
	
 i	

Project Number: MQP-GFP-1402

Map My Trip: A Leap Motion Web App

A Major Qualifying Project Report:

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Lisa Batbouta

Saraf Rahman

Jeffrey Signore

September 18, 2014

Approved by

Professor Gary F. Pollice, Advisor

	
 	
 ii	

Abstract

Map My Trip is a travel application created using Leap Motion’s motion sensing

technologies to allow you to search for hotels with just a few circles of your finger. Despite the

initial objectives, the Leap Motion platform had not evolved to a point where the Web

application support and support for this type of precision in a Web application was practical. We

were able, however, to use the Map My Trip application to research the strengths, weaknesses,

and opportunities of the Leap Motion Technology in comparison with other websites and current

Web technologies.

	
 	
 iii	

Acknowledgements

 We would like to thank our advisor, Professor Gary Pollice, for his guidance and

expertise throughout this project. We would like to thank Professor David Brown for working

with our team to identify the best interactive gestures for our application. Finally, we would like

to thank all the participants in our user studies. Without all of their aid this project would not

have been possible.

	
 	
 iv	

Table of Contents

ABSTRACT . I I 	

ACKNOWLEDGEMENTS . I I I 	

TABLE OF CONTENTS . IV 	

Table	
 of	
 Figures	
 ...	
 vii	

CHAPTER 1: INTRODUCTION .. 1 	

1.1	
 Original	
 Goals	
 ...	
 1	

1.2	
 Original	
 Requirements	
 &	
 Approach	
 ..	
 2	

1.3	
 Change	
 of	
 Focus	
 Requirements	
 &	
 Approach	
 ...	
 2	

1.4	
 Summary	
 ..	
 2	

CHAPTER 2: LITERATURE REVIEW .. 4 	

2.1	
 Leap	
 Motion	
 ...	
 4	

2.1.1	
 Leap	
 Motion	
 Architecture	
 ...	
 4	

2.1.2	
 Leap	
 Motion	
 Language	
 Choice	
 ..	
 7	

2.1.3	
 Leap	
 Motion	
 Web	
 with	
 Node.js	
 ..	
 7	

2.1.4	
 Leap	
 Motion	
 Existing	
 Applications	
 and	
 Gestures	
 ..	
 7	

2.2	
 Leap	
 Motion	
 as	
 a	
 Travel	
 App	
 ..	
 8	

2.2.1	
 Existing	
 Travel	
 Applications	
 ...	
 8	

CHAPTER 3: METHODOLOGY .. 10 	

3.1	
 Requirements	
 ...	
 10	

3.2	
 Implementation	
 of	
 gestures	
 ...	
 10	

3.3	
 Gestures	
 and	
 Problems	
 ..	
 11	

3.4	
 Project	
 Transition	
 ...	
 15	

3.5	
 User	
 Studies	
 ...	
 15	

CHAPTER 4: RESULTS AND ANALYSIS . 18 	

	
 	
 v	

4.1	
 Limitations	
 of	
 Leap	
 Motion	
 ..	
 18	

4.1.1	
 Gestures	
 ..	
 18	

4.1.2	
 Internet/	
 Browsers	
 ..	
 21	

4.2	
 Benefits	
 of	
 Leap	
 Motion	
 ...	
 24	

4.3	
 User	
 Study	
 Results	
 ...	
 24	

4.3.	
 1	
 Application	
 using	
 Leap	
 Motion	
 ...	
 25	

4.3.2	
 Application	
 using	
 mouse	
 and	
 keyboard	
 ..	
 26	

4.3.3	
 Using	
 a	
 traditional	
 hotel	
 booking	
 site	
 ...	
 27	

4.4	
 Analysis	
 ..	
 28	

4.4.1	
 User	
 Study	
 Analysis	
 ...	
 28	

4.4.2	
 Strengths,	
 Weaknesses,	
 and	
 Opportunities	
 of	
 Leap	
 Motion	
 ...	
 30	

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS . 31 	

5.1	
 Benefits	
 ..	
 31	

5.2	
 Suitability	
 ...	
 31	

5.3	
 Future	
 Work	
 ...	
 32	

REFERENCES . 33 	

APPENDIX A: GLOSSARY . 35 	

APPENDIX B: ANALYSIS OF TRAVEL APPLICATIONS . 36 	

APPENDIX C: USER STUDY CONSENT SCRIPT . 38 	

Consent	
 script:	
 ...	
 38	

For	
 Leap	
 survey:	
 ...	
 38	

For	
 App	
 without	
 Leap:	
 ...	
 39	

For	
 booking.com:	
 ...	
 39	

APPENDIX D: LEAP MOTION SURVEY . 40 	

Tasks:	
 ...	
 40	

Results:	
 ..	
 41	

APPENDIX E: GOOGLE MAPS WEB APPLICATION SURVEY . 44 	

	
 	
 vi	

Tasks:	
 ...	
 44	

Results:	
 ..	
 45	

APPENDIX F: BOOKING.COM SURVEY . 47 	

Tasks:	
 ...	
 47	

Results:	
 ..	
 48	

	
 	
 vii	

Table of Figures
	

Figure	
 1:	
 Leap	
 Motion	
 Native	
 Interface9	
 ...	
 5	

Figure	
 2:	
 Leap	
 Motion	
 WebSocket	
 Server16	
 ..	
 6	

Figure	
 3	
 :	
 CircleGesture	
 using	
 Leap	
 Motion3	
 ...	
 11	

Figure	
 4	
 :	
 SwipeGesture	
 using	
 Leap	
 Motion14	
 ...	
 12	

Figure	
 5	
 :	
 KeyTapGesture	
 using	
 Leap	
 Motion5	
 ..	
 13	

Figure	
 6	
 :	
 ScreenTapGesture	
 using	
 Leap	
 Motion13	
 ..	
 14	

Figure	
 7:	
 Browser	
 Compatibility2	
 ..	
 23	

Figure	
 8:	
 Mouse	
 Browser	
 Information9	
 ...	
 23	

Figure	
 9:	
 Map	
 My	
 Trip	
 Leap	
 Motion	
 User	
 Study	
 ...	
 25	

Figure	
 10:	
 Chart	
 of	
 Intuitive	
 Gestures	
 ...	
 26	

Figure	
 11:	
 Leap	
 Motion	
 with	
 Mouse	
 User	
 Study	
 ...	
 27	

Figure	
 12:	
 Booking.com	
 User	
 Study	
 ..	
 28	

Figure	
 13:	
 Strengths	
 Weaknesses	
 and	
 Opportunities	
 of	
 Leap	
 Motion	
 ..	
 30	

	
 1	

Chapter 1: Introduction

In our everyday lives, people run into situations where they need hand-free technologies.

