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Abstract

Mixed-integer optimization (MIO) has seen widespread use in solving challenging decision

problems due to its expressivity and ability to characterize constrained decisions under an

objective function to be optimized. Advances in algorithmic development and computing

over the past several decades have seen profound increases in the potential of commercial

optimization solvers [1]. Even so, many real-world problems are nonconvex and nonlinear

and representing vexing challenges to be tackled using MIO solvers. The focus of this dis-

sertation is on combining MIO and associated techniques together with machine learning

to tackle difficult assignment and matching problems.

First, we study the maximum a-posteriori (MAP) estimation problem for the Gaussian

mixture model using mixed-integer nonlinear optimization. In this work, we linearize the

nonlinear objective function components using both McCormick relaxations and piecewise

linear approximations, which can represent the nonlinearities to within any degree of

accuracy. We then seek to accelerate solving this NP-hard optimization problem through

a custom Branch and Bound (B&B) algorithm considering multiple branching strategies.

Specifically, the branching process of each node represents the fixing of data point(s)

based on its integrality. We examine the computational efficiency of our methods, as well

as the quality of the generated solutions, and compare with standard machine learning

methods for solving the MAP problem.

Second, we propose a decision support system for IT services to ensure that the right

tickets get to the right technicians, resulting in improved use of resources. The system

embeds machine learning techniques to classify incoming tickets according to service cat-

egories, and subsequently uses mixed-integer optimization to assign tickets to technicians

based on the service category, available technician capacity, and their skill sets. Compu-

tational performance on real-sized data sets reveal that our methods can efficiently assign

tickets to technicians.

Third, we study many-to-one matching problems with incomplete preference lists and

ties using integer optimization. We study the classical concepts of stability in many-to-one

matchings from unique vantage points and so introduce new stability representations, and

create algorithms to enhance the computational performance of the forms we introduce.

Because there are multiple objective of interest, we lexicographically construct a master

objective function that combines each objective component in a strict ordering. More-

over, we study the creation of cohorts to ensure balanced teams according to desirable

attributes at project centers. We conduct comprehensive experiments on both simulated

data and real data from the WPI student-to-project-center matching process to study the



computational performance of our proposed methods and compare them with the extant

literature. Our results reveal favorable performance for matching applications where suf-

ficient seats exist for applicants, such as school choice problems and hospital-residency

matching.

The final work in this dissertation explores the solution of a class of integer opti-

mization problems with polynomial objective functions (polynomial integer nonlinear op-

timization, or PINLO) that is featured in the third work. We introduce a theoretical

reformulation that can linearize polynomial functions of separable and bounded integer

variables of any degree, and compare it with an alternative reformulation. Computational

experiments reveal that our integer linear optimization (ILO) reformulation is computa-

tionally tractable for solving large PINLO problems via Gurobi (up to 10,000 constraints

and 20,000 variables). This is much larger than current leading commercial global opti-

mization solvers such as BARON, thereby demonstrating its promise for use in real-world

applications of integer linear optimization with a polynomial objective function.
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Chapter 1

Introduction

This dissertation studies mixed-integer nonlinear optimization (MINLO) for matching and

assignment applications. The general form of MINLO in our study can be formulated as:

minimize f(x, y)

such that gi(x, y) ≤ bi, i = 1, . . . , q,

hi(x, y) = 0, i = 1, . . . , `,

x ∈ X ⊆ ZZm, y ∈ Y ⊆ IRn,

(1.1)

where f , gi, and hi are real-valued functions, ZZm denotes the set of integer vectors in IRm,

and X is nonempty.

Mixed-integer optimization (MIO) has been widely used in many decision making

problems in many areas, such as engineering, management science, operations research,

and scientific computing. Some examples of its versatile applications include chemical

engineering, knapsack problem, resource allocation, computer networks, and portfolio

selection. Yet MIO has been challenging optimization researchers for a long time, due to

its difficulties in reasonable computational performance. MIO is known to be NP-hard as

it includes mixed-integer linear optimization (MILO) that is known to be NP-hard as a

subclass. Its computational complexity increases exponentially as the problem dimension

increases. Advances in algorithmic development and computer power during the past

several years incredibly increases the potential of optimization solvers [1], opening the

opportunity to explore difficult nonconvex and nonlinear MIO problems and apply MIO

to solve real-world problems as well as typical statistical and machine learning techniques.

Techniques for global optimization of MIO in general include Branch-and-Bound (B&B),

Outer Approximation (OA), and Generalized Benders Decomposition (GBD) algorithms.

B&B algorithms recursively split the search space that optimizes the objective and keeps

track of bounds of the objective to eliminate inferior regions of the search space by relax-

ing integrity of integer variables. On the other hand, OA and GBD algorithms iteratively

1



solve a mixed-integer linear programming master problem and nonlinear programming

subproblems. We solve MINLO problems in this dissertation through the B&B algo-

rithm.

This dissertation focuses on using MIO together with machine learning techniques to

tackle multiple matching applications, i.e. matching data points into clusters, matching

tasks to workers, and matching students to schools/projects. Our work features both the-

oretical study on MIO and applications of MIO for solving real-world matching problems:

(1) We solve the maximum a-posteriori (MAP) estimation problem for the Gaussian mix-

ture model (GMM) using MINLO. We reformulate MINLO to mixed-integer quadratic

optimization (MIQO) and customized B&B algorithm considering a specific branching

strategy. (2) We propose a decision support system for IT services to ensures that the

right tickets get to the right technicians using MIO and machine learning techniques.

(3) We introduce new stability representations for solving many-to-one matching problems

with incomplete lists and ties using integer optimization (IO), then compare their perfor-

mance to existing forms in the literature. Additionally, our lexicographic multi-objective

functions optimize each objective component in a strict ordering. (4) We linearize the

polynomial integer quadratic programming (PIQP) of square deviation penalty objective

function in our third work. The reformulation can be extended to a class of polynomial

functions of bounded integer variables with any degrees.

The organization of this dissertation is as follows. Chapter 2 presents MAP Clustering

via MINLO. Chapter 3 presents the decision support system for IT services that classifies

and assigns tickets through MIO and machine learning techniques. Chapter 4 studies

the use of IO in a comparative study of stability representations for solving many-to-one

matching problems with ties and incomplete preference lists. Finally, Chapter 5 covers

the reformulation to linearize polynomial integer nonlinear optimization (PINLO) on a

class of polynomial functions of separable and bounded integer variables.
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Chapter 2

MAP Clustering via Mixed-Integer

Nonlinear Optimization

Introduction

Mixed-integer nonlinear optimization (MINLO) has been used to model a wide variety of

applications, such as in chemical engineering, finance, and manufacturing. It is capable

to find the global optima with certificate of optimality, though the complexity is NP-hard

in general. In this Chapter, we study solving Maximum a-posteriori Estimation (MAP)

for Gaussian mixture model (GMM) using MINLO.

GMM represents a mixture of finite normal distributions with unknown parameters θ.

It is often used for clustering data by finding a mixture of Gaussian probability distribu-

tions that best describe the input dataset. Many techniques exist to learn parameters of

mixture models focus on maximum likelihood such as Expectation-Maximization (EM),

Maximum a-postiori Estimation (MAP), and Markov Chain Monte Carlo (MCMC). This

study focuses on using MAP for clustering observed data into a fixed number of mixture

components.

MAP is a method used for estimate unknown parameters. Unlike maximum likeli-

hood estimation (MLE) that estimates parameters using likelihood, MAP incorporates

a prior knowledge to estimate unknown parameters, which are obtained from the mode

of the posterior distribution. (That is MLE is a special case of MAP where the prior is

uniform.) There are several ways to solve MAP such as Expectation-Maximization Al-

gorithm (EM), Variational EM, Sequential Least-Squares Quadratic Programming, and

Simulated Annealing. These techniques, however, only guarantee that the parameter

estimates will converge to a local optimum. The outcome of some coordinate search al-

gorithms, such as EM, depends on the starting point. For applications where encoding

prior information benefits the outcome, such as clinical trials and DNA sequencing, it is
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often of interest to find a globally optimal solution. Therefore, this study formulates and

solves MAP for GMM using MINLO which, in contrast to other methods, can find global

optima and provide strict upper and lower bounds on the global optima through the use

of Branch-and-Bound algorithm (B&B).

Significant progress has been made in research with several MINLO solvers available,

yet the development in creating reasonable representations as well as computational run-

time challenges researchers until now. We reformulate our MINLO to a mixed-integer

quadratic optimization (MIQO). This is carried out by using piecewise linear functions to

approximate the nonlinear objective function component and using McCormick envelopes

to linearize bilinear components of MAP. Our MIQO still requires significant runtime to

prove global optimality. We further attempt to improve computational efficiency through

custom Branch and Bound process (B&B).

2.1 Formulating MAP via MINLO Optimization

Our GMM finds unknown parameters θ of K normal distributed subgroups that best

explain N observations in a dataset. Define y = (yT1 , . . . ,y
T
N)T to be observations, each

is in D-dimensional. Define π = (π1, . . . , πK)T to be component proportion such that∑K
k=1 πk = 1 and πk ≥ 0.

Define the mixture density functions of each observation as Zi
i.i.d.∼ Categorical(π),

for i ∈ {1, . . . , N}. Each observation i belongs to exactly one subgroup, that is, zi ∈
{1, . . . , K}, zi = {0, 1}K . The associated distribution over observations in each subgroup

is defined as Yi|zi,µzi ∼ N (µzi ,Σ), where the component mean µ = (µ1, . . . ,µK) and

the component covariance Σ = (Σ1, . . . ,ΣK). The covariance in our primary model are

fixed, hence the unknown parameters in our initial model are component assignment of

each observation, component mean, and component proportion, that is, θ = {z,µ,π}.
The unknown parameters can be estimated using the maximum log-likelihood of pos-

terior density function. Following Bayes’ rule, our objective function is defined as

max
z,π,µ

log Pr(z,π,µ|y) ∝ max
z,π,µ

log Pr (y | µ, z) Pr (z | π) Pr (µ,π)

∝ max
z,π,µ

log Pr (y | µ, z) + log Pr (z | π) + log Pr (µ,π) .

We next demonstrate each component in the log objective function. Note that we

specify the uniform prior Pr (µ,π) ∝ 1, hence we dispose of the third component from

the consideration. We assume equivalent variances across all components, which can be

estimated by averaging the standard deviations from the given data. The first component
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represents least-square loss, which can be calculated as:

log Pr (y | µ, z) = log
∏N
i=1 Pr (yi | µ, zi)

= log
∏N
i=1

∏K
k=1

[
(2π)

D
2 |Σk|−

1
2 exp

(
−1

2(yi − µk)TΣ−1k (yi − µk)
)]zik

∝ −
∑N

i=1

∑K
k=1

1
2zik(yi − µk)

TΣ−1(yi − µk), (Σ = Σ1 = · · · = ΣK).

The second term represents cross entropy loss, which can be calculated as:

log Pr (z | π) = log
∏N

i=1 Pr (yi | µ, zi)
= log

∏N
i=1

∏K
k=1 π

zik
k

=
∑K

k=1

∑N
i=1 zik log πk,

where
∑N

i=1 zik represents the number of observations in each component. As the result,

our objective function minimizes least-square loss and cross entropy loss :

min
z,π,µ

η
N∑
i=1

K∑
k=1

zik(yi − µk)T (yi − µk)−
K∑
k=1

(
N∑
i=1

zik

)
log πk

where η = 1
2
Σ−1 representing precision.

Thus, we can formulate MAP as MINLO as follows:

min
z,π,µ

η
N∑
i=1

K∑
k=1

zik(yi − µk)T (yi − µk)−
K∑
k=1

(
N∑
i=1

zik

)
log πk (2.1a)

such that
K∑
k=1

πk = 1, (2.1b)

K∑
k=1

zik = 1, ∀ i = 1, . . . , N, (2.1c)

µLk ≤ µk ≤ µUk , ∀ k = 1, . . . , K, (2.1d)

1

N
≤ πk ≤

N −K + 1

N
, ∀ k = 1, . . . , K (2.1e)

zik ∈ {0, 1} , ∀ i = 1, . . . , N, ∀ k = 1, . . . , K. (2.1f)

Objective function (2.1a) minimizes total least-square loss and entropy loss. Probability

sums to one in (2.1b). Each observation is assigned to exactly one component in (2.1c).

Constraints (2.1d) and (2.1e) specify bounds on component means and component pro-

portions, respectively, where µLk and µUk are lower and upper bounds of µk in each of the

D-dimension, and all components must contain at least one observation. Lastly, variable

domain is defined in (2.1f).

Our MINLO may require insufficient computational runtime even on the current lead-
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ing MINLO solver. We present two approaches to improve efficiency of solving MINLO

in the next sections.

2.2 Improving Efficiency of MINLO

MINLO is widely used in many applications, such as chemical engineering, process engi-

neering, power/electrical grids, etc. We solve MINLO for MAP using Branch and Bound

algorithm (B&B) which guarantees global optimal outcome with a proximity of the upper

and lower bounds. Although significant progress has been made in research, it is still chal-

lenging to solve MINLO due to difficulty in modeling, as well as computational runtime.

First, we reformulate formulation (2.1) to MIQO using piecewise linear approximation

and McCormick relaxations, then we custom Branch-and-Bound (B&B) algorithm.

2.2.1 Reformulating MINLO to MIQO via Piecewise Linear Ap-

proximation Models

Figure 2.1: Plot of vk = log πk.

We first approximate the nonlinear objective

function component log πk using piecewise linear

approximation (PWL). The value of a nonlinear

function vk = log πk can be approximated by in-

corporating the possible evaluated solution along

the domain πk with a set of constraints. We can

increase the degree of accuracy of log πk by vary-

ing the number of breakpoints. Commonly used

PWL model approaches presented in [2] include

convex combination model (CC), multiple choice

model (MC), and logarithmic model (Log). We next present the formulation of each

model.

Convex Combination Model

CC model approximates the nonlinear function by formulating piecewise linear segments

in terms of convex combination of two consecutive breakpoints bj−1k and bjk. That is, πk

is expressed as λj−1k bj−1k + λjkb
j
k if πk ∈

[
bj−1k , bjk

]
. We present the CC model in formula-

tion (2.2) and the notation used in the model in Table 2.1.

6



Sets

I Set of samples, indexed by i = 1, . . . , N
K Set of components, indexed by k = 1, . . . , K

J Set of breakpoints bjk of size p along x-axis of vk, indexed by j = 0, . . . , p
where 1

N
= b0k ≤ b1k ≤ · · · ≤ bpk = N−K+1

N
∀ k = 1, . . . , K

Decision Variables

λjk Convex coefficients representing πk ∀ k = 1, . . . , K, ∀ j = 0, . . . , p

πk = λj−1k bj−1k + λjkb
j
k if πk ∈

[
bj−1k , bjk

]
gjk Binary variables indicating the location of vk ∀ k = 1, . . . , K, ∀ j = 1, . . . , p

gjk = 1 if πk ∈
[
bj−1k , bjk

]
; 0 otherwise

Table 2.1: Notation for convex combination model.

p∑
j=0

λjkb
j
k = πk, ∀ k = 1, . . . , K, (2.2a)

p∑
j=0

λjk log(bjk) = vk, ∀ k = 1, . . . , K, (2.2b)

p∑
`=j

λ`k ≤
p∑
`=j

g`k, ∀ k = 1, . . . , K, ∀ j = 1, . . . , p, (2.2c)

j−1∑
`=0

λ`k ≤
j∑
`=1

g`k, ∀ k = 1, . . . , K, ∀ j = 1, . . . , p, (2.2d)

p∑
j=0

λjk = 1, ∀ k = 1, . . . , K, (2.2e)

p∑
j=1

gjk = 1, ∀ k = 1, . . . , K, (2.2f)

λjk ≥ 0, gjk ∈ {0, 1} , ∀ k = 1, . . . , K, ∀ j = 0, . . . , p, (2.2g)

gjk ∈ {0, 1} , ∀ k = 1, . . . , K, ∀ j = 1, . . . , p. (2.2h)

Constraint sets (2.2a) and (2.2b), respectively, express πk and vk as convex combination

of breakpoints. Constraint sets (2.2c) and (2.2d) together ensure that pik is a convex

combination of two consecutive breakpoints bj−1k and bjk. Constraint set (2.2e) ensures

that coefficients of convex combination sum up to one. Constraint set (2.2f) ensures

that vk lies in exactly one piecewise linear segment. Lastly, nonnegativity and binary

7



restrictions are defined in (2.2g) and (2.2h), respectively.

Multiple Choice Model

MC model approximates the nonlinear function by formulating piecewise linear segments

in terms of linear functions. When πk ∈
[
bj−1k , bjk

]
, vk can be approximated as ∆j

kωk + cjk,

where ∆j
k and cjk are the value of slope and intersect of the jth segment, respectively. We

present the MC model in formulation (2.3) and additional notation used in the model in

Table 2.2.

Parameters

∆j
k Slopes of the jth segment ∀ k = 1, . . . , K, ∀ j = 1, . . . , p; ∆j

k =
log(bjk)−log(b

j−1
k )

bjk−b
j−1
k

cjk Intersects of the jth segment ∀ k = 1, . . . , K, ∀ j = 1, . . . , p

Decision Variables

ωjk Values of πk when πk is in the jth segment ∀ k = 1, . . . , K, ∀ j = 1, . . . , p

ωjk = πk if πk ∈
[
bj−1k , bjk

]
; 0 otherwise

Table 2.2: Additional notation for multiple choice model.

p∑
j=1

ωjk = πk, ∀ k = 1, . . . , K, (2.3a)

p∑
j=1

(
∆j
kω

j
k + cjkg

j
k

)
= vk, ∀ k = 1, . . . , K, (2.3b)

p∑
j=1

gjk = 1, ∀ k = 1, . . . , K, (2.3c)

bj−1k gjk ≤ ωjk ≤ bjkg
j
k, ∀ k = 1, . . . , K, ∀ j = 1, . . . , p, (2.3d)

gjk ∈ {0, 1} , ∀ k = 1, . . . , K, ∀ j = 1, . . . , p. (2.3e)

Constraint set (2.3a) enforces the value of ωjk to be equal to πjk when πk lies in
[
bjk−1, b

j
k

]
.

Constraint set (2.3b) expresses vk as a linear function of ∆j
k and cjk when πk lies in[

bjk−1, b
j
k

]
. Constraint sets (2.3d) and (2.3e) define the value of ωjk and gjk, respectively.

8



Logarithmic Model

Figure 2.2: Reflective
Binary Code

Similar to CC model, Log model approximates the non-

linear function by formulating piecewise linear segments in

terms of convex combination, however, it applies n-bit Gray

codes, also known as reflective binary codes, for an inde-

pendent branching scheme to reduce the size of variables

and constraints in CC model. The number of binary vari-

ables gjk becomes dlog2 pe, which is the length of binary Gray

codes needed to construct disjunctive constraints, whereas

the number of constraints for λjk becomes 2dlog2 pe. For in-

stance, if the value of the nonlinear function vk is approxi-

mated using four segments, CC model requires four binary

variables gjk and eight constraints for λjk to represent each

segment in which only one of them includes the value of vk,

whereas Log model requires only two binary variables gjk and

four disjunctive constraints for λjk. Figure 2.2 illustrates 4-bit reflective binary code which

can be used to construct up to 16 segments.

We present the Log model in formulation (2.4) and additional notation used in the

model in Table 2.3. We demonstrate the use of Gray codes for constructing disjunctive

constraints in Example 1.

