun_mat(temp,rho):
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473 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

474 n,m=np.shape(temp)

475 sig2=intp.splev(np.reshape(temp,np.size(temp)),sigtck)

476 rho = np.reshape(rho,np.size(rho))

477 outvals = sig_air+2*rho*sig_air*(sig2−sig_air)/(sig2+sig_air−
rho*(sig2−sig_air))

478 return np.reshape(outvals,(n,m))

479 else:

480 sig2=intp.splev(temp,sigtck)

481 return sig_air+2*rho*sig_air*(sig2−sig_air)/(sig2+sig_air−rho
*(sig2−sig_air))

482 def mufun_mat(temp,rho):

483 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

484 n,m=np.shape(temp)

485 mu2=intp.splev(np.reshape(temp,np.size(temp)),mutck)

486 rho = np.reshape(rho,np.size(rho))

487 outvals = mu_air+2*rho*mu_air*(mu2−mu_air)/(mu2+mu_air−rho*(
mu2−mu_air))

488 return np.reshape(outvals,(n,m))

489 else:

490 mu2=intp.splev(temp,mutck)

491 return mu_air+2*rho*mu_air*(mu2−mu_air)/(mu2+mu_air−rho*(mu2−
mu_air))

492 elif mat_params == "Bruggeman":

493 def epsfun_mat(temp,rho):

494 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

495 n,m=np.shape(temp)

496 eps2=intp.splev(np.reshape(temp,np.size(temp)),epstck)

497 rho = np.reshape(rho,np.size(rho))

498 outvals = 0.5*(1+3*rho*(1−eps2))+0.5*sqrt((1+3*rho*(1−eps2))
**(2)+4*eps2)

499 return np.reshape(outvals,(n,m))

500 else: # temp was either a scalar or an array−that’s−a−vector
501 eps2=intp.splev(temp,epstck)

502 return 0.5*(1+3*rho*(1−eps2))+0.5*sqrt((1+3*rho*(1−eps2))**(2)
+4*eps2)

503 def sigfun_mat(temp,rho):
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504 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

505 n,m=np.shape(temp)

506 sig2=intp.splev(np.reshape(temp,np.size(temp)),sigtck)

507 rho = np.reshape(rho,np.size(rho))

508 outvals = 0.5*(1+3*rho*(1−sig2))+0.5*sqrt((1+3*rho*(1−sig2))
**(2)+4*sig2)

509 return np.reshape(outvals,(n,m))

510 else:

511 sig2=intp.splev(temp,sigtck)

512 return 0.5*(1+3*rho*(1−sig2))+0.5*sqrt((1+3*rho*(1−sig2))**(2)
+4*sig2)

513 def mufun_mat(temp,rho):

514 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−
vector

515 n,m=np.shape(temp)

516 mu2=intp.splev(np.reshape(temp,np.size(temp)),mutck)

517 rho = np.reshape(rho,np.size(rho))

518 outvals = 0.5*(1+3*rho*(1−mu2))+0.5*sqrt((1+3*rho*(1−mu2))
**(2)+4*mu2)

519 return np.reshape(outvals,(n,m))

520 else:

521 mu2=intp.splev(temp,mutck)

522 return 0.5*(1+3*rho*(1−mu2))+0.5*sqrt((1+3*rho*(1−mu2))**(2)
+4*mu2)

523
524 if not magmat:

525 def mufun_mat(temp,rho):

526 return 1.0*np.ones(np.shape(temp))

527
528 # Specfic heat capacity

529 ctck = intp.splrep(t_mat,cs_mat/rhos_mat,xb=tempmin,xe=tempmax,k=spldeg)

530 def cfun_mat(temp,rho):

531 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
532 n,m=np.shape(temp)

533 splevals=intp.splev(np.reshape(temp,np.size(temp)),ctck)

534 rho = np.reshape(rho,np.size(rho))

535 outvals=splevals*rho

536 return np.reshape(outvals,(n,m))

537 else: # temp was either a scalar or an array−that’s−a−vector
538 return (intp.splev(temp,ctck))*rho
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539
540 # Thermal conductivity

541 ktck = intp.splrep(t_mat,ks_mat/(1.5*rhos_mat−0.5),xb=tempmin,xe=tempmax,k=spldeg)
542 def kfun_mat(temp,rho):

543 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
544 n,m=np.shape(temp)

545 splevals=intp.splev(np.reshape(temp,np.size(temp)),ktck)

546 rho = np.reshape(rho,np.size(rho))

547 outvals=(splevals)*(1.5*rho−0.5)
548 return np.reshape(outvals,(n,m))

549 else: # temp was either a scalar or an array−that’s−a−vector
550 return (intp.splev(temp,ktck))*(1.5*rho−0.5)
551
552 # For plotting

553 sampleplotrhovals = np.linspace(rhos_mat[0],rhos_mat[−1])
554
555 sampleploteps=np.zeros(np.shape(sampleplottemp))

556 sampleplotsig=np.zeros(np.shape(sampleplottemp))

557 sampleplotmu=np.zeros(np.shape(sampleplottemp))

558 sampleplotc=np.zeros(np.shape(sampleplottemp))

559 sampleplotk=np.zeros(np.shape(sampleplottemp))

560
561 for ind in range(0,np.size(sampleplottemp)):

562 sampleploteps[ind]=epsfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

563 sampleplotsig[ind]=sigfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

564 sampleplotmu[ind]=mufun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

565 sampleplotc[ind]=cfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

566 sampleplotk[ind]=kfun_mat(sampleplottemp[ind],sampleplotrhovals[ind])

567
568 plt.figure(10) # Plot eps(temp) for material

569 plt.clf()

570 # plt.plot(sampleplottemp−273.15,epsfun_mat(sampleplottemp,rhoval),’r−’,label=’Function
approximation’)

571 plt.plot(sampleplottemp−273.15,sampleploteps,’r−’,label=’Function approximation’)
572 plt.plot(t_mat−273.15,epses_mat,’ro’,label=’Experimental measurements (temp only)’)
573 plt.legend(loc=’upper left’)

574 plt.xlabel(’Temperature (degC)’)

575 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

576 plt.title(r’Relative electric permittivity for zirconia’)

577 plt.savefig(savestring+’mat_epsfun.png’)
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578 tikz_save(savestring+’mat_epsfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

579 plt.close(10)

580
581 plt.figure(11) # Plot sigma(temp) for material

582 plt.clf()

583 # plt.plot(sampleplottemp−273.15,sigfun_mat(sampleplottemp,rhoval),’b−’,label=’Function
approximation’)

584 plt.plot(sampleplottemp−273.15,sampleplotsig,’b−’,label=’Function approximation’)
585 plt.plot(t_mat−273.15,sigmas_mat,’ro’,label=’Experimental measurements (temp only)’

)

586 plt.legend(loc=’upper left’)

587 plt.xlabel(’Temperature (degC)’)

588 plt.ylabel(’$\sigma$ [S/m]’)

589 plt.title(r’Electrical conductivity for zirconia’)

590 plt.savefig(savestring+’mat_sigfun.png’)

591 tikz_save(savestring+’mat_sigfun.tex’, figureheight = ’\\figureheight’, figurewidth

= ’\\figurewidth’,show_info = False )

592 plt.close(11)

593
594 plt.figure(12) # Plot c_p(temp) for material

595 plt.clf()

596 #plt.plot(sampleplottemp−273.15,cfun_mat(sampleplottemp,rhoval),’g−’,label=’
Function approximation’)

597 plt.plot(sampleplottemp−273.15,sampleplotc,’g−’,label=’Function approximation’)
598 plt.plot(t_mat−273.15,cs_mat,’ro’,label=’Experimental measurements (temp only)’)
599 plt.legend(loc=’upper left’)

600 plt.xlabel(’Temperature (degC)’)

601 plt.ylabel(’$c_p$ [J/(gK)]’)

602 plt.title(r’Specific heat capacity for zirconia’)

603 plt.savefig(savestring+’mat_cfun.png’)

604 tikz_save(savestring+’mat_cfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

605 plt.close(12)

606
607 plt.figure(13) # Plot k(temp) for material

608 plt.clf()

609 #plt.plot(sampleplottemp−273.15,kfun_mat(sampleplottemp,rhoval),’b−’,label=’
Function approximation’)

610 plt.plot(sampleplottemp−273.15,sampleplotk,’b−’,label=’Function approximation’)
611 plt.plot(t_mat−273.15,ks_mat,’ro’,label=’Experimental measurements (temp only)’)
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612 plt.legend(loc=’upper left’)

613 plt.xlabel(’Temperature (degC)’)

614 plt.ylabel(’$k$ [W/(mK)]’)

615 plt.title(r’Thermal conductivity for zirconia’)

616 plt.savefig(savestring+’mat_kfun.png’)

617 tikz_save(savestring+’mat_kfun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

618 plt.close(13)

619
620 plt.figure(14) # Plot mu(temp) for material

621 plt.clf()

622 #plt.plot(sampleplottemp−273.15,mufun_mat(sampleplottemp,rhoval),’g−’,label=’
Function approximation’)

623 plt.plot(sampleplottemp−273.15,sampleplotmu,’g−’,label=’Function approximation’)
624 plt.plot(t_mat−273.15,mus_mat,’ro’,label=’Experimental measurements (temp only)’)
625 plt.legend(loc=’upper left’)

626 plt.xlabel(’Temperature (degC)’)

627 plt.ylabel(’$\mu_r$ [unitless]’)

628 plt.title(r’Relative magnetic permeability for zirconia’)

629 plt.savefig(savestring+’mat_mufun.png’)

630 tikz_save(savestring+’mat_mufun.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

631 plt.close(14)

632
633 # Functions for insulation parameters (these take temps as inputs)

634 epsinstck = intp.splrep(t_ins,epses_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline

interpolation

635 def epsfun_ins(temp):

636 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
637 #temp[temp>1200+273.15]=1200+273.15

638 n,m=np.shape(temp)

639 splevals=intp.splev(np.reshape(temp,np.size(temp)),epsinstck)

640 return np.reshape(splevals,(n,m))

641 else: # temp was either a scalar or an array−that’s−a−vector
642 return intp.splev(temp,epsinstck) # spline evaluation

643
644 siginstck = intp.splrep(t_ins,sigmas_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline

interpolation

645 def sigfun_ins(temp):

646 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
647 #temp[temp>1200+273.15]=1200+273.15
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648 n,m=np.shape(temp)

649 splevals=intp.splev(np.reshape(temp,np.size(temp)),siginstck)

650 return np.reshape(splevals,(n,m))

651 else: # temp was either a scalar or an array−that’s−a−vector
652 return intp.splev(temp,siginstck) # spline evaluation

653
654 cinstck = intp.splrep(t_ins,cs_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline interpolation

655 def cfun_ins(temp):

656 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
657 #temp[temp>1200+273.15]=1200+273.15

658 n,m=np.shape(temp)

659 splevals=intp.splev(np.reshape(temp,np.size(temp)),cinstck)

660 return np.reshape(splevals,(n,m))

661 else: # temp was either a scalar or an array−that’s−a−vector
662 return intp.splev(temp,cinstck) # spline evaluation

663
664 rhoinstck = intp.splrep(t_ins,rhos_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline

interpolation

665 def rhofun_ins(temp):

666 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
667 #temp[temp>1200+273.15]=1200+273.15

668 n,m=np.shape(temp)

669 splevals=intp.splev(np.reshape(temp,np.size(temp)),rhoinstck)

670 return np.reshape(splevals,(n,m))

671 else: # temp was either a scalar or an array−that’s−a−vector
672 return intp.splev(temp,rhoinstck) # spline evaluation

673
674 kinstck = intp.splrep(t_ins,ks_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline interpolation

675 def kfun_ins(temp):

676 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
677 #temp[temp>1200+273.15]=1200+273.15

678 n,m=np.shape(temp)

679 splevals=intp.splev(np.reshape(temp,np.size(temp)),kinstck)

680 return np.reshape(splevals,(n,m))

681 else: # temp was either a scalar or an array−that’s−a−vector
682 return intp.splev(temp,kinstck) # spline evaluation

683
684 muinstck = intp.splrep(t_ins,mus_ins,xb=tempmin,xe=tempmax,k=spldeg) # spline interpolation

685 def mufun_ins(temp):

686 if np.size(np.shape(temp)) == 2: # temp is an array−that’s−not−a−vector
687 #temp[temp>1200+273.15]=1200+273.15
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688 n,m=np.shape(temp)

689 splevals=intp.splev(np.reshape(temp,np.size(temp)),muinstck)

690 return np.reshape(splevals,(n,m))

691 else: # temp was either a scalar or an array−that’s−a−vector
692 return intp.splev(temp,muinstck) # spline evaluation

693
694 # Uncomment to use barycentric interpolation instead of b−splines
695 #epsfun_ins = intp.BarycentricInterpolator(t_ins,epses_ins)