For example, in the car while driving, users might need to be able to adjust the settings on his or

her GPS without touching buttons. In other situations, users have found it more intuitive to make

a gesture such as tapping the screen rather than typing on a keyboard15. In addition, these

applications should be integrated with the Internet because of the websites we access as

resources on a daily basis. Thus, Leap Motion, a motion sensor, offers users a new way for

people to interact with computers. Leap Motion provides users with eight cubic feet of 3D touch

that allows them to swipe through pictures on the Web, play air guitar, or travel the virtual world

without touching their computer9. In addition, Leap Motion is progressing its technology by

working with Mercedes-Benz to integrate these features in one of their upcoming cars8.

1.1 Original Goals
Currently, in the Leap Motion App Store, there are no Web travel applications. However,

it does have desktop travel applications, which use Leap Motion exclusively. A Web travel

application using Leap Motion would give users more options for making travel

accommodations. For example, users would be able to book a hotel or buy a plane ticket to their

destination. Originally, we had set out to create a Web travel application using Leap Motion to

improve the user’s experience for planning a trip and booking hotels. We wanted to utilize

Google Maps to take advantage of the Google Places API functionality, which can be used to

find detailed information about hotels in a given vicinity. We planned to provide users with an

easy-to-use interactive application that made users feel as if they were already at their

destination. In addition, the idea was to create an interface from which users could easily plan

	
 	
 2	

trips without needing a mouse or keyboard, and have easy access to cost estimates, which would

allow them to stay within their budget. Due to inherent issues with the current state of the

technology, our project’s focus shifted to an exploration of the strengths and weaknesses of Leap

Motion as a Web technology through developing and testing a prototype application, user

studies, and reviewing current Web technologies.

1.2 Original Requirements & Approach

In order to achieve our initial goal of creating a travel application using Web technologies

with Leap Motion, we studied various motion gestures used on mobile applications. We

developed our Web application that integrated Google Maps Application Programming Interface

(API) and Leap Motion Software Development Kit (SDK) to display a Google map and utilized

Leap Motion gestures. In order to create our Web applications, we used the technologies

JavaScript, jQuery library and a local Node.js server.

1.3 Change of Focus Requirements & Approach

In order to resolve our subsequent problem of identifying the strengths and weaknesses of this

application, we were required to:

1. Develop an additional Web application that did the same actions as the Leap Motion

application, but used mouse click interaction instead of Leap Motion gestures.

2. Perform user studies to compare and evaluate the different Web application

technologies. 	

1.4 Summary

The result of this Major Qualifying Project (MQP) is this report which chronicles the

development of Map My Trip, our decision to move toward a research driven project, and the

	
 	
 3	

results of our user study analysis. Additionally, we have made future suggestions to advance the

technologies of this product.

	

	

	

	

	

	

	

	

	

	

	

	
 	
 4	

Chapter 2: L iterature Review

To understand the motivation behind Map My Trip using Leap Motion and research on the

Leap Motion technology, this section describes what Leap Motion is, design choices for our

application, and existing travel Web applications, as well as gesture decisions implemented in

other applications.

2.1 Leap Motion

Leap Motion is a hardware sensor device that detects hand and finger movements,

analogous to a mouse but requiring no touch. It provides a new way for users to interact with

computers. Leap Motion provides users with 8 cubic feet of 3D touch that allows them to swipe

through pictures on the Web, play air guitar, or travel the virtual world without touching the

computer9. It is defined as a “motion capture” technology; it captures precise movements of parts

of your hands during the motion and is able to display them on your computer6. This technology

brings new innovations to the way we interact with computers, and the company plans to further

improve on their product over time by implementing the product into future computers through

connections with Hewlett-Packard and Asus7. In addition, Leap Motion is working with

Mercedes-Benz to integrate motion gesture features into one of their upcoming cars8. These

connections with these companies could progress Leap Motion technologies in the future.

2.1.1 Leap Motion Architecture

Leap Motion works on both Windows and Mac OS X operating systems and connects to

the computer through a USB connection15. Leap Motion is able to retrieve and provide data

through both a native interface and a Web socket. This lets developers have many options for

programming languages including C# and Unity, Python, Java, Objective C, and JavaScript.

	
 	
 5	

The native interface is provided through a dynamically loaded library that tracks data to

your application. The architecture of the Leap Motion native interface can be seen in Figure 1

below.

	

Figure	
 1:	
 Leap	
 Motion	
 Native	
 Interface9

As seen in Figure 1:

 (1) The Leap Motion Controller sends gesture tracking data to the Leap service through the

USB.

(2) A user can configure the Leap Motion installation process as well as access settings and other

tools that are separate from Leap Motion applications.

(3) By Default, the application retrieves data when the application is open in the foreground of

your desktop.

(4) However, you can set up your Leap Motion to also retrieve data when the application is

running in the background and you are doing other work on your desktop.

	
 	
 6	

The Leap Motion WebSocket server on the localhost domain at port 6437 provides

tracking data in the form of JavaScript Object Notation (JSON) messages. The architecture of the

Leap Motion WebSocket server can be seen in Figure 2 below.

	

Figure	
 2:	
 Leap	
 Motion	
 WebSocket	
 Server16	

	

As seen in Figure 2:

(1) The Leap Motion Service is the Leap Motion WebSocket server that provides a WebSocket

server listening on its localhost domain, http://127.0.0.1:6437, on port 6437.

(2) Through the Leap settings, the user has the ability to enable and disable the WebSocket at

any given time to enable and disable gestures.

	
 	
 7	

(3) The Leap Server then sends tracking data in the form of JSON and the application configures

messages to send back to the server about the gestures.

(4) The leap.js client library establishes a connection to the server and allows for the

consumption of JSON messages for developers to display the data as he or she chooses5.

2.1.2 Leap Motion Language Choice

The Leap Motion WebSocket server environment, using JavaScript, allowed us access to

websites outside of Leap Motion applications. In addition, Google Maps API was written in

JavaScript. Therefore, no extended libraries or access points were necessary to use the Google

Maps API resource. Lastly, by using JavaScript we would be able to redirect users of our

application easily to other travel websites to book their final hotel preference.

2.1.3 Leap Motion Web with Node.js

Node.js is a server side and networking runtime environment that maximizes throughput

and efficiency of real time applications. It does this through asynchronous I/O library for files,

sockets, and HTTP communication. It is made for data intensive real time applications that run

across multiple devices10. Due to the fact that Node.js is able to provide quick data intensive

transactions, this would enhance the speed of data being changed on the Google Maps API on

our website.