Sets

S Set of indices of left and right breakpoints of each segment, indexed by j = 1, . . . , p− 1
Sj := {j − 1, j}

Ls Set of indices of breakpoints in Sj considering the sth entry of Gray codes of value 0

Ls := ∪j∈J ,j /∈σ(Bs(j))Sj; used for indices of λjk
Rs Set of indices of breakpoints in Sj considering the sth entry of Gray codes of value 1

Rs := ∪j∈J ,j∈σ(Bs(j))Sj; used for indices of λjk

Parameters

B(j) The jth reflective binary Gray code representing the jth segment
Bs The sth entry of the jth Gray code B(j)
σ(Bs) Support of Bs where σ(Bs) = {j ∈ J : Bs(j) 6= 0}

Table 2.3: Additional notation for logarithmic model.

p∑
j=0

λjkb
j
k = πk, ∀ k = 1, . . . , K, (2.4a)

9



p∑
j=0

λjk log(bjk) = vk, ∀ k = 1, . . . , K, (2.4b)∑
j /∈Ls

λjk ≤ gsk, ∀ k = 1, . . . , K, ∀ s = 1, . . . , dlog2 pe, (2.4c)

∑
j /∈Rs

λjk ≤ (1− gsk), ∀ k = 1, . . . , K, ∀ s = 1, . . . , dlog2 pe, (2.4d)

p∑
j=0

λjk = 1, ∀ k = 1, . . . , K, (2.4e)

p∑
j=1

gjk = 1, ∀ k = 1, . . . , K, (2.4f)

λjk ≥ 0, ∀ k = 1, . . . , K, ∀ j = 0, . . . , p, (2.4g)

gjk ∈ {0, 1} , ∀ k = 1, . . . , K, ∀ s = 1, . . . , dlog2 pe (2.4h)

All constraint sets are defined in a similar manner as in CC model formulation (2.2),

except that constraint sets (2.4c) and (2.4d) together construct disjunctive constraints of

each segment.

Example 1 Constructing disjunctive constraints of four segments using 2-bit Gray codes.

Figure 2.3 shows gray codes corresponding to each of the four segments B(j) where

the set of indices of each segment Sj is defined to be {j − 1, j}. Figure 2.4 demonstrates

the construction of disjunctive constraints for the convex combination each segment.

Figure 2.3: Gray codes of
4-segment.

Each constraint is constructed by considering each entry

of the Gray codes. For instance, L1 is the union of break-

points of Sj’s such that the first entry of Gray codes B(j) is

zero; as the result, L1 = S1 ∪ S2 = {0, 1, 2}. On the other

hand, R1 is the union of breakpoints of Sj’s such that the first

entry of B(j) is one; as the result, R1 = S3 ∪ S4 = {2, 3, 4}.
By considering the first entry of the Gray codes, we obtain

two constraints: λj3 + λj4 ≤ g1k and λj0 + λj1 ≤ 1 − g1k. On

the other hand, by considering the second entry of the Gray

codes, we obtain another two constraints: λj2 ≤ g2k and λj0+λj4 ≤ 1−g2k. The set of left and

right breakpoints of the first segment is S1 = {0, 1}. By substituting the first and second

entries of Gray code corresponding to the first segment (0, 0) to g1k and g2k, respectively,

we obtain the following constraints: λ3+λ4 ≤ 0, λ0+λ1 ≤ 1, λ2 ≤ 0, and λ0+λ4 ≤ 1; all

together imply that λ0 + λ1 = 1, that is, the value of vk lies in between the first segment.

10



(a) Constructing disjunctive constraints from each entry
of the Gray codes.

(b) Different values of
(
g1k, g

2
k

)
result in different segments.

Figure 2.4: Constructing disjunctive constraints from Gray codes.

MC model often performs best on small number of breakpoints; for larger number of

breakpoints, Log model is preferable [2]. As different PWL models result in comparatively

similar values of vk, we implement PWL using MC model. We next apply McCormick

relaxations to linearize bilinear components in the objective function.

2.2.2 Reformulating MINLO to MIQO via McCormick Relax-

ations

McCormick [3] proposed the relaxation of z = x1x2, where x1 ∈ [l1, u1] and x2 ∈ [l2, u2],

with the following inequalities:

z ≥ u2x1 + u1x2 − u1u2 z ≥ l2x1 + l1x2 − l1l2 (2.5a)

z ≤ u2x1 + l1x2 − l1u2 z ≤ l2x1 + u1x2 − u1l2 (2.5b)

Our final step to convert MINLO to MIQO is to apply McCormick relaxations [3] to

linearize the nonlinear components zikµkd and zikvk where vk = log πk. Define yid and µkd

to be the dth dimensional element of yi and µk, respectively. We present McCormick in-

equalities for linearing zikµkd as tikd and zikvk as wik, ∀ i = 1, . . . , N, ∀ k = 1, . . . , K, ∀ d =

1, . . . , D, in constraint sets (2.6) and (2.7), respectively.

min
i
{yid}zik ≤ tikd ≤ max

i
{yid}zik

µkd −max
i
{yid} (1− zik) ≤ tikd ≤ µkd −min

i
{yid} (1− zik)

(2.6)

log
1

N
zik ≤ wik ≤ log

N −K + 1

N
zik

vk − log
N −K + 1

N
(1− zik) ≤ wik ≤ vk − log

1

N
(1− zik)

(2.7)
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In consequence, we obtain the following objective function for our MIQO model:

min
z,π,µ

η
N∑
i=1

D∑
d=1

(
yid −

K∑
k=1

tikd

)2

−
N∑
i=1

K∑
k=1

wik. (2.8)

We next custom B&B algorithm to improve solving efficiency of MIQO.

2.2.3 Customizing Branch-and-Bound Algorithm

We solve our MIQO using Branch-and-Bound (B&B), which is a divide-and-conquer algo-

rithm. To find an optimal solution that minimizes the objective function, B&B recursively

splits the search space and keeps track of bounds of the objective to eliminate inferior

regions of the search space. It exploits the efficient solution of convex relaxations to prune

the tree of unpromising regions.

B&B recursively relaxes the component assignments zik at each node, zik ∈ [0, 1]. It

then branches on integer values of zik ∈ {0, 1} which are chosen based on some branching

strategy. We choose to branch on most integral zik which forces one branch to be zik = 1

and the other branch to be zik = 0. We expect the branch with zik = 0 willbe fathomed

more quickly. The algorithm keeps track of the best solution found until it terminates.

We next present the experiment of our MIQO on three UCI datasets.

Figure 2.5: An illustration of the (ideal) branching strategy on zik closest to one.

2.3 Computational Experiments

We compare our MIQO with MINLO and EM. We experiment on three famous datasets

from UCI Machine Learning Repository [4]: Iris projecting on the first principal compo-

nent where N = 150 and K = 3; Wine Quality where N = 178, K = 3, and D = 13;
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Wisconsin Breast Cancer where N = 569, K = 2, and D = 3. The PWL approximation

of log πk uses MC model with 5 breakpoints. We explored the most-integral branching

strategy, using our customized B&B adapt from [5], but the performance was inferior to

the state-of-the-art solvers. As a result, we use GAMS for implementation and the results

consist of these two approaches: we use B&B to solve MINLO in formulation (2.1) by

calling BARON at each node and use B&B to solve MIQO by calling Gurobi at each

node. We limit the computational time to 12 hours.

Data Metric EM MINLO MIQO

iris-1d

Objective Value 280.6 280.02 282.71
Best Bound - 9.27 161.6
sup|π − π̂| 0.075 0.093 0.165
‖µ− µ̂‖2 0.278 0.356 0.356∑

i sup|zi − ẑi|/N 0.067 0.093 0.093

wine-13d

Objective Value 1376.00 1366.85 1390.13
Best Bound - −2.2× 105 183.42
sup|π − π̂| 0.005 0.006 0.167
‖µ− µ̂‖2 2.348 1.618 14.071∑

i sup|zi − ẑi|/N 0.006 0.006 0.022

brca-3d

Objective Value 1566.49 1566.40 1578.49
Best Bound - −2.7× 104 332.3
sup|π − π̂| 0.167 0.169 0.122
‖µ− µ̂‖2 394.07 401.47 418.05∑

i sup|zi − ẑi|/N 0.169 0.169 0.174

Table 2.4: Computational results of three approaches on three datasets.

We report best solution found and best bound. The total variation distance metric

is used for π and z, and the L-2 distance metric is used for µ. Based on the compu-

tational results in Table 2.4, MINLO performs best in terms of minimizing loss. MIQO

provides tighter bound on the globally optimal value. While our goal is to find global

optimality upper and lower bounds, the parameter estimation of MINLO and MIQO are

roughly equivalent to EM. As presented in [6], Figure 2.6a shows that MIQO finds solution

quickly, most of the remaining runtime is spent to prove global optimality of the solutions.

While Figure 2.6b shows that as the sample size gets larger, runtime of MIQO improves

comparing to MINLO. This shows that our MIQO is more promising than MINLO for

larger data size. Nonetheless, more improvement on its computational performance to

prove optimality is needed.
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(a) Global convergence of MIQO.
(b) Comparison of MINLO and MIQO on
computational runtime and sample size.

Figure 2.6: Comparison of MINLO and MIQO [6]

2.4 Conclusions and Future Work

We formulate MINLO for solving MAP. Our mixed-integer optimization model is easy to

interpret statistically and adaptable to various prior distributions. We further reformulate

MINLO to MIQO using PWL approximation and McCormick relaxations. We explore our

customized B&B using the most-integral branching strategy although the performance is

inferior to commercial solvers. The solution quality of MIQO is slightly better than EM

and MINLO and is more promising when sample size is large [6].

Our MINLO and MIQO formulations can reasonably handle small datasets including

around 50 observations. While the number of 50 sample size seems small, our methods can

be useful in most biological experiments and clinical trials which study on small sample

size. For larger datasets, our methods can provide upper and lower bounds of the solu-

tion. However, further study on the reformulation will certainly improve computational

efficiency of this problem, one example is [7].

14



Chapter 3

Service Classification and

Assignment of IT Tickets via

Machine Learning and Optimization

Introduction

We study mixed-integer optimization (MIO) for assigning the right tasks to the right

workers. Our study creates a decision support system (DSS) to optimize the service

classification and assignment of tickets using machine learning and MIO techniques for

Information Technology Services (ITS) organizations. Typical ITS organization hires

technicians to support users with a variety of incident or request services. The process

begins with users submit a ticket describing an incident or request, then technicians receive

and process tickets to fulfill a service. There are many levels of technicians who work on

tickets. The process to fulfill a ticket either ends after a technician receives and fulfills a

ticket or requires further communication among staff to help with processing the ticket.

ITSM wants to avoid when tickets need further support from higher-tier technicians as

there is an increasing cost for an organization when tickets need further support from

higher-tier technicians.

Existing ticket assignment in general is in First-In-First-Out manner (FIFO) [8]. Upon

receiving a ticket, a tier-1 technician must fully document a list of information, including

incoming communication, summary and description, classification of the ticket according

to the service catalog, and other meta-data attributes. Once documented, a ticket can

go down one of three different routes. First, it can be escalated and assigned to another

higher-tier technician. Second, it can be fulfilled directly by the technician. Third, it

requires the tier-1 technician to consult with peers or manager first to gain consensus on

how to process ticket. Figure 3.1 illustrates the current process to fulfill a ticket in the
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Figure 3.1: Current ITSM incident request process [9].

ITS management (ITSM).

There are many problems with the current ITSM process [9] that lead to extended

processing time, increasing cost for organization, and inefficient ticket handling. New

technicians require extensive and costly training about the service catalog and organiza-

tion structure, advance training that is not practical for the job not only causes difficulty

in ticket fulfillment but also increase training cost for ITS organization. A lack of knowl-

edge management in a team or an individual can lead to ticket escalations that involve

multiple technicians or managers to fulfill the ticket. Another problem is when techni-

cians favor some types of tickets, e.g. easy tasks, lower-skilled or less specialized tier-1

technicians can be left with no tickets that they could work. A large size of staff can

lead to inconsistency in handling tickets. Additionally, the lack of using historic data on

incoming tickets is wasteful for the ticket process.

Total cost of a ticket is referred to as total cost of ownership (TCO). TCO of a single

ticket includes the cost of support from all sources, including the service desk, desktop

support, other groups or individuals in IT, and vendors [10]. Estimations of TCO on a

per ticket basis is a compounding cost for each escalation as shown in Figure 3.2 and

Table 3.1.
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Figure 3.2: Accumulated total cost at each escalation

Support Level Cost Per Ticket TCO

Tier-1 $22 $22

Tier-2 $62 $84

Tier-3 $85 $169

Field $196 $365

Vendor $471 $836

Table 3.1: Total cost of ownership [10]

We propose a data-driven decision support system that makes use of machine learning

and integer optimization to provide recommendations to technicians. We next describe

our system in detail.

3.1 Methodology

We create a decision support system to address existing problems in typical IT services.

Our proposed system consists of three stages: (1) extract keywords from an incoming

ticket using natural language processing (NLP), (2) create a ticket classification model

using machine learning techniques, and (3) create a ticket assignment model using integer

optimization, as shown in Figure 3.3. The advantage of our system is that we make sure

of optimization techniques, which have not been used extensively in the ITSM process

and decision support systems [9].

Figure 3.3: An overview of our DSS process [9].

3.1.1 Extracting Keywords From Tickets Using NLP

We build our ticket classification models based on keywords extracted from both incoming

tickets and a historic dataset. We clean the tickets before extracting, then create a dataset

out of tickets using natural language processing (NLP).
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(a) Category: Access Management. (b) Category: Account Management.

(c) Category: Email. (d) Category: Marketing Systems.

Figure 3.4: Keywords extracted from tickets using TF-IDF.

Feature extraction has two main methods: bag-of-words (BoW) and word embedding.

BoW is based on word frequency, whereas word embedding is based on vector space model.

While word embedding outperforms BoW in the state-of-the-art, our initial work extracts

keywords from tickets using BoW due to the domain specific of IT service terminology;

later on, we apply machine learning techniques on the extracted keywords to build a

classification model. There are two approaches to extract important features from texts

using BoW by using word frequency and term frequency-inverse document frequency (TF-

IDF). Although TF-IDF takes into account words that occur frequently, but carry less

meaningful information; e.g. is, and, the, word frequency works better for our cleaned

data. Figure 3.4 illustrates keywords extracted using TF-IDF method from four categories.

3.1.2 Building Ticket Classification Model

The automatic ticket classification can save time and reduce workload of technicians. After

extracting keywords, we build classification models using machine learning techniques to

map tickets to service catalog. A service catalog contains a collection of all services that

an IT Service organization provides to its users. The target of the classification can be

either Category, SubCategory, or the combination of Service, Category, and SubCategory.

We select Category as the target since it is easiest to deal with the number of classes and

class imbalance. For the input, we use Summary and Description of tickets. Although

ticket Summary displays the type of services better than ticket Description, some ticket

Summary are missing. We create a main input variable that use Summary as an input

if it is available, use Description otherwise. We truncate ticket categories in the service

catalog that appeared less than 0.5% of the data for better prediction. We partition 70%
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of data into training set and the remaining into test set.

We consider the following classification models: Naive Bayes (NB), Random Forest

(RF), Logistic Regression (LR), Support Vector Machine (SVM), and Neural Network

(NN). Our best model obtained from LR and NN with 78% accuracy. We summarize the

results of our models in Table 3.2.

NB LR SVM RF NN

Frequency 0.7398 0.7709 0.7468 0.7533 0.7721
TF-IDF 0.6987 0.6987 0.7322 0.7589 0.7685

Table 3.2: Accuracy results of each machine learning model using word frequency and
TF-IDF.

3.1.3 Building Ticket Assignment Optimization Model

After classifying tickets, we build a ticket assignment model using mixed-integer optimiza-

tion to assign tickets (tasks) technicians. The assignment considers required skills and

time to fulfill ticket, skillset of technicians, cost, and availability of technicians. Given

technician availability and types of tickets, the objective is to assign task to technician

according to fit, while prioritizing balance between staffing levels. We minimize the un-

derassignment and overassignment task time of technician by introducing penalty weight

to the objective function. Penalty weight of underassignment task time is reciprocal to

the rank, while penalty weight of overassignment task time is twice the penalty of the

underassignment to distribute tasks among tier-1 technicians as equally as possible and

allocate some availability to higher-tier technicians. We describe the assignment opti-

mization model formulation in formulation (3.1) and notations used in Table 3.3.

minimize
∑
t∈T

∑
p∈P

∑
k∈K

|vpk − vtk|xtp + wpY
2

p + wpY
2
p (3.1a)

such that
∑
p∈P

xtp = 1 ∀ t ∈ T, (3.1b)∑
t∈T

dtxtp ≥ lp ∀ p ∈ P, (3.1c)∑
t∈T

dtxtp − Y p + Y p = ap ∀ p ∈ P, (3.1d)

xtp ∈ {0, 1} ∀ t ∈ T, ∀ p ∈ P, Y p, Y p ≥ 0 ∀ p ∈ P. (3.1e)

19



Sets

T Set of tasks, indexed by t ∈ T
P Set of people (technicians), indexed by p ∈ P
K Set of skills, indexed by k ∈ K

Parameters

ap Availability of person p, in hours
lp Minimum working time required for person p
dt Time to complete task t
vtk Skill level requirement of skill k for task t
vpk Skill level performance of skill k for person p
wp Penalty weight of underassignment 1-hour unit of work to person p
wp Penalty weight of overassignment 1-hour unit of work to person p

Decision Variables

xtp Binary variable assuming a value of 1 if task t is assigned to person p; 0 otherwise
Y p Integer value of overassignment working time beyond the availability of person p, in hours
Y p Integer value of underassignment working time below the availability of person p, in hours

Table 3.3: Notation for ticket assignment optimization model.

Objective function (3.1a) minimizes total absolute skill level difference of technician and

task and weighted squared penalty for assignment time that undershoot/overshoot tech-

nician availability time. Constraint set (3.1b) ensures that a ticket is assigned to exactly

one technician. Constraint set (3.1c) specifies the minimum working time required for

each technician. Constraint set (3.1d) defines availability of each technician. Lastly, non-

negativity and binary restrictions are defined in (3.1e). We next present a case study of

our formulation at WPI Helpdesk Service.

3.2 A Case Study and Computational Experiments

We develop an ITSM tool and deploy to assign tickets to technicians at WPI Helpdesk

Service. The experiment compares optimized (OPT) versus First-In-First-Out (FIFO)

assignment on ticket throughput, timing, and quality of experienced and inexperienced

technicians. The plan is to conduct the experiment daily on school days for six weeks

as shown in Figure 3.5. At the start of each day, the manager of tier-1 service desk

technicians initiates the ITSM Process, then technicians select a “give me work button”

that provides OPT or FIFO tickets depending on the current treatment. Data has been

collecting, with results to follow. Our system classifies tickets correctly and consistently

78% of the time, better than the classification done by typical tier-1 technicians. The

system assigns various amount of tickets to technicians with balance workload and the
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model is adjustable in many situations.

Figure 3.5: Experimental design.

An example on a subset of WPI dataset shown in Table 3.4, our system spends roughly

half a second to assign 57 tickets to eight technicians given working time of three hours

each. Each ticket takes 0.84 hour to fulfill on average. For each technician, we report

the average skill set value (AvgSkillSetValue), number of assignment tickets (NumTicke-

tAssign), total working time (TotalWorkTime), overassignment time (OverAssignTime),

and underassignment time (UnderAssignTime). Technicians who started working prior

2014 are considered higher-tier worker. We observe that there are three levels of tech-

nicians according to the AvgSkillSetValue, ranging between < 2, [2, 3], and > 3. Our

system distributes all tickets in such a way that lower-level technicians works more than

higher-level technicians to give higher-level technicians more availability to supervise the

IT process. Tickets are distributed to technicians in the same tier in the same amount as

much as possible, except when some technicians do not possess required skill set to work

on tickets. Table 3.5 displays the average results of the sample data.

Technician ID Start Date AvgSkillSetVal NumAssignTickets AvgTimePerTicket OverAssignTime UnderAssignTime

1 9/15/16 1.71 9 6.4 3.4 0
2 9/14/17 1.88 12 7.66 4.66 0
3 1/13/18 1.90 10 8.14 5.14 0
4 10/1/14 2.52 7 4.97 1.97 0
5 9/21/14 2.67 5 4.32 1.32 0
6 11/1/16 2.85 7 7.03 4.03 0
7 9/15/15 3.62 4 5.55 2.55 0
8 8/25/12 3.69 3 3.61 0.61 0

Table 3.4: Ticket assignment results from a sample dataset.

