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Abstract 

Intelligent Tutoring Systems (ITSs), while effective in enhancing students’ 

problem solving skills, are difficult and time-consuming to build. In order to reduce the 

length and the complexity of ITS construction, authoring tools are used. These tools 

provide a solid foundation for creating pedagogical exercises for students, and offer 

graphical user interfaces that eliminate the need for programming expertise. One of the 

major problems with today’s authoring tools is that they are still quite intricate and time-

consuming to utilize, even for users who are familiar with them. Their steep learning 

curves often intimidate users who are only interested in creating simple tutoring systems. 

I have designed and implemented an authoring tool, called Mason, which strips 

away the visual interface design features of today’s top ITSs, and focuses on the creation 

of sophisticated pedagogical exercises using a hierarchical domain model. The exercise 

creation process includes the definition of numerous components, such as: a problem 

statement, the desired answer to the exercise, the strategies for tutoring students on the 

mistakes they make while trying to formulate the correct answer, and diagnostic rules for 

launching the appropriate strategies for specific student errors. 

The ultimate goal of Mason is to be able to significantly reduce the time needed to 

author text-based ITSs that are able to diagnose student answers and generate 

pedagogical dialogue accordingly. This goal was verified by using Mason to replicate the 

architecture of Ms. Lindquist, a sophisticated ITS for algebra that originally took over a 

year a construct. The replica was finished in less than a week, and was able to emulate 

Ms. Lindquist’s dialogue generation accurately with minor limitations. 
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Introduction 

Well-designed Intelligent Tutoring Systems (ITSs) can be far superior to 

classroom learning in enhancing students’ problem solving skills (Koedinger et. al. 1995). 

This is mainly due to the fact that both the content and the style of individualized tutoring 

can be tailored to meet the needs of the situation (Bloom, 1984). An advantageous 

strategy of ITSs is to observe how individual students solve, or attempt to solve, a set of 

test exercises, pinpoint problematic areas, and focus on improving the problem solving 

skills in those areas only. Students learn from their mistakes and build knowledge in an 

individualized manner (Bruner, 1966; Ginsburg & Opper, 1979). 

Although ITSs can be an excellent supplement to class lectures, they are 

extremely complicated and time-consuming to construct. Without using authoring tools, 

over 200 hours of ITS development time may be necessary to assemble an hour of 

instructional material (Woolf & Cunningham, 1987). Most systems need to be 

constructed from scratch due to their subject specificity (Virvou & Moundridou, 2001). 

For example, the construction of a system used for training radar technicians in the 

United States Air Force would differ greatly from the construction of an algebra tutor. 

Also, the building of a sophisticated ITS requires programming experts and even 

professional tutors for designing effective pedagogical material. 

The objective of this thesis is to create the foundation for a powerful yet user-

friendly ITS authoring tool, called Mason. Mason strips away the user interface design 

features of today’s top authoring tools, since the thesis focuses on building a flexible and 

domain-independent authoring tool for creating pedagogical exercises for students. The 
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system supports a chat-room-like interface, where only text is exchanged between the 

student and the tutor. 

A standard tutoring system usually has two main components; these are: the 

knowledge base and the teaching strategies. The knowledge base contains all the 

instructional material, while the teaching strategies define the tutoring process (Murray, 

1998). These two components can actually be represented as a small network of four ITS 

elements, which is responsible for all the tutoring procedures. The network consists of a 

domain model, a set of tutorial strategies, a student model, and a learning 

environment. A domain model contains all the problems, hints, and methods for solving 

the problems. Tutorial strategies contain the sets of rules the ITS uses to determine what 

hints or questions should be generated for the student. The student model often keeps 

track of the student’s progress, and pinpoints topics the student finds difficult to 

understand. Finally, the learning environment provides the student with a user-friendly 

interface. These four elements are discussed in more detail in the following chapter. 

All ITSs use some variation of these four components. For example, Heffernan’s 

Ms. Lindquist uses the student model to diagnose student answers, and, with the help of 

tutoring strategies, it generates pedagogical dialogue using the tutorial model. Ms. 

Lindquist’s learning environment is also a chat-room-like interface, much like Mason’s 

(Heffernan, 2001). Mason will slightly simplify these four components in order to allow 

for faster ITS construction. The construction process consists of defining numerous 

components, such as: problem structures (consisting of problem statements and the 

desired answers for them), question templates for the strategies that generate pedagogical 

dialogue for tutoring students, and diagnostic rules for launching the appropriate 
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strategies for specific student errors. All of these components are organized in a 

hierarchical fashion. 

For the evaluation of this thesis, Mason was used to reproduce the architecture of 

Ms. Lindquist, an ITS for algebra. Replicating an already existing ITS is a logical way of 

evaluating an authoring tool, since the differences between the ITS and its replica can be 

observed by analyzing the dialogue the two systems generate. The construction time of 

the original ITS and its replica can also be compared in order to conclude whether or not 

the usage of the authoring tool can shorten the construction process.  

The first chapter discusses some of today’s most popular authoring tools, their 

advantages, and their shortcomings. This should provide the reader with a good sense of 

what solutions others have developed for reducing ITS construction times. Ms. Lindquist 

is also introduced in detail; the chapter pinpoints the tutoring system’s most important 

features, which need to be emulated by Mason for the evaluation process. The second 

chapter explains Mason’s hierarchical architecture in detail. The goal of this thesis is to 

create an authoring tool that can significantly reduce the time needed to construct ITSs. 

Thus, the third and final chapter presents the reader with the evaluation process that 

illustrates that this goal has been met. It took roughly a year to build Ms. Lindquist from 

scratch without an authoring tool; using Mason, it took less than a week. 
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Chapter 1: Related Work 

Many authoring tools for Intelligent Tutoring Systems have been developed in the 

past that are still in use today; these include: the Learn, Explore, and Practice (LEAP) 

system (Sparks et. al. 1999), RIDES (Monroe, 1995), and REDEEM (Major et. al. 1977). 

As we take a look at the newer designs, we can observe that authoring tools are evolving 

into domain-independent systems that place a strong emphasis on graphical user 

interfaces. A domain-independent authoring tool can construct ITSs for, for example, 

teaching algebra or training radar technicians. They aren’t bound to a specific field of 

study. The most recent tools allow authors to fully build and customize the student 

interface; this, of course, can add to the overall ITS development time. 

First, this chapter provides the reader with a general introduction to Intelligent 

Tutoring Systems. It’s important to understand the architecture of ITSs before discussing 

authoring tools for them. Murray (1999) wrote a review that encompassed over twenty 

authoring tools. The tools, however, are used for research purposes only; there are no 

commercially available ones today. Thus, the chapter presents a general overview of 

some of today’s top authoring tools. The mentioned authoring tools would not be a 

logical choice for producing a sophisticated ITS such as Ms. Lindquist due to their 

specialized system architecture. Being able to closely emulate the algebra tutor’s 

powerful dialogue generation features is one of Mason’s primary strengths. The chapter 

wraps up by discussing Ms. Lindquist and its most important architectural components. 
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1.1 A Brief Introduction to Intelligent Tutoring Systems 

 Before we jump into the slowly expanding world of ITS authoring tools, let’s 

take a quick look at tutoring systems. After all, in order to construct ITSs, we need to be 

familiar with their general architecture. The introduction, in a quick overview, explained 

that a standard tutoring system usually consists of four main elements: a domain model, a 

set of tutorial strategies, a student model, and a learning environment. These elements 

represent a knowledge base, which stores all the instructional material, and teaching 

strategies that define the tutoring process (Murray, 1998). All ITSs out there follow this 

structure in some shape or form; although, they might attach different technical terms to 

the elements mentioned above. 

First, there needs to be a model for storing all the pedagogical material of the 

system. This is the purpose of the domain model; it contains all the problems, hints, 

templates, and even methods for solving the problems. The second ITS element, tutorial 

strategies, contains the sets of rules the system uses to determine what hints or questions 

should be displayed for the student. Some tutoring systems simply merge the tutorial 

strategies with the domain model; after all, both elements are used for storing system data. 

The student model, which is the third element in the list, keeps track of the 

student progress, and pinpoints the areas that prove to be problematic for the student. For 

some ITSs, this is a very simple model that only keeps track of which problem the 

student is currently working on. Currently, Mason doesn’t support the production of 

complex student models that keep track of the student’s progress. The last element, the 

learning environment, provides the student with a user-friendly interface. Modern ITSs, 

like Macromedia’s Authorware, even include sound files, graphics, and graphical user 
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interface components in their learning environments. Mason provides a basic user 

interface reminiscent of a chat room, where only text is exchanged between the student 

and the tutoring system. 

Ms. Lindquist, more or less, follows the standard ITS architecture. It expands 

upon the student model by enhancing it with a set of over seventy production rules. These 

rules are used by Ms. Lindquist’s model-tracing system for diagnosing the student 

answers. The production rules are utilized to generate arithmetically correct solutions to 

problems, using defined sub-expressions such as variables and numbers. Model-tracing 

compares these generated solutions to the student’s answer, and, using a set of “buggy” 

production rules, attempts to understand and categorize the student’s errors. This is an 

effective method for not only detecting errors student answers, but also for finding the 

correct parts. The student model also contains the working memory, which keeps track of 

the current state of the system. 

Finally, the Ms. Lindquist architecture also contains the tutorial model, which 

generates the dialogue for the student. Dialogue generation is accomplished using four 

strategies, which are simply an ordered collection of question templates. Since templates 

and rules for dialogue generation are considered to be system data, it’s safe to say that the 

tutorial model is really just an extension of the domain model. All of these ITS elements, 

and how Mason can be used to construct them, will be discussed in the following 

chapters. 

As we can see, Ms. Lindquist uses a combination of the four general ITS 

components. All tutoring systems need to store their pedagogical data and diagnostic 
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system architecture somehow. The following sections will illustrate what solutions others 

have developed in order to author these ITS components.  

1.2 RIDES 

RIDES is an authoring tool for composing and delivering graphical simulations 

and simulation-based training. (Munro et. al. 1977). The research project was funded by 

the Office of Naval Research and United States Air Force. Using RIDES, the author can 

take a set of simulations, and turn them into interactive, graphical tutorials. In fact, the 

reason why RIDES could never be used for reproducing Ms. Lindquist is because of its 

limitation to produce tutors based on simulations only. 

 
Figure 1 - An example of the RIDES authoring tool in action 

The most important feature of RIDES is its human-computer interface (HCI) 

innovations (see Figure 1). These include: support for constraint and event authoring, 

which refers to binding special events to the graphical interface, and allowing the author 

to create procedure tutorials by interactive demonstration. RIDES offer several time-

saving features, such as reusable objects and components, which add to the flexibility of 
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the system (Munro et. al. 1977). Its development model is moderately straight-forward 

and well organized; this is also advantageous, especially for complex ITSs. The 

construction process is as follows: 

- The author initially specifies the learning objectives, and then 

determines the required lessons for achieving them. 

- The interactive graphical model containing simulations is then created 

and tested to suit the specifications. 

- Lessons are added in the context of the simulations. 

- Finally, the lessons are linked to the learning objectives. 

Although RIDES is powerful and easy to use, its tutoring process is limited to 

device component identification, operation, and trouble-shooting (Murray, 1999). The 

system is mostly used for enhancing procedural skills. Also, the fact that only simulation-

based ITSs can be built with RIDES makes the tool an irrational choice for reproducing 

Ms. Lindquist. 

1.3 Macromedia Authorware 

Murray (1998) argues that while most common off-the-shelf software (COTS) 

authoring tools provide unique ITS-construction methods and can be used to construct 

visually appealing learning environments, they lack sophistication. Authorware, a COTS 

multimedia authoring tool, exemplifies this issue. Authorware includes a simple demo, 

which tutors the student on the usage of a camera. The tutoring session is similar to an 

interactive Microsoft PowerPoint presentation; the tutor asks a set of questions, which the 

student answers by clicking on the appropriate camera parts. Multiple choice questions 

are also demonstrated. 
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The student interface consists of several interactive graphical components. For 

example, each part of the camera is represented as a separate object. This object-oriented 

approach provides great flexibility, especially since Authorware supports scripting in 

multiple languages such as JavaScript (Wilson & Thornton, 2001). One of Authorware’s 

key features is the ability to update the ITS-in-development during its testing phase. 

While the ITS is running in simulation mode, the user can simply pause the process, 

make the desired changes to the ITS’s structure, and then resume the simulation without 

having to start all over. Murray points out that although this feature is useful, Authorware 

lacks modularization and reusability (Murray, 1998). 

Scripting support can add great flexibility to an authoring tool, yet the e-learning 

systems produced are reminiscent of interactive presentations. Authorware lacks the 

sophistication for reproducing an ITS such as Ms. Lindquist. The authoring tool has a 

respectable user base that includes American Airlines and Mercedes-Benz, but these 

corporations utilize Authorware for producing interactive instructional and training 

material instead of ITSs. 

1.4 Eon 

The term modularized is what best describes Eon, Murray’s own authoring tool 

(Murray, 1998). Eon allows the user to take the four main ITS components, which are the 

domain knowledge, the student model, the tutorial strategies, and the student learning 

environment, and fully customize them (Murray, 1998). The system has an organized 

methodology for ITS construction. The author starts off by mapping out a topic network, 

in which the types of links and topic nodes allowed, along with the respective properties, 

are defined by the topic ontology. Topic types can include facts, concept, principle, etc. A 
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topic network is constructed using the previously defined links and topics. Relationships 

are defined among the topics. For complex ITSs, the network editor can get quite 

elaborate, but Eon’s graphical representation makes it readable. 