2.1.4 Leap Motion Exist ing Appl icat ions and Gestures

Most of the applications currently on the Leap Motion App Store limit the number of

gestures to one or two at most. The limited number of gestures prevents the sensor from

confusing gestures that may be hard to differentiate between and allows for smoother navigation

	
 	
 8	

of the application1. Additionally, the number of gestures provided for Web development is lower

than those provided for Desktop Applications.

2.2 Leap Motion as a Travel App

Leap Motion as an interaction mechanism for this travel application allows users to

navigate with the computer in a unique way and find effortless ways to interact with a touch less

screen. It provides a visual representation in which users may navigate between the hotels of the

world, and which will help users understand where they are trying to go and the hotels in the

surrounding area for his or her trip. It allows users to identify attractions based on relative

distances to surrounding hotels.

2.2.1 Exist ing Travel Appl icat ions

Today, there is only one travel application in the Leap Motion App Store. This

application identifies some of the strengths Leap Motion has to offer for travel planning.

However, the applications do not integrate a way for users to search through hotels and switch to

another website to purchase your ticket. The closest Web applications to this are Travel Seeker

by Leap Motion developers, and RoadTripper, a website.

Travel seeker uses Leap Motion API to look at different vacation locations based on a

certain price range. Once you are zoomed in enough to see a map of the United States, you can

see price stickers for many major cities throughout the country. Prices on this application do not

reference any given hotel or a breakdown of what is included in the price. In addition, this map

does not allow you to zoom in and see locations up close. Nevertheless, this application provides

users an average cost of traveling to locations around the global and brings a new visual spin to

planning your next vacation.

	
 	
 9	

Aside from Travel Seeker, there are no other Leap Motion travel applications. The Leap

Motion market is just starting to expand and it will take time before new applications become

available specifically for Leap Motion. In the meantime, there are short-term solutions such as

the Leap applications Touchless and Shortcuts, which have been developed to create gestures

allowing users to navigate the Web using just Leap gestures instead of a mouse.

Touchless and the Shortcuts Leap Motion applications can be used in conjunction with

travel websites such as RoadTripper, www.roadtripper.com, or other websites as an alternative to

Travel Seeker. By using the Leap application and RoadTripper you are able to virtually travel the

world utilizing Google Maps API and plan various trips using different routes. The application

also allows you to save and share these routes. This application provides visual representation of

different hotels, attractions, restaurants, and other areas of interest giving users the information

needed to plan his or her trip accordingly. However, this is not a long-term solution because

many travel maps can be rigid and do not promote the fluid movements of Leap Motion or quick

interactions without typing on the keyboard or using the mouse.

	

	

	

	

	

	

	

	

	
 	
 10	

Chapter 3: Methodology

After first researching the existing travel applications using Leap Motion, we designed

our own Leap Motion travel application: Map My Trip. We used Map My Trip as a prototype for

user testing. We created a standard Web application that was similar to our Leap Motion

application and then performed user studies with our final prototype to evaluate the strengths and

weaknesses of using Map My Trip versus using other Web applications.

3.1 Requirements

In order for Map My Trip to be as efficient as possible, we determined a list of requirements for

the application:

1. Implement gestures that are intuitive to users

2. Provide an intuitive flow of movements

Then, we shifted our focus to determine a list of requirements necessary to analyze the strengths

and weaknesses of using our application:

1. Develop an application, similar to the Leap application Web page, using the mouse

and keyboard

2. Perform user studies to compare and evaluate the different Web application

technologies	

3.2 Implementation of gestures

In order to select gestures that were familiar to the user, we researched pre-existing

gestures for Android and iPhone applications. We also consulted Professor David Brown, a

professor of Computer Science at WPI, who is an expert in the area of Human-Computer

Interaction, for suggestions of common gestures. After this meeting, we chose a series of

	
 	
 11	

gestures that were intuitive and natural to the user, giving priority to those that were already

implemented using the Leap Motion device. Once we accumulated our list of gestures, we

implemented the Google Maps API. We researched extensively to find how Google Maps API

interacted with Leap Motion. Once we understood that, we mapped each gesture to a specific

action, thus creating our final application.

3.3 Gestures and Problems

The gestures used in our application are CircleGesture, SwipeGesture, KeyTapGesture,

and a custom gesture. The CircleGesture was the first gesture to be implemented. This gesture

can be seen below in Figure 3.

	

Figure	
 3	
 :	
 CircleGesture	
 using	
 Leap	
 Motion3	

Originally, circling clockwise with one finger was used to zoom in, and circling counter-

clockwise was used to zoom out. We decided to map the circle gesture to a different action

because it would be more intuitive to be used for circling an area than for zooming in and out.

	
 	
 12	

The circle gesture now causes hotels to appear in the approximate center of the on-screen area of

the map.

In the beginning of our project, the circle gesture was interfering with our custom gesture.

In order to compensate for the interference, we changed the circle gesture to only work within a

given radius. We had programmed the gesture to read only one finger, but despite this, Leap was

still translating an entire hand movement to be a circle gesture. In order to combat this, we used

the stabilize hand position which allowed Leap to focus solely on the movement of one finger.

The SwipeGesture, as seen in Figure 4 below, was used to zoom.

We faced a number of challenges while implementing this gesture. First, the Leap Motion device

would often read one swipe to be multiple swipes, thus zooming in or zooming out to a much

higher degree than the user had intended.

Figure	
 4:	
 SwipeGesture	
 using	
 Leap	
 Motion	
 14

	
 	
 13	

The gesture would also become unstable if more than one finger was being detected. In

order to combat these issues and enhance the swipe gesture, we set a minimum distance and had

the Leap Motion device detect the user’s palm instead of his or her fingers. This allowed the

gesture to stabilize and be more effective.

The KeyTapGesture, as seen in Figure 5 below, was first used as a ‘click’ function to

allow users to select a hotel and view its information.

 	

Unfortunately, translating the coordinates from latitude and longitude, which are Google

Maps API coordinates, to x-axis, y-axis, and z-axis, which are Leap Motion coordinates, proved

difficult. Thus, as an intermediate step, we changed the mapping of the KeyTapGesture from

acting as a click gesture to a zoom gesture to see if this gesture could be utilized in a more

efficient manner. In order to do this, the user would tap on the right side of the screen to zoom in

and on the left side to zoom out. It was not very effective or consistent, and we decided that it

would be difficult for a user to perform the gesture if they were not already accustomed to using

Figure	
 5:	
 KeyTapGesture	
 using	
 Leap	
 Motion	
 5

	
 	
 14	

Leap Motion because this is not a common gesture on other mobile applications. We were

ultimately unable to solve the issue with mapping the coordinate system, and so the

KeyTapGesture returned to being used as a click gesture.

