
1

Solving Binary Multivariate Quadratic
Systems on FPGA

A Major Qualifying Project

Submitted to the Faculty of Worcester Polytechnic Institute

In partial fulfillment of requirements for the Degree of Bachelor of Science in Electrical and

Computer Engineering

By

Frank Kennedy

This Report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these

reports on the web without editorial or peer review.

Date: 4/26/2023

Project Advisor: Dr. Koksal Mus

2

Acknowledgements

 I would like to thank Professor Koksal Mus for being my advisor during this MQP and for

his endless support allowing me to complete this project. Professor Mus was always available

and ready to answer whatever questions I had for this project, and his insight proved to be

invaluable during these terms. I would also like to thank Worcester Polytechnic Institute and the

Electrical and Computer Engineering for giving me the opportunity to participate in this project.

Finally, I would like to thank James McAllese, Liam Stearns, and Carlton Mugo for their research

on the topic and working towards a linear system solver provided me with an amazing starting

point for my work. Their work made learning about the systems engaging and provided me with

a better starting point when developing my code instead of working purely from scratch.

3

Abstract

 The goal of this project was to design a program that would be able to solve a given set

of quadratic equations with binary coefficients that would effectively reduce the complexity

required to solve the system normally. To achieve this, the system was converted into a matrix,

which was then simplified by using a modified version of Gaussian elimination in order to find

partial solutions that were then combined into a full solution once tested across the entire

system. To verify the calculated solutions, an exhaustive search was also completed to ensure

validity. The code for both the modified Gaussian (the recursive method) and the exhaustive

method can be seen in the Appendix.

4

Table of Contents

Acknowledgements .. 2

Abstract ... 3

Table of Contents .. 4

Table of Figures ... 5

Background ... 6

Linear Solving Improvements .. 7

Recursive Search Program .. 12

Example System .. 15

Recursive Search Program Code .. 24

Exhaustive Search Program .. 27

Results ... 28

Conclusion .. 29

References .. 30

Appendix ... 31

Verilog Exhaustive Search Code .. 31

Verilog Code for Recursive Search Function ... 46

5

Table of Figures

Figure 1: Rules for Two Equations with One Differing Variable…………………………………………………………………8

Figure 2: Possible Solutions for Equations with Same Coefficients but Different Right-Hand Sides…………10

Figure 3: Rules for Two Equations with Two Differing Variables……………………………………………………………..10

Figure 4: Matrix Sorted into Independent and Dependent Variables………………………………………………………12

Figure 5: Matrix Organization of Quadratic System………………………………………………………………………………..15

Figure 6: Linear Matrix with Assigned Weights………………………………………………………………………………………15

Figure 7: Linear Matrix Organized by Weight…………………………………………………………………………………………16

Figure 8: Linear Matrix After Column Swapping ……………………………………………………………………………………16

Figure 9: Full Quadratic Matrix to be used in the Recursive Search……………………………………………………….17

Figure 10: Setting X4 Terms to Zero………………………………………………………………………………………………………17

Figure 11: Updated Matrix with X1 = X3 = 1 and X4 = 0………………………………………………………………………..18

Figure 12: Updated Matrix with X1 = X3 = 1 and X4 = X5 = 0…………………………………………………………………19

Figure 13: Reorganized Matrix to Redefine Independent Variables……………………………………………………….20

Figure 14: Testing the Full Solution……………………………………………………………………………………………………….20

Figure 15: Updated Initial Matrix Setting X4 = 1…………………………………………………………………………………….21

Figure 16: Updated Matrix with X1 = X3 = 0 and X4 = 1…………………………………………………………………………22

Figure 17: Updated Matrix with X1 = X3 = 0 and X4 = X5 = 1…………………………………………………………………22

Figure 18: Testing the Full Solution……………………………………………………………………………………………………….23

6

Background

The aim of this project was to develop a program that could be used to efficiently solve binary

quadratic systems on low resource hardware. To achieve this, the given system would first be

converted into a matrix that would allow the program to use linear algebra to compute the

solutions. Ordinarily, when using linear algebra to solve a system of equations, there can either

be no solutions, one solution, or an infinite number of solutions. In the case of a binary system,

where the values are either 0 or 1, the infinite number of solutions that could have resulted are

brought down to 2𝑛 possible solutions, where n represents the number of variables in the

system. For this project, while a quadratic system is being used, it varies very slightly than a

linear system when solving. As previously mentioned, in a binary system, the only applicable

values are 0 and 1. Due to this, anything multiplied by 0 is 0, and anything multiplied by 1 is

itself, which simulates a more linear system. However, when looking at the case of 2𝑛 possible

solutions, the n here now represents the n linear variables present in the system, none of the

quadratic.

 To achieve this goal, a modified version of Gaussian elimination and an exhaustive

search will be used. As written about in a paper by Wen Wang, and implemented by Liam

Stearns and Carlton Mugo, to solve a large system converted into a matrix, one should break the

matrix into smaller segments and solve for the segments produced individually. Due to the

limitations of Gaussian elimination, which can result in numbers beyond just 0 and 1, the

exhaustive search is used in conjunction to help verify the solutions as they are found. While

this does work with linear systems, in a quadratic system, more adjustments must be made.

7

Linear Solving Improvements

While reviewing the solving process for the linear equation system, it was seen that

having more subsections, or smaller pieces to find partial solutions for would ultimately help

reduce the complexity of the system as a whole. Ordinarily, the system would have 2𝑛 potential

solutions, where n is equal to the number of variables featured in the system. However, by

reducing the system into subcategories, the complexity of the system would decrease as the

pieces increased. As an example, in a system with eight variables, the number of possible

solutions available is 256. If the system could be broken up into four different groups, the

number of possible solutions is now 2𝑛−𝑠, where s is equivalent to the number of groups. This

results in 16 possible solutions, which is drastically better than the initial amount.

Additionally, circumstances where equations were exact except for a few variables after

the recursive sorting was done were also observed. To explore this relationship, the team used

two equations, with equation 1 being written as 0101 0110 = 1, and equation 2 as 0100 0110 =

0. To establish a relationship between possible solutions and a case like this, a table was created

to compare the coefficients and the potential solutions to the answers provided in the original

equation. For a difference in one variable, the following rules were established below. In the

table below, the Rest category defines what the solution adds to using bitwise addition with the

exception of the variable in question. The coefficients and right-hand side categories refer to

what the variable in question is and what their associated answer is. The solution category

states whether a solution exists or not, and the possible solution section states what the

variable in question must be masked with in order for the solution, in conjunction with the rest

of the solution, to exist in the problem.

8

Rest Coefficients
(E1 & E2)

Right Hand Side
(E1 & E2)

Solution Possible
Solution

0 00 00 Yes 0

0 01 00 No N/A

0 10 00 No N/A

0 11 00 No N/A

0 00 01 No N/A

0 01 01 Yes 0

0 10 01 No N/A

0 11 01 No N/A

0 00 10 No N/A

0 01 10 No N/A

0 10 10 Yes 1

0 11 10 No N/A

0 00 11 No N/A

0 01 11 No N/A

0 10 11 No N/A

0 11 11 Yes 1

1 00 00 No N/A

1 00 01 Yes 1

1 00 10 Yes 0

1 00 11 Yes 0

1 01 00 Yes 1

1 01 01 No N/A

1 01 10 Yes 0

1 01 11 Yes 0

1 10 00 Yes 1

1 10 01 Yes 1

1 10 10 No N/A

1 10 11 Yes 0

1 11 00 Yes 1

1 11 01 Yes 1

1 11 10 Yes 0

1 11 11 No N/A

Figure 1: Rules for Two Equations with One Differing Variable

These rules help simplify the solution finding process even more. By finding what the variable

must be in the solution, the team is able to remove it fully from the equation by making proper

adjustments through adding the variable to the right-hand side. The removal of this variable

9

helps shrink the complexity of the search, making what was originally 28 possible solutions now

27 possible solutions.

To refine this process even further, the team additionally tested this theory with two

differing coefficients. Like the trials above, the same equations were utilized, however one

coefficient was changed so that the two different coefficient case could be tested. This meant

using equation 1 as 0101 0110 = 1 and equation 2 as 0100 0110 = 0 (for example, equation 1

would be listed as 0101 1110 = 1, and equation 2 as 0100 0110 = 0). In addition to this, the team

also tested these conditions under a variety of factors, such as differing variables and differing

right hand sides, or the same coefficients and same right-hand sides. This was more complex

than the one differing coefficient but led to more cohesive discoveries found below. In the

following tables, the blue font stands for the original equations, green are the coefficients in

question, and red is for the solution coefficients that are being changed. For a solution to be

viable, it must work for both equations. This is signified by having two 1s in the RHS column. The

first 1/0 signifies equation 1 and the second 1/0 signifies equation 2. If a solution works, it will

be highlighted in green. Below is the first case, where the coefficients for each equation were

the same, but the right-hand sides were different.

10

 A1 A2 A3 A4 A5 A6 A7 A8 RHS

E1 0 1 0 1 1 1 1 0 1

E2 0 1 0 0 0 1 1 0 0

 A1 A2 A3 A4 A5 A6 A7 A8 E1|E2

Solutions

1 1 1 0 0 1 1 1 Y|N

1 1 1 0 1 1 1 1 N N

1 1 1 1 0 1 1 1 N N

1 1 1 1 1 1 1 1 Y N

1 0 1 0 0 1 1 1 N Y

1 0 1 0 1 1 1 1 Y Y

1 0 1 1 0 1 1 1 Y Y

1 0 1 1 1 1 1 1 N Y

Figure 2: Possible Solutions for Equations with Same Coefficients but Different Right-Hand Sides

As seen above, for this case, a solution is only present when the rest of the solution is

equivalent to 0, and the coefficients (the ones in red) are either 01 or 10. Using this method, the

team observed other cases featured in the table below.

Case # Coefficients E1 = RHS Coefficients E2 =RHS Rest Solutions

1 11 = 1 00 = 0 0 01, 10

2 11 = 1 00 = 1 1 00, 11

3 11 = 0 00 = 1 1 01, 10

4 11 = 0 00 = 0 0 00, 11

5

10 = 1 01 = 0 1 01

0 10

6 10 = 1 01 = 1 1 00

0 11

7 10 =0 01 = 1 1 10

0 01

8 10 = 0 01 = 0 1 11

0 00

9 00 = 1 11 = 0 1 01, 10

10 00 = 1 11 = 1 1 00, 11

11 00 = 0 11 = 1 0 01, 10

12 00 = 0 11 = 0 0 00, 11

13 01 = 1 10 = 0 1 10

0 01

14 01 = 1 10 = 1 1 00

0 11

15 01 = 0 10 = 1 1 01

0 10

16 01 = 0 10 = 0 1 11

0 00

11

Figure 3: Rules for Two Equations with Two Differing Variables

When reading the chart, the first column shows the case number, the second shows the

coefficients in the first equation and what the equation equals to, the third column shows the

coefficients of the second equation in question and that equations right hand side, the fourth

column shows what the rest of the solution needs to be equal to for it to work, and the final

column shows what the coefficients in question need to be in order for a solution to be found.

As an example, when looking at case 1, equation 1 (or E1), would consist of xxx11xxx = 1 and

equation 2 would be xxx00xxx = 0. For a solution to work in case 1, the rest of the solution must

be equal to 0 (when you XOR the placeholder x’s in the solution after multiplying it by the

original coefficients, they must result to 0) and the variables in question can be either 01 or 10.

By multiplying these variables by the ones in each of the equations in case 1, the solution will

result in the given right-hand sides (RHS) seen in the original equations, allowing one to store

these values to be used later in the overall solution. Like the initial observation with the single

differing variable, solving this allows the team to simplify the equations even further by

eliminating two variables from the system entirely.

12

Recursive Search Program

 The recursive search program primarily deals with dividing the system matrix into

smaller pieces, which in turn decreases the complexity of the system. As completed before by

Liam Stearns and Carlton Mugo, the recursive search program for this project will also rely on

first organizing the linear portions of the into a more simplified matrix. In order to do this, the

linear portion of the matrix is treated as its own separate section. When the separation is

completed, it is then organized into three different parts, an upper triangle consisting of zeros,

the independent variables, and the dependent variables. The independent variables here serve

to separate the zeros from the dependent variables and are the ones that will be solved for

when deciding the partial solutions. Through this method, it is ideal to isolate the independent

variables so that the initial equation does not contain dependent variables since the dependent

variables add to the complexity of the search function. As the function proceeds down the

different equations, the solved independent variables will become part of the dependent

variable sets of the subsequent equations. This division can be seen more clearly in Figure 1

below.

Figure 4: Matrix Sorted into Independent and Dependent Variables

13

 Like the linear binary system, the quadratic approach organizes the matrix in a similar

fashion. To start this process, linear weights are assigned to each equation. The weight of each

equation is determined by the number of ones an equation has in its linear section, excluding

the right-hand side’s value (referred to as RHS). An equation with a single linear variable will

have a weight of 1 while an equation with four linear variables will have a weight of 4. Once a

weight for each equation is determined, the matrix would then be organized in ascending order.

Here, the smallest weights would be placed at the top of the matrix and the largest weights

would be placed towards the bottom. This reduces the need for subsets, which were used in the

linear recursive search algorithm in order to achieve the same result: positioning equations with

lesser weights and shared variables above heavier ones. Additionally, this allows for the smaller

groupings of ones to be found earlier on, decreasing the runtime. Once this step is completed,

the program then focuses on developing the upper triangle of zeros. To do this, the ones in each

row are pushed as far right as possible to replace the zeros located there. For the initial

equation, as it only has a single one, this one will be seen in the rightmost position. As the

program steps down to the next equation, that column would then be ignored in subsequent

reorganizations until the upper zero triangle is formed.

 After this linear reorganization is completed, the quadratic variables would then be

added to the final matrix. Here, these values will not undergo the same organization, but will

instead be placed in the same order as seen in the linear portion. As an example, if we have the

linear variables X1, X2, X3, with X3 featured in the rightmost column of the linear matrix, the

first quadratic section would feature all values including X3 (X3X1 and X3X2 in that order), then

14

X2 quantities (X2X1). There would not be an X1 section as those quantities have already been

accounted for.

 Ordinarily, to solve for the partial solutions at this point, one would compare the first

section of independent variables to the right-hand side. In the quadratic system, while this can

be done, it fails to incorporate the quadratic variables featured in the system, which can alter

the validity of the solution. To alleviate this issue, the quadratic recursive function will first start

by setting the initial linear value to either 0 or 1. While this will extend the runtime of the

system compared to the previous linear approach, this will help by reducing the complexity of

the system overall. As mentioned previously, when multiplied by 0 or 1, the resulting value will

either be 0 or the multiplicand. By doing this, as a partial solution is found, it can then be

applied to the rest of matrix, drastically reducing it. A variable of 0 would result in its erasure in

the system, while a variable of 1 would result in the value being multiplied by, turning the

quadratic value into a linear one which can then be added to the linear section. Verifying the

partial solutions found will still act the same as the linear code, however. To do so, the solution

is first masked with the variables in the equation, which then undergo bitwise addition in order

to gain one value, the right-hand side. After comparing this value to the actual right-hand side of

the equations, if they both are equal, the partial solution is stored, and the program works on

the next equation. If a partial solution does fail, the program goes back to the previous equation

and searches for another valid solution. As the aim of this program is to reduce the complexity

of the system, the aim of the independent variables is to make sure only one variable is present

in each group. This means that there are only 21 possible solutions for it, and if both fail, there

are no valid solutions for the system.

15

Example System

Below is an example of a set of eleven quadratic equations organized into a matrix

before being used in the recursive search:

 X1 X2 X3 X4 X5 X1X2 X1X3 X1X4 X1X5 X2X3 X2X4 X2X5 X3X4 X3X5 X4X5 RHS

E1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1

E2 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1

E3 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0

E4 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0

E5 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0

E6 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1

E7 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1

E8 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

E9 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0

E10 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1

E11 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0

Figure 5: Matrix Organization of Quadratic System

To begin the organization, first only the linear portion of the equations are considered.

Here, the quadratic portions are removed, and weights are assigned to each equation.

 X1 X2 X3 X4 X5 RHS Weights

E1 0 1 1 0 1 1 3

E2 1 1 1 0 0 1 3

E3 1 1 0 1 0 0 3

E4 1 0 1 1 1 0 4

E5 1 1 1 0 1 0 4

E6 0 0 1 1 0 1 2

E7 0 0 0 1 0 1 1

E8 0 0 0 1 1 0 2

E9 1 1 1 0 0 0 3

E10 0 1 0 1 0 1 2

E11 1 1 0 1 0 0 3

Figure 6: Linear Matrix with Assigned Weights

With the weights now determined, the matrix is then reorganized with the lesser

weights on top and the heavier weights at the bottom.

16

 X1 X2 X3 X4 X5 RHS

E7 0 0 0 1 0 1

E8 0 0 0 1 1 0

E6 0 0 1 1 0 1

E3 1 1 0 1 0 0

E10 0 1 0 1 0 1

E1 0 1 1 0 1 1

E2 1 1 1 0 0 1

E9 1 1 1 0 0 0

E11 1 1 0 1 0 0

E4 1 0 1 1 1 0

E5 1 1 1 0 1 0

Figure 7: Linear Matrix Organized by Weight

 Now that the matrix has been organized by weight, it can now be reorganized to form

the upper triangle grouping, independent variable grouping, and dependent variable grouping.

To do this, starting with the first equation in the matrix, if a 1 is found, the entire column swaps

places with the first 0. In this system, to begin the process, X5 and X4 will swap positions. When

looking at the subsequent equations, now that X4 has already been moved to its required spot,

it will not be considered in future organizations. The result of this can be seen below. For clarity,

the colors used in Figure 1 will be applied here to better highlight the similarities. They will be

reverted in future examples.

 X1 X2 X3 X5 X4 RHS

E7 0 0 0 0 1 1

E8 0 0 0 1 1 0

E6 0 0 1 0 1 1

E3 1 1 0 0 1 0

E10 0 1 0 0 1 1

E1 0 1 1 1 0 1

E2 1 1 1 0 0 1

E9 1 1 1 0 0 0

E11 1 1 0 0 1 0

E4 1 0 1 1 1 0

E5 1 1 1 1 0 0

Figure 8: Linear Matrix After Column Swapping

17

 Now that the linear matrix has been fully organized, the quadratic variables are added

back to the full matrix to be used for the search process.

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 1 1 1 0 0 0 0 1 1

E8 1 1 0 0 0 1 1 0

E6 1 1 1 1 1 0 0 1 0 1 1

E3 1 1 1 1 1 1 1 1 1 1 0 0 1 0

E10 1 0 1 0 0 1 1

E1 1 1 1 0 1 1 1 0 1

E2 1 1 1 1 1 1 1 1 0 0 1

E9 1 1 1 1 1 1 1 0 0 0

E11 1 1 1 1 1 1 0 0 1 0

E4 1 1 1 1 1 0 1 1 1 0

E5 1 1 1 1 1 1 1 1 1 1 0 0

Figure 9: Full Quadratic Matrix to be used in the Recursive Search

With this done, to begin, the first variable, X4, will be set to 0 in the initial search. Due to

this, the column can be ignored as anything multiplied by 0 results in 0. The same will be

applied to all X4 terms.

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

 0 0 0 0 0

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 1 0 0 0 0 1

E8 1 1 0 0 0 1 0

E6 1 1 0 0 1 0 1

E3 1 1 1 1 1 1 1 0 0 0

E10 1 0 1 0 0 1

E1 1 1 0 1 1 1 1

E2 1 1 1 1 1 1 0 1

E9 1 1 1 1 1 1 0 0

E11 1 1 1 0 0 0

E4 1 1 1 0 1 1 0

E5 1 1 1 1 1 1 1 1 0

Figure 10: Setting X4 Terms to Zero

18

 Now that this step has been completed, the program can now search for the first partial

solution. As seen in equation 7, or E7, for the right-hand side to be valid, X3X1 must be equal to

1. This means that both X3 and X1 individually equal 1 and can be accounted for in the potential

solution. With these values now found, X3 and X1 are set to 1, reducing their quadratic terms to

linear ones. These linear values are then added to the linear section of the whole matrix, being

replaced with zeros to signify a change in value (in the linear section, a red value signifies this

change, the quadratic portion does this with a grey value). This is seen in the following matrix:

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

X2 X1 X2 X5 X5 0 0 0 0 1 1 0

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 0 1 0 0 0 1

E8 0 0 0 0 0 1 0

E6 0 0 0 0 1 0 1

E3 0 0 0 1 0 0 0 0 0 0

E10 0 0 1 0 1 1

E1 0 0 1 1 1 0 1

E2 0 0 1 0 1 1 1 1

E9 0 0 1 0 0 1 0 0

E11 0 0 1 0 0 0

E4 1 0 1 0 1 0 0

E5 0 0 0 0 0 1 1 0 0

Figure 11: Updated Matrix with X1=X3=1 and X4=0

 With this completed, the program will now step down to the next equation, Equation 8,

and find the next partial solution. As seen here, X5 is the only variable in question. For the

partial solution to work, X5 must equal 0. With this now found, all X5 terms will be set to 0,

removing them from the matrix entirely.

19

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

X2 X1 X2 0 0 0 0 0 0 0 1 1 0 0

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 0 1 0 0 1

E8 0 0 0 0 0 0

E6 0 0 1 1

E3 0 0 0 0 0 0

E10 0 1 0 1

E1 0 1 1 1 1

E2 0 0 1 1 1

E9 0 0 0 0 1 0

E11 0 0 1 0 0

E4 1 0 1 0

E5 0 0 0 0 1 1 0

Figure 12: Updated Matrix with X1=X3=1 and X4=X5=0

Now, while the previous values so far have been solved for, the adjustments made to the

matrix have broken the independent variable grouping that was defined previously. To

overcome this, the program will just reorganize the rows to replace the required independent

variable. Since X2 is the only variable required, equation 3 and equation 10 will swap places.

This could have been done in an early phase of the searching algorithm, but as this only affected

one variable, in this example was left towards the end. In the code itself, this anomaly will be

accounted for as it arises.

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

X2 X1 X2 0 0 0 0 0 0 0 1 1 0 0

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 0 1 0 0 1

E8 0 0 0 0 0 0

E6 0 0 1 1

E10 0 1 0 1

E3 0 0 0 0 0 0

E1 0 1 1 1 1

E2 0 0 1 1 1

E9 0 0 0 0 1 0

E11 0 0 1 0 0

20

E4 1 0 1 0

E5 0 0 0 0 1 1 0

Figure 13: Reorganized Matrix to Redefine Independent Variables

 With this modification made, the program will see that in equation 10, for the right-hand

side to be valid, X2 must be equal to 1. Now that X2 has been decided, the full solution can be

tested to verify its validity: X1 = X2 = X3 = 1 and X4 = X5 =0. As X5 and X4 are equal to zero, to

simplify this test below, only the values for X1, X2, and X3 will be shown. In the full code, every

value will be used, but in the simplified matrix produced, these values have all be converted to a

linear representation. To verify the solution, it will be first be masked to the values in the given

variable slot and added together through bitwise addition. If the answer and RHS are

equivalent, the solution is valid for that equation. If the two values are not equal, the solution

fails for the whole system. This can be seen below.

EQ X1 X2 X3 Ans RHS

E7 1 0 0 1 1

E8 0 0 0 0 0

E6 0 0 1 1 1

E10 0 1 0 1 1

E3 0 0 0 0 0

E1 1 1 1 1 1

E2 0 1 1 0 1

E9 0 0 1 1 0

E11 0 1 0 1 0

E4 1 0 1 0 0

E5 0 1 1 1 0

Figure 14: Testing the Full Solution

As seen in the figure above, the given solution works for all the equations except for equation 2,

equation 9, and equation 11. This means that having X4 = 0 as the initial case does not work and

the program should test the case where X4 = 1. Here, while they are featured as separate cases,

the program will work on both together as it goes, like the linear recursive method. To begin this

21

case, the program will start by setting all X4 terms to 1 and adding them to their respective

linear components. In addition to this however, since the X4 linear values are guaranteed, these

values are added to the right-hand side of the equation to reduce the complexity of the matrix.

This can be seen below.

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

 X1 X2 X3 X5 1 +X4

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 1 0 0 1 0 1 0 0

E8 1 1 0 0 0 1 1

E6 1 1 0 0 0 1 1 0 0 0

E3 1 1 1 1 1 0 0 0 0 0 0 1 1

E10 1 0 1 0 0 0

E1 1 1 0 1 1 1 1 1

E2 1 1 1 0 0 1 1 0 1 1

E9 1 1 1 0 1 1 1 1 0

E11 1 0 0 0 1 0 1 1 1

E4 1 1 0 0 0 0 0 1 1

E5 1 1 1 1 0 0 1 0 1 0 0

Figure 15: Updated Initial Matrix Setting X4 =1

 With the first matrix now organized, the program can now solve for the partial solutions

like it did in the initial zero case. Starting with equation 7, for the right-hand side to be valid, X1

and X3 must be equal to 0. With this found, all X1 and X3 values can be excluded from the

system.

22

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

X1=0 0 0 X1=0 X3=0 0 X2 0 X5 0 0 1 +X4

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 0 0 0

E8 0 1 1

E6 0 1 0 0

E3 1 0 0 0 1 1

E10 1 0 0

E1 1 1 1

E2 1 0 1 1 1

E9 1 0 1 1 0

E11 0 0 0 1 1

E4 1 0 1 1

E5 0 0 0 0 0

Figure 16: Updated Matrix with X1 = X3 =0 and X4 =1

With the updated matrix, the program will now look at equation 8 to solve for X5. As X5 is now

the only variable in equation 8, for the right-hand side to be valid, X5 must equal 1. The program

will now update the matrix again as it did before.

 X2
Terms

X3 Terms X5 Terms X4 Terms Linear

X1=0 0 0 X1=0 X2 X3=0 0 X2 0 X5 0 0 1 1 +X4

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS

E7 0 0 0

E8 0 1 1

E6 0 1 0 0

E3 0 0 0 1 1 1

E10 1 0 0

E1 1 1 1

E2 0 0 0 1 1

E9 0 0 0 1 0

E11 0 0 0 1 1

E4 0 1 1 1

E5 0 0 0 0 0

Figure 17: Updated Matrix with X1 = X3 = 0 and X4 = X5 =1

While this new matrix does not appear to fit the standard independent variable grouping seen

in previous examples, as it only features X2 and X5, these columns can be brought closer

23

together to better visualize the grouping. Despite this, the matrix allows for the program to find

the partial solution for X2 through equation 6. Seen here, for the right-hand side to be valid, X2

must be equal to 0. With this found, the program now has a partial solution with X1 = X2 = X3 =

0 and X4 = X5 = 1. As the X4 values have already been added to the right-hand side, the

resulting X5 values can be tested against the partial solution. This will also be done by masking

the partial solution with the X5 values. This can be seen below.

Eq X5 Ans RHS

E7 0 0 0

E8 1 1 1

E6 0 0 0

E3 1 1 1

E10 0 0 0

E1 1 1 1

E2 1 1 1

E9 1 1 0

E11 1 1 1

E4 1 1 1

E5 0 0 0

Figure 18: Testing the Full Solution

 As seen here, the partial solution fails when applied to equation 9, which means this

system does not have a solution.

24

Recursive Search Program Code

 The recursive search program code used for the quadratic system is based off of the

program Liam Stearns and Carlton Mugo completed for a linear problem set with modifications

to mask and incorporate the nonlinear terms in. To begin the code, classes are made to

establish the different equations present in the system, an info matrix to store the values of the

equations in to later be used in simplification and row manipulation, and a linear matrix for the

purely linear portions of the equations. Both the info matrix and equation classes include

variables that discern the equation number, variables in the system, and the equations

respective right-hand side, but the equation class includes an extra parameter, the linear weight

of the equation, which is used to sort the equations in order of lightest to heaviest in the code.

The linear matrix class functions like the info matrix class, but as the name implies, only

considers the linear portions of the given equations. The equation number and right-hand side

are also included here.

 The next part of the code is sum matrix, which takes an equation and organizes it based

on its weight in a temporary matrix. In the code, the sum matrix helps organize the full matrix,

which represents the entire system, and the linear matrix, which is primarily used to develop

the upper triangle and independent portions of the matrix that will later be used to solve the

system. Here, the full matrix is used as a placeholder, as the values will not change until the

independent variables are found. This only applies to the linear portion of the matrix since the

quadratic values are untouched, but the matrix is still included to visually ensure that the

organization step worked properly.

25

 With the matrices now sorted based on weight, the program now starts to organize the

matrices based on the 1’s and 0’s. The goal of this step is to clearly define the independent

variables featured in the system that will then be prioritized in the solving mechanism. To do

this, the code first steps through each cell in the linear matrix starting with the rightmost cell

and searches for the nearest 1 in the row. If a 1 is found and there is a 0 before it, those

columns are swapped, and the index variable of the code is increased, highlighting a position

change. This allows the code in future rows to ignore the already changed columns, preventing

further alterations. While this step does only change the positions found in the linear matrix,

the full matrix is changed just by setting the initial columns equal to the linear matrix. Due to

this, the full quadratic matrix now has the properly organized linear portions featuring the

upper triangle, independent variables, and dependent variables, without changing the set

quadratic ones.

 Due to time restraints however, the code was not able to be finished in terms of the

solving mechanism. To accomplish this however, a future team should consider making

functions that will help reduce the matrix by making the initial lone independent variable either

a 0 or a 1. In this quadratic example, when a variable is set to 0, all associated variables are also

reduced to 0. This ultimately means that are removed from the matrix as they do not matter to

the overall system anymore, but this can be done through masking. By checking the zero

condition first, it allows the team to focus along one branch of the binary at a time, reducing the

number of checks the code goes through overall. The other function setting the variable to 1

makes it so all associated variables are set to the multiplicand, turning what used to be

quadratic variable into linear ones. These can be added to their respective terms, and the initial

26

independent variable can be added to their respective right-hand sides, as the quantity is now

set. Like the zero case, it now allows for further simplification. This can be achieved through

masking the variables as the code continues, but these cases should be observed initially.

27

Exhaustive Search Program

In addition to the recursive search algorithm, an exhaustive search algorithm was

developed in order to gauge how efficient the alternative program was compared to testing

every possible binary solution there was. To do this, the exhaustive search program would cycle

between every solution available, test them against the given system, and store whichever

solutions were valid. Solutions that failed to work would be discarded. To produce all the

possible solutions that could be used for the system, a binary counter was utilized. For the

system used in this program, it contained five linear variables, resulting in 25 possible solutions.

The binary counter itself used this number to produce the resulting 5-bit numbers, starting with

0 and ending with 31, in order to test all 32 possible solutions.

 Like the linear model developed by Liam Stearns and Carlton Mugo, when given a

possible solution, the code would first mask the variables with the potential solution and then

add them together using a bitwise or in order to produce a temporary answer. This answer

would then be set equal to the original right hand side value of the given equation to verify if it

worked, and if it did, the solution would be stored. The program differs when it is applied to the

nonlinear portion of the equation, however. Unlike before, these portions require a double

masking to account for the two variables being used. For example, when looking at 𝑥1𝑥2, when

masking this value, you must mask it with the solution for x1 and x2 before completing the

bitwise addition, allowing for full coverage of the system.

28

Results

 As of now, the effectiveness of the recursive search program is unable to be calculated

due to the solving mechanism not being completed. This being said, the search program is

based on the same process used to solve the linear set of equations, which reduces the possible

number of solutions from 2𝑛 down to 2𝑛/2, which is a significant complexity drop. This is what

the program for the quadratic system should theoretically result to, especially since it aims at

converting the quadratic variables it has into as many linear parts as possible. The exhaustive

search function also remained the same as the one used previously in the linear set. Despite

completing two different things, the complexity stayed the same at 2𝑛.

 While significant progress has been achieved, the code can still be improved to reduce

the complexity even more. Like Liam Stearns and Carlton Mugo, I utilized many hard coded

values in order to establish the equations and matrices used in the setup portion of the code. It

would be beneficial if this could be avoided, streamlining the process even further. I also believe

that the solving mechanism can be improved more by developing cases like in the linear portion

where one or two variables differ. This would allow for table checks, reducing the complexity

even further since hard solution values have already been established. An issue that can arise

from this, however, is the memory that the board in use has. An Artix-7 Basys 3 FPGA, the board

I utilize, has 32 megabits of non-volatile flash, which could be used up quickly as the complexity

of the equations increases. While the methods developed for this project aim at reducing this

already, quadratic equations grow much more rapidly than linear equations do when a single

variable is added. This should be considered when continuing with the project.

29

Conclusion

During this project, the goal was to develop a program that would be able to solve

binary quadratic systems of equations in a way that would effectively reduce the complexity

required to solve the system out normally. While the code was not finished due to time

constraints, the team was able to effectively develop a method to do so based on the research

of Liam Stearns and Carlton Mugo. Through their research, and modifications made during this

term, the goal of the method is to turn the quadratic portions of the system into linear

segments, allowing for a reduction in not only the system, but in the complexity of the solution

as well. Theoretically, this complexity should match the one found by Mugo and Stearns, 2𝑛/2,

but more work is needed to verify this. I hope the foundation developed during this project can

be used by future groups in the completion of this program, and even further, as something that

can be improved upon further.

30

References

1. Bard, G. V. (2009). Algebraic cryptanalysis. Springer Science & Business Media.

2. Bardet, M., Faugère, J.-C., Salvy, B., & Spaenlehauer, P.-J. (2013). On the complexity of

solving quadratic Boolean systems. Journal of Complexity, 29(1), 53–

75.10.1016/j.jco.2012.07.001

3. Keinänen, M., De, U., Keinänen, M., & Oy, M. (2005). SOLVING BOOLEAN EQUATION

SYSTEMS

4. McAleese, J. (2021.). (rep.). Solving Systems of Linear Equations over GF(2) on FPGAs.

5. Mugo, C,. & Stearns, L. (2022.). (rep.). Solving Linear Binary Systems on FPGAs.

6. Wang, W., Szefer, J., & Niederhagen, R. (2016). Solving large systems of linear equations

over GF(2) on FPGAs. 2016 International Conference on ReConFigurable Computing and

FPGAs (ReConFig), 1–7. 10.1109/ReConFig.2016.7857188

31

Appendix

 The code developed and used for this project can be seen below. Everything was coded

on EDA Playground and can be simulated on the site without the need for an extra program or

physical device.

EDA Playground Quadratic Exhaustive Code: https://www.edaplayground.com/x/LGwM

Incomplete EDA Playground Quadratic Recursive Code:

https://www.edaplayground.com/x/rEAW

Verilog Exhaustive Search Code
`timescale 1ns/1ns

//Create a module which organizes a given matrix to solve a linear system of equations

//Create a class which keeps track of an equation and any information tied to it

class equation;

 int eqnum;//Tells us which equation

 int x1;

 int x2;

 int x3;

 int x4;

 int x5;

 int x1x2;

 int x1x3;

 int x1x4;

 int x1x5;

 int x2x3;

 int x2x4;

 int x2x5;

https://www.edaplayground.com/x/LGwM
https://www.edaplayground.com/x/rEAW

32

 int x3x4;

 int x3x5;

 int x4x5;

 int rhs;//rhs value for equation

 int linearWeight;//weight of the equation (num of 1's excluding rhs)

 //Function within the class to display the sum for a given equation

 function void weight_display();

 $display("\teqnum = %0d, sum = %0d", eqnum, linearWeight);

 endfunction

endclass

//Create a class which keeps track of a given rows information for the matrix

//This makes it easier to perform row and column adjustments

class info_matrix;

 int eqnum;

 int c1;

 int c2;

 int c3;

 int c4;

 int c5;

 int c12;

 int c13;

 int c14;

 int c15;

 int c23;

 int c24;

 int c25;

 int c34;

 int c35;

33

 int c45;

 int rhs;

 //int temp;

 //Function used to display a matrix row

 function void matrix_display();

 $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d |
%0d | %0d ", eqnum, c45, c35, c34, c25, c24, c23, c15, c14, c13, c12, c5, c4, c3, c2, c1, rhs);

 // $display("\t---------------------------------------");

 endfunction

endclass

module exhaustive_search;

 equation sum_matrix[1:11];//an array to sort based on eq weights

 equation eq;

 info_matrix full_matrix[1:11];//an array which acts as our matrix (deals with 1 dimension)

 info_matrix i_matrix;

 int t_matrix [1:11][1:15];//temp 2d matrix

 int final_matrix [1:11][1:15];

 int t_array [1:11]; //hold temp values

 int t_value;//holds the value for a given variable for swapping

 int t_rhs;//holds a temp rhs value when performing row operations

 int matrix_max;

 int bin_count;

 int t_bin_count;

 int bin_index;

 int num_operations;

 reg [5:1] binary = 5'd0;

 reg [5:1] t_binary = 5'd0;

 reg [5:1] t_solution = 5'd0;

 int solution_count;

34

 reg eq_rhs1 = 1'b0;

 reg eq_rhs2 = 1'b0;

 reg eq_rhs3 = 1'b0;

 reg eq_rhs4 = 1'b0;

 reg eq_rhs5 = 1'b0;

 reg eq_rhs6 = 1'b0;

 reg eq_rhs7 = 1'b0;

 reg eq_rhs8 = 1'b0;

 reg eq_rhs9 = 1'b0;

 reg eq_rhs10 = 1'b0;

 reg eq_rhs11 = 1'b0;

 int t_eqnum;

 int index;

 int index_array [1:11];

 int search_pos;

 int pos_array [1:15];//keeps track of where variables sit in our matrix

 int pos_c_array [1:15];

 int subset_found;//variable to tell us if a subset for organization has been found

 initial begin

 //initialize all of our equations

 eq = new();

 eq.eqnum = 1; // 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1

 eq.x1 = 0;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 1;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 1;

35

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 1; //1

 eq.linearWeight = 3;

 sum_matrix[1] = eq;

 eq = new();

 eq.eqnum = 2; //1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 1;

 eq.x3x4 = 1;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

 eq.rhs = 1; //1

 eq.linearWeight = 3;

 sum_matrix[2] = eq;

36

 eq = new();

 eq.eqnum = 3; // 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 1;

 eq.x1x5 = 1;

 eq.x2x3 = 1;

 eq.x2x4 = 1;

 eq.x2x5 = 1;

 eq.x3x4 = 0;

 eq.x3x5 = 1;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 3;

 sum_matrix[3] = eq;

 eq = new();

 eq.eqnum = 4; // 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0

 eq.x1 = 1;

 eq.x2 = 0;

 eq.x3 = 1;

 eq.x4 = 1;

 eq.x5 = 1;

 eq.x1x2 = 0;

 eq.x1x3 = 0;

 eq.x1x4 = 1;

 eq.x1x5 = 0;

37

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 1;

 eq.x3x4 = 1;

 eq.x3x5 = 1;

 eq.x4x5 = 0;

 eq.rhs = 0;

 eq.linearWeight = 4;

 sum_matrix[4] = eq;

 eq = new();

 eq.eqnum = 5; // 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 1;

 eq.x1x2 = 1;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 1;

 eq.x2x3 = 1;

 eq.x2x4 = 1;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 4;

 sum_matrix[5] = eq;

 eq = new();

38

 eq.eqnum = 6; // 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1

 eq.x1 = 0;

 eq.x2 = 0;

 eq.x3 = 1;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 0;

 eq.x1x4 = 1;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 1;

 eq.x2x5 = 0;

 eq.x3x4 = 1;

 eq.x3x5 = 1;

 eq.x4x5 = 0;

 eq.rhs = 0;

 eq.linearWeight = 2;

 sum_matrix[6] = eq;

 eq = new();

 eq.eqnum = 7; // 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1

 eq.x1 = 0;

 eq.x2 = 0;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 1;

 eq.x1x5 = 0;

 eq.x2x3 = 0;

39

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 1;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 1; //1

 eq.linearWeight = 1;

 sum_matrix[7] = eq;

 eq = new();

 eq.eqnum = 8; // 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

 eq.x1 = 0;

 eq.x2 = 0;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 1;

 eq.x1x2 = 1;

 eq.x1x3 = 0;

 eq.x1x4 = 0;

 eq.x1x5 = 0;

 eq.x2x3 = 1;

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 0;

 eq.linearWeight = 2;

 sum_matrix[8] = eq;

 eq = new();

 eq.eqnum = 9; // 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0

40

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 0;

 eq.x2x3 = 1;

 eq.x2x4 = 0;

 eq.x2x5 = 1;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 3;

 sum_matrix[9] = eq;

 eq = new();

 eq.eqnum = 10; // 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1

 eq.x1 = 0;

 eq.x2 = 1;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 0;

 eq.x1x4 = 0;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

41

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 1; //1

 eq.linearWeight = 2;

 sum_matrix[10] = eq;

 eq = new();

 eq.eqnum = 11; //1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 0;

 eq.x2x3 = 0;

 eq.x2x4 = 1;

 eq.x2x5 = 0;

 eq.x3x4 = 1;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 3;

 sum_matrix[11] = eq;

 //Assigns values to "cells" of the matrix

 foreach(sum_matrix[i])begin

 i_matrix = new();

42

 i_matrix.eqnum = sum_matrix[i].eqnum;

 i_matrix.c1 = sum_matrix[i].x1;

 i_matrix.c2 = sum_matrix[i].x2;

 i_matrix.c3 = sum_matrix[i].x3;

 i_matrix.c4 = sum_matrix[i].x4;

 i_matrix.c5 = sum_matrix[i].x5;

 i_matrix.c12 = sum_matrix[i].x1x2;

 i_matrix.c13 = sum_matrix[i].x1x3;

 i_matrix.c14 = sum_matrix[i].x1x4;

 i_matrix.c15 = sum_matrix[i].x1x5;

 i_matrix.c23 = sum_matrix[i].x2x3;

 i_matrix.c24 = sum_matrix[i].x2x4;

 i_matrix.c25 = sum_matrix[i].x2x5;

 i_matrix.c34 = sum_matrix[i].x3x4;

 i_matrix.c35 = sum_matrix[i].x3x5;

 i_matrix.c45 = sum_matrix[i].x4x5;

 i_matrix.rhs = sum_matrix[i].rhs;

 //fills up our temp 2d array with initial values

 t_matrix[i][1] = sum_matrix[i].x1;

 t_matrix[i][2] = sum_matrix[i].x2;

 t_matrix[i][3] = sum_matrix[i].x3;

 t_matrix[i][4] = sum_matrix[i].x4;

 t_matrix[i][5] = sum_matrix[i].x5;

 t_matrix[i][6] = sum_matrix[i].x1x2;

 t_matrix[i][7] = sum_matrix[i].x1x3;

 t_matrix[i][8] = sum_matrix[i].x1x4;

 t_matrix[i][9] = sum_matrix[i].x1x5;

 t_matrix[i][10] = sum_matrix[i].x2x3;

 t_matrix[i][11] = sum_matrix[i].x2x4;

 t_matrix[i][12] = sum_matrix[i].x2x5;

 t_matrix[i][13] = sum_matrix[i].x3x4;

 t_matrix[i][14] = sum_matrix[i].x3x5;

43

 t_matrix[i][15] = sum_matrix[i].x4x5;

 full_matrix[i] = i_matrix;

 end

 $display("\t | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x5| x4| x3| x2| x1|rhs");

 foreach(full_matrix[i])begin

 full_matrix[i].matrix_display();

 end

 $display("==");

 solution_count = 0;

 $display("x5|x4|x3|x2|x1");

 while(bin_index <= 2**5)begin

 if(bin_index >= 2**5)begin

 $display("Number Of Operations = %d", num_operations);

 break;

 end

 binary = bin_index;

 //eq_rhs1 =
(binary[1]&full_matrix[1].c1)+(binary[2]&full_matrix[1].c2)+(binary[3]&full_matrix[1].c3)+(binary[4]&full_matrix[1]
.c4)+(binary[5]&full_matrix[1].c5)+(binary[6]&full_matrix[1].c6)+(binary[7]&full_matrix[1].c7);

 eq_rhs1 =
(binary[1]&full_matrix[1].c1)+(binary[2]&full_matrix[1].c2)+(binary[3]&full_matrix[1].c3)+(binary[4]&full_matrix[1]
.c4)+(binary[5]&full_matrix[1].c5)+(binary[1]&binary[2]&full_matrix[1].c12)+(binary[1]&binary[3]&full_matrix[1].c
13)+(binary[1]&binary[4]&full_matrix[1].c14)+(binary[1]&binary[5]&full_matrix[1].c15)+(binary[2]&binary[3]&full_
matrix[1].c23)+(binary[2]&binary[4]&full_matrix[1].c24)+(binary[2]&binary[5]&full_matrix[1].c25)+(binary[3]&bina
ry[4]&full_matrix[1].c34)+(binary[3]&binary[5]&full_matrix[1].c35)+(binary[4]&binary[5]&full_matrix[1].c45);

 eq_rhs2 =
(binary[1]&full_matrix[2].c1)+(binary[2]&full_matrix[2].c2)+(binary[3]&full_matrix[2].c3)+(binary[4]&full_matrix[2]
.c4)+(binary[5]&full_matrix[2].c5)+(binary[1]&binary[2]&full_matrix[2].c12)+(binary[1]&binary[3]&full_matrix[2].c
13)+(binary[1]&binary[4]&full_matrix[2].c14)+(binary[1]&binary[5]&full_matrix[2].c15)+(binary[2]&binary[3]&full_
matrix[2].c23)+(binary[2]&binary[4]&full_matrix[2].c24)+(binary[2]&binary[5]&full_matrix[2].c25)+(binary[3]&bina
ry[4]&full_matrix[2].c34)+(binary[3]&binary[5]&full_matrix[2].c35)+(binary[4]&binary[5]&full_matrix[2].c45);

44

 eq_rhs3 =
(binary[1]&full_matrix[3].c1)+(binary[2]&full_matrix[3].c2)+(binary[3]&full_matrix[3].c3)+(binary[4]&full_matrix[3]
.c4)+(binary[5]&full_matrix[3].c5)+(binary[1]&binary[2]&full_matrix[3].c12)+(binary[1]&binary[3]&full_matrix[3].c
13)+(binary[1]&binary[4]&full_matrix[3].c14)+(binary[1]&binary[5]&full_matrix[3].c15)+(binary[2]&binary[3]&full_
matrix[3].c23)+(binary[2]&binary[4]&full_matrix[3].c24)+(binary[2]&binary[5]&full_matrix[3].c25)+(binary[3]&bina
ry[4]&full_matrix[3].c34)+(binary[3]&binary[5]&full_matrix[3].c35)+(binary[4]&binary[5]&full_matrix[3].c45);

 eq_rhs4 =
(binary[1]&full_matrix[4].c1)+(binary[2]&full_matrix[4].c2)+(binary[3]&full_matrix[4].c3)+(binary[4]&full_matrix[4]
.c4)+(binary[5]&full_matrix[4].c5)+(binary[1]&binary[2]&full_matrix[4].c12)+(binary[1]&binary[3]&full_matrix[4].c
13)+(binary[1]&binary[4]&full_matrix[4].c14)+(binary[1]&binary[5]&full_matrix[4].c15)+(binary[2]&binary[3]&full_
matrix[4].c23)+(binary[2]&binary[4]&full_matrix[4].c24)+(binary[2]&binary[5]&full_matrix[4].c25)+(binary[3]&bina
ry[4]&full_matrix[4].c34)+(binary[3]&binary[5]&full_matrix[4].c35)+(binary[4]&binary[5]&full_matrix[4].c45);

 eq_rhs5 =
(binary[1]&full_matrix[5].c1)+(binary[2]&full_matrix[5].c2)+(binary[3]&full_matrix[5].c3)+(binary[4]&full_matrix[5]
.c4)+(binary[5]&full_matrix[5].c5)+(binary[1]&binary[2]&full_matrix[5].c12)+(binary[1]&binary[3]&full_matrix[5].c
13)+(binary[1]&binary[4]&full_matrix[5].c14)+(binary[1]&binary[5]&full_matrix[5].c15)+(binary[2]&binary[3]&full_
matrix[5].c23)+(binary[2]&binary[4]&full_matrix[5].c24)+(binary[2]&binary[5]&full_matrix[5].c25)+(binary[3]&bina
ry[4]&full_matrix[5].c34)+(binary[3]&binary[5]&full_matrix[5].c35)+(binary[4]&binary[5]&full_matrix[5].c45);

 eq_rhs6 =
(binary[1]&full_matrix[6].c1)+(binary[2]&full_matrix[6].c2)+(binary[3]&full_matrix[6].c3)+(binary[4]&full_matrix[6]
.c4)+(binary[5]&full_matrix[6].c5)+(binary[1]&binary[2]&full_matrix[6].c12)+(binary[1]&binary[3]&full_matrix[6].c
13)+(binary[1]&binary[4]&full_matrix[6].c14)+(binary[1]&binary[5]&full_matrix[6].c15)+(binary[2]&binary[3]&full_
matrix[6].c23)+(binary[2]&binary[4]&full_matrix[6].c24)+(binary[2]&binary[5]&full_matrix[6].c25)+(binary[3]&bina
ry[4]&full_matrix[6].c34)+(binary[3]&binary[5]&full_matrix[6].c35)+(binary[4]&binary[5]&full_matrix[6].c45);

 eq_rhs7 =
(binary[1]&full_matrix[7].c1)+(binary[2]&full_matrix[7].c2)+(binary[3]&full_matrix[7].c3)+(binary[4]&full_matrix[7]
.c4)+(binary[5]&full_matrix[7].c5)+(binary[1]&binary[2]&full_matrix[7].c12)+(binary[1]&binary[3]&full_matrix[7].c
13)+(binary[1]&binary[4]&full_matrix[7].c14)+(binary[1]&binary[5]&full_matrix[7].c15)+(binary[2]&binary[3]&full_
matrix[7].c23)+(binary[2]&binary[4]&full_matrix[7].c24)+(binary[2]&binary[5]&full_matrix[7].c25)+(binary[3]&bina
ry[4]&full_matrix[7].c34)+(binary[3]&binary[5]&full_matrix[7].c35)+(binary[4]&binary[5]&full_matrix[7].c45);

 eq_rhs8 =
(binary[1]&full_matrix[8].c1)+(binary[2]&full_matrix[8].c2)+(binary[3]&full_matrix[8].c3)+(binary[4]&full_matrix[8]
.c4)+(binary[5]&full_matrix[8].c5)+(binary[1]&binary[2]&full_matrix[8].c12)+(binary[1]&binary[3]&full_matrix[8].c
13)+(binary[1]&binary[4]&full_matrix[8].c14)+(binary[1]&binary[5]&full_matrix[8].c15)+(binary[2]&binary[3]&full_
matrix[8].c23)+(binary[2]&binary[4]&full_matrix[8].c24)+(binary[2]&binary[5]&full_matrix[8].c25)+(binary[3]&bina
ry[4]&full_matrix[8].c34)+(binary[3]&binary[5]&full_matrix[8].c35)+(binary[4]&binary[5]&full_matrix[8].c45);

45

 eq_rhs9 =
(binary[1]&full_matrix[9].c1)+(binary[2]&full_matrix[9].c2)+(binary[3]&full_matrix[9].c3)+(binary[4]&full_matrix[9]
.c4)+(binary[5]&full_matrix[9].c5)+(binary[1]&binary[2]&full_matrix[9].c12)+(binary[1]&binary[3]&full_matrix[9].c
13)+(binary[1]&binary[4]&full_matrix[9].c14)+(binary[1]&binary[5]&full_matrix[9].c15)+(binary[2]&binary[3]&full_
matrix[9].c23)+(binary[2]&binary[4]&full_matrix[9].c24)+(binary[2]&binary[5]&full_matrix[9].c25)+(binary[3]&bina
ry[4]&full_matrix[9].c34)+(binary[3]&binary[5]&full_matrix[9].c35)+(binary[4]&binary[5]&full_matrix[9].c45);

 eq_rhs10 =
(binary[1]&full_matrix[10].c1)+(binary[2]&full_matrix[10].c2)+(binary[3]&full_matrix[10].c3)+(binary[4]&full_matri
x[10].c4)+(binary[5]&full_matrix[10].c5)+(binary[1]&binary[2]&full_matrix[10].c12)+(binary[1]&binary[3]&full_mat
rix[10].c13)+(binary[1]&binary[4]&full_matrix[10].c14)+(binary[1]&binary[5]&full_matrix[10].c15)+(binary[2]&bina
ry[3]&full_matrix[10].c23)+(binary[2]&binary[4]&full_matrix[10].c24)+(binary[2]&binary[5]&full_matrix[10].c25)+(
binary[3]&binary[4]&full_matrix[10].c34)+(binary[3]&binary[5]&full_matrix[10].c35)+(binary[4]&binary[5]&full_m
atrix[10].c45);

 eq_rhs11 =
(binary[1]&full_matrix[11].c1)+(binary[2]&full_matrix[11].c2)+(binary[3]&full_matrix[11].c3)+(binary[4]&full_matri
x[11].c4)+(binary[5]&full_matrix[11].c5)+((binary[1]&binary[2])&full_matrix[11].c12)+((binary[1] &
binary[3])&full_matrix[11].c13)+((binary[1]&binary[4])&full_matrix[11].c14)+((binary[1] &
binary[5])&full_matrix[11].c15)+((binary[2]&binary[3])&full_matrix[11].c23)+((binary[2] &
binary[4])&full_matrix[11].c24)+((binary[2]&binary[5])&full_matrix[11].c25)+((binary[3] &
binary[4])&full_matrix[11].c34)+((binary[3]&binary[5])&full_matrix[11].c35)+((binary[4] &
binary[5])&full_matrix[11].c45);

 num_operations++;

 if(((eq_rhs1 == full_matrix[1].rhs) && (eq_rhs2 == full_matrix[2].rhs) && (eq_rhs3 == full_matrix[3].rhs) &&
(eq_rhs4 == full_matrix[4].rhs) && (eq_rhs5 == full_matrix[5].rhs) && (eq_rhs6 == full_matrix[6].rhs) && (eq_rhs7
== full_matrix[7].rhs) && (eq_rhs8 == full_matrix[8].rhs) && (eq_rhs9 == full_matrix[9].rhs) && (eq_rhs10 ==
full_matrix[10].rhs) && (eq_rhs11 == full_matrix[11].rhs)) == 1)

 begin

 $display("Sol = %b %b %b %b %b", binary[5], binary[4], binary[3],binary[2], binary[1]);

 end

 //$display("Solution = %b", binary);

 bin_index++;

 end

 end

endmodule

46

Verilog Code for Recursive Search Function
`timescale 1ns/1ns

//Create a class which keeps track of an equation and any information tied to it

class equation;

 int eqnum;//Tells us which equation

 //int x0;//values for x0-x7

 int x1;

 int x2;

 int x3;

 int x4;

 int x5;

 int x1x2;

 int x1x3;

 int x1x4;

 int x1x5;

 int x2x3;

 int x2x4;

 int x2x5;

 int x3x4;

 int x3x5;

 int x4x5;

 int rhs;//rhs value for equation

 int linearWeight;//weight of the linear portion of equation (num of 1's excluding rhs)

 //Function within the class to display the sum for a given equation

 function void weight_display();

 $display("\teqnum = %0d, sum = %0d", eqnum, linearWeight);

 endfunction

endclass

47

//Create a class which keeps track of a given rows information for the matrix

//This makes it easier to perform row and column adjustments

class info_matrix;

 int eqnum;

 int c1;

 int c2;

 int c3;

 int c4;

 int c5;

 int c12;

 int c13;

 int c14;

 int c15;

 int c23;

 int c24;

 int c25;

 int c34;

 int c35;

 int c45;

 int rhs;

 //Function used to display a matrix row

 function void matrix_display();

 $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d |
%0d | %0d ", eqnum, c45, c35, c34, c25, c24, c23, c15, c14, c13, c12, c5, c4, c3, c2, c1, rhs);

 // $display("\t---------------------------------------");

 endfunction

endclass

48

//Class used to organize matrix based on linear portions only

 class linear_matrix;

 int eqnum;

 int c1;

 int c2;

 int c3;

 int c4;

 int c5;

 int rhs;

 //Function used to display a matrix row

 function void linMatrix_display();

 $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d ", eqnum, c5, c4, c3, c2, c1, rhs);

 // $display("\t---------------------------------------");

 endfunction

 endclass

module recursive_solve;

 equation sum_matrix[1:11];//an array to sort based on eq weights

 equation eq;

 info_matrix full_matrix[1:11];//an array which acts as our matrix (deals with 1 dimension)

 linear_matrix linearFull_matrix[1:11];

 info_matrix i_matrix;

 linear_matrix lin_matrix;

 int t_matrix [1:11][1:15];//Area where temp matrix is stored

 int l_matrix [1:11][1:5]; //Linear matrix values

 int final_matrix [1:11][1:15];//Final matrix is used to reference to the matrix before any row operations

 int t_array [1:11]; //hold temp values

49

 int l_array [1:11];

 int l_value;

 int l_rhs;

 int t_value;//holds the value for a given variable for swapping

 int t_rhs;//holds a temp rhs value when performing row operations

 int matrix_max;//Matrix Max is the number of rows - 1 that we are finding partial solutions for

 int bin_count;//Used when counting in binary

 int bin_index;//Monitors Search FSM Position (aka which row we are operating on)

 int num_operations; //Number of times we compare a partial solution against an rhs

 int num_fullsol; //Number of times a full solution is checked

 int bin_count_array [11:1];//Used to keep track of partial solutions for each equation

 reg [5:1] binary = 5'd0;

 reg [5:1] t_binary = 5'd0;

 reg [5:1] t_solution = 5'd0;

 reg eq_rhs = 1'b0;

 int t_eqnum;//

 int index;//Used for checking tracking right most 0 position

 int index_array [1:11];//stores right most 0 position for each row

 int pos_array [1:5];//keeps track of where variables sit in our matrix

 initial begin

 //initialize all of our equations

 eq = new(); // x1 x2 x3 x4 x5 x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 rhs

 eq.eqnum = 1; // 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1

 eq.x1 = 0;

 eq.x2 = 1;

 eq.x3 = 1;

50

 eq.x4 = 0;

 eq.x5 = 1;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 1;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 1; //1

 eq.linearWeight = 3;

 sum_matrix[1] = eq;

 eq = new();

 eq.eqnum = 2; //1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 1;

 eq.x3x4 = 1;

 eq.x3x5 = 0;

51

 eq.x4x5 = 1;

 eq.rhs = 1; //1

 eq.linearWeight = 3;

 sum_matrix[2] = eq;

 eq = new();

 eq.eqnum = 3; // 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 1;

 eq.x1x5 = 1;

 eq.x2x3 = 1;

 eq.x2x4 = 1;

 eq.x2x5 = 1;

 eq.x3x4 = 0;

 eq.x3x5 = 1;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 3;

 sum_matrix[3] = eq;

 eq = new();

 eq.eqnum = 4; // 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0

 eq.x1 = 1;

 eq.x2 = 0;

 eq.x3 = 1;

 eq.x4 = 1;

52

 eq.x5 = 1;

 eq.x1x2 = 0;

 eq.x1x3 = 0;

 eq.x1x4 = 1;

 eq.x1x5 = 0;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 1;

 eq.x3x4 = 1;

 eq.x3x5 = 1;

 eq.x4x5 = 0;

 eq.rhs = 0;

 eq.linearWeight = 4;

 sum_matrix[4] = eq;

 eq = new();

 eq.eqnum = 5; // 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 1;

 eq.x1x2 = 1;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 1;

 eq.x2x3 = 1;

 eq.x2x4 = 1;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

53

 eq.rhs = 0;

 eq.linearWeight = 4;

 sum_matrix[5] = eq;

 eq = new();

 eq.eqnum = 6; // 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1

 eq.x1 = 0;

 eq.x2 = 0;

 eq.x3 = 1;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 0;

 eq.x1x4 = 1;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 1;

 eq.x2x5 = 0;

 eq.x3x4 = 1;

 eq.x3x5 = 1;

 eq.x4x5 = 0;

 eq.rhs = 1;

 eq.linearWeight = 2;

 sum_matrix[6] = eq;

 eq = new();

 eq.eqnum = 7; // 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1

 eq.x1 = 0;

 eq.x2 = 0;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

54

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 1;

 eq.x1x5 = 0;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 1;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 1; //1

 eq.linearWeight = 1;

 sum_matrix[7] = eq;

 eq = new();

 eq.eqnum = 8; // 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

 eq.x1 = 0;

 eq.x2 = 0;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 1;

 eq.x1x2 = 1;

 eq.x1x3 = 0;

 eq.x1x4 = 0;

 eq.x1x5 = 0;

 eq.x2x3 = 1;

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 0;

55

 eq.linearWeight = 2;

 sum_matrix[8] = eq;

 eq = new();

 eq.eqnum = 9; // 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 1;

 eq.x4 = 0;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 0;

 eq.x2x3 = 1;

 eq.x2x4 = 0;

 eq.x2x5 = 1;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 3;

 sum_matrix[9] = eq;

 eq = new();

 eq.eqnum = 10; // 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1

 eq.x1 = 0;

 eq.x2 = 1;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

56

 eq.x1x3 = 0;

 eq.x1x4 = 0;

 eq.x1x5 = 1;

 eq.x2x3 = 0;

 eq.x2x4 = 0;

 eq.x2x5 = 0;

 eq.x3x4 = 0;

 eq.x3x5 = 0;

 eq.x4x5 = 0;

 eq.rhs = 1; //1

 eq.linearWeight = 2;

 sum_matrix[10] = eq;

 eq = new();

 eq.eqnum = 11; //1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0

 eq.x1 = 1;

 eq.x2 = 1;

 eq.x3 = 0;

 eq.x4 = 1;

 eq.x5 = 0;

 eq.x1x2 = 0;

 eq.x1x3 = 1;

 eq.x1x4 = 0;

 eq.x1x5 = 0;

 eq.x2x3 = 0;

 eq.x2x4 = 1;

 eq.x2x5 = 0;

 eq.x3x4 = 1;

 eq.x3x5 = 0;

 eq.x4x5 = 1;

 eq.rhs = 0;

 eq.linearWeight = 3;

57

 sum_matrix[11] = eq;

 //Sorts the equations with the heaviest equations at the top

 sum_matrix.sort with (item.linearWeight);

 //Assigns values to "cells" of the matrix

 foreach(sum_matrix[i])begin

 i_matrix = new();

 i_matrix.eqnum = sum_matrix[i].eqnum;

 i_matrix.c1 = sum_matrix[i].x1;

 i_matrix.c2 = sum_matrix[i].x2;

 i_matrix.c3 = sum_matrix[i].x3;

 i_matrix.c4 = sum_matrix[i].x4;

 i_matrix.c5 = sum_matrix[i].x5;

 i_matrix.c12 = sum_matrix[i].x1x2;

 i_matrix.c13 = sum_matrix[i].x1x3;

 i_matrix.c14 = sum_matrix[i].x1x4;

 i_matrix.c15 = sum_matrix[i].x1x5;

 i_matrix.c23 = sum_matrix[i].x2x3;

 i_matrix.c24 = sum_matrix[i].x2x4;

 i_matrix.c25 = sum_matrix[i].x2x5;

 i_matrix.c34 = sum_matrix[i].x3x4;

 i_matrix.c35 = sum_matrix[i].x3x5;

 i_matrix.c45 = sum_matrix[i].x4x5;

 i_matrix.rhs = sum_matrix[i].rhs;

 //fills up our temp 2d array with initial values

 t_matrix[i][1] = sum_matrix[i].x1;

 t_matrix[i][2] = sum_matrix[i].x2;

 t_matrix[i][3] = sum_matrix[i].x3;

 t_matrix[i][4] = sum_matrix[i].x4;

58

 t_matrix[i][5] = sum_matrix[i].x5;

 t_matrix[i][6] = sum_matrix[i].x1x2;

 t_matrix[i][7] = sum_matrix[i].x1x3;

 t_matrix[i][8] = sum_matrix[i].x1x4;

 t_matrix[i][9] = sum_matrix[i].x1x5;

 t_matrix[i][10] = sum_matrix[i].x2x3;

 t_matrix[i][11] = sum_matrix[i].x2x4;

 t_matrix[i][12] = sum_matrix[i].x2x5;

 t_matrix[i][13] = sum_matrix[i].x3x4;

 t_matrix[i][14] = sum_matrix[i].x3x5;

 t_matrix[i][15] = sum_matrix[i].x4x5;

 full_matrix[i] = i_matrix;

 lin_matrix = new();

 lin_matrix.eqnum = sum_matrix[i].eqnum;

 lin_matrix.c1 = sum_matrix[i].x1;

 lin_matrix.c2 = sum_matrix[i].x2;

 lin_matrix.c3 = sum_matrix[i].x3;

 lin_matrix.c4 = sum_matrix[i].x4;

 lin_matrix.c5 = sum_matrix[i].x5;

 lin_matrix.rhs = sum_matrix[i].rhs;

 l_matrix[i][1] = sum_matrix[i].x1;

 l_matrix[i][2] = sum_matrix[i].x2;

 l_matrix[i][3] = sum_matrix[i].x3;

 l_matrix[i][4] = sum_matrix[i].x4;

 l_matrix[i][5] = sum_matrix[i].x5;

 linearFull_matrix[i] = lin_matrix;

 end

 foreach(full_matrix[i])begin

59

 full_matrix[i].c1 = t_matrix[i][1];

 full_matrix[i].c2 = t_matrix[i][2];

 full_matrix[i].c3 = t_matrix[i][3];

 full_matrix[i].c4 = t_matrix[i][4];

 full_matrix[i].c5 = t_matrix[i][5];

 full_matrix[i].c12 = t_matrix[i][6];

 full_matrix[i].c13 = t_matrix[i][7];

 full_matrix[i].c14 = t_matrix[i][8];

 full_matrix[i].c15 = t_matrix[i][9];

 full_matrix[i].c23 = t_matrix[i][10];

 full_matrix[i].c24 = t_matrix[i][11];

 full_matrix[i].c25 = t_matrix[i][12];

 full_matrix[i].c34 = t_matrix[i][13];

 full_matrix[i].c35 = t_matrix[i][14];

 full_matrix[i].c45 = t_matrix[i][15];

 end

 $display("\t | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x5| x4| x3| x2| x1| rhs");

 foreach(full_matrix[i])begin

 full_matrix[i].matrix_display();

 end

 $display("==");

 //Copy Matrix Values to Final Matrix for future referencing

 for(int i = 1; i <= 11; i++) begin

 for(int j = 1; j <= 5; j++) begin //15

 final_matrix[i][j] = l_matrix[i][j]; //t_matrix

 end

 end

 //stores info as of what variable is in what column

60

 foreach(pos_array[i])begin

 pos_array[i] = i;

 end

 foreach(linearFull_matrix[i])begin

 linearFull_matrix[i].c1 = l_matrix[i][1];

 linearFull_matrix[i].c2 = l_matrix[i][2];

 linearFull_matrix[i].c3 = l_matrix[i][3];

 linearFull_matrix[i].c4 = l_matrix[i][4];

 linearFull_matrix[i].c5 = l_matrix[i][5];

 end

 /*$display("\t | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x5| x4| x3| x2| x1| rhs");

 //$display("\t---------------------------------------");

 foreach(full_matrix[i])begin

 full_matrix[i].matrix_display();

 end */

 $display("\t | x5| x4| x3| x2| x1| rhs");

 //$display("\t---------------------------------------");

 foreach(linearFull_matrix[i])begin

 linearFull_matrix[i].linMatrix_display();

 end

 $display("==");

 //Placing ones on right hand side of matrix (Should only focus on linear portion for now)

61

 index = 1; //we want to maintain the index throughout the rows, so we only set it to 0 beforehand

 //here max num j == 5

 foreach(linearFull_matrix[j])begin

 foreach(l_matrix[j][i])begin //for each cell in the matrix

 if(i>=index)begin//as long as i is beyond the index position (rightmost 0 pos)

 if(l_matrix[j][i] == 1)begin//if we find a 1, we swap the entire column of the rightmost 0 and the current 1
column

 l_array[j] = l_matrix[j][index];

 l_array[j+1] = l_matrix[j+1][index];

 l_array[j+2] = l_matrix[j+2][index];

 l_array[j+3] = l_matrix[j+3][index];

 l_array[j+4] = l_matrix[j+4][index];

 l_value = pos_array[index];

 l_matrix[j][index] = l_matrix[j][i];

 l_matrix[j+1][index] = l_matrix[j+1][i];

 l_matrix[j+2][index] = l_matrix[j+2][i];

 l_matrix[j+3][index] = l_matrix[j+3][i];

 l_matrix[j+4][index] = l_matrix[j+4][i];

 pos_array[index] = pos_array[i];

 l_matrix[j][i] = l_array[j];

 l_matrix[j+1][i] = l_array[j+1];

 l_matrix[j+2][i] = l_array[j+2];

 l_matrix[j+3][i] = l_array[j+3];

 l_matrix[j+4][i] = l_array[j+4];

 pos_array[i] = l_value;//updates the reference for which variables are in which column

 // $display("row = %0d ,index = %0d, i = %0d", j,index, i);

62

 index++;

 end

 end

 end

 index_array[j] = index;

 //$display("index = %0d", index_array[j]);

 end

 // foreach(pos_array[i])begin

 // $display("pos %0d = x%0d", i, pos_array[i]);

 // end

 //Updates the new matrix column positons ie [i][[pos_array[0]] after grouping 1s

 foreach(linearFull_matrix[i])begin

 //full_matrix[i].c0 = final_matrix[i][pos_array[0]];

 linearFull_matrix[i].c1 = final_matrix[i][pos_array[1]];

 linearFull_matrix[i].c2 = final_matrix[i][pos_array[2]];

 linearFull_matrix[i].c3 = final_matrix[i][pos_array[3]];

 linearFull_matrix[i].c4 = final_matrix[i][pos_array[4]];

 linearFull_matrix[i].c5 = final_matrix[i][pos_array[5]];

 end

 $display("\t | x%0d| x%0d| x%0d| x%0d| x%0d|rhs", pos_array[5], pos_array[4], pos_array[3], pos_array[2],
pos_array[1]);

 linearFull_matrix[1].linMatrix_display();

 linearFull_matrix[2].linMatrix_display();

 linearFull_matrix[3].linMatrix_display();

 linearFull_matrix[4].linMatrix_display();

 linearFull_matrix[5].linMatrix_display();

63

 linearFull_matrix[6].linMatrix_display();

 linearFull_matrix[7].linMatrix_display();

 linearFull_matrix[8].linMatrix_display();

 linearFull_matrix[9].linMatrix_display();

 linearFull_matrix[10].linMatrix_display();

 linearFull_matrix[11].linMatrix_display();

 $display("==");

 bin_count = 0;

 foreach(full_matrix[i])begin

 //full_matrix[i].c0 = final_matrix[i][pos_array[0]];

 full_matrix[i].c1 = final_matrix[i][pos_array[1]];

 full_matrix[i].c2 = final_matrix[i][pos_array[2]];

 full_matrix[i].c3 = final_matrix[i][pos_array[3]];

 full_matrix[i].c4 = final_matrix[i][pos_array[4]];

 full_matrix[i].c5 = final_matrix[i][pos_array[5]];

 full_matrix[i].c12 = t_matrix[i][6];

 full_matrix[i].c13 = t_matrix[i][7];

 full_matrix[i].c14 = t_matrix[i][8];

 full_matrix[i].c15 = t_matrix[i][9];

 full_matrix[i].c23 = t_matrix[i][10];

 full_matrix[i].c24 = t_matrix[i][11];

 full_matrix[i].c25 = t_matrix[i][12];

 full_matrix[i].c34 = t_matrix[i][13];

 full_matrix[i].c35 = t_matrix[i][14];

 full_matrix[i].c45 = t_matrix[i][15];

 end

 //Displays the matrix when fully organzed

 $display("\t | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x%0d| x%0d| x%0d| x%0d|
x%0d|rhs", pos_array[5], pos_array[4], pos_array[3], pos_array[2], pos_array[1]);

64

 full_matrix[1].matrix_display();

 full_matrix[2].matrix_display();

 full_matrix[3].matrix_display();

 full_matrix[4].matrix_display();

 full_matrix[5].matrix_display();

 full_matrix[6].matrix_display();

 full_matrix[7].matrix_display();

 full_matrix[8].matrix_display();

 full_matrix[9].matrix_display();

 full_matrix[10].matrix_display();

 full_matrix[11].matrix_display();

 $display("==");

 //Fills the array bin_count_array with a corresponding values as of the max size for a partial solution

 foreach(bin_count_array[i])begin

 if((index_array[i]-index_array[i-1])==1)begin

 matrix_max = i-1;

 $display("matrix_max = %0d", matrix_max);

 end

 bin_count_array[i] = 0;

 end

 end

 //Starts the search portion of recursive solve.

 initial begin

 bin_count = 1;

 num_operations = 0;

 num_fullsol = 0;

 bin_index = 1;

65

$display("\tx%0d|x%0d|x%0d|x%0d|x%0d|x%0d|x%0d", pos_array[5], pos_array[4], pos_array[3], pos_array[2],
pos_array[1]);

 //begin our FSM with exit state being when first row is fully exhausted

 while(binary <= ((2**index_array[1])-1))begin

 // function void matrix_display();

 // $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d ", eqnum, c45, c35, c34, c25, c24,
c23, c15, c14, c13, c12, c5, c4, c3, c2, c1, rhs);

 // $display("\t---------------------------------------");

 // endfunction

 /* function void zero();

 if (pos_array[1] == full_matrix[i].c1) begin

 full_matrix[i].c1 = 0

 full_matrix[i].c12 = 0

 full_matrix[i].c13 = 0

 full_matrix[i].c14 = 0

 full_matrix[i].c15 = 0

 end else if (pos_array[1] == full_matrix[i].c2) begin

 full_matrix[i].c2 = 0

 full_matrix[i].c12 = 0

 full_matrix[i].c23 = 0

 full_matrix[i].c24 = 0

 full_matrix[i].c25 = 0

 end else if (pos_array[1] == full_matrix[i].c3) begin

 full_matrix[i].c3 = 0

 full_matrix[i].c13 = 0

 full_matrix[i].c23 = 0

 full_matrix[i].c34 = 0

66

 full_matrix[i].c35 = 0

 end else if (pos_array[1] == full_matrix[i].c4) begin

 full_matrix[i].c4 = 0

 full_matrix[i].c14 = 0

 full_matrix[i].c24 = 0

 full_matrix[i].c34 = 0

 full_matrix[i].c45 = 0

 end

 end

 endfunction */

 /* function one();

 if pos_array[1] = full_matrix[i].c1 begin

 else if pos_array[1] = full_matrix[i].c2;

 full_matrix[i].c2 = 0;

 full_matrix[i].c12 = 0;

 full_matrix[i].c23 = 0;

 full_matrix[i].c24 = 0;

 full_matrix[i].c25 = 0;

 else if pos_array[1] = full_matrix[i].c3;

 full_matrix[i].c3 = 0;

 full_matrix[i].c23 = 0;

 full_matrix[i].c34 = 0;

 full_matrix[i].c35 = 0;

 else if pos_array[1] = full_matrix[i].c4;

 full_matrix[i].c4 = 0;

 full_matrix[i].c34 = 0;

 full_matrix[i].c45 = 0;

 end

 endfunction */

67

 if(bin_index == 0 && binary <= ((2**index_array[1])-1))begin//Checking first row partial solution as long as it is
not completely exaughsted

 num_operations++;

 binary = bin_count_array[1];//Binary is our binary representation of our Binary counter

 if(binary > ((2**index_array[1])-1))begin //If we reach limit for partial solution, break the search

 break;

 end

 //$display("bintest %0b", binary[0]);

 //$display("eq_rhs = %0b : rhs = %0b", eq_rhs, full_matrix[0].rhs);

 //$display("Index = %0d, Value = %3b " , 0, binary);

 //t_solution[0] = binary[0];//stores the binary counter value into our partial solution for testing

 t_solution[1] = binary[1];

 t_solution[2] = binary[2];

 //determines the value of the left side of the matrix by masking the partial solution with the matrix values and
summing them together

 eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) +
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 &
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) +
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] &
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 &
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) +
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] &
t_solution[5]);

 if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value

 //$display("Solution = %b", t_solution);

 bin_index = 2; //Tells FSM to move onto next row

 end

 bin_count_array[1] = bin_count_array[1] + 1;//Increments our partial solution

 end

 if(bin_index == 1)begin

 num_operations++;

 //$display("eq_rhs = %0b : rhs = %0b", eq_rhs, full_matrix[0].rhs);

68

 if(bin_count_array[1] == (2**(index_array[2]-index_array[2-1])))begin //if weve seen every possible soultion
for this partial solution, reset partial solution incrementation and return to previous row

 bin_count_array[1] = 0;

 bin_index = 1;

 end

 if(bin_index != 1)begin

 //$display("Index = %0d, Value = \t%2b " , 1, bin_count_array[1]);

 t_binary = bin_count_array[1];

 t_solution[3] = t_binary[1];//stores the binary counter value into our partial solution for testing

 t_solution[4] = t_binary[2];

 //determines the value of the left side of the matrix by masking the partial solution with the matrix values
and summing them together

 eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) +
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 &
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) +
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] &
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 &
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) +
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] &
t_solution[5]);

 if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value

 //$display("Solution = %b", t_solution);

 bin_index = 3;//Tells FSM to move onto next row

 end

 bin_count_array[1] = bin_count_array[1] + 1;//Increments our partial solution

 end

 end

 if(bin_index == 3)begin

 num_operations++;

69

 if(bin_count_array[2] == (2**(index_array[3]-index_array[3-1])))begin//if weve seen every possible soultion for
this partial solution, reset partial solution incrementation and return to previous row

 bin_count_array[2] = 0;

 bin_index = 2;

 end

 if(bin_index != 2)begin

 //$display("Index = %0d, Value = \t\t%2b " , 2, bin_count_array[2]);

 t_binary = bin_count_array[2];

 t_solution[5] = t_binary[1];//stores the binary counter value into our partial solution for testing

 //determines the value of the left side of the matrix by masking the partial solution with the matrix values
and summing them together

 eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) +
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 &
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) +
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] &
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 &
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) +
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] &
t_solution[5]);

 if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value

 //$display("Solution = %b", t_solution);

 bin_index = 4;//Tells FSM to move onto next row

 end

 bin_count_array[2] = bin_count_array[2] + 1;//Increments our partial solution

 end

 end

 if(bin_index == 4)begin

 num_operations++;

70

 if(bin_count_array[3] == (2**(index_array[4]-index_array[4-1])))begin//if weve seen every possible soultion for
this partial solution, reset partial solution incrementation and return to previous row

 bin_count_array[3] = 0;

 bin_index = 3;

 end

 if(bin_index != 4)begin

 //$display("Index = %0d, Value = \t\t\t%1b " , 3, bin_count_array[3]);

 t_binary = bin_count_array[3];

 //determines the value of the left side of the matrix by masking the partial solution with the matrix values
and summing them together

 eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) +
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 &
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) +
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] &
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 &
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) +
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] &
t_solution[5]);

 if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value

 num_fullsol++;//increments number of full solutions which have been tested against rhs and remaining
equations

 //determines the value of the left side of the matrix by masking the full solution with the matrix values and
summing them together

 eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) +
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 &
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) +
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] &
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 &
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) +
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] &
t_solution[5]);

 if(eq_rhs == full_matrix[bin_index+1].rhs)begin//if the masking and then sum of the full solution and last
row values equals the rhs of last eq

 num_operations++;

71

 //display our valid solution

 $display("Sol = %b %b %b %b %b",t_solution[5], t_solution[4], t_solution[3],t_solution[2], t_solution[1]);

 end

 end

 //increment partial solution

 bin_count_array[3] = bin_count_array[3] + 1;

 end

 end

 end

 $display("Number Of Operations = %d", num_operations);

 $display("Number Of Full Solution Checks = %d", num_fullsol);

 end

endmodule