696 #sigfun_ins = intp.BarycentricInterpolator(t_ins,sigmas_ins)

697 #cfun_ins = intp.BarycentricInterpolator(t_ins,cs_ins)

698 #rhofun_ins = intp.BarycentricInterpolator(t_ins,rhos_ins)

699 #kfun_ins = intp.BarycentricInterpolator(t_ins,ks_ins)

700 #mufun_ins = intp.BarycentricInterpolator(t_ins,mus_ins)

701
702 plt.figure(20) # Plot eps(temp) for insulation

703 plt.plot(sampleplottemp−273.15,epsfun_ins(sampleplottemp),’r−’,label=’Function
approximation’)

704 plt.plot(t_ins−273.15,epses_ins,’ro’,label=’Experimental measurements’)
705 plt.legend(loc=’upper left’)

706 plt.xlabel(’Temperature (degC)’)

707 plt.ylabel(r’$\varepsilon_r$ [unitless]’)

708 plt.title(’Relative electric permittivity for alumina insulation’)

709 plt.savefig(savestring+’ins_epsfun.png’)

710 tikz_save(savestring+’ins_epsfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

711 plt.close(20)

712
713 plt.figure(21) # Plot sigma(temp) for insulation

714 plt.plot(sampleplottemp−273.15,sigfun_ins(sampleplottemp),’b−’,label=’Function
approximation’)

715 plt.plot(t_ins−273.15,sigmas_ins,’ro’,label=’Experimental measurements’)
716 plt.legend(loc=’upper left’)

717 plt.xlabel(’Temperature (degC)’)

718 plt.ylabel(’$\sigma$ [S/m]’)

719 plt.title(’Electrical conductivity for alumina insulation’)

720 plt.savefig(savestring+’ins_sigfun.png’)

721 tikz_save(savestring+’ins_sigfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

722 plt.close(21)

723
724 plt.figure(22) # Plot c_p(temp) for insulation
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725 plt.plot(sampleplottemp−273.15,cfun_ins(sampleplottemp),’g−’,label=’Function approximation
’)

726 plt.plot(t_ins−273.15,cs_ins,’ro’,label=’Experimental measurements’)
727 plt.legend(loc=’upper left’)

728 plt.xlabel(’Temperature (degC)’)

729 plt.ylabel(’$c_p$ [J/(gK)]’)

730 plt.title(’Thermal conductivity for alumina insulation’)

731 plt.savefig(savestring+’ins_cfun.png’)

732 tikz_save(savestring+’ins_cfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

733 plt.close(22)

734
735 plt.figure(23) # Plot rho(temp) for insulation

736 plt.plot(sampleplottemp−273.15,rhofun_ins(sampleplottemp),’y−’,label=’Function
approximation’)

737 plt.plot(t_ins−273.15,rhos_ins,’ro’,label=’Experimental measurements’)
738 plt.legend(loc=’upper left’)

739 plt.xlabel(’Temperature (degC)’)

740 plt.ylabel(r’$\rho$ [g/(cm^3)]’)

741 plt.title(’Density for alumina insulation’)

742 plt.savefig(savestring+’ins_rhofun.png’)

743 tikz_save(savestring+’ins_rhofun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

744 plt.close(23)

745
746 plt.figure(24) # Plot k(temp) for insulation

747 plt.plot(sampleplottemp−273.15,kfun_ins(sampleplottemp),’b−’,label=’Function approximation
’)

748 plt.plot(t_ins−273.15,ks_ins,’ro’,label=’Experimental measurements’)
749 plt.legend(loc=’upper left’)

750 plt.xlabel(’Temperature (degC)’)

751 plt.ylabel(’$k$ [W/(mK)]’)

752 plt.title(’Specific heat capacity for alumina insulation’)

753 plt.savefig(savestring+’ins_kfun.png’)

754 tikz_save(savestring+’ins_kfun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

755 plt.close(24)

756
757 plt.figure(25) # Plot mu(temp) for insulation

758 plt.plot(sampleplottemp−273.15,mufun_ins(sampleplottemp),’g−’,label=’Function
approximation’)
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759 plt.plot(t_ins−273.15,mus_ins,’ro’,label=’Experimental measurements’)
760 plt.legend(loc=’upper left’)

761 plt.xlabel(’Temperature (degC)’)

762 plt.ylabel(’$\mu_r$ [unitless]’)

763 plt.title(’Relative magnetic permeability for alumina insulation’)

764 plt.savefig(savestring+’ins_mufun.png’)

765 tikz_save(savestring+’ins_mufun.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

766 plt.close(25)

767
768 printstring=("\n\tDone; took "+str(time.clock()−starttime)+" seconds to find functions for

all dielectric and thermal material and insulation properties.\n\nSetting up

simulation...\n")

769 logfile.write(printstring)

770
771 # Initialize elemental values of load properties (these are updated in the course of

mechanical solution)

772 # Since we don’t know heating rate, must start with only temp−dependent interpolated
parameters

773 eps_mat=intp.BarycentricInterpolator(t_mat,epses_mat).__call__(temp_init) #[unitless]

relative permittivity

774 sig_mat=intp.BarycentricInterpolator(t_mat,sigmas_mat).__call__(temp_init) # [S/m]

electrical conductivity

775 c_mat=intp.BarycentricInterpolator(t_mat,cs_mat).__call__(temp_init) # [J/g*C] specific

heat capacity

776 rho_mat=(intp.BarycentricInterpolator(t_mat,rhos_mat).__call__(temp_init)+0.1)*bulkdens_mat

# [g/m^3] density

777 k_mat=intp.BarycentricInterpolator(t_mat,ks_mat).__call__(temp_init) # [W/g*C] thermal

conductivity

778 mu_mat=intp.BarycentricInterpolator(t_mat,mus_mat).__call__(temp_init) # [unitless]

relative permeability

779
780 # Initialize elemental values of insulation properties

781 eps_ins=epsfun_ins(temp_init) #[unitless] relative permittivity of insulation at initial

temperature

782 sig_ins=sigfun_ins(temp_init) # [S/m] electrical conductivity of insulation at initial

temperature

783 c_ins=cfun_ins(temp_init) # [J/g*C] specific heat capacity of insulation at initial

temperature

784 rho_ins=rhofun_ins(temp_init) # [g/m^3] density of insulation at initial temperature
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785 k_ins=kfun_ins(temp_init) # [W/g*C] thermal conductivity of insulation at initial

temperature

786 mu_ins=mufun_ins(temp_init) # [unitless] relative permeability of insulation at initial

temperature

787
788 #################################################################

789
790 # Nodes and spacing

791 delta_x_air = delta_z_air = 0.05*c/(f_g*sqrt(eps_air)) # length of spatial step in air [m]

792 delta_x_mat = delta_z_mat = 0.05*c/(f_g*sqrt(eps_mat)) # length of spatial step in material

[m]

793 delta_x_ins = delta_z_ins = 0.05*c/(f_g*sqrt(eps_ins)) # length of spatial step in

insulation [m]

794
795 # Create physical domain

796 left_air_vec = r_[0:ell_1:delta_z_air]

797 ell_1 = max(ell_1,left_air_vec[−1]+delta_z_ins) # makes sure step at interface is not too
small

798 left_ins_vec = r_[ell_1:ell_2:delta_z_ins]

799 ell_2 = max(ell_2,left_ins_vec[−1]+delta_z_mat) # makes sure step at interface is not too
small

800 mat_vec = r_[ell_2:ell_3:delta_z_mat]

801 ell_3 = max(ell_3,mat_vec[−1]+delta_z_mat) # makes sure step at interface is not too small
802 right_ins_vec = r_[ell_3:ell_4:delta_z_ins]

803 ell_4 = max(ell_4,right_ins_vec[−1]+delta_z_ins) # makes sure step at interface is not too
small

804 right_air_vec = r_[ell_4:L:delta_z_air]

805
806 lower_air_vec = r_[0:h_1:delta_x_air]

807 h_1 = max(h_1,lower_air_vec[−1]+delta_x_ins) # makes sure step at interface is not too
small

808 lower_ins_vec = r_[h_1:h_2:delta_x_ins]

809 h_2 = max(h_2,lower_ins_vec[−1]+delta_x_mat) # makes sure step at interface is not too
small

810 x_mat_vec = r_[h_2:h_3:delta_x_mat]

811 h_3 = max(h_3,x_mat_vec[−1]+delta_x_mat) # makes sure step at interface is not too small
812 upper_ins_vec = r_[h_3:h_4:delta_x_ins]

813 h_4 = max(h_4,upper_ins_vec[−1]+delta_x_ins) # makes sure step at interface is not too
small

814 upper_air_vec = r_[h_4:H:delta_x_air]

815



APPENDIX H. COMPUTER IMPLEMENTATION OF THE COUPLED SOLVER FOR THE 1D
AND 2D MW SINTERING PROBLEMS 415

816 # Finally, create the vectors of z−values and x−values
817 z = r_[ left_air_vec , left_ins_vec , mat_vec , right_ins_vec , right_air_vec ]

818 x = r_[ lower_air_vec, lower_ins_vec, x_mat_vec, upper_ins_vec, upper_air_vec ]

819
820 Z,X = meshgrid(z,x) # for plotting

821
822 ins_start_z = np.size(left_air_vec) # index of first node within left−hand insulation
823 mat_start_z = ins_start_z+np.size(left_ins_vec) # index of first node within material

824 mat_end_z = mat_start_z+np.size(mat_vec) # index of first node within right−hand
insulation

825 ins_end_z = mat_end_z+np.size(right_ins_vec) # index of first node within right−hand air
826
827 ins_start_x = np.size(upper_air_vec) # index of first node within lower insulation

828 mat_start_x = ins_start_x+np.size(upper_ins_vec) # index of first node within material

829 mat_end_x = mat_start_x+np.size(x_mat_vec) # index of first node within upper insulation

830 ins_end_x = mat_end_x+np.size(lower_ins_vec) # index of first node within upper air

831
832 ins_length = ell_4−ell_1 # length of insulation&material&insulation [m]
833 ins_height = h_4−h_1 # height of insulation&material&insulation [m]
834
835 mat_length = ell_3−ell_2 # length of material [m]
836 mat_height = h_3−h_2 # height of material [m]
837
838 n_mat_z = np.size(mat_vec)+1 # number of z−nodes in material
839 n_mat_x = np.size(x_mat_vec)+1 # number of x−nodes in material
840
841 # Initialize indices for material relative to insulation boundary

842 z_start = np.size(left_ins_vec)

843 x_start = np.size(upper_ins_vec)

844 z_end = −(np.size(right_ins_vec))
845 x_end = −(np.size(lower_ins_vec))
846
847 # Localized deformation model

848 #for i in range (mat_start_z,mat_end_z+1): # number of x−nodes in each "column" of
material

849 # eval(’n_mat_x_’+str(i)) = n_mat_x # is initially constant

850
851 n_ins_z = ins_end_z−ins_start_z+1 # number of nodes in insulation&material&insulation
852 n_ins_x = ins_end_x−ins_start_x+1 # number of nodes in insulation&material&insulation
853
854 nz=np.size(z) # number of z−gridpoints
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855 N = nz−1 # highest index among z−gridpoints
856 nx=np.size(x) # number of x−gridpoints
857 M = nx−1 # highest index among x−gridpoints
858 hz=z[1:]−z[:−1] # delta−z−values
859 hx=x[1:]−x[:−1] # delta−x−values
860
861 ###################################################################

862
863 eps = eps_air * np.ones((nx,nz))

864 eps[ins_start_x:ins_end_x,ins_start_z:ins_end_z] = eps_ins

865 eps[mat_start_x:mat_end_x,mat_start_z:mat_end_z] = eps_mat

866
867 sig = sig_air * np.ones((nx,nz))

868 sig[ins_start_x:ins_end_x,ins_start_z:ins_end_z] = sig_ins

869 sig[mat_start_x:mat_end_x,mat_start_z:mat_end_z] = sig_mat

870
871 cp = eps_air * np.ones((nx,nz))

872 cp[ins_start_x:ins_end_x,ins_start_z:ins_end_z] = c_ins

873 cp[mat_start_x:mat_end_x,mat_start_z:mat_end_z] = c_mat

874
875 rho = rho_air * np.ones((nx,nz))

876 rho[ins_start_x:ins_end_x,ins_start_z:ins_end_z] = rho_ins

877 rho[mat_start_x:mat_end_x,mat_start_z:mat_end_z] = rho_mat

878
879 k = k_air * np.ones((nx,nz))

880 k[ins_start_x:ins_end_x,ins_start_z:ins_end_z] = k_ins

881 k[mat_start_x:mat_end_x,mat_start_z:mat_end_z] = k_mat

882
883 mu = mu_air * np.ones((nx,nz))

884 mu[ins_start_x:ins_end_x,ins_start_z:ins_end_z] = mu_ins

885 mu[mat_start_x:mat_end_x,mat_start_z:mat_end_z] = mu_mat

886
887 ##########################################################################

888
889 # Time scenario

890 #em_dt = min(delta_x_air,delta_x_mat,delta_x_ins)/c # length of time step of em solve [sec]

891 em_dt = 1.0e−2 # use when th,phi>=0.5
892 h_dt = 1.0e−1 # length of time step of heat solve (i.e., how long to nuke before solving

heat transfer) [sec]

893
894 # Initialize electric field
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895 E_old = np.zeros(np.shape(X)) # initialize electric field as matrix

896 beta = pi/L # propagation constant [1/m]

897 E_inc = (2/L)*sqrt(2*P*omega_fs*mu0/beta) # initialize power at magnetron (left−hand
boundary)

898 E_old[:,0] = E_inc # replace E−field values on the left−hand boundary with value of
incident field at magnetron (this is for nondimensional problem, so put ones there)

899 E_old = mat2vec(np.transpose(E_old)) # convert E_old to vector

900 E_older = E_old

901 E_old_init = E_old

902 E_older_init = E_older # initialize second oldest electric field as vector

903 eavg = np.zeros(np.shape(E_old))

904
905 # Initialize temperature field as matrix

906 temp = temp_init*np.ones((n_ins_x,n_ins_z))

907
908 # Initialize theta

909 theta_integrand_old = (np.exp(−Q/(R*temp_init))/temp_init)*np.ones((n_mat_x,n_mat_z)) #
theta is a cumulative integral; this is the initial value of the integrand

910 theta = np.zeros(np.shape(theta_integrand_old)) # inital value of cumulative integral is

zero

911
912 # Initialize material height

913 height_old = mat_height

914
915 # Initialize average density in material

916 rho_avg_old = rho_mat/bulkdens_mat

917
918 # Initialize time and iterations

919 loopstarttime = time.clock()

920 elapsed_time = 0.0 # initialize elapsed time

921 loopits = 0 # initialize number of iterations of coupled solver per ’loop’ (one loop is how

often we plot results, no matter how many timesteps we’ve taken between plots)

922 itno = 0

923 delfiles = [] # for storing names of files containing frames for movies−−want to delete
these files at the end of simulation

924
925 # Initialize phase velocity and dimensional factor for EM solver

926 #p = mu0*sig*em_dt/(2*eps*eps0) # factor for em solver

927 #vp = c*sqrt(1/(eps*mu)) # phase velocity in media

928
929 if embc==’abs’:
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930 embcprintstring = "absorbing"

931 elif embc==’pec’:

932 embcprintstring = "perfect electric conductor (zero Dirichlet)"

933
934 if tempbc==’rad’:

935 tempbcprintstring="radiative"

936 elif tempbc==’ins’:

937 tempbcprintstring="insulating (zero Neumann)"

938 elif tempbc=="fix":

939 tempbcprintstring="fixed (Dirichlet)"

940
941 printstring = ("\tSpatial cell size in air (same in x−dir as in z−dir) is "+str(

delta_x_air*1e2)+" cm\n\tSpatial cell size in insulation (same in x−dir as in z−dir)
"+str(delta_x_ins*1e2)+" cm\n\tSpatial cell size in material (same in x−dir as in z−
dir) is "+str(delta_x_mat*1e2)+" cm\n\tTotal number of nodes in entire domain is "+str

(nx*nz)+"\n\tTotal number of nodes in insulation + material is "+str(n_ins_x*n_ins_z)+

"\n\tTotal number of nodes in material is "+str(n_mat_x*n_mat_z)+"\n\tTime step for

electromagnetic solve is "+str(em_dt)+" sec\n\tTime step for thermal solve is "+str(

h_dt)+" sec\n\tTotal simulated processing time will be "+str(total_time)+" sec\n")

942 logfile.write(printstring)

943 printstring = ("\nStarting simulation loop...\n\tUsing "+embcprintstring+" boundary

condition for electromagnetic solver\n\tUsing "+tempbcprintstring+" boundary condition

for thermal solver\n")

944 logfile.write(printstring)

945
946 instemps = np.r_[mat2vec(temp[:x_start,:]),mat2vec(temp[x_end:,:]),mat2vec(temp[x_start:

x_end,:z_start]),mat2vec(temp[x_start:x_end,z_end:])]−273.15
947 loadtemps = temp[x_start:x_end,z_start:z_end]−273.15
948 max_ins = np.max(instemps)

949 min_ins = np.min(instemps)

950 mean_ins = np.mean(instemps)

951 max_load = np.max(loadtemps)

952 min_load = np.min(loadtemps)

953 mean_load = np.mean(loadtemps)

954
955 printstring = (’\nAt start of simulation...\n\tMax value of electric field is ’ + str(np.

max(eavg)) + ’ V/m\n\tMin value of electric field is ’ + str(np.min(eavg)) + ’ V/m\n\

tMean value of electric field is ’ + str(np.mean(eavg))+’ V/m\n\tMax temp in

insulation is ’ + str(max_ins) + ’ degC\n\tMin temp in insulation is ’ + str(min_ins)

+ ’ degC\n\tMean temp in insulation is ’ + str(mean_ins) + ’ degC\n\tMax temp in load

is ’ + str(max_load) + ’ degC\n\tMin temp in load is ’ + str(min_load) + ’ degC\n\
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tMean temp in load is ’ + str(mean_load) + ’ degC\n\tMean density in material is ’+str

(100*rho_mat/bulkdens_mat)+" percent of bulk density\n")

956 logfile.write(printstring)

957
958 T_maxes = np.array([max_load])

959 T_means = np.array([mean_load])

960 load_rhos = np.array([100*rho_mat/bulkdens_mat])

961 plottingtimes = lnt_avgs = np.array([0])

962
963 # Simulation loop

964 while elapsed_time<total_time:

965
966 T = (temp_init−273.15)*np.ones(np.shape(X)) # dimensional temperature in entire

cavity (air is assumed constant temp)

967 T[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = temp−273.15 # update plotting
matrix for temperature

968
969 # Plot electric field

970 plt.figure(30)

971 plt.clf()

972 plt.contourf(100*Z,100*X,np.fliplr(np.transpose(vec2mat(eavg,nz,nx))),100)

973 plt.colorbar()

974 plt.xlabel(’Position along domain [cm]’)

975 plt.ylabel(’Position along domain [cm]’)

976 plt.title(’Envelope of electric field [V^2/m^2] at t=’ + str(elapsed_time) + ’ sec’)

977 fname = hiddensavestring+’efield’+str(itno)+’.png’

978 plt.savefig(fname)

979 delfiles.append(fname)

980
981 # Plot temperature field in only ins + mat

982 plt.figure(31)

983 plt.clf()

984 plt.contourf(100*Z[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1],100*X[

ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1],temp−273.15,100)
985 plt.colorbar()

986 plt.xlabel(’Position along domain [cm]’)

987 plt.ylabel(’Position along domain [cm]’)

988 plt.title(’Temperature [C] at t=’ + str(elapsed_time) + ’ seconds’)

989 fname = hiddensavestring+’temp_insmat’+str(itno)+’.png’

990 plt.savefig(fname)

991 delfiles.append(fname)
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992
993 # Plot temperature field in whole cavity

994 plt.figure(32)

995 plt.clf()

996 plt.contourf(100*Z,100*X,np.fliplr(T),100)

997 plt.colorbar()

998 plt.xlabel(’Position along domain [cm]’)

999 plt.ylabel(’Position along domain [cm]’)

1000 plt.title(’Temperature [C] at t=’ + str(elapsed_time) + ’ seconds’)

1001 fname = hiddensavestring+’temp_wholecav’+str(itno)+’.png’

1002 plt.savefig(fname)

1003 delfiles.append(fname)

1004
1005 # Plot material properties

1006
1007 plt.figure(40) # relative permittivity

1008 plt.clf()

1009 plt.contourf(100*Z,100*X,eps,100)

1010 plt.colorbar()

1011 plt.plot(100*x,eps,’ro−’)
1012 plt.xlabel(’Position along domain [cm]’)

1013 plt.ylabel(’Position along domain [cm]’)

1014 plt.title(r’$\varepsilon_r$ [unitless] at time t=’ + str(elapsed_time) + ’ sec’)

1015 fname = hiddensavestring+’eps_evol’+str(itno)+’.png’

1016 plt.savefig(fname)

1017 delfiles.append(fname)

1018
1019 plt.figure(41) # electrical conductivity

1020 plt.clf()

1021 plt.contourf(100*Z,100*X,sig,100)

1022 plt.colorbar()

1023 plt.xlabel(’Position along domain [cm]’)

1024 plt.ylabel(’Position along domain [cm]’)

1025 plt.title(r’$\sigma$ [S/m] at time t=’ + str(elapsed_time) + ’ sec’)

1026 fname = hiddensavestring+’sig_evol’+str(itno)+’.png’

1027 plt.savefig(fname)

1028 delfiles.append(fname)

1029
1030 plt.figure(42) # thermal conductivity

1031 plt.clf()

1032 plt.contourf(100*Z,100*X,cp,100)
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1033 plt.colorbar()

1034 plt.xlabel(’Position along domain [cm]’)

1035 plt.ylabel(’Position along domain [cm]’)

1036 plt.title(’$c_p$ [J/(gK)] at time t=’ + str(elapsed_time) + ’ sec’)

1037 fname = hiddensavestring+’c_evol’+str(itno)+’.png’

1038 plt.savefig(fname)

1039 delfiles.append(fname)

1040
1041 plt.figure(43) # density

1042 plt.clf()

1043 plt.contourf(100*Z,100*X,rho,100)

1044 plt.colorbar()

1045 plt.xlabel(’Position along domain [cm]’)

1046 plt.ylabel(’Position along domain [cm]’)

1047 plt.title(r’$\rho$ [g/m^3] at time t=’ + str(elapsed_time) + ’ sec’)

1048 fname = hiddensavestring+’rho_evol’+str(itno)+’.png’

1049 plt.savefig(fname)

1050 delfiles.append(fname)

1051
1052 plt.figure(44) # specific heat capacity

1053 plt.clf()

1054 plt.contourf(100*Z,100*X,k,100)

1055 plt.colorbar()

1056 plt.xlabel(’Position along domain [cm]’)

1057 plt.ylabel(’Position along domain [cm]’)

1058 plt.title(’$k$ [W/(mK)] at time t=’ + str(elapsed_time) + ’ sec’)

1059 fname = hiddensavestring+’k_evol’+str(itno)+’.png’

1060 plt.savefig(fname)

1061 delfiles.append(fname)

1062
1063 plt.figure(45) # magnetic permeability

1064 plt.clf()

1065 plt.contourf(100*Z,100*X,mu,100)

1066 plt.colorbar()

1067 plt.xlabel(’Position along domain [cm]’)

1068 plt.ylabel(’Position along domain [cm]’)

1069 plt.title(r’$\mu$ [unitless] at time t=’+str(elapsed_time) + ’ seconds’)

1070 fname = hiddensavestring+’mu_evol’+str(itno)+’.png’

1071 plt.savefig(fname)

1072 delfiles.append(fname)

1073
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1074 loopits = 0

1075 staycount = 0

1076 leftcount = 0

1077 rightcount = 0

1078
1079 # Run coupled solver

1080 while loopits<floor(print_every/h_dt): # print shrinkage every (n many) timesteps

instead of each timestep (avoid creating huuuuuge logfiles)

1081
1082 # Special parameters for EM and T solvers

1083 cp_insmat = cp[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1]

1084 k_insmat = k[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1]

1085 rho_insmat = rho[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1]

1086
1087 # Convert matrix−shaped field and property values to vector shapes
1088 temp = mat2vec(temp)

1089 cp_insmat = mat2vec(cp_insmat)

1090 k_insmat = mat2vec(k_insmat)

1091 rho_insmat = mat2vec(rho_insmat)

1092
1093 k = mat2vec(k)

1094 cp = mat2vec(cp)

1095
1096 # Run electric field solver

1097
1098 # For wave equation, run as many times as it takes to achieve one timestep of

heat equation (depending on em timestep, this could be many)

1099
1100 # E_old,E_older,eavg = emsolve2.finite_diff(E_old,E_older,hx,hz,em_dt,h_dt,0.5,0.5,L,Z,X,

np.transpose(sig),np.transpose(eps),np.transpose(mu))

1101
1102 eavg = emsolve2.helmsolve(hx,hz,mu*mu*eps*mu0*eps0,E_inc)

1103
1104 sig = mat2vec(np.transpose(sig))

1105
1106 ndq = eavg*(sig) # nondimensionalized, scaled source term for heat equation

1107 ndq = np.transpose(vec2mat(ndq,nz,nx)) # for conveniently restricting to mat+

ins only

1108 ndq = ndq[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] # restrict to mat+

ins only

1109 ndq = mat2vec(ndq) # put back in vector form



APPENDIX H. COMPUTER IMPLEMENTATION OF THE COUPLED SOLVER FOR THE 1D
AND 2D MW SINTERING PROBLEMS 423

1110
1111 # Run thermal solver once, and *only* within the insulation and load

1112 temp = thermsolve2.second_try_diml(temp,hx[ins_start_x:ins_end_x],hz[

ins_start_z:ins_end_z],750000*ndq,h_dt,th,phi,tempbc,trans_ins,temp_init,

k_insmat,rho_insmat,cp_insmat) # returns new temperature field as vector

1113
1114 # Make temperature a matrix, so it’s easier to manipulate

1115
1116 temp = vec2mat(temp,n_ins_x,n_ins_z)

1117
1118 # Find theta values corresponding to new temperatures and heating rates at

each point in load

1119
1120 theta_integrand_new = (np.exp(−Q/(R*temp[x_start:x_end,z_start:z_end])))/(

temp[x_start:x_end,z_start:z_end])

1121 theta = theta + 0.5*(theta_integrand_old + theta_integrand_new)*h_dt

1122 theta_integrand_old = theta_integrand_new

1123 lntheta = np.log(theta)

1124
1125 # Update density in load using MSC and computed theta−values
1126
1127 rho_mat = rhofun(lntheta) # gets density relative to that of bulk solid

1128 rho_avg_new = np.mean(rho_mat) # average density value in sample

1129
1130 rho_mat = rho_mat * bulkdens_mat # dimensionalize the density

1131
1132 # Find the x−index of maximum density value in load
1133
1134 rmi,rmj = np.unravel_index(rho_mat.argmax(),rho_mat.shape) # rmi is index in

material

1135 rho_max_ins = x_start + rmi # index in insulation + material

1136 rho_max = mat_start_x + rmi # index in entire domain

1137
1138 # Compute total shrinkage within material based on density change and

conservation of mass

1139
1140 height_new = height_old*rho_avg_old/rho_avg_new # new volume of material

1141 x_thr = x[rho_max]−height_old+height_new # material between x_thr and
rho_max disappears

1142
1143 if x_thr > x[rho_max+1]: # x_thr is less than one spatial step from rho_max
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1144 # Then don’t change the volume this time around; wait for more

possible shrinkage in next time step

1145 height_new = height_old

1146 printstring = "\tShrinkage is less than the length of a single spatial

step in material; not simulating shrinkage\n\tPercent of original

length remains "+str(100*height_new/mat_height)+"\n\tNumber of

nodes within material remains "+str(mat_end_x−mat_start_x)+"\n"
1147 #logfile.write(printstring)

1148 staycount = staycount + 1

1149
1150 elif x_thr > h_2: # x_thr is more than one spatial step from rho_max, but

still within material

1151 the_ind = np.max(np.where(x<x_thr)) # index just above x_thr

1152 height_new = height_old−(x[rho_max]−x[the_ind]) # the actual new
height (as x_thr likely landed between nodes) # THIS VIOLATES

CONSERVATION OF MASS, BUT IF SPATIAL GRID SIZE IS SMALL ENOUGH, IT

SHOULDN’T BE "TOO" WRONG

1153 shrink = rho_max−the_ind # number of nodes to shrink by
1154 printstring = "\tShrinkage by deleting material to the left of max

density\n\tMaterial shrinks by "+str(shrink)+" nodes ("+str((

height_old−height_new)*100)+" cm)\n\tNew length is "+str(100*
height_new/mat_height)+" percent of original length\n\tNumber of

nodes remaining in material is "+str(mat_end_x−mat_start_x−shrink
)+"\n"

1155 #logfile.write(printstring)

1156 leftcount = leftcount + 1

1157 #temp[x_start+shrink:rho_max+1,:]=temp[x_start:rho_max+1−shrink,:] #
remove material between x_thr and rho_max, and shift remaining

load material to right

1158 #temp[shrink:x_start+shrink,:]=temp[:x_start,:] # shift insulation to

right

1159 #temp = temp[shrink:,:]

1160 temp = np.r_[temp[:rho_max_ins−shrink+1,:],temp[rho_max_ins+1:,:]] #
remove section from temp_old

1161 rho[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = rho_mat #

update load densities

1162 rho[mat_start_x+shrink:rho_max+1,:]=rho[mat_start_x:rho_max+1−shrink
,:] # remove section from rho

1163 theta = np.r_[theta[:rmi−shrink+1,:],theta[rmi+1:,:]] # remove
section from theta
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1164 lntheta = np.r_[lntheta[:rmi−shrink+1,:],lntheta[rmi+1:,:]] # remove
section from lntheta

1165 theta_integrand_old = np.r_[theta_integrand_old[:rmi+1−shrink,:],
theta_integrand_old[rmi+1:,:]] # remove section from old theta

integrand

1166 ins_start_x = ins_start_x + shrink # update insulation start index

1167 mat_start_x = mat_start_x + shrink # update material start index

1168 height_old = height_new

1169
1170 elif x_thr < h_2: # x_thr is *outside* the material! (*Lots* of shrinkage, or

rho_max v close to bdry)

1171 # Just get rid of enough material to the right of mat_startind

1172 x_thr = h_2+height_new

1173 the_ind = np.min(np.where(x>x_thr)) # index just to the right of x_thr

1174 height_new = height_old − (x[the_ind]−x[mat_start_x]) # the actual
new volume (x_thr likely btwn nodes) # VIOLATES CONSERVATION OF

MASS, MAKE SURE SPATIAL GRID SIZE IS SMALL

1175 shrink = the_ind+1−mat_start_x # number of nodes to shrink by
1176 printstring = "\tShrinkage by deleting material to the right of left−

hand boundary\n\tMaterial shrinks by "+str(shrink)+" nodes ("+str

((height_old−height_new)*100)+" cm)\n\tNew length is "+str(100*
height_new/mat_height)+" percent of original length\n\tNumber of

nodes remaining in material is "+str(mat_end_x−mat_start_x−shrink
)+"\n"

1177 #logfile.write(printstring)

1178 rightcount = rightcount + 1

1179 temp = np.r_[temp[:x_start,:],temp[x_start+shrink:,:]]

1180 rho[mat_start_x+shrink:mat_end_x+1,mat_start_z:mat_end_z+1] = rho_mat[

shrink:,:]

1181 theta = theta[shrink:,:]

1182 lntheta = lntheta[shrink:,:]

1183 theta_integrand_old = theta_integrand_old[shrink:,:]

1184 mat_start_x = mat_start_x+shrink

1185 ins_start_x = ins_start_x+shrink

1186 height_old = height_new

1187
1188 # Update material parameters, including dielectric properties, according to

temperature change, density change, and shrinkage

1189
1190 k = vec2mat(k,nx,nz)

1191 cp = vec2mat(cp,nx,nz)
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1192 #eps = vec2mat(eps,nx,nz)

1193 sig = np.transpose(vec2mat(sig,nz,nx))

1194 #mu = vec2mat(mu,nx,nz)

1195
1196 # Air parameters

1197 eps[:ins_start_x,:] = eps_air

1198 sig[:ins_start_x,:] = sig_air

1199 rho[:ins_start_x,:] = rho_air

1200 cp[:ins_start_x,:] = c_air

1201 k[:ins_start_x,:] = k_air

1202 mu[:ins_start_x,:] = mu_air

1203
1204 # Insulation parameters

1205 eps[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = epsfun_ins(temp)

1206 sig[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = sigfun_ins(temp)

1207 rho[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = rhofun_ins(temp)

1208 cp[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = cfun_ins(temp)

1209 k[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = kfun_ins(temp)

1210 mu[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = mufun_ins(temp)

1211
1212 # Load parameters

1213 if theta_dep_params: # then load parameters depend on theta

1214 eps[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = epsfun_mat(

lntheta)

1215 sig[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = sigfun_mat(

lntheta)

1216 cp[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = cfun_mat(lntheta

)

1217 k[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = kfun_mat(lntheta)

1218 mu[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = mufun_mat(

lntheta)

1219 else: # then load parameters depend on temp and rho

1220 eps[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = epsfun_mat(temp

[x_start:x_end,z_start:z_end],rho[mat_start_x:mat_end_x+1,

mat_start_z:mat_end_z+1]/bulkdens_mat)

1221 sig[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = sigfun_mat(temp

[x_start:x_end,z_start:z_end],rho[mat_start_x:mat_end_x+1,

mat_start_z:mat_end_z+1]/bulkdens_mat)

1222 cp[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = cfun_mat(temp[

x_start:x_end,z_start:z_end],rho[mat_start_x:mat_end_x+1,

mat_start_z:mat_end_z+1]/bulkdens_mat)
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1223 k[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = kfun_mat(temp[

x_start:x_end,z_start:z_end],rho[mat_start_x:mat_end_x+1,

mat_start_z:mat_end_z+1]/bulkdens_mat)

1224 mu[mat_start_x:mat_end_x+1,mat_start_z:mat_end_z+1] = mufun_mat(temp[

x_start:x_end,z_start:z_end],rho[mat_start_x:mat_end_x+1,

mat_start_z:mat_end_z+1]/bulkdens_mat)

1225
1226 # Update spatial grid size here, too, if necessary, depending on whether the

dielectric properties make the wavelength in material significantly

shorter...

1227
1228 elapsed_time = elapsed_time + h_dt

1229 loopits = loopits + 1

1230
1231 instemps = np.r_[mat2vec(temp[:x_start,:]),mat2vec(temp[x_end:,:]),mat2vec(temp[

x_start:x_end,:z_start]),mat2vec(temp[x_start:x_end,z_end:])]−273.15
1232 loadtemps = temp[x_start:x_end,z_start:z_end]−273.15
1233 max_ins = np.max(instemps)

1234 min_ins = np.min(instemps)

1235 mean_ins = np.mean(instemps)

1236 max_load = np.max(loadtemps)

1237 min_load = np.min(loadtemps)

1238 mean_load = np.mean(loadtemps)

1239
1240 # Print text version of results to logfile

1241 printstring = (’\nAt time ’ + str(elapsed_time) + ’ sec...\n\tMax value of electric

field is ’ + str(np.max(eavg)) + ’ V/m\n\tMin value of electric field is ’ +

str(np.min(eavg)) + ’ V/m\n\tMean value of electric field is ’ + str(np.mean(

eavg))+’ V/m\n\tMax temp in insulation is ’ + str(max_ins) + ’ degC\n\tMin temp

in insulation is ’ + str(min_ins) + ’ degC\n\tMean temp in insulation is ’ +

str(mean_ins) + ’ degC\n\tMax temp in load is ’ + str(max_load) + ’ degC\n\tMin

temp in load is ’ + str(min_load) + ’ degC\n\tMean temp in load is ’ + str(

mean_load) + ’ degC\n\tMean density in material is ’+str(100*rho_avg_new)+"

percent of bulk density\n\tSince last printed results, material boundary did

not change "+str(staycount)+" times\n\tSince last printed results, material

immediately to the right of boundary was removed "+str(rightcount)+" times\n\

tSince last printed results, material immediately to the left of maximum

density was removed "+str(leftcount)+" times\n\tNew material height is "+str

(100*height_new/mat_height)+" percent of original height\n\tNumber of nodes

remaining in material is "+str((mat_end_x−mat_start_x)*(n_mat_z))+"\n")
1242 logfile.write(printstring)
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1243
1244 T_maxes = np.r_[T_maxes, max_load ]

1245 T_means = np.r_[T_means, mean_load ]

1246 load_rhos = np.r_[load_rhos,100*rho_avg_new]

1247 lnt_avgs = np.r_[lnt_avgs,np.mean(lntheta)]

1248 plottingtimes = np.r_[plottingtimes, elapsed_time]

1249
1250 itno = itno + 1

1251
1252 completetime = time.clock()

1253 printstring = "\n\nSimulation complete. Took "+str(completetime−loopstarttime)+" seconds
to complete simulation loop\n\nSaving animations...\n"

1254 logfile.write(printstring)

1255
1256 # Plot evolution of maximum temperature in load

1257 plt.figure(60)

1258 plt.plot(plottingtimes,T_maxes,’r−’,label=’Max temp in load’)
1259 plt.plot(plottingtimes,T_means,’b−’,label=’Mean temp in load’)
1260 plt.legend(loc=’upper left’)

1261 plt.xlabel(’Time [sec]’)

1262 plt.ylabel(’Temperature [degC]’)

1263 plt.title(’Evolution of mean and maximum temperature in load’)

1264 plt.savefig(savestring+’temp_evol.png’)

1265 tikz_save(savestring+’temp_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

1266
1267 # Plot evolution of density wrt time

1268 plt.figure(61)

1269 plt.plot(plottingtimes,load_rhos)

1270 plt.xlabel(’Time [sec]’)

1271 plt.ylabel(’Density relative to bulk solid density [%]’)

1272 plt.title(’Evolution of load density’)

1273 plt.savefig(savestring+’dens_time_evol.png’)

1274 tikz_save(savestring+’dens_time_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’

\\figurewidth’,show_info = False )

1275
1276 # Plot evolution of density wrt lnTheta

1277 plt.figure(62)

1278 plt.plot(lnt_avgs[1:],load_rhos[1:])

1279 plt.xlabel(r’$\ln(\Theta(t,T(t)))$ $\left[\ln(\frac{s}{K})\right]$’)

1280 plt.ylabel(’Density relative to bulk solid density [%]’)
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1281 plt.title(’Evolution of load density’)

1282 plt.savefig(savestring+’dens_lnt_evol.png’)

1283 tikz_save(savestring+’dens_lnt_evol.tex’, figureheight = ’\\figureheight’, figurewidth = ’

\\figurewidth’,show_info = False )

1284
1285 # Plot final electric field

1286 plt.figure(63) # static image of field

1287 plt.clf()

1288 plt.contourf(100*Z,100*X,np.fliplr(np.transpose(vec2mat(eavg,nz,nx))),100)

1289 plt.colorbar()

1290 plt.xlabel(’Position along domain [cm]’)

1291 plt.ylabel(’Position along domain [cm]’)

1292 plt.title(’Envelope of electric field [V^2/m^2] at t=’ + str(elapsed_time) + ’ sec’)

1293 plt.savefig(savestring+’efieldfin.png’)

1294 tikz_save(savestring+’efieldfin.tex’, figureheight = ’\\figureheight’, figurewidth = ’\\

figurewidth’,show_info = False )

1295
1296 T = (temp_init−273.15)*np.ones(np.shape(X)) # dimensional temperature in entire cavity (

air is assumed constant temp)

1297 T[ins_start_x:ins_end_x+1,ins_start_z:ins_end_z+1] = temp−273.15 # update plotting matrix
for temperature

1298
1299 # Plot final temperature field

1300 plt.figure(64) # update static image of field

1301 plt.clf()

1302 plt.contourf(100*Z,100*X,np.fliplr(T),100)

1303 plt.colorbar()

1304 plt.xlabel(’Position along domain [cm]’)

1305 plt.ylabel(’Position along domain [cm]’)

1306 plt.title(’Temperature [C] at t=’ + str(elapsed_time) + ’ seconds’)

1307 plt.savefig(savestring+’tempfin_wholecav.png’)

1308 tikz_save(savestring+’tempfin_wholecav.tex’, figureheight = ’\\figureheight’, figurewidth =

’\\figurewidth’,show_info = False )

1309
1310 startmovieclock = time.clock()

1311 # Make movies

1312 #−framerate : number of frames (images) per second
1313 #−c:v libx264 − the video codec is libx264 (H.264).
1314 #−profile:v high − use H.264 High Profile (advanced features, better quality).
1315 #−crf 20 − constant quality mode, very high quality (lower numbers are higher quality, 18

is the smallest you would want to use).
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1316 #−pix_fmt yuv420p − use YUV pixel format and 4:2:0 Chroma subsampling
1317
1318 # Electric field

1319 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’efield%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’efield.mp4’)

1320 logfile.write("\tSaved electric field animation\n")

1321
1322 # Temperature field

1323 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’temp_wholecav%d.png −y −loglevel
quiet −c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’
temp_wholecav.mp4’)

1324 logfile.write("\tSaved temperature field animation\n")

1325
1326 # Mechanical deformation

1327 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’efield%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’efield.mp4’)

1328 logfile.write("\tSaved mechanical deformation animation\n")

1329
1330 # Permittivity

1331 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’eps_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’eps_evol.mp4’)

1332 logfile.write("\tSaved permittivity animation\n")

1333
1334 # Electrical conductivity

1335 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’sig_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’sig_evol.mp4’)

1336 logfile.write("\tSaved electrical conductivity animation\n")

1337
1338 # Density

1339 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’rho_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’rho_evol.mp4’)

1340 logfile.write("\tSaved density animation\n")

1341
1342 # Thermal conductivity

1343 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’c_evol%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’c_evol.mp4’)

1344 logfile.write("\tSaved thermal conductivity animation\n")

1345
1346 # Specific heat capacity

1347 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’k_evol%d.png −y −loglevel quiet −
c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’k_evol.mp4’)
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1348 logfile.write("\tSaved specific heat capacity animation\n")

1349
1350 # Permeability

1351 os.system(’ffmpeg −framerate 24 −i ’+hiddensavestring+’mu_evol%d.png −y −loglevel quiet
−c:v libx264 −profile:v high −crf 20 −pix_fmt yuv420p ’+savestring+’mu_evol.mp4’)

1352 logfile.write("\tSaved magnetic permeability animation\n")

1353
1354 for fname in delfiles:

1355 os.remove(fname)

1356 logfile.write(’\tDeleted individual frame files.\n\tDone; took ’+str(time.clock()−
startmovieclock)+’ seconds to complete movie processing’)

1357
1358 finaltime=time.clock()

1359 printstring = "\n\nSimulation completed on "+time.strftime("%A, %B %d, %Y")+" at "+time.

strftime("%H:%M:%S %Z")+".\nTook "+str(finaltime−initialstarttime)+" seconds to
complete entire simulation.\n"

1360 logfile.write(printstring)

1361
1362 logfile.close()

1363 print(’Simulation complete; see directory ’+savedir+’ for plots and text outputs of results

.’)

H.3 MATLAB Implementation of the Coupled Solver for the
One-Dimensional Microwave Sintering Problem

1 function fullsolve1(total_time)

2 % function fullsolve1(total_time)

3 %

4 % Performs transient analysis of the electric field for a

5 % one−dimensional domain with a constant power source at the left−hand
6 % side. See problem description in PDF file of same directory.

7 % Uses a constant time step and uniform node spacing (for now).

8
9 %figure(1); clf; figure(2); clf; figure(3); clf;

10
11 % Physical setup

12 L=0.248; %length of domain [m]

13 P=1000; % [W] power supplied by magnetron at left−hand endpoint
14 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves at 2.45GHz

15 beta=pi/L; % [1/m] propagation constant

16 mu0=pi*4e−7; %[N/A^2] permeability of free space
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17
18 % Nodes and spacing

19 n=50; % number of (uniformly spaced) spatial nodes

20 x=linspace(0,L,n); %vector of x−values
21 h=x(2:end)−x(1:n−1); %h−values (as spacing is uniform, h is a multiple of ones vector)
22
23 % Initial temperature

24 temp=293*ones(size(x))’; % room temp in kelvin

25
26 % Time scenario

27 em_dt=1e−3; % length of time step of em solve [sec]
28 h_dt=1e−3; % length of time step of heat solve (i.e., how long to nuke before solving heat

transfer) [sec]

29
30 if nargin<1,total_time=10*h_dt; end % total length of processing time [sec], if not

specified then run for 10 cycles of thermal prob

31
32 % Load material: zirconia parameters taken from [Yakovlev & Ceralink]

33 t=273+[25 69 100 139 181 228 276 324 371 420 471 523 574 636 698 752 809 865 921 973 1019

1065 1100];

34 epses=[6.69 5.86 5.78 5.75 5.77 5.82 5.90 5.98 6.08 6.18 6.32 6.47 6.60 6.77 6.97 7.22 7.53

7.93 8.53 9.44 10.46 12.46 14.77];

35 sigmas=[0.0258 0.0045 0.0033 0.0029 0.0036 0.0043 0.0050 0.0058 0.0078 0.0121 0.0185 0.0288

0.0442 0.0664 0.0975 ...

36 0.1416 0.2003 0.2786 0.4083 0.5942 0.8220 1.2190 1.6661];

37 cs=[0.217 0.324 0.363 0.398 0.426 0.450 0.470 0.487 0.501 0.514 0.526 0.537 0.547 0.558

0.568 0.575 0.583 0.590 ...

38 0.597 0.603 0.607 0.612 0.615];

39 rhos=1e6*[2.848 2.844 2.841 2.838 2.834 2.830 2.826 2.821 2.817 2.813 2.809 2.804 2.800

2.794 2.789 2.785 2.780 2.775 ...

40 2.770 2.766 2.762 2.758 2.755];

41 ks=100*[0.00198 0.00290 0.00320 0.00344 0.00362 0.00373 0.00381 0.00385 0.00381 0.00391

0.00399 0.00407 0.00414 0.00405 0.00412 ...

42 0.00417 0.00421 0.00426 0.00430 0.00433 0.00436 0.00439 0.00441];

43 % FALSIFYING DATA TO SHOW OPERATION OF DENSIFICATION WITHIN SOLVER

44 t = [t(1:5),0.99*t(6),t(6:end)];

45 rhos=[rhos(1:5),2*rhos(6),2*rhos(6:end)];

46 epses=[epses(1:5),epses(6),epses(6:end)];

47 sigmas=[sigmas(1:5),sigmas(6),sigmas(6:end)];

48 cs=[cs(1:5),cs(6),cs(6:end)];

49 ks=[ks(1:5),ks(6),ks(6:end)];
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50
51 epspoly=pchip(t,epses); % interpolate p/w polynomials

52 sigpoly=pchip(t,sigmas);

53 cpoly=pchip(t,cs);

54 rhopoly=pchip(t,rhos);

55 kpoly=pchip(t,ks);

56 mupoly=pchip(t,ones(size(t)));

57 % epsfun=@(T) ppval(epspoly,T);%−.083*T+57.005; % function giving relationship of eps
with temperature

58 % mufun=@(T) 1; % function giving relationship of mu with temperature

59 % sigfun=@(T) ppval(sigpoly,T); %0.00676*T+0.9939; % function giving relationship of

sigma with temperature

60 % cfun=@(T) ppval(cpoly,T);

61 % kfun=@(T) ppval(kpoly,T);

62 % rhofun=@(T) ppval(rhopoly,T);

63 % Checking the interpolants

64 %ptemp=linspace(270,300);

65 %figure(3); clf; plot(ptemp,epsfun(ptemp)); title(’\epsilon’’’);

66 %figure(4); clf; plot(temps,mufun(temps)); title(’\mu’)

67 %figure(5); clf; plot(ptemp,sigfun(ptemp)); title(’\sigma’);

68 %figure(6); clf; plot(ptemp,cfun(ptemp)); title(’c’);

69 %figure(7); clf; plot(ptemp,kfun(ptemp)); title(’k’);

70 %figure(8); clf; plot(ptemp,rhofun(ptemp)); title(’\rho’);

71
72 R=30e−9; % grain radius of material [m]
73 Ea=27333; % activation energy of material

74
75 % Material parameters at initial temperature

76 rhoinit=ppval(rhopoly,293);

77 kinit=ppval(kpoly,293);

78 cinit=ppval(cpoly,293);

79 epsinit=ppval(epspoly,293);

80 muinit=ppval(mupoly,293);

81 siginit=ppval(sigpoly,293);

82
83 % Air parameters

84 mu_air=1; % (unitless) relative permeability of air

85 sigma_air=0; % [S/m] electrical conductivity of air

86 eps1_air=1; % (unitless) relative permittivity of air

87 rho0_air=2; % density of air

88 cp0_air=1; % specific heat capacity of air
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89 k0_air=0.024; % thermal conductivity of air

90
91 % Elemental values of physical properties − sets up material vectors
92 lim1=floor((n−1)/3); lim2=ceil(2*(n−1)/3); % limits for L/3 and 2L/3 (material occupies

middle third of cavity)

93 mu=[mu_air*ones(lim1,1); muinit*ones(lim2−lim1,1); mu_air*ones((n)−lim2,1)]’;
94 sig=[sigma_air*ones(lim1,1); siginit*ones(lim2−lim1,1); sigma_air*ones((n)−lim2,1)]’;
95 eps1=[eps1_air*ones(lim1,1); epsinit*ones(lim2−lim1,1); eps1_air*ones((n)−lim2,1)]’;
96 rho=[rho0_air*ones(lim1,1); rhoinit*ones(lim2−lim1,1); rho0_air*ones((n)−lim2,1)]’;
97 cp=[cp0_air*ones(lim1,1); cinit*ones(lim2−lim1,1); cp0_air*ones((n)−lim2,1)]’.*(1−temp’);
98 k=[k0_air*ones(lim1,1); kinit*ones(lim2−lim1,1); k0_air*ones((n)−lim2,1)]’.*(1−1.5*temp’)

;

99 por=zeros(lim2−lim1,1); % initial porosity
100
101 % Solution routine

102 time=0; % initialize elapsed time

103 numits=0; % initialize number of iterations

104
105 E_old = zeros(n,1); pow=(2/L)*sqrt(2*P*omega*mu0/beta); % initialize e−field
106 E_old(1)=pow;

107 E_older=E_old;

108
109 p1=linspace(100*x(lim1),100*x(lim2)); % for plotting

110
111 %% Movie: temperature profile in space over time

112 #moviecount=1;

113 #hft=figure(2);

114 #rect_t=get(hft,’Position’);

115 #rect_t(1:2)=[0 0];

116
117 fprintf(’At time 0 sec, object is at 100 percent of original length\n’);

118 while time<total_time

119 while numits<1/h_dt %for printing shrinkage every second instead of every timestep

120
121 [E_new,E_old] = emsolve1_fd(E_old,E_older,x,mu,sig,eps1,h,em_dt,h_dt,time);

122 eavg = (E_new.^2)’;

123
124 % figure(1); plot(100*x,eavg);

125 % title(strcat(’Modulus of electric field at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

126 % xlabel(’Length [cm]’); ylabel(’Electric field modulus’);

127
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128 temp_new=thermsolve1_fd(temp,h,cp,rho,k,eavg,h_dt,sig);

129
130 [cp,rho,k,mu,eps1,sig,por,LL,lim1,rdens_avg]=update_params(x,temp,temp_new,rhoinit,...

131 rho0_air,cp0_air,cinit,k0_air,kinit,eps1_air,epspoly,mu_air,mupoly,sigma_air,sigpoly,

lim1,lim2,por,h_dt,Ea,R,cpoly,kpoly,rhopoly);

132
133 E_older = E_old;

134 E_old = E_new;

135
136 temp=temp_new;

137 time=time+h_dt;

138 numits=numits+1;

139 end

140 fprintf(’At time %g sec, object length is %g percent of original length\n’,time,100/

rdens_avg);

141 p2=linspace(100*x(lim1),100*x(lim2));

142 figure(2); hold off; plot(x*100,temp−273,’b’,p2,20,’r−’);
143 axis([0 25 0 300]);

144 title(strcat(’Temperature distribution at t=’,num2str(time,’%11.3g’),’ seconds’));

145 xlabel(’Length [cm]’); ylabel(’Temperature [C]’);

146 #Mt(:,moviecount)=getframe(hft,rect_t); %#ok<AGROW>

147 #moviecount=moviecount+1;

148
149 numits=0;

150 end

151
152 fprintf(’Max temperature in object at time t=%g is T=%g degC\n’,time,max(temp)−273);
153
154 saveas(2,’temp_fin.fig’,’fig’); saveas(2,’fig_tempfin.jpg’,’jpg’);

155 #save(’mov_temp.mat’,’Mt’);

156 #movie2avi(Mt,’mov_temp’);

157
158 figure(3); hold off; plot(x*100,E_new,’b’,x(lim1:lim2)*100,20,’r−’);
159 axis([0 25 −3e4 3e4]);
160 title(strcat(’Electric field at t=’,num2str(time,’%11.3g’),’ seconds’));

161 xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m]’);

162 saveas(3,’efield.fig’,’fig’); saveas(3,’fig_efield.jpg’,’jpg’);

163
164 %p2=linspace(100*x(lim1),100*x(lim2));

165 figure(10); plot(p1,zeros(size(p1)),’r’,p2,0.1*ones(size(p2)),’b’);

166 legend(’Initial configuration’,’Final configuration’);
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167 axis([0 L*100 −1 10]); title(’Geometrical configuration before and after processing’);
168 saveas(10,’geomconfig.fig’,’fig’); saveas(10,’fig_geomconfig.jpg’,’jpg’);

169
170 end

171
172 function [cp,rho,k,mu,eps,sig,por,LL,lim1,rdens_avg]=update_params(x,temp,temp_new,...

173 rho0,rho0_air,cp0_air,cp0,k0_air,k0,eps_air,epspoly,mu_air,mupoly,sigma_air,sigpoly,

lim1,lim2,por,h_dt,Ea,R,cpoly,kpoly,rhopoly)

174
175 %n=length(x);

176 L=x(end)−x(1);
177
178 % compute porosity according to [Su & Johnson, 1996]

179
180 %integrand_temp=(1./temp(lim1+1:lim2)).*exp((−Ea/R)./temp(lim1+1:lim2));
181 %integrand_temp_new=(1./temp_new(lim1+1:lim2)).*exp((−Ea/R)./temp_new(lim1+1:lim2));
182 %por=por(1:lim2−lim1)+0.5*(integrand_temp+integrand_temp_new)/h_dt;
183
184 %por=[zeros(lim1,1),por,zeros(n−1−lim2,1)];
185
186 % compute actual density −− this is instead of using the porosity measurement above
187
188 br=rhopoly.breaks.’;

189 cf=rhopoly.coefs;

190 [throw,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
191 t_shf=temp_new − br(inds);
192 zero=ones(size(t_shf));

193 one=t_shf;

194 two=one.*t_shf;

195 three=two.*t_shf;

196 rho=sum([three two one zero].*cf(inds,:),2);

197 %rho=rhofun(temp_new’);

198 rdens=rho./rho0;

199
200 % compute relative density

201
202 %rdens=1−por;
203 rdens_avg=mean(rdens); %this is the average in the whole sample!

204
205 % compute shrinkage in terms of lim1 change (lim2 stays the same)

206
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207 l=L/(3*rdens_avg); % new length of material

208 LL = ( x > 2*L/3−l & x < 2*L/3 ); % LL(i)=1 if node at i is within material, 0 if in air
209 oldlim1=lim1;

210 lim1=find(LL~=0, 1, ’first’);

211
212 % compute actual density

213
214 rho = rho0_air*(1−LL) + rho0*rdens’.*LL;
215
216 % compute c_p

217 %cp=(cp0_air*(1−LL) + cp0*LL).*(1−temp_new’); % this is Olevsky’s suggestion
218 br=cpoly.breaks.’;

219 cf=cpoly.coefs;

220 [throw,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
221 t_shf=temp_new − br(inds);
222 zero=ones(size(t_shf));

223 one=t_shf;

224 two=one.*t_shf;

225 three=two.*t_shf;

226 cnew=sum([three two one zero].*cf(inds,:),2);

227 %fprintf(’c diff = %g\n’,cnew−ppval(cpoly,temp_new));
228
229 cp=cp0_air*(1−LL) + cnew’.*LL;
230
231 % compute k

232 %k=(k0_air*(1−LL) + k0*LL).*(1−1.5*temp_new’); % Olevsky
233 br=kpoly.breaks.’;

234 cf=kpoly.coefs;

235 [throw,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
236 t_shf=temp_new − br(inds);
237 zero=ones(size(t_shf));

238 one=t_shf;

239 two=one.*t_shf;

240 three=two.*t_shf;

241 knew=sum([three two one zero].*cf(inds,:),2);

242 %fprintf(’k diff = %g\n’,knew−ppval(kpoly,temp_new));
243 k=k0_air*(1−LL) + knew’.*LL;
244
245 % compute eps

246 br=epspoly.breaks.’;

247 cf=epspoly.coefs;
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248 [throw,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
249 t_shf=temp_new − br(inds);
250 zero=ones(size(t_shf));

251 one=t_shf;

252 two=one.*t_shf;

253 three=two.*t_shf;

254 epsnew=sum([three two one zero].*cf(inds,:),2);

255 %fprintf(’Eps diff = %g\n’,epsnew−ppval(epspoly,temp_new));
256 eps=eps_air*(1−LL) + epsnew’.*LL;
257
258 % compute mu

259 br=mupoly.breaks.’;

260 cf=mupoly.coefs;

261 [throw,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
262 t_shf=temp_new − br(inds);
263 zero=ones(size(t_shf));

264 one=t_shf;

265 two=one.*t_shf;

266 three=two.*t_shf;

267 munew=sum([three two one zero].*cf(inds,:),2);

268 %fprintf(’Mu diff = %g\n’,munew−ppval(mupoly,temp_new));
269 mu=mu_air*(1−LL) + munew’.*LL;
270
271 % compute sigma

272 br=sigpoly.breaks.’;

273 cf=sigpoly.coefs;

274 [throw,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
275 t_shf=temp_new − br(inds);
276 zero=ones(size(t_shf));

277 one=t_shf;

278 two=one.*t_shf;

279 three=two.*t_shf;

280 signew=sum([three two one zero].*cf(inds,:),2);

281 %fprintf(’Sigma diff = %g\n’,signew−ppval(sigpoly,temp_new));
282 sig=sigma_air*(1−LL) + signew’.*LL;
283
284 end

H.4 MATLAB Implementation of the Coupled Solver for the
Two-Dimensional Microwave Sintering Problem
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1 function fullsolve2(total_time)

2 % function fullsolve2(total_time)

3 %

4 % Performs transient analysis of the electric field for a

5 % two−dimensional domain with a constant power source at the left−hand
6 % side. See problem description in PDF file of same directory.

7 % Uses a constant time step and uniform node spacing (for now).

8
9 %figure(1); clf; figure(2); clf; figure(3); clf;

10
11 % Physical setup

12 L=0.248; %length of domain [m]

13 H=0.124; %width of domain [m]

14 h0=H/3;

15 P=1000; % [W] power supplied by magnetron at left−hand endpoint
16 omega=2*pi*2.45e9; % [Hz] angular frequency of microwaves at 2.45GHz

17 beta=pi/L; % [1/m] propagation constant

18 mu0=pi*4e−7; %[N/A^2] permeability of free space
19
20 % Nodes and spacing

21 Nx=50; % number of (uniformly spaced) spatial nodes in the x−direction
22 Ny=25; % number of (uniformly spaced) spatial nodes in the y−diretion
23 x=linspace(0,L,Nx); %vector of x−values
24 y=linspace(0,H,Ny); % vector of y−values
25 hx=x(2:end)−x(1:end−1); %hx−values (as spacing is uniform, hx is a multiple of ones

vector)

26 hy=y(2:end)−y(1:end−1); %hy−values (as spacing is uniform, hy is a multiple of ones
vector)

27
28 [X,Y]=meshgrid(x,y); % X has x−vectors as rows repeated Ny many times, Y has y’−vectors as

columns repeated Nx many times

29
30 % Initial temperature

31 temp=293*ones(Nx*Ny,1); % room temp in kelvin is the initial constant temperature over

whole domain

32
33 % Time scenario

34 em_dt=1e−1; % length of time step of em solve [sec]
35 h_dt=1e−1; % length of time step of heat solve (i.e., how long to nuke before solving heat

transfer) [sec]

36
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37 if nargin<1,total_time=h_dt; end % total length of processing time [sec], if not specified

then run for 10 cycles of thermal prob

38
39 % Load material: zirconia parameters taken from [Yakovlev & Ceralink]

40 t=273+[25 69 100 139 181 228 276 324 371 420 471 523 574 636 698 752 809 865 921 973 1019

1065 1100];

41 epses=[6.69 5.86 5.78 5.75 5.77 5.82 5.90 5.98 6.08 6.18 6.32 6.47 6.60 6.77 6.97 7.22 7.53

7.93 8.53 9.44 10.46 12.46 14.77];

42 sigmas=[0.0258 0.0045 0.0033 0.0029 0.0036 0.0043 0.0050 0.0058 0.0078 0.0121 0.0185 0.0288

0.0442 0.0664 0.0975 ...

43 0.1416 0.2003 0.2786 0.4083 0.5942 0.8220 1.2190 1.6661];

44 cs=[0.217 0.324 0.363 0.398 0.426 0.450 0.470 0.487 0.501 0.514 0.526 0.537 0.547 0.558

0.568 0.575 0.583 0.590 ...

45 0.597 0.603 0.607 0.612 0.615];

46 rhos=1e6*[2.848 2.844 2.841 2.838 2.834 2.830 2.826 2.821 2.817 2.813 2.809 2.804 2.800

2.794 2.789 2.785 2.780 2.775 ...

47 2.770 2.766 2.762 2.758 2.755];

48 ks=100*[0.00198 0.00290 0.00320 0.00344 0.00362 0.00373 0.00381 0.00385 0.00381 0.00391

0.00399 0.00407 0.00414 0.00405 0.00412 ...

49 0.00417 0.00421 0.00426 0.00430 0.00433 0.00436 0.00439 0.00441];

50 % FALSIFYING DATA TO SHOW OPERATION OF DENSIFICATION WITHIN SOLVER

51 t = [t(1:5),0.99*t(6),t(6:end)];

52 rhos=[rhos(1:5),2*rhos(6),2*rhos(6:end)];

53 epses=[epses(1:5),epses(6),epses(6:end)];

54 sigmas=[sigmas(1:5),sigmas(6),sigmas(6:end)];

55 cs=[cs(1:5),cs(6),cs(6:end)];

56 ks=[ks(1:5),ks(6),ks(6:end)];

57
58 epspoly=pchip(t,epses); % interpolate p/w polynomials

59 sigpoly=pchip(t,sigmas);

60 cpoly=pchip(t,cs);

61 rhopoly=pchip(t,rhos);

62 kpoly=pchip(t,ks);

63 mupoly=pchip(t,ones(size(t)));

64 % epsfun=@(T) ppval(epspoly,T);%−.083*T+57.005; % function giving relationship of eps
with temperature

65 % mufun=@(T) 1; % function giving relationship of mu with temperature

66 % sigfun=@(T) ppval(sigpoly,T); %0.00676*T+0.9939; % function giving relationship of

sigma with temperature

67 % cfun=@(T) ppval(cpoly,T);

68 % kfun=@(T) ppval(kpoly,T);
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69 % rhofun=@(T) ppval(rhopoly,T);

70 % Checking the interpolants

71 %ptemp=linspace(270,1e5);

72 %figure(3); clf; plot(ptemp,epsfun(ptemp)); title(’\epsilon’’’);

73 %figure(4); clf; plot(temps,mufun(temps)); title(’\mu’)

74 %figure(5); clf; plot(ptemp,sigfun(ptemp)); title(’\sigma’);

75 %figure(6); clf; plot(ptemp,cfun(ptemp)); title(’c’);

76 %figure(7); clf; plot(ptemp,kfun(ptemp)); title(’k’);

77 %figure(8); clf; plot(ptemp,rhofun(ptemp)); title(’\rho’);

78
79 R=30e−9; % grain radius of material [m]
80 Ea=27333; % activation energy of material

81
82 % Material parameters at initial temperature

83 rhoinit=ppval(rhopoly,293);

84 kinit=ppval(kpoly,293);

85 cinit=ppval(cpoly,293);

86 epsinit=ppval(epspoly,293);

87 muinit=ppval(mupoly,293);

88 siginit=ppval(sigpoly,293);

89
90 % Air parameters

91 mu_air=1; % (unitless) relative permeability of air

92 sigma_air=0; % [S/m] electrical conductivity of air

93 eps1_air=1; % (unitless) relative permittivity of air

94 rho0_air=2; % density of air

95 cp0_air=1; % specific heat capacity of air

96 k0_air=0.024; % thermal conductivity of air

97
98 % Elemental values of physical properties − sets up material matrices
99 lim1=floor((Nx−1)/3); lim2=ceil(2*(Nx−1)/3); % limits for L/3 and 2L/3 (material occupies

middle third of cavity)

100 lim3=ceil(2*(Ny−1)/3); % limit for 2H/3 (material occupies bottom third of cavity)
101 mu=[mu_air*ones(lim1,1); muinit*ones(lim2−lim1,1); mu_air*ones(Nx−lim2,1)]’; % forms the

base x−vector for mu
102 [mu,~]=meshgrid(mu,y); mu(1:lim3,:)=mu_air; % makes mu a matrix and puts air in the top 2/3

103 sigma=[sigma_air*ones(lim1,1); siginit*ones(lim2−lim1,1); sigma_air*ones(Nx−lim2,1)]’;
104 [sigma,~]=meshgrid(sigma,y); sigma(1:lim3,:)=sigma_air; % makes sigma a matrix and puts air

in the top 2/3

105 eps1=[eps1_air*ones(lim1,1); epsinit*ones(lim2−lim1,1); eps1_air*ones(Nx−lim2,1)]’;
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106 [eps1,~]=meshgrid(eps1,y); eps1(1:lim3,:)=eps1_air; % makes eps1 a matrix and puts air in

the top 2/3

107 rho=[rho0_air*ones(lim1,1); rhoinit*ones(lim2−lim1,1); rho0_air*ones(Nx−lim2,1)]’;
108 [rho,~]=meshgrid(rho,y); rho(1:lim3,:)=rho0_air; % makes rho a matrix and puts air in the

top 2/3

109 cp=[cp0_air*ones(lim1,1); cinit*ones(lim2−lim1,1); cp0_air*ones(Nx−lim2,1)]’;
110 [cp,~]=meshgrid(cp,y); cp(1:lim3,:)=cp0_air; % makes cp a matrix and puts air in the top

2/3

111 k=[k0_air*ones(lim1,1); kinit*ones(lim2−lim1,1); k0_air*ones(Nx−lim2,1)]’;
112 [k,~]=meshgrid(k,y); k(1:lim3,:)=k0_air; % makes k a matrix and puts air in the top 2/3

113 por=zeros(lim2−lim1,1); % initial porosity
114
115 %figure(7); clf; hold off; surf(X*100,flipud(Y*100),rho); view(0,90); colorbar;

116 %title(’Init rho’);

117 %xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’1 where there
is material, 0 where not’);

118
119 LL=zeros(Ny,Nx); LL(lim3:end,lim1:lim2)=1;

120 LL=reshape(LL’,1,[])’;

121
122 % Solution routine

123 time=0; % initialize elapsed time

124 numits=0; % initialize number of iterations

125
126 E_old = zeros(Ny*Nx,1); pow=(2/L)*sqrt(2*P*omega*mu0/beta); % initialize e−field
127 E_old((1:(Ny−1))*Nx+1)=pow; % electric field is fixed at pow on input port side
128 E_older=E_old;

129
130 %figure(1); clf; hold on;

131 moviecount=1;

132 hft=figure(2);

133 rect_t=get(hft,’Position’);

134 rect_t(1:2)=[0 0];

135
136 if total_time<1, numlim=total_time/h_dt; else numlim=1/h_dt; end %for printing shrinkage

every second instead of every timestep

137 fprintf(’At time 0 sec, object height is 100 percent of original height\n’);

138 while time<total_time

139 while numits<numlim %for printing shrinkage every second instead of every timestep

140
141 [E_new,E_old] = emsolve2_fd(E_old,E_older,X,Y,Nx,Ny,mu,sigma,eps1,hx,hy,em_dt,h_dt,time);
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142 eavg = (E_new.^2);

143
144 % figure(1); surf(100*X,100*Y,(reshape(eavg,Nx,Ny))’);

145 % title(strcat(’Modulus of electric field at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

146 % xlabel(’Length [cm]’); ylabel(’Electric field modulus’);

147
148 temp_new=thermsolve2_fd(temp,hx,hy,Nx,Ny,X,Y,cp,rho,k,eavg,h_dt,sigma,time);

149
150 [cp,rho,k,mu,eps1,sigma,LL,rdens_avg]=update_params(h0,LL,L,X,Y,Nx,Ny,temp_new,rhoinit

,...

151 rho0_air,cp0_air,cinit,k0_air,kinit,eps1_air,epspoly,mu_air,mupoly,sigma_air,sigpoly,

cpoly,kpoly,rhopoly,time,h_dt);

152
153 E_older = E_old;

154 E_old = E_new;

155
156 temp=temp_new;

157 time=time+h_dt;

158 numits=numits+1;

159 end

160 fprintf(’At time %g sec, object height is %g percent of original height\n’,time,100/

rdens_avg);

161 figure(2); hold off; surf(X*100,flipud(Y*100),(reshape(temp,Nx,Ny))’−273); view(0,90);
colorbar;

162 title(strcat(’Temperature distribution at t=’,num2str(time,’%11.3g’),’ seconds’));

163 xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Temperature [C
]’);

164 Mt(:,moviecount)=getframe(hft,rect_t); %#ok<AGROW>

165 moviecount=moviecount+1;

166
167 numits=0;

168 end

169
170
171 saveas(2,’temp_fin2.fig’,’fig’); saveas(2,’fig_tempfin2.jpg’,’jpg’);

172 save(’mov_temp2.mat’,’Mt’);

173 movie2avi(Mt,’mov_temp2’);

174
175 figure(3); hold off; surf(100*X,100*Y,(reshape(eavg,Nx,Ny))’);

176 title(strcat(’Electric field at t=’,num2str(time,’%11.3g’),’ seconds’));

177 xlabel(’Length [cm]’); ylabel(’Electric field intensity [V/m]’);
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178 saveas(3,’efield2.fig’,’fig’); saveas(3,’fig_efield2.jpg’,’jpg’);

179
180 end

181
182 function [cp,rho,k,mu,eps,sigma,LL,rdens_avg]=update_params(h0,LL,L,X,Y,Nx,Ny,temp_new,...

183 rho0,rho0_air,cp0_air,cp0,k0_air,k0,eps_air,epspoly,mu_air,mupoly,sigma_air,sigpoly,

cpoly,kpoly,rhopoly,time,h_dt)

184
185 % compute actual density −− this is instead of using the porosity measurement
186
187 br=rhopoly.breaks.’;

188 cf=rhopoly.coefs;

189 [~,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
190 t_shf=temp_new − br(inds);
191 zero=ones(size(t_shf));

192 one=t_shf;

193 two=one.*t_shf;

194 three=two.*t_shf;

195 rho=sum([three two one zero].*cf(inds,:),2);

196 %rho=rhofun(temp_new’);

197 rdens=rho./rho0;

198
199 % compute relative density

200 rdens_avg=mean(rdens(LL==1)); %this is the average in the sample

201
202 %figure(9); clf; hold off; surf(X*100,flipud(Y*100),reshape(LL,Nx,Ny)’); view(0,90);

colorbar;

203 %title(strcat(’Space occupied by material at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

204 %xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’1 where there
is material, 0 where not’);

205
206
207 % compute shrinkage in terms of height change (width stays the same)

208 h_new=h0/rdens_avg;

209 LL_ind = ( X > L/3 & X < 2*L/3 & Y > max(max(Y))−h_new ); % LL(i)=1 if node at i is within
material, 0 if in air

210 LL=zeros(size(Y)); LL(LL_ind)=1;

211
212
213 LL=reshape(LL’,1,[])’;

214
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215 % compute actual density

216 rho = rho0_air*(1−LL) + rho0*rdens_avg.*LL; rho=reshape(rho,Nx,Ny)’;
217
218 %figure(3); clf; hold off; surf(X*100,Y*100,rho); view(0,90); colorbar;

219 % title(strcat(’Density distribution at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

220 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Density [g/m
^2]’);

221
222
223 % compute c_p

224 %cp=(cp0_air*(1−LL) + cp0*LL).*(1−temp_new’); % this is Olevsky’s suggestion
225 br=cpoly.breaks.’;

226 cf=cpoly.coefs;

227 [~,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
228 t_shf=temp_new − br(inds);
229 zero=ones(size(t_shf));

230 one=t_shf;

231 two=one.*t_shf;

232 three=two.*t_shf;

233 cnew=sum([three two one zero].*cf(inds,:),2);

234 %fprintf(’c diff = %g\n’,cnew−ppval(cpoly,temp_new));
235
236 cp=cp0_air*(1−LL) + cnew.*LL; cp=reshape(cp,Nx,Ny)’;
237
238 %figure(4); clf; hold off; surf(X*100,Y*100,cp); view(0,90); colorbar;

239 % title(strcat(’Specific Heat Capacity at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

240 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Specific heat
capacity [ ]’);

241
242 % compute k

243 %k=(k0_air*(1−LL) + k0*LL).*(1−1.5*temp_new’); % Olevsky
244 br=kpoly.breaks.’;

245 cf=kpoly.coefs;

246 [~,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
247 t_shf=temp_new − br(inds);
248 zero=ones(size(t_shf));

249 one=t_shf;

250 two=one.*t_shf;

251 three=two.*t_shf;

252 knew=sum([three two one zero].*cf(inds,:),2);

253 %fprintf(’k diff = %g\n’,knew−ppval(kpoly,temp_new));
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254 k=k0_air*(1−LL) + knew.*LL; k=reshape(k,Nx,Ny)’;
255
256 %figure(5); clf; hold off; surf(X*100,Y*100,k); view(0,90); colorbar;

257 % title(strcat(’Thermal conductivity at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

258 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Thermal
conductivity [ ]’);

259
260 % compute eps

261 br=epspoly.breaks.’;

262 cf=epspoly.coefs;

263 [~,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
264 t_shf=temp_new − br(inds);
265 zero=ones(size(t_shf));

266 one=t_shf;

267 two=one.*t_shf;

268 three=two.*t_shf;

269 epsnew=sum([three two one zero].*cf(inds,:),2);

270 %fprintf(’Eps diff = %g\n’,epsnew−ppval(epspoly,temp_new));
271 eps=eps_air*(1−LL) + epsnew.*LL; eps=reshape(eps,Nx,Ny)’;
272
273 %figure(6); clf; hold off; surf(X*100,Y*100,eps); view(0,90); colorbar;

274 % title(strcat(’Real part of complex permittivity at t=’,num2str(time+h_dt,’%11.3g’),’

seconds’));

275 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Relative \
varepsilon’’’);

276
277 % compute mu

278 br=mupoly.breaks.’;

279 cf=mupoly.coefs;

280 [~,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
281 t_shf=temp_new − br(inds);
282 zero=ones(size(t_shf));

283 one=t_shf;

284 two=one.*t_shf;

285 three=two.*t_shf;

286 munew=sum([three two one zero].*cf(inds,:),2);

287 %fprintf(’Mu diff = %g\n’,munew−ppval(mupoly,temp_new));
288 mu=mu_air*(1−LL) + munew.*LL; mu=reshape(mu,Nx,Ny)’;
289
290 %figure(7); clf; hold off; surf(X*100,Y*100,mu); view(0,90); colorbar;

291 % title(strcat(’Magnetic permeability at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));
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292 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’Relative \mu’)
;

293
294 % compute sigma

295 br=sigpoly.breaks.’;

296 cf=sigpoly.coefs;

297 [~,inds]=histc(temp_new,[−inf; br(2:end−1); +inf]);
298 t_shf=temp_new − br(inds);
299 zero=ones(size(t_shf));

300 one=t_shf;

301 two=one.*t_shf;

302 three=two.*t_shf;

303 signew=sum([three two one zero].*cf(inds,:),2);

304 %fprintf(’Sigma diff = %g\n’,signew−ppval(sigpoly,temp_new));
305 sigma=sigma_air*(1−LL) + signew.*LL; sigma=reshape(sigma,Nx,Ny)’;
306
307 %figure(8); clf; hold off; surf(X*100,Y*100,sigma); view(0,90); colorbar;

308 % title(strcat(’Electrical conductivity at t=’,num2str(time+h_dt,’%11.3g’),’ seconds’));

309 % xlabel(’Length L (x−dir) [cm]’); ylabel(’Height H (y−dir) [cm]’); zlabel(’\sigma’);
310
311 end



Appendix I

Output Log Files from Example Simulations

I.1 One-Dimensional Simulation with RadiativeThermal Boundary
Conditions

1 Simulation started Saturday, March 19, 2016 at 14:10:15 EDT.

2
3 Waveguide length is 43.3450764915 cm

4 Length of material is 4.81611961017 cm

5 Length of insulation on either side of material is 4.81611961017 cm

6 Input power is 1.0 kW

7 Frequency of radiation is 2.45 GHz

8 Initial temperature is 24.85 K

9
10 Determining optimal activation energy and density function...

11 Using densification data from {Teng et al}...

12 Attempting data fit to fantozzi sigmoid curve...

13 Done; took 1.395361 seconds to find optimal activation energy and MSC.

14 Optimal activation energy is 674 kJ/mol.

15
16 Interpolating measured data to find dielectric and thermal properties as functions of

temperature and relative density...

17 Assuming parameters are functions of ln(theta)...

18 Done; took 6.617361 seconds to find functions for all dielectric and thermal

material and insulation properties.

19
20 Setting up simulation...

21 Spatial cell size in air is 0.86690152983 cm

22 Spatial cell size in insulation 0.703150201446 cm

448
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23 Spatial cell size in material is 0.33174621403 cm

24 Total number of cells in entire domain is 63

25 Total number of cells in insulation+material is 29

26 Total number of cells in material is 15

27 Time step for electromagnetic solve is 0.001 sec

28 Time step for thermal solve is 0.01 sec

29 Total simulated processing time will be 3600 sec

30
31 Starting simulation loop...

32 Using absorbing boundary condition for electromagnetic solver

33 Using radiative boundary condition for thermal solver

34
35 At start of simulation...

36 Max value of electric field is 0 V/m

37 Min value of electric field is 0 V/m

38 Mean value of electric field is 0.0 V/m

39 Max temp in insulation is 24.85 degC

40 Min temp in insulation is 24.85 degC

41 Mean temp in insulation is 24.85 degC

42 Max temp in load is 24.85 degC

43 Min temp in load is 24.85 degC

44 Mean temp in load is 24.85 degC

45 Mean density in material is 52.3886478968 percent of bulk density

46
47 At time 60.0 sec...

48 Max value of electric field is 539769.09957 V/m

49 Min value of electric field is 35.6777777493 V/m

50 Mean value of electric field is 179946.818375 V/m

51 Max temp in insulation is 67.6502376345 degC

52 Min temp in insulation is 32.3157149903 degC

53 Mean temp in insulation is 48.3401729231 degC

54 Max temp in load is 55.4384366231 degC

55 Min temp in load is 32.1729881136 degC

56 Mean temp in load is 36.9114219769 degC

57 Mean density in material is 52.5359627498 percent of bulk density

58 Since last printed results, material boundary did not change 6000 times

59 Since last printed results, material immediately to the right of boundary was

removed 0 times

60 Since last printed results, material immediately to the left of maximum density was

removed 0 times

61 New material length is 100.0 percent of original length
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62 Number of nodes remaining in material is 15

63
64 At time 120.0 sec...

65 Max value of electric field is 539769.099139 V/m

66 Min value of electric field is 35.6777777209 V/m

67 Mean value of electric field is 179946.818232 V/m

68 Max temp in insulation is 104.547973592 degC

69 Min temp in insulation is 35.8011893681 degC

70 Mean temp in insulation is 68.0507042218 degC

71 Max temp in load is 81.6366892959 degC

72 Min temp in load is 39.6183091388 degC

73 Mean temp in load is 48.4564473407 degC

74 Mean density in material is 52.5359627498 percent of bulk density

75 Since last printed results, material boundary did not change 6000 times

76 Since last printed results, material immediately to the right of boundary was

removed 0 times

77 Since last printed results, material immediately to the left of maximum density was

removed 0 times

78 New material length is 100.0 percent of original length

79 Number of nodes remaining in material is 15

...
...

1033 At time 3540.00000003 sec...

1034 Max value of electric field is 539769.074613 V/m

1035 Min value of electric field is 35.6777760998 V/m

1036 Mean value of electric field is 179946.810055 V/m

1037 Max temp in insulation is 966.079874108 degC

1038 Min temp in insulation is 58.2494084623 degC

1039 Mean temp in insulation is 498.668488423 degC

1040 Max temp in load is 914.20623514 degC

1041 Min temp in load is 428.94836084 degC

1042 Mean temp in load is 627.012040199 degC

1043 Mean density in material is 52.5421609079 percent of bulk density

1044 Since last printed results, material boundary did not change 6000 times

1045 Since last printed results, material immediately to the right of boundary was

removed 0 times

1046 Since last printed results, material immediately to the left of maximum density was

removed 0 times

1047 New material length is 100.0 percent of original length

1048 Number of nodes remaining in material is 15
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1049
1050 At time 3600.00000003 sec...

1051 Max value of electric field is 539769.074191 V/m

1052 Min value of electric field is 35.6777760719 V/m

1053 Mean value of electric field is 179946.809914 V/m

1054 Max temp in insulation is 971.279395997 degC

1055 Min temp in insulation is 58.4142986487 degC

1056 Mean temp in insulation is 501.628035739 degC

1057 Max temp in load is 920.754099881 degC

1058 Min temp in load is 434.33280418 degC

1059 Mean temp in load is 634.292135322 degC

1060 Mean density in material is 52.5432262188 percent of bulk density

1061 Since last printed results, material boundary did not change 6000 times

1062 Since last printed results, material immediately to the right of boundary was

removed 0 times

1063 Since last printed results, material immediately to the left of maximum density was

removed 0 times

1064 New material length is 100.0 percent of original length

1065 Number of nodes remaining in material is 15

1066
1067
1068 Simulation complete. Took 25388.204537 seconds to complete simulation loop

1069
1070 Saving animations...

1071 Saved electric field animation

1072 Saved temperature field animation

1073 Saved mechanical deformation animation

1074 Saved permittivity animation

1075 Saved electrical conductivity animation

1076 Saved density animation

1077 Saved thermal conductivity animation

1078 Saved specific heat capacity animation

1079 Saved magnetic permeability animation

1080 Deleted individual frame files.

1081 Done; took 0.196968 seconds to complete movie processing

1082
1083 Simulation completed on Saturday, March 19, 2016 at 15:14:44 EDT.

1084 Took 25399.884567 seconds to complete entire simulation.
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I.2 One-Dimensional Simulation with RadiativeThermal Boundary
Conditions

1 Simulation started Tuesday, April 12, 2016 at 23:02:21 EDT.

2
3 Waveguide length is 43.3450764915 cm

4 Waveguide height is 8.636 cm

5 Length of insulation + material is 14.4483588305 cm

6 Height of insulation + material is 4.79777777778 cm

7 Length of material is 4.81611961017 cm

8 Height of material is 0.959555555556 cm

9 Input power is 1.0 kW

10 Frequency of radiation is 2.45 GHz

11 Initial temperature is 24.85 degC

12
13 Determining optimal activation energy and density function...

14 Using densification data from {Teng et al}...

15 Attempting data fit to fantozzi sigmoid curve...

16 Done; took 1.420201 seconds to find optimal activation energy and MSC.

17 Optimal activation energy is 674 kJ/mol.

18
19 Interpolating measured data to find dielectric and thermal properties as functions of

temperature and relative density...

20 Assuming parameters are functions of ln(theta)...

21 Done; took 6.613446 seconds to find functions for all dielectric and thermal

material and insulation properties.

22
23 Setting up simulation...

24 Spatial cell size in air (same in x−dir as in z−dir) is 0.86690152983 cm
25 Spatial cell size in insulation (same in x−dir as in z−dir) 0.703149990747 cm
26 Spatial cell size in material (same in x−dir as in z−dir) is 0.33174621403 cm
27 Total number of nodes in entire domain is 882

28 Total number of nodes in insulation + material is 270

29 Total number of nodes in material is 64

30 Time step for electromagnetic solve is 0.01 sec

31 Time step for thermal solve is 0.1 sec

32 Total simulated processing time will be 3600 sec

33
34 Starting simulation loop...

35 Using absorbing boundary condition for electromagnetic solver
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36 Using insulating (zero Neumann) boundary condition for thermal solver

37
38 At start of simulation...

39 Max value of electric field is 0.0 V/m

40 Min value of electric field is 0.0 V/m

41 Mean value of electric field is 0.0 V/m

42 Max temp in insulation is 24.85 degC

43 Min temp in insulation is 24.85 degC

44 Mean temp in insulation is 24.85 degC

45 Max temp in load is 24.85 degC

46 Min temp in load is 24.85 degC

47 Mean temp in load is 24.85 degC

48 Mean density in material is 53.8355714174 percent of bulk density

49
50 At time 100.0 sec...

51 Max value of electric field is 56823262.0587 V/m

52 Min value of electric field is 0.0 V/m

53 Mean value of electric field is 1653011.99671 V/m

54 Max temp in insulation is 45.89643003 degC

55 Min temp in insulation is 24.8500344726 degC

56 Mean temp in insulation is 27.6520848789 degC

57 Max temp in load is 104.475620704 degC

58 Min temp in load is 26.3257436379 degC

59 Mean temp in load is 54.7335688463 degC

60 Mean density in material is 52.5359627498 percent of bulk density

61 Since last printed results, material boundary did not change 0 times

62 Since last printed results, material immediately to the right of boundary was

removed 0 times

63 Since last printed results, material immediately to the left of maximum density was

removed 1000 times

64 New material height is 100.0 percent of original height

65 Number of nodes remaining in material is 48

66
67 At time 200.0 sec...

68 Max value of electric field is 56823262.0587 V/m

69 Min value of electric field is 0.0 V/m

70 Mean value of electric field is 1653011.99671 V/m

71 Max temp in insulation is 64.4090262 degC

72 Min temp in insulation is 24.8501053187 degC

73 Mean temp in insulation is 31.2955456331 degC

74 Max temp in load is 119.661734859 degC
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75 Min temp in load is 27.6577979837 degC

76 Mean temp in load is 66.1324535106 degC

77 Mean density in material is 52.5359627498 percent of bulk density

78 Since last printed results, material boundary did not change 0 times

79 Since last printed results, material immediately to the right of boundary was

removed 0 times

80 Since last printed results, material immediately to the left of maximum density was

removed 1000 times

81 New material height is 100.0 percent of original height

82 Number of nodes remaining in material is 48

...
...

662 At time 3700.0 sec...

663 Max value of electric field is 56823262.0587 V/m

664 Min value of electric field is 0.0 V/m

665 Mean value of electric field is 1653011.99671 V/m

666 Max temp in insulation is 1375.61476114 degC

667 Min temp in insulation is 26.3556702987 degC

668 Mean temp in insulation is 336.715879236 degC

669 Max temp in load is 454.713464172 degC

670 Min temp in load is 59.1643221943 degC

671 Mean temp in load is 213.563798802 degC

672 Mean density in material is 52.53596275 percent of bulk density

673 Since last printed results, material boundary did not change 0 times

674 Since last printed results, material immediately to the right of boundary was

removed 0 times

675 Since last printed results, material immediately to the left of maximum density was

removed 1000 times

676 New material height is 100.0 percent of original height

677 Number of nodes remaining in material is 48

678
679
680 Simulation complete. Took 8890.500719 seconds to complete simulation loop

681
682 Saving animations...

683 Saved electric field animation

684 Saved temperature field animation

685 Saved mechanical deformation animation

686 Saved permittivity animation

687 Saved electrical conductivity animation
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688 Saved density animation

689 Saved thermal conductivity animation

690 Saved specific heat capacity animation

691 Saved magnetic permeability animation

692 Deleted individual frame files.

693 Done; took 0.174344999999 seconds to complete movie processing

694
695 Simulation completed on Tuesday, April 12, 2016 at 23:23:09 EDT.

696 Took 8902.744219 seconds to complete entire simulation.
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