The ScreenTapGesture, as seen in Figure 6 below, was first used as a means to tap on a

hotel. However, we decided that the KeyTapGesture would be more intuitive than using

ScreenTapGesture.

 	

We then used ScreenTapGesture as a zoom gesture. In order to zoom in, users would tap

on the right side of the screen, and to zoom out, users would tap on the left side of the screen. We

ultimately decided that ScreenTapGesture would not be used because the gesture was not

familiar and less responsive than the other gestures.

	

Our custom gesture was a fist, which we used to navigate the map. In order to drag the

map to any location, the user could simply make a fist and drag the map in whichever direction

Figure	
 6:	
 ScreenTapGesture	
 using	
 Leap	
 Motion13

	
 	
 15	

he or she desired. This gesture is one of our most stable and consistent gestures throughout the

development of the application.

3.4 Project Transit ion

As we created the Map My Trip application we encountered browser problems. The

application was not able to handle two interaction boxes, which are box-shaped regions that are

completely within the field of view of the Leap Motion controller, in different browsers. We

tried a local server as well as Heroku, a cloud application platform that allows developers to

build and deploy Web apps, to see if the problem persisted only on one version of the server.

This was not the case. The next step was to create the same Web application as the Leap Motion

Web page with mouse gestures and keyboard interaction. This application, that used mouse

gestures, worked in all Web browsers. Therefore, we recognized that Leap technology was not

supportive of all Web browsers and we had to transition our focus to understand the strengths

and weaknesses of Leap Motion.

3.5 User Studies

In order to test our application and evaluate it in comparison with other travel

applications, we needed to conduct user studies. We determined that for optimal testing, we

needed three different testing groups. The first group tested our own application in which they

used gestures to control the application. The second group tested our version of our application

in which the users use mouse gestures, as opposed to CircleGesture, KeyTapGesture, fist

gestures, etc., to control the application. The last group tested Booking.com, an online travel

application that does not involve Leap Motion at all.

	
 	
 16	

For each of the user studies, we provided the test subject with a brief introduction and

some additional materials before starting the study. More specifically, the oral introduction that

was given was an Institutional Review Board (IRB) approved method of obtaining consent as

well as a quick way of informing the user about our project. The additional materials provided to

the user included a list of tasks, which they must try to perform throughout the duration of the

study. This list changed depending on the user study group due to the different capabilities of

each technology, but the basis of the lists were similar in order to test the application at hand for

the scope of the project.

In order to obtain participants for our survey, we reached out to the campus population.

We focused on getting students for the user studies because this best aligned with the target

audience for a Leap Motion application. The majority of our test subjects included members of

social organizations on campus. We emailed these social groups asking for participants for our

study, and we also asked the group members in person during popular meeting times. There were

also other participants outside of these social organizations who were reached through face-to-

face communication in the Campus Center.

For the group that used the Leap Motion application with gestures, instructions as well as

images of the gestures were provided to inform the user how to perform various actions using the

associated gestures. The user studies were also recorded using screen capture technology in order

to be reviewed and analyzed at a later time. Lastly, when each user finished the tasks assigned

for the study, he or she filled out a short survey so that we could gain insight on their experience

and later analyze these experiences.

	
 	
 17	

For the other two groups, the participants were simply given a list of tasks similar to

those assigned to the Leap Motion group, and were also asked to complete a short survey

afterward.

	
 	
 18	

Chapter 4: Results and Analysis

4.1 Limitations of Leap Motion
	

We shifted the focus from a usable product to a research project due to the number of

issues we encountered with Leap Motion. Aside from facing problems with the gestures, we also

realized that there were many issues with the Leap technology interacting with other types of

technologies. 	

Leap Motion is an exceptional product for many desktop applications; however features

built for the Leap Motion JavaScript Software Development Kit (SDK), in its current form, is

quite limited for development and for user experience. The JavaScript SDK does not have a

large number of gestures, the precision of gestures in the application is limited. In addition, both

the Wi-Fi connection and the Web browser choice can change the user experience. There are

instances where the Leap Motion SDK does not support all activity that a user may wish to use in

which case the user may revert back to the mouse and keyboard. All of the limitations listed can

be exemplified through our Travel Application website. These limitations are what ultimately

caused us to change our project to be more research based than application based.

4.1.1 Gestures
	

The precision of the Leap Motion device using the Web API is not accurate enough to

perform many tasks that require significant precision, such as to select a small point on the

screen. For instance, trying to use the KeyTapGesture. We had originally chosen the

KeyTapGesture to click on a hotel icon because it seemed intuitive. However, doing so was

arduous due to the small size of the markers as well as the proximity of markers to each other,

	
 	
 19	

requiring a high level of precision. Due to the nature of gestures in general, it was difficult to

pinpoint the exact location where the gesture was made since a gesture itself is a movement. This

meant that when a user would make the gesture to select a hotel, the point being selected would

change while the gesture was being made. The result of this was either that no hotel or an

undesired hotel was selected. This held true not only for selecting hotel markers, but also for any

gestures that depended upon any amount of precision.

Another precision related issue concerned the number of fingers that were detected by the

Leap device. Many gestures required only one finger to be detected by the Leap Motion device.

This presented a serious usability issue. For example, at one point the swipe gesture was only to

be recognized when a single finger was on the screen, as it could help differentiate between

similar gestures. However, oftentimes the Leap device would inaccurately detect the number of

fingers. This resulted in some cases where a correctly complete gesture occurred, but no gesture

was registered. In addition, there were other cases where a gesture was supposed to occur a

single time, but multiple instances of the gesture were registered. For example, when we had

implemented the ScreenTapGesture to zoom in or out, we had created the function to zoom in or

out when only one finger was making the gesture. When a ScreenTapGesture was performed

with multiple fingers instead of just one, the action would be performed multiple times instead of

just once or not at all.