3.3 Conclusions

We create an automatic system to process tickets in IT services. Our system consists

of two main features: ticket classification and assignment. Through the use of machine

learning and integer optimization, we hope to conserve resources and increase efficiency
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AvgSkillSetValRange
Average

NumAssignTickets TotalWorkTime OverAssignTime

≤ 2 10.33 7.40 4.40
(2, 3] 6.33 5.44 2.44
> 3 3.50 4.58 1.58

Table 3.5: Averaging results of a sample dataset.

in ticket handling. Our systems precision can be increased over time as the training set

gains more tickets and the system matures. Additionally, the system is adaptable to

other applications; for example, an auto repair application where issues are classified to

a category in a repair catalog (OBD – On-Board-Diagnostic trouble codes) then assigned

to appropriate mechanics, or an medical application where symptoms are classified to

potential diagnosis (ICD-9/10 – International Classification of Diseases) then assigned to

appropriate medical staff.
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Chapter 4

A Comparative Study of Stability

Representations for Solving

Many-To-One Matching Problems

with Ties and Incomplete Lists via

Integer Optimization

Introduction

We study integer optimization for many-to-one matchings with incomplete preference

lists and ties. Many-to-one matching appears in a variety of applications, such as in

school choice [11–13], college application [14–16], hospital-residency matching [17, 18],

and refugee resettlement [19, 20]. Multiple algorithmic approaches such as deferred ac-

ceptance (DA) and top trading cycle (TTC) algorithms are widely used in many-to-one

matching; however, optimization-based approaches offer distinct advantages over tradi-

tional algorithmic approaches, in their ability to accommodate side constraints and readily

handle incomplete preference lists with ties. We capitalize on this within an integer op-

timization framework for many-to-one matching. Our many-to-one matching problem is

student-to-project-center assignment (SPC) where each student is assigned to a project

center or unmatched, project centers have a limited capacity, and the assignment consid-

ers preference of both sides. SPC assignment may further require the creation of a cohort,

which is a group of students having one or more particular features in common, such as

academic major or gender.

Well-designed matching mechanisms feature efficiency, stability (fairness), and strategy-
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proofness properties. We define an entity to be either a student or a project center director.

In term of efficiency, a matching is Pareto efficient if there exists no other match where

an entity is better off without making at least one other entity worse off. A blocking pair

is a pair of student s and project center p in which both student s and project center

p prefer one another to their actual assignments or their unassigned (undersubscribed)

status. A matching has justified envy if there exists a blocking pair (s, p) in which student

s prefers project center p to the current match and, concurrently, project center p prefers

student s over (at least) one other students in its current assignment. A matching has

waste if there exists a blocking pair (s, p) in which student s prefers project center p to

the current match and, concurrently, project center p has an empty seat and also prefers

student s over a vacant position. A matching is stable if there exists no blocking pair

characterizing either justified envy or waste. A mechanism is strategy-proof if it is not

possible for an entity to obtain a better outcome by misreporting their true preference.

While all three properties may be desirable, [21] show that there exists no mechanism

with all three properties simultaneously.

Multiple approaches for solving many-to-one matching problem offer different desirable

properties suiting the particular context. An outcome of the DA algorithm is proved to be

stable and efficient for the proposing side [14]. Whereas, an outcome of the TTC algorithm

is proved to be strategy-proof and efficient [11]. If fairness is preferred to efficiency, then

one should select DA algorithm; and vice versa [11]. On the other hand, optimization-

based approaches can be designed to not only maximize efficiency but also ensure stable

outcomes by adding constraints [see, e.g., 18, 22–24]. Unlike aforementioned approaches,

optimization-based approaches can readily accommodate side constraints and incomplete

preference lists with ties.

We present an integer optimization model for many-to-one matchings with incomplete

preference lists and ties. Our objective functions impose a strict lexicographical order-

ing on the priority of individual components. We introduce multiple new many-to-one

blocking pair elimination constraints that ensure stable match outcomes. We further cre-

ate algorithms to accelerate the computational performance of our stability constraints.

We incorporate the concept of cohorts into the model via a goal programming framework

that penalizes deviations in a quadratic manner. Lastly, we conduct comprehensive exper-

iments to study the computational performance of our stability constraints and compare

them with constraints from the extant literature, under a variety of conditions. Our ex-

periments on both real and synthetic data reveal the model properties where each method

excels, and also show that our stability constraints are more computationally efficient than

the existing methods for typical real-world matching applications where sufficient seats

exist for applicants, such as school choice problems and hospital-residency matching.
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4.1 Background

The Deferred Acceptance algorithm (DA) was originally designed for the one-to-one stable

marriage problem [14] and, later, extended to the many-to-one college admission problem

[25]. The algorithm is an iterative process in which each of the entities on one side proposes

to entities on the other side. An outcome of the DA algorithm for the stable marriage

problem was shown to be stable and efficient for the proposing side [14]. Some properties

of the DA algorithm applied to one-to-one matchings do not carry over to many-to-one

matchings. The author of [25] shows that no stable matching mechanism is strategy-proof

for the project center side, but student-proposing DA is strategy-proof for students. The

author of [26] shows that project centers may benefit by misreporting capacities, and that

no stable matching outcome is non-manipulable via capacities. In fact, [27] shows that

there exists no stable matching mechanism that always yields an incentive compatible

outcome in which both sides of the entities give their truthful preferences.

Another popular approach for many-to-one matching is the TTC [28]. The TTC

algorithm starts with unassigned students and available schools. Each student points to

her best school, and each school points to the student with the highest priority. Then,

there must be at least one trading cycle, that is, an ordered list of students and schools

in which the first student in the list points to the first school in the list (her best school)

and the first school of the list points to the second student of the list (the student with

the highest priority) and so on. Each student in a cycle is assigned to the school she

points to and is removed. The capacity of each school reduces by one, and if it reaches

zero, the school is removed. The algorithm terminates when all students are assigned or

all submitted choices are considered. [11] explain TTC for school choice and show that

TTC is strategy-proof and efficient but does not always yield stable outcomes. Both DA

and TTC require strict preference ordering, that is, ties among preferences will render

the algorithms inapplicable; thus, ambivalence can be accommodated only by breaking

such ties with small random perturbations. Depending on the application, if stability is

favored over full efficiency, then DA is preferable — as it yields the most (proposing side)

efficient outcomes that ensure stability; whereas if efficiency is favored over stability, then

TTC is preferable to DA [11].

In contrast to standard algorithmic approaches such as DA and TTC, we use tech-

niques from integer optimization (IO) to develop approaches for determining optimal

many-to-one matching outcomes. Table 4.1 summarizes studies that present optimization-

based models in the context of stable matching, using various approaches to model the

concept of stability.

Vande Vate [29] is among the first to use optimization to solve the one-to-one stable

marriage problem. The study introduces a particular form of constraints that ensure the
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Authors (year) Type of Matchings Optimization Objective Side Constraints

Vande Vate (1989) One-to-one max social values of marriage problem stability constraints for one-to-one matching describing the
stable marriage polytope

Roth et al. (1993) One-to-one max utility of marriage problem stability constraints for one-to-one matching

Bäıou and Balinski (2000) Many-to-one max utility associated with the assignment stability constraints for many-to-one matching describing
the stable admissions polytope

Kwanashie and Manlove (2014) Many-to-one max number of matches constraint encodings for stable matching

Ágoston et al. (2016) Many-to-one min total score-limits or free objective function score-limits, lower and common quotas, and paired
applications

Delorme et al. (2019) Many-to-one max number of matches stability constraints representing in different models

Shimada et al. (2020) Many-to-one max total utility; min total blocking pairs; min
total squared shortages of subgroup members
from target

stability constraints and constraints for matching in groups

Current study Many-to-one max number of matches; max student utility;
max project center utility; min total squared
deviation from target cohort

stability constraints and constraints for cohort construction

Table 4.1: Optimization-based approaches in the literature that consider stability.

matching outcomes are stable, and moreover it is shown that they preserve the integrality

of the variables representing the assignment of man i to woman j, thus enabling solution

via computationally efficient linear programming techniques. Roth et al. [30] explore the

dual and fractional solutions of the stable marriage linear program from [29]. They show

that the dual of this particular linear program has a strong relationship to the primal,

namely, that each optimal solution to the primal is contained in an optimal solution to

the dual, highlighting the duality structure of the underlying linear program.

Bäıou and Balinski [31] are the first to present stability constraints for many-to-one

matching. They describe the stable admission polytope — the convex hull or the small-

est convex set of the stable assignments of the college admissions problem. Kwanashie

and Manlove [32] present a set of stability constraints for the Scottish hospital-residency

matching with a computational study on their models using both randomly generated

and real-world datasets. The form of their presented stability stability constraints also

appears in their recent work in [18]. Ágoston et al. [23] focus on the Hungarian ad-

missions problem with four special features: the solution concept of stable score-limits,

the presence of lower and common quotas, and paired applications. The score-limit com-

puted for each college is the lowest score that allows students to be admitted. The stable

score-limits ensure stable outcomes resulted from using score-limits, in which students are

admitted to their top choice where their score achieved the score limit. Similar to quotas

in school choice, lower quotas define the minimum number of assigned students for each

college to remain open and upper quotas limit the maximum number of students that

can be assigned to each college. The idea of paired applications is similar to many-to-one

matching with couples.

Delorme et al. [18] present integer linear programming (ILP) models for one-to-one

pairing of children with adoptive families and many-to-one hospital-residency assignment,

each of which maximizes the number of stable matches. They also derive an enhanced

model that reduces the number of nonzero elements with respective forms of stability
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constraints and conduct experiments on real and random datasets. Shimada et al. [24]

also consider many-to-one matching for hospital-residency. They address the trade-off

between stability and efficiency through the use of multiple objectives. Their multi-

objective optimization model weights the maximum total utility, the minimum number

of blocking pairs, and the minimum small-subgroup penalty — the squared shortages of

subgroup members deviating from the target number for the purpose of matching in

groups (cohorts).

In many real-life applications, it is unrealistic to require preferences over every entity

on the other side, and moreover it may be the case that an entity has ambivalence in their

preferences over multiple entities. Optimization-based approaches excel in such contexts

of matching with incomplete lists and ties among preferences. Our study solves the more

general problem that allows for weighted matches in the context of incomplete lists and

ties. In particular, students can have ties over project centers, while project centers can

also have ties among students (though rarely do).

It is often desirable in school choice problems and residency applications to have a

matching outcome with an applicant blend such as cultural and racial diversity. In the

context of school choice this has been studied as a minimum/maximum quota problem,

where students are divided into several subgroups according to their socioeconomic sta-

tus, and each school imposes a minimum/maximum quota for each group of students.

Hogan [33] introduced the concept of matching in groups, which focuses on using the DA

algorithm for many-to-one matching with stability. The use of optimization for matching

couples, roommates, or people with similar backgrounds has also seen recent investigation

[see e.g., 23, 24, 34–37]. In our SPC assignment, project center directors may consider

cohort, or group, formation of students. Some project centers may seek a minimum num-

ber of female students to balance subsequent team formation, or reduce dormitory costs,

whereas others may request a specific skill from a list of student majors.

4.2 Model Formulations

We present a lexicographical multi-objective optimization formulation for the SPC match-

ing problem that considers both the total number of matches and the total market utility,

where maximizing the total number of matches is the most important objective. Eligible

assignments consist of students to project centers that each rank one another on their

preference lists.

Define S to be a set of students and P to be a set of project centers. Some students

may be unmatched due to incomplete list, we augment the set of project centers P to

include a virtual project center p0 dedicated to unmatched students. We assume that it
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is preferable for a project center to accept any eligible student over a vacant seat.

Define qsp to be student preference value and ksp to be project center director preference

value of student s at project center p, respectively. Define rsp to be integer ordinal

preference value of student s at project center p, where smaller values of rsp indicate a

more preferable project center for student s. The preference order � indicates an entity

in the left-hand side is more preferable with a corresponding greater utility value than the

right-hand side. Define the value of assigning student s to project center p, also known as

the market utility, as usp := U(qsp, ksp), which is a linear function of cardinal preferences

of student s and project center p.

Define Ps to be the set of project centers that student s ranks. Students prefer being

unmatched to being assigned to undesirable project centers that are not in their list, that

is, qsp > qsp0 > 0 ∀ s ∈ S, ∀ p ∈ Ps. Moreover, a virtual project center prefers all

students equally, ksp0 = 0 ∀ s ∈ S, and assigning students to a virtual project center does

not contribute to the objective function, that is, usp0 = 0 ∀s ∈ S. We present the baseline

optimization formulation for SPC matching problem in formulation 4.1 and notation used

in the formulation in Table 4.2

Sets

S Set of students, indexed by s
P Set of project centers including a virtual project center p0, indexed by p
Rs Set of ranking levels of student s over the project center preference list, indexed by r ≤ |S|
Rp Set of ranking levels of project center p over the student preference list, indexed by r ≤ |P|
Sp Set of students for whom project center p ranks in its preference list, indexed by s
Ps Set of project centers that student s ranks in their preference list, indexed by p

S(r)
p Set of students for whom project center p ranks in level r ∈ Rs, indexed by s(r)

P(r)
s Set of project centers that student s ranks in level r ∈ Rp, indexed by p(r)

Parameters

usp Utility value of matching student s to project center p
qsp Student preference of student s at project center p
ksp Director preference of student s at project center p
rsp Integer ordinal preference value of student s for project center p
cp Capacity of project center p

Decision Variables

xsp Binary variable assuming a value of 1 if student s is assigned to project center p; 0 otherwise
zp Indicator with value of 1 if project center p has at least one empty seat
x Entire |S| × |P| match outcome

Table 4.2: Notation for matching student to project center models.

maximize
∑
s∈S

∑
p∈P

xsp + γ
∑
s∈S

∑
p∈P

uspxsp (4.1a)

subject to
∑
p∈P

xsp = 1 ∀ s ∈ S, (4.1b)
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∑
s∈S

xsp ≤ cp ∀ p ∈ P , (4.1c)

xsp = 0 ∀ s ∈ S, ∀ p ∈ Ps : p0 �s p, (4.1d)

[ Blocking pair elimination constraints ], (4.1e)

xsp ∈ {0, 1} ∀ s ∈ S, ∀ p ∈ P . (4.1f)

Objective function (4.1a) maximizes the sum of total student placement and weighted

total market utility via the careful selection of coefficient γ that strictly prioritizes the

maximization of total student placement.1 Constraint set (4.1b) requires that each student

must be assigned to exactly one project center, whether a project center in the prefer-

ence list, or the virtual project center p0 introduced for unmatched students. Constraint

set (4.1c) ensures that the number of students assigned to each project center does not

exceed site capacity. Constraint sets (4.1d) and (4.1e) together ensure stability; constraint

set (4.1d) preserves individual rationality, while constraint set (4.1e) prohibits solutions

with blocking pairs. In Section 4.3 we introduce several new many-to-one stability con-

straint representations that prevent blocking pairs so as to ensure stable match outcomes,

and discuss their relationship to existing forms in the literature. Variable domains are

stated in (4.1f). We will extend this baseline formulation to create other models through

our study.

4.3 New and Existing Linear Representations of Sta-

bility

Optimization formulation (4.1) maintains strict conditions of stability through constraints

that express the prevention of blocking pairs. Recall that a match is stable if there exists

no blocking pair characterizing justified envy or waste. This definition has already been

represented in several mathematical forms for both one-to-one [see, e.g., 29, 30] and many-

to-one matching markets in the literature [see, e.g., 18, 31]. We will first review the existing

stability constraints in the literature, and then present new and alternative linear forms

of stability that eliminate justified envy and waste, respectively.

4.3.1 Existing Stability Constraints

The author of [29] introduces a binary integer optimization formulation that appears to be

the first to model stability in the context of the one-to-one stable marriage problem, which

1We set coefficient γ equal to the reciprocal of total available capacity at project centers plus a small
positive value to ensure that the weighted total market utility is strictly less than one, thereby ensuring
any single additional placement is preferred over the greatest market utility.
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assumes |M| = |W| and complete preference lists with strict ordering over all candidates

from on other side. This study also shows that the optimal solution to the linear relaxation

of the presented integer program that models the one-to-one stable marriage problem has

integral extreme points. Denote M to be a set of men, W a set of women, and xmw = 1

if man m is matched to woman w; 0 otherwise. This constraint set is presented in (VV),

which imposes the condition of stability by requiring that if woman w marries someone

less desirable than man m, then m must marry someone more desirable than w:∑
i≺wm

xiw −
∑
j�mw

xmj ≤ 0 ∀ m ∈M, ∀ w ∈ W . (VV)

The authors of [31] appear to be the first to use a set of linear constraints to express the

concept of stability for many-to-one matching in the context of complete preference lists

and strict ordering of preferences. This is presented in constraint set (BB), which imposes

stability by enforcing that if student s is not assigned to project center p (xsp = 0), then

either student s is assigned to project center j that is preferred to p, or all of the cp seats

of project center p are assigned to students that p prefers to s:

cpxsp + cp
∑
j�sp

xsj +
∑
i�ps

xip ≥ cp ∀ s ∈ S, ∀ p ∈ P . (BB)

Adapted to the context with ties, (BB) can be modified to (BBT) whereby stability is

imposed by also considering the assignment of student s to other project centers ranked

identically to project center p and the assignment of other students ranked identically to

student s to project center p, when s is not assigned to p:

cpxsp + cp
∑
j 6=p:
j�sp

xsj +
∑
i 6=s:
i�ps

xip ≥ cp ∀ s ∈ S, ∀ p ∈ P . (BBT)

This resembles the constraint set presented in [32] as well as [18], who present integer

optimization frameworks that embed linear stability constraints in the context of many-

to-one matching with ties and incomplete lists. Their constraint set presented as (HRT)

below imposes the condition of stability by ensuring that if student s is not assigned

to project center p or any project center that s prefers at least as much as p (that is,∑
j�sp

xsj = 0), then project center p must fill its capacity with students it ranks at the

same level or higher than s:

cp

(
1−

∑
j�sp

xsj

)
≤
∑
i�ps

xip ∀ s ∈ S, ∀ p ∈ P . (HRT)

We note the similarity between (BBT) and (HRT), as (HRT) can be derived from (BBT)

when generalizing to ties and incomplete lists. Additionally, the form of (BBT) is also

appropriate for incomplete lists. As limited computational testing reveals that both (BBT)
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and (HRT) exhibit similar computational performance, we elect to proceed with (BBT) for

the remainder of our discussion.

4.3.2 Proposed Stability Constraints

We introduce constraint sets that eliminate blocking pairs associated to justified envy

and a system of constraints that eliminates blocking pairs associated to waste; thus,

both together ensure stability of the match outcomes. We first extend the one-to-one

stability constraint set of [29] to obtain a new stability constraint set for the many-to-one

context; combining with our system that eliminates blocking pairs associated to waste,

the many-to-one (VVM) sufficiently ensures stable outcomes. We then introduce a new

pairwise form of linear constraints to prevent blocking pairs. We also derive two useful

and related forms through aggregation, and further introduce two algorithms to enhance

computational performance of their construction.

Extending (VV) to Eliminate Justified Envy in the Many-to-one Context.

We derive a many-to-one stability constraint from the one-to-one stability constraint (VV)

in [29]. If we view men (m) and women (w) in the one-to-one stability constraint (VV)

as students (s) and project centers (p), respectively, we can extend the concept of stable

marriage of [29] in constraint set (VV) to the many-to-one context with ties among pref-

erences and incomplete lists where students may be matched to the virtual project center

as shown in (VVM).∑
i≺ps

xip ≤ cp

(
1−

∑
j≺sp

xsj

)
∀ s ∈ S, ∀ p ∈ P . (VVM)

Constraint set (VVM) eliminates blocking pair (s, p) associated to justified envy by ensuring

that if student s is assigned to a project center less desirable than p, then project center

p cannot be assigned a student less preferable than s. This also implies that if project

center p has its capacity filled by students less desirable than s, then student s cannot be

assigned to a center less preferable than p.

Introducing A System of Constraints to Ensure Outcomes Without Waste.

A blocking pair (i, p) associated to waste occurs when student i prefers project center p

to their match and project center p prefers student i to an empty seat. We introduce a

system of constraints that are sensitive to when project centers have empty seats, and

restrict this type of blocking pair for our proposed stability constraint sets.

The number of empty seats at each project center is the difference between the capacity
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and the number of students assigned to the center. Define zp as an indicator that takes

value of 1 if project center p has at least one empty seat (cp−
∑
s∈S

xsp > 0). We create the

(NWS) system of constraints to prevent blocking pairs associated to waste:∑
i∈Sp

∑
j∈P:
j≺ip

xij ≤Mw(1− zp) ∀ p ∈ P , (NWa)

zp ≤ cp −
∑
s∈S

xsp ≤ cpzp ∀ p ∈ P , (NWb)

zp ∈ {0, 1} ∀ p ∈ P . (NWc)

Constraint set (NWa) prevents blocking pair (i, p) when waste exists by ensuring that

if there exists an empty seat at project center p (zp = 1), then there exists no match

(i, j) ∈ S × P in which project center p prefers student i to an empty seat and student

i prefers project center p to project center j. We set the upper bound of the number of

possible blocking pairs at project center p, Mw, to be the number of students who rank

project center p in their preference list. Constraint set (NWb) ensures that zp = 1 if there

is at least one empty seat at project center p, that is, cp −
∑
s∈S

xsp > 0, and 0 otherwise.

Variable domains are covered in (NWc).

The (NWS) system eliminates blocking pairs associated to waste. They complement

(VVM) and all other stability constraint sets we introduce that eliminate blocking pairs

associated to justified envy, thereby ensuring stability. However, (NWS) is superfluous

and may be dropped when combined with an objective function that prioritizes student

utility. This special objective function induces stability because prioritizing student utility

incentivizes assigning students to their best available choice. As any desirable project

centers prefer accepting students in their list to having empty seats, the outcomes will

have no empty seats that students would value over their own assignments and, thus,

result in stable match outcomes.

Introducing New Stability Representations To Eliminate Justified Envy.

We now introduce a new linear representation of stability that, similar to (VVM), forbids

blocking pairs associated to justified envy. We then show how to derive two new linear

representations of stability via aggregation.

The notion of justified envy in stable markets states that pairs (s, p) and (i, j) cannot

be simultaneously matched if either of the blocking pairs (s, j) or (i, p) exist in which

their members prefer one other to the actual match. In other words, if student s prefers

project center j to p and project center j also prefers student s to i, then matching pairs

(s, p) and (i, j) would have been unstable. Similarly, if student i prefers project center p

to j and project center p prefers student i to s, then the initial match would have been

32



unstable. This condition of stability that prevents any such blocking pairs is represented

in the following pairwise elimination (PW) constraint set:

xsp +xij ≤ 1 ∀ s, i ∈ S, ∀ p, j ∈ P : ((j �s p)∧ (i ≺j s))∨ ((i �p s)∧ (j ≺i p)). (PW)

Although stability constraint set (PW) is intuitive, there are O(|S|2|P|2) constraints

needed to ensure stability. In an effort to reduce the number of constraints, we propose

two approaches to aggregate over i and j in (PW) that satisfy the first and second set of

blocking pair conditions, then present each approach in constraint sets (SPC1) and (SPC2),

respectively.∑
j∈P:
j�sp

∑
i∈S:
i≺js

xij ≤Ms(1− xsp) ∀ s ∈ S, ∀ p ∈ P . (SPC1)

The constantMs upper bounds the number of possible blocking pairs associated with

student s. Following the first set of blocking pair conditions in (PW), constraint set (SPC1)

ensures that if student s is assigned to project center p, then no pair (i, j) is matched

where student s prefers project center j to p and project center j prefers student s to i.

An alternative way to aggregate stability constraint set (PW) is∑
i∈S:
i�ps

∑
j∈P:
j≺ip

xij ≤Mp(1− xsp) ∀ s ∈ S, ∀ p ∈ P . (SPC2)

The constantMp upper bounds the number of possible blocking pairs associated with

project center p. Following the second set of blocking pair conditions in (PW), constraint

set (SPC2) ensures that if student s is assigned to project center p, then no pair (i, j) is

matched where student s prefers project center j to p and project center j prefers student

s to i.

Even with aggregation, the construction of constraint sets (SPC1) and (SPC2) can

be time consuming, especially for large values of |S| and |P|. Therefore, we propose a

recurrence relation to reduce the number of variables and improve the construction time

and computational performance of constraint sets (SPC1) and (SPC2) in Algorithm 1 and

Algorithm 2, respectively.

Enhancing the Construction and Performance of (SPC1) and (SPC2).

Algorithm 1 generates stability constraint set (SPC1) and ensures that if student s is

assigned to project center p(r), then there exists no assignment of student i to project

center p(k) where student s prefers more than p(r), and p(k) strictly prefers s to i, that

is, it prevents blocking pairs (s, p(k)), ∀ k ∈ {1, . . . , r − 1}. As a result, Algorithm 1

efficiently constructs constraints that prohibit blocking pairs associated with student s.

We next present Algorithm 2, which generates stability constraint set (SPC2) in a
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Algorithm 1: Recurrence relation for constructing (SPC1)

1 foreach s ∈ S do

2 Rank p ∈ P : p(r) ∈ P(r)
s , qsp(1) > qsp(2) > . . . //

Order project centers in preference

list of student s in nonincreasing

fashion.

3 for r = 1 to |Rp| do

4 foreach p(r) ∈ P(r)
s do

5 Define βsp(r) =
∑

i∈S:i≺
p(r)

s

xip(r) //
Sum over those students i that project

center p(r) prefers strictly less than s.

6 if r=1 then
7 Define αsp(1) = 0 //

There exists no blocking pair if student s is

assigned to their first choice.

8 else

9 Define αsp(r) = αsp(r−1) +
∑

p∈P(r−1)
s

βsp //

If student s is assigned to p(r),
then αsp(r) enumerates through

project centers ranked better

than r and prevents blocking pairs

associated with s.

10 Add a constraint: αsp(r) ≤Ms(1− xsp(r)) // Add stability constraint (SPC1)

similar manner to Algorithm 1. Algorithm 2 ensures that if project center p is assigned

student s(r), then there exists no assignment of a project center j to student s(k) who

project center p prefers more than s(r), and s(k) strictly prefers p to j, that is, it prevents

blocking pairs (s(k), p), ∀ k ∈ {1, . . . , r−1}. As a result, Algorithm 2 efficiently constructs

constraints that prohibit blocking pairs associated with project center p.

Algorithm 2: Recurrence relation for constructing (SPC2)

1 foreach p ∈ P do

2 Rank s ∈ S: s(r) ∈ S(r)
p , ks(1)p > ks(2)p > . . . //

Order students in preference list of

project center p in nonincreasing

fashion.

3 for r = 1 to |Rs| do

4 foreach s(r) ∈ S(r)
p do

5 Define βs(r)p =
∑

j∈P:j≺
s(r)

p

xs(r)j //
Sum over those project centers j that

student s(r) prefers strictly less than p

6 if r = 1 then
7 Define αs(1)p = 0 //

There exists no blocking pair if project center

p is assigned its first choice.

8 else

9 Define αs(r)p = αs(r−1)p +
∑

s∈S(r−1)
p

βsp //

If center p is assigned student

rank r, then αs(r)p enumerates

through students ranked better

than r and prevents blocking pairs

associated with p.

10 Add a constraint: αs(r)p ≤Mp(1− xs(r)p) // Add stability constraint (SPC2)

The auxiliary variables αsp and βsp ∀ s ∈ S, ∀ p ∈ P in Algorithms 1 and 2 are

defined as nonnegative integer variables and constructed over sorted preference lists. The
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value of Ms is no more than r(|S| − 1) and the value of Mp is no more than r(|P| − 1);

each is the count of the possible blocking pairs that are available from inspection of the

(incomplete) preference lists of s and p, respectively. We illustrate Algorithms 1 and 2

with a case in Figure 4.1 in Appendix C. Later in Section 4.5, we conduct comprehensive

experiments to compare the computational performance of (SPC1), (SPC2), (VVM), and

(BBT), and investigate the performance of these constraint sets under a variety setting of

parameters.

s1 : (p1) p1 : (s2, s3), (s1)

s2 : (p1, p2) p2 : (s1), (s2), (s3)

s3 : (p2), (p1)

Figure 4.1: The illustration of the SPC assignment with incomplete preference lists and
ties in Example 2 in which unranked project centers / students are not listed and entities
ranked in the same level are enclosed under the same brackets.

4.4 Introducing Cohort Construction Model

Our SPC optimization model considers cohort or team formation. We incorporates the

notion of a cohort in the model via goal programming techniques. Cohort attribute that

project center directors deem desirable in creating student teams can be gender or aca-

demic major, etc. Each attribute contains multiple values, called level of that attribute,

for example, student major attributes contains a variety type of academic majors. We

introduce a squared deviation penalty weighted by overassignment and underassignment

weights to the objective function in formulation (4.1) to minimize the overassignment

and underassignment of students deviated from desirable cohort targets. We present the

quadratic model formulation of stable SPC with cohort construction in formulation (4.2)

and notation related to the model in Table 4.3.

Quadratic Model Formulation of Stable SPC with Cohorts

maximize
∑
s∈S

∑
p∈P

xsp + γ
∑
s∈S

∑
p∈P

uspxsp −
∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip −

∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip

(4.2a)

such that constraint sets (4.1b)–(4.1f),∑
s∈S

bsaixsp − yaip + y
aip

= taip ∀ a ∈ A, ∀ i ∈ Ia, ∀ p ∈ P, (4.2b)

yaip ∈ {0, 1, . . . , cp − taip} ∀ a ∈ A, ∀ i ∈ Ia, ∀ p ∈ P, (4.2c)
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Sets

A Set of cohort attributes, indexed by a
Ia Sets of levels in cohort attribute a ∈ A, indexed by i

Parameters

taip Desired cohort target (number of students) of level i in attribute a for project center p
bsai Indicator with value of 1 if student s has level i in attribute a; 0 otherwise
waip Penalty weight for overassignment students with level i in attribute a to project center p
waip Penalty weight for underassignment students with level i in attribute a to project center p

Decision Variables

yaip Integer value of overassignment students with level i in attribute a to project center p
y
aip

Integer value of underassignment students with level i in attribute a to project center p

Table 4.3: Notation for quadratic cohort construction models.

y
aip
∈ {0, 1, . . . , taip} ∀ a ∈ A, ∀ i ∈ Ia, ∀ p ∈ P. (4.2d)

Objective function (4.2a) maximizes total placement and weighted utility less squared

weighted penalty for placements that undershoot/overshoot targeted cohort features. The

first two components in the objective function and constraint sets (4.1b)–(4.1f) are the

same as in formulation (4.1), where stability is enforced by constraint set (4.1e). The

number of overassignments and underassignments are determined in constraint set (4.2b).

Lastly, variable domains on the (non-negative) number of overassignments and underas-

signments are presented in (4.2c) and (4.2d).

For each attribute a ∈ A, level i ∈ Ia, and project center p ∈ P , either of yaip and

y
aip

is positive; that is, the positive number of underassignment students y
aip

implies the

overassignment student yaip is none, and vice versa. If there are taip students with level

i in attribute a assigned to project center p already, the overassignment deviation from

the desire target cannot exceed cp − taip. On the other hand, if there is no student with

level i in attribute a assigned to project center p, the underassignment deviation from the

desire target in consideration is at most taip. Thus, we conclude that the upper bound

of yaip is cp − taip and the upper bound of y
aip

is taip. we next present the results of a

comprehensive set of computational experiments comparing the performance of (SPC1),

(SPC2), (VVM), and (BBT) on real and synthetic datasets.

4.5 Computational Experiments

We now discuss experiments to compare and contrast the computational performance of

different stability constraint sets. We conduct a variety of experiments on real-world and
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synthetic datasets on formulation (4.1) with stability constraint set (SPC1) as constructed

by Algorithm 1, stability constraint set (SPC2) as constructed by Algorithm 2, stability

constraint set (VVM), and stability constraint set (BBT). Additionally, we compare the

computational performance of the Quadratic Stable SPC formulation (4.2) for cohort

construction on real-world datasets. Notably, for the three new representations we use

(NWS) to eliminate blocking pairs associated with waste, except for the WPI datasets

from the SPC matching at Worcester Polytechnic Institute (WPI). We show that the

constraints may be dropped in WPI datasets as the objective prioritizes student utility.

4.5.1 Computational Setup and Datasets

All experiments were run using Gurobi Optimization 9.1 (2020) and Python, with a

maximum of 64 GB memory, under Red Hat Enterprise Linux version 7.2. Each model

instance in the real datasets was run with the following Gurobi parameters: TimeLimit

of 24 hours, OptimalityTol dual feasibility tolerance of 1E-9, and MIPGap optimality

tolerance of 0. Our limited testing on the comparison of using Big-M conditions and

indicator constraints, detailed in Appendix B, results in a superior performance of the

latter. As a result, we model Big-M conditions in all stability representations using Gurobi

indicator constraints. As we conducted extensive synthetic data experiments, each model

instance was run with TimeLimit of one hour and MIPGap optimality tolerance of 1E-4.

We study the performance of our approaches on three data sets: WPI, HRT, and

synthetic. We have multiple years of WPI data in which we test our model development

with all stability representations and the quadratic model formulation (4.2) of stable SPC

with cohorts. In addition, we compare our development with a stable model formula-

tion in [32] on a set of their HRT randomized instances. Finally, we consider a more

general scenario by generating a host of synthetic data instances to further understand

the computational performance of each stability representation on runtime and MIPGap.

Detailed descriptions of the datasets are provided in Table 4.4.

Dataset Source |S| |P| |Rs| |Rp| (NWS) #Runs #Replicates TimeLimit/Inst.

WPI SPC matching at WPI 928; 927; 1126 46; 47; 57 ≤ |S| 3 7 3 - 24 hr
HRT [32] 759 53 5 5-6 3 1 30 1 hr
Synthetic Randomly Generated Refer to Table 4.5 3 210 10 1 hr

Table 4.4: Description of datasets used in our experiment.

4.5.2 Experimental Design

We evaluate the performance of (SPC1), (SPC2), (VVM), and (BBT) on three datasets.

Investigations into the performance of our approaches on the WPI datasets are found in
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Section 4.5.3. These three years of WPI data detail the preference lists of undergraduate

students to be matched to worldwide project centers in the esteemed IQP program at

WPI. We study how all variants of the stability representations perform across the three

years for formulation (4.1), the stable matching with incomplete lists and ties and utility-

weighted objectives. We then leverage these results together with formulation (4.2) to

compare the effect of the cohort construction across the three WPI datasets and all

variants of the stability representations.

In Section 4.5.4, we compare all variants of the stability representations on the HRT

dataset from [32], the moderate size of 30 hospital-resident instances, called master list,

denoted “RDM-ML-1-5”. Each instance contains 759 doctors, 53 hospitals, 775 available

seats, and the ranking of the doctors, made based on their grades, distributed in [1, 5].

While the preference of both doctors and hospitals in this dataset is incomplete, ties

appear only in hospital preferences over doctors. The number of hospital preference tiers

is five and the number of doctor preference tiers is either five or six. To compare our

models with those of [32] using settings that are as similar as possible, we turn off their

preprocessing with ties on the hospital side and convert their HRT instances to .lp files

to solve using the Python API of Gurobi.

Parameter Symbol Levels

Number of Project Centers |P| 10, 30, 50

Project Center Capacity cp 10, 15, 20

Percentage of Students %|S| 50%, 75%, 100%, 125%, 150%

Number of Student Preference Tiers |Rp| 5, . . . ,max
≤|P|
{15, 25}

Popularity Among Project Centers popularity no, yes

Table 4.5: The list of five parameters in the synthetic dataset.

In Section 4.5.5 we perform the full factorial design of parameters listed in Table 4.5

to study the effect of varying data dimensions on synthetic dataset and measure the

performance of each variant of stability representations. Given a single dataset with |P|
project centers, each with an equal capacity cp, the percentage of student is %|S|, the

number of students is |S| = b|P| × cp ×%|S|c. The number of student preference tiers

is the number of ranks whereby students can place project centers, where placing project

centers in the same tier indicates ties in their preference list. The popularity indicates

whether the popularity among project centers is either uniform if the likelihood that

any student select any project center into their preference list is equal across all project

centers, or nonuniform if the likelihood that students select each project center into their

preference list varies across all project centers due to differing popularity levels for each

project center. We detail the generation of both popularity types in Appendix D.
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Without loss of generality, we assume rsp represents the integer ordinal preference

of student s for project center p, where rsp ∈ {1, 2, . . . } and that smaller values of rsp

indicate a more preferable project center for student s. We define the cardinal preference

value for student utility as qsp := 1
rsp

for the entirety of our computational experiments.

To study the effect of various stability representations for WPI datasets, we apply

formulation (4.1) with the utility usp set to the summation of weighted student utility and

weighted project center utility, γ1qsp + γ2ksp. The values of γ1 and γ2 are carefully chosen

so that the model preemptively optimizes in the following order: i) maximize student

placement, ii) maximize student utility, and iii) maximize project center utility. We seek

to determine coefficients γ1 and γ2 such that the strict ordering can be maintained. For

example, we choose the values of γ1 and γ2 such that a) the contribution to the objective

function of total project center utility (3rd component) is strictly less than the minimum

contribution from placing any single student of the student utility (2nd component), b) the

contribution to the objective function of total student utility (2nd component) is strictly

less than the minimum contribution of a placement of any single student (1st component),

and finally, c) the contribution to the objective function of total student utility and

total project center utility together is strictly less than the minimum contribution of a

placement of any single student. The last condition ensure that we obtain an objective

value that reflects the number of student placements plus a small quantity of desired

matching conditions.

We apply the same parameters usp, γ1 and γ2, using the stable solution results from

the stable SPC formulation (4.1) of the WPI datasets as a warm start to study the perfor-

mance of the quadratic cohort formulation (4.2a)–(4.2d). Our selection of penalty weights

waip and waip retains the prior lexicographic ordering of the stable SPC formulation (4.1),

and then preemtively minimize penalty of the squared deviation from desired cohort tar-

get in the last order. For our experiments, we set all waip to zero and set all waip to be

equal to one another. We provide greater details on how we carefully derived coefficients

used in the objective function of each dataset in Appendix E.

4.5.3 Experiments with WPI Datasets

Worcester Polytechnic Institute (WPI) is a private technological university in the North-

east United States that features a project-based and globally engaged curriculum. Perhaps

the most distinctive program at WPI2 is the Interactive Qualifying Project (IQP), which

2WPI global programs have been recognized by the Princeton Review as the most successful study-
aboard program in the nation and also awarded the prestigious Bernard M. Gordon Prize from the United
States National Academy of Engineering, which is the highest level of engineering honor there is in the
United States, for Innovation in developing effective engineering leadership in 2016.
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provides students an opportunity to apply their technical domain knowledge and skills

to real-world projects. As part of the undergraduate degree requirement, WPI students

have the opportunity to complete their IQP in Worcester or go to one of approximately

50 off-campus project centers, most of which are situated around the world. Those who

choose an off-campus IQP go through a competitive selection process, followed by rigor-

ous cultural preparation. Upon the arrival of students at each project center, students

are formed into teams to work on a project. For many years the problem was solved

manually, however, from 2018 onward, they used a version of our approach to recommend

the matching of students to off-campus project centers while arriving at a final decision

only after review by project center directors and careful examination by the program

administrators.

The present mechanism requires students to rate each project center in three tiers that

are assigned student utility weights of 1, 0.5, and 0, respectively. In an effort to increase

access, students are required to choose at least three project centers in the first tier and

at least six options in the first and second tiers combined. This process generated WPI

datasets for the academic years of 2017–2018, 2018–2019, and 2019–2020. The complete

result of stable SPC formulation (4.1) when varying stability representations across three

years of the WPI datasets is shown in Table 6.1 of Appendix F.

Comparing Performance of Stability Representations on WPI Datasets. Ta-

ble 4.6 reveals the result of stable SPC formulation (4.1) with varying stability represen-

tations across three years of the WPI datasets. By enforcing stability, all blocking pairs

are eliminated. Across all three datasets, all four methods exhibit similar performance, as

evidenced by the integrality gap which for all methods is below 2%, many methods found

strong integer feasible solutions in times well earlier than the allotted run time, and the

stable outcomes of all methods for the year 2018–2019 are solved to optimality. Thus,

while we observe the following trends, we emphasize that all methods perform reasonably

well. Some overall trends include that (SPC2) is consistently the sparsest representation

of stability, both in the relative lack of nonzeros and density ratio5; this is perhaps related

to the relative speed of building the model with Algorithm 2.

5model density is defined as #Nonzeros
#Rows×#Columns
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Year 2017-2018 2018-2019 2019-2020

Metric
Stability Constraint Type Stability Constraint Type Stability Constraint Type

None SPC1 SPC2 VVM BBT None SPC1 SPC2 VVM BBT None SPC1 SPC2 VVM BBT

Objective Value 928.98 927.96 926.96 927.96 926.96 927.99 927.99 927.99 927.99 927.99 1,126.90 1,106.87 1,107.86 1,107.85 1,106.86
Best Bound 928.98 927.96 928.98 927.98 928.97 927.99 927.99 927.99 927.99 927.99 1,126.90 1,124.88 1,126.89 1,124.58 1,126.84
MIPGap (%) 0 0.0003 0.2172 0.0021 0.2167 0 0 0 0 0 0 1.6275 1.7173 1.5098 1.8051

Best Incumbent Time 0.2 75,264 28,319 5,763 43,313 0.11 46.26 8.25 97.41 78.17 0.14 86,400 85,305 31,707 86,400
Run Time 0.2 86,400 86,400 86,400 86,400 0.11 46.26 8.25 97.41 78.17 0.14 86,400 86,400 86,400 86,400

Total Students 928 928 928 928 928 927 927 927 927 927 1,126 1,126 1,126 1,126 1,126
Tier-1 Placements 885 853 863 849 863 927 927 927 927 927 1,049 988 976 951 965
Tier-2 Placements 43 74 63 78 63 0 0 0 0 0 77 118 131 156 141
Unassignments 0 1 2 1 2 0 0 0 0 0 0 20 19 19 20

Table 4.6: Comparison of SPC models with different stability constraint sets on three
WPI datasets.

Figure 4.2: Placement comparison of SPC models with different stability constraint sets
on three WPI datasets.

For the year 2018–2019, it is clear that while all methods perform reasonably well

(perhaps due to the structure of the dataset), no approaches are superior to (SPC2) in

terms of model build time, runtime, and shortest time to find the best incumbent. For the

year 2017–2018, (SPC1) outperforms the other methods in terms of quality of solution, the

smallest optimality gap, and total number of students placed. For the year 2019–2020,

(SPC2) slightly outperforms the others in terms of solution quality, while being slightly

outperformed by (VVM) in terms of optimality gap.

In summary, all stability constraint sets perform comparatively well on the three WPI

datasets as they result in comparatively the same matching quality in Figure 4.2. While

the results were close, (SPC2) results in the best objective values in two out of three years,

2018–2019 and 2019–2020. Outside of these trends, a case for best overall performing

constraint set on these experiments can be made for (SPC2), (SPC1), and (VVM), but not

(BBT).

Computational Results of Quadratic Cohort Models. We now study the construc-

tion of cohorts and corresponding computational performance of using the SPC quadratic

goal programming formulation with stability constraints. We construct cohorts where all
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project center directors request at least 20% or more of the students are female and at

least 20% or more are computer science (CS) majors. Thus, objective function (4.2a) is

penalized via underassignment only when the total number of underassigned female stu-

dents or underassigned CS students is below d0.2× cpe. The complete result of quadratic

stable SPC formulation (4.4) with cohorts when varying stability representations across

three years of the WPI datasets is shown in Table 6.2 Appendix F.

Figure 4.3: Average gain in percentage of underassignment deviation across project centers
with underassigned female or CS students by the quadratic SPC formulations with cohorts
applying different stability constraint set on three WPI datasets.

The formulation (4.2) can create cohorts that, while maintaining the same number

of total students placed, have fewer underassignments of females and CS students, re-

spectively. Figure 4.3 shows positive average percentage improvement in the number of

underassignment female and CS students across all variants of stability representations

and all years. The average loss in term of the objective function value compared with

the corresponding objective function value solution without cohorts for all methods in all

the three years is less than 0.02%. The results suggest that the formulation is not only

computationally tractable for the purposes of SPC with cohorts, but that it is reasonably

effective in constructing more diverse cohorts.

4.5.4 Comparing Performance of Stability Representations on

the HRT Dataset

We implement the model from Section 3.2 of [32] in our experiments, which we call (HRT1).

Because a main difference between our two works is that we consider weighted utility, we

adapt the objective function in (6) of [32] to include weighted project center utility.
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In light of this, we consider the following which is an adjustment of our objective

function (4.1a), where the utility usp is set to the project center utility ksp, and the

weight γ is chosen so that it first prioritizes maximizing student placement, followed by

maximizing project center utility:

maximize
∑
s∈S

∑
p∈P

xsp + γ
∑
s∈S

∑
p∈P

kspxsp. (4.3)

Here, the weight γ is defined as 1
|S|+ε , where we set the value of ε to be 1e−6, and the

utilities ksp are defined as the reciprocal of the tier for student s for project center p. The

stability constraint set in [32] is (HRT) which, as stated in Section 4.3, is equivalent to

(BBT).

In discussing the results of Table 4.7, we aggregate the results of the 30 selected master-

list instances by averaging over the runtime per stability representation. We summarize

the results in Table 4.7; (SPC1) results in the best average runtime, followed by (VVM),

(SPC2), (HRT1), and (BBT), respectively. Out of the 30 instances, 17 of (SPC2), 5 of (SPC1),

5 of (VVM), and 3 of (HRT1), respectively, result in the best runtime. The performance

of (BBT) and (HRT1) are comparatively the same. This provides at least limited evidence

that our introduced stability constraints may perform well in the real-world HRT instances

that maximize stable matching with utility.

Method SPC1 SPC2 VVM BBT HRT1

Average Runtime (s) 628.65 726.09 685.28 1,600.62 1,563.36
#Best Runtime (out of 30 instances) 5 17 5 - 3

Table 4.7: Performance comparison of HRT1 models with different stability constraint
sets on the HRT dataset.

Stability representations (SPC1), (SPC2), and (VVM) have exhibited competitive perfor-

mance on the WPI and HRT datasets. We now pursue an in-depth investigation of their

performance on the synthetic dataset, to both confirm our understanding and investigate

further properties of the data.

4.5.5 Comparing Performance of Stability Representations on

Synthetic Datasets

We apply formulation (4.1) with the utility usp set to the weighted student utility in which

the value of γ is chosen so that the model first prioritizes maximizing student placement,

followed by maximizing student utility. The full factorial experiment over all levels yields

210 runs. We create 10 randomized data instances, or replicates, for each unique set of

parameters to reduce variation and account for error. Of these 210 runs, we remove 23

43



indeterminate runs in which the absolute runtimes of all pairs of the 10 instances across

all stability representations are less than 0.5 seconds. As a result, we focus our study on

the remaining 187 runs (1,870 instances in total). We examine both the performance of

the four stability representations on the 1,870 instances and on the 187 runs. Both results

consistently suggest the circumstances under which each representation excels.

The solution status for each of the 1,870 instances is either solved to optimality, sub-

optimal (timed out), or no solution found within the time limit; each type of instance is

depicted in the first, second, and third segment, respectively, according to vertical dotted

gray line in Figure 4.4a and the corresponding Table 4.8. The performance of the four

methods is reported by the runtime if the solution is solved to optimality, by the MIP-

Gap otherwise. We also report average runtime/MIPGap (AvgTime/AvgMIPGap) and

maximum runtime/MIPGap (MaxTime/MaxMIPGap) for each method where applicable

in Table 4.8.

(a) (b)

Figure 4.4: (left) Cumulative distribution plot comparing each stability constraint set on
1,870 instances. (right) Close-up of first segment of the cumulative distribution plot.

Method

Runtime ≤ 3600 s Timed out

Optimal (MIPGap < 1E-4) Suboptimal (MIPGap ≤ 100%) No Solution Found

AvgTime MaxTime Height AvgMIPGap MaxMIPGap Increment Height Increment Height

SPC1 54.5 672.9 1,176 0.02% 0.06% 338 1,514 356 1,870
SPC2 26.0 285.5 1,159 0.04% 0.17% 202 1,361 509 1,870
VVM 35.2 282.4 1,161 0.01% 0.03% 559 1,720 150 1,870
BBT 71.7 3163.1 1,149 0.01% 0.03% 420 1,569 301 1,870

Table 4.8: Comparison of the four stability methods with respect to the cumulative
distribution of performance. Height is the height as measured against the y-axis of the
cumulative plot of a given method up to the specified segment.

Based on Table 4.8, the first segment shows that all methods, except (BBT), have

roughly similar performance with smaller average runtime and maximum runtime of all

optimal instances. It can also be seen that (SPC2) is the superior method because its
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instances result in the smallest average runtime and are solved to optimality within 300

seconds, while the instances of (VVM) also perform well solved under 300 seconds with

the smallest maximum runtime and (SPC1) solves the greatest number of instances. The

second segments show that, for instances that are not solved to optimality, all methods

exhibit roughly similar performance with average MIPGap values of just above zero. This

implies that the suboptimal instances of all methods have virtually zero percent gap, but

are not technically solved optimality due to secondarily favoring some combination of

utility. The timed-out instances of (VVM) find the greatest number of feasible solutions

in this section. On the other hand, while (SPC2) outperforms others when the instances

can be solved to optimality, it finds the fewest feasible solutions in this section. Finally,

the third segment shows that (SPC2) is the method that has the most instances where no

feasible solutions were found within the time limit. We observe instances that timed out

for (SPC2) are primarily those that have a relatively large value of %|S| > 100%, whereas

(VVM) is the method most likely to find a feasible solution, followed by (BBT), and (SPC1),

respectively.

We now examine the performance of the four stability representations on the 187 runs.

The number of runs where at least one instance out of 10 instances has a feasible solution

(not necessarily solved to global optimality) of each method over all 187 runs is as follows:

(SPC1): 169, (SPC2): 160, (VVM): 185, and (BBT): 177.

We categorize each of the 187 runs into three classes: (1) all 10 instances solved to

global optimality, (2) some solved to global optimality and some timed out, and (3) all

10 instances timed out. Runtime is considered in the first two classes when some in-

stances solved to global optimality and MIPGap is considered when all instances timed

out (MIPGap > 1E−4). Note that we omit instances where the method cannot find a

feasible solution within the time limit from the ensuing discussion. Table 4.9 summarizes

the best method with the lowest average runtime/MIPGap resulted from the 187 runs;

(SPC2) performs the best when all instances are solved to global optimality, whereas (VVM)

tends to perform best when some instances time out.

We now consider the effect of each parameter on the performance of each stability

constraint set for the purpose of making recommendations for the best methods across

various parameter settings and levels. Our initial exploratory data analysis shows that the

most important parameters on the runtime are in the following order: %|S|, |Rp|, cp, |P|,
and popularity. All instances in Class 1 feature %|S| ≤ 100. Class 2 includes instances

with %|S| ≥ 100 and a combination of small to large levels of |P| and cp. On the other

hand, Class 3 features instances with %|S| > 100 and medium to large levels of |P| and

cp. We analyze the data and identify general trends according to certain parameters.

The (SPC2) method clearly outperforms others in Class 1. Classes 2 and 3 feature
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Metric SPC1 SPC2 VVM BBT Total

Class 1: all 10 instances solved to optimality Runtime 1 89 13 12 115
Class 2: some solved to optimality and some timed out Runtime 0 1 42 4 47
Class 3: all 10 instances timed out MIPGap 0 2 12 11 25

1 92 67 27 187

Table 4.9: Best method with the lowest average runtime result from all 187 runs.

larger levels of parameters that are more difficult to solve with %|S| > 100. The (VVM)

method clearly outperforms other in Class 2, while (VVM) and (BBT) perform relatively

better in Class 3. As the problem size tends to grow larger from Class 1 to Class 3, so

does the computational complexity. The analysis according to our setting shows the range

of parameter values whereby each method performs well in Table 4.10.

Method |P| & cp & %|S| & |Rp|

SPC1 ≤ 40 ≤ 15 ≤ 125 ≤ 10
SPC2 – – ≤ 100 –
VVM – ≤ 15 ≤ 150 ≤ 20
BBT ≤ 40 ≤ 15 ≤ 125 –

Table 4.10: Summary of parameters where respective methods tend to outperform others.

In summary, across all metrics, (SPC2) clearly outperforms the others when there are

enough seats for all students, that is, |S| does not exceed total capacity. However, the

performance of (SPC2) can degrade fairly quickly when the number of students begins to

exceed the capacity. All other methods have less of a clear demarcation. For particularly

difficult instances, such as when %|S| is relatively high and large values of either |P| or cp

or both, it remains unclear under which parameters different methods outperform others.

In this case, our result suggests that (VVM) is the most well-rounded method, while (BBT)

and (SPC1) also perform well when all parameters are in moderate ranges.

4.6 Conclusions and Future Work

We study many-to-one stable matching with ties and incomplete lists via integer optimiza-

tion. We use lexicographic optimization to construct an objective function that allows

the model to optimize each component of the objective function in the desired order, for

example, total placement, utility, and cohorts. We introduce several new representations

of stability and conduct a comprehensive study on their computational performance on

real and synthetic datasets. Additionally, we incorporate the concept of cohorts via a

goal programming technique that penalize deviations in a quadratic manner to steer the

search toward more diverse cohorts.
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Computational experiments on real-world datasets demonstrate that our new stabil-

ity representations generate a fairly good matching, and the quadratic deviation model

is computationally tractable for finding a good stable match outcomes with cohort con-

struction. Specifically, (SPC1), (SPC2), and (VVM) are promising in SPC matching and

their performance outperforms existing methods when utility is considered in the objec-

tive function. Furthermore, limited simulation experiments demonstrates that (SPC2) is

a promising method for typical real-world applications where the number of applicants

does not exceed the number of seats, which can be seen in school choice problems and

hospital-residency matching. In all cases, stability constraint set (VVM) is an all-around

method for stable matching applications.

Future work includes testing our approaches on additional datasets, as well as studying

the effect of different models or stability constraint sets on a variety of objective functions

or utility functions in the objective function could told more insights. Researching the

transformation of our binary variables into integer variables presented in Algorithms 1

and 2 in a similar manner to the advanced models in [18], as well as extending the

advanced models to accept the settings of utility functions in the objective function may

increase the computational performance. In Chapter 5, we present a linearization of the

quadratic stable SPC formulation (4.2) with cohorts and its generalization. Our limited

testing shows the superior performance of the linear stable SPC with cohort formulation

over the quadratic version. Finally, we suggest further investigation on our disaggregate

constraints (PW) to determine how they could be further leveraged to obtain computational

efficiencies.
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Chapter 5

A Reformulation Technique to Solve

Polynomial Optimization Problems

with Separable Objective Functions

of Bounded Integer Variables

Introduction

Integer optimization (IO) has seen widespread use in solving challenging decision problems

due to its expressivity and ability to characterize constrained decisions under an objective

function to be optimized. Advances in algorithmic development and computing over

the past several decades have seen profound increases in the potential of commercial

optimization solvers [1]. Even so, many real world decision problems with nonconvex

functions represent vexing challenges for global optimization solvers.

We study a broad class of polynomial integer nonlinear optimization (PINLO) prob-

lems:

maximize
∑p

k=1

∑nx

j=1 ckjx
k
j +

∑ny

`=1 c`y`

such that
∑nx

j=1 aijxj +
∑ny

`=1 ai`y` ≤ bi, i = 1, . . . ,m,

xLj ≤ xj ≤ xUj , xj ∈ ZZ≥, j = 1, . . . , nx,

yL` ≤ y` ≤ yU` , y` ∈ IR, ` = 1, . . . , ny,

(5.1)

where the objective function is a separable polynomial function, constraints are linear

∀ i = 1, . . . ,m, xLj and xUj are lower and upper bounds of nonnegative integer xj ∀ j =

1, . . . , nx, and xkj is the kth degree polynomial of xj ∀ j = 1, . . . , nx, ∀ k = 1, . . . , p.

Continuous variables y` may appear in linear expressions with lower and upper bounds

of yL` and yU` ∀ ` = 1, . . . , ny, respectively. We will refer to this specific class of PINLO
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formulation (5.1) as PINLO through this study.

Many real-world applications of nonlinear integer optimization features a quadratic

objective function subject to a set linear constraints, often called mixed-integer quadratic

programming (MIQP), and when there are no continuous variables, (pure) integer quadratic

programming (IQP) [39, 40]. These problems can be viewed as a generalization of (mixed-

)integer linear optimization with a nonlinear objective function [41]. It thus encompasses

all integer linear optimization (ILO) problems, including applications in scheduling, plan-

ning and network flows. PINLO appears (often in quadratic form) in a variety of applica-

tions, such as quadratic knapsack problems [42–45], two-stage quadratic stochastic pro-

grams [46], multicommodity network flow problems [47], portfolio selection [48–51], heat

transfer process [52], and goal programming with quadratic deviation penalties [24, 53].

Many exact methods for solving formulation (5.1) have been proposed. Branching-

based methods include branch-and-bound (BB) [3, 54–56], branch-and-reduce [57–61],

and αBB [62–65]. Methods that reformulate PINLO problems into ILO problems include

the use of sets of binary variables with a certain special structure, called special ordered

sets of type 2 (SOS2) [66, 67], as well as piecewise linear functions [68–73].

Other exact algorithms with linear constraints and a nonlinear objective function in-

clude the use of concavity cutting planes [74–76], a hybrid method that combines dynamic

programming and branch-and-bound approaches to produce an algorithm for solving sep-

arable discrete optimization [77], an algorithm to simplify nonseparable functions [78], a

Lagrangian decomposition technique [79], and expressing nonconvexity in the objective

and constraint functions as the sum of nonconvex univariate functions [80]. Moreover,

[41, 81–84] review multiple global optimization approaches for the general nonconvex

optimization problem.

This study presents two reformulations of a class of polynomial integer nonlinear op-

timization model (PINLO) with separable and bounded integers and any degree of poly-

nomial to integer linear optimization (ILO). We derive an algebraic identity presented in

Section 5.1.1 to use for the first linearization approach which expresses values of polyno-

mial integers as the summation of cumulative weights. The second linearization approach

usees precomputed weights to express polynomial values. We demonstrate the equivalence

of PINLO formulation (5.1) and the proposed ILO reformulations. We subsequently con-

duct the comparative computational experiments of PINLO and ILO reformulations on a

synthetic dataset and a real-world goal programming application. The computational ex-

periments reveal that the ILO reformulations outperform PINLO using the state-of-the-art

commercial solvers, BARON [61, 85] and Gurobi [38]. Additionally, the cumulative-weight

ILO outperforms precomputed-weight ILO in larger problem dimensions.

The remainder of this study is structured as follows. Section 5.1 presents theoretical
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concepts of the linearization of the specific class of PINLO formulation (5.1). Section 5.2

presents computational experiments of quadratic penalty goal programming for matching

application and simulations to compare our approaches with leading global optimization

solvers. Lastly, Section 5.3 concludes our study.

5.1 Linearization of PINLO

We introduce a linearization of PINLO formulation (5.1) using recurrence relations and

the series identity of positive integer powers of degree p. We first present the identity for

our linearization in Section 5.1.1 which can be derived from Faulhaber’s formula. We next

outline the steps for PINLO-to-ILO linearization which expresses a polynomial of integer

variables as the cumulative summation of the derived formulations in Section 5.1.2. Lastly,

we present another linearization of PINLO-to-ILO which expresses the polynomial of

integer variables as the summation of precomputed weights multiplied by binary variables

in Section 5.1.3.

5.1.1 Derivation of The Finite Summation Identity

To find an expression of the pth power of any positive integer n, we explore the reformu-

lation of polynomial terms using the finite summation identity that equals np. One way

to formulate np as a finite summation of n summation terms is via the recursion of the

finite summation of the pth power of the first n positive integers. The finite summation

identity of n2 is equal to the sum of the first n positive odd integers,

n2 =
n∑
i=1

(2i− 1),

which can be derived from this well-known identity related to the binomial theorem,
n∑
i=1

i =
n(n+ 1)

2
.

In general, we can use Faulhaber’s formula [86] to express the sum of the pth power of the

first n positive integers in terms of the Bernoulli numbers, as follows:
n∑
i=1

ip =
1

p+ 1

p∑
k=0

(−1)k
(
p+ 1

k

)
Bkn

p+1−k, (5.2)

where Bk is the Bernoulli number with B1 = −1
2
.

Another way, perhaps simpler, is to apply the binomial theorem to derive the finite
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summation of np. For any integer i, the binomial theorem states that

(i+ 1)p+1 =

p+1∑
k=0

(
p+ 1

k

)
ik. (5.3)

We next obtain the following expression:

(i+ 1)p+1 − ip+1 =

p∑
k=0

(
p+ 1

k

)
ik. (5.4)

Substituting i = −1,−2, . . . ,−n to (5.4) and summing, the left-hand side telescopes to

−(−n)p+1 and we obtain

−(−n)p+1 =

p∑
k=0

(−1)k
(
p+ 1

k

)[
1k + · · ·+ nk

]
. (5.5)

Multiplying both sides of (5.5) by (−1)p, we obtain the following identity

np+1 =

p∑
k=0

(−1)p+k
(
p+ 1

k

) n∑
i=1

ik, (5.6)

which can be used to express the pth power of any positive integer n in term of the

summation of n terms as

np =

p−1∑
k=0

(−1)p−1+k
(
p

k

) n∑
i=1

ik, (5.7)

For example, n2 = (−1)(10 + 20 + · · ·+ n0) + (2)(11 + 21 + · · ·+ n1) =
∑n

k=1(2k− 1). We

next apply (5.7) to linearize any positive integer power of degree p.

5.1.2 PINLO-to-ILO Linearization via Cumulative Summation

to Express Powers of Integer Variables

We introduce a linearization of polynomial nonlinear terms of bounded integers. We

outline the reformulation of the PINLO-to-ILO reformulation in three steps. The first

step is to define binary variables that collectively represent all integer variable values, and

through constraints enforce the integer variable values by summing over binary variables.

The second step is to ensure that, depending on the value of the integer variable, the

appropriate binary variables are activated. The last step is the derivation of appropriate

weights that, when aggregated, are an equivalent representation of the variable values in

the respective polynomial expression.

First step of reformulation. We express the value of each nonnegative integer xj

∀ j = 1, . . . , nx in formulation (5.1) as the summation of binary variables xj,d where the

index d ∈ [1, xUj ] ⊂ ZZ≥0 counts the occurrence of the binary variables for xj. We define
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binary variables xj,d taking a value of 1 if xj ≥ d for integer values d ≥ 1, respectively,

and 0 otherwise. This means that if xj = k for some positive integer k, then all k binary

variables x1j , . . . , x
k
j are activated to 1 because xj ≥ k ≥ · · · ≥ 1. Fig. 5.1 demonstrates

the activation of xj,d when xj = 8. The activation is applied through constraint sets (5.9)

and (5.10) that we define next.

Figure 5.1: Illustrating activated xj,d in red when xj = 8.

Second step of reformulation. The integer decision variables xj are now represented

as the sum of xj,d, where

xj =

xUj∑
d=1

xj,d. (5.8)

We use disjunctive constraints to ensure that the binary variables take appropriate values

to represent the integer variable values xj. That is, through the following two sets of

inequalities, xj,d = 1 if and only if xj ≥ d and 0 otherwise, for integer value 1 ≤ d ≤ xUj :

xj − d ≤Mj,dxj,d − 1 ∀ j = 1, . . . , nx, ∀ d = 1, . . . , xUj , (5.9)

xj − d ≥ mj,d(1− xj,d) ∀ j = 1, . . . , nx, ∀ d = 1, . . . , xUj . (5.10)

The value of each Mj,d is the upper bound of xj − d + 1 and the value of each mj,d is

the lower bound of xj − d. If xj ≥ d, xj,d must be one, otherwise constraint set (5.9) is

violated. If xj < d, xj,d must be zero, otherwise constraint set (5.10) is violated.

We note that if the lower bound of xj is strictly greater than zero, that is, 0 < xLj ≤ xj,

then it follows that xj,d = 1 for 1 ≤ d ≤ xLj and, thus, we can drop the disjunctive

constraints for binary variables xj,d for d ≤ xLj .

Final step of reformulation. To enforce the polynomial value, we introduce special

weights via the identity (5.7) that states the equivalence of the pth power of a positive

integer number np and the sum of n positive integer numbers. Denote wj,d to be a weight

value of xj,d ∀ d ∈ {1, . . . , xUj } that takes a value of

wj,d =

p−1∑
k=0

(−1)p+k−1
(
p

k

)
dk ∀ d ∈ {1, . . . , xUj }, (5.11)
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so that their cumulative sum of the product of wj,d and xj,d over d = 1, . . . , xUj equals

to xpj . Equivalently, we can view the weight wj,d as an increment of an additional unit

increase of xpj .

Through the use of binary variables, disjunctive constraints, and weights according

to (5.7), our reformulation (ILO1) transfers the polynomial expression xpj to an equivalent

linear expression:

xpj =

xUj∑
d=1

wj,dxj,d ∀ j = 1, . . . , nx. (ILO1)

Our (ILO1) reformulation offers a new exact solution technique for solving PINLO prob-

lems which can be implemented directly using any state-of-the-art ILO solver. We demon-

strate the equivalence of PINLO objective function and reformulated ILO objective func-

tion in Proposition 1.

Proposition 1 For xj ∈ Xj, x
p
j =

∑xUj
d=1wj,dxj,d.

Proof. Without loss of generality, assume xj = v for an arbitrary v ∈ {1, . . . , xUj }:
xUj∑
d=1

wj,dxj,d =

xUj∑
d=1

(
p−1∑
k=0

(−1)p+k−1
(
p

k

)
dk

)
xj,d

=

p−1∑
k=0

(−1)p+k−1
(
p

k

)[
1k · xj,1 + · · ·+ (xUj )k · xj,xUj

]
=

p−1∑
k=0

(−1)p+k−1
(
p

k

)[
xj,1 + · · ·+ vk · xj,v

]
, {by (5.9) and (5.10)}

=

p−1∑
k=0

(−1)p+k−1
(
p

k

)[
1 + · · ·+ vk

]
= vp, {by (5.7)}

as the choice of v was arbitrary in the domain of xj ∈ Xj, this completes the proof.

If xLj > 0, then xj,d = 1 for d ≤ xLj . Therefore, the value of xpj is at least (xLj )p, that is

xpj ≤
p−1∑
k=0

(−1)p+k−1
(
p

k

)[
1 + · · ·+ (xLj )k

]
= (xLj )p.

Proposition 1 implies the equivalence of the objective functions of PINLO formulation

(5.1) and ILO formulation (ILO1), that is,

nx∑
j=1

ckjx
p
j =

nx∑
j=1

ckj

xUj∑
d=1

wj,dxj,d.
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5.1.3 PINLO-to-ILO Linearization via Precomputed Weights to

Express Powers of Integer Variables

We compare (ILO1) with an alternative reformulation that linearizes polynomial terms

using precomputed weights for the value of polynomial integers. We express the pth power

of xj in formulation (5.1) in terms of the summation of precomputed weights multiplied

by binary variable xj,q ∀ q = 0, . . . , xUj where xj,q = 1 if xj = q, and 0 otherwise. As a

result, we can express xpj as

xpj =

xUj∑
q=0

qpxj,q, ∀ j = 1, . . . , nx. (ILO2)

To enforce (ILO2), we first ensure that exactly one binary variable is activated by

adding the following constraint

xUj∑
q=0

xj,q = 1 ∀ j = 1, . . . , nx. (5.12)

Then, we impose the relationship between xj and the binary variables in which xj = q

∀ j = 1, . . . , nx if xj,q = 1 by adding the following constraint

xj =

xUj∑
q=0

qxj,q ∀ j = 1, . . . , nx. (5.13)

We next present computational experiments that compare the performance of our

ILO reformulation in Section 5.1.2 with PINLO formualtion (5.1) and the simple ILO

reformulation in Section 5.1.3. We conduct experiments on two datasets: 1) a synthetic

dataset, and 2) a real-world application using goal programming with quadratic penalty

deviation to create cohorts (teams / groups) in a many-to-one stable matching of students

to project centers.

5.2 Computational Experiments

5.2.1 Experimental Setup

We evaluate the performance of our ILO reformulation (ILO1) by comparing with PINLO

formulation (5.1) and ILO reformulation (ILO2) using precomputed weights. We conduct

the experiments on a synthetic dataset and a real dataset of a stable many-to-one matching

application, presented in Chapter 4.4, that assigns students to project centers and creates

cohorts, that is, groups of students having one or more particular features in common. All

synthetic experiments were run via NEOS server [87–89] using BARON 21.1.13 [61, 85] to
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solve PINLO and ILO. We also solve ILO using Gurobi Optimization 9.1 [38] and Python

API with up to 64 GB memory, under Red Hat Enterprise Linux Server 7.3 with kernel

version 3.10.0-514.x86 64. Each synthetic instance was run with time limit of 3 hours,

MIP optimality gap tolerance of 0, Absolute MIP optimality gap of 0, and thread count

to 1; the experiments on the matching application were run with time limit of 24 hours

and MIP optimality gap tolerance of 0.

Synthetic Dataset

We perform a full factorial design by varying the parameters listed in Table 5.1. The

domain of the integer variables is [0, xU ], where the upper bound xU ∈ {10, 100}. The

degree of polynomial objective functions of integer variables in all instances is chosen to

be a reasonable degree in polynomial problems p ∈ {2, 3, 5}, though it is not prohibitive

to increase p to much larger values.

Parameter Symbol Levels

Integer variable upper bound xU 10, 100
Polynomial degree p 2, 3, 5
Ratio of integer-to-total number of variables nx

n
0.5, 1

Density of objective coefficients ∆ 0.5, 1

Number of constraints m
25, 50, 75, 100, 150,
250, 500, 750, 1,000

Scale parameter for problem size α 0.5, 2

Table 5.1: Parameters used for generating synthetic instances.

We select the values of model parameters in a similar manner as described in [90].

We set the density of constraints to be 50%. Coefficients in the left-hand side of the

constraints are drawn randomly from a discrete uniform distribution [1, 30] and constants

in the right-hand side of the constraints are drawn randomly from a discrete uniform

distribution [30, 30 +
∑n

j=1 aij] for i = 1, . . . ,m. We set the number of constraints m ∈
{25, 50, 75, 100, 150, 250, 500, 750, 1,000}. The total number of variables n is controlled by

the scale parameter for the problem size α ∈ [0.5, 2] in which n = αm.

We generate two classes of instances controlled by the ratio of the number of integer

variables to the total number of variables. Instances are pure integer where all variables

are integers when nx

n
= 1 and are mixed integer where the number of integer variables

(nx) is half of the total number of variables when nx

n
= 0.5. More specifically, variables in

mixed-integer instances consist of 50% integer variables, 25% continuous variables with

values that are drawn randomly from a uniform distribution [0, 10], and 25% binary
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variables.

An objective function of all instances contains integer variables, each with degree up

to p, as well as continuous and binary variables if the instance is a mixed-integer problem.

For example, an objective function of pure integer instances contains up to n× p integer

terms as each integer variables may have degree up to p, whereas an objective function of

mixed-integer instances contains n×p integer terms and 1
2
n continuous and binary terms.

The density of nonzero elements in the objective function is controlled by a Bernoulli

probability ∆ ∈ {0.5, 1}, where the values of the coefficients are drawn from a discrete

uniform distribution [0, 100]. The combination results in 432 runs in total, for which we

create three replicates and average over each run. We report the computational results of

the synthetic dataset in Section 5.2.2.

WPI Dataset

We conduct another experiment on a many-to-one stable matching application. The sim-

ilar dataset presented in Chapter 4 is obtained from the Global Experience Office (GEO)

at Worcester Polytechnic Institute (WPI) where each year over a thousand undergradu-

ate students applying to over fifty of the esteemed Interactive Qualifying Project (IQP)

off-campus project centers around the world. WPI students go through a competitive

selection process, followed by rigorous cultural preparation. Some project center directors

have interest in creating certain compositions of students through the concept of a cohort,

which is a group of students having one or more particular features in common, such as

academic major, language skill, or gender. For example, some project center directors

may seek a minimum number of students with a particular language skill, some may seek

to balance diversity, and still others may request a specific skill from a list of student

majors. The concept of cohorts is incorporated in the model formulation (4.2) via goal

programming techniques that penalize quadratic deviation from cohort targets with the

computational results presented in Section 5.2.3.

5.2.2 Experimental Results on Synthetic Dataset

We compare the performance of solving PINLO formulation (5.1) using BARON, ILO for-

mulation (ILO1) using BARON, and ILO formulations (ILO1) and (ILO2) using Gurobi.

First, we level the playing field of (5.1) formulation and (ILO1) formulation by comparing

their results from BARON. Fig. 5.2 shows that (ILO1) outperforms (5.1) with respect to

the average runtimes and MIP gaps over each run of (ILO1) (blue lines) as it results in

more runs with lower runtime and MIP gap than (5.1) (red lines). When we solve ILO

using Gurobi (green lines), all runs find optimal solutions with 0% MIP gaps with a mean
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value of 14.6 seconds and the maximum (mean) runtime less than 900 seconds for all

runs. Fig. 5.2c reveals that when comparing (ILO1) solved via either BARON or Gurobi

versus PINLO solved via BARON, that over 100 runs result in notably faster computa-

tional performance (positive runtime difference) when comparing run-by-run differences

in runtime. Specifically, by considering only instances with average runtime difference of

ILO and PINLO strictly greater or less than 1% of the 3-hour time limit (or 108 seconds),

ILO solved via BARON outperforms PINLO in 130 runs, while ILO solved via Gurobi

outputforms PINLO in 134 runs, and for no runs did PINLO outperform either ILO.

(a) Average runtimes. (b) Average MIP gaps.

(c) Run-by-run comparison of runtime performance gain in seconds of (ILO1) over PINLO when
solving (ILO1) via BARON and Gurobi, where positive runtime gain indicates faster performance
of (ILO1) and the run-by-run performance gain lines of ILO1 are plotted after sorting in the
ascending order.

Figure 5.2: Comparative results of 432 synthetic runs each averaging over three replicates
for PINLO solved using BARON (red line) and (ILO1) solved using BARON (blue line)
and using Gurobi (green line).

To view a bigger picture of ILO performance, we fix every parameter at their largest
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value and increase m up to 10,000, resulting in a maximum model size of 20,000 variables

with α = 2. We first vary the density of nonzero elements in the objective function by

varying ∆ ∈ {0.05, 0.25, 0.5, 0.75, 1}. Fig. 5.3a show that (ILO1) finds optimal solutions

to all instances of both mixed-integer (red line) and pure integer (blue line) types, with

a maximum average runtime of 4,000 and 6,000 seconds, respectively. We also vary the

number of constraints m by adding 250 constraints to the maximum size up to 10,000

constraints, resulting in m ∈ {25, 50, 75, 100, 150, 250, 500, . . . , 9,750, 10,000}. Fig. 5.3b

shows that (ILO1) finds optimal solutions to all instances of both mixed-integer (red line)

and pure integer (blue line) types, with a maximum average runtime of 6,000 and 7,400

seconds, respectively.

(a) Varying ∆. (b) Varying m.

Figure 5.3: Computational performance of (ILO1) solved using Gurobi on problems in-
stances with up to 10,000 constraints and 20,000 variables where red and blue lines rep-
resent mixed-integer and pure integer instances, respectively.

As our limited experiments show that the computational performance of solving (ILO1)

via both BARON and Gurobi is superior to solving PINLO with BARON and is computa-

tionally tractable for solving large problems of size 10,000 constraints and 20,000 variables,

we next focus our investigations on the computational performance of (ILO1) and (ILO2).

We fix every parameter at their largest value and vary the upper bound of integer variables

xU , the problem types nx

n
, and the number of constraints m ∈ {1,000, 2,000, . . . , 10,000},

resulting in 40 instances. The results of each instance is averaged over three replicates.

Fig. 5.4 plots the results from smaller to larger problem size. After a brief period where the

computational performance of the two approaches appear similar, it becomes clear that

(ILO1) outperforms (ILO2) for larger problem instances. Additionally, Fig. 5.4b shows

that (ILO1) results in more optimal instances than (ILO2). We next demonstrate the use

of our (ILO1) in solving a real-world polynomial integer optimization.
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(a) Average runtimes. (b) Average MIP gaps.

Figure 5.4: Comparing the Computational performance of (ILO1) and (ILO2) solved using
Gurobi on problems instances with up to 10,000 constraints and 20,000 variables.

5.2.3 Experimental Results on WPI Dataset

We compare the performance of PINLO formulation (5.1) and ILO formulation (ILO1) on

the Quadratic Model Formulation of Stable Student Project Center (SPC) Allocation with

Cohorts presented in Chapter 4.4 across three academic years of the WPI dataset. The

model formulation (4.2) produces a squared deviation penalty weighted by overassignment

weight waip and underassignment weight waip. For the purpose of experimentation, the

cohort construction is selected so that all project center directors request at least 20%

or more of the students to be female and at least 20% or more to be computer science

(CS) majors. Thus, objective function (4.2a) is penalized via underassignment only when

the total number of underassigned female students or underassigned CS students is below

d0.2 × cpe. The model is reproduced using a classical stability representation proposed

by Bäıou and Balinski [91] and other three stability representations: (SPC1), (SPC2), and

(VVM), presented in Chapter 4.3.

Solving stable many-to-one matching with incomplete preference lists and ties is a

challenging NP -hard optimization problem. Even though adding the construction of

cohorts to the optimization formulation introduces additional complexity, ILO performs

slightly better than the polynomial integer quadratic optimization (PIQO) in all three

years of WPI dataset in terms of objective function quality, and gap. Table 5.2 shows

that while the quality of the placements of PIQO and ILO formulations are roughly the

same across all years and all stability representation techniques, ILO models result in fewer

underassignments of females and CS students. Their differing performance is prominent

in academic year 2018–2019 as all ILO models find best incumbent and optimal solutions

in less than three hours, compared to PIQO models that spend a day to still prove

optimality of the solution found. Our ILO formulation (ILO1) improves the computational

59



Year 2017-1018 2018-1019 2019-2020

BBT
Cohort Type Cohort Type Cohort Type

PIQO ILO PIQO ILO PIQO ILO

Objective Value 926.84 927.84 927.92 927.92 1,106.60 1,106.63
Best Bound 928.87 928.86 927.92 927.92 1,126.74 1,126.68
MIP Gap (%) 0.2198 0.1093 0.0005 0 1.82 1.8121

Presolved Model Size
#Constraints (Rows) 11,038 14,502 7,697 11,160 8,424 12,669
#Variables (Columns) 12,515 14,405 9,063 10,964 10,478 12,806
# Nonzeros 2,032,512 2,033,386 1,082,641 1,094,728 1,347,772 1,370,400
Model Density 0.0147 0.0097 0.0155 0.0089 0.0153 0.0084

Tier-1 Placements 863 848 919 919 965 961
Tier-2 Placements 63 79 8 8 141 145
Unassignments 2 1 0 0 20 20
Underassigned Females 3 0 0 0 21 18
Underassigned CS 67 66 56 56 96 96

Time to Build Model (s) 49.98 61.42 45.63 49.61 92.78 87.60
Incumbent Time (s) 610 83,432 80,548 1,300 19,544 7,566
Run Time (s) 86,400 86,400 86,400 1,301 86,400 86,400

Table 5.2: Comparing quadratic and linear stability formulations with cohorts on WPI
datasets across three years using the BBT stability representation.

Year 2017-1018 2018-1019 2019-2020

SPC1
Cohort Type Cohort Type Cohort Type

PIQO ILO PIQO ILO PIQO ILO

Objective Value 927.84 927.84 927.91 927.92 1,106.68 1,108.67
Best Bound 927.84 928.84 927.92 927.92 1,126.74 1,126.73
MIP Gap (%) 0 0.1074 0.0006 0 1.8124 1.6291

Presolved Model Size
#Constraints (Rows) 13,931 17,425 12,075 15,561 12,711 17,013
#Variables (Columns) 18,376 20,306 15,474 17,418 16,688 19,062
# Nonzeros 166,406 175,154 114,416 123,126 93,044 103,804
Model Density 0.0007 0.0005 0.0006 0.0005 0.0004 0.0003

Tier-1 Placements 851 850 920 919 979 974
Tier-2 Placements 74 77 0 8 118 134
Unassignments 1 1 0 0 20 18
Underassigned Females 1 1 1 0 20 18
Underassigned CS 66 66 56 56 87 90

Time to Build Model (s) 129.85 121.76 98.26 137.69 234.86 216.23
Incumbent Time (s) 82,888 33,961 12,275 3,148 60,416 85,305
Run Time (s) 83,302 86,400 86,400 3,169 86,400 86,400

Table 5.3: Comparing quadratic and linear stability formulations with cohorts on WPI
datasets across three years using the SPC1 stability representation.
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Year 2017-1018 2018-1019 2019-2020

SPC2
Cohort Type Cohort Type Cohort Type

PIQO ILO PIQO ILO PIQO ILO

Objective Value 926.84 926.85 927.90 927.91 1,107.59 1,107.68
Best Bound 928.87 928.86 927.92 927.92 1,126.78 1,126.76
MIP Gap (%) 0.2198 0.2176 0.0023 0.0005 1.7327 1.7227

Presolved Model Size
#Constraints (Rows) 20,239 23,733 13,826 19,381 16,418 20,748
#Variables (Columns) 24,406 26,336 16,183 20,197 18,412 20,814
# Nonzeros 102,863 111,637 76,823 89,873 84,629 95,448
Model Density 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002

Tier-1 Placements 860 861 927 922 975 956
Tier-2 Placements 66 65 0 5 132 151
Unassignments 2 2 0 0 19 19
Underassigned Females 2 0 3 2 20 18
Underassigned CS 67 67 56 56 103 86

Time to Build Model (s) 18.48 19.37 16.62 19.25 37.29 36.41
Incumbent Time (s) 12,019 28,364 24,118 8,942 707 86,400
Run Time (s) 86,400 86,400 86,400 86,400 86,400 86,400

Table 5.4: Comparing quadratic and linear stability formulations with cohorts on WPI
datasets across three years using the SPC2 stability representation.

Year 2017-1018 2018-1019 2019-2020

VVM
Cohort Type Cohort Type Cohort Type

PIQO ILO PIQO ILO PIQO ILO

Objective Value 927.82 927.84 927.92 927.92 1,107.60 1,107.65
Best Bound 928.87 928.84 927.92 927.92 1,126.66 1,124.68
MIP Gap (%) 0.1133 0.1081 0.0005 0 1.7203 1.537

Presolved Model Size
#Constraints (Rows) 15,676 19,431 12,224 15,683 13,744 18,046
#Variables (Columns) 15,401 17,329 12,231 14,152 13,910 16,284
# Nonzeros 1,903,312 1,923,961 1,320,022 1,347,819 1,448,615 1,478,898
Model Density 0.0079 0.0057 0.0088 0.0061 0.0076 0.0050

Tier-1 Placements 850 847 921 919 946 951
Tier-2 Placements 77 80 6 8 161 156
Unassignments 1 1 0 0 19 19
Underassigned Females 4 9 1 23 20 19
Underassigned CS 66 66 56 56 97 89

Time to Build Model (s) 46.47 44.33 45.76 44.50 78.17 76.73
Incumbent Time (s) 133 83,053 6,463 815 38,731 31,724
Run Time (s) 86,400 86,400 86,400 817 86,400 86,400

Table 5.5: Comparing quadratic and linear stability formulations with cohorts on WPI
datasets across three years using the VVM stability representation.
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performance of solving the quadratic stable SPC allocation with cohorts formulation (4.1)

as it performs slightly better than PIQO formulation (5.1) in terms of optimal objective

function values and MIP gaps. Furthermore, the quality of the match outcomes in terms

of underassigned females and CS students of (ILO1) is superior to PIQO formulation (5.1).

As a result, our limited experiments on the synthetic and real datasets demonstrate that

our ILO formulation (ILO1) is promising for solving integer linear optimization problems

with a polynomial objective function.

5.3 Conclusions and Future Work

We study PINLO with mixed-integer polynomial objective function and linear constraints,

which covers problem MIQP and related problem classes with separable polynomial ex-

pressions in the objective function. We theoretically derive the finite summation identity

motivated from [92] that is used to reformulate PINLO problems to ILO problems via cu-

mulative weighting. Our novel linearization advances linearization techniques for a large

class of integer nonlinear optimization problems, converting them to ILO problems that

we demonstrate are more computationally tractable. Additionally, we evaluate the per-

formance of ILO on a synthetic dataset and a stable many-to-one matching application

with cohort construction.

Our limited computational experiments on the synthetic dataset show that ILO out-

performs PINLO when we solve using BARON via NEOS server. ILO is even faster using

Gurobi. Our reformulation is promising in applying to real-world applications. As we

apply ILO to solve a many-to-one stable matching application with cohort construction,

ILO improves the match outcomes and computational runtime over three years of WPI

dataset.

We believe that the reformulation of a class of PINLO in this study will benefit other

applications. Future extensions may study how to apply the reformulation to other non-

linear functions in a similar manner using other algebraic identities, as well as applying

our reformulation to polynomial constraints of the same class.
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Chapter 6

Conclusions

This dissertation features the theoretical results and applications of mixed-integer nonlin-

ear optimization (MINLO). MINLO appears in a wide range of fields, including chemical

engineering, finance, and manufacturing. MINLO is a challenging problem due to noncon-

vex, nonlinear, and exponential increase in computational complexity as the dimension

increases. Although algorithmic development and computing power incredibly advance

the potential of optimization solvers during the past several decades, theoretical advance-

ments will still have a major impact. We present multiple mathematical formulations

of MINLO for matching applications as well as the reformulation of MINLO to improve

computational tractability. Additionally, we conduct experiments on synthetic and real

datasets to demonstrate the use of our formulations.

We use MINLO to formulate and solve maximum a-postiori estimation (MAP) for

Gaussian Mixture Models (GMM) to assign data points into the right clusters in Chap-

ter 2. We solve MINLO using Branch-and-Bound algorithm which can find global optima

and near optima, and provide strict upper and lower bounds on the global optima. Our

formulation is also easy to interpret statistically and adaptable to various prior distri-

butions and constraints. We further reformulate MINLO to a mixed-integer quadratic

optimization (MIQO) using piecewise linear functions to approximate the nonlinear ob-

jective function component and McCormick envelopes to linearize bilinear components

of MAP. We conduct computational experiments on three well-known UCI datasets and

a clinical dataset from the UNC MicroArray Database. Our analysis shows that MIQO

yields better result when sample size is large as well as the performance can be significantly

improved via incorporating prior knowledge through hard constraints.

In Chapter 3, we formulate MINLO model to automatically process tickets in IT

services. Our automatic system first classifies tickets by using TF-IDF to extract keywords

and modeling with logistic regression or neural network techniques resulting in over 78%

accuracy. The system’s precision can increase overtime as the learning set gains more
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tickets and the system matures. Then, the system assigns the right tickets to the right

technicians using MINLO model that considers required skills and time to fulfill a given

ticket and technician’s skillset, cost, and availability. Our decision support system can

be readily adjusted and easily implemented in other applications. We hope to conserve

resources, and increase efficiency in classifying and assigning tickets.

The use of optimization-based approaches has become more popular for solving many-

to-one matching problems as they can be designed to maximize efficiency, ensure stability,

and readily accommodate side constraints and incomplete preference lists with ties. In

Chapter 4, we introduce new stability representations that can outperform the state-of-

the-art in some settings. We theoretically show their correctness and create algorithms

to accelerate the performance of our stability representations. We incorporate the con-

cept of cohort (team) construction via goal programming that penalizes the deviation

from desired cohort targets in a quadratic manner. Our model lexicographically optimize

each component in objective functions in strict ordering. Our limited experiments over

synthetic and real students to project centers allocation datasets show that our stabil-

ity representation (SPC2) is promising for typical real-world applications where sufficient

seats exist for applicants and our stability representation (VVM) exhibits solid performance

overall.

In Chapter 5 we study a broad class of polynomial integer nonlinear optimization

(PINLO) problems with mixed-integer polynomial objective function, linear constraints,

and bounded and separable integer variables. Our PINLO covers MIQP and related prob-

lem classes that can be viewed as a generalization of integer linear optimization (ILO) with

separable polynomial expressions in the objective function. We introduce two PINLO-

to-ILO reformulation approaches deriving from different integer polynomial expressions.

We theoretically derive the finite summation identity used to reformulate PINLO-to-ILO

problems via cumulative weighting. Our computational experiments on synthetic and real

datasets demonstrate that our novel linearization is more computationally tractable for

solving PINLO problems with 10,000 constraints and 20,000 variables using state-of-the-

art commercial solvers.

Our work contributes new theoretical concepts and ideas to MINLO problems. We

demonstrate the use of our formulations as well as analyze the computational results.

We hope that our formulations can benefit other applications. Future work consists

of incorporating our introduced formulations into real applications, conducting further

analysis, or applying our work to other MINLO applications.
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Appendix A

Theoretical Results Related to New

Stability Representations

(Chapter 4)

We present a sequence of theoretical results that demonstrate our proposed stability

representations yield stable solutions. Recall that the many-to-one matching in this study

is in the context of HRT-W in which the objective emphasizes maximizing the number

of matches as well as weighted utilities for both sides of the matching, and the preference

lists can be derived from ranking of corresponding weights assigned to each matching pair.

Proposition 2, Theorem 1 and Theorem 2, respectively, show that, in the the context of

HRT-W, the stability constraint sets (VVM), (SPC1), and (SPC2) in conjunction with (NWS)

result in no blocking pairs associated with either justified envy or waste, resulting in stable

solutions. Theorem 3 shows the equivalence of (BBT) and (VVM). Theorem 4 shows the

equivalence of (SPC1), (SPC2), and (VVM). Finally, Theorem 5 shows that the recurrence

relationship in Algorithms 1 and 2, respectively, preserves the stability constraint sets

(SPC1) and (SPC2).

Proposition 2 The one-to-one stability constraint of [29] can be extended to the HRT-W

context as follows:∑
i≺ps

xip ≤ cp

(
1−

∑
j≺sp

xsj

)
∀ s ∈ S, ∀ p ∈ P , (VVM)

and when combined with (NWS), ensures a stable system with no justified envy or waste.

Proof. We translate constraint set (VV) to the many-to-one context: if student s is

assigned to a project center less desirable than p
(∑

j�sp
xsj = 0

)
, then project center p

may be filled with up to cp students that it prefers at least as much as s
(∑

i≺ps
xip = 0

)
.
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We obtain
∑

i≺ps
xip ≤ cp

∑
j�sp

xsj as a result.

All students are assigned to either a project center in their list or to the virtual

project center, thus
∑

j≺sp
xsj +

∑
j�sp

xsj = 1. By substituting
∑

j�sp
xsj, we obtain∑

i≺ps
xip ≤ cp

(
1−

∑
j≺sp

xsj

)
for each s ∈ S and p ∈ P which is equivalent to constraint

set (VVM).

Constraint set (VVM) eliminates blocking pairs (s, p) associated with justified envy in

which project center p prefers student s to student i in its assignment and, concurrently,

student s prefers project center p to their match j. Taken in conjunction with system

(NWS) that forbids waste, this ensures there are no blocking pairs associated with either

justified envy or waste, and thereby a stable outcome for (VVM).

Theorem 1 A matching x ∈ {0, 1}|S|×|P| is stable if and only if constraint sets (SPC1)

and (NWS) are satisfied.

Proof. First, we show that in the presence of (NWS), the outcomes of (SPC1) contain

no blocking pair associated with waste. By contradiction, suppose (NWS) is violated, then

there exists at least one empty seat at project center p where student i prefers p to their

match and p prefers i to an empty seat. Recall that (NWb) activates zp to 1 when there

is at least one empty seat at project center p. When constraint set (NWa) is violated, the

value on its left-hand side will be greater than zero, that is,
∑

i∈Sp
∑

j∈P:
j≺ip

xij > 0. Thus,

there exists a blocking pair (i, p) in which student i is assigned to project center j who

prefers p to j and, concurrently, project center p is willing to accept student i instead of

having an empty seat; hence the outcome is not stable.

In the presence of (NWS), it is then sufficient to show that a matching x ∈ {0, 1}|S|×|P|

is stable if and only if constraint set (SPC1) is satisfied, that is it forbids blocking pairs

associated with justified envy.

Sufficiency. By contradiction, suppose (SPC1) is violated. This implies the existence

of both (s, p) ∈ S × P : xsp = 1 and (i, j) ∈ S × P : xij = 1 with j �s p, i ≺j s. Thus,

(s, j) forms a blocking pair associated with justified envy and matching x ∈ {0, 1}|S|×|P|

violates the notion of stability.

Necessity. Now, suppose a matching x ∈ {0, 1}|S|×|P| is not stable. A blocking pair

associated with a match (s, p) ∈ S ×P is either (s, j) or (i, p). Without loss of generality,

suppose a blocking pair is (s, j) in which student s is assigned to project center p and

student i is assigned to project center j, but j �s p and i ≺j s. This implies that

∃(s, p) ∈ S × P : xsp = 1 while
∑

j∈P:
j�sp

∑
i∈S:
i≺js

xij ≥ 1. Thus, (SPC1) is not satisfied. A

similar argument exists for a blocking pair (i, p) where (s, p) ∈ S ×P and (i, j) ∈ S ×P ,

75



but p �i j and s ≺p i.

Theorem 2 A matching x ∈ {0, 1}|S|×|P| is stable if and only if constraint sets (SPC2)

and (NWS) are satisfied.

Proof.

First, we show that in the presence of (NWS), the outcomes of (SPC2) contain no block-

ing pair associated with waste. This can be shown in a similar manner as in Theorem 1.

In the presence of (NWS), it is now sufficient to show that a matching x ∈ {0, 1}|S|×|P|

is stable if and only if constraint sets (SPC2) is satisfied, that is it forbids blocking pairs

associated with justified envy.

Sufficiency. By contradiction, suppose (SPC2) is violated. This implies the existence

of both (s, p) ∈ S × P : xsp = 1 and (i, j) ∈ S × P : xij = 1 with i �p s, j ≺i p. Thus,

(i, p) forms a blocking pair and matching x ∈ {0, 1}|S|×|P| violates the notion of stability.

Necessity. Now suppose a matching x ∈ {0, 1}|S|×|P| is not stable. A blocking pair

associated with a match (s, p) ∈ S ×P is either (s, j) or (i, p). Without loss of generality,

suppose a blocking pair is (i, p) in which student s is assigned to project center p and

student i is assigned to project center j, but p �i j and s ≺p i. This implies that

∃(s, p) ∈ S × P : xsp = 1 while
∑

i∈S:
s≺pi

∑
j∈P:
p�ij

xij ≥ 1. Thus, (SPC2) is not satisfied. A

similar argument exists for a blocking pair (s, j) where (s, p) ∈ S ×P and (i, j) ∈ S ×P ,

but i ≺j s and j �s p.

We now demonstrate first the equivalence of (BBT) and (VVM) in Theorem 3, followed

by the equivalence of (SPC1), (SPC2), and (VVM) in Theorem 4.

Theorem 3 Stability constraint sets (BBT) and (VVM) when combined with (NWS) achieve

equivalent stable outcomes.

Proof. As (NWS) forbids blocking pairs associated to waste, we show that (VVM) which

forbids blocking pairs associated to justified envy is equivalent to (BBT). For each s ∈ S
and p ∈ P :

cpxsp + cp
∑

j 6=p:
j�sp

xsj +
∑

i 6=s:
i�ps

xip ≥ cp stability constraint (BBT)

⇐⇒ cp
∑

j�sp
xsj +

∑
i�ps

xip ≥ cp stability constraint (HRT)

⇐⇒ cp(1−
∑

j≺sp
xsj) ≥ cp −

∑
i�ps

xip ≥
∑

i≺ps
xip all students are matched

⇐⇒ cp(1−
∑

j≺sp
xsj) ≥

∑
i≺ps

xip stability constraint (VVM)
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Theorem 4 Stability constraint sets (SPC1) and (VVM) when both combined with (NWS)

achieve equivalent stable outcomes.

Proof. Given that (NWS) is applied to both constraint sets, we prove by contradiction

the equivalence of (SPC1) and (VVM) in which they forbids blocking pairs associated to

justified envy.

Suppose (SPC1) holds, but (VVM) is violated. This implies that
∑

j≺sp
xsj = 1 and yet∑

i≺ps
xip ≥ 1. Therefore, ∃(s, j), (i, p) ∈ S × P : xsj = 1 and xip = 1, where j ≺s p

and i ≺p s. Accordingly, xsp is a blocking pair associated with justified envy, and thus

stability constraint set (SPC1) cannot hold.

Now, suppose (VVM) holds, but (SPC1) is violated. This implies that ∃(s, j), (i, p) ∈
S × P : xsp = 1 and xij = 1, where j �s p and i ≺j s. Accordingly, xsj is a blocking pair

associated with justified envy, and thus stability constraint set (VVM) cannot hold.

The equivalence of (SPC2) and (VVM) can be shown in a similar manner, this proving

the equivalence of (SPC1), (SPC2), and (VVM). Theorems 3 and 4 together imply the

equivalence of (SPC1), (SPC2), (VVM), and (BBT). We now show that Algorithms 1 and 2

preserve stability constraint sets (SPC1) and (SPC2), respectively.

Theorem 5 The recurrence relation of the variables αsp in Algorithm 1 preserves stability

constraint sets (SPC1).

Proof. First, rank order the project centers p ∈ P according to the preference list of

student s as p(1), p(2), . . . ; then, for any s ∈ S and p(r) ∈ P :

αsp(r) ≤ Ms

(
1− xsp(r)

)
⇐⇒ αsp(r−1) + βsp(r−1) ≤ Ms

(
1− xsp(r)

)
⇐⇒ αsp(r−2) +

∑2
k=1 βsp(r−k) ≤ Ms

(
1− xsp(r)

)
⇐⇒ · · ·
⇐⇒ αsp(1) +

∑r−1
k=1 βsp(r−k) ≤ Ms

(
1− xsp(r)

)
⇐⇒

∑r−1
k=1 βsp(r−k) ≤ Ms

(
1− xsp(r)

)
by definition αsp(1) = 0

⇐⇒
∑r−1

k=1

∑
i≺

p(r−k)s
xip(r−k) ≤ Ms

(
1− xsp(r)

)
by definition βsp(r) =

∑
i∈S:
i≺

p(r)
s
xip(r)

⇐⇒
∑

j∈P:
j�sp(r)

∑
i∈S:
i≺js

xij ≤ Ms

(
1− xsp(r)

)
by substituting {j ∈ P : j �s p(r)}.

A similar proof shows that the recurrence relation of the variable αsp in Algorithm 2

preserves stability constraint set (SPC2).
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Appendix B

Summary of Limited Computational

Testing (Chapter 4)

We computationally investigate some parameters to shed light on desirable configurations

for our computational experiments. First, limited computational testing revealed that

the constraint set (PW) tends to be outperformed by both of the aggregate versions (SPC1)

and (SPC2). This was surprising given the common understanding that the performance

of aggregate constraints is typically dominated by disaggregated constraints in terms of

the linear programming relaxation solution quality [see, e.g., 93]. Algorithms 1 and 2

use recurrence relationships to construct stability constraint sets (SPC1) and (SPC2) over

sorted preference lists. As a result, the summation of binary variables appearing in (SPC1)

and (SPC2) is not composed of binary variables, but rather an integer variable that is set

equal to the sum of the respective binary variables. Limited computational testing reveals

that models with these integer variables that represent binary variable aggregations result

in superior performance, over models with only binary variables.

Additionally, we performed a number of limited computational experiments to un-

derstand what parameters and settings resulted in the best performance. Specifically,

we compare the performance between using Big-M conditions and Gurobi indicator con-

straints. Even though we reduce the magnitude of Big-M parameters that appear in

stability constraint sets (SPC1) and (SPC2) by enumerating through binary variables xij

representing possible blocking pairs related to justified envy which locating on the left-

hand side of the constraint sets.
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Appendix C

An Example to Demonstrate the

Generation of Constraint Sets via

Algorithm 1 and Algorithm 2

(Chapter 4)

Example 2 example Suppose there are two project centers p1, p2, each with two seats,

and three students s1, s2, s3 with incomplete preference lists and ties. Preferences and

priorities are shown in Figure C.1.

s1 : (p1) p1 : (s2, s3), (s1)

s2 : (p1, p2) p2 : (s1), (s2), (s3)

s3 : (p2), (p1)

Figure C.1: Illustrating SPC assignment with incomplete preference lists and ties of
Example 2. Unranked project centers / students are unlisted, and entities ranked at the
same level are enclosed within same brackets.

Algorithm 1 iterates over the preference of students, whereas Algorithm 2 iterates over

the preference of project centers, both sorted in a descending order. While both algorithms

are based on (PW), each results in a unique constraint set as shown in Table C.1. We now

illustrate the recurrence relations of Algorithms 1 and 2 for constructing (SPC1) and

(SPC2).

Algorithm 1 Considering the sorted project centers of each student s in a descending

order, Algorithm 1 creates constraints to prevent any assignments of other students who

each sorted project center p prefers less than s. A different subset of these constraints is

activated when student s is assigned to each sorted project centers p ∈ P .
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From the preference order of s1, as s1 prefers being unmatched to being assigned to p2,

the order of project centers of s1 is (p1), (p0), (p2). Because p1 prefers no one less than s1,

this generates β1,1 = 0 and α1,1 = 0. Next, p0 prefers everyone equally generates β1,0 = 0

and α1,0 = α1,1 + β1,1. Then, p2 prefers s2 and s3 less than s1 generates β1,2 = x2,2 + x3,2

and α1,2 = α1,0 + β1,0.

From the preference order of s2 where p1 and p2 have the same ranking, p1 prefers s1

less than s2 generates β2,1 = x1,1 and α2,1 = 0, whereas p2 prefers s3 less than s2 generates

β2,2 = x3,2 and α2,2 = 0. Then, p0 generates β2,0 = 0 and α2,0 = α2,2 + β2,2 + β2,1.

From the preference order of s3, first, p2 prefers no one less than s3 generates β3,2 = 0

and α3,2 = 0. Next, p1 prefers s1 less than s3 generates β3,1 = x1,1 and α3,1 = α3,2 + β3,2.

Then, p0 generates β3,0 = 0 and α3,0 = α3,1 + β3,1.

All in all, Algorithm 1 generates 9 constraints of the form αsp ≤Ms(1−xsp), the last

of which is α3,0 = α3,1 + β3,1 = x1,1 ≤Ms(1− x3,0).
Algorithm 2 Considering the sorted students of each project center p in a descending

order, Algorithm 2 creates constraints to prevent any assignments of each sorted student

s to any of other project centers where s prefers less than p. A different subset of these

constraints is activated when project center p is assigned each sorted student s ∈ S.

From the preference order of p1 where s2 and s3 have the same ranking, s2 prefers p0

less than p1 generates β2,1 = x2,0 and α2,1 = 0, whereas s3 prefers p0 less than p1 generates

β3,1 = x3,0 and α3,1 = 0. Next, s1 prefers p0 and p2 less than p1 generates β1,1 = x1,0 +x1,2

and α1,1 = α3,1 + β3,1 + β2,1.

From the preference order of p2, first, s1 prefers nowhere less than p2 generates β1,2 = 0

and α1,2 = 0. Next, s2 prefers p0 less than p2 generates β2,2 = x2,0 and α2,2 = α1,2 + β1,2.

Then, s3 prefers p1 and p0 less than p2 generates β3,2 = x3,1 + x3,0 and α3,2 = α2,2 + β2,2.

All in all, Algorithm 2 generates 6 constraints of the form αsp ≤Mp(1−xsp), the last

of which is α3,2 = α2,2 + β2,2 = x2,0 ≤Ms(1− x3,2).
Note that we use Gurobi indicator constraints to model Big-M conditions in stability

representations (SPC1) and (SPC2) as our limited experiment shows their superior perfor-

mance over Big-M conditions. We summarize constraint sets generated by Algorithm 1

and Algorithm 2 in Table C.1.

80



Constraint generated by Algorithm 1 Constraint generated by Algorithm 2

β1,1 = 0 β3,1 = x3,0
α1,1 = 0 α3,1 = 0
β1,0 = 0 β2,1 = x2,0
α1,0 = β1,1 + α1,1 α2,1 = 0
β1,2 = x2,2 + x3,2 β1,1 = x1,2 + x1,0
α1,2 = β1,0 + α1,0 α1,1 = β3,1 − α3,1 − β2,1
β2,2 = x3,2 β1,2 = 0
α2,2 = 0 α1,2 = 0
β2,1 = x1,1 β2,2 = x2,0
α2,1 = 0 α2,2 = β1,2 − α1,2

β2,0 = 0 β3,2 = x3,1 − x3,0
α2,0 = β2,2 + α2,2 + β2,1 α3,2 = β2,2 − α2,2

β3,2 = 0 β3,0 = 0
α3,2 = 0 α3,0 = 0
β3,1 = x1,1 β2,0 = 0
α3,1 = β3,2 + α3,2 α2,0 = 0
β3,0 = 0 β1,0 = x1,2
α3,0 = β3,1 + α3,1 α1,0 = 0

Building (SPC1) via indicator constraints Building (SPC2) via indicator constraints
x1,1 = 1→ α1,1 = 0 x3,1 = 1→ α3,1 = 0
x1,0 = 1→ α1,0 = 0 x2,1 = 1→ α2,1 = 0
x1,2 = 1→ α1,2 = 0 x1,1 = 1→ α1,1 = 0
x2,2 = 1→ α2,2 = 0 x1,2 = 1→ α1,2 = 0
x2,1 = 1→ α2,1 = 0 x2,2 = 1→ α2,2 = 0
x2,0 = 1→ α2,0 = 0 x3,2 = 1→ α3,2 = 0
x3,2 = 1→ α3,2 = 0 x3,0 = 1→ α3,0 = 0
x3,1 = 1→ α3,1 = 0 x2,0 = 1→ α2,0 = 0
x3,0 = 1→ α3,0 = 0 x1,0 = 1→ α1,0 = 0

Table C.1: The generation order and constraints created by Algorithm 1 and Algorithm 2
are different.
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Appendix D

Generating Student Preference List

Based on the Two Types of

popularity Parameter (Chapter 4)

The preference lists in our datasets are incomplete. Unlike the studies of [32] and [18]

where the data in the randomly generated instances appears to be generated with ties

on the hospital side only, we allow ties on both student and project center sides, with a

greater tie density in student preference lists. We note that in the generated test instances

of [32], all hospitals in the preference list of each doctor rank the particular doctor in the

same tier. Additionally, the distribution of doctor grades is controlled by a skewness

parameter, in which a skewness value of κ means that the most common doctor score

is likely to occur κ times more than the least common, whereas the distribution of our

student preference list is controlled by the popularity of each project center, according to

the following interpretation. In our synthetic datasets, we generate a discrete probability

distribution for tier selection based on the popularity ranking of each project center, such

that more popular project centers will have greater likelihood of being placed in the first

tier of student preference lists.

The preference lists of students and project centers in Section 4.5.5 are generated

to reflect the SPC matching in which student preferences are constructed in preference

tiers where project centers in the same tier represent ties, and project center preferences

are calculated based on a variety of observable student characteristics such as resume,

transcript, language skill, and personal statement, with normalized values between 0 and

1.

The student preferences is constructed based on the project center popularity where

its distribution can be uniform or nonuniform. A uniform popularity indicates a uniform

popularity distribution across all project centers, where each project center is likely to be
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selected by a student with a probability of 1
|P| . The chance that each project center will

be selected in the first tier of student preference lists are equal. A nonuniform popularity

indicates a nonuniform popularity distribution across all project centers, where more

popular project centers are more likely to be selected to higher tier of student preference

lists.

We define a discrete probability distribution of tier selection for project popularity

rank p ∈ {1, 2, . . . } as

Pr (rank = p, tier = r) =
|Rp| − r + p

|Rp|
(
|Rp|−1

2
+ p
) for preference tier r ∈ {1, . . . , |Rp|}.

For example, when |Rp| = 3, the probability that the most popular project center

(rank=1) is selected in the first, second, and third tier of student preference lists are
3
6
, 2

6
, and 1

6
, respectively; the probability that the second most popular project center

(rank=2) is selected in the first, second, and third tier of student preference lists are 4
9
,

3
9
, and 2

9
, respectively; and so on. The scale difference between each project popularity

rank can be adjusted by changing the scale of p values.

The probability distribution of the tier selection of a more popular project center

results in higher chance that it will be selected in higher tier. The random selection of

project popularity and preference lists is implemented using Python function choice in

numpy.random library. With the use of this function, students place each project center

to a tier according to a list of probability values generated from the corresponding project

popularity rank. We prohibit student preference lists with empty first tier. Incomplete

preference lists occur when students do not place project centers in every tier. Since we

work with cardinal preferences, a utility value of a project center placed in the rth tier is

defined to be 1
r

for r = 1, . . . , |Rp| − 1, and zero if it is placed in the last tier, r = |Rp|.
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Appendix E

Selecting Coefficients of the

Lexicographic Objective Functions

(Chapter 4)

E.1 Objective Coefficients for the Stable SPC For-

mulation (4.1) of the WPI Datasets

To study the effect of different stability representations, we apply formulation (4.1) with

the utility usp set to the summation of weighted student utility and weighted project

center utility, γ1qsp + γ2ksp. We choose the values of γ1 and γ2 so that the objective

function:

maximize
∑
s∈S

∑
p∈P

xsp + γ1
∑
s∈S

∑
p∈P

qspxsp + γ2
∑
s∈S

∑
p∈P

kspxsp,

preemptively optimizes in the following order: i) maximize student placement, ii) maxi-

mize student utility, and iii) maximize project center utility.

First, we would like to ensure that the contribution to the objective function of to-

tal project center utility is strictly less than the minimum contribution of the student

utility from placing any single student: γ2
∑
s∈S

∑
p∈P

kspxsp < γ1 min
{s∈S,p∈P}

q+sp. Second, we

would like to ensure that the contribution to the objective function of total student

utility is strictly less than the minimum contribution of a placement of any single stu-

dent: γ1
∑
s∈S

∑
p∈P

qspxsp < 1. Finally, we would like to ensure that the contribution to

the objective function of total student utility and total project center utility together

is strictly less than the minimum contribution of a placement of any single student:

γ1
∑
s∈S

∑
p∈P

qspxsp + γ2
∑
s∈S

∑
p∈P

kspxsp < 1. To do so, it is helpful to work backwards, so
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that first the γ2 component is determined in term of γ1, followed by solving for the value

of the γ1 component.

As the result, we set the value of γ1 to be the reciprocal of the minimum of the total

capacity and the number of students, plus the smallest possible positive contribution from

student utility, plus a small positive value, that is γ1 = 1
min

{s∈S,p∈P}
q+sp+min{

∑
p∈P

cp,|S|}+ε
. We set

the value of γ2 to be the product of γ1 and the ratio of the minimum student utility of a

placement of any single student to the minimum of the total capacity and the number of

students plus a small positive value, γ2 =
min

{s∈S,p∈P}
q+sp

min{
∑
p∈P

cp,|S|}+εγ1.

For the WPI dataset, the capacity is dropped to its observed level in every year,∑
p∈P

cp = |S|, and we prohibit the placement of students to unpreferred project centers

in which qsp = 0 via constraint (4.1d), which results in min
{s∈S,p∈P}

q+sp = 0.5. Hence, γ1 =

1
0.5+

∑
p∈P

cp+ε
and γ2 = 0.5∑

p∈P
cp+ε

1
0.5+

∑
p∈P

cp+ε
, where we set the value of ε to be 1e−6.

E.2 Coefficients for the Stable SPC with Cohorts

Formulation (4.2) of the WPI Datasets

We choose the values of waip and waip so that the objective function:

maximize
∑
s∈S

∑
p∈P

xsp+γ1
∑
s∈S

∑
p∈P

qspxsp+γ2
∑
s∈S

∑
p∈P

kspxsp−
∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip−

∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2

aip
,

preemptively optimizes in the order specified for the stable SPC formulation (4.1) of the

WPI datasets and then minimizes penalty of the squared deviation from desired cohort

target.

We ensure that the contribution to the objective function of the squared devia-

tion penalty is strictly less than the minimum contribution of a placement of one stu-

dent and its corresponding student and project center utilities:
∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip +∑

a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip

< min{1 + γ1q
+
sp + γ2ksp}. Since min{1 + γ1q

+
sp + γ2ksp} > 1, penalty

weights waip and waip that hold for
∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip +

∑
a∈A

∑
i∈Ia

∑
p∈P

waipy
2
aip

< 1, still

retain the desired relationship. If there are taip students with level i in attribute a as-

signed to project center p already, the number of overassignment students deviated from

the desire target cannot exceed cp − taip. On the other hand, if there is no student with

level i in attribute a assigned to project center p, the number of underassignment stu-

dents deviated from the desire target in consideration is at most taip. Due to these upper

bounds, we ensure that the maximum squared deviation penalty is strictly less than one:∑
a∈A

∑
i∈Ia

∑
p∈P

waip(cp − taip)2 +
∑
a∈A

∑
i∈Ia

∑
p∈P

waipt
2
aip < 1. The values of waip and waip can be
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determined in the similar manner as in Appendix E.1.

For our experiments, we set all waip to zero and set all waip to be equal to one another,

by constructing underassignment weights so that
∑
a∈A

∑
i∈Ia

∑
p∈P

waipt
2
aip < 1 holds, setting

waip = 1∑
a∈A

∑
i∈Ia

∑
p∈P

t2aip+ε
, where ε is a small positive value selected similar to the stable

SPC formulation (4.1) of the WPI datasets ∀ a ∈ A, ∀ i ∈ Ia, ∀ p ∈ P .

E.3 Objective Coefficients for Synthetic Dataset in

Section 4.5.5

We apply formulation (4.1) with the utility usp set to the weighted student utility in which

the value of γ is chosen so that the model first prioritizes maximizing student placement,

followed by maximizing student utility. We set the value of γ to be the reciprocal of the

minimum of the total capacity or the total number of students plus a small positive value,
1

min{
∑
p∈P

cp,|S|}+ε ; we set ε=1e-6. In this way, we ensure that γ
∑
s∈S

∑
p∈P

qsp < 1, that is, the

contribution to the objective function of placing any single student outweighs the benefit

of all student utility values combined.
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Appendix F

Additional Experimental Results

(Chapter 4)

Table 6.1 shows the result of stable SPC formulation (4.1) with different stability con-

straint sets across three years of the WPI datasets. Table 6.2 shows the result of the

quadratic stable SPC formulation (4.2) with different stability constraint sets across three

years of the WPI datasets.
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Year 2017-2018 2018-2019 2019-2020

Metric
Stability Constraint Type Stability Constraint Type Stability Constraint Type

None SPC1 SPC2 VVM BBT None SPC1 SPC2 VVM BBT None SPC1 SPC2 VVM BBT

Objective Value 928.9766 927.9588 926.9637 927.9567 926.9637 927.9999 927.9999 927.9999 927.9999 927.9999 1,126.9002 1,106.8666 1,107.8621 1,107.8518 1,106.8571
Best Bound 928.9766 927.9615 928.9766 927.9761 928.9728 927.9999 927.9999 927.9999 927.9999 927.9999 1,126.9002 1,124.8810 1,126.8875 1,124.5777 1,126.8371
MIPGap (%) 0 0.0003 0.2172 0.0021 0.2167 0 0 0 0 0 0 1.6275 1.7173 1.5098 1.8051

After Presolve
#Constraints (Rows) 966 13,835 20,145 15,564 10,979 974 12,007 15,818 12,130 7,641 1,183 12,583 16,304 13,630 8,355
#Variables (Columns) 14,359 18,280 24,230 15,307 12,397 11,169 15,407 18,199 12,137 8,970 12,597 16,560 18,298 13,796 10,371
#Nonzeros 28,710 158,553 95,178 1,896,966 2,026,000 22,338 107,719 74,355 1,314,575 1,080,987 25,194 84,965 77,151 1,441,600 1,360,148
Model Density 0.0021 0.0006 0.0002 0.0080 0.0149 0.0021 0.0006 0.0003 0.0089 0.0158 0.0017 0.0004 0.0003 0.0077 0.0157

Total Students 928 928 928 928 928 927 927 927 927 927 1,126 1,126 1,126 1,126 1,126
Tier-1 Placements 885 853 863 849 863 927 927 927 927 927 1,049 988 976 951 965
Tier-2 Placements 43 74 63 78 63 0 0 0 0 0 77 118 131 156 141
Unassignments 0 1 2 1 2 0 0 0 0 0 0 20 19 19 20
Blocking Pairs 150 0 0 0 0 0 0 0 0 0 293 0 0 0 0

Time to Build Model (s) 1.44 147.36 19.88 41.79 52.49 1.28 110.07 20.04 47.60 50.89 2.20 206.68 38.95 85.71 77.05
First Incumbent Time (s) 0.2 89 8,554 125 33,326 0.11 46.26 8.25 97.41 78.17 0.14 65 10,535 540 30,699
Best Incumbent Time (s) 0.2 75,264 28,319 5,763 43,313 0.11 46.26 8.25 97.41 78.17 0.14 86,400 85,305 31,707 86,400
Run Time (s) 0.2 86,400 86,400 86,400 86,400 0.11 46.26 8.25 97.41 78.17 0.14 86,400 86,400 86,400 86,400

Table 6.1: Comparison of SPC models with different stability constraint sets on three WPI datasets.

4Note that all runs timed out at 24 hours for the first and last years, while all runs solved well under the time limit for the second year, this is due to
different flexibility of students in choosing project centers in each year. In particular, we observe that students are more restrictive in their selection of
project centers in the first and last years; as the result, the process is more competitive and it poses more difficulty in solving the models.
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Year 2017–2018 2018–2019 2019–2020

Method SPC1 SPC2 VVM BBT SPC1 SPC2 VVM BBT SPC1 SPC2 VVM BBT

Consider Cohort No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Objective Value 927.96 927.84 926.96 926.84 927.96 927.82 926.96 926.84 928.00 927.91 928.00 927.90 928.00 927.92 928.00 927.92 1,106.87 1,106.68 1,107.86 1,107.59 1,107.85 1,107.60 1,106.86 1,106.60
Best Bound 927.96 928.84 928.98 928.87 927.98 928.87 928.97 928.87 928.00 927.92 928.00 927.92 928.00 927.92 928.00 927.92 1,124.88 1,126.74 1,126.89 1,126.78 1,124.58 1,126.66 1,126.84 1,126.74
MIPGap (%) 0.0003 0.1076 0.2172 0.2198 0.0021 0.1133 0.2167 0.2198 0.0000 0.0006 0.0000 0.0023 0.0000 0.0005 0.0000 0.0005 1.6275 1.8124 1.7173 1.7327 1.5098 1.7203 1.8051 1.8200

Presolved Model Size 0.0006 0.0007 0.0002 0.0002 0.0080 0.0079 0.0149 0.0147 0.0006 0.0006 0.0003 0.0003 0.0089 0.0088 0.0158 0.0155 0.0004 0.0004 0.0003 0.0003 0.0077 0.0076 0.0157 0.0153

Total Students 928 928 928 928 928 928 928 928 927 927 927 927 927 927 927 927 1,126 1,126 1,126 1,126 1,126 1,126 1,126 1,126
Tier-1 Placements 853 851 863 860 849 850 863 863 927 920 927 927 927 921 927 919 988 979 976 975 951 946 965 965
Tier-2 Placements 74 76 63 66 78 77 63 63 0 7 0 0 0 6 0 8 118 127 131 132 156 161 141 141
Unassignments 1 1 2 2 1 1 2 2 0 0 0 0 0 0 0 0 20 20 19 19 19 19 20 20

Underassigned Females 13 1 9 2 14 4 12 3 9 1 8 3 9 1 8 0 22 20 26 20 23 20 25 21
Underassigned CS 78 66 76 67 76 66 77 67 72 56 74 56 73 56 72 56 104 87 104 103 108 97 108 96

Time to Build Model (s) 147.36 129.85 19.88 18.48 41.79 46.47 52.49 49.98 110.07 98.26 20.04 16.62 47.60 45.76 50.89 45.63 206.68 234.86 38.95 37.29 85.71 78.17 77.05 92.78
First Incumbent Time (s) 89 - 8,554 - 125 - 33,326 - 46.26 - 8.25 - 97.41 - 78.17 - 65 - 10,535 - 540 - 30,699 -
Best Incumbent Time (s) 75,264 82,888 28,319 12,019 5,763 133 43,313 610 46.26 12,275 8.25 24,118 97.41 6,463 78.17 80,548 86,400 60,416 85,305 707 31,707 38,731 86,400 19,544
Run Time (s) 86,400 83,302 86,400 86,400 86,400 86,400 86,400 86,400 46.26 86,400 8.25 86,400 97.41 86,400 78.17 86,400 86,400 86,400 86,400 86,400 86,400 86,400 86,400 86,400

Table 6.2: Performance comparison of the Quadratic Stable SPC formulations with cohorts applying different stability constraint
sets on three WPI datasets.
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