Next, the learning environment is created using Eon’s editor, which fully supports 

graphical user interface design by using widgets. Widgets, which can be pictures, sliders, 

movies, buttons, text fields, and other objects, are reusable; this is a very useful feature, 

especially because the widgets are equipped with numerous configurable properties. Next, 

the student model is defined and teaching strategies are defined. The strategies relate 

back to the topic network during the tutoring process. In sum, Eon’s architecture is a 

huge network of objects, which adds reusability and great flexibility to the system. 

One of Eon’s major problems is the fact that it was implemented in SK8, a high-

level programming language developed by Apple Computer’s Advanced Technology 

Group (Murray, 1998). The group discontinued the language, leaving it relatively slow 

and buggy. Eon, however, is still a solid example of modularization. Mason’s object-

oriented architecture has similar advantages; the customization of objects adds a 

significant amount of flexibility to the system. Reusability, however, is not supported in 

the current version of the system, but is only planned for a future version. 

1.5 CMAT 

Currently in development is the Cognitive Modeling Authoring Tools (CMAT) 

Suite, which is an advanced production system (Heffernan, 2002). CMAT’s unique 

features include an intelligent GUI builder, which can construct any graphical user 

interface combinations from standard Java widgets, and a behavior recorder, with which 

the user can record alternate paths for solving a particular problem. The system also 
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supports model-tracing. As described previously, model-tracing is powerful technique in 

which the system generates all possible correct and incorrect solutions to the current 

problem. Then, the system checks if the student’s answer matches any of the generated 

solutions. If a match is found, then the student is tutored accordingly. 

These solutions can be defined as paths in CMAT. For example, in a tutoring 

system for adding numbers, the author can specify all the possible student errors as paths. 

Then, tutoring procedures can be linked to those paths. Mason will have the ability to do 

partial model-tracing, since it can deduce which portions of the student’s answer are 

correct and which ones are not. This is discussed in the next chapter. 

1.6 Ms. Lindquist, an Intelligent Tutoring System for Algebra 

The best method for verifying that Mason, does in fact reduce ITS construction 

time is by using it to build a copy of an already existing, sophisticated ITS. The goal of 

this evaluation process is to reproduce Ms. Lindquist’s architecture as closely as possible. 

This requires the dissection of the ITS and the singling out of its most essential features. 

This chapter describes these features and explains the reasons behind their selection. The 

current version of Mason is unable to produce an ITS that can completely emulate Ms. 

Lindquist, since Ms. Lindquist has a general understanding of algebra. This is made 

possible by a set of over seventy rules, which help the ITS evaluate algebraic expressions 

and apply mathematical concepts such as the associative and distributive properties. 

Currently, it’s not possible to incorporate such rules into Mason’s diagnostic engine. 

Yet, even with a lack of understanding of complex algebraic concepts, Mason can 

create ITSs that can nearly mirror Ms. Lindquist’s capabilities. This is due to its dialogue 

generation system. Ms. Lindquist’s strength lies in diagnosing the student’s answer and 
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generating positive, negative, and helpful feedback that will eventually lead the student to 

the correct answer. In order to achieve this, it uses dynamic scaffolding to diagnose the 

student’s answer and find its problematic areas, and a set of four strategies to approach 

those areas from different angles. In order to understand this, it’s best to take a look at 

actual dialogue produced by Ms. Lindquist. 

First, this section discusses the architecture of Ms. Lindquist, including some 

important concepts such as dynamic scaffolding and model-tracing. Then, the four 

strategies are described in detail; the strategies are the driving force behind Ms. 

Lindquist’s dialog generation. Finally, the strategies’ relationship with the rest of the 

architectural components is explained. 

1.6.1 Dynamic Scaffolding 

When a student inputs an answer, Ms. Lindquist uses a three-step process to 

generate helpful dialogue based on the student’s answer. The system (i) diagnoses the 

student’s current answer and pushes all of its incorrect portions onto a stack, (ii) 

generates positive feedback for each portion the student got correct, and (iii) focuses the 

dialog on the incorrect portions that have been pushed onto the stack. This three-step 

process is called dynamic scaffolding (Heffernan, 2001). In contrast, static scaffolding 

determines the list of questions for the student ahead of time, and does not update the list 

dynamically. The following sample dialogue shows dynamic scaffolding in action: 

Problem: Anne is rowing a boat in a lake and is 800 yards 
from the dock from which she started. She rows back towards 
the dock at 40 yards per minute for m minutes and stops to 
rest. How far is she from the dock now? 
 
Tutor: Hello. Please write an expression for the distance 
Anne has left to row. 
Student: 600 – 40 * m 
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Tutor: No. But, 40 * m is correct for the distance rowed so 
far. We will come back to the distance Anne has left to row. 
Let me try to break this down for you. What is her initial 
distance from the dock? 
Student: 800 
 
Tutor: Correct. Now, let’s try this question again: Please 
write an expression for the distance Anne has left to row. 
Student: 800 – 40 * m 
 
Tutor: Correct. You solved the entire problem. 

 
This is the complete dialogue generated for one of Ms. Lindquist’s problems. It 

illustrates several important aspects. First, the user interface is similar to that of a chat 

program, consisting of nothing more than an input and an output field. The ITS asks a 

question, and the student inputs the answer. This makes Ms. Lindquist an ideal ITS for 

Mason to reproduce as there are no complex graphical user interface components to 

emulate. Second, Ms. Lindquist generates both negative and positive feedback. We can 

see this from the follow phrase: But, 40 * m is correct for the distance rowed 

so far. If the system just blatantly spits out a “That is incorrect!” or some other 

admonishing phrase, the student might believe that the entire answer was completely 

incorrect. But with the help of positive feedback generation, Ms. Lindquist can notify the 

student that one or more parts of the answer are actually correct. This shifts the student’s 

focus to the problematic portion(s) of the answer. 

The dialogue shown above illustrates dynamic scaffolding without strategies. Ms. 

Lindquist simply breaks the problem down into several parts, in this case 800 – 40 * m 

is broken down into 800 and 40 * m, and asks about the part that the student answered 

incorrectly. Although this is functional, it’s not very educational; the dialogue generated 

would look very similar to the one above for every single problem, which has no 

embedded hints that would assist the student in getting the right answer. 
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This is why Ms. Lindquist uses strategies. Strategies are ordered sets of questions 

that represent ways of looking at the same problem from different angles. This not only 

adds variety to the problem-solving process, but also allows the ITS to provide helpful 

hints to the student when necessary. The following four sections describe these strategies 

in detail. 

1.6.2 Strategy 1: Concrete Articulation 

Ms. Lindquist’s algebraic expressions always contain variables. For example, a 

problem would never have the final answer 8 * (5 + 16), but rather something like 8 * 

(x + 16). Otherwise, students would be tutored not on how to think algebraically when 

solving such expressions, but rather on simple numerical computations. That’s not Ms. 

Lindquist’s goal. However, simple numerical computations can be used to guide the 

student to the correct answer. The usage of variables allows the ITS to plug values into 

the variable(s), which would be x in the previous example, and ask the student what the 

overall numerical value of the expression is. A sample dialogue is shown below. 

Problem: Anne is rowing a boat in a lake and is 800 yards 
from the dock from which she started. She rows back towards 
the dock at 40 yards per minute for m minutes and stops to 
rest. How far is she from the dock now? 
 
Tutor: Hello. Please write an expression for the distance 
Anne has left to row. 
Student: 800 + 40 * m 
 
Tutor: No. But, 40 * m is correct for the distance rowed so 
far. We will come back to the distance Anne has left to row. 
Let me try to break this down for you. Please compute the 
distance Anne has left to row if the number of minutes 
rowing was 3 minutes? 
Student: 680 
 
Tutor: Correct. Using only 800, 40, and 3 write an 
expression for the distance Anne has left to row. 
Student: 800 – 40 * 3 
 



 15

Tutor: Correct. Now use m instead of 3 to again express the 
distance Anne has left to row. 
Student: 800 – 40 * m 
 
Tutor: Correct. You solved the entire problem. 

 
Formulating an algebraic expression from a problem description is a problem for 

many students; therefore, this strategy tests if the student has a general understanding of 

the problem by asking for the solution for a concrete instance. First, Ms. Lindquist asks 

the student to calculate the numerical value of answer by substituting 3 for m. Second, the 

ITS asks the student to write the expression 800 – 40 * 3 to reflect how the numerical 

value was calculated. Finally, the student is instructed to replace the 3 with the variable m 

in order to get the final answer. The concrete articulation strategy utilizes these three 

main questions to tutor the student. 

1.6.3 Strategy 2: Explain in English First 

Ms. Lindquist can also assist the student in finding the correct answer by 

specifically asking how different parts of the problem are related to each other. The 

strategy temporarily puts mathematical concepts aside and focuses on assembling the 

answer from descriptions found in the problem statement. The student is required to piece 

together three English phrases using a set of pull-down menus to come up with the 

answer; this is demonstrated in the following dialogue: 

Problem: Anne is rowing a boat in a lake and is 800 yards 
from the dock from which she started. She rows back towards 
the dock at 40 yards per minute for m minutes and stops to 
rest. How far is she from the dock now? 
 
Tutor: Hello. Please write an expression for the distance 
Anne has left to row. 
Student: 800 + 40 * m 
 
Tutor: No. But, 40 * m is correct for the distance rowed so 
far. We will come back to the distance Anne has left to row. 
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Let me try to break this down for you. Can you explain how 
you would find the distance Anne has left to row? 
Student: the distance Anne has left to row is equal to the 
distance she started from the dock minus her speed rowing. 
 
Tutor: Hmm. No. Figure out some way of using both the 
distance she started from the dock and the distance rowed 
so far. 
Student: the distance Anne has left to row is equal to the 
distance she started from the dock minus the distance rowed 
so far. 
 
Tutor: Correct. Now, follow that up by writing an 
expression for the distance Anne has left to row. 
Student: 800 – 40 * m 
 
Tutor: Correct. You solved the entire problem. 

 
As we can see, this strategy looks at the problem from a completely different 

angle than the concrete articulation strategy. It only uses two main questions for tutoring. 

Ms. Lindquist first instructs the student to piece together a description in English, using a 

set of pull-down menus, of what the expression should look like. This can be seen from 

the second and third answers in the dialogue above. The separately underlined portions 

represent selections from one of the three pull-down menus. The answer “the distance 

Anne has left to row is equal to the distance she started from the dock 

minus her speed rowing” has separate pull-down menus for “the distance she 

started from the dock,” “minus,” and “her speed rowing.” Once the correct 

sequence of phrases has been chosen, Ms. Lindquist asks the student to convert the 

phrases into their corresponding arithmetic expressions. In this case, it’s 800 – 40 * m, 

because “the distance she started from the dock” is 800 and “the distance 

rowed so far” is 40 * m. As a result, the final answer is found. 
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1.6.4 Strategy 3: Convert the Problem into an Example to Explain 

This strategy starts out by telling the student the correct answer, allowing the ITS 

to break down the solution into smaller portions and asking the student what each of the 

portions represents. The methodology is similar to the one above; phrases from pull-

down menus are used to assemble a description of the expression. This strategy, however, 

asks the English meanings of different parts of the expression as opposed to instructing 

the student to convert the set of phrases into an expression. The following dialogue 

illustrates this method in action: 

Problem: In math class there are 12 more boys than girls. 
If the number of girls is g, write an expression for the 
total number of students in the class. 
 
Tutor: Hello. Please write an expression for the total 
number of students in a class. 
Student: 2 * g - 12 
 
Tutor: Hmm. No. The answer is actually g + (g + 12). Let me 
ask you some questions to help you understand it. Can you 
explain where the g + 12 came from? 
Student: g + 12 is equal to the total number of students in 
the class minus the number of girls. 
 
Tutor: Hmm. No. But, that is only because I was looking for 
something else. What you said was true, but I was looking 
for the following: The first menu should be the number of 
girls. The second menu should be plus. And the third menu 
should be the difference between the number of boys and 
girls. 
Student: g + 12 is equal to the number of girls plus the 
difference between the number of boys and girls. 
 
Tutor: Correct. What does g + 12 represent? 
Student: the number of boys 
 
Tutor: Correct. Can you explain where the g + (g + 12) came 
from? 
Student: g + (g + 12) is equal to the number of boys plus 
the number of girls. 
 
Tutor: Correct. What does g + (g + 12) represent? 
Student: the total number of students 
 
Tutor: Correct. You solved the entire problem. 
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As in the previous section, the underlined portions of the student answers 

represent a single selection from a pull-down menu. The number of questions Ms. 

Lindquist will generate depends on the complexity of the mathematical expression. In 

this case, the system only asks for the English descriptions of g + 12 and g + (g + 12). 

Unlike the previous strategy, this one uses a combination of one or three pull-down 

menus to allow the student to construct the description. This can be observed from the 

two different answers “the total number of students” and “g + (g + 12) is 

equal to the number of boys plus the number of girls” respectively. This is 

also the only strategy that starts out with the final answer and works backwards to ensure 

that the student fully understands it. 

1.6.5 Strategy 4: Introduce a New Variable 

In order to help the student visualize the problem, Ms. Lindquist uses this strategy 

to group together portions of the answer into a single variable; this simplifies the task of 

constructing the correct expression. It first asks the student to find a relationship between 

different portions of the problem using the newly introduced variable(s), and only then 

does it ask for the final expression. The following demonstrates this process: 

Problem: Julie was trying to raise money to help fight 
cancer.  She got 7 students to each donate s dollars and t 
teachers to each donate 10 dollars. Write an expression for 
how much she collected? 
 
Tutor: Hello. Please write an expression for the total 
amount Julie collected. 
Student: 7 * s – t * 10 
 
Tutor: No. But, 7 * s is correct for the total amount the 
students donated, and t * 10 is correct for the total 
amount the teachers donated. We will come back to the total 
amount Julie collected. Let me try to break this down for 
you. If C was the total amount the students donated and B 
was the total amount the teachers donated then what would 
be the total amount Julie collected? 



 19

Student: C + B 
 
Tutor: Correct. Now, let’s try this question again: You are 
correct that C + B is the total amount Julie collected. Now, 
can you state this in terms of the numbers given in the 
problem? 
Student: 7 * s + t * 10 
 
Tutor: Correct. You solved the entire problem. 

 
Ms. Lindquist takes 7 * s and replaces it with the variable C, and then replaces t 

* 10 with B. This allows the student to focus on the relationship between the two 

portions instead of the entire expression. This strategy is especially helpful with more 

complex expressions, such as 5 * g + 7 * (30 – g). If the student got the addition 

portion wrong, Ms. Lindquist would replace 5 * g with A and 7 * (30 – g) with B, and 

simply ask for A + B, which is easier to visualize. To summarize, this strategy is made up 

of two main questions; one of them introduces the variable(s) to simplify the problem, 

and the other asks the student to replace the variable(s) with the corresponding sub-

expression(s). 

1.7 Chapter Conclusions 

This chapter introduced some of the more sophisticated authoring tools available 

today. Authoring tools are becoming more and more domain-independent, allowing users 

to customize even the graphical user interface of their ITSs. However, neither of these 

tools would be an ideal choice for implementing a sophisticated ITS such as Ms. 

Lindquist. For example, Authorware is mainly an event-driven authoring tool that is able 

to produce visually impressive, interactive slideshows. This would not be sufficient for 

reproducing Ms. Lindquist, because there is no way to reconstruct the ITS’s four teaching 

strategies. The chapter also elaborated on the most important architectural components of 

Ms. Lindquist; Mason needs to be able to emulate these components effectively. They are: 



 20

1.) A user interface that receives text input from the student and can display the 

feedback generated by the system. 

2.) A diagnostic process that can single out the incorrect portions of the student’s 

answer from the correct ones. 

3.) Support for multi-step strategies. 

4.) Ability to generate coherent dialog. 

The goal of this thesis is to construct an authoring tool that not only makes ITS 

construction easier, but significantly shortens the development time. Mason can in fact be 

used to build a copy of Ms. Lindquist that supports all of the features listed above. This 

will be elaborated upon in the following chapters. 
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Chapter 2: Mason’s Architecture 

In order for an authoring tool to be able to produce powerful Intelligent Tutoring 

Systems, it needs to provide support for the customization for the four core ITS 

components: the domain model, the student model, the teaching strategies, and the 

learning environment. Thus, one of the major decisions that had to be made during the 

implementation of the authoring tool was how much customizability would be supported 

for each ITS component. 

 
Figure 2 - The graphical user interface of the Evaluator tab 

First, let’s take a look at the learning environment. As specified previously, ITSs 

constructed with Mason have an interface similar to that of a chat room; the system 

outputs generated dialogue for the student, which consists of questions, feedback, and 

hints, and the student inputs the answer by constructing it in a small workspace. All 

answers are assembled from a provided set of answer blocks, which are dynamically 
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generated for the student. For example, if the tutoring system asks for the answer 5 * g 

+ 7 * (30 – g), then it would make the following answer blocks available to the 

student: +, -, *, /, g, (, and ). The answer blocks for the numerical values, 5, 7, and 30, 

need to be created by the student using the small calculator-like interface provided by 

Mason (see Figure 2). This makes the assembly of the answer less of a multiple choice. 

As a result, for 5 * g + 7 * (30 – g), the following would be an accepted answer: 

 
Figure 3 - An assembled student answer in Mason 

This method eliminates random “typos”, as any answer with an incomprehensible 

ordering of blocks will be marked as wrong and analyzed by the diagnostic engine. This 

is the only learning environment supported by the current version of Mason. Some of 

today’s commercial authoring tools, such as Authorware, can assemble user interfaces 

from images, sounds, and interactive components. Building an authoring tool that can 

produce ITSs with visually appealing graphical user interfaces is not the goal of this 

thesis. Thus, the learning environment isn’t customizable at all in Mason. 

Next, let’s examine the student model. This is another ITS component that cannot 

be modified in Mason. The default functionality of the authoring tool’s student model is 

to simply keep track of which problem the student is currently working on. Some 

sophisticated ITSs store more information about the student. Ms. Lindquist, for example, 

keeps track of the types of problems the student answered erroneously and asks problems 

of similar nature for more effective tutoring. Mason doesn’t support the creation of such 

student models, because the thesis focuses on problem construction and dialogue 

generation rather than student tracking. 
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The remaining two components are what Mason excels at in customizing. In 

Mason, the teaching strategies component is merged with the domain model, since the 

strategies are simply ordered sets of question templates. The authoring tool’s hierarchical 

architecture has several limitations. For example, for algebra, one of the limitations is the 

fact that Mason can only tutor the student using the infix notation; neither the prefix nor 

the postfix notations are supported. Currently, it’s best to use the system for mathematical 

problems, although future versions should be more domain-independent and support 

tutoring for programming languages and other areas of study. 

First, this chapter focuses on Mason’s diagnostic system. This should provide a 

good overview of how elements from the domain model collaborate with the diagnostic 

methods in order to generate effective dialogue for the student. The fact that the 

complexity of the domain model is proportional to the effectiveness of the dialogue 

generated is also discussed. Then, this chapter describes the domain model and its 

elements in detail. The domain model is where most of the customizability lies. 

2.1 The Diagnostic System 

Without the diagnostic engine, there would be no dialogue generation. The engine 

is used to compare the student’s answer to the desired one built by the author. If there is a 

slight or complete mismatch, then feedback is produced in order to focus on the 

erroneous parts of the student’s answer. Let’s take a look at the following dialogue, 

which was generated by Mason’s replica of Ms. Lindquist: 

Problem: Anne is rowing a boat in a lake and is 800 yards 
from the dock from which she started. She rows back towards 
the dock at 40 yards per minute for m minutes and stops to 
rest. How far is she from the dock now? 
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Tutor: Please write an expression for the distance Anne has 
left to row. 
Student: 800 + 40 * m 
 
Tutor: No. But, 40 * m is correct for the distance rowed so 
far. We will come back to the distance Anne has left to row. 
Let me try to break this down for you. Can you explain how 
you would find the distance Anne has left to row? 
Student: the distance Anne has left to row is equal to the 
distance she started from the dock minus her speed rowing. 
 
Tutor: Hmm. No. Figure out some way of using both the 
distance she started from the dock and the distance rowed 
so far. 
Student: the distance Anne has left to row is equal to the 
distance she started from the dock minus the distance rowed 
so far. 
 
Tutor: Correct. Now, follow that up by writing an 
expression for the distance Anne has left to row. 
Student: 800 – 40 * m 
 
Tutor: Correct. You solved the entire problem. 

 
In the dialogue, Mason uses the Explain in English First strategy after the student 

inputs the incorrect expression. How does Mason know exactly which strategy to use? In 

order to answer this question, we need to take a look at the system’s architecture. In the 

domain models of ITSs constructed with Mason, every single problem has its 

corresponding answer structure. 

 
Figure 4 - An answer tree mapped onto a boolean tree 

The answers are represented hierarchically as a tree, where each node represents 

an answer portion that is also known as a problem partition. For example, the equation 
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800 – 40 * m would have four different nodes in its tree representation: -, *, 800, 40, m. 

Hence, the domain model is hierarchical. Each answer tree can be mapped onto a 

boolean tree with an identical node structure; the boolean values represent the 

correctness of their corresponding problem partitions in the answer tree (see Figure 4). 

Mason uses a bottom-up approach to diagnose student answers. The purpose of 

the diagnostic system is to (i) find the lowest faulty node in the answer tree if the student 

answered the problem incorrectly, (ii) use the provided set of diagnostic rules to 

determine which set of strategies is applicable to the faulty node, and (iii) pass the faulty 

node and a selected strategy onto the dialogue generation system. A faulty node in the 

answer tree is defined as a node whose correspondent in the boolean tree is set to false. 

Since each node in the answer tree represents a problem partition, Mason can pinpoint 

parts of the problem the student had difficulty with just by searching for faulty blocks. 

Hence, the hierarchical representation is very effective for the diagnostic process, which 

involves the following steps: 

1.) Before the student inputs the very first answer to the problem 

statement, all of the boolean tree nodes are set to false. This, by 

default, indicates that no problem partitions have been answered 

correctly. 

2.) All of the possible answer combinations are generated from the root 

node of the answer tree (taking the commutativity of applicable nodes 

into account), and are compared to the answer assembled by the 

student. If a match is found, then the entire problem is considered 
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solved; the remaining steps of the diagnostic process can be ignored. 

For 800 – 40 * m, the following would be marked as correct: 

800 – 40 * m 
800 – m * 40 

 
If none of the combinations match the student’s answer, then a more 

thorough analysis is necessary to find faulty nodes. Mason moves onto 

the next diagnostic step. 

3.) All of the possible combinations are generated for every single node of 

the answer tree. In other words, all the possible problem partitions are 

stored in a list. The student’s answer is then scanned for the existence 

of each combination. If one of the combinations for a particular node 

is found in the answer, then the node’s correspondent in the boolean 

tree is set to true. This signifies that the student answered that 

partition correctly. Otherwise, the node will stay false. For 800 – 40 

* m,  the student’s answer would be scanned for each of the following: 

800 
40 
m 

40 * m 
m * 40 

800 – 40 * m 
800 – m * 40 

 
By the end of the process, the boolean tree will be filled with true and 

false values, indicating exactly which parts of the answer the student 

answered incorrectly. This allows Mason to generate the appropriate 

dialogue only for problem partitions that the student needs to be 

tutored on. For example, if the student answered 800 + 40 * m 

instead of 800 – 40 * m, the boolean tree would look as follows: 
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Figure 5 - A boolean tree where only the root is a faulty node 

This indicates that the student did not use the - operator where it was 

necessary. 800, 40, m, and 40 * m all exist in the student’s answer, but 

800 – 40 * m does not. Of course, more serious errors can be made 

as well. For example, if 800 – 40 is input as the answer, then the 

boolean tree will have different boolean values: 

 
Figure 6 - A boolean tree with three faulty nodes 

After all, only 800 and 40 show up in the answer, and m, 40 * m (or m 

* 40), and 800 – 40 * m (or 800 – m * 40) do not. 

4.) Search the boolean tree for the deepest faulty node. The corresponding 

node in the answer tree is the deepest problem partition the student 

needs to be tutored on. In the figure above, the deepest faulty node 
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would be the one for the variable m, because m was not found in the 

input answer. 

5.) Using a provided set of diagnostic rules, determine which set of 

strategies is applicable for the faulty node. For example, the author 

may have a diagnostic rule constructed for detecting missing 

parentheses. Remember that tutoring strategies are used for generating 

the appropriate pedagogical dialogue for the student regarding the 

problematic problem partition. Thus, diagnostic rules can be used to 

determine what the problem might be with the student’s answer, and 

then pick the suitable tutoring strategy for it. 

6.) Finally, pass the faulty node and the selected tutorial strategy onto the 

dialogue generation system. 

When the student’s very first answer to the problem statement is being diagnosed, 

the next faulty node is always the deepest one. Once again, in Figure 6, this node would 

be the one for the variable m. Afterwards, Mason switches to a bottom-up approach for 

tackling the problem partitions. The system will keep on asking questions (or a set of 

questions) about each faulty node in the tree until the root node is reached. The root node, 

of course, would be the start of the problem. This short example should clarify this 

process: 

1.) Mason displays the problem statement and asks for the required 

expression. The answer Mason is looking for is 800 – 40 * m. 

2.) The student inputs 800 – 40. 
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3.) Mason generates negative feedback, and, as shown in Figure 6, finds 

the node for the variable m to be the deepest faulty node. Using a set of 

diagnostic rules, it picks an appropriate strategy and passes the node 

and the strategy onto the dialogue generation system. 

4.) After one or more questions generated by the domain model, the 

student finally understands the purpose of the variable m; therefore, the 

boolean correspondent of the node for the variable m is set to true. 

5.) Mason now searches for the next faulty node, which ends up being the 

node for the * operator. Of course, the node represents the problem 

partition 40 * m. This is also passed along for dialogue generation. 

6.) Once all the necessary questions are asked about 40 * m and the 

student understands it purpose, the boolean correspondent of the * 

node is marked true as well. 

7.) Mason searches for the next faulty node in the answer tree, and this 

time it ends up being the root node that represents the - operator. The 

system is back at the top of the tree, which means that all the student 

needs to do now is understand 800 – 40 * m. Thus, once again, 

dialogue is generated for the root node. 

8.) Once the student successfully assembles the final answer to the 

problem, the boolean value for the root node will be set to true as 

well. If the student gets the equation wrong again, Mason is not going 

to restart the tutoring process. The system will never choose a child of 
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the current node as the next faulty node. When the final question is 

answered correctly, the boolean tree will have the following structure: 

 
Figure 7 - A boolean tree indicating that the problem has been solved 

Only when all the nodes are set to true is the problem considered to 

be fully solved. This state of correctness indicates that the student 

understands all of the problem partitions. 

Mason also supports a top-down method for generating positive feedback. Unlike 

the bottom-up search for faulty blocks, the generation of positive feedback involves 

finding the largest problem partitions that the student has answered correctly. For 

example, when the student inputs 800 + 40 * g as the answer instead of 800 – 40 * g, 

Mason compliments the student for getting the 40 * m partition correct. 

In a nutshell, the purpose of the diagnostic engine is to find all the errors in the 

student’s answer (if there are any), provide very basic positive and negative feedback, 

and pass the erroneous problem partitions along with a tutorial strategy onto the domain 

model for advanced dialogue generation. The following section is dedicated entirely to 

the domain model. 
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2.2 The Domain Model 

To best understand the domain model’s architecture, let’s break it down into five 

main components: problems, questions, strategies, strategy sets, and diagnostic rules. 

Problems, or exercises, consist of a problem statement and its corresponding answer, 

which is represented hierarchically as a tree. Blocks are used to construct the tree 

representations of the problem answers; these trees were introduced in first section of this 

chapter. Questions are templates for determining the generated dialogue for the student; 

they add flexibility to the system, since a single, well-designed template can be applied to 

many different problems. As mentioned previously, a strategy is simply a way of asking 

an ordered set of questions. The sample dialogue below, generated for a problem which 

we will refer to as the “Debbie” problem from now on, demonstrates a strategy in action. 

Problem: Debbie has two jobs over the summer. At one job, 
she bags groceries at Giant Eagle and gets paid 5 dollars 
an hour. At the other job she delivers newspapers and gets 
paid 7 dollars an hour. She works a total of 30 hours a 
week, and she works g hours bagging groceries. Write an 
expression for the total amount she earns a week. 
 
Tutor: Please write an expression for the total pay per 
week. 
Student: 30 * ( 7 * 5 ) 
 
Tutor: Hmm. No. We will come back to the total pay per week. 
Let me try to break this down for you. What is the number 
of hours for delivering newspapers? 
Student: 30 - g 
 
Tutor: Correct. If B was the hours delivering newspapers 
then what would be the pay from the newspaper? 
Student: B * 7 
 
Tutor: Correct. You are correct that 7*B is the pay from 
the newspaper. Now, can you state this in terms of the 
numbers given in the problem? 
Student: 7 * b + 5 * g 
 
Tutor: Hmm. No. What is the pay from the newspaper? Hint: 
You know the answer is 7 * B but you must substitute in the 
value for B. Replace B with 30 - g. Use parentheses if 
needed. 
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Student: ( 30 – g ) * 7 
 
Tutor: Correct. What is the pay from the grocery? 
Student: ( 30 – b ) * 5 
 
Tutor: Hmm. No. Use 5 and g to calculate the pay from the 
grocery. 
Student: 5 * g 
 
Tutor: Correct. If D was the pay from the grocery and C was 
the pay from the newspaper then what would be the total pay 
per week? 
Student: D + C 
 
Tutor: Correct. Now, let’s try this question again:  You 
are correct that D + C is the total pay per week. Now, can 
you state this in terms of the numbers given in the problem? 
Student: ( 30 – g ) * 5 + ( 30 – b ) * 7 
 
Tutor: Hmm. No. What is the total pay per week? Hint: You 
know the answer is D + C but you must substitute in the 
values for D and C.  Replace D with 5*g and replace C with 
7 * ( 30 – g ). Use parentheses if needed. 
Student: ( 5 * g ) / ( 7 * b ) 
 
Tutor: Hmm. No. Please input: 5 * g + 7 * ( 30 – g ). 
Student: 5 * g + 7 * ( 30 – g ) 
 
Tutor: Correct. 
 
This dialogue was generated using a complex domain model structure and the 

diagnostic engine described in the previous section. It demonstrates the Introduce a New 

Variable strategy in use. As we can observe, it’s very similar to the dialogue Ms. 

Lindquist can produce. This is due to the fact that the strategies built in Mason can 

emulate Ms. Lindquist’s strategies well. 

Strategy sets are Mason’s solution for randomizing tutorial strategies. 

Randomization allows for more varied tutoring sessions; it would be repetitive to use the 

same strategy over and over again for each error the student makes. Diagnostic rules 

determine what strategy sets get used for a particular error in the student’s answer. Well-

constructed rules can not only reduce ITS development time, but also make the updating 

process of the system easier. For example, a rule can be written for determining that a 
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student is missing a required pair of parentheses, and it can be bound to a strategy that 

asks questions about the missing parentheses only. This section describes each of the 

domain model components in detail, and demonstrates how they are used to generate the 

dialogue for the “Debbie” problem. 

2.2.1 Problems, Blocks, and Answer Trees 

When Mason is launched by the author, its first screen, the Problems tab, displays 

the problem listing (see Figure 8). Problems are nothing more than pairs of problem 

statements and their corresponding answers; the answers are represented as trees. They 

are also fully independent from questions, strategies, strategy sets, and rules. In order to 

construct a problem, it’s best to start with the problem statement. If the problem 

statement is defined early on in the construction process, it can aid the author in 

designing the answer tree and its corresponding elements. 

 
Figure 8 - The graphical user interface of the Problems tab 
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For example, how complex will the answer be for the problem? Roughly how 

many blocks will the answer tree require? Spelling out the problem statement in the 

beginning can answer numerous design questions early in the problem construction 

process. In case of the “Debbie” example shown above, the problem statement is: 

Problem: Debbie has two jobs over the summer. At one job, 
she bags groceries at Giant Eagle and gets paid 5 dollars 
an hour. At the other job she delivers newspapers and gets 
paid 7 dollars an hour. She works a total of 30 hours a 
week, and she works g hours bagging groceries. Write an 
expression for the total amount she earns a week. 

 
Mason’s user interface automatically updates the system as the user enters text 

into the text box. This implementation is a minor user interface enhancement that reduces 

the number of necessary mouse clicks. Once the problem statement is typed in, an initial 

question needs to be provided; this is the very first question displayed for the student 

regarding the problem. In the example dialogue, “Please write an expression for 

the total pay per week.” was used. 

 
Figure 9 - The graphical user interface of the Answer tab 
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The Problems tab also displays the diagnostic rules available for usage. The rule 

selection feature is discussed later on in this chapter. By now, the user should have a clear 

concept of what the answer tree should look like. This brings us to the Answer tab, which 

displays the entire tree structure. The user can construct the entire structure, which starts 

out with an empty root node for new problems, in order to get a clear idea of what blocks 

will be needed. As an example, let’s take a look at the answer to the “Debbie” problem. 

It’s clear that the desired expression for the problem is: 

5 * g + 7 * (30 – g) 

This answer can be simplified or expanded further, of course, but all of the 

different answer variations can be deducted from the expression above. Like all simple 

algebraic expressions, it can be represented as a tree (see Figure 10). Note that Mason 

currently supports the infix notation only. The node depicted as a circle is a connector 

block, which is simply used to concatenate a set of blocks together in a specific order. Its 

functionally is explained later in this section. 

 
Figure 10 - The tree representation of an expression 
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The tree needs to be constructed under Mason’s Answer tab. The following 

illustrates the tree structure without any blocks attached to it: 

 
Figure 11 - The tree structure of the equation with empty nodes 

If there are no blocks bound to the tree, Mason will simply display the structure 

with empty nodes (see Figure 11). The desired expression for the “Debbie” problem 

consists of nine elements; these are: 5, 7, 30, g, +, -, *, ( and ). Thus, the user should be 

able to complete the answer tree of the problem by creating nine different blocks and 

bind them to the tree structure. Nine elements, however, might not be sufficient. In order 

to find the exact number needed, it’s necessary to understand the purpose of blocks. 

In Mason, blocks are the building elements of problems; they are bound to the 

nodes of answer trees. A block comes with a set of fully customizable attributes. 

Additional attributes can be added by the tutor if necessary; this is often the case 

especially when constructing complex question templates. For example, let’s take a look 
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at the block for the number 5 in the answer to the “Debbie” problem. It would have the 

following attribute slots: 

Symbol: 5 
Type: number 
Description: her hourly wage for bagging groceries 
Ignore: false 

 

 
Commutative: false 

 
These attributes, also referred to as system attribute slots, are available for all 

newly created blocks. They cannot be removed, and their labels, such as Symbol and 

Type, cannot be modified. Their values, however, are essential not only for the diagnostic 

engine, but also for dialogue generation. The first of these slots, Symbol, is the block’s 

visual representation in Mason’s graphical user interface. Accordingly, the number 5 

would be represented with a block with the character 5 for its Symbol. The number 53 

would not be pieced together from two different blocks; instead, it would be represented 

with a single block with 53 for its Symbol. 

Mason knows nothing about the mathematical meaning of the attribute values; the 

system cannot identify the block 53 as an object with an actual numerical value. The 

attribute slot values are stored as strings and booleans, and are simply used for diagnosis 

and generation. The user needs to keep this in mind while developing an ITS with Mason. 

Although this representation has its drawbacks, it is effective for constructing complex 

ITSs; the advantages and disadvantages are elaborated upon in the following chapter 

during the discussion of the evaluation. Let’s ignore the other system attributes for a 

moment, and finish the construction of the answer tree for the Debbie problem. A block 

can be bound to one or more tree nodes right after its Symbol attribute has been specified: 



 38

 
Figure 12 - Binding blocks to the answer tree 

Thus, once the blocks are created for 5, 7, 30, g, +, -, *, ( and ), which can be 

done under the Blocks tab, and are bound to their corresponding answer tree nodes under 

the Answer tab, the final the answer tree can be completed (see Figure 13). The actual 

process of binding blocks to nodes is rather simple. All the author needs to do is select a 

node in the tree, and then select its corresponding block. Mason automatically updates the 

tree accordingly. This concludes the construction of a problem and its answer. Mason is 

unable to tutor the student given such a limited amount of information, so let’s move on. 

The remaining system attributes, Type and Description, are used to help the user 

identify the block. For example, number, operator, letter, car, and spaceship are all 

strings that can be used to identify the block’s Type. Description usually describes 

exactly what the block represents. In the “Debbie” problem, for example, 5 represents 

“her hourly wage for bagging groceries”. Mason can already produce realistic 

dialogue simply by plugging in the values of Type and Description into templates. 



 39

 
Figure 13 - The complete answer tree 

The system attributes Ignore and Commutative have boolean values. In order for 

Mason to ignore a block during the diagnostic process of the student’s answer, its Ignore 

attribute needs to be set to true. For example, the connector block (represented as a 

circle in the diagram above) should be ignored during diagnosis, since it’s only used 

during the construction of the answer tree. Requiring the connector block in the student 

answer would simply cause confusion on the student’s part. 

The last system attribute slot, Commutative, defines whether or not the block and 

its children adhere to the commutative property. In other words, the order of a 

commutative node’s children doesn’t count. Recall that the problem’s answer is 

structured as a tree. This is a powerful way of representation, because trees can be 

manipulated easily. For example, we can represent both 5 * g and g * 5 (due to the 

commutative property) simply by switching the order of the * node’s children. 
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Consequently, this representation seems powerful for problem answers for which a 

hierarchical representation is ideal. 

What if the tutor wanted to make a spelling tutoring system? A spelling problem 

would be very hard to represent in a similar hierarchical fashion. One way would be to 

break words up into sets of letters, but that can result in complications; however, an 

algebra problem, as the Debbie problem illustrates, can be easily represented in a tree. 

Also recall that the current version of Mason knows nothing about the meaning of the 

blocks; it doesn’t understand that the block 5 has a numerical meaning. What Mason does 

know about is the structure of the answer tree and, consequently, the order of the blocks 

in that tree. This is exactly where the Commutative system attribute is utilized. 

Commutative is an essential attribute, especially since the ordering of blocks 

plays such an important role in Mason. Without commutativity, the only accepted answer 

for the Debbie problem would be 5 * g + 7 * (30 – g); the commutative property 

makes Mason’s system more flexible, allowing it to accept all of the following answers: 

5 * g + 7 * (30 – g) 
g * 5 + 7 * (30 – g) 
5 * g + (30 – g) * 7 
g * 5 + (30 – g) * 7 
7 * (30 – g) + 5 * g 
(30 – g) * 7 + 5 * g 
7 * (30 – g) + g * 5 
(30 – g) * 7 + g * 5 

 
The more commutative blocks an answer tree has, the higher the number of 

possible answer combinations is. Of course, the user isn’t limited to using the system 

attributes of blocks only. The author can create additional ones, called dynamic attribute 

slots, as well. Unlike system attributes, dynamic ones have modifiable labels, and can be 

removed from the system at any time. Let’s take a look at a quick example for illustrating 

the use of dynamic attributes. Suppose we want to give the block g a numerical value. 
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Let’s create a dynamic attribute called Numerical for it, and set its value to 10. Now, 

suppose that we want to specify a numerical value for the *  block in the expression 5 * 

g as well. Since we know that 5 * g = 50 when g = 10, we can create a Numerical 

attribute for the *  block and set its value to 50. This flexibility adds a new dimension to 

dialogue generation. 

 
Figure 14 - The graphical user interface of the Blocks tab 

In Mason, the dynamic attribute slots are slightly distinguished from system 

attribute slots under the Blocks tab (see Figure 14). Dynamic slots have a [ ] in front of 

their labels, whereas system ones are indicated with a [X]. This concludes the section on 

problem representation and the building blocks of Mason. In the following section, the 

reader is introduced to exactly how block attributes are utilized by question templates for 

dialogue generation. 
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2.2.2 Questions, Templates, and Answer Rules 

In order to guide the student to the correct solution, pedagogical questions need to 

be generated for the problem partitions that prove to be difficult for the student. In Mason, 

all questions are generated from question templates, which can be constructed under the 

Questions tab (see Figure 15). Templates contain dynamic elements whose values change 

depending on which answer tree node the template is being applied to. 

 
Figure 15 - The graphical user interface for the Question tab 

These dynamic elements are specified using a set of keywords that are 

recognizable by Mason. Recall that the diagnostic engine determines the faulty node 

which the student is to be tutored on. When discussing question templates, the node 

passed onto the templates will be referred to as the current node. To illustrate how a 

template works, let’s consider the following: 

Please express <m> Node -> Description </m> using <m> Child 
0 -> Description </m> and <m> Child 1 -> Description </m> 
<ns> . 
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There are three dynamic elements in the phrase above; these are specified for the 

authoring tool using <m> tags (also known as Mason tags). Let’s break the phrase down 

for easier understanding. The <ns> tag simply indicates that a space should not be 

displayed between the elements that directly precede and follow the tag. It is used for 

aesthetics only. The element <m> Node -> Description </m> is instructing Mason to 

retrieve the Description attribute of the block attached to the current node. For 

clarification, let’s take a look what would be generated from the phrase if it is applied to 

the * node in the “Debbie” problem’s 5 * g expression. The following values are used 

for the Description attribute slot of each block: 

Symbol: 5 

 Description: her hourly wage for bagging groceries 

 

Symbol: * 

 Description: her weekly salary for bagging 
groceries 

 
Symbol: g 

 Description: her hours spent bagging groceries 

 
Thus, if the current node is *, then <m> Node -> Description </m> would 

result in the phrase “her weekly salary at Giant Eagle”. Mason automatically 

recognizes that the author is trying to access the Description attribute of the current 

node. Of course, the current node isn’t the only one whose block’s attributes can be 

accessed. As demonstrated by the question phrase above, the children nodes can be 

accessed as well. Child 0 for the * node would be the node for 5. Child 1 would be the 

one for g. Thus, if the entire question template were applied to the * node fired, the 

following would be generated: 
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Please express her weekly salary at Giant Eagle using her 
hourly wage and the hours she bags groceries. 

 
Mason recognizes two more keywords: parent and root. These can be used the 

same way as the node keyword. The following examples should demonstrate this: 

Please express <m> parent -> description </m> <ns> . 
Please express <m> root -> description </m> <ns> . 

 
The root keyword simply references the root of the answer tree, while parent 

references the parent of the current node. Question templates have one more dynamic 

feature, which is the generation of dynamic lists. This is accomplished using <list>. 

Let’s assume that we are trying to generate the following question for the root node of the 

“Debbie” answer tree: 

What is Debbie’s total weekly salary if g is 10? 

We could hardcode this question into the system using the following template: 

What is <m> node -> description </m> if g is 10? 

This, however, is not a reusable solution. It will only work for problems with a 

single variable, namely g. The <list> structure was designed to solve this issue. Let's 

assume that the author wants to output all the variables under the current node in the 

answer tree for the student and assign numerical values to them. In order to achieve this, 

the author would need to create a non-reusable template for each problem if Mason did 

not support the dynamic generation of lists. In fact, a template would be required for each 

problem partition. This <list> functionality has the following syntax: 

<list> [slot value] = [value] [slot value] [connector] 
[slot value] [coordinating conjunction] </list> 

 
Since the syntax is confusing, let’s try to break it down. The [slot value] = 

[value] portion of the phrase is the regular expression. An example for this would be 

type = number. If the regular expression returns true for any of the blocks in the answer 
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tree, then the block will be used for the listing. The [slot value] [connector] [slot 

value] portion defines what the printout will look like. When we are trying to print out 

“g is 10”, then Symbol would be the first slot value, “is” would be the connector, and 

Numerical would be the second slot value. Thus, the syntax would be “symbol is 

numerical”. Finally, the [coordinating conjunction] part is for long lists. This is 

usually either “and” or “or”. It’s best if we demonstrate this for our example above. The 

correct syntax for generating “What is Debbie’s total weekly salary if g is 

10?” is the following: 

What is <m> node -> description </m> if <list> type = variable 

symbol is numerical and </list> <ns> ? 

What happens if the “Debbie” tree has another variable, h, with the Numerical 

value of 5? How about a third variable, m, with 20 for its Numerical slot? The system 

would print out the following phrases for the answer tree variations with the two and 

three variables respectively: 

What is Debbie’s total weekly salary if g is 10 and h is 5? 
What is Debbie’s total weekly salary if g is 10, h is 5, and m is 
20? 

 
As we can observe, [coordinating conjunction] comes into play when there 

are two or more elements in the list. Questions also support rephrasing. Mason allows the 

author to add several different versions of the original question template to the same 

question. The replica of Ms. Lindquist, which is discussed in detail in the following 

chapter, has about three different phrases per question. The main purpose of phrases is to 

provide additional hints and suggestions for the student. When the student answers a 

question incorrectly, Mason does not load a different one into memory. Instead, it moves 

onto the next phrase (if possible) of the same question. In other words, it rephrases the 
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question. The following are three possible phrases Mason might ask from the student 

about “Debbie’s total weekly salary”: 

1.) Please express her weekly salary at Giant Eagle using 
her hourly wage and the hours she bags groceries. 

2.) Remember that her hourly wage for bagging groceries 
is 5 and that her hours spent bagging groceries is g. 

3.) Please input: 5 * g. 
 

As we can see, the second phrase provides a hint for the user, and the third one 

just displays the desired answer. Remember that Mason only moves onto the next phrase 

if and only if the student answers the question incorrectly. Thus, the author can have 

many additional phrases with hints. 

 
Figure 16 - The graphical user interface for the Answer Rules tab 

Questions have two more important components: answer rules and answer block 

rules. These can be edited under the Answer Rules tab (see Figure 16). Answer rules play 

a key role in the diagnostic process. They determine which attribute slots of blocks the 

diagnostic system should compare to the student’s answer. After all, these comparisons 
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might differ from question to question. For example, one question might only be 

interested in comparing the student’s answer to the blocks’ Symbol values. Another one 

might want to use the Value attributes of operators, and the Description attributes of 

numbers. Although this concept might seem confusing at first, it makes the system very 

flexible; the same answer tree can be used for generating many different types of answers! 

Let’s take a look at another “Debbie” example for a demonstration, and assume 

that our blocks in the answer tree have the following slots:  

Symbol: 5 
Type: number 

 Description: her hourly wage for bagging groceries 
 

Symbol: * 
Type: operator 
Description: her weekly salary for bagging 

groceries  
Value: times 

 
Symbol: g 
Type: variable 

 Description: her hours spent bagging groceries 
 

Once again, let’s assume that the current faulty node is the left child of the + node 

in the answer tree, namely the * node. Note how the Value attribute slot of the * block is 

displayed in italic. It’s a dynamic attribute slot added to that specific block only. Now, 

let’s take a look at the following answer rule: 

symbol = <any>  symbol 

This simple rule, which is the default for both answer and answer block rules, 

indicates that for each block in the answer tree, the diagnostic system should only look at 

the Symbol attribute. The arrow represents a logical if statement, so the rule would 

translate to: if the Symbol attribute has any value, look at the Symbol 

attribute. The <any> keyword is reserved by Mason. Thus, for the three blocks above, 
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possible answers would be 5 * g or g * 5, since we are only looking at the Symbol 

values. The rule could be used when, for example, the author wishes to ask for actual 

expressions from the answer tree. Now, let’s take a look at the following answer rules: 

type = operator  value 
type = number  description 
type = variable  description 

 
The above translates to the following: 

- If the block is of Type operator, then use its Value attribute. 
- If it’s a number, then use its Description attribute. 
- If it’s a variable, then once again use its Description. 
- Ignore all other blocks! 

 
This rule set would require either of the following two answers from the student 

for the three blocks mentioned above: 

her hourly wage for bagging groceries times her hours spent 
bagging groceries 

 
her hours spent bagging groceries times her hourly wage for 
bagging groceries 

 
The phrases are slightly shaded in the answers above to illustrate that they come 

from the three blocks. As we can see, this set of rules would be suitable for, for example, 

the first question of the Explain in English First strategy, where the student is asked to 

describe the expression using a set of English phrases. In a nutshell, answer rules specify 

for the diagnostic system which block attribute slots to look at when diagnosing the 

student’s answer. 

Answer block rules are for generating the answer blocks for the student. Their 

syntax is similar to the rules shown above. Answer block rules are necessary, because 

sometimes the Symbol attributes of blocks and sometimes English phrases need to be 

provided for the student. For example, if the student is required to assemble 5 * g or g * 

5, then the following answer block rules would need to be used for the question: 
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type = operator   symbol 
type = variable   symbol 
type = parenthesis  symbol 

 
This would produce the following set of answer blocks for the student: +, -, *, /, 

(, ), g. How are these generated? The process is actually quite simple. Mason scans 

through the entire block library of the current problem. Each time a rule fires for one of 

the blocks, that block’s specified attribute slot value is then added to the student’s answer 

block listing. The rules above specify that: if a block is an operator, a variable, or a 

parenthesis, then make its Symbol value available for the student. 

This concludes the section on questions, which play a key role in Mason’s 

dialogue generation. The following section discusses how questions can be grouped in an 

orderly fashion in order to form strategies. 

2.2.3 Strategies and Strategy Sets 

Most of the time, asking the student a single question about a problematic 

partition might not prove to be effective tutoring. If a student forgets to include an 

essential number in the answer, then one question might be sufficient. For example, let’s 

assume that the inputted answer for the “Debbie” problem is missing the number 30. For 

this error, the following question could be used: 

You seemed to have missed an important number in your 
expression. According to the problem statement, what is her 
total number of hours worked a week? 

 
All the student has to do is look up the number 30 in the problem statement, and 

input it as the answer. This student error is a very simple one that doesn’t need intensive 

tutoring. Most errors, however, come from more complex partitions, and a single 

question might not be enough to tutor the student effectively. For example, let’s take a 
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look at the 7 * (30 – g) partition of the “Debbie” problem; it represents “her weekly 

salary for delivering newspapers”. If the student is unable to assemble the 

expression correctly, then a set of questions need to be generated that will eventually lead 

the student to the correct answer. This is where strategies come in. 

Recall from the Ms. Lindquist section of the previous chapter that strategies are 

nothing more than an ordered set of question templates. They can be constructed and 

modified under the Strategies tab, where a list of all the previously created question 

templates is available for the author (see Figure 17). Questions can be added to and 

removed from strategies at any time; their ordering is what matters. For example, let’s 

take a look at Ms. Lindquist’s Concrete Articulation Strategy for the 30 – g problem 

partition. The following three questions would be asked for tutoring purposes: 

1.) Could you tell me the value for the number of hours 
she spends delivering newspapers if g is 10? 
Expected answer: 20, since 30 – 10 = 20 

2.) Now, show how you calculated that the number of hours 
she spends delivering newspapers is 20 by writing it 
out as an expression and using 10 for g. 
Expected answer: 30 – 10 

3.) Now, simply replace 10 with g in your previous answer 
to get the final expression for the number of hours 
she spends delivering newspapers. 
Expected Answer: 30 – g 

 
Thus, Concrete Articulation consists of three questions. Of course, strategies can 

have a variable number of questions for providing additional help to the student. The 

author, however, needs to balance how long the student should spend on a particular 

problem partition. For example, it would be illogical to ask ten questions about 30 – g. 

Strategy sets are used for the randomization of strategies. If an Intelligent 

Tutoring System would only use the Concrete Articulation strategy for helping the 

student, the tutoring process would quickly become tedious. A variety of teaching 
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methods is necessary in order to make the process a more enjoyable and effective 

experience. Strategy sets can be constructed under the Strategies tab (see Figure 17). 

Let’s take a look at the following: 

1.) Concrete Articulation 
2.) Explain in English First 
3.) Convert the Problem into an Example to Explain 
4.) Introduce a New Variable 

 
This set has four strategies attached to it. Each time the set is called on, it 

randomly picks one of the strategies for usage. Would this set be adequate for tutoring 

student on 30 – g? The Introduce a New Variable strategy might not be helpful, because 

the expression is too simple. Thus, the fourth strategy should be removed from the set. 

 
Figure 17 - The graphical user interface for the Strategies tab 

It is the author’s responsibility to make sure that only applicable strategies are 

used for tutoring the student. The following section describes diagnostic rules, which 

determine what strategy sets should be used in certain situations. 
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2.2.4 Diagnostic Rules 

Attaching questions to nodes in the answer tree is not an efficient way of creating 

problems. Complex problems might require hundreds of attached questions, making the 

ITS construction process tedious. This is why Mason supports diagnostic rules. 

 
Figure 18 - The graphical user interface for the Diagnostic Rules tab 

An evaluator for regular expressions has been built from scratch for Mason to 

allow for the construction of complex diagnostic rules. These rules are used by the 

diagnostic system to identify the types of errors in the student answer. As discussed 

previously, after the diagnostic system finds a faulty node, it checks which diagnostic 

rule fires for it. Each rule has a strategy set bound to it; therefore, the strategy set of the 

fired rule is called upon for dialogue generation. 

These rules are mainly written for checking Symbol attributes of blocks in the 

answer tree and to check if the student got certain portions of the answer tree correctly. 
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Yet, some really powerful rules can be written, especially since Mason can evaluate 

complex regular expressions. Let’s take a look at an example for detecting the incorrect 

usage of the commutative property. Although the student is using the correct variable, 

number, and operator in the answer, they are assembled incorrectly. For example, instead 

of 30 – g, the student inputs g – 30. Let’s take a look at the rule itself: 

children = 2 
<and> symbol = - 
<and> child 0 -> correct = true 
<and> child 1 -> correct = true 

 
This rule will only fire if the commutativity is not used properly for the - operator. 

It specifies that if the faulty node has two children, and both of them have been answered 

correctly, then fire the rule. This syntax, however, is not the best solution, since the same 

commutative law applies to division as well. Although a second rule could be written for 

division, a single one is sufficient for including both operators. Let’s take a look at the 

following, which is a slightly modified version of the rule above: 

children = 2 
<and> commutative = false 
<and> child 0 -> correct = true 
<and> child 1 -> correct = true 

 
This time, we simply check for the commutativity of the block, making the rule 

less specific. So far, only the usage of the <and> operator has been demonstrated. Mason 

also supports <or> and embedded regular expression. Let’s rewrite the commutativity 

rule to illustrate these elements as well: 

children = 2 
<and> ( 
        symbol = - 
      <or> symbol = / 
    ) 

<and> child 0 -> correct = true 
<and> child 1 -> correct = true 

 



 54

One small technicality to address is the fact that multiple depths of nodes can be 

reached with a single diagnostic rule. In the example above, the correct property of 

child 0 was checked. It is actually possible to check a child of that child node as well. 

In fact, Mason allows the author to write rules that can analyze the answer tree in any 

depth. For example, “child 0 -> child 1 -> symbol = 60” would be a valid regular 

expression. The problem is that in order to have such a regular expression, the author first 

needs to verify in the rule that child 0 -> child 1 actually exists. Otherwise, errors 

might occur. The complete error-proof rule would look like this: 

children = 2 
<and> child 0 -> children = 2 
<and> child 0 -> child 1 -> symbol = 60 

 
In sum, diagnostic rules are used by the diagnostic system to determine the type 

of the error in the student answer for the current faulty block. Once a rule fires, the 

strategy set bound to it is used for dialogue generation. For example, the diagnostic rule 

for detecting commutative errors would have a strategy set bound to it, whose strategies 

would tutor the student on the commutative property. The following chapter illustrates 

that the replica of Ms. Lindquist actually has some relatively simple diagnostic rules for 

the four strategies. 

2.3 Chapter Conclusions 

This chapter described Mason’s architecture in detail. It illustrated how the 

hierarchical domain model and the diagnostic engine collaborate in order to produce 

realistic dialogue. The domain model stores all of the ITS data, including question 

templates, rules, teaching strategies, and pedagogical material. The diagnostic system 

pinpoints the incorrect portions of the student’s answer, and applies the appropriate 
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teaching strategies from the domain model to those portions in order to assist the student 

in finding the correct answer. 

This chapter also shows that, due to the nature of its data representation, Mason is 

optimized for constructing algebraic ITSs. Algebraic expressions are relatively straight-

forward to represent hierarchically. The ultimate goal of Mason is to become a domain-

independent authoring tool. This requires numerous enhancements to not only the 

authoring tool’s architecture, but also its user interface. For example, Mason could be 

used to write ITSs for programming languages. Currently, the learning environment is so 

primitive, that the student would not be able to enter chunks of code into the system. The 

effectiveness of the produced ITSs depends entirely on how creatively they are assembled. 

Only complex, well-constructed domain models generate realistic dialogue.  

By now, the reader should have a clear understanding of how Mason operates. 

The following chapter describes the evaluation process of the authoring tool, which 

consists of the reconstruction of an already existing ITS called Ms. Lindquist. The 

chapter elaborates on how the domain model is constructed in Mason in order to emulate 

Ms. Lindquist’s capabilities as closely as possible. 
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Chapter 3: Evaluation 

The most illustrative way to evaluate an authoring tool, such as Mason, is by 

using it to construct a copy of an already existing ITS. The previous chapter pointed out 

that Mason is best suited for mathematical ITSs, since algebraic expressions can be 

represented hierarchically. Thus, Ms. Lindquist, the algebra ITS described in Chapter 1, 

was chosen for this task. Due to its complexity and lengthy development time of roughly 

two years, it was a logical candidate for the control in Mason’s evaluation process. Such 

an evaluation determines the length of the construction process, and how accurately the 

clone produced by the authoring tool can emulate the original. 

Ms. Lindquist, however, was not reproduced in its entirety for this thesis. The 

tutoring system contains a myriad of hardcoded problems that are unnecessary for the 

evaluation process. Additional problems can be added to Ms. Lindquist in form of data 

files, which take a significant amount of time to create. Therefore, the cloning of the Ms. 

Lindquist only encompassed the reconstruction of the ITS’s technical architecture. Of 

course, a few sample problems have also been assembled to demonstrate the functionality 

of the replicated architecture. 

The first section of this chapter elaborates on how the Ms. Lindquist strategies 

and a sample problem were constructed. Strategies, as described in Chapter 1, are the 

architectural components responsible for dialog generation; therefore, they need to be 

reconstructed as accurately as possible. After all, the most logical method for determining 

the accuracy of the reproduction process is by comparing the dialog segments generated 

by Ms. Lindquist and its replica. The assembly of the sample problem and the strategies 
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is a partial overview of some of the concepts discussed in Chapter 2; therefore, the actual 

construction process is not described in detail. 

Next, the chapter analyzes the length of the replication process. Mason can in fact 

be used to reproduce Ms. Lindquist in a significantly shorter period of time. Can the 

replica diagnose the student’s answer as effectively as Ms. Lindquist? Can it produce the 

same quality of dialogue? The final section provides the answers to these questions and 

elaborates on the advantages and disadvantages of the Mason architecture. 

3.1 The Reconstruction of Ms. Lindquist 

In order to reproduce Ms. Lindquist, it was necessary to identify exactly what 

components had to be created in order to generate output that was similar in content to 

that of the ITS. It was observed in Chapter 1 that the dialogue in Ms. Lindquist is 

generated using a set of templates grouped together in an orderly fashion to form 

strategies. Before reproducing the strategies, let’s take a look at the fully constructed 

“Debbie” problem. It’s much easier to understand what dialogue will be generated by the 

templates if we know all the attribute slot values of the blocks in the answer tree. 

This section will merely display the final version of the Debbie problem. After all, 

problem construction is explained in Chapter 2. Let’s take a look at the initial problem 

components: the problem statement, and the initial question. 

Problem Statement: Debbie has two jobs over the summer. At 
one job, she bags groceries at Giant Eagle and gets paid 5 
dollars an hour. At the other job she delivers newspapers 
and gets paid 7 dollars an hour. She works a total of 30 
hours a week, and she works g hours bagging groceries. 
Write an expression for the total amount she earns a week. 
 
Initial Question: Please write an expression for her total 
pay per week. (You need to create additional number blocks 
if necessary.) 
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The problem has the answer tree structure shown in Figure 13, which is 

assembled in Mason and has the corresponding blocks bound to its nodes. The blocks 

play a key role in the dialogue generation process, because it’s their slots’ values that get 

inserted into the question templates. Thus, it’s necessary to ensure that every block has all 

the attribute slots required by the strategies in order prevent errors from occurring. 

Some errors are handled automatically by the system. For example, if the author 

tries to access a non-existent attribute value slot of a block, the string <undefined> will 

be returned and the system will remain stable. However, if the author does not provide 

the correct number of parameters in a template or a diagnostic rule, Java exceptions 

might occur. Mason attempts to provide feedback regarding most of the errors, but 

exceptions can cause the system to become unstable. 

For the “Debbie” problem, Figure 10 illustrates that the problem requires the 

creation of eleven answer tree blocks. We need to take into account that two different 

blocks are necessary for the * operator, since they have different values for their 

Description slots. The block for the variable g can be used twice. Although it doesn’t 

appear in the answer tree, an additional block should be created for the / operator as well. 

This is used when answer blocks are generated for the student. It’s not enough if only +, -, 

and * are available for the student. The / operator should be displayed as well, even if it’s 

not necessary for the problem. Let’s take a look at the blocks and their slot values. 

Symbol: 5 
Type: number 
Description: her hourly wage for bagging groceries 
Ignore: false 

 

 
Commutative: false 
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Symbol: 7 
Type: number 
Description: her hourly wage for delivering 

newspapers 
Ignore: false 
Commutative: false 

 

 

Variable: 7 

 
Symbol: 30 
Type: number 
Description: her total number of hours worked a 

week 
Ignore: false 

 

 

Commutative: false 
 

Symbol: g 
Type: variable 
Description: her hours spent bagging groceries 
Ignore: false 
Commutative: false 

 

 

Numerical: 10 

 
Symbol: + 
Type: operator 
Description: Debbie’s total weekly salary 
Ignore: false 
Commutative: true 
Value: plus 

 

 

Numerical: 190 

 
Symbol: - 
Type: operator 
Description: the number of hours she spends 

delivering newspapers 
Ignore: false 
Commutative: false 
Value: minus 

 

 

Numerical: 20 

 
Symbol: * 
Type: operator 
Description: her weekly salary for bagging 

groceries 
Ignore: false 
Commutative: true 
Value: times 

 

 

Numerical: 50 
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Symbol: * 
Type: operator 
Description: her weekly salary for delivering 

newspapers 
Ignore: false 
Commutative: false 
Value: times 
Numerical: 140 

 

 

Variable: B 

 
Symbol: / 
Type: operator 
Description: <ignore> 
Ignore: false 
Commutative: false 

 

 

Value: divided by 

 
Symbol: <ignore> 
Type: connector 
Description: the number of hours she spends 

delivering newspapers 
Ignore: true 
Commutative: false 

 

 

Variable: C 

 
Symbol: ( 
Type: parenthesis 
Description: <ignore> 
Ignore: true 

 

 
Commutative: false 

 
Symbol: ) 
Type: parenthesis 
Description: <ignore> 
Ignore: true 

 

 
Commutative: false 

 
Most of the attribute slot values, such as Symbol, have been discussed in Chapter 

2; however, the reader might not understand the necessity of the dynamic attributes, 

which are displayed in italic. In order to understand why they are present, let’s take a 

look at the replicas of Ms. Lindquist’s strategies and see how they use the attribute slots. 

Examples are given for each of the strategies’ templates as well, using the root + node in 

the “Debbie” problem’s answer tree as the current faulty node. The examples include 
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fully generated questions from each of the question phrases. A possible answer 

combination to the questions and their dynamic answer block listing are shown as well. 

Strategy 1 
Concrete Articulation 

Question 1 
Phrase 1 Could you tell me the value of <m> node -> description 

</m> if <list> type = variable symbol is numerical and 
</list> <ns> ? 
 
Example: Could you tell me the value of Debbie’s total 
weekly salary if g is 10? 

Phrase 2 If <list> type = variable symbol is numerical and 
</list> <ns> , then the value of <m> node -> 
description </m> is actually <m> node -> numerical 
</m> <ns> . So, please input: <m> node -> numerical 
</m> <ns> . 
 
Example: If g is 10, then the value of Debbie’s total 
weekly salary is actually 190. So, please input: 190. 

Phrase 3 Please input: <m> node -> numerical </m> <ns> . 
 
Example: Please input: 190. 

Depth 0 

Rules Answer Rules: 
type = operator   numerical 
 
Answer Block Rules: 
type = operator   symbol 
type = variable   symbol 
type = parenthesis  symbol 

Answer 190 

Blocks +, -, *, /, g, (, ) 

Question 2 

Phrase 1 Show how you calculated that <m> node -> description 
</m> is <m> node -> numerical </m> by writing it out 
as an expression using numbers and <list> type = 
variable numerical for symbol and </list> <ns> . 
 
Example: Show how you calculated that Debbie’s total 
weekly salary is 190 by writing it out as an 
expression using numbers and 10 for g. 

Phrase 2 If <list> type = variable symbol is numerical and 
</list> <ns> , then the expression for <m> node -> 
description </m> is actually <m> node -> <structure> 
</m> <ns> <ns> . So, please input that. 
 
Example: If g is 10, then the expression for Debbie’s 
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total weekly salary is actually 5 * 10 + 7 * ( 30 – 
10 ). So, please input that. 

Phrase 3 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: 5 * 10 + 7 * ( 30 – 10 ). 

Depth <max> 

Rules Answer Rules: 
type = variable   numerical 
symbol = <any>   symbol 
 
Answer Block Rules: 
type = operator   symbol 
type = variable   symbol 
type = parenthesis  symbol 

Answer 5 * 10 + 7 * ( 30 – 10 ) 

Blocks +, -, *, /, g, (, ) 

Question 3 

Phrase 1 Now, simply replace <list> type = variable numerical 
with symbol and </list> in your expression to get the 
<m> node -> description </m> <ns> . 
 
Example: Now, simply replace 10 with g in your 
expression to get Debbie’s total weekly. 

Phrase 2 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: 5 * g + 7 * ( 30 – g ). 

Depth <max> 

Rules Answer Rules: 
symbol = <any>   symbol 
 
Answer Block Rules: 
type = operator   symbol 
type = variable   symbol 
type = parenthesis  symbol 

Answer 5 * g + 7 * ( 30 – g ) 

Blocks +, -, *, /, g, (, ) 

 
The Concrete Articulation strategy is relatively straight-forward, because it 

always generates the answer block listing for the student using the Symbol attributes of 

blocks. One item to note is Depth. The author can specify for each question how deep 

Mason should diagnose the answer tree relative to the current faulty node. The value for 
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Depth throughout the replicas of the four strategies is usually 0, 1, or <max>. Other values 

are possible but unnecessary for our purposes. 

Also, keep in mind that Answer lists one possible answer combination only. After 

all, 5 * g + 7 * (30 – g) has many different combinations due to the commutative 

property. Finally, Blocks displays the answer block listing that is dynamically generated 

for each question. Note, for example, that number blocks are always missing. As 

discussed previously, it’s best to allow the students to create those blocks themselves. 

This makes the questions seems less like multiple-choice ones. Below are the three 

remaining strategies, displayed in the same format as the first: 

Strategy 2 
Explain in English First 

Question 1 
Phrase 1 Can you explain how you would find <m> node -> 

description </m> <ns> ? Please complete the following: 
<m> node -> description </m> is equal to... 
 
Example: Could you explain how you would find Debbie’s 
total weekly salary? Please complete the following: 
Debbie’s total weekly salary is equal to… 

Phrase 2 Try to find a relationship between <m> child 0 -> 
description </m> and <m> child 1 -> description </m> 
<ns> . 
 
Example: Try to find a relationship between her weekly 
salary for bagging groceries and her weekly salary for 
delivering newspapers. 

Phrase 3 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: her weekly salary for bagging 
groceries plus her weekly salary for delivering 
newspapers. 

Depth 1 

Rules Answer Rules: 
type = operator   value description 
type = number   description 
type = variable   description 
 
Answer Block Rules: 
type = operator   value description 
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type = number   description 
type = variable   description 

Answer her weekly salary for bagging groceries plus 

her weekly salary for delivering newspapers 

Blocks plus, minus, times, divided by, 

her hourly wage for bagging groceries, 

her hourly wage for delivering newspapers, 

her total number of hours worked a week, 

her hours spent bagging groceries, 

Debbie’s total weekly salary, 

the number of hours she spends delivering newspapers, 

her weekly salary for bagging groceries, 

her weekly salary for delivering newspapers 

Question 2 

Phrase 1 Now, follow that up by writing an expression for <m> 
node -> description </m> <ns> . 
 
Example: Now, follow that up by writing an expression 
for Debbie’s total weekly. 

Phrase 2 When inputting your expression, try to use the facts 
that <m> child 0 -> description </m> is <m> child 0 -> 
<structure> </m> <ns> and <m> child 1 -> description 
</m> is <m> child 1 -> <structure> </m> <ns> <ns> . 
 
Example: When inputting your expression, try to use 
the facts that her weekly salary for bagging groceries 
is 5 * g and her weekly salary for delivering 
newspapers is 7 * ( 30 – g ). 

Phrase 3 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: 5 * g + 7 * ( 30 – g ). 

Depth <max> 

Rules Answer Rules: 
symbol = <any>   symbol 
 
Answer Block Rules: 
type = operator   symbol 
type = variable   symbol 
type = parenthesis  symbol 

Answer 5 * g + 7 * ( 30 – g ) 

Blocks +, -, *, /, g, (, ) 
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Strategy 3 
Convert the Problem into an Example to Explain 

Question 1 
Phrase 1 The answer is actually <m> node -> <structure> </m> 

<ns> <ns> , so please input that. 
 
Example: The answer is actually 5 * g + 7 * ( 30 – 
g ), so please input that. 

Phrase 2 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: 5 * g + 7 * ( 30 – g ). 

Depth <max> 

Rules Answer Rules: 
symbol = <any>   symbol 
 
Answer Block Rules: 
type = operator   symbol 
type = variable   symbol 
type = parenthesis  symbol 

Answer 5 * g + 7 * ( 30 – g ) 

Blocks +, -, *, /, g, (, ) 

Question 2 

Phrase 1 Let me ask you a few questions to help you understand 
the answer. What does <m> child 0 -> <structure> 
symbol </m> <ns> represent in the equation? 
  
Example: Let me ask you a few questions to help you 
understand the answer. What does 5 * g represent in 
the equation? 

Phrase 2 Actually, <m> child 0 -> <structure> symbol </m> <ns> 
represents <m> child 0 -> description </m> <ns> . So, 
please input that. 
 
Example: Actually, 5 * g represents her weekly salary 
for bagging groceries. So, please input that. 

Phrase 3 Please input: <m> child 0 -> description </m> <ns> . 
 
Example: Please input: her weekly salary for bagging 
groceries. 

Depth 0 

Rules Answer Rules: 
child 0 -> symbol = <any>  description 
 
Answer Block Rules: 
type = operator   description 
type = number   description 
type = variable   description 

Answer her weekly salary for bagging groceries 
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Blocks her hourly wage for bagging groceries, 

her hourly wage for delivering newspapers, 

her total number of hours worked a week, 

her hours spent bagging groceries, 

Debbie’s total weekly salary, 

the number of hours she spends delivering newspapers, 

her weekly salary for bagging groceries, 

her weekly salary for delivering newspapers 
Question 3 

Phrase 1 Now, what does <m> child 1 -> <structure> symbol </m> 
<ns> represent in the answer <m> node -> <structure> 
symbol </m> <ns> <ns> ? 
  
Example: Now, what does 7 * ( 30 – g ) represent in 
the answer 5 * g + 7 * ( 30 – g )? 

Phrase 2 Actually, <m> child 1 -> <structure> symbol </m> <ns> 
represents <m> child 1 -> description </m> <ns> . So, 
please input that. 
 
Example: Actually, 7 * ( 30 – g ) represents her 
weekly salary for delivering newspapers. So, please 
input that. 

Phrase 3 Please input: <m> child 1 -> description </m> <ns> . 
 
Example: Please input: her weekly salary for 
delivering newspapers. 

Depth 0 

Rules Answer Rules: 
child 1 -> symbol = <any>  description 
 
Answer Block Rules: 
type = operator   description 
type = number   description 
type = variable   description 

Answer her weekly salary for delivering newspapers 

Blocks her hourly wage for bagging groceries, 

her hourly wage for delivering newspapers, 

her total number of hours worked a week, 

her hours spent bagging groceries, 

Debbie’s total weekly salary, 

the number of hours she spends delivering newspapers, 

her weekly salary for bagging groceries, 

her weekly salary for delivering newspapers 
Question 4 

Phrase 1 Finally, what does <m> node -> <structure> symbol </m> 
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represent? (I am not looking for the fact that it is 
<m> node -> description </m> <ns>, but rather the 
relationship between the two entities that we just 
discussed.) 
 
Example: Finally, what does 5 * g + 7 * ( 30 – g ) 
represent? (I am not looking for the fact that it is 
Debbie’s total weekly salary, but rather the 
relationship between the two entities that we just 
discussed.) 

Phrase 2 Actually, the answer I was looking for is that <m> 
node -> <structure> symbol </m> <ns> represents <m> 
node -> structure </m> <ns> <ns> . So, please input 
that. 
 
Example: Actually, the answer I was looking for is 
that 5 * g + 7 * ( 30 – g ) represents her weekly 
salary for bagging groceries plus her weekly salary 
for delivering newspapers. So, please input that. 

Phrase 3 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: her weekly salary for bagging 
groceries plus her weekly salary for delivering 
newspapers. 

Depth 1 

Rules Answer Rules: 
type = operator   value description 
type = number   description 
type = variable   description 
 
Answer Block Rules: 
type = operator   value description 
type = number   description 
type = variable   description 

Answer her weekly salary for bagging groceries plus 

her weekly salary for delivering newspapers 

Blocks plus, minus, times, divided by, 

her hourly wage for bagging groceries, 

her hourly wage for delivering newspapers, 

her total number of hours worked a week, 

her hours spent bagging groceries, 

Debbie’s total weekly salary, 

the number of hours she spends delivering newspapers, 

her weekly salary for bagging groceries, 

her weekly salary for delivering newspapers 
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Strategy 4 
Introduce a New Variable 

Question 1 
Phrase 1 If <m> child 0 -> variable </m> was <m> child 0 -> 

description </m> and <m> child 1 -> variable </m> was 
<m> child 1 -> description </m> <ns> , then what would 
be <m> node -> description </m> <ns> ? 
 
Example: If A was her weekly salary for bagging 
groceries and B was her weekly salary for delivering 
newspapers, then what would be Debbie’s total weekly 
salary? 

Phrase 2 Remember that <m> node -> description </m> equals to 
<m> child 0 -> description </m> <m> node -> value </m> 
<m> child 1 -> description </m> <ns> . Please try 
again. 
 
Example: Remember that Debbie’s total weekly salary 
equals to her weekly salary for bagging groceries plus 
her weekly salary for delivering newspapers. Please 
try again. 

Phrase 3 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: A + B. 

Depth 1 

Rules Answer Rules: 
depth = 0    value 
symbol = <any>   variable 
 
Answer Block Rules: 
type = operator   value variable 
symbol = <any>   variable 

Answer A + B 

Blocks +, -, *, /, A, B, C 

Question 2 

Phrase 1 Now, can you state this in terms of the numbers given 
in the problem? 
 
Example: Now, can you state this in terms of the 
numbers given in the problem? 

Phrase 2 Please input: <m> node -> <structure> </m> <ns> <ns> . 
 
Example: Please input: 5 * g + 7 * ( 30 – g ). 

Depth <max> 

Rules Answer Rules: 
symbol = <any>   symbol 
 
Answer Block Rules: 
type = operator   symbol 
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type = variable   symbol 
type = parenthesis  symbol 

Answer 5 * g + 7 * ( 30 – g ) 

Blocks +, -, *, /, g, (, ) 

 
As we can observe from the strategies, the question templates do in fact use all of 

the attribute slots of the defined blocks. For example, while the Concrete Articulation 

strategy never requires the Value slot, the Introduce a New Variable strategy does. Thus, 

the additional dynamic slots are essential for the emulation of Ms. Lindquist’s strategies. 

A higher number of attribute slots allows for more flexible dialogue generation, but also 

adds to the overall ITS development time. Also, each question currently contains at most 

three question phrases. This is sufficient for the emulation of Ms. Lindquist. The author, 

however, can add additional phrases for more in-depth hints or suggestions for students. 

Finally, please note how the answer blocks provided for the student change from 

question to question. Sometimes operators and variables are provided for the student; at 

other times, English phrases are given. Recall that numbers are never provided for the 

student as answer blocks, unless they are specifically input by the student. For example, 

for the first question of the Concrete Articulation strategy, the student needs to construct 

a block for 190. This makes the question seem less like a multiple-choice one. 

Are these strategies sufficient for the emulation of Ms. Lindquist? Actually, one 

more simple strategy is required. What happens when a specific number or variable is 

missing from the student answer? It would be illogical if a complex strategy from Ms. 

Lindquist would get executed for a missing number. Recall that numbers and variables 

are always leaf nodes in the answer tree; therefore, we can construct a simple strategy 

that can inquire the student about them. The following set of templates does the job: 
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Strategy 5 
Inquire about Missing Leaf Node 

Question 1 
Phrase 1 You seem to be missing <m> node -> description </m> in 

your answer. According to the problem statement, that 
is <m> node -> description </m> <ns> ? 
 
Example: You seem to be missing her hourly wage for 
delivering newspapers in your answer. According to the 
problem statement, what is her hourly wage for 
delivering newspapers? 

Phrase 2 Actually, <m> node -> description </m> is <m> node -> 
symbol </m> <ns> . So, please input that. 
 
Example: Actually, her hourly wage for delivering 
newspapers is 5. So, please input that. 

Phrase 3 Please input: <m> node -> symbol </m> <ns> . 
 
Example: Please input: 5. 

Depth 0 

Rules Answer Rules: 
symbol = <any>   symbol 
 
Answer Block Rules: 
type = variable   symbol 

Answer 5 

Blocks g 

 
Now, let’s take a look at the constructed strategy sets and diagnostic rules. For Ms. 

Lindquist, this rule base is surprisingly simple! The ITS has over seventy production 

rules for understanding algebraic expressions. Mason, on the hand, can emulate Ms. 

Lindquist’s dialogue generation features accurately without such production rules. This 

has its advantages and disadvantages. 

The advantage is that only a few rules are required for selecting eligible strategies. 

The disadvantage is that Mason doesn’t understand the material on which it tutors the 

student. Understanding the student’s answer plays a key role in Ms. Lindquist’s dialogue 

generation, since the tutoring system can adept its dialogue to the student’s expression. 

Mason, on the other hand, can only scan the student’s answer for possible good answers. 
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Despite this drawback, Mason is still able to generate dialogue that is reminiscent of Ms. 

Lindquist’s. Now, let’s take a look at the diagnostic rules as well as the strategy sets 

bound to them: 

Rule Strategy Set 
children = 0 Strategy 5 
children = 2 Strategies 1, 2 
children = 2 
<and> ( child 0 -> children > 0 
        <or> child 1 -> children > 0 ) 

Strategies 1, 2, 4 

children = 2 
<and> depth = 0 

Strategies 1, 2, 3, 4 

 
As we can see, the diagnostic rules don’t have much to do with actual 

mathematics. They simply specify how many children the current faulty node is required 

to have in order for certain strategies to be available for dialogue generation. More 

complex rules can be written if the author wishes to define strategies for very specific 

errors. For example, students often forget to use parentheses in their answers. An entire 

strategy can be created just for dealing with missing parentheses. 

3.2 Evaluation of Reconstruction Time 

The purpose of authoring tools is to speed up ITS construction time; thus, it’s 

essential to analyze whether or not this is true for Mason. Ms. Lindquist took roughly a 

year to create. How much faster can Mason reproduce the ITS? It’s best to analyze this 

by evaluating the construction times of each component separately. The first component 

to look at is library of strategies, since strategies are the most time-consuming to build. 

Not only are they responsible for dialogue generation, but also contain answer rules used 

by the diagnostic system. The table below displays the measures assembly times of the 

strategies and their corresponding question templates. 
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Strategy 1: Concrete Articulation 
Question 1 Question 2 Question 3 
~15 minutes ~20 minutes ~5 minutes 

Strategy 2: Explain in English First 
Question 1 Question 2  
~25 minutes ~10 minutes  

Strategy 3: Convert the Problem into an Example to 
Explain 

Question 1 Question 2 Question 3 
~25 minutes ~15 minutes ~5 minutes 

Strategy 4: Introduce a New Variable 
Question 1 Question 2  
~25 minutes ~5 minutes  

 
We can see that the strategies can in fact be constructed in a relatively short 

period of time. Strategies and question templates are meant to be universal; thus, it’s 

important to assemble problems in a way so that no problem-specific strategies and 

additional question templates need to be created. 

Now that we observed the data collected on the strategies, let’s take a look at how 

long the construction of the “Debbie” problem took. The assembly of the answer tree and 

the creation of the blocks took roughly and hour altogether. Keep in mind that before the 

actual construction process, the template for the Ms. Lindquist version of the problem 

was already available. Yet, a significant amount of conceptualization was still required, 

since Ms. Lindquist stores problems differently than Mason. Thus, it’s safe to say that the 

addition of brand new problems takes roughly the same amount of time as the 

reconstruction of Ms. Lindquist’s problems. Problem construction time is relative to 

problem complexity. 

To see if the assembly of additional problems takes shorter, the “Anne” exercise 

was reconstructed as well. It has a simpler answer tree and fewer blocks, thus the 
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assembly process took roughly thirty minutes. The reconstruction of the strategies is 

unnecessary, because the ones for the “Debbie” problem can immediately be used for the 

“Anne” problem as well. This reusability saves significantly speeds up the construction 

process. 

We need to take into consideration that the measurements only take the 

component construction time into consideration. It actually took a considerable amount of 

time to analyze Ms. Lindquist’s architecture and design the question templates for the 

replica. All in all, it’s safe to say that Ms. Lindquist can be reproduced with Mason in 

roughly a week. That’s still considerably shorter that a year, which is how long it took 

build Ms. Lindquist from scratch! 

3.3 Evaluation of Reconstruction Accuracy 

Finally, how well does Mason’s replica of Ms. Lindquist fare compared to the 

original? Are their generated dialogues similar? Do their diagnostic routines lead the 

student to the right answer in a similar fashion? The most logical way to answer these 

questions is to input two identical sets of student answers into each of the systems and 

compare their generated dialogue. Let’s take a look at the dialogue for the Concrete 

Articulation strategy in Chapter 1, and compare it to what Mason generates for the same 

exact input values: 

Problem: Anne is rowing a boat in a lake and is 800 yards 
from the dock from which she started. She rows back towards 
the dock at 40 yards per minute for m minutes and stops to 
rest. How far is she from the dock now? 
 
Tutor: Please write an expression for the distance Anne has 
left to row. 
Student: 800 + 40 * m 
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Tutor: No. But, 40 * m is correct for the distance rowed so 
far. Could you tell me the value of the distance Anne has 
left to row if m is 3? 
Student: 680 

 
Tutor: Correct. Show how you calculated that the distance 
rowed so far is 680 by writing it out as an expression 
using numbers and 3 for m. 
Student: 800 – 40 * 3 
 
Tutor: Correct. Now, simply replace 3 with m in your 
expression to get the final answer. 
Student: 800 – 40 * m 
 
Tutor: Correct. You solved the entire problem! 

 
Aesthetics aside, the content of the dialogue above is almost identical for Ms. 

Lindquist’s. We can note one major difference, which appears in “Show how you 

calculated that the distance rowed so far is 680 by writing it out as 

an expression using numbers and 3 for m.” Ms. Lindquist actually lists the 

numbers for the student, whereas Mason only mentions that numbers should be used. The 

current version of the authoring tool doesn’t support the generation of such lists, since 

similar dialogue can be generated using the system’s <list> function. Other than this 

discrepancy, the dialogue is almost identical in content. This is not only true for the 

Concrete Articulation strategy, but for the Explain in English First and Introduce a New 

Variable strategies as well. 

The only strategy that truly illustrates Mason’s limitation is the Convert the 

Problem into an Example to Explain strategy. The problem is that this strategy uses a top-

down methodology for tutoring the student, and Mason only supports bottom-up 

diagnosis. Thus, I was forced to create question templates that would emulate Ms. 

Lindquist’s dialogue as closely as possible. Let’s take a look at what Mason generates: 

Problem: In math class there are 12 more boys than girls. 
If the number of girls is g, write an expression for the 
total number of students in the class. 
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Tutor: Please write an expression for the total number of 
students in a class. 
Student: 2 * g - 12 
 
Tutor: Hmm. No. The answer is actually g + ( g + 12 ), so 
please input that. 
Student: g + ( g + 12 ) 
 
Tutor: Good. Let me ask you a few questions to help you 
understand the answer. What does g represent in the 
equation? 
Student: the total number of students minus the number of 
boys 
 
Tutor: Hmm. No. Actually, g represents the number of girls. 
So, please input that. 
Student: the number of girls 
 
Tutor: Good. Now, what does ( g + 12 ) represent in the 
answer g + ( g + 12 )? 
Student: the number of boys 

 
Tutor: Correct. Finally, where does g + ( g + 12 ) come 
from? (I am not looking for the fact that it is the total 
number of students in the class, but rather the 
relationship between the two entities that we just 
discussed.) 
Student: the number of boys plus the number of girls 
 
Tutor: Correct. You solved the entire problem! 
 
From the dialogue above, we can observe that the ITS produced by Mason has its 

limitations. Ms. Lindquist has a major advantage over Mason: it actually understands the 

algebraic expressions on which it tutors the student. This feature becomes essential when 

the student inputs a simplified or expanded version of the expression. Mason would 

simply mark the answer as wrong, since it cannot generate variations of a single 

mathematical expression or a set of English phrases. Ms. Lindquist, however, can verify 

that the student’s answer is correct either by coming up with the same expression using a 

set of mathematical rules, or by evaluating the student’s answer using a bunch of 

different numerical values and checking if the results match those of the desired 

expression for the same set of numerical values. This feature provides additional 

flexibility for Ms. Lindquist’s diagnostic system. 
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3.4 Chapter Conclusion 

This chapter has demonstrated that the replica of Ms. Lindquist accurately 

emulates the ITS with numerous limitations. The fact that Mason does not understand the 

domain in which it tutors the student is a huge drawback. Yet, its dialogue generation 

features match those of the tutoring system. The chapter has also demonstrated that Ms. 

Lindquist can be reproduced in a significantly shorter period of time using Mason. The 

ITS’s architecture and a couple of sample problems were replicated in roughly a week, 

whereas Ms. Lindquist’s construction, which included both design and implementation, 

took over a year. 
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Chapter 4: Discussion 

The goal of this thesis is to create an authoring tool that can significantly reduce 

the time needed to construct text-based ITSs, which diagnose student answers and tutor 

students by asking them a series of dynamically generated pedagogical questions. The 

previous chapter has demonstrated that this goal has been met. Using Mason, it is 

possible to reproduce a close replica of Ms. Lindquist, the complex ITS chosen for 

evaluation, in a relatively much short period of time. The previous chapter also pointed 

out Mason’s strengths and shortcomings, which are visible when Mason’s dialogue-

generation is compared to Ms. Lindquist’s. This chapter discusses the authoring tool’s 

limitations, and how it can be improved upon in both the graphical user interface and 

system architecture departments. 

4.1 Limitations 

Currently, Mason’s hierarchical domain model is relatively rigid, and this results 

in numerous limitations. Representing the problem answer as a tree has great potential, 

mainly due to the fact that decision trees can be built! However, due to Mason’s rigid tree 

structure, this is not currently possible. Every single node in the answer tree has to show 

up in the student’s answer in order for the system to mark the answer correct. 

In order to implement structures like decisions trees, Mason needs to support 

<or> nodes. An <or> node gives the diagnostic system a choice of choosing either one of 

the node’s children as a path when comparing the student answer to the answer tree. To 

illustrate this, let’s look at a simple problem. Let’s create the answer tree for putting on 
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socks and shoes. In the tree below, “LS” stands for “Left Sock”, “RS” for “Right Sock”, 

“LSh” for “Left Shoe”, and “RSh” for “Right Shoe”. 

 
Figure 19 - Answer tree for the "Shoe" problem 

 
As we can see, simply by adding an <or> node, which allows the diagnostic 

system to choose a path, we can create simple decision trees. This not only makes the 

system more flexible, but also domain-independent! Mason would not be limited to 

algebra anymore. The problem with Mason’s current implementation is that diagnostic 

system has to make sure that every node in the answer tree exists in the student’s answer. 

The <or> node would eliminate this rigid limitation. 

Also, it has been mentioned that Mason knows nothing about the material on 

which is tutors the student. This is a major drawback, especially during the diagnostic 

phase. If the student inputs a simplified version of the desired answer, his or her answer 

will be marked as incorrect. Mason needs support for answer tree rules that can reorder 

blocks (or combine their attributes) in ways so that more student answers are accepted. 

This is no small feat, especially if the system doesn’t understand the meaning of the 
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blocks. Thus, an elementary understanding of numbers is necessary, to which the author 

can then apply the answer tree rules. 

4.2 Future Work and Conclusions 

First, let’s take a look at Mason’s graphical user interface. Initially, a drag-and-

drop interface was planned, in which the user would only have a single workspace to 

work in instead of several areas accessible only by tabs. This interface would have made 

the construction of blocks and answer trees, both of which would have colorful graphical 

representations for clarity, much faster and less cumbersome than what the current 

version of Mason offers. The current interface, however, is quite easy to use once the 

author gets past the steep learning curve. As illustrated in Chapter 3, it is possible for an 

experienced Mason user to replicate a complex ITS in a relatively short period of time. 

Yet, a more user-friendly interface would greatly improve upon the speed and quality of 

the ITS construction process. 

One of the major problems of the user interface is the rule syntax. For example, 

the question template code <list> type = variable symbol is numerical and 

</list> makes little logical sense even for an expert computer user. Awkward syntax 

like previous code snippet is partially responsible for Mason’s steep learning curve. The 

following two slight modifications would make the code more readable: 

<list> if type = variable then print symbol is numerical 
using and </list> 
<list> if ( type = variable ) then print symbol “is” 
numerical using “and” </list> 
 
Some of today’s sophisticated development tools provide pull-down menus for 

assembling code fragments. Implementing such a feature would reduce the amount of 

typing required to construct question templates and rules as well as lessen the 
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occurrences of typos. Currently, Mason lacks a good error-checking mechanism. Thus, if 

the user misspells a keyword or forgets to provide the correct number of parameters for a 

feature, serious errors can occur. Such errors include Java exceptions, which may require 

the re-launch of Mason. This prevents the tool from being commercially available. A 

good user interface would support an effective error-detection mechanism. 

Now, let’s move onto the dialogue generation system of Mason. Aesthetically, 

one of the authoring tool’s flaws is that it lacks customization features for positive and 

negative feedback. Aesthetics are important; a good author can get really grab the 

attention of the student with catchy feedback that appears before template-generated 

dialogue. Right now, Mason has a library of short phrases to randomly pick from, but this 

might get repetitive for students who use the system for lengthy periods of time. Finally, 

the authoring tool should be accompanied by tutoring software with a sophisticated 

student model. Right now, the only way to execute problems in Mason is to do it under 

the Evaluator tab. 

Mason has satisfied the goal of this thesis. It’s a solid authoring tool for 

constructing text-based ITSs that are able to diagnose student answers and generate 

pedagogical dialogue accordingly. With numerous major upgrades to its graphical user 

interface and internal architecture, it can truly become a flexible, domain-independent 

authoring tool for making the complex process of ITS construction easier. 
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