There were also issues related to the limited number of available gestures and how these

gestures interacted with each other. When originally brainstorming gestures and their correlating

actions, we had thought that taking well-known gestures and translating them into Leap gestures

would be the best option because most users would already be familiar with them. For example,

when planning the zoom feature, an intuitive gesture would have been moving the user’s fingers

	
 	
 20	

closer together or farther apart, similar to what is currently used for Android and iPhone

zooming. In order to translate this motion to a Leap gesture, we thought of having users use two

hands instead of two fingers. However, using opposite gestures to be representative of opposite

actions, while familiar was almost impossible to implement using Leap. Using the zoom example

from before, if a user wanted to zoom in, they would move their hands closer. However, if they

wanted to zoom in multiple times, they would have to take their hands out of the field of view for

Leap each time they wanted to zoom in to reset the gesture. In order to counteract this, specific

constraints had to be made in order to have a usable product. However, doing so reduced the

ease with which the application was used.

Another option, which was more viable, was to have two gestures for opposite tasks that

are not direct opposite representations of each other. For example, to zoom-in, the gesture was

swiping horizontally, while the zoom-out gesture was swiping vertically. Ultimately, we had to

weigh how intuitive the gesture was against its effectiveness. Although this reduced the usability

of the application, we opted for gestures that were worked instead of ones that may have been

more intuitive. We also faced issues with specific aspects of Leap Motion, such as creating a

custom gesture and limitations with the interaction box, a box-shaped region that is completely

within the field of view of the Leap Motion controller.

The hover gesture we had wanted to create would allow the user to hover over a hotel

marker and view its information. If the user’s hand was in place for a certain number of seconds,

Leap would display the hotel information. After three weeks of attempted implementation,

various forum posts, and posting on the Leap Developer site as well, we identified that this

gesture was too time-consuming and that the KeyTapGesture would be capable of achieving the

same action without investing nearly as much time. The reason creating a gesture was so difficult

	
 	
 21	

was because there was little to no documentation available on the Leap Developer website and,

from our research, it seemed that no other developer had created a custom Leap gesture, although

many had tried.

For our project we also had to use multiple interaction boxes - one for Google Maps and

another for the other parts of the page. This was necessary because an interaction box of the

whole view does not account for the interaction occurring within Google Maps. Additionally, we

were forced to create two separate interaction boxes in order to enable Leap Motion gestures in

two locations; one for the possibilities sidebar and one that exists within Google Maps

4.1.2 Internet/ Browsers
	

An issue with Leap Motion as a Web application is that a user’s experience is entirely

dependent on Internet connectivity, with a weaker Internet connection there could be an extended

lag in the gesture motion. This poor Internet connection often resulted in the gesture becoming

unresponsive or unpredictable and made it difficult for the user to move the icon because it could

take several seconds to refresh an image each time any move was made. The severity of these

Internet connection issues could be overcome depending on location.

Even if users have a good Internet connection, Leap Motion’s Web Application is only

accessible in Internet Explorer and Safari, without making any changes to the user’s browser.

Leap Motion Release Notes and Known Issues: V2.2.3.25971 notes the following errors with

browsers including Mozilla Firefox and Google Chrome:

1 Secure WebSocket on Firefox requires Firefox version 32 or higher

2 The Close Firefox dialog window sometimes does not come to the foreground after

installation (while Firefox was running)

	
 	
 22	

3 In order for Secure WebSocket to work immediately on Firefox, please close Firefox

prior to installing 2.2.0 or close when prompted

4 Secure WebSocket (TLS) on Linux Chrome requires running with --ignore-certificate-

errors (caution: this also affects non-WebSocket services)

5 Chrome on Windows 7 sometimes fails to respond to emulated touch points – to fix this,

click inside the program with a mouse

6 JavaScript client library and WebSocket protocol do not support setting gesture

parameters

These errors mean that Google Chrome and Mozilla Firefox can be used with the Leap

Motion device by enabling browser security settings. In addition, in the travel application

project, it was identified that only one interaction window could be used per Leap Motion

application. During implementation, this was a limiting feature because we needed two

interaction windows – one for the Google Maps View and one for the hotel selection side bar.

Google Chrome and Mozilla Firefox could not recognize when to switch from one interaction

frame to another. In contrast, Safari and Internet Explorer were able to create this transition.

 Although Safari and Internet Explorer can be used by all platforms, many users do not

use these two Web browsers and they are not well supported for all operating systems. In our

case studies we have found that Internet Explorer creates a lag in gesture interaction and Safari is

as supported for Windows platforms as it is for Apple platforms. In addition, as seen in Figure 7

over 80% of the Internet users use Mozilla Firefox or Google Chrome as their browser of choice.

	
 	
 23	

	

Figure	
 7:	
 Browser	
 Compatibility2

Thus, most users would often be forced to download additional Web browsers in order to use

Leap Motion Web applications.

 In contrast, this travel application could have been created using mouse gestures instead

of Leap Motion gestures without sacrificing any of the features of the application. All browsers

as seen in Figure 8 below support mouse gestures:	

	

Figure	
 8:	
 Mouse	
 Browser	
 Information9

	
 	
 24	

The mouse gestures can account for all of the same available Leap gestures for Web

development and work on any browser. This has been proven in the travel project user studies. In

addition, over time, a library could be built to support all of the gestures similar to Leap in order

to create an easy build for future developers.

4.2 Benefits of Leap Motion
	

An example of a gesture that worked quite well with our application was the gripped

hand gesture. This gesture occurred when the user would make a fist with their hand and ‘drag’

the map to their desired location. In comparison to the other gestures, this gesture worked almost

flawlessly because the user had almost complete control.

Leap has a number of applications available in their app store. The applications that use

only one or two gestures work very well because the Leap Motion device is able to easily

distinguish the different gestures and therefore, shorten the response time. Another benefit of

Leap Motion is that interaction boxes can be useful, provided only one interaction box is used in

each application.

4.3 User Study Results
	

During our usability testing, we asked forty people to participate in our study. These forty

participants were random members of the WPI Community. Participants were read a script (in

Appendix A) prior to testing explaining why the study was necessary and what information

would be used. We had three different groups for which the user could participate:

Group 1: Application using Leap Motion

Group 2: Application using mouse and keyboard

	
 	
 25	

Group 3: Tradition hotel booking site

For groups 1 and 2, we used our travel application to test the usability of the gestures. For group

3, as a control group, we used booking.com.

4.3. 1 Appl icat ion using Leap Motion

	
 During our user studies, sixteen people agreed to participate in this study. The

instructions that the users were provided with can be seen in Appendix D. Of the sixteen, eleven

had not used or heard of Leap Motion. We asked users to rate how difficult the trial was, on a

scale from 1-5 with 1 being the easiest.

	

Figure	
 9:	
 Map	
 My	
 Trip	
 Leap	
 Motion	
 User	
 Study	

During the screen capture, we were also able to time each trial. The fastest trial was three

minutes and thirty-nine seconds, while the longest trial was seventeen minutes and thirty-one

0	

2	

4	

6	

8	

10	

12	

1	
 2	
 3	
 4	
 5	

N
um

be
r	
 o

f	
 U
se
rs
	

Level	
 of	
 Difficulty	

ApplicaWon	
 using	
 Leap	
 MoWon	

	
 	
 26	

seconds. The average for all sixteen trials was a little longer than ten minutes (10 minutes and 2

seconds).	
 	

In our survey, we asked users if the gestures were natural, and if not, which ones could be

improved upon. The chart of the results of this question can be viewed in Figure 10 below.

	

	

Figure	
 10:	
 Chart	
 of	
 Intuitive	
 Gestures

Of the six participants that made comments about the zoom gesture, 50% thought the gesture was

intuitive, while the other 50% thought that it could be improved upon. There were also

comments saying that selecting hotels and adding/taking away hotels in the side bar was

especially difficult.	

4.3.2 Appl icat ion using mouse and keyboard

	
 Twelve people agreed to participate in this study. All of the users were familiar with and

had used Google Maps prior to this trial. In this user study we also provided instructions for

IntuiWve	
 Gestures	

navigaWon	
 clicking	
 zooming	
 none	
 all	

	
 	
 27	

users that can be seen in Appendix E. We asked the users to rate the difficulty of the trial, on a

scale from 1-5 with 1 being the easiest.

	

Figure	
 11:	
 Leap	
 Motion	
 with	
 Mouse	
 User	
 Study	

Of the twelve, ten said that the gestures were intuitive. When asked if they would use the

application in real life, two said they would not use this application to book hotels. Two

suggested that the application “have a confirmation animation after you add a hotel to your list”

and that “the appearance of selected hotels was awkward to find”.	
 	

Aside from the survey feedback, we were also able to time each trial for each user. The

fastest time was one minute and thirteen seconds, while the longest time was three minutes and

fifty-eight seconds. The average time for all twelve trials was two minutes and six seconds.

4.3.3 Using a tradit ional hotel booking s ite

	
 Twelve people agreed to participate in this survey. The instructions for this survey can

be seen in Appendix F. We asked the users how difficult the trial was on a scale of 1-5 with 1

0	

1	

2	

3	

4	

5	

6	

7	

1	
 2	
 3	
 4	
 5	

N
um

be
r	
 o

f	
 U
se
rs
	

Level	
 of	
 Difficulty	

ApplicaWon	
 using	
 Mouse	
 and	
 Keyboard	

	
 	
 28	

being the easiest, and if they would want or need a different way of interacting with

booking.com.

	

Figure	
 12:	
 Booking.com	
 User	
 Study	

All participants said they would not need or want any other way of interacting with the website.

During the screen capture, we were also able to time each trial for each user. The fastest time

was fifty-six seconds, while the longest time was one minute and forty-five seconds. The average

time for all twelve trials was one minute and seventeen seconds.

4.4 Analysis
	

4.4.1 User Study Analys is
	

 For the Leap Motion Web Application trials, in section 4.4.1, the majority of our users

made comments that the application was incredibly frustrating due to Leap’s inability to

recognize gestures accurately as well as the browser issues that arose during every trial,

regardless of group. In order to provide some level of consistency, we had users test the

0	

2	

4	

6	

8	

10	

12	

1	
 2	
 3	
 4	
 5	

N
um

be
r	
 o

f	
 U
se
rs
	

Level	
 of	
 Difficulty	

Booking.com	

	
 	
 29	

application using Mozilla Firefox because, of all the browsers, it had the minimal response time.

However, when users were asked to move a hotel from the ‘Possibilities’ into the ‘Choices’

section, we had to switch into Internet Explorer because Mozilla Firefox did not allow users to

interact with the sidebar. After switching to Internet Explorer, users were even more frustrated

because it took Internet Explorer greater than five seconds to recognize gestures. The README

seemed to aid users in completing the tasks for the app as users referred to the README

multiple times during each trial.

For the	
 application using mouse and keyboard trials discussed in section 4.4.2, users

mostly had an issue familiarizing themselves with the interface. Because of this, we concluded

that users had an issue with the interface more than an issue with the technology. The users for

these trials were not frustrated with the technology since Leap Motion was not used during this

trial. Figure 11 confirms the fact that mouse gestures are familiar to our target group and that the

gestures are not the problem. In addition, from the studies, when the user was given the option to

navigate using gestures or type the name of the city in the search bar the majority of users chose

to use the keyboard and search bar.

For the Booking.com trials discussed in section 4.4.3, users did not seem to have any

issues. There were one or two trials where users struggled a bit to find specifically 5-star hotels,

but all trials were still completed within two minutes.

In addition to all of the users in the Leap Motion Web Application trials becoming

frustrated with the technology, these trials also took the longest time. The average time for the

Leap Motion Web Application trials was ten minutes and two seconds. Compared to the mouse

and keyboard application trials and the Booking.com trials, Leap took 7 minutes and 6 seconds

longer and 8 minutes and 45 seconds longer, respectively. After comparing the three surveys, we

	
 	
 30	

concluded that Leap Motion, in its current state, would not be a useful or desired technology for

our use.

4.4.2 Strengths, Weaknesses, and Opportunit ies of Leap Motion
	

After gathering all information from the user studies and analyzing this information we

concluded our research noting the strengths, weaknesses, and opportunities of Leap Motion in

it’s current state. This information can be seen in Figure 13 below.	

	

Figure	
 13:	
 Strengths	
 Weaknesses	
 and	
 Opportunities	
 of	
 Leap	
 Motion	

	

	

	

	

	
 	
 31	

Chapter 5: Conclusions and Recommendations

5.1 Benefits
	

A few of the benefits of our application were that many of the deals and discounts of

other travel applications were removed and the application was simplified overall. In the end, the

simplicity of this application allowed us to focus user tests around gesture navigation and

compare this Leap motion technology and our Web application that uses Leap Motion to current

travel Web applications and mouse gestures.

During the span of our project, we spent a lot of time attempting to find answers to the

problems we encountered, and were unable to find sufficient solutions. Since Leap Motion is a

relatively new technology, the value of documenting the benefits and downfalls of the device are

invaluable to other developers looking to create a Web application using Leap Motion. This

documentation may even be valuable to developers of Leap Motion so that they can address

these issues in the future.

5.2 Suitabil ity
	

Leap Motion is certainly useable with other applications, especially games, where

precision is not such a crucial factor. For example, there is an application available in the Leap

App Store called “Duck Hunt” where users can ‘shoot’ at ducks by moving their finger in an

upward motion. Although this game only utilizes one gesture, it is fairly obvious that, even if the

user performs a gesture correctly, the gesture will go unrecognized or not perform the action at

the correct time. These unreliable responses are more acceptable for applications like Duck Hunt,

where it is not as important that every single gesture be accurate and predictable.

	
 	
 32	

With an application like ours, however, being unable to select a hotel or control the level

of zoom presented severe usability issues. Not only did the application not work as intended, it

also caused users to experience great frustration due to the difficulty of using the application as

desired. Because users had to perform the same gesture multiple times slowly in order to receive

some kind of response, the users did not find the application or the Leap Motion technology

advantageous. The usability issues related to reliability and precision that are present in Leap

Motion applications are currently too widespread and too complex to overcome for the device to

be effectively used in applications requiring high levels of gesture accuracy.

5.3 Future Work
	

	
 We believe that this document will be beneficial for developers looking to create Web

applications using Leap Motion. Because the technology is still relatively new, documenting

such problems would prevent developers from facing many of the same issues that we faced.

One disadvantage of using Leap Motion is that there is no way to type or create words only using

Leap Motion users must use a keyboard. In order to address this issue, Leap could implement

some type of voice interaction. If given more time, we could research how Leap interacts with all

applications instead of just Web applications and with other languages as well. Once these issues

are addressed and a new version of the product is rolled out, we believe Leap Motion could be a

very useful and widely used technology.

	

	

	

	

	
 	
 33	

References

1. "5 More Free Experiences Through the Web - Leap Motion Blog." Leap Motion Blog.

N.p., 07 Aug. 2013. Web. 04 Mar. 2015. <http://blog.leapmotion.com/5-more-free-

experiences-through-the-Web/>.

2. "Browser Statistics." Browser Statistics. W3schools.com, 1 Jan. 2015. Web. 08 Mar.

2015. <http://www.w3schools.com/browsers/browsers_stats.asp>.

3. "CircleGesture." CircleGesture — Leap Motion JavaScript SDK V2.2 Documentation.

Leap Motion Inc., 1 Jan. 2015. Web. 14 Mar. 2015.

<https://developer.leapmotion.com/documentation/javascript/api/Leap.CircleGesture.htm

l#id44>.

4. Findlater, Leah. Froehlick, Jon. Fattal, Kays. Wobbrock, Jacob O. Dastyar, Tanya. Age-

related differences in performance with touchscreens compared to traditional mouse

input. ACM Digital Library. <http://delivery.acm.org/10.1145/2480000/2470703/p343-

findlater.pdf?ip=130.215.9.226&id=2470703&acc=ACTIVE%20SERVICE&key=77771

16298C9657D%2E71E5F5E88B9A3E17%2E4D4702B0C3E38B35%2E4D4702B0C3E3

8B35&CFID=484409395&CFTOKEN=28680060&__acm__=1425676655_17eb8b7f30c

492ebdd93b89dc5f2892e>

5. "KeyTapGesture." KeyTapGesture — Leap Motion JavaScript SDK V2.2 Documentation.

Leap Motion Inc., 1 Jan. 2015. Web. 14 Mar. 2015.

<https://developer.leapmotion.com/documentation/javascript/api/Leap.KeyTapGesture.ht

ml>.

6. Kosner, Anthony W. "Leap Motion Controller Leaps Forward With Software, Sharpens

Focus With Apps." Forbes. Forbes Magazine, 23 Nov. 2013. Web. 08 Oct. 2014.

<http://www.forbes.com/sites/anthonykosner/2013/11/23/leap-motion-controller-leaps-

forward-with-software-sharpens-focus-with-apps/>.

7. "Leap Motion Controller Review - Page 2 - CNET." CNET. CNET, 19 July 2013. Web.

08 Oct. 2014. <http://www.cnet.com/products/leap-motion-controller/2/>.

8. "Meadowhawk Module Featured in Mercedes CES Concept Car." Leap Motion Blog.

N.p., 06 Jan. 2015. Web. 04 Mar. 2015. <http://blog.leapmotion.com/experimental-

meadowhawk-module-featured-mercedes-benzs-ces-concept-car/>.

	
 	
 34	

9. Native Application Interface: Leap-enabled Applications. Digital image. System

Architecture - Leap MotionJavaScript SDK V2.2 Documentation. Leap Motion, 01 Jan.

2014. Web. 2 Mar. 2015.

<https://developer.leapmotion.com/documentation/javascript/devguide/Leap_Architectur

e.html>.

10. "Node.js." Node.js. Joyent Inc, 1 Jan. 2015. Web. 14 Mar. 2015. <https://nodejs.org/>.

11. "Onmousemove Event." Onmousemove Event. W3schools.com, 1 Jan. 2015. Web. 09

Mar. 2015. <http://www.w3schools.com/jsref/event_onmousemove.asp>.

12. "Release Notes and Known Issues: V2.2.3.25971." Skeletal Tracking. Leap Motion, 1

Jan. 2015. Web. 12 Mar. 2015. <https://developer.leapmotion.com/features/faq>.

13. "ScreenTapGesture." ScreenTapGesture — Leap Motion JavaScript SDK V2.2

Documentation. Leap Motion Inc., 1 Jan. 2015. Web. 14 Mar. 2015.

<https://developer.leapmotion.com/documentation/javascript/api/Leap.ScreenTapGesture

.html>.

14. "SwipeGesture." SwipeGesture — Leap Motion JavaScript SDK V2.2 Documentation.

Leap Motion Inc., 1 Jan. 2015. Web. 14 Mar. 2015.

<https://developer.leapmotion.com/documentation/javascript/api/Leap.SwipeGesture.htm

l>.

15. "System Architecture." System Architecture — Leap MotionC++ SDK V2.1

Documentation. Leap Motion, 1 Jan. 2014. Web. 08 Oct. 2014.

<https://developer.leapmotion.com/documentation/skeletal/cpp/devguide/Leap_Architect

ure.html>.

16. WebSocket Interface: Leap-enabled Applications. Digital image. System Architecture -

Leap Motion JavaScript SDK V2.2 Documentation. Leap Motion, 01 Jan. 2014. Web. 2

Mar. 2015.

<https://developer.leapmotion.com/documentation/javascript/devguide/Leap_Architectur

e.html>.

 	

	

	
 	
 35	

Appendix A: Glossary
	

CircleGesture : 	
 This is a circular finger movement. The Leap Motion sensor recognizes the

finger motion when the finger draws a circle within the given field of view. This gesture can be

seen in Figure 3.

Heroku: 	
 This is a cloud application platform that allows developers to build and deploy Web

apps.	

InteractionBox: 	
 This represents the box-shaped regions that are completely within the field

of view of the Leap Motion controller.

JSON: 	
 	
 JavaScript Object Notation.	

KeyTapGesture : 	
 This is a tapping gesture by a finger. The Leap Motion sensors recognizes

the finger moving down to the palm and then back up to the original position. This gesture can

be seen in Figure 5	

Leap Motion App Store: 	
 This is where all the applications that Leap Motion developers

place applications to be bought and/or installed by the public.	

ScreenTapGesture: 	
 Similar to the KeyTapGesture this is a tapping gesture. The Leap

Motion sensor recognizes this gesture when the finger springing in toward the front of the Leap

Motion field and then moving back. This gesture can be seen in Figure 6.	

	

	

	

	
 	
 36	

Appendix B: Analysis of Travel Applications
	

We analyzed various travel applications using Leap Motion as well as those using Web based

applications. We did this to find features that we could implement in our own application.

Travel Seeker: This is the only travel application that currently exists in the Leap Motion App

Store. Some of its features allow users to:

1. Select an origin, budget, dates, and length of stay

2. Plan up to four different trips at the same time depending on factors such as climate,

continent, and activity

3. View prices by zooming in on an area

Travel Seeker also implements the KeyTapGestures, SwipeGestures, and KeyTapGestures

defined by Leap Motion.

Roadtrippers: This Web application uses Google Maps to allow users to enter start and end

locations. Some of its features include:

1. Creating an account to save travel routes

2. View popular road trip routes

3. Select areas based on various factors (i.e. Shopping, attractions & culture, food & drink

etc.)

The application also has zoom in and out features, markers showing each location or attribute, a

search bar, a bar at the bottom of the screen which allows you to select trips, collections, and

stories, as well as many other features.

KAYAK: a Web-based travel application that allows its users to compare hundreds of travel

sites with one search. Some of its features include:

1. Provides links to other sites to compare prices based on search criteria

	
 	
 37	

2. Allows users to narrow budget and to organize by different criteria (i.e. Rating,

amenities, etc.)

3. provides multiple aspects of travel such as hotel booking, flights, cars, and other

packages

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	
 38	

Appendix C: User Study Consent Script
	

Because our primary audience is students, we plan to recruit subjects by asking random members

of the WPI Community to participate in various settings on and off campus. We will be reaching

out to various student organizations as well as face-to-face interactions on campus. We will need

about ten to twenty subjects for each usability group, which is roughly thirty to sixty subjects

total. We intend only to use screen captures and keep the identity and any identifiable

information anonymous for every subject.

Consent script:
	

Team Member: Our MQP is testing the benefits of Leap Motion, which is a small device that

plugs into any USB port and allows you to interact with your screen without a mouse or keypad.

We are trying to assess the drawbacks and benefits of using Leap Motion compared to more

traditional methods. We created a test application that will be used in two of the three surveys.

You will be completely anonymous in this study; none of your personal or identifiable

information will be available anywhere in our report. If at any point in the trial, you wish to stop,

you can do so; this trial is completely voluntary. There are three surveys from which to choose,

our application using Leap Motion, our application not using Leap Motion, and a traditional

travel site. [choose which survey]

Would you like to participate in a user study to test our MQP?

For Leap survey:
	

We will provide a README document, which details the gestures you can use and what they do

and ask you to complete 5 tasks using these gestures. There will be a screen capture to see how

	
 	
 39	

easy or difficult it is to complete tasks, but you cannot be seen or heard with the recording. A

clip of the screen capture may be used in our final presentation to show the use of Leap with this

application. The trial will take about 10 minutes. At the end, I will ask you 4 questions about

your prior familiarity with Leap, how difficult or easy the trial was, whether or not you would

purchase a Leap Motion device after this trial, and which browsers you used. Do you have any

questions before we begin?

For App without Leap:
	

In this trial, we are testing an application without using Leap Motion, in order to see how this

trial compares with the other two trials. We will ask you to complete a set of tasks using your

mouse and keyboard. The trial will take about 5 minutes. Your screen will be recorded, but you

will not be seen or heard. A clip of the screen capture may be used in our final presentation to

compare usability. At the end, I will ask you a few questions about the study. Do you have any

questions before we begin?

For booking.com:
	

In this trial, we are testing a normal hotel booking site in order to see how this trial compares

with the other two trials. We will ask you to complete a set of tasks using your mouse and

keyboard. The trial will take about 2 minutes. Your screen will be recorded, but you will not be

seen or heard. A clip of the screen capture may be used in our final presentation to compare

usability. At the end, I will ask you a few questions about the study. Do you have any questions

before we begin?

	
 	
 40	

Appendix D: Leap Motion Survey
	

1. Did you know what Leap Motion was prior to this study?

2. On a scale from 1-5 (with 1 being easiest), how difficult was the trial overall?

3. Were the gestures natural/intuitive? If not, which ones could be improved?

4. After this trial, would you purchase a Leap Motion device?

5. Which browser(s) did you use?

Tasks:
	

1. Zoom in and out

2. Navigate to Boston, MA

3. Find hotels in Boston, MA

4. Select one hotel

5. Move the selected hotel from ‘Possibilities’ into ‘Choices’ in the sidebar

	
 	
 41	

Results:

	
 	
 42	

	
 	
 43	

	

	

	

	

	

	

	

	
 	
 44	

Appendix E: Google Maps Web Application Survey
	

1. Were you familiar with Google Maps prior to this trial?

2. Were the gestures natural/intuitive? If not, which ones could be improved?

3. Would you use this app in real life?

4. On a scale from 1-5 (with 1 being easiest), how difficult was this trial overall?

Tasks:
	

1. Zoom in and out

2. Find hotels in Boston, MA

3. Select one hotel

4. Move hotel from ‘Possibilities’ to ‘Choices’ in the sidebar

	
 	
 45	

Results:

	
 	
 46	

	

	
 	
 47	

Appendix F: Booking.com Survey
	

1. On a scale from 1-5 (with 1 being easiest), how difficult was this trial overall?

2. Would you want/need a different way to interact with this website?

Tasks:
	

1. Find 5-star hotels in Boston, MA

2. Find the hotel on the map

3. From the map, select a different hotel

	
 	
 48	

Results:

