
Mining and Managing Neighbor-Based

Patterns in Data Streams

by

Di Yang

A Dissertation

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Ph.D. in

Computer Science

by

January 6th, 2012

APPROVED:

Professor Elke A. Rundensteiner, Advisor

Professor Matthew O. Ward, Co-Advisor

Professor Daniel J. Dougherty, Committee Member

Professor Evimaria Terzi , External Committee Member

Professor Craig Wills, Head of Department

ii

Abstract

The current data-intensive world is continuously producing huge volumes

of live streaming data through various kinds of electronic devices, such as

sensor networks, smart phones, GPS and RFID systems. To understand

these data sources and thus better leverage them to serve human soci-

ety, the demands for mining complex patterns from these high speed data

streams have significantly increased in a broad range of application do-

mains, such as financial analysis, social network analysis, credit fraud de-

tection, and moving object monitoring.

In this dissertation, we present a framework to tackle the mining and

management problem for the family of neighbor-based patterns in data

streams, which covers a broad range of popular pattern types, including

clusters, outliers, k-nearest neighbors and others.

First, we study the problem of efficiently executing single neighbor-

based pattern mining queries. We propose a general optimization princi-

ple for incremental pattern maintenance in data streams, called “Predicted

Views”. This general optimization principle exploits the “predictability” of

sliding window semantics to eliminate both the computational and storage

iii

effort needed for handling the expiration of stream objects, which usually

constitutes the most expensive operations for incremental pattern mainte-

nance.

Second, the problem of multiple query optimization for neighbor-based

pattern mining queries is analyzed, which aims to efficiently execute a

heavy workload of neighbor-based pattern mining queries using shared ex-

ecution strategies. We present an integrated pattern maintenance strategy

to represent and incrementally maintain the patterns identified by queries

with different query parameters within a single compact structure. Our

solution realizes fully shared execution of multiple queries with arbitrary

parameter settings.

Third, the problem of summarization and matching for neighbor-based

patterns is examined. To solve this problem, we first propose a summariza-

tion format for each pattern type. Then, we present computation strategies,

which efficiently summarize the neighbor-based patterns either during or

after the online pattern extraction process. Lastly, to compare patterns

extracted on different time horizon of the stream, we design an efficient

matching mechanism to identify similar patterns in the stream history for

any given pattern of interest to an analyst.

Our comprehensive experimental studies, using both synthetic as well

as real data from domains of stock trades and moving object monitoring,

demonstrate superiority of our proposed strategies over alternate methods

in both effectiveness and efficiency.

iv

Publications

Publications Contributing to this Dissertation

Publications Related to Part I

Part I of this dissertation discusses single query optimization for neighbor-

based pattern mining queries in streaming environments.

• 1. Di Yang, Elke A. Rundensteiner and Matthew O. Ward, “Neighbor-

Based Pattern Detection for Windows Over Streaming Data”. EDBT,

2009, pages 517-528.

Relationship to this dissertation: This work presents the single query ex-

ecution strategies for density-based cluster mining queries in streams.

Chapters 5 and 6 in Part I of this dissertation are based on this work.

• 2. Di Yang, Avani Shastri, Elke A. Rundensteiner and Matthew O.

Ward, “An optimal strategy for monitoring top-k queries in stream-

ing windows”, EDBT, 2011, pages 57-68.

Relationship to this dissertation: This work presents the single query

execution strategies for kNN queries in streams. Chapter 7 in Part I

of this dissertation is based on this work.

v

• 3. Di Yang, Elke A. Rundensteiner and Matthew O. Ward, “Mining

Neighbor-Based Patterns from Streaming Data”. WPI Technical Re-

port, 2008.

Relationship to this dissertation: This work conducts an in-depth perfor-

mance analysis for alternative neighbor-based pattern mining algo-

rithms, including cost models, cost analysis and more experimental

studies. Chapter 8 in Part I of this dissertation is based on this work.

Publications Related to Part II

Part II of this dissertation discusses multiple query optimization strate-

gies for neighbor-based pattern mining query workloads in streaming en-

vironments.

• 4. Di Yang, Elke A. Rundensteiner, Matthew O. Ward, “A Shared Exe-

cution Strategy for Multiple Pattern Mining Requests over Streaming

Data”. VLDB, 2009, pages 874-885.

Relationship to this dissertation: This work presents the multiple query

execution strategies for density-based cluster mining queries in streams.

The key content in Part II of this dissertation about multiple query

execution strategies for density-based cluster mining queries is based

on this work.

• 5. Avani Shastri, Di Yang, Elke A. Rundensteiner and Matthew O.

Ward, “MTopS: Scalable Processing of Continuous Top-K Multi-Query

Workloads”, CIKM 2011,1107-1116.

Relationship to this dissertation: This work presents the multiple query

vi

execution strategies for density-based cluster mining queries in streams.

The content in Part II of this dissertation about multiple query execu-

tion strategies for kNN mining queries shows the key ideas presented

in this work.

• 6. Di Yang, Elke A. Rundensteiner and Matthew O. Ward, “Multi-

ple Query Optimization for Neighbor-Based Pattern Mining Requests

over Data Streams. TODS 2011. Accepted.

Relationship to this dissertation: This work concludes several general

optimization principles for multiple neighbor-based pattern mining

query workloads in streaming environments. Part II of this disserta-

tion has the same structure as this work does.

• 7. Di Yang, Zhenyu Guo, Zaixian Xie, Elke A. Rundensteiner and

Matthew O. Ward, “Interactive Visual Exploration of Neighbor-Based

Patters in Data Stream”, SIGMOD demonstration paper, 2010, pages

1151-1154.

Relationship to this dissertation: This work demonstrates our prototype

system composed of a computational backend integrating the mining

techniques proposed in the Part I and Part II of this dissertation, and

a visual frontend, allowing human users to interact with the stream

mining process.

Publications Related to Part III

Part III of this dissertation discusses summarization and matching of

neighbor-based patterns in streaming environments.

vii

• 8. Di Yang, Elke A. Rundensteiner and Matthew O. Ward, “Summa-

rization and Matching of Density-Based Clusters in Steaming Envi-

ronments”, PVLDB vol.5(2) pages 121-132 2011.

Relationship to this dissertation: This work presents the summarization

and matching for density-based clusters in streaming environments.

The major component of Part III of this dissertation about summa-

rization and matching for density-based clusters in streaming envi-

ronments is based on this work.

• 9. Di Yang, Kaiyu Zhao, Hanyuan Lu, Elke A. Rundensteiner and

Matthew O. Ward, “ViStream T: An Integrated Platform for Mining

Complex Patterns in the Past, the Present and the Future of Streams

WPI Technical Report, 2011.

Relationship to this dissertation: This work demonstrates our prototype

system composed by a computational backend integrating all the ma-

jor mining techniques proposed in this whole dissertation, and a vi-

sual frontend, allowing human users to interact with the stream min-

ing process.

Publications Related to Future Work

• 10: Di Yang, Zhenyu Guo, Elke A. Rundensteiner and Matthew O.

Ward, “CLUES: A Unified Framework Supporting Interactive Explo-

ration of Density-Based Clusters in Streams”, CIKM, pages 815-824,

2011.

Relationship to this dissertation: This work proposes evolution model

viii

and evolution tracking methods for density-based clusters in stream-

ing environments This is an initial effort into our future work of track-

ing the evolution of more types of neighbor-based patterns in streams.

Other Publications

My other publications were mainly published during my master pro-

gram at WPI and related to my Master Thesis: “Analysis Guided Visual

Exploration of Multivariate Data”.

• 11. Di Yang, Elke A. Rundensteiner, Matthew O. Ward, “Nugget Dis-

covery in Visual Exploration Environments by Query Consolidation”,

CIKM 2007, pages 603-612.

• 12. Di Yang, Elke A. Rundensteiner, Matthew O. Ward, “Analysis

Guided Visual Exploration to Multivariate Data”, VAST, October 2007,

pages 83-90.

• 13. Di Yang, Z. Xie, Elke. A. Rundensteiner and Matthew O. Ward,

“Managing Discoveries in The Visual Analytics Process”, ACM SIGKDD

Explorations special issue on visual analytics, Volume 9, Issue 2, pages

22-30, 2007.

• 14. Elke Rundensteiner, Matthew Ward, Zaixian Xie, Qingguang Cui,

Charudatta Wad, Di Yang, Shiping Huang, “XmdvToolQ: Quality-

Aware Interactive Data Exploration”, SIGMOD 2007, demonstration

paper, pages 1109-1112, 2007.

ix

• 15. Matthew O. Ward, Zaixian Xie, Di Yang and Elke A. Runden-

steiner. “Quality-Aware Visual Data Analysis” Computational Statis-

tics. Volume 26, Number 4, 567-584.

x

Acknowledgments

At this moment of reaching the greatest achievement of my life so far, I

need to first give my deepest gratitude to my parents, namely my dad Yang

Zhiming and my mom Wang Caiyun, and my wife Pu Di. Without their

selfless support and continuous trust, finishing this dissertation is simply

impossible.

I would like to sincerely thank my advisors Professor Elke A. Runden-

steiner and Professor Matthew O. Ward, and my committee members Pro-

fessor Daniel J. Dougherty and Professor Evimaria Terzi. It is their excellent

inspiration and patient guidance, which has guided me through my Ph.D

career.

I also would like to thank all my colleagues in XMDV and DSRG labs

at WPI, including Zhu Yali, Wei Mingzhu, Ding Luping, Wang Song, Wang

Ling, Venkatesh Raghavan, Xie Zaixian, Cui Qingguang, Abhishek Mukherji,

Guo Zhenyu, Wang Di, Liu Mo, Zhao Kaiyu, Karen Works, Lin Xika, Lei

Chuan, Cao Lei, Lu Hanyuan, Qi Yingmei, Zhang Dazhi and Medhabi Ray,

for all the help that they have given me, and all the wonderful time that we

have spent together.

xi

Last but not the least, I thank every member of my family besides my

parents, including my grandparents Wang Zhizhen, Yu Qinglian, Yang Yu-

long, Wu Yanmei, my anties Wang Caiwen, Wang Caixia, Wang Cailin, Wan

Caihong, Yang Ying, Yang Suqin, and all my cousins Zhang Yujia, Lang

Shuang, Ma Lele, Zhang Jing, Yin Jinglei and Peng Kaifeng, for always tak-

ing me as their pride.

My Master and Ph.D programs at WPI from 2005 to 2012, including the

accomplishment of this dissertation, are supported by NSF, under a series

of research grants, including CCF 0811510, IIS 0812027 and IIS 1018443.

xii

Contents

1 Introduction 1

1.1 Motivation . 1
1.1.1 Neighbor-Based Pattern Mining 3
1.1.2 Efficient Pattern Extraction Query Execution 4
1.1.3 Multiple Pattern Extraction Query Optimization . . . 5
1.1.4 Pattern Summarization and Matching 7

1.2 State-Of-the-Art . 9
1.2.1 Mining Data Streams 9
1.2.2 Multiple Mining Query Optimization 11
1.2.3 Summarization and Matching for Mined Patterns . . 12

1.3 Proposed Solutions . 13
1.3.1 Solutions for Pattern Extraction Query Execution . . 13
1.3.2 Solutions for Multiple Query Optimization 16
1.3.3 Solutions for Pattern Summarization and Matching . 20

1.4 Where our Proposed Techniques May Not Work 23
1.5 Research Impact and Open Research Questions 25
1.6 Dissertation Organization . 27

2 Preliminaries 28

2.1 General Notion of Neighbor-Based Patterns 28
2.2 Definitions for Specific Neighbor-Based Patterns 30

2.2.1 Density-Based Cluster 30
2.2.2 Distance-Based Outlier 31
2.2.3 Top-k Nearest Neighbors (kNN 33

2.3 Sliding Window Semantics . 33
2.4 Where Streaming Neighbor-Based Pattern Mining Lies in Data

Mining Family . 36

CONTENTS xiii

I Efficient Processing of Single Neighbor-Based Pattern
Extraction Queries 40

3 Naive vs. Incremental Approach 41

3.1 Naive Solution–Recompute from Scratch at Each Window . 41
3.2 Why Incremental Computation 43
3.3 Basic Incremental Computation Strategies 44
3.4 Limitations of Basic Incremental Strategies 47

4 Predicted View Technique 50

4.1 Performance Bottleneck – Handle Expiration 50
4.2 Predicted View . 51

5 Proposed Algorithms for Density-Based Clusters 54

5.1 Abstract Neighborship Maintenance – Abstract-C 54
5.2 Exact+abstracted neighborship Based Solution (Extra-N) . . . 57

5.2.1 What Abstract-C Suffers From : “Amnesia” 59
5.2.2 Enhanced Abstracted Neighborship 59
5.2.3 Challenges for Maintaining Cluster Memberships . . 61
5.2.4 View Prediction for Cluster Membership Maintenance 62
5.2.5 A Stepping-Stone Algorithm: Abstract-M 64
5.2.6 Proposed Solution: Extra-N 66

6 Proposed Algorithms for Distance-Based Outliers 73

7 Proposed Algorithms for kNN 75

7.1 Equivalence to Top-k Problem 75
7.2 Theoretical Foundations . 76
7.3 An Initial Approach: PreTopk 80
7.4 Proposed Solution: MinTopk 83

7.4.1 Properties of Predicted Top-k Results 83
7.4.2 Solution: Integrated View Maintenance 84
7.4.3 Optimal Integration Strategy based on

Continuous Top-k Career 86
7.4.4 Super-Top-K List Maintenance 88
7.4.5 Final Move Towards Optimality 91

8 Cost Analysis for Proposed Algorithms 96

8.1 Cost Analysis for Density-Based Cluster and Distance-Based
Outlier Detection . 96
8.1.1 Cost Models . 97

CONTENTS xiv

8.1.2 Performance Analysis 103
8.2 Cost Analysis for kNN Detection Algorithms 107

8.2.1 Cost Analysis for PreTopk Algorithm 107
8.2.2 Cost Analysis for MinTopk Algorithm 109

9 Experimental Study 115

9.1 Real and Synthetic Streaming Datasets 115
9.1.1 Real Streaming Datasets 115
9.1.2 Synthetic Streaming Datasets 116

9.2 Experimental Studies for Density-Based Cluster Extraction . 117
9.2.1 Experimental Platform 117
9.2.2 Experimental Methodologies 117
9.2.3 Overall Evaluation . 118
9.2.4 Abstract-M vs. Extra-N 122
9.2.5 Scalability Analysis . 124
9.2.6 Evaluation with Real Data 126

9.3 Experimental Studies for Distance-Based Outlier Extraction 127
9.3.1 Experimental Platform 127
9.3.2 Experimental Methodologies 128
9.3.3 Alternative Methods 128
9.3.4 Performance Evaluation 130

9.4 Experimental Studies for kNN (top-k) Extraction 132
9.4.1 Experimental Platform 132
9.4.2 Alternative Methods 132
9.4.3 Experimental Methodologies 133
9.4.4 Evaluation for Different k Cases 133
9.4.5 Evaluation for Different win Cases 135
9.4.6 Evaluation for Different slide Cases 136
9.4.7 Evaluation for Non-Uniform Arrival Rate Cases . . . 138

10 Related Work for Part I 141

II Multiple Neighbor-Based Pattern Extraction
Query Optimization 146

11 Problem Definition 147

12 A Preliminary Sharing Effort: Share Range Query Searches 148

CONTENTS xv

13 Sharing Among Queries with Arbitrary Pattern Parameters 151

13.1 “Containment” among Neighbor-Based Pattern Sets 152
13.1.1 “Growth Property” . 152
13.1.2 Hierarchical Pattern Representation 154
13.1.3 Incremental Representation for Other Pattern Types . 156

13.2 Integrated Maintenance for
Multiple Density-Based Clustering Queries 157

13.3 Integrated Maintenance for
Multiple Distance-Based Outlier Detection Queries 168

13.4 Integrated Maintenance for
Multiple kNN Queries . 171

14 Sharing Among Queries with Arbitrary Window Parameters 175

14.1 Same win, Arbitrary slide Case. 176
14.2 Same slide, Arbitrary win Case 179
14.3 Arbitrary slide, Arbitrary win Case 180

15 Putting IT All Together: The General Case 183

16 Experimental Study 192

16.1 Experimental Platform . 192
16.2 Real and Synthetic Streaming Datasets 192
16.3 Alternative Algorithms . 193
16.4 Experimental Methodologies 194
16.5 Evaluation for One-Arbitrary-Parameter Cases 194

16.5.1 Arbitrary θcnt case . 195
16.5.2 Arbitrary θrange case 196
16.5.3 Arbitrary win case . 198
16.5.4 Arbitrary slide case . 198

16.6 Evaluation for Two-Arbitrary-Parameter Cases 199
16.6.1 Arbitrary Pattern Parameters 200
16.6.2 Arbitrary Window Parameters 200

16.7 General Case: Four Arbitrary Parameters. 202
16.8 Evaluation for Scalability . 204
16.9 Conclusion for Experimental Study of Density-Based Cluster

Detection Algorithms . 206
16.10Performance Analysis for Distance-Based Outlier and kNN

Detection Algorithms . 207

17 Related Work for Part II 211

CONTENTS xvi

III Summarization and Matching of Neighbor-Based Patterns214

18 Supported Queries and System Overview 216

18.1 Continuous Pattern Extraction Queries 216
18.2 Pattern Matching Queries . 217
18.3 System Overview . 217

19 Pattern Summarization 219

19.1 Summarization for Density-Based Clusters 219
19.1.1 Features of Density-Based Clusters 219
19.1.2 Skeletal Point Summarization 221
19.1.3 Proposed Solution: Skeletal Grid Summarization . . 224

19.2 Summarization for Distance-Based Outliers 230
19.3 Summarization for kNN . 231

20 Pattern Extractor 232

20.1 Extracting and Summarizing Density-Based Clusters 232
20.1.1 A Two Stage Strategy and Its Limitations 232
20.1.2 Incremental Computation and Challenges 234
20.1.3 “Lifespan” Analysis 235
20.1.4 Proposed C-SGS Algorithm 239

20.2 Extracting and Summarizing Distance-Based Outliers 244
20.3 Extracting and Summarizing kNN 245

21 Pattern Archiver 246

21.1 Pattern Compression . 246
21.1.1 Cluster Summarization in Multi-Resolutions. 247
21.1.2 Distance-Based Outlier Summarization in Multi-Resolutions248
21.1.3 kNN Summarization in Multi-Resolutions. 249

21.2 Budget- and Accuracy-Aware Resolution Selection. 249
21.3 Selective Pattern Archiving 251

22 Pattern Storage and Match 252

22.1 Storage and Matching for Density-Based Clusters 252
22.1.1 Cluster Organization in Pattern Base 252
22.1.2 Cluster Matching Process 253

22.2 Storage and Matching for Distance-Based Outliers and kNN 256

CONTENTS xvii

23 Experimental Study 259

23.1 Experimental Platform . 259
23.2 Real and Synthetic Streaming Datasets 259
23.3 Alternative Summarization Formats 259
23.4 Performance of Cluster Extraction and Summarization . . . 260
23.5 Effectiveness for Cluster Matching Queries 268
23.6 Efficiency of Cluster Matching Queries 272
23.7 Evaluation for SGS at Multiple Resolutions 275

24 Related Work for Part III 281

25 Conclusions of This Dissertation 284

26 Future Work 288

26.1 Efficient Pattern Extraction for Other Complex Pattern Types 288
26.2 Pattern Evolution Model and Evolution Tracking 289
26.3 Dynamic Stream Mining Queries 291

xviii

List of Figures

2.1 An Example of A Density-Based Cluster 31
2.2 An Example of 3 Distance-Based Oultiers 32
2.3 An Example of k = 4 Nearest Neighbors 34
2.4 Template for a Density-Based Cluster Detection Query for

Sliding Windows over a Data Steam 35
2.5 Template for a Distance-Based Outlier Detection Query for

Sliding Windows over a Data Stream 35
2.6 Template for a kNN Detection Query for Sliding Windows

over a Data Stream . 35

3.1 Pseudo-Code for Exact-N Algorithm (Part 1) 46
3.2 Pseudo-Code for Exact-N Algorithm (Part 2) 46

4.1 Predicted views of four consecutive windows at W0 53
4.2 Updated predicted views of four windows at W1 53

5.1 Pseudo-Code for Abstract-C Part 1 58
5.2 Pseudo-Code for Abstract-C Part 2 58
5.3 “Predicted Views” of 4 Successive Windows at W0 65
5.4 Updated “Predicted Views” of 4 Successive Windows at W1 65
5.5 The H-Marks of the Data Points at W0 68
5.6 Psuedo Code of Extra-N Algorithm 71

7.1 (Predicted) Top-k Results Four Consecutive Windows at time
of W0 (slide size = 4 objects) 77

7.2 Updated Predicted Top-k Results of Four Consecutive Win-
dows at time of W1 (slide size = 4 objects) 81

7.3 Update Process of Predicted Top-k sets From Time of W0 to W1 81
7.4 Independent Top-k Result Sets vs. Super-top-k Structure us-

ing Complete and Summarized Window Marks 86

LIST OF FIGURES xix

7.5 Update Process of super-top-k list From W0 to W1 90
7.6 Proposed Solution: MinTopk Algorithm 95

9.1 Comparison on CPU Performances of Five Algorithms . . . 119
9.2 Comparison on Memory Performances of Five Algorithms . 120
9.3 Comparison on CPU Time of Abstract-M and MPS in ¯N(pi) =

5% cases . 123
9.4 Comparison on Memory Usage of Abstract-M and MPS in

¯N(pi) = 5% cases . 123
9.5 Comparison of CPU Scalability on Base (Window) Size . . . 125
9.6 Comparison of Memory Scalability on Base (Window) Size . 125
9.7 Comparison of CPU Scalability on Dimensionality 126
9.8 Comparison on CPU Time with GMTI data 126
9.9 Comparison on Memory Usage with GMTI data 126
9.10 Comparison on CPU Time with STT data 127
9.11 Comparison on Memory Usage with STT data 127
9.12 Comparison on CPU Time for Count-Based Window Sce-

nario . 131
9.13 Comparison on Memory Usage for Count-Based Window

Scenario . 131
9.14 Comparison on CPU Time for Time-Based Window Scenario 131
9.15 Comparison on Memory Usage for Time-Based Window Sce-

nario . 131
9.16 CPU time used by three algorithms with different k values . 134
9.17 Memory space used by three algorithms with different k values134
9.18 CPU times for varying window sizes 136
9.19 Memory space for varying window sizes 136
9.20 CPU times for varying slide sizes 137
9.21 Memory space for varying slide sizes 137
9.22 Response time for processing each window given non-uniform

arrival rate. 139

13.1 Cluster Set 1 containing 3 clusters 153
13.2 Cluster Set 2 containing 3 clusters, which is a growth of Clus-

ter Set1 . 153
13.3 Independent Cluster Membership Storage for Cluster Sets 1

and 2 . 155
13.4 Hierarchical Cluster Membership Storage for Cluster Sets 1

and 2 . 155
13.5 Cluster sets identified by three different queries 159

LIST OF FIGURES xx

13.6 IntV iew θcnt: Integrated Representation for density-based
clusters identified by three different queries 160

13.7 Distance-Based Outliers Identified by Q1 and Q2 172
13.8 Independent vs. Integrated Representation for Distance-Based

Outliers Identified by Q1 and Q2 172

14.1 Predicted Views Maintained By Three Queries Q1, Q2 and
Q3 Independently versus Those Maintained By a Single Meta
Query . 182

15.1 IntV iew: Integrated Representation for Predicted Views Iden-
tified by 3 Queries in 5 Predicted Windows 185

15.2 Chandi: Proposed Algorithm for Multiple Density-Based Clus-
tering Queries (Part 1) . 186

15.3 Chandi: Proposed Algorithm for Multiple Density-Based Clus-
tering Queries (Part 2) . 187

15.4 SDOD: Proposed Algorithm for Processing Multiple Distance-
Based Outlier Detection Queries 188

15.5 SkNN: : Proposed Algorithm for Processing Multiple kNN
Queries . 189

16.1 CPU Time used by Five Competitors in Arbitrary θcnt Cases 196
16.2 Memory Space used by Five Competitors in Arbitrary θcnt

Cases . 196
16.3 CPU Time used by Five Competitors in Arbitrary θrange Cases 197
16.4 Memory Space used by Five Competitors in Arbitrary θrange

Cases . 197
16.5 CPU Time used by Five Competitors in Arbitrary win Cases 198
16.6 Memory Space used by Five Competitors in Arbitrary win

Cases . 198
16.7 CPU Time Used by Five Competitors in Arbitrary slide Cases 199
16.8 Memory Space used by Five Competitors in Arbitrary slide

Cases . 199
16.9 CPU Time used by Five Competitors in Arbitrary Pattern Pa-

rameter Cases . 201
16.10Memory Space used by Five Competitors in Arbitrary Pat-

tern Parameter Cases . 201
16.11CPU Time used by Five Competitors in Arbitrary Window

Parameter Cases . 201

LIST OF FIGURES xxi

16.12Memory Space used by Five Competitors Arbitrary Window
Parameter Cases . 201

16.13Detailed Comparison on CPU Time Consumption of Five Al-
gorithms . 203

16.14CPU Time used by Five Competitors in Logarithmic Scale . 205
16.15Memory Space used by Five Competitors in Logarithmic Scale205

18.1 Continuous Pattern Extraction Query Returning Full (f) and
Summarized (s) Representations of Neighbor-Based Patterns 216

18.2 Pattern Matching Query finding Patterns Similar to the To-
Be-Matched Cluster Based on Cluster Summarization 217

18.3 System Overview . 218

19.1 Example of full representation, basic SGS and compressed
SGS of a 2D cluster . 228

20.1 Examples of updating cell status. θc = 4, grey circle=edge
point, black circle=core point, number on each object= number
of windows the object can survive. 242

23.1 CPU Time and Memory Comparison for Generating Alter-
native Summarizations on STT Stream 264

23.2 CPU Time and Memory Comparison for Generating Alter-
native Summarizations on GMTI Stream 264

23.3 CPU Time Comparison Using Time-Based Window (STT Stream)
265

23.4 CPU Time Comparison using Time-Based Window (GMTI
Stream) . 267

23.5 Similar Rating by Users for Matched Clusters found by Al-
ternative Summarization Methods 272

23.6 CPU Time Comparison for Cluster Matching Queries using
Alternative Cluster Summarization Methods 275

23.7 Memory Comparison for Cluster Matching Queries using
Alternative Cluster Summarization Methods (in Logarithmic
measure) . 275

23.8 CPU Time Comparison for Cluster Matching Queries using
Alternative Cluster Summarization Methods 278

23.9 Memory Comparison for Cluster Matching Queries using
Alternative Cluster Summarization Methods 278

23.10Similar Ratings by Users For Matched Clusters using Multi-
ple Resolutions . 279

xxii

List of Tables

8.1 Symbols Used In The Cost Models. 98
8.2 CPU Cost of Individual Operations. 98
8.3 CPU Costs of Alternative Algorithms at Four Stages 100
8.4 Memory Costs of Individual Data Structures. 102
8.5 Memory Costs of Each Algorithm. 104
8.6 Cost Analysis of Each Algorithm (↓=small, ⇓=very small,

↑=large, we use () if impact is minor). 104

1

Chapter 1

Introduction

1.1 Motivation

As the ability of hardware to collect and transmit large amounts of live

data continues to advance [SPP+06, CKW+12, DSJ+12, CLW12], such as

the development of RFID systems, smart phones, GPS systems and sensor

networks, the need for processing streaming data in information infra-

structures has become significant. Similar to the case of static data on which

data mining techniques have been applied to find useful information for

decades [DHZS02, GRS98, NH94, AGGR98, KN98a], our modern applica-

tions now post strong demands on analyzing and thus drawing value from

streaming data resources. For example, to make proper investment deci-

sions, financial analysts may want to continuously monitor the trade pat-

tern changes in the stock market by mining the stock transaction streams.

As another example, to analyze traffic patterns, such as the congestion ar-

eas in the daily traffic and their changes over time, the traffic analysts may

1.1. MOTIVATION 2

need to be not only continuously updated with the patterns mined from

the vehicle position streams, but also to have the capabilities of comparing

and contrasting the patterns mined at different time points.

Along with the rapidly increasing volume and speed of streaming data,

the difficulties for analyzing and understanding them are also correspond-

ingly mounting. Traditional data mining techniques, which focus on an-

alyzing large volumes of static data collections in an offline fashion, are

no longer sufficient to handle the needs of mining such highly dynamic

streaming data sources. This is because the dynamic characteristics of both

streaming data and stream analysis tasks impose many new challenges for

data mining systems. The crucial ones: 1) The data sources are no longer

statically collected but continuously arriving in high speed. 2) The data

sources may be infinite and thus impossible to be all stored in the disk. 3)

The mining process to the data sources may no longer be an one-time anal-

ysis tasks rather may consist of continuous assessment of patterns across a

long time duration. 4) The mining process may need to be highly efficient

in order to return mining results in real-time. 5) Stream mining systems

may have very limited computational, storage or even power resources,

as they may be sensors or other micro-systems that are remotely located.

To overcome these challenges, new mining infrastructures and techniques

need to be designed to catch up with the high speed of the data streams

and also provide long-term analysis support for live streams.

1.1. MOTIVATION 3

1.1.1 Neighbor-Based Pattern Mining

In my dissertation, I focus on both real-time and long-term analysis of

Neighbor-Based Patterns in streaming data. The neighbor-based pattern

family is an important class of complex patterns covering a broad range of

popular pattern types, including density-based cluster detection [EKSX96,

GM06, CT07, CEQZ06], distance-based outlier detection [KN98b, AF07],

top-k nearest neighbors search (kNN) [MP07, YOTJ01] and reverse top-

k nearest neighbor search (R-kNN) [AKK+09, ABK+06]. Neighbor-based

pattern mining queries share the important property that their target pat-

terns are defined based on the “neighbor relationships” (links) among ob-

jects. Such requirement for identifying neighbors, namely similar or closely

related objects, is essential for many pattern mining tasks. This is because

the similarity (distance) is an important interrelationship among objects

and thus constitutes a key evidence from which analysts can draw con-

clusions about the data. The class of the neighbor-based pattern mining

requests is defined in Chapter 2.

Although the problem of efficiently mining neighbor-based patterns in

static environments has been well studied [KN98b, KN99, LS09, EKSX96,

AKK+09], the problem of mining and managing them in highly dynamic

streaming environments remains unsolved. Due to the new challenges

brought by streaming environments as listed earlier, those traditional neighbor-

based pattern mining strategies designed for static environments are not

sufficient to handle high-speed input streams. To study the problem of

neighbor-based pattern mining and management in streaming environments,

1.1. MOTIVATION 4

my dissertation investigates three different aspects of it, namely efficient

neighbor-based pattern extraction, multiple query optimization for neighbor-

based pattern mining queries and summarization and matching for neighbor-

based patterns. I discuss the motivation for each of these three topics be-

low.

1.1.2 Efficient Pattern Extraction Query Execution

Efficient real-time pattern extraction constitutes the foundation for neighbor-

based pattern analysis. Clearly, only when a stream processing system is

able to extract the patterns within the time requirement of the applications,

the subsequent pattern analysis processes can become meaningful.

Many applications providing monitoring services over streaming data

require this capability of real-time pattern detection. For example, to mon-

itor main trends as well as the abnormal phenomena arising in the stock

market, a financial analyst may want to be kept updated about major clus-

ters as well as the outliers existing in the latest stock transactions. The major

clusters formed by similar transactions in the stream may reveal key trad-

ing patterns, such as which stocks are intensively being traded in which

time periods, currently exist in the market. In contrast, the abnormal trans-

actions, such as individual transactions with unusually high transaction

volumes or transaction prices, may indicate some special trading behav-

iors arising in the market. As another example, to understand the major

threats of an enemy’s air force, a battlefield commander needs to be con-

tinuously aware of the “clusters” formed by enemy warcraft based on the

objects’ most recent positions reported from satellites or ground stations.

1.1. MOTIVATION 5

In contrast, the “outliers” in our own solider groups may be especially vul-

nerable units who need immediate help.

However, the previous research effort for stream data processing mainly

focus on on processing traditional SPJ queries [BW01, ABB+03, VNB03]

and simple aggregation queries [GKS01, GKMS01]. Little research effort

has been made torward efficiently extracting neighbor-based patterns from

data streams (See Chapter 1.2.1 for detailed state-of-the-art analysis). Thus,

it is the first topic that I studied in my dissertation.

1.1.3 Multiple Pattern Extraction Query Optimization

Parameterized Queries. Complex pattern detection queries are usually

parameterized, because pattern detection processes are driven by the do-

main knowledge of the analysts and the specific analysis tasks. A neighbor-

based pattern mining request over sliding windows typically has two sets

of input parameters, namely a set of pattern-specific parameters and a set

of window-specific parameters. Using the density-based clustering as ex-

ample, it has two pattern-specific parameters: a range threshold θrange and

a count threshold θcnt, which together define the minimum density that a

group objects has to reach to qualify for a cluster. A density-based cluster-

ing query over sliding window also has two window-specific parameters:

window size win and slide size slide, which represent how large is the

query window and how often the query window slides respectively.

Why Multiple Queries. Given the prevalence of parameterized pat-

tern mining queries, stream processing systems often need to handle a large

number of such queries. This is caused for two major reasons. First, it

1.1. MOTIVATION 6

is well known that in many applications a popular data stream is moni-

tored by a large number of analysts [WRGB06, ZKOS05, HFAE03, LMT+05,

AW04]. For example, the stock transaction stream from NYSE is monitored

by thousands of financial analysts every day. In my case, due to the specific

domain knowledge and analytical tasks of different analysts, the analysts

may submit the same types of neighbor-based pattern mining queries but

with different parameter settings. For example, while many analysts are

monitoring the same pattern type, say outliers, in the NYSE stock transac-

tion stream, they may have their own customized interpretation about the

pattern mining parameter settings. In particular, some of them may have

very strict definitions of what constitutes an outlier in the stream. They

may require the system to report only very abnormal transactions (out-

liers), while others may be interested in all abnormal transaction behaviors

and thus request much more frequent updates to the outlier report.

Second, determining a priori the most appropriate parameter settings

is a difficult problem for almost all data mining tasks, especially when

faced with an unknown input stream or an unpredictable fluctuating in-

put stream. In static environments, this problem is usually tackled by con-

ducting pre-analysis of the static datasets or repeatedly trying different pa-

rameter settings until satisfactory results have been obtained. In streaming

environments, the nonrepeatability of streaming data requires analysts to

supply the most appropriate input parameters early on. Otherwise, they

may permanently lose the opportunity to accurately discover the patterns

in the portion of the stream just gone by. Therefore, even a single analyst

may submit multiple queries of the same type but with different parameter

1.1. MOTIVATION 7

settings, when she is not sure which parameter setting is the best. An ideal

stream processing system should be able to accommodate such multiple

query workloads covering many, if not all, major parameter settings of a

parameterized query. Note that given the number of parameters required

by streaming neighbor-based pattern mining queries, even allowing a very

limited number of optional settings on each parameter, say four or five, can

easily end up with hundreds of parameter combinations, namely hundreds

of different queries.

The general problem of multiple query optimization has gained much

research attention in the database community. However, similar to single

query processing, the main focus of previous work on shared execution

strategies for multiple queries in streaming environments has also been

on SPJ and aggregation queries [HFAE03, KFHJ04, WRGB06] (see Chapter

1.2.2 for a detailed state-of-the-art analysis). Thus, the unsolved problem

of multi-query optimization for neighbor-based pattern mining queries is

the second research topic of my dissertation.

1.1.4 Pattern Summarization and Matching

To extend the horizon of neighbor-based pattern mining in streams from

pattern extraction only to now also analyze and manage the extracted pat-

terns, a streaming pattern mining system does not only need to be equipped

with highly efficient pattern extraction algorithms, but more importantly, it

must also provide effective pattern analysis support, as motivated below:

1) Pattern feature abstraction. The key features of detected patterns

may be complex and thus may not be easily comprehensible for human

1.1. MOTIVATION 8

analysts without analytical assistance. For example, in real-time traffic

monitoring, a cluster representing a congestion area in the traffic of Bei-

jing may be composed of 10K or even more vehicles and may spread to an

area over 10km2. By simply looking at the information about individual

cluster members (vehicles), such as their positions and moving speed, an

analyst may not be able to identify the key features of this cluster in real

time, such as where is the key bottleneck causing the congestion.

2) Pattern compression. Some patterns need to be kept for long-term

analysis, yet keeping the full representation of the complex patterns tends

to be impractical in streaming environments. In the previous example, stor-

ing the full representation of the detected traffic congestion patterns (arbi-

trarily shaped clusters), namely the individual cluster member tuples (tens

of thousands of tuples for each cluster) would cause not only a huge burden

on the storage space but also low efficiency for pattern transmission.

3) Pattern retrieval (matching). For stream analysis, the archived pat-

terns may need to be retrieved based on their features. Using the above ex-

ample, when a new traffic congestion arises, the analysts may ask whether

similar congestion patterns have been detected before. If yes, rather than

figuring out a new congestion-relief plan from scratch, the previous proven-

to-work solution for such congestion patterns could be directly applied.

In short, an effective pattern summarization method is the key for com-

plex pattern analysis and management. It is needed for many different

aspects of pattern analysis, including feature abstraction, compression and

pattern retrieval (as mentioned above). Also, the pattern summarization

can be used for approximate pattern representation. For example, one can

1.2. STATE-OF-THE-ART 9

design pattern visualization or full representation re-generation techniques

based on pattern summarizations.

Although the general problems of information summarization and match-

ing have been studied by many previous researcher [CMR05, HYJS06, LLYZ03,

MVW98], the problems of summarizing and matching neighbor-based pat-

terns that are defined based on the neighbor relationships among stream

objects are not solved yet (see Chapter 1.2.3 for a detailed state-of-the-art

analysis). Thus, the third topic of my dissertation is effective summariza-

tion and matching techniques for neighbor-based patterns in streaming en-

vironments.

1.2 State-Of-the-Art

1.2.1 Mining Data Streams

The majority of the previous working studying streaming data processing

focus on processing traditional SPJ (Selection, Projection and Join) queries

[BW01, ABB+03, VNB03] or aggregation queries [GKS01, GKMS01]. Re-

cently, research effort toward mining more complex patterns in streams,

such as clusters [GMMO00, AHWY03, YRW09], outliers [Agg05, SPP+06,

AF07] and association rules [Pei09], emerges. However, two major differ-

ences distinguish my work from these existing works.

First, I focus on the general notion of neighbor-based patterns, which

is a family of important pattern types defined by the topological relation-

ships among individual tuples, including density-based clusters [EKSX96,

YRW09], distance-based outliers [KN98a, AF07] and k nearest neighbors

1.2. STATE-OF-THE-ART 10

[MP07, YOTJ01] and reverse k nearest neighbors [AKK+09, ABK+06]. There

is no existing work discussing the general principles of efficiently min-

ing this type of pattern in streaming environments. In general, the pre-

vious works studying the problem of mining data streams usually deal

with patterns represented using statistical summarizations. For example,

[AHWY03] and its variations [DHYC06, BH06] use a summarization method,

called Cluster Feature Vectors (CFV), to represent the clusters in the streams.

The neighbor-based patterns that are tackled in my dissertation, however,

need to be computed at the individual tuple level by considering topolog-

ical relationships among the tuples. Such pattern mining at the individual

tuple level is critical for applications where every individual tuple is of

great importance, such as tracking the movement of soldiers on the battle-

field.

Second, I studied the neighbor-based pattern mining problem consider-

ing sliding window semantics, which is a common semantics for bounding

infinite streams for SPJ query processing, while having been barely applied

to the area of complex pattern mining. Sliding window semantics assume

a window size (either a time interval or a count of objects), with the pattern

detection results generated based on the most recent data that falls into

the sliding window. However, in previous clustering work [GMMO00,

GMM+03], objects with different time horizons are either treated equally

or given weights decaying as their recentness decreases. These techniques

summarize the accumulative characteristics of the incoming data, while

losing the ability to isolate and identify the specific patterns existing in the

most recent stream portion. Using my earlier example, the financial analyst

1.2. STATE-OF-THE-ART 11

may only be interested in the patterns arising in the most recent transac-

tions, for example, those that happened in the last 5 minutes. In such cases,

I need the sliding window technique to purge the out-of-date information

and form patterns only based on the most recent transactions.

1.2.2 Multiple Mining Query Optimization

Similar to for single query processing, the main focus of previous work on

shared execution strategies for multiple queries in streaming environments

has been on SPJ [HFAE03, KFHJ04, WRGB06] and aggregation queries [AW04,

KWF06]. Little effort has been reported in the literature to date on address-

ing the problem of multiple query optimization for complex pattern mining

queries, such as clusters and outliers. Although some general principles

used in previous multiple query optimization work can also be applied

in my context, the problem I try to solve in my dissertation is generally

more complicated. In particular, the key for multiple query optimization

lies in the sharing of meta-information that needs to be maintained by dif-

ferent queries, such as sharing the intermediate results or operator states

for SPJ and aggregation queries. The meta-information that needs to be

maintained in my context, namely the neighbor-based pattern structures

defined by individual tuples as well as their topological interrelationships,

is much more complex than that needed for join or aggregation operators,

which are usually pair-wise relationships or simply numbers (aggregation

results).

1.2. STATE-OF-THE-ART 12

1.2.3 Summarization and Matching for Mined Patterns

Summarization techniques have been studied by the database community

for decades. A variety of techniques have been developed for effectively

summarizing data in relational datasets. The most common techniques

are sampling [CMR05, HYJS06], histograms [LLYZ03, MVW98], wavelets

[GKMS01, JWK01], and sketches [IKM00]. More recently, researchers have

started to look at designing summarization methods for more complex ob-

jects in database systems. These techniques can roughly be divided into

two categories. The first category considers summarization of spatial ob-

jects and the topological relationships among them [LLYZ03, BKS93]. In

these techniques, each spatial object is considered as a single entity cor-

responding to a single record in the database. The goals for these tech-

niques tends to be to effectively represent the external shapes and the topo-

logical relationships, such as containment and overlaps, among these ob-

jects. More specifically, these techniques usually focus on describing the

boundaries of the object and the relationships among the boundaries of

different objects. The second category of techniques aims to summarize

the objects that are formed by the composition of many smaller granu-

larities of objects, such as the patterns formed by many individual tuples

[NRS08, THP08, RLL06], for example graphs, time series and clusters. For

the latter techniques, the features of the target objects are determined by the

characteristics of the member objects that compose them. Usually, statisti-

cal methods are applied to integrate the characteristics of member objects

and thus derive a representation of the target objects. For example, the po-

1.3. PROPOSED SOLUTIONS 13

sition of a K-means style cluster is commonly represented by a centroid,

which is an average value of the positions of all its cluster members. In

general, these techniques primarily focus on the “internal features” of the

objects, such as internal structures (e.g., connections in graphs) and accu-

mulative statistics (e,g., density).

In my dissertation, I design a model for summarizing neighbor-based

patterns that are defined over individual tuples and the neighborships among

them. To the best of my knowledge, the summarization of this family of

patterns has not yet been accomplished in the literature. It falls into the

second category as discussed in the previous paragraph.

One of the most important query types that can be specified on the

archive of historical patterns are the “matching queries”. which aim to re-

turn identical or similar patterns in the history, given a “to-be-matched”

pattern. Such matching queries can be either one-time or continuous in

streaming environments. The previous work studying such matching queries

usually focus on relatively simple patterns, such as graphs [W09] or time

series [GW02], while the problem of matching neighbor-based patterns,

such as density-based clusters, has not yet been solved in the literature.

1.3 Proposed Solutions

1.3.1 Solutions for Pattern Extraction Query Execution

Challenges. Efficiently detecting neighbor-based patterns for sliding win-

dows is a challenging problem. Naive approaches that run the static neighbor-

based pattern detection algorithms from scratch for each window are not

1.3. PROPOSED SOLUTIONS 14

feasible in practice, considering the conflict between the high complexity of

these algorithms and the real-time response requirement from streaming

applications. Based on my experiments (Chapter 9.2), detecting density-

based clusters from scratch in a 50K-object window takes around 100 sec-

onds in my test environment, clearly not meeting real-time response re-

quirements of some time-critical applications.

The incremental approach, which continuously maintains the exact neigh-

bor relationships (henceforth referred to as “neighborship”) among objects,

will also fail in many cases. This is because the potentially huge number

of pairwise neighborships can easily raise the memory consumption to un-

acceptable levels. In the worst case, N2 neighborships may exist in a single

window, with N the number of data points in the window. My experi-

ments confirm that this solution consumes on average 15 times more mem-

ory than the naive approach in real datasets [EFK99].

To overcome this resource strain of a huge memory consumption while

still enabling incremental computation, several neighborship abstractions,

such as cluster membership, can be maintained instead of the exact pair-

wise neighborships. However, designing solutions based on abstracted neigh-

borships comes with the shortcoming that the maintenance of abstracted

neighborship is extremely expensive in terms of CPU resources. More specif-

ically, discounting the effect of expired objects from the abstracted neighbor-

ships becomes a computation-intensive problem, because such expiration of

objects may cause complicated pattern structural changes, such as “split-

ting”, whose detection and handling are almost equally computationally

expensive as recomputing clusters from scratch.

1.3. PROPOSED SOLUTIONS 15

Proposed Methods. To make the abstracted neighborships incremen-

tally maintainable in a CPU efficient manner, I exploit an important char-

acteristic of sliding windows, namely the “predictability” of the expiration

of existing objects. Specifically, given a window with a fixed slide size, I can

predetermine the “life-span” of any data point in the window, namely the

exact future windows it will participate in. I further propose the notion of

“predicted views”. In particular, given the objects in the current window, I

can predict the pattern structures that will persist in subsequent windows

by considering the objects (in the current window) that are known to also

participate in each of these windows only, and abstract these predicted pat-

tern structures into “predicted views” of each future window. This “view

prediction” technique elegantly discounts the effect of expired objects and

thus allows me to efficiently maintain the abstracted neighborships by han-

dling the impact of new objects only. Since the computationaly cost of han-

dling the insertion of new objects are way more cheaper than handling ob-

ject expiration. it brings significant savings on the computational resources.

Finally, I propose a hybrid neighborship maintenance mechanism incor-

porating two forms of neighbor abstraction and dynamically switching be-

tween them when needed. This solution achieves not only linear mem-

ory consumption, but now also guarantees optimality in the number of

the range query searches (the most CPU-expensive operations in neighbor-

based pattern detection processes). My experimental studies in Chapter 9

confirmed that my proposed density-based cluster mining algorithm based

on this solution takes only 5 seconds to cluster the same 50K data points

at each window given a slide of 5K new objects, which is at least 3 times

1.3. PROPOSED SOLUTIONS 16

faster than Incremental DBSCAN [EKS+98], the state-of-the-art incremen-

tal density-based clustering algorithm designed for data warehouse envi-

ronments. Also, it is on average 5 times faster than the alternative incre-

mental algorithm using abstract neighborships only, while it consumes only

5% of memory space compared to that needed by the method using ex-

act neighborships. My proposed distance-based outlier algorithm Abstract-

C clearly outperforms the only previous algorithm [AF07] when detect-

ing outliers in time-based windows, while performing equivalently with it

when dealing with count-based windows (See Chapter 9.3). Similarly, my

proposed algorithm for kNN monitoring, MinTopk, save at least 85% of the

CPU time compared with the state-of-the-art solution [MBP06], while using

almost negligible memory space, in all my test cases (see Chapter 9.4).

1.3.2 Solutions for Multiple Query Optimization

Challenges. Execution of even a single neighbor-based mining request in

streaming environments is expensive in terms of system resource utiliza-

tion. In particular, the “neighbor-based” property of such pattern mining

requests requires a potentially large number of neighbor searches during

query execution. Each neighbor search has high system resource costs.

More specifically, a complete neighbor search for even just one single ob-

ject may take a full scan through the window, consuming not only a large

amount of CPU processing resources but also forcing the full storage of the

whole window. Given such high algorithmic complexity of neighbor-based

pattern mining requests, serving a large number of them in a single system

is extremely resource intensive. The naive method of executing multiple

1.3. PROPOSED SOLUTIONS 17

queries independently has prohibitively high demands on both computa-

tional and memory resources. Thus it is not feasible in practice, especially

when the number of queries to be executed is large.

Therefore, the key problem that I solve in this work is to design shared

execution strategies that achieve effective sharing of system resources among

multiple queries. In particular, I aim to not only minimize the total number

of neighbor searches by sharing the neighbor search computation among

multiple queries but also to share the maintenance effort for the progressive

pattern construction among queries. This is a challenging problem, because

the meta-information required to be maintained by neighbor-based pat-

tern queries is generally more complex than that for SQL query operators.

More specifically, I need to maintain the identified neighbor-based pattern

structures, such as clusters and outliers, which are defined by their mem-

ber tuples and the global topological relationships among tuples. In con-

trast, SQL operators, such as join or aggregation operators, usually main-

tain pair-wise relations between two individual tuples (independent from

the rest of the tuples) or simply numbers (aggregation results). The tech-

niques introduced previously in the database community regarding shar-

ing among SQL queries [HFAE03, KFHJ04] are thus not adequate to solve

my problem.

Proposed Solution. In order to maximize the efficiency of the system

resource utilization for executing multiple neighbor-based pattern mining

queries simultaneously, I analyze the commonalities of such queries. This

helps me to identify several general optimization principles which lead to

significant system resource sharing among multiple queries.

1.3. PROPOSED SOLUTIONS 18

As the first step towards sharing, I observe that the range query searches

(the process of searching for “neighbors” for each object) can be shared

among multiple queries and thus reduce the overall CPU consumption (See

Chapter 12). Although this is a straightforward sharing strategy, since the

range query searches are frequently needed during neighbor-based pattern

mining processes, it constitutes an important multiple query optimization

principle for such queries.

However, range query search sharing alone is far from sufficient to

achieve the goal of scaling to workloads composed of many such queries

within a single system. Therefore, I further analyze the interrelations be-

tween the patterns identified by queries with different parameters settings,

including both pattern-specific and window-specific parameters. First, I

study the conditions under which all queries have the same window pa-

rameters. I observe that, if the pattern parameters of a query are “more

restricted” than those of another one, a “containment” relationship holds

between the patterns identified by them. I exploit this foundation of pat-

tern containment to incrementally organize the patterns identified by mul-

tiple queries into an integrated structure. I call it IntView (See Chapter 13).

As a highly compact structure, IntView saves the memory space needed

for storing the patterns identified by multiple queries. More importantly,

IntView also enables integrated maintenance for the progressive patterns of

multiple workload queries, and thus effectively saves the computational

resources for maintaining them independently.

Second, I proposed a “meta query strategy”, which uses a single meta

query to represent all workload queries whose pattern parameters are the

1.3. PROPOSED SOLUTIONS 19

same while their window parameters differ (See Chapter 14). The proposed

meta query strategy adopts a flexible window management mechanism to

efficiently organize the query windows that need to be maintained by mul-

tiple queries. By leveraging the overlap among query windows, it mini-

mizes the number of windows that are actually maintained in the system. I

show in Chapter 14 that my meta query technique successfully transforms

the problem of maintaining multiple queries into the execution of a single

query.

Finally, I combine the three techniques proposed, namely range query

search sharing, the IntView technique and the meta query strategy, to form

a proposed comprehensive solution for each specific pattern type, namely

the shared execution strategies for multiple density-based clustering, distance-

based outlier or kNN queries over sliding windows (see Chapter 15). Computation-

wise, these three proposed algorithms require only a single pass through

the new objects at each window slide. In particular, they only run one range

query search for each new object. Also each new object only communicates

with its neighbors once for a group of shared queries. Memory-wise, given

the maximum window size allowed, the upper bound of the memory con-

sumption of my solution for a group of shared queries is independent of

the number of queries in the group.

My experimental studies (in Chapter 16) show that my proposed solu-

tion clearly outperforms all the alternative methods, and has great scalabil-

ity in the number of queries it can handle. In particular, for density-based

clustering queries, the system using my proposed algorithm comfortably

handles a workload composed of 100 arbitrary queries under a 1K tuples

1.3. PROPOSED SOLUTIONS 20

per second data rate. If the number of workload queries increases to 1K, the

system still works stably with a 300 tuples per second input rate. On the

same experimental platform, given the 300 tuples per second input rate,

the existing execution strategies from the literature, such as IncDBSCAN

[EKS+98] and Extra-N [YRW09], can only handle less than 1.7 and 12 per-

cent of the same 1K query workload, respectively. My performance analy-

sis for distance-based outlier and kNN queries shows that a similar perfor-

mance can be expected from my proposed strategies for those two pattern

types as well (see Chapter 16.10).

1.3.3 Solutions for Pattern Summarization and Matching

Challenges. Summarization and matching of neighbor-based patterns is

not only an unsolved but also a challenging problem. To serve real-time

streaming applications, the proposed techniques must fulfill the following

requirements: 1) Pattern summarization must be sufficiently descriptive

yet highly compact. The pattern structure of neighbor-based patterns can

be complex. For example, a density-based cluster is defined by a series

of densely populated sub-regions as well as the connections among them

(See Figure 2.1). Clearly, simple statistical aggregations, such as the cen-

troid or minimum bounding rectangle of a cluster, are insufficient for de-

scribing such complex pattern structure. For example, the simplistic cen-

troid+ radius summarization method preserves no knowledge about how

the cluster member objects are distributed in the cluster, not to mention the

connections among them. 2) The pattern summarization process has to be

highly efficient. A system conducting expensive online pattern extraction

1.3. PROPOSED SOLUTIONS 21

can hardly afford additional system resources for summarizing patterns

in real-time. 3) The summarized pattern representation needs to be effec-

tively retrievable (“matchable”). The matching process between pattern

summarizations ought to loyally reflect the similarity between the original

patterns, yet be computationally efficient.

Proposed Solution. To fulfill the above requirement, I first start with

the pattern type that has complex pattern structure among neighbor-based

pattern family, namely, density-based clusters. I analyze density-based

cluster structures and identify their key characteristics, namely position,

shape, connectivity and density distribution. To capture these features, I inves-

tigate two commonly-used summarization principles, namely the graph-

based and the grid-based strategies. I discover that neither of them alone is

capable to provide an effective summarization for density-based clusters.

Therefore, I propose a hybrid solution, called Skeletal Grid Summarization

(SGS). In terms of its descriptive power, SGS is shown to guarantee its fi-

delity to the original clusters on all key features, including postion, shape,

density distribution and connectivity. For compactness, my experimental

study in Chapter 23 confirms that even the SGS of the highest resolution

achieves on average a 98% compression rate of the full representation of

the clusters.

Empowered by the proposed SGS summarization, I design a frame-

work to support both continuous cluster extraction and cluster matching

queries. A continuous cluster extraction query in my system does not

only extract clusters in their full representation (all cluster member ob-

jects) for online monitoring purposes like the other state-of-the-art tech-

1.3. PROPOSED SOLUTIONS 22

niques [CEQZ06, YRW09], but it also concurrently compacts them into the

SGS summarization. The full and the summarized (SGS) representation

formats are complementary to each other, providing a description of the

clusters at the individual tuple and cluster feature level respectively. To

extract these two representation formats simultaneously and in a highly

efficient manner, I propose an integrated cluster extraction + summariza-

tion algorithm, C-SGS. C-SGS incrementally maintains both the full rep-

resentation and the corresponding SGS of the extracted clusters in an in-

tegrated manner. This results in an almost “free” cluster summarization

generation by piggy-packing the summarization process into the cluster

extraction process itself. My experimental study in Chapter 8.2.2 shows

that C-SGS, which returns clusters in both full and summarized represen-

tation (SGS), has a neglectable overhead, compared with state-of-the-art

algorithm Extra-N [YRW09] computing the full representation of clusters

only. In all my test cases, the extra response time of C-SGS compared with

Extra-N is consistently less than 6% (Section 8.1).

For any “to-be-matched” cluster specified by the analyst, a cluster match-

ing query identifies similar clusters extracted earlier in the same stream

from a pattern archive. To support such queries, my framework first archives

the SGS of the extracted clusters into a pattern archive. When execut-

ing a cluster matching query, my system deploys a filter-and-refine strat-

egy. First, the filter-phase exploits a feature index to locate the potential

matching candidates from the pattern store. Then, the refine-phase con-

ducts a more detailed cluster match against these promising candidates

and returns those with similarity above a given threshold. My experimen-

1.4. WHERE OUR PROPOSED TECHNIQUES MAY NOT WORK 23

tal study shows that, efficiency-wise, my system takes only 3 seconds on

average to answer a cluster matching query against 10K archived clusters

(Chapter 8.2.2). Quality-wise, my user study, which invites human analysts

to visually compare the similarity between matched clusters, shows that

human analysts agree with a significant larger percentage of the matched

clusters found using my proposed matching mechanism compared to those

found by alternatives (Chapter 8.2.2).

For distance-based outlier and kNN, due to their relatively simple pat-

tern structure, one can easily use clustering and histogram based summa-

rization methods for their summarization. Correspondingly, their match-

ing processes are much simpler compared to density-based clusters. Al-

though the potential summarization and matching techniques for distance-

based outlier and kNN are discussed in Chapter 22, they are not the focus

of this dissertation.

1.4 Where our Proposed Techniques May Not Work

This dissertation proposes several general optimization principles, such as

predicted views and pattern representation and maintenance techniques.

It shows that these principles can be applied to different pattern types

in neighbor-based pattern family with proper customizations. However,

same as all the optimization principles, the techniques presented in this

work have their own application scopes, and may not be suitable to be

used for the areas outside these scopes.

The predicted view technique relies on the overlap of sliding windows

1.4. WHERE OUR PROPOSED TECHNIQUES MAY NOT WORK 24

(slide < win). On one hand, if the slide size slide is equal or larger than

the window size win, no streaming object can appear in more than one

windows, and thus there will be no need and benefit for predicted view

maintenance. On the other hand, if the slide size is too small, the pre-

dicted view technique may require a system to maintain too many pre-

dicted views, which may cause significant computational and storage over-

head. Although, one may be able to reduce this overhead by further com-

pressing the predicted views in different windows (see Chapter 7), it is

not always possible, depending on the specific target pattern types and the

characteristics of the input streams.

The pattern representation and maintenance techniques proposed in

this work, including different formats of pattern structure representation

and computation strategies to maintain those pattern structures, are specif-

ically designed for neighbor-based patterns, which are defined based on

the pairwise neighbor relationship among data objects. Thus, these tech-

niques may not be able to be applied to other pattern types. For example,

the incremental density-based cluster maintenance techniques may not be

able to be applied to extract clusters with other definitions in which clusters

are defined using other criteria rather than local density, such as defining

clusters by fixing the number of clusters in the dataset, or defining clusters

hierarchically.

1.5. RESEARCH IMPACT AND OPEN RESEARCH QUESTIONS 25

1.5 Research Impact and Open Research Questions

My dissertation is an early research effort in the database community to

look at the problem of mining complex patterns in data streams. It extends

the traditional database query optimization principles, such as incremen-

tal query result update, multiple query optimization and result summa-

rization, to solve the challenging problems for mining complex patterns

from streams. My dissertation shows that, with innovative tuning and cus-

tomization, those well-established query optimization principles, which

were designed for executing traditional database retrieval queries, such as

SPJ queries, can also be extended to serve complex pattern mining queries.

Thus, my work opens a new field of designing solutions for the emerging

streaming mining applications based on extending the well-known query

optimization principles. Such research practice encourages deep analysis

of the characteristics of the targeted complex patterns and designing highly

efficient customized mining algorithms for them, while saving the unnec-

essary effort of “re-inventing the wheel” from scratch.

Although my dissertation studies three different aspects of complex

pattern mining in data streams, namely efficient pattern extraction query

execution, multiple query optimization and mining result management, it

is just the beginning of a general research agenda of mining and managing

complex patterns in data streams. Many research problems for mining and

managing complex patterns in data streams remain open and are worth to

be explored.

First, given the great diversity of stream analysis tasks, besides the

1.5. RESEARCH IMPACT AND OPEN RESEARCH QUESTIONS 26

neighbor-based patterns studied in this dissertation, there are many other

complex pattern types that need to be mined from data streams, rang-

ing from association rules, sequences to text. Each of these pattern types

may have its own very unique pattern structures, and thus may require

its own customized mining strategies designed for it. Although some re-

search effort has been made towards mining these complex patterns in the

stream [Han05], mining of many important pattern types, such as graphs

and webs, remains largely unsolved.

Second, unlike traditional data mining in static environments where

mining queries are submitted to static datasets for one-time mining results,

stream analysis tasks tend to be continuous. That is the later requires a

mining system to build a temporal context for mining results for analysts,

reflecting how the patterns change over time in streams. To achieve this

goal, the pattern evolution model, which can effective describe the pat-

tern changes over time, and efficient evolution tracking methods have to

be designed. My research work [YGRW11] studied the problem of track-

ing evolution of density-based clusters in streams anytime, while the same

problem for many other complex patterns, such as outliers and graphs, re-

main largely unsolved.

Third, in streaming environments, not only the data but also the queries

can be dynamic, indicating that the mining queries can be adapted (change

parameter settings), registered to or removed from the mining systems at

any time. This requires a mining system to have the capability of smoothly

tuning itself to handle a changing workload. This problem is not covered

in my dissertation, and can be an important research direction for future

1.6. DISSERTATION ORGANIZATION 27

work.

An in-depth analysis of the future work for my dissertation can be

found in Chapter 26.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses the

formal definition of neighbor-based patterns and where streaming neighbor-

based pattern mining lies in the overall context of the data mining family.

The three research topics of my disseration are discussed in detail respec-

tively in Part I (Chapters 3-11), Part II (Chapters 12-18) and Part III (Chap-

ters 19-25). The discussions of each of the three research topics include

the analysis of the problem, initial effort for tackling the problem, descrip-

tion of the final proposed solutions, analysis of alternative solutions, ex-

perimental evaluation, and lastly discussions of related work. Chapter 25

concludes this dissertation and Chapter 26 discusses possible future work.

28

Chapter 2

Preliminaries

2.1 General Notion of Neighbor-Based Patterns

We now demonstrate that the neighbor-based pattern mining queries tack-

led in my work correspond to a particular subclass of the general class of

graph mining. This subclass of graph mining tasks is composed of two

phases, namely graph definiton and graph mining.

Graph Definition Phase. First, unlike the traditional graph mining

tasks, in which the target graph structures are given as input, neighbor-

based pattern mining queries require a graph definition step before mining of

the graph. In particular, given an input dataset D, a neighbor-based pattern

mining query first defines a graph G = (V,E), in which V = D corresponds

to the set of vertices and E corresponds to the set of edges, modeling all the

pair-wise “neighbor relationships” among the vertices. The edges in E can

be either directed or undirected. Such graph definition step takes two inputs

from the query specification, namely:

2.1. GENERAL NOTION OF NEIGHBOR-BASED PATTERNS 29

1): A user-defined distance function Dist(va, vb), ∀va, vb ∈ V , which

returns a value dist va vb reflecting the distance between va and vb.

2): An edge definition function M(va, vb, dist va vb), which decides whether

(true/false) an edge exits e(va, vb) between va and vb. The distance be-

tween va and vb, dist va vb, is the base for M(va, vb, dist va vb) to make

this decision, while the specific edge definition mechanism may vary de-

pending on the specific neighbor-based pattern mining query type. For

example, M(va, vb, dist va vb) for density-based cluster [EKSX96, EKS+98]

and distance-based outlier [KN98b, AF07] mining imposes a range thresh-

old value to define an undirected edge e(vi, vj) between va and vb, while

M(va, vb, dist va vb) for k nearest neighbor (kNN) [MP07, JOT+05] and re-

verse k nearest neighbor mining queries [MP07] takes a count threshold to

define directed edges e(va, vb) and e(vb, va). We will introduce the precise

edge definition function for each specific neighbor-based pattern type in

their respective formal definition later in this section.

Graph Mining Phase. Given the graph G defined in the graph def-

inition phase, in the second phase, each neighbor-based pattern mining

query type mines for a particular type of sub-graph(s) in G that exhibits

certain characteristics. We will explain the specific sub-graph(s) that each

neighbor-based pattern mining query type mines for in the formal defini-

tion of each pattern type.

2.2. DEFINITIONS FOR SPECIFIC NEIGHBOR-BASED PATTERNS 30

2.2 Definitions for Specific Neighbor-Based Patterns

We use the term data point to refer to a multi-dimensional tuple (object) in

the data stream. To be consistent with the graph mining problem defini-

tion given above, we use vi to represent each data point in the following

definitions.

2.2.1 Density-Based Cluster

Definition 1 Density-Based Cluster Mining Query: Besides the input dataset

D and a distance function Dist(va, vb), density-based cluster mining takes two

input parameters, namely a range threshold θrange and a count threshold θcnt.

In the graph definition phase, a density-based cluster mining defines an

undirected edge e(va, vb) between any va and vb ∈ D, if Dist(va, vb) < θrange.

We say that va and vb are neighbors of each other in this situation. It thus defines

an undirected graph G = (V,E), with V corresponding to all data points in D

and E corresponding to all the undirected edges among data points in V .

Then, in the graph mining phase, we use the function NumNei(vi, θ
range)

to denote the number of neighbors a data point vi has, given the θrange thresh-

old. A data point vi with NumNei(vi, θ
range) ≥ θcnt is defined as a core point.

Otherwise, if vi is a neighbor of any core point, vi is an edge point. vi is a noise

point if it is neither a core point nor an edge point. Two core points v0 and vn

are connected if they are neighbors of each other, or there exists a sequence of core

points v0, v1, ...vn−1, cn, where for any i with 0 ≤ i ≤ n− 1, a pair of core points

vi and vi+1 are neighbors of each other. Each density-based cluster is a group of

connected core points and the edge points attached to them. Density-based cluster

2.2. DEFINITIONS FOR SPECIFIC NEIGHBOR-BASED PATTERNS 31

mining mines for all such clusters in the defined graph G.

Figure 2.1: An Example of A Density-Based Cluster

Figure 2.1 shows an example of a density-based cluster composed of 11

core points (black) and 24 edge points (grey).

2.2.2 Distance-Based Outlier

Definition 2 Distance-Based Outlier: Besides the input dataset D and a dis-

tance function Dist(va, vb), distance-based outlier detection takes two input pa-

rameters, namely a range threshold θrange and fraction threshold θfra.

In the graph definition phase, distance-based outlier mining defines an undi-

rected edge e(va, vb) between any va and vb ∈ D, if Dist(va, vb) < θrange. We

say that va and vb are neighbors of each other in this situation. It thus defines an

2.2. DEFINITIONS FOR SPECIFIC NEIGHBOR-BASED PATTERNS 32

undirected graph G = (V,E), with V corresponding to all data points in D and

E corresponding to all the undirected edges among data points in V .

Then, in the graph mining phase, we use the function NumNei(vi, θ
range)

to denote the number of neighbors a data point vi has, given the θrange threshold.

Distance-based outlier mining mines for all data points vi in the defined graph G,

where NumNei(vi, θ
range) < |D| ∗ θfra, with N the number of vertices in G.

Figure 2.2: An Example of 3 Distance-Based Oultiers

Figure 2.2 shows an example of 3 outliers detected from a 2D dataset

containing 25 objects. In this example, θfra = 0.12, indicating that if an

object has less than 25× 0.12 = 3 (the total number of objects in the dataset

is 25), it is defined as an outlier.

2.3. SLIDING WINDOW SEMANTICS 33

2.2.3 Top-k Nearest Neighbors (kNN

Definition 3 Top-k Nearest Neighbor Query (kNN): Besides the input dataset

D and a distance function Dist(va, vb), a kNN mining query takes a query object

vq and a count threshold k.

In the graph definition phase, a kNN mining query defines a directed edge

e(va, vb) from va to vb ∈ D, if there exist less then k data points v0, v1, ... ,vk−1 ∈

D that dist vb vi < dist vb va(0 ≤ i ≤ k − 1), i 6= a, b. We say vb is a neighbor

of va if there exists an edge e(va, vb) from va to vb. It thus defines a directed graph

G = (V,E), with V corresponding to all data points in D and E corresponding to

all the directed edges among data points in V .

In the graph mining phase, a kNN mining query mines for all neighbors for

the query object vq in the defined graph G.

Figure 2.3 shows an example of 4 nearest neighbors detected for a query

object. In this example, the object depicted using the grey dot is the query

object. The kNN query identifies four kNN objects (the black dots in the

circle) for it.

2.3 Sliding Window Semantics

We focus on periodic sliding window semantics as proposed by Contin-

uous Query Language (CQL) [ABW06] and widely used in the literature

[YRW09, AW04, YRW09]. Such semantics can be either time-based or count-

based. For both cases, each query Q has a window size Q.win (either a time

interval or a tuple count) and a slide size Q.slide. The patterns will be gen-

2.3. SLIDING WINDOW SEMANTICS 34

Figure 2.3: An Example of k = 4 Nearest Neighbors

erated only based on the data points falling into the window. The query

window slides periodically either when a certain number of tuples arrives

or a certain amount of time elapses. By sliding, a new window will be built

to replace the old window, and thus again cover only the most recent por-

tion of the stream at that moment. The templates of neighbor-based pattern

mining queries using this query semantics are shown in Figures 2.4, 2.5 and

2.6. In particular, the templates for density-based cluster detection query

over sliding windows is shown in Figure 2.4. The templates for distance-

based outlier detection query over sliding windows is shown in Figure 2.5.

The templates for kNN detection query over sliding windows is shown in

Figure 2.6.

2.3. SLIDING WINDOW SEMANTICS 35

Qi: DETECT Density-Based Clusters FROM stream
USING θrange = r and θcnt = c
IN Windows WITH win = w and slide = s

Figure 2.4: Template for a Density-Based Cluster Detection Query for Slid-
ing Windows over a Data Steam

Qi: DETECT Distance-Based Outliers FROM stream
USING θrange = r and θfra = f
IN Windows WITH win = w and slide = s

Figure 2.5: Template for a Distance-Based Outlier Detection Query for Slid-
ing Windows over a Data Stream

Qi: DETECT pi.kNN FROM stream
USING K=k
IN Windows WITH win = w and slide = s

Figure 2.6: Template for a kNN Detection Query for Sliding Windows over
a Data Stream

2.4. WHERE STREAMING NEIGHBOR-BASED PATTERN MINING LIES IN

DATA MINING FAMILY 36

2.4 Where Streaming Neighbor-Based Pattern Mining

Lies in Data Mining Family

Data mining, as a general concept for extracting or “mining” knowledge

from large amounts of data, covers a rather diverse range of mining tasks.

Also, any data mining task may consist of an iterative sequence of the fol-

lowing steps: 1) data cleaning, 2) data integration, 3) data selection, 4) data

transformation, 5) pattern extraction, 6) pattern evaluation and 7) knowl-

edge representation [Han05]. In this work, we focus on neighbor-based

pattern mining queries in streaming windows. The Parts I and II of this

dissertation fall into the pattern extraction step of data mining, which is

an essential process where intelligent methods are applied to extract pat-

terns from well prepared data. The Part III of this dissertation are related

to both pattern evolution (identifying similar patterns from stream history)

and knowledge representation (pattern summarization).

Next, we review a categorization of the common data mining tasks from

the literature and show where our target query types lie in this catego-

rization. Traditionally, data mining techniques [ZRL96, EKSX96, ABKS99,

KN98b, BKNS00, JOT+05, KOTZ04, NZTK08] are designed for static envi-

ronments with large volumes of stored data. More recently, as stream ap-

plications are becoming prevalent, the problem of mining streaming data is

being tackled [AHWY03, YRW09, BDMO03, SPP+06, AF07, MP07]. Based

on the dynamics of the input data, we can first divide the data mining tasks

into static data mining and stream data mining. Clearly, our tasks of mining

neighbor-based patterns in streaming windows fall into the stream data min-

2.4. WHERE STREAMING NEIGHBOR-BASED PATTERN MINING LIES IN

DATA MINING FAMILY 37

ing category.

Second, for both static and streaming data mining, Han and Kamber

[Han05] divide the data mining tasks into two categories based on their

purposes, namely descriptive and predictive mining. In particular, de-

scriptive mining tasks characterize the general properties of the data in the

database. Predictive mining performs inferences on the current data in or-

der to make predictions for future data. Typical predictive data mining tasks

include classification, prediction and trend mining [Han05]. Since our task of

mining neighbor-based patterns in data streams aims to find specific pat-

terns in the most recent portion of the stream, which does not necessarily

predict anything about the future, our task falls into the descriptive data

mining category.

Among the descriptive streaming data mining tasks, they can be further

divided into the following categories based on their distinct characteristics

[Han05].

1) graph mining: The one-to-one relationships, namely the (directed or

undirected, weighted or unweighted) edges among objects and the topolog-

ical relationships among objects are the key factors that define the patterns

which graph mining processes mine for.

2) association rule and correlation mining: Frequency is the key factor

for association rules and correlations. Namely, the frequency of a certain

type of objects to appear together or the frequency of a certain relationship

existing among certain attributes of the objects defines association rules and

correlations.

3) text mining: In text mining, the appearance of certain key words and

2.4. WHERE STREAMING NEIGHBOR-BASED PATTERN MINING LIES IN

DATA MINING FAMILY 38

relationships among their linguistic meanings of these key words are the

key factors that define the patterns in the text.

4) sequence mining: In sequence mining, the time sequences in which the

target events happen or the time sequences in which values of an attribute

appear are the key factors for the sequence mining process.

5) clustering: Cluster mining processes aim to divide the input ob-

jects into different groups, each having its own characteristics. Maximizing

the similarity among the objects within the same group and the disimilar-

ity among objects within different groups is the goal pursued by clustering

algorithms.

6) outlier mining: The abnormality of some objects compared to the ma-

jority of all objects in the dataset is the knowledge that the outlier mining

process mines for.

7) web page mining: The textual content and the link structures among

web pages is explored by web page mining.

8) multimedia mining: Mining on images and voices distinguishes multi-

media mining from other mining tasks.

Given this categorization, if we analyze our neighbor-based pattern

mining tasks from the perspective of their general purpose, they relate to

multiple categories, including cluster and outlier mining. However, as dis-

cussed earlier in Chapter 2.1, if we analyze the characteristics of the target

pattern structures of neighbor-based pattern mining queries, namely how

these pattern strcutures are defined, all the neighbor-based pattern min-

ing queries can be viewed as subclasses of the graph mining category. In

conclusion, our target neighbor-based pattern mining queries over stream-

2.4. WHERE STREAMING NEIGHBOR-BASED PATTERN MINING LIES IN

DATA MINING FAMILY 39

ing windows fall into the graph mining category of descriptive streaming data

mining.

40

Part I

Efficient Processing of Single

Neighbor-Based Pattern

Extraction Queries

41

Chapter 3

Naive vs. Incremental

Approach

3.1 Naive Solution–Recompute from Scratch at Each

Window

The naive approach for detecting patterns over continuous windows would

be to run static pattern detection algorithms from scratch at each window.

For density-based clusters and distance-based outliers the static neighbor-

based pattern detection algorithms [EKSX96, KN98b] consume one range

query search for every data point in the dataset. In our case, they need

N range query searches at each window Wi, with N the number of data

points in Wi. Although some minor improvement could be made, such

as some range query searches may be terminated earlier when detecting

distance-based outliers, O(N) is the lower bound of the number of range

3.1. NAIVE SOLUTION–RECOMPUTE FROM SCRATCH AT EACH

WINDOW 42

query searches needed to detect these patterns in a new dataset (see Lemma

3.1).

Considering the expensiveness of range query searches, such naive ap-

proach may not be applicable in practice, specially when N is large. Obvi-

ously, without the support of indexing, the complexity of each range query

search is O(N). The average run-time complexity of a range query search

can be improved by use of index structures, for instance an R-tree could

improve it to O(log(N)) [EKSX96]. However, such complexity may still be

an unacceptable burden for the streaming applications that require real-

time response, not to mention that the high-frequency of data updating in

the streaming environments makes the index maintenance expensive. Our

experimental study in Chapter 9.2 shows that detecting density-based clus-

ters from scratch in a 50K-object window takes around 100 seconds in our

test environment, which is clearly not meeting real-time response require-

ments of streaming applications.

For kNN detection, recomputing such pattern from scratch at each win-

dow takes at least O(N) time [MBP06], with N the number of data points

in the query window. If the k nearest neighbors need to be returned in their

sorted order, then the CPU cost increases to at least O(log(k)∗N). This cor-

responds to tremendous computational costs, especially for queries with

large window sizes and processing high speed input streams. Also, this

naive approach forces the system to keep all the tuples in the window, even

if some of them may never have a chance to be part of the query results.

This causes a huge amount of unnecessary memory utilization, which may

harm the applicability of this naive approach in many cases. Our experi-

3.2. WHY INCREMENTAL COMPUTATION 43

mental study in Chapter 9.4 shows that recomputing the kNN from scratch

in a 1M-object window takes at least 2 minutes in our test environment.

In conclusion, given these limitations, such naive approach of recom-

puting patterns from scratch is not viable for handling overlapping win-

dows (Q.slide < Q.win), where the opportunity for sharing meta-information

among windows exists.

3.2 Why Incremental Computation

In sliding window query semantics, query windows overlap when the slide

size is smaller than the window size (slide < size). In such overlapping-

window scenario, the stream objects may fall into (be valid in) multiple

query windows before they expire. It serves many application needs, in

which the analysts want to detect patterns based on a relatively large query

window but would like to see the results updated in a shorter period of

time. Using the motivation examples in our introduction, a financial an-

alyst monitoring the intensive-transaction areas (clusters formed in stock

transactions) within the last 10-minute stock transactions may want to see

the results updated every 1 or 2 minutes. A banker monitoring the poten-

tial frauds (outliers) in the last 1-hour credit card transactions may want

the results to be updated in every 5 or 10 minutes.

This overlapping-window scenario provides the opportunities to de-

sign incremental pattern computation strategies, because the detected pat-

terns in such a scenario may persist and change incrementally in multiple

windows. By incremental pattern maintenance, one can re-use the pattern

3.3. BASIC INCREMENTAL COMPUTATION STRATEGIES 44

structures detected earlier in the previous windows, and thus significantly

reduce the computational costs for extracting patterns from scratch in each

window.

3.3 Basic Incremental Computation Strategies

Now we discuss the basic incremental computation strategies for the three

types of neighbor-based patterns that we focus on in this dissertation.

Basic Incremental Computation Strategy for Density-Based Cluster.

First, we propose an basic incremental computation strategy for density-

based clusters. As we have discussed earlier in Introduction (Chapter 1),

we are the first to tackle the problem of density-based cluster detection in

sliding windows. We call this method Exact-Neighborship-Based Solu-

tion (Exact-N). Exact-N relieves the computational intensity of processing

each window by preserving the exact neighborships discovered in the pre-

vious windows. In particular, Exact-N requires each data point pi in the

window to maintain a list of links pointing to all its neighbors. This allows

each data point to access their neighbors directly whenever it needs to.

At each window slide, the expired data points are removed along with

the exact neighborships they are involved in, namely all the links pointing

from or to them. Then Exact-N runs one range query search for every new

data point pnew to discover the new neighborships to be established in the

new window. At the output stage, Exact-N constructs the cluster structures

by a Depth First Search (DFS) on all core points ((Selection, Projection and

Join)o less than θcount neighbors) in the window. Exact-N offers the advan-

3.3. BASIC INCREMENTAL COMPUTATION STRATEGIES 45

tage of significantly reducing the amount of range query searches needed

at each window slide. In particular, as we discussed in Chapter 3.1, the

naive approach requires N (number of objects in the query window) range

query searches at each window slide, while this Extra-N algorithm only

needs Nnew range query searches at each window, with Nnew the number

of new data points in the window.

Lemma 3.1 For each query window Wi, the minimum number of range query

searches needed for detecting density-based clusters in Wi is Nnew.

Proof 3.1 At each new window Wi, each new data point falling into Wi needs a

range query search to discover all its neighbors in the window, otherwise we cannot

obtain all new neighborships in Wi introduced by the participation of the new data

points. This shows the necessity of the Nnew range query searches. Since we can

always preserve all neighborships inherited from Wi−1, we will not miss any prior

neighborships existing in Wi. This demonstrates the sufficiency of the Nnew range

query searches.

The pseudo-code for the Exact-N algorithm is shown in Figures 3.1 and

3.2.

Basic Incremental Computation Strategy for Distance-Based Outliers.

The same Extra-N algorithm can be adapted to solve the distance-based

outlier detection problem as well. The only difference that distinguishes

it from the Extra-N algorithm detecting density-based clusters exists at the

output stage. In particular, for distance-based outliers, Exact-N simply out-

puts the data points with less than N × θfra neighbors at the output stage.

3.3. BASIC INCREMENTAL COMPUTATION STRATEGIES 46

Exact-N (θrange,θcnt / θfra)
1 At each window slide
//Purging
2 For each expired data point pexp
3 For each pi in pexp.neighbors
4 remove pexp from pi.neighbors;
5 purge pexp;
//Loading
6 For each new data point pnew

7 load pnew into index
//Neighborship Maintenance
8 For each new data point pnew

9 Neighbors =
RangeQuerySearch(pnew, θ

range)
10 For each pj in Neighbors
11 add pj to pnew.neighbors
12 add pnew to pj .neighbors
//Output
13 OutputPatterns(pattern type);

Figure 3.1: Pseudo-Code for Exact-N Algorithm
(Part 1)

OutputPatterns(Distance-Based Outliers)
1 For each data point pi in the window
2 If pi.neigbors.size() ≤ θfra ∗N
3 Output (pi)
OutputPatterns(Density-Based Clusters)
1 ClusterId=0;
2 For each pi with ≤ θcnt neighbors
3 If pi is unmarked;
4 OutputCore(pi, ClusterId);
5 ClusterId++;
OutputCore(pc, ClusterId)
1 mark pc with ClusterId;
2 output(pc);
3 For each data point pi on pc.neighbors
4 If pi is unmarked
5 If pi.neigbors.size() ≤ θcnt

6 OutputCore(pi, ClusterId)
7 Else
8 mark pi with ClusterId;
9 Output(pi);

Figure 3.2: Pseudo-Code for Exact-N Algorithm
(Part 2)

3.4. LIMITATIONS OF BASIC INCREMENTAL STRATEGIES 47

The pseudo-code for this Exact-N algorithm detecting distance-based out-

liers is shown in Figure 3.1 and 3.2 as well.

Basic Incremental Computation Strategy for kNN.

For kNN detection, [MBP06] presented an incremental computation strat-

egy, SMA, by incrementally maintaining the nearest neighbors for the query

object. The key idea of this work is to maintain a “skyband structure”,

which contains more than k nearest neighbors to the query object in a

ranked order. At each window slide, SMA first removes the expired ob-

jects from the skyband. Then it inserts the new objects into the skyband

if any of them has a smaller distance to the query object compared to any

existing objects in the skyband.

At the output stage, if the skyband structure contains at least k objects.

SMA simply outputs the first k objects with the smallest distance to the

query objects as its k nearest neighbors (kNN). Otherwise, SMA searches

against all the objects in the query window looking for the kNN for the

query object.

3.4 Limitations of Basic Incremental Strategies

The incremental computation strategies discussed in Chapter 3.3 achieve

the basic goal of incremental pattern maintenance, and thus partially or

completely avoid the expensive recompute-from-scratch costs suffered by

the naive approach mentioned in Chapter 3.1. However, these basic incre-

mental computations still have their own key limitations, and thus do not

constitute the ideal solutions for neighbor-based pattern detection in slid-

3.4. LIMITATIONS OF BASIC INCREMENTAL STRATEGIES 48

ing windows.

In particular, Exact-N suffers from two major shortcomings. The first

shortcoming is its huge memory consumption. As Exact-N requires storing

all exact neighborships among data points, its memory consumption may be

huge in many cases. In the worst case, the memory requirement may be

quadratic in the number of data points in the window. Such a tremendous

demand on memory may make the algorithms impractical for huge win-

dow sizes N , given that the real-time response requirement of streaming

applications necessitates main memory resident processing.

The second shortcoming of Extra-N is its expensive CPU costs required

for maintaining the exact neighborships among the objects, especially when

handling object expirations. As we discussed earlier in Chapter 3.3, at each

window slide, Extra-N needs to not only remove the expired objects from

the query window but also to remove these expired objects from the neigh-

bor lists of the remaining objects. This could be a very expensive operation

computationally, as for each expired object pexp, it needs to search in the

neighbor lists of all pexp’s neighbors to identify the positions where pexp are

stored and then to remove pexp from these lists.

Both our cost analysis (Chapter 8) and experimental studies (Chapter

9) confirm those two shortcomings of Exact-N for detecting both density-

based clusters and distance-based outliers.

Using the SMA algorithm presented in [MBP06] for kNN detection also

suffers from both CPU and memory problems. The key limitation of SMA

is that it does not eliminate the need of a from-scratch recomputation. In

particular, when the skyband maintained by SMA contains less than k ob-

3.4. LIMITATIONS OF BASIC INCREMENTAL STRATEGIES 49

jects, it has to search against the whole window content to look for the k

nearest neighbors. This causes a serious performance bottleneck. Compu-

tationally, when searching for the qualified k nearest neighbors, this pro-

cess has to look at potentially all objects in the query window. Thus, the

computational costs can be close to or even equivalent to calculating the

k nearest neighbors from scratch. Memory-wise, as current non-k-nearest-

neighbor objects may qualify as k nearest neighbors in future windows,

such a recomputation process requires keeping and maintaining all objects

alive in the window. This can be a huge burden on memory utilization. For

queries that have large window sizes, the number of objects required to be

stored can easily reach millions or higher, even when the actual number

of k nearest neighbors a user is interested in is fairly small, say k = 10 or

k = 100.

50

Chapter 4

Predicted View Technique

4.1 Performance Bottleneck – Handle Expiration

Based on our analysis of the limitations suffered by the basic incremen-

tal computation strategies discussed in Chapter 3.4, the key performance

bottleneck they are facing is caused by handling the object expirations dur-

ing the window slide process. In particular, at each window slide, any in-

cremental neighbor-based pattern detection algorithm needs to handle the

impact to the existing patterns caused by both the insertion of new objects

and the deletion of expired objects. Within these two types of computation,

handling the impact of a new object insertion to neighbor-based patterns

is generally easier, while handling the impact of the expired objects may

cause much more system resource utilization. This is because, the expi-

ration of existing objects may cause complex pattern structural changes,

ranging from shrinkage, splitting to the termination of the patterns. Han-

dling these complex pattern changes may need tremendous computational

4.2. PREDICTED VIEW 51

and storage resources, which could be as expensive as recomputing the

patterns from scratch.

As discussed in Chapter 3.4, the Exact-N algorithm needs tremendous

computational effort to remove the expired neighbors for the remaining

objects, and the SMA algorithm needs to recompute the kNN from scratch

when the object expiration reduces the number of objects in its skyband

structure to less than k.

4.2 Predicted View

To solve this serious performance bottleneck of handling object expira-

tion, we now propose a general optimization technique, called “Predicted

View”. We first highlight the “predictability” property of sliding windows

to be exploited for our later algorithm design.

Definition 4 Given the slide size Q.slide of a query Q and the starting time of

the current window Wn.Tstart, the life-span pi.lifespan of a data point pi in Wn

with time stamp pi.T is defined by pi.lifespan = ⌈pi.T−Wn.Tstart

Q.slide
⌉, indicating

that pi will participate in windows Wn to Wn+pi.lifespan−1.

For example, let’s assume that we have a query window with window

size win = 16s and slide size slide = 4s, and at wall clock time 00:00:00

there are 16 objects falling into the query window with their their time

stamps equal to 00:00:00, 00:00:01, 00:00:02, ..., 00:00:15. In this case, as we

know that the slide size of the query window is 4s, the predictability prop-

erty can tell us for sure that the first 4 objects, namely the objects with time

4.2. PREDICTED VIEW 52

stamps equal to 00:00:00, 00:00:01, 00:00:02, 00:00:03 will be expired after

the window slide at 00:00:04. For the same reason, after the next window

slide at 00:00:08, the next four objects with time stamps equal to 00:00:04,

00:00:05, 00:00:06, 00:00:07 will be expired. This property determines the

expiration of current data points in future windows, and thus enables us to

pre-handle the impact brought by these expirations on future patterns.

By using this insight for objects’ lifespan , we can avoid the computa-

tional effort needed for discounting the effect of such expired data points

from the detected clusters. The idea is to pre-generate the partial patterns

for the future windows based on the data points that are in the current

window and known to participate in those future windows (without con-

sidering the to-be-expired ones). Then when the window slides, we can

simply use the new data points to update the pre-generated patterns in

the predicted views and form the up-to-date patterns in each window. As

an example, Figures 4.1 and 4.2 respectively demonstrate examples of the

“pre-generated” clusters in future windows and the updated clusters after

the window slides. The black, grey and white circles represent the core,

edge and noise points identified in each predicted view. The lines among

any two data points represent the neighborships between them.

In general, the predicted view technique can helps us to eliminate the

effort needed for handling the expired objects during incremental neighbor

based pattern detection. We will show how this general technique can be

applied to the three neighbor-based pattern types that we are focused on in

the following sections.

4.2. PREDICTED VIEW 53

Figure 4.1: Predicted views of four consecutive windows at W0

Figure 4.2: Updated predicted views of four windows at W1

54

Chapter 5

Proposed Algorithms for

Density-Based Clusters

5.1 Abstract Neighborship Maintenance – Abstract-C

Different from Exact-N, we now propose a solution that maintains a com-

pact summary of the neighborships, namely the count of the neighbors for

each data point. We call it Abstract-C. In some cases, these neighbor counts

provide sufficient information for generating the patterns.

Challenges. However, maintaining neighbor counts for each data

point appears to be not computationally cheaper than the maintenance of

their neighbor lists. Since the data points in Abstract-C no longer main-

tain the exact neighborships between each other, they lose the direct access

to their neighbors. Thus, expired data points cannot broadcast their expira-

tions to their neighbors without re-running expensive range query searches

5.1. ABSTRACT NEIGHBORSHIP MAINTENANCE – ABSTRACT-C 55

to figure our who their neighbors are. Obviously, this will largely increase

the computational costs required at each window. Therefore, a solution that

keeps data points aware of their neighbors’ expiration without the help of

direct links among them is needed.

Solution. Fortunately, the “predictability” property introduced in Def-

inition 4 provides us with a mechanism to tackle this problem. The key

idea is that since we can predict the expiration of any data point pi, we can

pre-handle the impact of pi’s expiration on its neighbors’ neighbor counts

at the time when they are first identified to be neighbors.

We introduce the notion of a “lifetime neighbor counts” (lt cnt). The

“lifetime neighbor counts” of a data point pi.lt cnt correspond to a se-

quence of “predicted neighbor counts”, each corresponding to the num-

ber of “predicted neighbors” pi has in a particular future window that pi

will participate in . For example, at a given window Wi, a data point pi

has 3 neighbors in it, which are p1, p2 and p3. By using the “predictabil-

ity”, we could figure out the lifespan of each of these neighbors as well as

that of pi. Let’s assume p1 will expire after Wi. p2 and p3 will expire after

Wi+1. pi will expire after Wi+2. Then, at Wi, pi.lt cnt = (Wi : 3-Wi+1 : 2-

Wi+2 : 0) indicates that pi currently has 3 neighbors in Wi, while at (Wi+1),

2 of these 3 neighbors, namely p2 and p3 will still be its neighbors (p1 will

no longer be pi’s neighbor then as it will expire after Wi). In other words,

at Wi, pi has 2 “predicted neighbors” in Wi+1. The length of pi.lt cnt is

kept equal to pi.lifespan, and thus decreases by one after each window

slide by removing the left most entry. In this example, the Wi : 3 entry will

be removed after the window slide. Here we note that all the “predicted

5.1. ABSTRACT NEIGHBORSHIP MAINTENANCE – ABSTRACT-C 56

neighbor counts” in pi.lt cnt are calculated based on the pi’s neighbors in

current window and will later be updated when new data points join its

neighborhood. More precisely, each entry on pi.lt cnt records the number

of pi’s current neighbors that are known to survive in the corresponding

future window.

Lemma 5.1 At any given window Wi, the entries in pi.lt cnt obey a mono-

tonic decreasing function pattern.

The proof of Lemma 5.1 is obvious, because less and less neighbors of pi in

the current window can survive as the window slides.

When later a new data point pj joins pi’s neighborhood, both pi.lt cnt

and pj .lt cnt will be updated. In particular, when pi and pj are identified

as neighbors, we add 1 to the entries of both pi.lt cnt and pj .lt cnt, corre-

sponding to all windows in which both will participate. For example, given

pj .lt cnt = (Wi : 5 −Wi+1 : 2 −Wi+2 : 2 −Wi+3 : 1 −Wi+4 : 1) before the

update, the lt cnts of pi and pj will be updated to pi.lt cnt = (Wi:4-Wi+1:3-

Wi+2 : 1) and pj .lt cnt = (Wi : 6-Wi+1:3-Wi+2:3-Wi+3:1-Wi+4 : 1). The Wi+3

and Wi+4 entries will not be increased as pi will expire before them. At

each window slide, each new data point is associated with a lt cnt with all

its entries initialized to zero. Then, each of them runs a range query search

to update its own lt cnt and those of its neighbors.

At the output stage, unfortunately, lt cnt does not provide sufficient

knowledge to generate the density-based clusters. This is because, although

we could know all core points in the window, we do not know which of them

are within the same clusters. Abstract-C acquires such information by run-

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 57

ning an extra range query for each core point in the window in a Depth First

Search manner to reconstruct the clusters. The pseudo code of Abstract-C

is shown in Figures 5.1 and 5.2.

Discussion. Abstract-C achieves linear 1 (in the number of data points

in the window) memory consumption by maintaining the abstracted neigh-

borships (neighbor count) for each data point only. Also, it takes Nnew

(the minimum number) range query searches at each window for neigh-

borship maintenance. However, since Abstract-C takes Ncore extra range

query searches (totally Nnew + Ncore) for detecting density-based clusters

at each window, its performance largely depends on Ncore the number of

core objects in the window, which can vary from 0 all the way to N . This in-

stability in CPU performance for the cluster pattern query class is the main

shortcoming of Abstract-C. Both our analytical and experimental studies

confirm this shortcoming (See Sections 8.1 and 9.2).

5.2 Exact+abstracted neighborship Based Solution (Extra-

N)

Although Abstract-C achieves linear memory consumption, the extra range

query searches may make it inefficient in terms of CPU time when detecting

density-based clusters. Hence, we now design the third solution, Abstract-

M, which aims to reduce the number of range query searches needed for

detecting density-based clusters, while still keeping the linear memory uti-

lization.

1The length of lt cnt for each data point is equal to a constant number Cils = ⌈ Q.win

Q.slide
⌉.

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 58

Abstract-C (θrange,θcnt / θfra)
1 At each window slide
//Purge
2 For each expired data point pexp
3 purge pexp;
//Load
5 For each new data point pnew

6 Initialize lt cnt (pnew)
7 load pnew into index
//Neighborship Maintenance
8 For each new data point pnew

9 Neighbors
= RangeQuerySearch(pnew, θ

range)
10 For each data point pj in Neighbors
11 Updatelt cnt (pnew, pj)
//Output
12 OutputPatterns(pattern type);
Initialize lt cnt (pi)
1 For n=1 to pi.lifespan− 1
(pi.lifespan = ⌈ pi.T−Window.Tstart

Window.Slide
⌉)

2 pi.lt cnt[n] = 0;
Updatelt cnt (pi, pj)
1 For n=1 to Len(pj .lt cnt)
2 pi.lt cnt[n]++ ;
3 pj .lt cnt[n]++ ;

Figure 5.1: Pseudo-Code for Abstract-C Part 1

OutputPatterns(Distance-Based Outliers)
1 For each data point pi in the window
2 If pi.lt cnt[0] ≤ θfra ∗N

//N is num of tuples in the current window
3 Output(pi) ;
4 remove pi.lt cnt[0] ;
OutputPatterns(Density-Based Clusters)
1 ClusterId=0;
2 For each data point pi in the window
3 If pi.lt cnt[0] ≥ θcnt

4 remove pi.lt cnt[0] ;
5 If pi is unmarked”
6 OutputCore(pi, ClusterId);
7 ClusterId++;
OutputCore(pc, ClusterId)
1 mark pc with ClusterId;
2 output(pc);
3 Neighbors =

RangeQuerySearch(pc, θ
range)

4 For each data point pj in pc.neighbors
5 If pj is unmarked
6 If pj has No less than θcnt neighbors
7 OutputCore(pj , ClusterId)
8 Else
9 mark pj with ClusterId;
10 output(pj);

Figure 5.2: Pseudo-Code for Abstract-C Part 2

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 59

5.2.1 What Abstract-C Suffers From : “Amnesia”

We note that the extra range query searches needed in Abstract-C are caused

by its “amnesia”. At every window, Abstract-C requires each new data

point to run a range query to determine the core points in the window. Then,

in addition, it requires each core point to run an extra range query search

to produce the exact clusters. Unfortunately, the abstracted neighborship

maintenance in Abstract-C, namely the lt cnt, does not have the capabil-

ity to preserve the cluster structures identified in the previous window. In

spite of the fact that, in most of the cases, these cluster structures will not

only hold for a single window but for multiple continuous windows. For

example, a group of data points which comes into the system at the same

window may correspond to “life-time neighbors”. They may form and thus

always belong to the same cluster that will hold throughout their life span

even without considering any other data points. Thus, repeatedly running

range query searches to re-identify the existing cluster structures is a huge

waste in terms of CPU time. So, to relieve the “amnesia” of Abstract-C, we

propose to enhance the abstracted neighborship maintenance mechanism to

capture and preserve the existing cluster structure. We call this enhanced

solution Abstract-M.

5.2.2 Enhanced Abstracted Neighborship

Abstract-M summarizes the neighborship among data points using a higher

level abstraction, namely by means of the cluster membership. Specifically,

Abstract-M marks the data points found to be in the same clusters with

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 60

the same cluster IDs, and thereafter preserves such markings for later win-

dows. As an abstracted neighborship maintenance mechanism, such mark-

ing strategy avoids the “pair-wise” style neighborship storing structure ap-

plied in Exact-N that may require quadratic memory.

Although marking cluster memberships for data points at the initial

window is straightforward, the maintenance of these memberships must

now be carefully examined. Here we first identify all the possible changes

on density-based cluster structures that may require updates on the cluster

memberships of data points. With the aim to make the cluster memberships

incrementally maintainable at any single update to the window, we exam-

ine change types based on both types of singe updates, namely a removal

(expiration) of an existing data point or an addition (participation) of a new

data point. We call them negative changes and positive changes respectively.

An update may cause no change on the existing cluster structures.

Negative Changes:

split: The members of an existing cluster now belong to at least two differ-

ent clusters.

death: An existing cluster loses all its cluster members.

shrink: An existing cluster loses cluster member(s), but no split nor death

happens.

Positive Changes:

merge: The cluster members of at least two different existing clusters now

belong to a single cluster.

expand: An existing cluster gains at least one new member, but no merge

happens.

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 61

birth: A new cluster rises, but no merge happens.

These six change types cover all the possible changes that could be

caused by any single update to the window. The negative and positive changes

are mutually exclusive to each other, meaning the removal may cause neg-

ative changes only, while insertion may cause positive changes only.

5.2.3 Challenges for Maintaining Cluster Memberships

After a careful examination of the costs of handling each change type, we

found that the most expensive operation for incremental cluster member-

ship maintenance lies in handling of negative changes. We conclude our

analysis by identifying the following challenge:

Observation 5.1 We have a dilemma on the problem of determining and handling

the negative changes on the density-based cluster structures. This is because

to determine the specific cluster members affected by the removal of a data point

consumes either large of amount of memory or CPU resource. In particular, it

needs exact neighborships between the removed data points and their neighbors,

which are highly memory-consuming, or large numbers of range query searches,

which could be very CPU expensive.

A key challenge for discounting the effect of expired data points lies

in the detection and handling of the split of a cluster. In particular, when

the expiration of data points causes a cluster to be split, the remaining data

points in this split cluster need to be relabeled with different cluster mem-

berships as they then belong to different clusters. In Figure 5.3, the transac-

tion from W0 and W1 show an example of a split cluster. The expiration of

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 62

data point 2 causes the cluster composed of core points, data points 6, 8 and

12 in W0 to be split into two clusters, each containing only one core point.

The expiration of only very few data points may cause a total break of the

existing cluster structures into many small pieces, each may continue to

persist as a smaller cluster or even may completely degrade to noise. Such

split detection is non-trivial as elaborated upon below.

Observation 5.2 Given connection information (links) among data points, the

problem of detecting a split of a density-based cluster can be mapped to the graph-

theoretic problem of identifying “cut-points” in a connected graph [Mun00]. The

complexity of this problem is known to be O(n2), with n the number of vertices in

the connected graph (in our case the number of core points in a cluster).

Moreover, our problem is harder than the problem of identifying the

“cut-points”, because we do not even have the explicit connection informa-

tion, namely the exact neighborships, among the data points in hand. With-

out such connection information, we have to again re-run expensive range

query searches for every core point in the window whenever the window

slides. Obviously, this will make Abstract-M no better than Abstract-C and

thus defeats the purpose of the Abstract-M design.

5.2.4 View Prediction for Cluster Membership Maintenance

We now demonstrate how the “predictability” property (Definition 4) can

once again be exploited to address the dilemma described in Observation

5.1. Specifically, by Observation 5.1, given the data points Wn.Members in

the current window Wn, we always know the different subsets of Wn.Members

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 63

that will participate in each future window. This will enable us to predeter-

mine the cluster structures that will surely appear in each future window

based on the data points in the current window. We call such prediction

about the characteristics of future windows “predicted views”. Figure 5.3

gives an example of the data points falling into the current window W0.

Given these data points in W0 and the window size Q.win = 4 (time units)

, the “predicted views” of the subsequent windows of W0 (until all the data

points W0 expire), namely W1, W2 and W3, are also shown in this figure

respectively. Here, the number on each data point indicates its time stamp.

With such “predicted views”, we can maintain the cluster structures in

each future window independently. We call this technique “view predic-

tion”. This “view prediction technique is a general principle that can be

equally applied to other pattern types, such as graphs, in streaming win-

dow semantics.

For density-based clustering, in particular, we “premark” each of the

data points with the “predicted cluster membership” for each future win-

dow in its life span, if it belongs to any cluster in the corresponding win-

dows. Then, at each window slide, we can simply update the “predicted

views” by adding the new data points to each of them and then handling

the potential positive changes caused by these additions. More specifically,

for each window Wi, we update the “predicted cluster memberships” of

each data point if they are involved in any positive change in this window

caused by the participation of the new data points. Figure 5.4 demonstrates

the updated views of W1, W2, W3 and W4, which are computed indepen-

dently when the new data points join W1. By doing so, all the expirations

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 64

are predicted and preprocessed. Based on this foundation provided by the

view prediction technique, we develop the following lemma.

Lemma 5.2 By using the “view prediction” technique to incrementally maintain

the cluster memberships for density-based clusters, we eliminate the need to dis-

count the effect of expired data points to extracted clusters. Thus we simplify the

incremental density-based cluster detection to the much simpler problem of han-

dling the addition of new data points only.

Proof 5.1 We pre-handle the expiration of data points by not using them for clus-

ter formation in the windows that they will not participate in. Therefore, no main-

tenance to the cluster structures is needed for these windows when those “not-

used” objects are purged.

Fortunately, handling the insertion of new data points is much easier

then removal. We will discuss the specific maintenance process for each

type of positive change after the introduction of the data structure we will

use in subsection 5.2.6.

5.2.5 A Stepping-Stone Algorithm: Abstract-M

Before introducing our ultimate solution, we design a stepping-stone al-

gorithm, called Abstract-M. This algorithm uses both the “view predic-

tion” techniques and abstract neighborship (cluster membership) mainte-

nance. By maintaining the cluster memberships of data points in predicted

views, Abstract-M avoids the expensive cost for handling negative changes

on density-based clusters. Also, since the cluster memberships maintained

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 65

Figure 5.3: “Predicted Views” of 4
Successive Windows at W0

Figure 5.4: Updated “Predicted
Views” of 4 Successive Windows
at W1

by Abstract-M indeed capture and preserve the cluster structures, Abstract-

M no longer needs one extra query search for each core point at the output

stage as Abstract-C does to re-build the clusters.

While a significant step forward, Abstract-M does not completely “cure”

the “amnesia” suffered by Abstract-C, as it still requires a certain number

of extra range query searches, namely Nprmtcore (number of existing data

points that are “promoted” as new cores) extra range query searches at

each window. This is because, as we analyzed earlier, the newly arrived

data points may promote the existing non-core points to become core points.

In such cases, the promoted core points need to communicate with their

neighbors about their new “roles” and thus update the cluster member-

ships, such as two clusters merge. However, as Abstract-M only maintains

cluster membership for each data point, the promoted core points have no

direct access to their neighbors and thus each of them needs a range query

search to broadcast its new role to its neighbors.

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 66

Considering the expensiveness of range query searches and the truth

that Nnew +Nprmtcore could be as large as N even when Nnew is very small,

Abstract-M does not make the ideal solution that keeps the number of

range query searches minimal (Nnew) and the memory consumption linear.

The reason for this is that the enhanced abstracted neighborship maintenance

mechanism, namely the cluster memberships, still cannot completely rep-

resent the neighborships among the data points. The data points marked

with cluster memberships still have no knowledge about who are their

neighbors.

5.2.6 Proposed Solution: Extra-N

By carefully analyzing the strengthes and weaknesses of prior algorithms,

we finally propose an ideal solution achieving the merits in terms of both

memory and CPU utilization, based on a more capable neighborship main-

tenance mechanism.

Challenges. To achieve the minimum number of range query searches

(Nnew) at each window, we need to completely avoid re-searching for any

neighborships that have been identified before. This indicates that we have

to give data points direct access to their neighbors whenever communi-

cation between them is needed. However, this leads to a dilemma in the

design of the neighborship maintenance mechanism as explained below.

Observation 5.3 On one hand, to give data points direct access to their neigh-

bors, we have to preserve all the exact neighborships identified in earlier windows.

On the other hand, to keep the memory consumption linear, we cannot afford to

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 67

store the exact neighborships in the window.

Accommodating these two conflicting goals within a single neighborship

maintenance mechanism is the key challenge that we need to address for

our algorithm design.

Solution. We now propose a strategy that successfully tackles this

problem by achieving optimality in both memory and CPU consumption.

We call this the Exact+abstracted Neighborship based solution (Extra-N).

Extra-N combines the neighborship maintenance mechanisms proposed in

Exact-N, Abstract-C and Abstract-M into one integrated solution. This so-

lution overcomes the shortcomings of the prior solutions while keeping

their respective benefits.

We observe that different types of neighborship abstractions are most

useful during different stages of a data point’s life-span. In particular, we

need to maintain the exact neighborships for a data point in its “non-core

point career”, while abstracted neighborships will be sufficient for its “core

point career”. More precisely, Extra-N marks each data point pi by a cluster

membership in each window in which it is predicted to be core point, while

it keeps the exact neighborships (links) to all pi’s predicted neighbors for the

windows where pi is predicted to be a noise or an edge point. Such hybrid

neighborship maintenance mechanism carries sufficient information to pro-

duce the density-based clusters, because all the core points in a window Wi

are marked with a cluster membership, and all the edge points can quickly

figure out their cluster memberships by checking those of the core points in

their neighbor list. We will next demonstrate that Extra-N employs only

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 68

the minimum number of range query searches while keeping the memory

consumption linear.

Data Structure. As mentioned earlier, Extra-N combines the neighbor-

ship maintenance mechanisms used by all previous three algorithms dis-

cussed in this work. In particular, Exact-N inherits the two “life time marks”

from Abstract-M, namely lt cnt and lt type. In addition, Extra-N intro-

duces a new “life time mark” called “life time hybrid neighborship (lt hn),

which stores the “predicted cluster memberships” and the “predicted neigh-

bors” of a data point across different windows in a compact structure. We

call the overall data structure composed of lt cnt, lt type and lt hn the Hy-

brid neighborship Mark (H-Mark)) for a data point. Figure 5.5 depicts the

H-Marks of the data points in Figure 5.3. As shown in Figure 5.5, we use

Figure 5.5: The H-Marks of the Data Points at W0

the columns named C, T and H to present the lt cnt, lt type and lt hn of

each data point respectively. Since lt cnt has been carefully discussed in

Chapter 5.1 and lt type is easy to understand, here we explain lt hn. For

example, at W0, the core point 12 is predicted to be core point also in W1. Thus

it is marked by cluster memberships in both windows (p12.lt hn[0] = “c1”,

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 69

p12.lt hn[0] = “c2”). Then, as it is predicted to be a non-core point, more

precisely, a noise in W2, we start to keep the predicted neighbors of p12

from this window (p12.lt hn[2] = p13, p14). Since the number of “predicted

neighbors” of a data point follows a monotonically decreasing function

(discussed earlier in Chapter 5.1) , the “non core object career” windows

of a data point are continuous and right after its “core object career” win-

dows. Here we note that although we maintain the neighbor lists of each

data point pi for all its “non-core point career” windows, the link to each

of these neighbors is only physically stored once in lt hn, no matter how

many times it appears in p′is neighborhood in different windows. This

means that the number of predicted neighbors each data point pi keeps

track of is equal to the maximum number of predicted neighbors it has

among all its “non-core point career” windows. Given monotonicity, this

is equal to the number of predicted neighbors it has in its first “non-core

point career” windows. For example, data point 13 in Figure 5.5 has in total

3 predicted neighbors, namely data points 2, 6, and 12, in its first “non-core

point career” window W0. At the same moment, its predicted neighbors in

later windows are subsets of these three. For ease of expiration, a predicted

neighbor pj of the data point pi is stored in the specific row of pi’s H-Mark

corresponding to the last window in which their neighborship will hold.

Lemma 5.3 Extra-N has the memory consumption linear in the number of data

points in the window.

Proof 5.2 Since the maximum number of predicted neighbors of each “non core

point” pi is less than the constant θcnt (otherwise pi would have been classified

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 70

as core point), and we already know that pi.lt cnt, lt type and lt hn all have a

constant length ≤ Cils (defined in Chapter 5.1), H-Mark of any data point is of a

constant size. This proves Lemma 5.3.

Algorithm. Similar to Abstract-M, at each window slide, Extra-N runs a

range query search for each new data point to update the “predicted views”

of future windows. However, the hybrid neighborship maintenance mech-

anism brings the key advantage to Extra-N of eliminating any extra range

query searches from the updating processes. That is when promotions hap-

pen to the non core points, they now have direct access to their neighbors.

Thus the promoted cores no longer need to run any range query search to

re-collect their neighbors.

Lemma 5.4 Extra-N achieves the minimum number of range query searches needed

for detecting density-based clusters at each window.

Proof 5.3 First, since Extra-N inherits the neighborship maintenance mechanism

from Abstract-M, it needs at most Nnew+Nprmtcore range query searches at each

window as Abstract-M does. Second, we know that the Nprmtcore range query

searches are caused by the handling of promotions. Lastly, no range query search is

needed when the promotions happen in Extra-N. Thus, Extra-N only needs Nnew

queries at each window. This proves Lemma 5.4.

The pseudo code of Extra-N is shown in Figure 5.6.

Conclusion.

Finally, we conclude the optimalities in terms of both CPU and memory

utilization achieved by Extra-N algorithm in the following theorem.

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 71

Extra-N (θrange,θcnt)
1 For each Window Slide
2 For each expired data point pexp // Purge
3 purge pexp;
4 For each new data point pnew // Load
5 InitializeHMark (pnew)
6 load pnew into index
7 For each new data point pnew // neighborship Maintenance
8 Neighbors = RangeQuerySearch(pnew, θ

range)
9 UpdateHMark (pnew, Neighbors)
10 OutputPatterns(PatternType); // Output
InitializeHMark (p)
1 length := ⌈ p.T−Window.Tstart

Window.Slide
⌉ ;

2 set the lengthes of p.lt cnt, lt type and lt hn to length;
3 For n:=1 to length do
4 p.lt cnt[i] := 0;
5 p.lt type[i] := “n”;
6 p.lt hn[i] := “empty”;
UpdateHMark (p,Neighbors)
1 For i:=1 to Len(p.lt hn)
2 For j:=1 to Len(Neighbors)
3 If Len(Neighbors[j].lt hn) < i
4 remove Neighbors[j] from Neighbors
5 Else If Neighbors[j] is NOT New
6 Neighbors[j].lt cnt[i] + + ;
8 add p to Neighbors[j].lt hn if not added ;
9 add Neighbors[j] to p.lt hn if not added ;
9 If Neighbors[j].lt cnt[i] ≥ θcnt

10 Mark(Neighbors[j], i); 11 p.lt cnt[i] := Len(Neighbors);
12 If p.lt cnt[i] ≥ θcnt

13 Mark(p,i);
Mark(p,i)
1 p.lt type[i] := “c”;
2 tempH = “empty”;
3 For each p’s predicted neighbor pj ;
4 If pj .lt type[i] = “c” AND tempH 6= pj .lt hn[i]
5 equalize tempH with pj .lt hn[i] ;
6 tempH := pj .lt hn[i];
7 If tempH = unmarked
8 tempH := ClusterId[i];
9 ClusterId[i] + +;
10 For each p’s predicted neighbor pj ;
11 If pj .lt type[i] = “n”;
12 pj .lt type[i] := “e” ;
12 pj .lt hn[i] := tempH ;
13 remove all the pointers in p.lt hn[i] (if any);
14 p.lt hn[i] := tempH ;
OutputPatterns(Density-Based Clusters)
1 For each data point pi in the window
2 If pi.lt type[1] 6= ”n”
3 output(pi);
4 remove first elements on pi.lt cnt, pi.lt type and pi.lt hn;

Figure 5.6: Psuedo Code of Extra-N Algorithm

5.2. EXACT+ABSTRACTED NEIGHBORSHIP BASED SOLUTION

(EXTRA-N) 72

Theorem 5.1 For detecting density-based clusters, Extra-N requires the mini-

mum number of range query searches needed by this problem at each window (by

Lemma 5.4), while keeping the memory consumption linear in the number of data

points in the window (by Lemma 5.3).

These properties make Extra-N a very efficient solution for detecting

density-based clusters over sliding windows in terms of both CPU and

memory resource utilization.

73

Chapter 6

Proposed Algorithms for

Distance-Based Outliers

The same Abstract-C algorithm that we propose in Chapter 5.2 can be slightly

adapted to detect distance-based outliers as well. In particular, the only

change that we need to make is at the output stage of the Abstract-C al-

gorithm. Instead of repeatedly running range query searches to construct

the cluster structures, we can simply output the data points with less than

Winfra as the outliers. More specifically, at each window slide, Abstract-

C only requires one range query search for each new data point to update

the neighbor counts of the data points in the window. Then, at the output

stage, it only needs a single scan to the data points in the window to output

the outliers. The pseudo-code for the Abstract-C algorithm is also shown

in Figures 5.1 and 5.2

In conclusion, the efficient neighborship maintenance process together

CHAPTER 6. PROPOSED ALGORITHMS FOR DISTANCE-BASED

OUTLIERS 74

with the simple output stage make Abstract-C a very efficient algorithm for

distance-based outlier detection in sliding windows.

75

Chapter 7

Proposed Algorithms for kNN

7.1 Equivalence to Top-k Problem

Here, we first explain that the kNN detection in sliding windows that we

tackle in this work (defined in Definition 3 in Chapter 2) is equivalent to

the top-k object mining problem in sliding windows as defined in my work

[YSRW11].

In particular, in the top-k object mining problem in sliding windows

[YSRW11], the top-k mining query continuously detects the k objects that

have the highest ranking among all the valid objects in the window based

on an user-specified preference function F . This preference function F can

be any complex function based on the attribute values of each object pi. It

gives each object pi a preference score F (pi) based on the attribute values

of pi, which does not change over time.

In the kNN detection problem defined in Definition 3, we continuously

detect the k objects that are closest to the query object pq, whose position is

7.2. THEORETICAL FOUNDATIONS 76

static, from the valid objects in the query window. Same as the preference

function F in top-k query, the distance function Dist(pi, pq) used to calcu-

late distance between an object pi to the query object qi in the kNN query

are user specified and can be any complex function based on the attribute

values of pi. Since the position of pq is static, indicating that the attribute

value of pi are only variables in function Dist(pi, pq), Dist(pi, pq) are ac-

tually a function F ′ of pi only. So, for any kNN query, given the distance

function Dist(pi, pq) and the position of pq, we can define a preference func-

tion F calculating the distance between pi and pq as pi’s preference score.

In other words, F (pi) in top-k query and Dist(pi, pq) in kNN query are mu-

tually transferable. Thus, since both top-k query and kNN query seek for

the k objects having highest ranking (by either F (pi) or Dist(pi, pq)). There-

fore, these two problems are in fact equivalent to each other, both seeking

for the k objects having highest ranking in the query window.

Given this fact, we will discuss our proposed solutions for top-k mining

queries in the following sections. These solutions can be equally used to

process kNN queries.

7.2 Theoretical Foundations

Minimal Top-k Candidate Set As we have analyzed in Chapter 3.3, the ba-

sic incremental computation strategy for top-k (kNN) queries suffer from

the from-scratch-recomputation problem. To solve this problem, we can

again use the predicted view technique proposed in Chapter 4. Using the

predicted view technique, we can pre-determine the specific subset of the

7.2. THEORETICAL FOUNDATIONS 77

current objects that will participate (be alive) in each of the future win-

dows. This enables us to pre-generate the partial query results for future

windows, namely the “predicted” top-k result for each of the future win-

dows. They would be based on the objects in the current window but have

already taken the expiration of these objects in future windows into con-

sideration.

Figure 7.1 shows an example of a top-k result for the current window

and predicted top-k results for the next three future windows (Q.win =

16, Q.slide = 4). Each object is depicted as a circle labeled with its object

id. The position of an object on the Y-axis indicates its F score, while the

position on the X-axis indicates the time it arrived at the system.

Figure 7.1: (Predicted) Top-k Results Four Consecutive Windows at time of
W0 (slide size = 4 objects)

Based on the objects in W0, we not only calculate the top-k (k=3) result

in W0, but we also pre-determine the potential top-k results for the next

three future windows, namely W1, W2 and W3, until the end of life spans

7.2. THEORETICAL FOUNDATIONS 78

of all objects in W0. In particular, the top-k results for the current window

W0 are generated based on all 16 objects in W0, namely objects o1 to o16.

While the predicted top-k results for future windows are calculated based

on smaller and smaller subsets of objects in W0, namely the predicted top-k

results for W1, W2 and W3 are calculated based on object o5 to o16, o9 to

o16 and o13 to o16 respectively. All other objects belonging to W0 but deter-

mined to not fall into the (predicted) top-k results for any of these (future)

windows (from W0 to W3 in this case) can be discarded immediately.

In the example shown in Figure 7.1, only the 7 objects within the pre-

dicted top-k results for the current and the three future windows (depicted

using circles with solid lines) are kept in our system, while the other 9 ob-

jects (depicted using circles with dashed lines) are immediately discarded.

The latter are guaranteed to have no chance to become part of top-k re-

sult throughout their remaining life spans. On the left of Figure 7.3, we list

the predicted top-k results maintained for these four windows. Although

these pre-generated top-k results are only “predictions” based on our cur-

rent knowledge of the objects that have already arrived so far, meaning

that they may need to be adjusted (updated) when new objects come in,

they guarantee an important property as described below.

Theorem 7.1 At any time, the objects in the predicted top-k result constitute the

“Minimal Top-K candidate set” (MTK), namely the minimal object set that is

both necessary and sufficient for accurate top-k monitoring.

Proof 7.1 We first prove the sufficiency of the objects in the predicted top-k re-

sults for monitoring the top-k results. For each of the future windows Wi (the ones

7.2. THEORETICAL FOUNDATIONS 79

that the life span of any object in the current window can reach), the predicted

top-k results maintain k objects with the highest F scores for each Wi based on the

objects that are in the current window and are known to participate in Wi. This

indicates that any other object in the current window can never become a part of

the top-k results in Wi, as there are already at least k objects with larger F scores

than it in Wi. So, they don’t need to be kept. Then, even if no new object comes into

Wi in the future or all newly arriving objects have a lower F score, the predicted

top-k results would still have sufficient (k) objects to answer the query for Wi. This

proves the sufficiency of the predicted top-k results.

Next we prove that any object maintained in the predicted top-k results are nec-

essary for top-k monitoring. This would imply that this object set is the minimal

set that any algorithm needs to maintain for correctly answering the continuous

top-k query. Any object in the predicted top-k result for a Wi may eventually be

a part of its real top-k result. This would happen if no new object comes into Wi

or all new objects have a lower F score. Thus discarding any of them may cause

a wrong result to be generated for a future window. This proves the necessity of

keeping these objects.

Based on the sufficiency and necessity we have just proved, the objects in

the predicted top-k results constitute the “Minimal Top-K candidate set” (MTK),

namely the minimal object set that is necessary and sufficient for accurate top-k

monitoring.

7.3. AN INITIAL APPROACH: PRETOPK 80

7.3 An Initial Approach: PreTopk

Now we first introduce the first step toward solving this problem, which

is based on incremental maintenance of MTK. We call this approach Pre-

Topk. When the window slides, the following two steps update the pre-

dicted top-k results. At step 1, we simply purge the view of the expired

window. For example, as shown in Figure 7.3, the top-k result of W0 in

Figure 7.2 is removed, and W1 becomes the new current view. This sim-

ple operation is sufficient for handling the object expiration. At step 2, we

create an empty new predicted top-k result for the newest future window

to cover the whole life span of the incoming objects. Using our example

in Figure 7.3, the newest future window in this case is W4. Therefore, each

new object will fall into the current window and all future windows that

we are currently maintaining. We thus update these predicted top-k results

by simply applying the addition of each new object.

In particular, when a new object onew comes in, we attempt to insert it

into the predicted top-k result of each window. If the predicted top-k result

of a window has not reached the size of k yet, we simply insert onew into

it. Otherwise we also remove the existing top-k object with the smallest F

score once onew is inserted. If it fails, namely the predicted top-k result sets

of all future windows maintained have reached size k and F (onew) is no

larger than the F score of any object in them, onew will be discarded imme-

diately. Again, such computation is straightforward. Figure 7.2 shows the

updated predicted top-k results of our running example (Figure 7.1) after

the insertion of four new objects.

7.3. AN INITIAL APPROACH: PRETOPK 81

Figure 7.2: Updated Predicted Top-k Results of Four Consecutive Windows
at time of W1 (slide size = 4 objects)

Figure 7.3: Update Process of Predicted Top-k sets From Time of W0 to W1

7.3. AN INITIAL APPROACH: PRETOPK 82

Conclusion. PreTopk solves the recomputation bottleneck suffered by

the state-of-the-art solutions [MBP06]. Memory-wise, it only keeps the

minimal number of objects necessary for top-k query monitoring, which

is shown to be independent of the potentially very large window size (in

Theorem 8.1). Computation-wise, the processing costs for generating the

top-k result in each window are no longer related to the window size. This

is a significant improvement over the state-of-the-art solution [MBP06], be-

cause both the processing and memory costs of any solution that involves

recomputation are related to the window size, which is usually an over-

whelming factor compared to k or the slide size. A in-depth cost analysis

of PreTopk can be found in Chapter 8.2.2.

However, the limitations of PreTopk are obvious. Its performance is

significantly affected by a constant factor, namely Cnw, the number of pre-

dicted top-k results to be maintained. More precisely, since PreTopk main-

tains the predicted top-k result for each window independently, both its

CPU and memory costs increase linearly with the number of predicted top-

k results to be maintained (Cnw). Although Cnw is a constant, as it is fixed

given the query specification and will never change during query execu-

tion, it can be large in some cases. For example, if a query Q has a window

size Q.win = 10000 and a slide size Q.slide = 10, PreTopk maintains pre-

dicted top-k results for 1000 different windows. Our experimental studies

in Chapter 9.4 confirm this inefficiency of PreTopk as the ratio between

Q.win and Q.slide increases.

7.4. PROPOSED SOLUTION: MINTOPK 83

7.4 Proposed Solution: MinTopk

7.4.1 Properties of Predicted Top-k Results

To design a solution whose CPU and memory costs are independent not

only from the window size but also the number of future windows to be

maintained, we analyze the interrelationships among the predicted top-k

results maintained by PreTopk.

Property 1: Overlap. We observe that the predicted top-k results in ad-

jacent windows tend to partially overlap, or even be completely identical,

especially when the number of predicted top-k results to maintain (Cnw) is

large. We now explain the overlap property of the predicted top-k results

across multiple windows.

Lemma 7.1 At any given time point, the predicted top-k result for a future win-

dow Wi is composed of two parts: 1) Kinherited, a subset of predicted top-k ob-

jects inherited from the previous window Wi−1 ; 2) Knew, the “new” top-k objects

which qualify as top-k in Wi but not in Wi−1. |Kinherited| ∩ |Knew| = ∅ and

|Kinherited| + |Knew| = k. Then the following property holds: For any object

oi ∈ Knew and oj ∈ Kinherited, F (oi) < F (oj) .

Proof 7.2 If there exists an oi ∈ Knew with F (oi) larger or equal to F (oj) of

any object oj ∈ Kinherited, oi will be in the predicted top-k results for the previ-

ous window Wi−1 and thus oi ∈ Kinherited. As |Kinherited| ∩ |Knew| = ∅ by

definition, this is a contradiction. Thus, there cannot exist any oi ∈ Knew and

oj ∈ Kinherited such that F (oi) > F (oj).

In the earlier example in Figure 7.1, at time of window W0, objects 6 and

7.4. PROPOSED SOLUTION: MINTOPK 84

14 belong to Kinherited of W1, while object 7 belongs to Knew of W1.

When Cnw is large, implying that the window moves a small step (com-

pared to the window size) at each slide, only a small percentage of the

objects will expire after each window slide. Then, the majority of the pre-

dicted top-k result of a window come from Kinherited. In the previous ex-

ample, where Q.win = 10000 and Q.slide = 100, if k=500 objects, at least 80

percent of the predicted top-k objects in a window will be the same as those

in the previous window (worst case). On average, this percentage will be

even higher, as the expired top-k objects should be only a small portion of

all the expired objects. In the example shown earlier in Figure 7.3, at W0,

the current top-k of W0 and predicted top-k results of W1 only differ in one

object, and those of W2 and W3 are in fact exactly the same.

Property 2: Fixed Relative Positions. The relative positions between

any two objects oi and oj in the predicted top-k result sets of different win-

dows remain the same.

Since the F score for any object is fixed and the predicted top-k objects

in any window are organized by F scores, oi will always have a higher rank

than oj in any window in which they both participate, if F (oi) > F (oj).

7.4.2 Solution: Integrated View Maintenance

Given the two properties identified in Section 4.1, we now propose an inte-

grated maintenance mechanism for the sequence of predicted top-k results

in future windows. As shown in the cost analysis in Chapter 8.2.1, the

major processing costs for PreTopk to maintain top-k results lie in position-

ing each new object into the predicted top-k results of all future windows.

7.4. PROPOSED SOLUTION: MINTOPK 85

Thus, our objective is to share the computation for the positioning each new

object into multiple predicted top-k results (multiple future windows).

To achieve this goal, instead of maintaining Cnw independent predicted

top-k result sets, namely one for each window, we propose to use a single

integrated structure to represent the predicted top-k result sets for all win-

dows. We call this structure the super-top-k list. At any given time point,

this super-top-k list includes all distinct objects in the predicted top-k results

of the current as well as all future windows. The super-top-k list is sorted

by F (o). Figure 7.4 shows an example of the super-top-k list containing the

objects in predicted top-k results for four windows.

Next, we tackle the problem of how to distinguish among and maintain

top-k results for multiple windows in this single super-top-k list structure.

As a straightforward solution, for each object, we could maintain a win-

dow mark (a window Id) for each of the windows in which the object is

part of its predicted top-k result set. We call this the complete window mark

strategy. Using the example in Figure 7.1, at the time of W0, object 14 needs

to maintain four window marks, namely W0, W1, W1 and W3, as it is in the

predicted top-k results for all these four windows. When an object is quali-

fied for or disqualified from the predicted top-k result set of a window, we

would respectively need to add a new or remove an existing window mark

from it for the corresponding window.

This solution suffers from a potentially large number of window marks

being maintained for each object. Thus, both the addition and removal

process of window marks may require traversing the complete window

mark lists. This is clearly not desirable.

7.4. PROPOSED SOLUTION: MINTOPK 86

Figure 7.4: Independent Top-k Result Sets vs. Super-top-k Structure using
Complete and Summarized Window Marks

7.4.3 Optimal Integration Strategy based on

Continuous Top-k Career

To overcome this shortcoming, we observe the following.

Lemma 7.2 At the time of the current window Wi, the minimal F score of the

predicted top-k objects in a future window Wi+n(n > 0) is smaller than or equal to

that of any window Wi+m(0 ≤ m < n), Wi+n.F (omin topk) ≤Wi+m.F (omin topk).

Proof 7.3 Since some objects may expire after each window slide, the objects in

the current window Wi that will participate in Wi+n, D Wi+n, is a subset of those

will participate in Wi+m, D Wi+m (m < n). Thus, the minimal F score of the

top-k objects selected from the object set D Wi+n in Wi+n cannot be larger than the

minimal F score of the top-k objects selected from a super set of D Wi+n, namely

the object set D Wi+m in Wi+m.

Based on Lemma 7.2 we derive the lemma below.

Lemma 7.3 At any given moment, if an object is part of the predicted top-k result

for a window Wi, then at that moment it is guaranteed to be in the predicted top-k

7.4. PROPOSED SOLUTION: MINTOPK 87

results for all later windows Wi+1, Wi+2 ... Wi+j (j ≥ 0), until the last window

in its life span.

Proof 7.4 Since some objects may expire after each window slide, the objects in

the current window Wi that will participate in Wi+n, D Wi+n, is a subset of those

will participate in Wi+m, D Wi+m (m < n). Thus, the minimal F score of the

top-k objects selected from the object set D Wi+n in Wi+n cannot be larger than the

minimal F score of the top-k objects selected from a super set of D Wi+n, namely

the object set D Wi+m in Wi+m.

This continuous top-k career property in Lemma 7.3 establishes the the-

oretical foundation for an innovative design of the super-top-k list. Namely,

we design a more compact encoding for window marks of each object. In

particular, for each object, as its “top-k career” is continuous, we simply

maintain a starting and an ending window mark, which respectively represent

the first and the last windows in which it is predicted to belong to top-k. As

shown on the right of Figure 7.4, the first (upper) window mark maintained

by each object is its starting window mark and the second (lower) one is its

ending window mark. Clearly, the number of window marks needed for

each object is now constant, namely 2, no matter in how many windows it

is predicted to belong to the top-k result.

To enable us to efficiently decide in which windows a new object is

predicted to make top-k result set when it arrives at the system, we also

maintain one Lower Bound Pointer (lbp) for each window pointing at the

top-k object with the smallest F (o). When a new object arrives, we simply

need to compare it with the object pointed by the lbp of each window. In

7.4. PROPOSED SOLUTION: MINTOPK 88

the example shown in Figure 7.4, the lbp of W0 and W1 point to objects 14

and 7 respectively, while those of W2 and W3 both point to object 16. We

call this the summarized window mark strategy. This is not only an important

improvement in terms of memory usage but it significantly simplifies the

top-k update process, as demonstrated below.

7.4.4 Super-Top-K List Maintenance

Handling Expiration. Logically, we simply need to purge the top-k result

for the expired window from the super-top-k list. This task seems to be no

longer as trivial as in the independent view storage solution (PreTopK),

because now the top-k objects for different windows are interleaved within

one and the same super-top-k list. We may need to search through the list

to locate the top-k objects of the expired window. However, the following

observation bounds such cost, indicating that searching is not needed.

Lemma 7.4 At any given time, the top-k objects of the current to-be-expired win-

dow are guaranteed to be the first k objects in the super-top-k list, namely the ones

with the highest F scores.

Proof 7.5 First, since the objects in the super-top-k list are sorted by F scores, the

first k objects in super-top-k list are those objects with highest F scores within the

whole list. Second, the top-k objects of the current window are selected from all

the objects in the current window, while the predicted top-k objects for any future

window are selected based on a subset of objects in the current window. Therefore,

the top-k objects of the current window must be the ones with highest F scores

among the current window. Their F scores cannot be lower than those of the other

7.4. PROPOSED SOLUTION: MINTOPK 89

objects belonging to the predicted top-k results of future windows, which constitute

the later part of the super-top-k list.

Thus we can “purge” the first k objects on our super-topk-list without

search. Note that purging here is only a logical concept to convey that

these objects will no longer serve as top-k for this to-be-expired window.

However, some of the top-k objects for the expired window may continue

to be part of the predicted top-k results in future windows. We cannot

simply delete them from the super-top-k list without considering their future

role.

Instead, when the window slides, we implement purging of the expired

window by updating the window marks of the first k objects in super-top-k

list. More specifically, we increase the starting window mark by 1 for each

of these objects. As the “top-k careers” of an object is continuous (Lemma

7.3), such update conveys that these objects will no longer serve as top-k

for the expired window and their “top-k career” are predicted to start at the

next window. If the starting window mark of an object becomes larger than

its ending window mark, with the ending window mark the latest window

in which it can survive, we know that this object will have no chance to be

part of the top-k result in its remaining life-span. We can thus physically

remove it from the super-top-k list.

Handling Insertion. For the insertion of a new object onew, we take

two steps to update the super-top-k list. First, we position it into the super-

top-k list. Second, we remove the object with the smallest F score from the

windows that the new object is predicted to be part of their top-k results.

7.4. PROPOSED SOLUTION: MINTOPK 90

Figure 7.5: Update Process of super-top-k list From W0 to W1

For the first step, the positioning process has become fairly simple due to

the support from the summarized window marks. In particular, for each

object, if the predicted top-k result set of any future window represented by

the super-top-k list has not reached the size of k yet, or if its F score is larger

than that of any object in the super-top-k list, we insert it into the super-top-k

list based on its F score. Otherwise it will be discarded immediately. If

the new object is inserted into super-top-k list, which indicates that it is in

the predicted top-k results of at least the last window in its life span, its

ending window mark is set to be the window Id of this last window. The

starting window mark of a new object is simply the oldest window on the

super-top-k list whose F (omin topk) (the F score of the object pointed by its

lower bound pointer) is smaller than F (onew). We find this window by

comparing F (onew) with F (omin topk) of the oldest window on the super-

top-k list, and keep comparing F (onew) with that of the younger ones (with

larger window Ids), until we find the oldest window whose F (omin topk) is

smaller than F (onew), (F (omin topk) monotonically decreases as window Id

increases in Lemma 7.2). In the example shown in Figure 7.5, the F score

of the new object 17 is larger than F (omin topk) of all windows, from W1 to

7.4. PROPOSED SOLUTION: MINTOPK 91

W4. Thus its starting window mark is set to W1, indicating that its “top-k

career” is predicted to start at W1.

Second, for each window in which the new object is inserted into its

predicted top-k result, one previous top-k object becomes disqualified and

thus must be removed. Given that we have an lbp, for each window point-

ing to its top-k object with smallest F score, locating such disqualified ob-

ject is trivial. For such a disqualified object, as it now serves in one less

window as a top-k object, we simply increment its starting window mark

by 1. Same as in the purging process, if its starting window mark now be-

comes larger than its ending window mark, we physically remove it from

super-top-k list. Objects 7 and 16 are such examples in Figure 7.5.

7.4.5 Final Move Towards Optimality

Now we have the last but also the most challenging maintenance task left.

We must design a strategy to efficiently redirect the lower bound pointer

(lbp) of each window from which the object with the smallest F (o) has

just been removed. To do this, we need to locate the object that currently

has the smallest F (o) for each of those affected windows on the super-top-k

list. On first sight, this task seems to require at least one complete search

through the super-top-k list for each affected window. This is because the

objects belonging to different windows are now interleaved in this inte-

grated structure. Thus, we would have to search and locate the objects

whose F (o) scores used to be the second smallest one in each window. If

so, the searches would make the redirecting process very expensive com-

putationally and thus would significantly affect the overall performance of

7.4. PROPOSED SOLUTION: MINTOPK 92

the MinTopk algorithm. To solve this problem, we carefully analyze the

characteristics of the super-top-k list and discover the following important

property.

Lemma 7.5 For each window Wi whose predicted top-k result is represented by

the super-top-k list, the object with the second smallest F score in its predicted

top-k result, Wi.osec min topk, is always directly in front of (adjacent to) the object

with the smallest F score in its predicted top-k result, Wi.omin topk.

Proof 7.6 This lemma can be proven by an exhaustive examination of all possi-

ble scenarios. By Lemma 7.1, we know that, at any given moment, the predicted

top-k result set for a future window Wi, Wi.topk, is composed of two parts: 1)

Kinherited, a set of inherited top-k objects from the previous window Wi−1 ; 2)

Knew, a set of “new” objects that qualify as top-k in Wi but did not in Wi−1.

By Lemma 7.2, any object oi ∈ Wi.Knew has a lower F score than any object

oj ∈ Wi.Kinherited . For the current window Wi, the proof is straightforward.

Since the top-k objects of the current window Wi are always the first k objects

in super-top-k list (Lemma 7.4), and the objects on the super-top-k list are sorted

by F scores, Wi.osec min topk is in the (k − 1)th position of super-top-k list, and

Wi.omin topk is in the kth position.

Now let us consider the next window right after Wi, namely Wi+1. There are

four possible situations. 1) Wi+1.osec min topk,

Wi+1.omin topk ∈ Wi+1.Kinherited. It is easy to see that, in this case, Wi+1.Knew

is empty and the top-k objects of Wi+1 are exactly the same as those in Wi. Thus

these two objects are simply the same two top-k objects with the lowest F scores

in Wi, and have been shown to be adjacent to each other in the case above. 2)

7.4. PROPOSED SOLUTION: MINTOPK 93

Wi+1.osec min topk,Wi+1.omin topk ∈Wi+1.Knew. Since any object oi ∈Wi.Knew

has a lower F score than any object oj ∈ Wi.Kinherited, we know that these

two objects with lowest F scores in Wi+1.Knew definitely have lower scores than

any object in Wi+1.Kinherited. Thus no top-k objects in the previous window

can be in between of them two. Also, any “new” predicted top-k object in the

next window Wi+2, namely any object in Wi+2.Knew, must have a smaller F

score than these two objects do, otherwise it would have already made top-k in

Wi+1 and thus would not be in Wi+2.Knew but in Wi+2.Kinherited. So, no pre-

dicted top-k object of any later window can be in between of them. This proves

the case for the second situation. 3) Wi+1.osec min topk ∈ Wi+1.Kinherited and

Wi+1.omin topk ∈ Wi+1.Knew. This case is possible only if exactly one top-

k object will expire from Wi. In this case, Wi+1.osec min topk must be the last

one in Wi+1.Kinherited, and Wi+1.omintopk must be the only one in Wi+1.Knew.

They are thus also adjacent to each other. 4) Wi+1.omin topk ∈ Wi+1.Knew and

Wi+1.osec min topk ∈ Wi+1.Kinherited. This case is simply impossible, because

any object oi ∈ Wi.Knew has lower F score than any object oj ∈ Wi.Kinherited

(Lemma 7.1), but clearly F (Wi+1.omin topk) > F (Wi+1.osec min topk). Now we

have covered all four possible situations for Wi+1. We thus can prove that, at

the same moment, Wi+j .osec min topk and Wi+j .omin topk (j > 1) in any future

window are also in adjacent positions using the same method.

Using Lemma 7.5, we can now conduct the redirection procedure effort-

lessly. We simply move the lower bound pointer of each affected window

by one position up in the super-top-k list. Lastly, after the insertion of all

new objects, the first k objects on the super-top-k list correspond to the top-k

7.4. PROPOSED SOLUTION: MINTOPK 94

results for the current window and can be output directly. We call this pro-

posed algorithm MinTopK. The pseudo code of MinTopK can be found in

Figure 7.6.

7.4. PROPOSED SOLUTION: MINTOPK 95

oi: an object. oi.T : object oi’s time stamp.
oi.start w/.end w: starting/ending window mark of oi.
Wi.Tend : ending time of a window Wi.
Wexp: the window just expired.
Wnew: the newest future window.
Wi.lbp: lower bound pointer of Wi.
Wi.tkc: top-k object counter of Wi.
owi.lbp

: object pointed by lower bound pointer of Wi.
omin suptopk : object with smallest F score on super-top-k list.

MinTopk (S,win, slide, F, k)
1 For each new object onew in stream S
2 if onew.T > Wcur.Tend

//slide window
3 OutputTopKResults();
4 PurgeExpiredWindow();

// super-top-k list maintenance
5 UpdateSuperTopk (onew)

OutputTopKResults()
1 output first k objects on super-top-k list;

PurgeExpiredWindow()
1 For first k objects (oexp) on super-top-k list
2 oexp.start w ++;
3 If oexp.start w > oexp.end w
4 remove oexp from super-top-k list;
5 remove Wexp;
6 create a new future window Wnew;
7 Wnew.tkc := 0;
8 Wnew.lbp := omin suptopk ;

UpdateSuperTopk (oi)
1 If F (oi) < F (omin suptopk) AND All Wi.tkc == k
2 discard oi immediately;
3 Else position oi into super-top-k list;
4 For each Wi that F (owi.lbp

) < F (oi)
5 If Wi.tkc < k
6 Wi.tkc++;
5 Else owi.lbp

.start w ++;
6 If owi.lbp

.start w > owi.lbp
.end w ;

9 remove owi.lbp
from super-top-k list;

10 move Wi.lbp by one position in super-top-k list;

Figure 7.6: Proposed Solution: MinTopk Algorithm

96

Chapter 8

Cost Analysis for Proposed

Algorithms

In this chapter, we first discuss the cost analysis for the algorithms detecting

density-based clusters and distance-based outliers in Chapter 8.1. This is

because the those two neighbor-based pattern types share the same neigh-

bor (graph) definition mechanism as defined in Chapter 2.2, and thus have

a similar detection process. Then, we will discuss the cost analysis for the

kNN detection in Chapter 8.2.

8.1 Cost Analysis for Density-Based Cluster and Distance-

Based Outlier Detection

To thoroughly analyze and compare the algorithms for density-based clus-

ter and distance-based outlier detection, we first design cost models for

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 97

modeling both the CPU and memory consumption for those two pattern

types in sliding window semantics.

8.1.1 Cost Models

We establish a CPU cost model capturing the response time of each algo-

rithm to answer the query in each individual window. Such response time

includes all the time consumed by the four stages of the neighbor-based

pattern detection process, namely the purging, loading, neighborship main-

tenance and output. The memory cost model is designed to describe the

memory space utilized by each algorithm. Such memory utilization in-

cludes the memory space for storing both the raw data and also the meta-

information in each window.

These cost models are built based on several common assumptions for

continuous query execution with sliding window scenarios. They are: 1)

Pattern detection for each window Wn starts after all the data points be-

longing to this window arrive at the system. In particular, we buffer all

the new data points until the system (wall clock) time reaches Wn.Tend (for

time-based windows) or the Q.winth arrives to the system (for count-based

windows), and then start the pattern detection process for Wn. 2) The sys-

tem is running in a stable state, meaning we always have sufficient com-

putational power to finish the pattern detection for a window Wn within

the allocated time period, namely between Wn.Tend and Wn+1.Tend. 3) To

achieve the real-time response for continuous query execution, we avoid

the performance penalty of I/O operations by keeping all the raw data and

meta-data in the main memory.

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 98

We first define the symbols used in our cost models in Table 8.1. These

symbols are used to indicate the information for a single window.

Average number of expired data points Nexp

Average number of new data points Nnew

Average number of “core points” Ncore

Average number of “promoted core points” Nprmtcore

Number of neighbors for a specific data point pi N(pi)

Average number of data points N

Average initial life-span for each data point Cils

Table 8.1: Symbols Used In The Cost Models.

CPU Costs of Alternative Algorithms.

Now we define the CPU costs of primitive operations in the neighbor-

based pattern detection processes in Table 8.2.

CPU cost of purging a data point cp

CPU cost of loading a data point into index cl

CPU cost of removing/establishing an exact neighborship (single-
directional)

cn

CPU cost of updating a integer attribute ci

CPU cost of running a range query search crqs

CPU cost of examine a data point during the output co

CPU cost of updating the lt cnt of a data point clt cnt = Cils

2
ci

CPU cost of updating the M-Table of a data point cmt = 3Cils

2
ci

CPU cost of updating the H-Marks of a data point chm = Cils * cint + θcnt

2
ci

Table 8.2: CPU Cost of Individual Operations.

We use the average costs in the estimation of clt cnt, cmt and chm. This is

because such cost for a specific data point is decided by its life-span, which

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 99

indicates the number of “predicted views” that will need to be updated.

We assume the life-spans of the data points in each window are uniformly

distributed from 1 to Cils. Thus we use Cils

2 to present the average. This

assumption holds for all count-based window cases and also for time-based

window cases if the input rate is stable. The same estimation is used for

memory costs of lt cnt, mt and hm later.

Given the costs of individual operations, we now design models for

the CPU cost of each algorithm. Again, the CPU cost is the sum of the

cost for the four stages of purging, loading, neighborship maintenance and

output. We use the symbols, Cpurge, Cload, Cnei main and Coutput to indi-

cate the cost of each algorithm for these four stages respectively. Also,

we use superscript to denote the cost of a specific algorithm and the tar-

get pattern type along with these symbols. For example, C
Exact−N(c)
purge indi-

cates the cost of purging for Exact-N to detect density-based clusters, while

C
abs(o)
nei main indicates the cost of neighborship maintenance for Abstract-C to

detect distance-based outliers. For a given algorithm, if the cost of a certain

stage is the same for both of the pattern types (density-based clusters and

distance-based outliers), we omit the pattern type part of the superscript

and only use the stage name as well as the algorithm name to generalize

the cost for this stage. For example, CExact−N
purge indicates the cost of purg-

ing for Exact-N to detect either of the two pattern types. Note, algorithms

Exact-N, Abstract-C and the naive approach handle both cluster and out-

lier detection, while Abstract-M and Extra-N support clustering only. The

specific costs of each alternative algorithm at each query processing stage

are listed in Table 8.3.

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 100

Cnaive
purge Nexp ∗ (cp)

Cnaive
load Nnew ∗ cl

Cnaive
nei main Nnew ∗ crqs

Cnaive
output N ∗ co

Cexact−N
purge

∑
1≤i≤Nexp

(
∑

1≤j≤Npi

cn + cp)

Cexact−N
load Nnew ∗ cl

Cexact−N
nei main

∑
1≤i≤Nnew

(crqs +
∑

1≤j≤Npi

2 ∗ cn)

C
exact−N(c)
output N ∗ co +

∑
1≤i≤Ncore

(
∑

1≤j≤Npi

co)

C
exact−N(o)
output N ∗ co

Cabs−C
purge Nexp ∗ (cp)

Cabs−C
load Nnew ∗ cl

Cabs−C
nei main

∑
1≤i≤Nnew

(crqs +
∑

1≤j≤Npi

clt cnt)

C
abs−C(c)
output N ∗ co +

∑
1≤i≤Ncore

crqs

C
abs−C(o)
output N ∗ co

C
abs−M(c)
purge Nexp ∗ (cp)

C
abs−M(c)
load Nnew ∗ cl

C
abs−M(c)
nei main

∑
1≤i≤Nnew

(crqs+
∑

1≤j≤Npi

cmt)+
∑

1≤i≤Nprmtcore
(crqs+cmt)

C
abs−M(c)
output N ∗ co

C
extra−n(c)
purge Nexp ∗ (cp)

C
extra−n(c)
load Nnew ∗ cl

C
extra−n(c)
nei main

∑
1≤i≤Nnew

(crqs +
∑

1≤j≤Npi

chm) +
∑

1≤i≤Nprmtcore
(chm)

C
extra−n(c)
output N ∗ co

Table 8.3: CPU Costs of Alternative Algorithms at Four Stages

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 101

Naive Approach: 1) Purge Cost: remove all expired data points from

the window. 2) Load Cost: load all new data points into the index. 3)

Neighborship Maintenance Cost: for all data points in the window, run a

range query search to form the patterns. 4) Output for Clusters: check each

data point in the window, and output each data point associated with a

cluster Id.

Exact-N Algorithm: 1) Purge Cost: remove all expired data points. Then

for each data point remaining in the window, remove the expired neighbors

from its neighbor list, 2) Load Cost:load all new data points into the index.

3) Neighborship Maintenance Cost: for each new data point pi, run a range

query search. Then for each of its neighbor pj found, add pi and pj to each

others’ neighbor list. 4.1) Output for Clusters: check each data point in

the window and run depth first search on all core points. 4.2) Output for

Outliers: check each data point in the window, .

Abstract-C Algorithm: 1) Purge Cost: remove all expired data points

in the window. 2) Load Cost: load all new data points into the index. 3)

Neighborship Maintenance Cost: for each new data point pi, run a range

query search. Then for each of pi’s neighbor pj found, update pi and pj ’s

lt cnt. 4.1) Output for Clusters: check each data point in the window and

run one range query search for each core point to form clusters. 4.2) Output

for Outliers: check each data point in the window, output those with not

enough neighbors (not enough neighbors on their neighbor lists)as outliers.

Abstract-M Algorithm: 1) Purge Cost: remove all expired data points

in the window. 2) Load Cost: load all new data points into the index. 3)

Neighborship Maintenance Cost: for each new data point pi, run a range

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 102

query search. Then for each of pi’s neighbor pj found, update pi and pj ’s

lt mt. Also, for each promoted core point, run a range query search and up-

date its lt mt. 4) Output for Clusters: check each data point in the window,

output those with not enough neighbors (neighbor counts are not not large

enough) as outliers.

Extra-N Algorithm: 1) Purge Cost: remove all expired data points in

the window. 2) Load Cost:load all new data points into the index. 3) Neigh-

borship Maintenance Cost: for each new data point pi, run a range query

search. Then for each of p′is neighbor pj found, update pi and p′js H-Marks.

4) Output for Clusters: check each data point in the window.

Memory Costs of Alternative Algorithms.

Similarly, we define the memory cost of individual data structures in

Table 8.4 before we discuss the memory cost of each algorithm.

Memory cost of a data point mp

Memory cost of an exact neighborship (single-directional) mn

Memory cost of an integer attribute mi

Memory cost of the lt cnt of a data point (used by
Abstract-C)

mlt cnt =
Cils

2 mi

Memory cost of the M-Table (mt) of a data point (used by
Abstract-M)

mmt =
3Cils

2
mi

Memory cost of the H-Marks (hm) of a data point (used
by Extra-N)

mhm = 5Cils

4
mi +

θcnt

2
mn

Table 8.4: Memory Costs of Individual Data Structures.

Again, we use Cils

2 to represent the average length of each data point’s

life-span, namely the number of “predicted views” that the data point needs

to be maintained in. Since lt cnt for each point is simply composed by Cils

2

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 103

neighbor counters (integers), its memory cost is Cils

2 mi. For mt, as each

data point needs to maintain 3 integers, namely a neighbor counter (inte-

ger), a type indicator (integer) and a cluster membership (integer), for each

“predicted view” its memory cost is 3Cils

2 mi. For hm of each data point,

it needs to maintain 2 integers, namely a neighbor counter (integer) and

type indicator (integer) for one “predicted view”. Also, it needs to main-

tain certain numbers of cluster memberships (between 0 and Cils

2) and exact

neighbors (between 0 and θcnt). We use half of the maximum numbers for

both of their estimations, which would be the case when the time stamps of

the input data are uniformly distributed or queries are using count-based

windows. Thus its memory cost is 5Cils

4 mi +
θcnt

2 mn.

Then we give the memory cost of each algorithm in Table 8.5. Here

we note that since the three algorithms, namely the Exact-N, the Abstract-

C, and the naive solution have the same memory costs when detecting

density-based clusters and distance- based outliers, we do not distinguish

between them in our cost model. While we put a (c) after each algorithm

designed to detect density-based clusters only. Basically, the memory costs

of each algorithm are composed of the utilization for storing the raw data

(N ∗mp) and the utilization for storing the corresponding meta-data about

each data point.

8.1.2 Performance Analysis

Analysis for Density-Based Clusters Algorithms. We first analyze the

costs of the algorithms for detecting density-based clusters in Table 8.6.

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 104

Memory Cost of the Naive Solution N ∗ (mp +mint)

Memory Cost of Exact-N
∑

1≤i≤N (mp +
∑

1≤j≤Npi
mn)

Memory Cost of Abstract-C N ∗ (mp +mlt cnt)

Memory Cost of Abstract-M(c) N ∗ (mp +mmt

Memory Cost of Extra-N(c) N ∗ (mp +mhm)

Table 8.5: Memory Costs of Each Algorithm.

Exact-N Abstract-C Abstract-M Extra-N Naive

Num of rqs Nnew Nnew+Ncore Nnew +
Nprmtcore

Nnew N

Worst Case
Memory
Overhead

N2 ∗mn N ∗ Cils

2
∗

mint

N ∗ 3Cils

2
∗

mint

N ∗ (Cils ∗
mint + θcnt ∗
mn)

N ∗mi

Performance
Factors

¯N(pi) Nnew
¯N(pi) Nnew

Ncore (Cils)

¯N(pi) Nnew

Nprmtcore

(Cils)

¯N(pi) Nnew

(Cils θ
cnt)

¯N(pi) N

More Ef-
ficient
If

¯N(pi) ⇓
Nnew ↓

¯N(pi) ↓
Nnew ↓
Ncore ↓
(Cils ↓)

¯N(pi) ↓
Nnew ↓
Nprmtcore ↓
(Cils ↓)

¯N(pi) ↓
Nnew ↓
(Cils ↓)
(θcnt ↓)

¯N(pi) ↓ N ↓
(Nnew ↑)

Table 8.6: Cost Analysis of Each Algorithm (↓=small, ⇓=very small,
↑=large, we use () if impact is minor).

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 105

There are several observations that can be made based on our analysis

shown in Table 8.6.

1) There are two major factors affecting the performance of all the algo-

rithms, namely ¯N(pi) the average number of neighbors each data point has

and Nnew the average number of new data points in each window (except

that the performance of the naive solution depends on N instead of Nnew).

¯N(pi) has a great influence on the cost for neighborship maintenance, as it de-

cides on the amount of neighborships that exist in each window. The increase

of ¯N(pi) will cause the increases of the costs for all algorithms, as the range

query searches become more expensive and each data point needs to com-

municate with more neighbors to update its meta-data. Nnew is the proven

lower bound for the minimum number of range query searches needed at

each window for neighbor-based pattern detection (see Chapter 5.1). Ob-

viously, the larger Nnew is, the more range query searches are needed for

all algorithms. The only exception is the naive solution that needs N range

query searches in all cases.

2) Only Exact-N and Extra-N guarantee the minimal number of range

query searches at each window, namely Nnew, and thus avoid the most

expensive operations to the best level. All the other alternative algorithms

may need extra range query searches depending on the characteristics of

the input data.

3) The performance of Exact-N is very sensitive to ¯N(pi), namely its

memory overhead becomes quadratic in N when ¯N(pi) approaches N . This

makes it work well only when ¯N(pi) ⇓, meaning ¯N(pi) is very small. All

three predictability-based solutions, Abstract-C, Abstract-M and Extra-N

8.1. COST ANALYSIS FOR DENSITY-BASED CLUSTER AND

DISTANCE-BASED OUTLIER DETECTION 106

have linear memory overhead in all the cases.

4) The performance of Abstract-M is largely decided by Nprmtcore, which

may significantly increase the number of range query searches that Abstract-

M needs to run at each window. As Nprmtcore can potentially be as large as

the size of all data points inherited from the previous window N − Nnew,

it makes Abstract-M suffer from the risk of having an even worst perfor-

mance than the naive solution. The same problem may happen to Abstract-

C as well, when Ncore gets close to N .

5) The cost of the predictability-based solutions drops even lower as

the constant Cils decreases, because it decides on the number of “predicted

views” to be stored and updated. Besides Cils, the performance of Extra-N

is also affected by another constant θcnt, which works as the upper bound

for the number of exact neighborships each data point stores. Although we

list these two factors for the completeness of our analysis, they are not the

key factors deciding algorithms’ performance. This is because they are un-

related to the number of range query searches needed and usually very

small constants compared with N .

Analysis for Distance-Based Outlier Algorithms. For detecting distance-

based outliers in sliding windows, Abstract-C achieves both the minimal

number of range query searches and linear memory requirement, while

Exact-N suffers from a potential quadratic memory overhead. The naive

solution does not take advantage of incremental computation.

Conclusion. Based on our cost analysis, we conclude that Extra-N and

Abstract-C are the best solutions for detecting density-based clusters and

distance-based outliers over sliding windows respectively. To validate our

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 107

claims derived from this analytical evaluation, a thorough experimental

study using both real and synthetic data streams is presented in Chapter 9.

8.2 Cost Analysis for kNN Detection Algorithms

8.2.1 Cost Analysis for PreTopk Algorithm

The predicted top-k result for each future window can be organized using

different data structures, such as a sorted list supported by a tree-based in-

dex structure or a min-heap organized on the F score of the objects. No

matter which data structure is chosen, the best possible CPU costs for in-

serting a new object into a top-k object set and keeping the size of the top-

k object set unchanged has complexity O(log(k)). More precisely, log(k)

for positioning the new object in the top-k object set, and log(k) for re-

moving the previous top-k object with the lowest F score. Thus the over-

all processing costs for handling all new objects for each window slide is

O(Nnew ∗ Cave topk ∗ log(k)), with Nnew the number of new objects coming

to the system at this slide, and Cave topk
1 the average number of windows

each object is predicted to make top-k when it arrives at the system. As the

object expiration process is trivial, this constitutes the total cost for updat-

ing the top-k result at each window slide,

Memory-wise, PreTopk maintains predicted top-k results for

Cnw
2 windows. The memory consumption of PreTopk is composed of

two parts: first, the number of distinct objects stored in memory; second,

1When data is uniformly distributed, Cave top−k = 2k
3slide

.
2Cnw = ⌈ Qi.win

Qi.slide
⌉which is equal to the maximum number of windows a new object can

be alive.

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 108

the number of references to the objects in the predicted top-k results of

all future windows. An object may appear in the predicted top-k results

for multiple windows and thus needs multiple references. In the example

shown in Figure 7.4, object 14 is predicted to be part of the top-k results in

four windows, and thus four references to it are needed.

For the first part, PreTopk achieves the minimal number of objects to

maintain for continuous top-k monitoring (Theorem 7.1). The size for this

minimal set in the average case is analyzed below.

Theorem 8.1 In the average case 3, the number of distinct objects in the predicted

results for all future windows is 2k.

For the second part, the number of references stored by PreTopk is sim-

ply Cnw ∗ k, as there are Cnw windows and k objects in each of them. The

size of an object reference (Refsize) is typically significantly smaller than

the size of the actual object (Objsize), especially when the object contains

a large number of attributes. In summary, the average memory cost for

PreTopk is 2k ∗Objsize + Cnw ∗ k ∗ refsize.

Conclusion. PreTopk successfully over comes the recomputation bot-

tleneck suffered by the state-of-the-art solutions [MBP06]. Memory-wise, it

only keeps the minimal number of objects necessary for top-k query mon-

itoring, which it is shown to be independent of the potentially very large

window size (in Theorem 8.1). Computation-wise, the processing costs for

generating the top-k result in each window are no longer related to the

window size. This is a significant improvement over the state-of-the-art

3Data is uniformly distributed on F (o), indicating that the objects with different F scores
have equal opportunity to expire after the window slides.

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 109

solution [MBP06], because both the processing and memory costs of any

solution that involves recomputation are related to the window size, which

is usually an overwhelming factor compared to k or the slide size.

However, there are also clear limitations for PreTop. The above cost

analysis reveals that the performance of the PreTopk algorithm is affected

by a constant factor, namely Cnw, the number of predicted top-k results to

be maintained. More precisely, since PreTopk maintains the predicted top-k

result for each window independently, both its CPU and memory costs in-

crease linearly with the number of predicted top-k results to be maintained

(Cnw).

8.2.2 Cost Analysis for MinTopk Algorithm

CPU and Memory Costs in the General Case. The CPU processing costs of

MinTopk to handle object expiration are O(k), as we simply need to update

the window marks of the first k objects on the super-top-k list. For handling

the new objects, the cost for each object pnew is P intopk ∗ (log(MTK.size) +

Cnw topk)+(1−P intopk)∗1 (0 ≤ P intopk ≤ 1), with MTK.size the size of MTK

(the number of objects maintained in the super-top-k list) and P intopk the

probability that pnew will make the MTK set. In general, when pnew makes

the MTK set (with P intopk probability), the cost for positioning pnew into the

super-top-k list is log(MTK.size) with the support of any tree-based index

structure. The cost for redirecting the lower bound pointers is simply equal

to Cnw top k
4, the number of windows that are affected by its insertion,

4Cnw top k is bounded by the constant Cnw, namely it is at most equal to Cnw, the total
number of windows maintained.

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 110

because we only need to move that pointer for each affected window by

one position (Lemma 7.5). Otherwise, with 1−P intopk probability, it will be

discarded immediately with the cost of just a single check (comparing its F

score with the minimal F score on the super-top-k list).

Lemma 8.1 The CPU complexity for MinTopk to handle each new object is O(log(MTK.size)).

Therefore, the CPU complexity of MinTopk to process each window is

O(Nnew ∗ (log(MTK.size)) in the general case, with Nnew the number of

new objects coming in that window slide.

Memory-wise, MinTopk only needs a constant memory size to maintain

each object in the MTK set.

Lemma 8.2 The memory size required by MinTopk to maintain each object pi in

super-top-k list is of constant size, in particular, it is (Objsize + 2Refsize).

Therefore, the memory complexity of MinTopk is O(MTK.size) in the

general case.

From the analysis above, we can observe that the size of the MTK,

MTK.size, is a key factor affecting both CPU and memory costs of MinTopk.

In the best case, MTK.size equals to k. This would happen when the pre-

dicted top-k results for all future windows are identical. In the worst case,

it is equal to the max size of each predicted top-k result set (k) times the

number of windows maintained (Cnw), namely Cnw ∗ k. This would mean

that all predicted top-k objects expire after each window slide. However,

this special case is highly unlikely in real streams. It could only happen

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 111

when the F scores of the objects in a stream monotonically decrease across

time and the slide size is at least as large as k.

Clearly, the average case is the most important one. In the average case,

the size of the super-top-k is only 2k, as we have proven that the average

number of distinct objects in MTK is 2k in Lemma 8.1. This is comparable to

the size of the final top-k result, which is equal to k. Thus, the average-case

CPU complexity of MinTopk for generating the top-k results at each win-

dow is O(Nnew ∗ log(k)). The average-case memory complexity of MinTopk

is O(k).

Optimality of MinTopk. Now we prove the optimality of our proposed

MinTopk algorithm in both CPU and memory utilization.

Theorem 8.2 MinTopk achieves optimal memory complexity for continuous top-

k monitoring in sliding windows. MinTopk also achieves optimal CPU complexity

for continuous top-k monitoring in sliding windows, when the top-k results are

returned in a ranked order based on preference scores.

Proof 8.1 Memory-Optimality: We have proven that the MTK set is the min-

imal object set that is necessary for any algorithm to accurately monitor top-k ob-

jects in sliding windows in Lemma 7.1. We emphasize that this minimality holds

in the general case, namely, given any unknown arrival rate distribution and pref-

erence score distribution of the input stream. Thus the optimal memory complexity

of any top-k monitoring algorithm in sliding windows is at least O(MTK.size).

Now we show that MinTopk achieves this optimal memory complexity. First,

MinTopk only maintains one reference for each object in MTK set. Then, in Lemma

8.2, we have shown that the memory space needed by MinTopk for each object in the

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 112

super-top-k list is Objsize+2∗Refsize. Denoting the size of MTK by MTK.size,

then the memory cost of MinTopk is MTK.size ∗ (Objsize + 2 ∗ Refsize). Since

Objsize and Refsize are both of constant size, the memory complexity of MinTopk

is O(MTK.size). This proves that MinTopk has optimal memory complexity in

the general case.

CPU-Optimality. To prove that MinTopk algorithm achieves the optimal

CPU complexity for generating the ranked top-k results at each window slide, we

formalize this problem as Pnewk.

Problem Pnewk: Given two datasets Dnew and D, which respectively rep-

resent the new object set for a window slide and the objects inherited from the

previous window, |Dnew| = Nnew and |D| = N . Each object oi in Dnew or D has

a unique F (oi) score 5. The objects in Dnew and D are not sorted on F(oi) score.

The goal is to return a dataset K which is composed of k objects from Dnew ∪ D

which have the largest F (oi) scores in Dnew ∪D in ranked order of F (oi).

Next we show that the problem Pnewk is at least as hard as the following prob-

lem Pnewk′ .

Problem Pnewk′ : Given two datasets Dnew and Dk, which respectively repre-

sent the new object set coming with a window slide and the existing top-k object

set of D (Dk ⊆ D), |Dnew| = Nnew and |Dk| = k. Each object oi in Dnew or Dk

has a unique F (oi) score. The objects in Dnew are unsorted on F(o1) score. The

goal is to return a dataset K which is composed of k objects from Dnew∪Dk which

have the largest F (oi) scores in Dnew ∪Dk in ranked order of F (oi).

5The assumption on uniqueness of preference scores is a common assumption for top-
k and most sorting related problems [CSRL01]. It is mainly for simplifying the problem
definition. While our proposed techniques do not require such uniqueness of preference
scores in query processing.

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 113

The problem Pnewk is at least as hard as Pnewk′ , because any algorithm that

solves Pnewk has to consider any object oi ∈ D, as any of them may be part of the

new top-k results. However, given that Dk is the top-k object set in D, thus for

any object oi, if oi ∈ D but oi /∈ Dk, it cannot be in the new top-k results, because

there are already k objects in Dk having larger F(o) scores than this oi. Thus, any

algorithm solving Pnewk can solve Pnewk′ also, indicating that Pnewk is at least as

hard as Pnewk′ .

Now we prove the lower bound of Pnewk′ by showing that Pnewk′ can be re-

duced to the sorting based on comparison problem [CSRL01]. In particular, first,

Let A denote any algorithm that solves this problem. Then we give the following

inputs to A, namely the input datasets Dnew and Dk, in which for any oi ∈ Dnew

and oj ∈ Dk, F (oi) > F (oj) and |Dnew| = |Dk|. It is easy to see that if A

solves Pnewk with the inputs above, A sorts Dnew. This implies that Pnewk′ can be

reduced to sorting based on comparison for Dnew, namely any algorithm A solv-

ing Pnewk′ can be used to solve sorting based on comparison problem. It is well

known that the lower bound for sorting based on comparison problem on a dataset

of size n is O(n ∗ log(n)) [CSRL01]. Therefore the lower bound of the Pnewk′ is

O(Nnew ∗ log(k)).

Since we have shown that any algorithm that solves the top-k problem in slid-

ing windows with ranked top-k results returned is dealing with a problem at least

as hard as Pnewk′ , we now have proven that the lower bound for any top-k moni-

toring algorithm for generating the top-k results in ranked order for each window

is O(Nnew ∗ log(k)).

As we have shown in Lemma 8.1, MinTopk takes only

O(log(MTK.size)) to process each new object that arrives within a window slide.

8.2. COST ANALYSIS FOR KNN DETECTION ALGORITHMS 114

Its CPU complexity to process each window is O(Nnew ∗ (log(MTK.size)). Now

we must determine what is the size of MTK in the general case. In Section 4.6,

we have shown that in the average case MTK.size = 2k, and even in the worst

case, MTK.size is bounded by a constant factor Cnw = win
slide

. This indicates

that no matter what the input rate and preference score distributions of the input

stream are, the design of MTK guarantees that it contains at most Cnw ∗ k objects.

Namely, MTK.size = Cnw ∗ k in the worst case. Therefore the CPU cost of

MinTopk is O(Nnew ∗ log(Cnw ∗ k)) in the worst case. Since Cnw is a constant

that is known and will not change once the query is specified, the CPU complexity

of MinTopk is O(Nnew ∗ log(k)). This proves that MinTopk achieves the optimal

CPU complexity for generating ranked top-k objects at each window in the general

case.

115

Chapter 9

Experimental Study

9.1 Real and Synthetic Streaming Datasets

9.1.1 Real Streaming Datasets

The first real streaming dataset we use is the Stock Trading Traces data

(STT) from [INE]. This dataset has about one million transaction records

throughout the trading hours of a day. Each transaction contains the name

of the stock, time of sale, matched price, matched volume, and trading type.

The second real streaming dataset, GMTI (Ground Moving Target Indi-

cator) is provided by MITRE Corp. modeling troop movement in a certain

area. It captures the information of moving objects gathered by different

ground stations or aircraft in a 6-hour time frame. It has around 100,000

records regarding the information on vehicles and helicopters (speed rang-

ing from 0-200 mph) moving in a certain geographic region.

For the experiments that involve data sets larger than the sizes of these

9.1. REAL AND SYNTHETIC STREAMING DATASETS 116

two datasets, we augment them to the required sizes by appending similar

data after them. In particular, we append multiple rounds of the original

data varied by setting random differences on all attributes, until it reaches

the desired size.

9.1.2 Synthetic Streaming Datasets

For the evaluation of density-based cluster detection, we built a synthetic

data generator to generate the datasets containing controlled numbers of

clusters and noise. Each synthetic dataset is composed of one thousand

stream segments. Each segment of data contains certain percentage (as an

input parameter) of random noise and a set of clusters, each following a

Gaussian distribution but each with different randomly selected mean and

variance.

For the evaluations of distance-based outlier detection algorithms, we

use the Gauss Data Set, which is a synthetically generated time sequence

of 35,000 one dimensional observations. It consists of a mixture of three

Gaussian distributions with uniform noise. This is the dataset used by the

only previous work [AF07] detecting distance-based outliers in continuous

windows.

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 117

9.2 Experimental Studies for Density-Based Cluster Ex-

traction

9.2.1 Experimental Platform

Our experiments for density-based cluster detection algorithms are con-

ducted on a HP Pavilion dv4000 laptop with Intel Centrino 1.6GHz pro-

cessor and 1GB memory, which runs Windows XP professional operating

system. The algorithms are implemented with VC++ 6.0.

9.2.2 Experimental Methodologies

We run all the experiments using both synthetic and real data for 10K win-

dows. We measure two key metrics for stream processing algorithms, re-

sponse time and memory footprint. Those two metrics are also evaluated

by our cost models in Chapter 8.1. In particular, we measure the average re-

sponse time (referred as CPU time henceforth) it takes to answer a pattern

detection query at each window. This response time includes the time con-

sumed by all the four stages of pattern detection at each window. So, the

average response time reflects the average time an algorithm needs from

“input data is ready” to “results are output” for each single window. The

response time is averaged over all the windows in each experiment. The

memory footprint, which indicates the peak memory space consumed by

an algorithm, is recorded over all the windows.

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 118

9.2.3 Overall Evaluation

To compare the performance of all five algorithms discussed in this work,

namely Exact-N, Abstract-C, Abstract-M, Extra-N and the naive solution,

we conduct a comprehensive experiment with a wide range of the synthetic

data generated by our data generator. These experiments cover all the im-

portant combinations of the two major cost factors identified in our cost

analysis (Chapter 8.1), namely ¯N(pi) and Nnew.

To avoid the performance fluctuations caused by different base sizes,

namely different number of data points in the window, we use count-based

windows (equal in concept to time-based windows with uniform data rates).

Thus, Nnew is equal to the slide size Q.slide, and ¯N(pi) is controlled by ad-

justing two input parameters of the data generator. More specifically, we

can increase ¯N(pi) by expanding the size of each cluster CluSize while de-

creasing the variance of its Gaussian Distribution.

To cover all the major combinations of these two factors, we vary ¯N(pi)

from 1% to 50%, and Q.Slide from 10% to 100% , both in terms of the per-

centage to window size Q.win and both with 7 different settings. In par-

ticular, the 7 different ¯N(pi) settings represent the data from “very sparse”

(¯N(pi) = 1%), “medium dense” (¯N(pi) = 20%) and finally to “very dense”

(¯N(pi) = 50%). The 7 different Q.Slide settings, which are 10% to 50% with

10% increments plus 80% and 100%, cover all the increments from “mostly

remaining” (Q.Slide = 10%), “half-half” (Q.Slide = 50%), “mostly new”

(Q.Slide = 80%) and finally to “all new” (Q.Slide = 100%). We measure

the CPU time (shown in Figure 9.1) as well as the memory footprint (shown

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 119

in Figure 9.2) of the five algorithms for all 7 × 7 = 49 combinations. Other

settings of this experiment include window size Q.win = 5K, θrange = 0.003

and θcnt = Q.win× 5% = 250.

Figure 9.1: Comparison on CPU Performances of Five Algorithms

From Figures 9.1 (CPU) and 9.2 (memory), we observe that Abstract-

M and Extra-N clearly outperform the other three algorithms, namely the

Exact-N, Abstract-C and the naive solution, in most of the test cases. Be-

sides the naive solution which does not take advantage of incremental com-

putation, the other two incremental algorithms, Exact-N and Abstract-C

suffer from a huge consumption of either memory space or CPU time in

many cases.

In particular, as shown in Figure 9.2, the memory consumption of Exact-

N is at least 80% percent higher than the naive solution as the later can be

considered as having no memory overhead. More importantly, such 80%

percent gap only happens when the data is very sparse (¯N(pi) = 1% of

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 120

Q.win). It increases to more than 4000 percent when ¯N(pi) reaches 50% of

the window size, indicating that the data stream contains very dense sub-

regions. Such results agree with our earlier analysis, considering the large

number of links each data point has to store. This experiment confirms that

Exact-N is not an efficient algorithm in terms of memory consumption. In

addition, the CPU time it uses in all 49 cases is on average 25 present higher

than that used by Extra-N. This is calculated by summing the difference

percentage in all 49 cases and divided it by 49. This fact eliminates it from

the set of plausible candidates even in terms of CPU-efficiency.

Figure 9.2: Comparison on Memory Performances of Five Algorithms

Abstract-C, an incremental algorithm which does not maintain the exact

neighborships, has good memory efficiency. However, since the time effi-

ciency of Abstract-C is highly sensitive to the number of core points Ncore

in the window, the performance of Abstract-C is largely decided by the in-

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 121

terrelationship between two variables, namely ¯N(pi) and θcnt. More specif-

ically, when ¯N(pi) is far below the θcnt and thus there exist very few or

no core points in the window, Abstract-C is actually a very efficient algo-

rithms in terms of both CPU and memory. As shown in Figure 9.1, it is even

faster than Abstract-M and Extra-N for ¯N(pi) = 1% cases in terms of CPU

time. However, as ¯N(pi) increases and eventually surpasses θcnt, indicating

that more and more data points become core points, the time efficiency of

Abstract-C drops dramatically. In many cases shown in Figure 9.1, it is not

only much slower than our proposed algorithms. Abstract-M and Extra-N,

but also slower even than the naive solution. This experiment illustrates

that Abstract-C is very inconsistent in terms of CPU time and it performs

well only if Ncore is very very low. Given the limited scope of applicability,

Abstract-C is not a general attractive solution.

Our proposed algorithms, namely Abstract-M and Extra-N, take ad-

vantage of incremental computations while successfully avoiding the huge

overhead on both memory and CPU. Compared with the naive solution,

both Abstract-M and Extra-N need more memory space as they need to

maintain a certain amount of meta-information for future windows. How-

ever, such overhead is much smaller than that of Exact-N and in fact is

always being kept at very acceptable levels. In particular, for Abstract-M

the memory consumption in all 49 cases is on average 33 percent higher

than that of the naive solution. This is calculated in the same way as we

compared the CPU time of Exact-N and Extra-N earlier. For Extra-N, this

number becomes 36 percent, which is slightly higher but still quite modest.

These facts confirm that our proposed algorithms, Abstract-M and Extra-N,

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 122

have very good and consistent memory-efficiency.

The negligible CPU overhead of our proposed algorithms is also con-

firmed by this experiment. As shown in Figure 9.1, Abstract-M and Extra-

N saved CPU time substantially compared to the naive solution in all the

cases where Q.Slide ≤ 50% × Q.win. Even in the cases when Q.Slide is

very close (80%) or even equal to Q.win (typically the limit of the incremen-

tal algorithms), Abstract-M and Extra-N exhibit comparable performances

with those of the naive solution. Actually, both Abstract-M and Extra-N

can be taken as variances of the naive solution when the windows are non-

overlapping, because they only detect the patterns based on the “view”

of the current window and no “predicted view” would be generated nor

maintained. This indicates that our proposed algorithms have very small

CPU overhead in all cases and thus are viable candidates for system’s only

implementation, regardless of the input data and queries.

9.2.4 Abstract-M vs. Extra-N

We first discuss the equivalence of Abstract-M and Extra-N shown in many

of our above test cases, which on first sight does not appear as one would

have expected in our cost analysis. The main reason for this is that the num-

ber of promoted core points Nprmtcore stayed small in many cases and thus

did not entangled the performance of Abstract-M. Actually, we found that

Nprmtcore tends to be small, unless a large number of data points who have

a “boundary” (close to θcnt) number of neighbors exist. However, such sit-

uations are not found to be often in our experiments on both synthetic and

real data.

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 123

Although Abstract-M and Extra-N work equivalently well in many of

our test cases, they do behave quite differently when Nprmtcore turns to be

an unneglectable factor. To better understand their performance in these

special cases, we zoom into the cases with ¯N(pi) = 5% in our comprehen-

sive experiment (Figure 9.1 and Figure 9.2). Figures 9.3 and 9.4 show the

zoomed in subparts of the same experiment results discussed in the earlier

part of this subsection.

Figure 9.3: Comparison on CPU
Time of Abstract-M and MPS in
¯N(pi) = 5% cases

Figure 9.4: Comparison on Mem-
ory Usage of Abstract-M and MPS
in ¯N(pi) = 5% cases

In the cases shown in Figures 9.3 and 9.4, Abstract-M tends to use more

CPU time while Extra-N consumes more memory space. This is as ex-

pected because of the existence of a large number of promoted core points

in each window. In particular, since in the ¯N(pi) = 5% cases, the number

of neighbors each data point has is quite close to the population thresh-

old, θcnt = 5% of the window size, many core points may be demoted to

become edge points or even noises after losing some of their neighbors as

the window slides. For the same reason, the non-core points have a good

chance to be promoted to become promoted core points after gaining some

new neighbors at the window slide. Corresponding to our analysis in Sec-

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 124

tions 7 and 8, each promoted core point charges an extra range query search

from Abstract-M, while it charges Extra-N for the memory space to store

the links to its neighbors in its “non core point career” before its promo-

tion. On the one hand, Extra-N guarantees the minimum number of range

query searches and thus time efficiency in all cases, but it may consume

more memory, especially when ¯N(pi) and θcnt are both large and close to

each other. On the other hand, Abstract-M never stores the exact neigh-

borships and thus is more memory-efficient. However, it usually takes extra

range query searches and thus consumes more CPU time. Such preferences

of Abstract-M and Extra-N for CPU time versus memory space utilization

can be observed in most of the test cases, although they are most appar-

ent in the cases we zoomed into. Thus, in general, a system can choose

to implement Abstract-M when the memory space is its key limit, while

implementing Extra-N if CPU time is its major resource concern.

9.2.5 Scalability Analysis

We now look at the scalability in terms of the base size, meaning that how

many data points the algorithms can cluster at each window. So, in this

experiment, we test count-based windows sized from 10K to 50K with a

fixed slide size 5K. Other settings of this experiment are equal to those from

the previous comprehensive one, except that we fixed ¯N(pi) at 1K.

As shown in Figures 9.5 and 9.6 both our algorithms, Abstract-M and

Extra-N show very good scalability in window sizes in terms of both CPU

and memory, while others failed in either or both of them. In particu-

lar, both Abstract-M and Extra-N only need 5 seconds to cluster 50K data

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 125

Figure 9.5: Comparison of CPU
Scalability on Base (Window) Size

Figure 9.6: Comparison of Mem-
ory Scalability on Base (Window)
Size

points at each window given 5K new data points. On the other words,

both algorithms can comfortably handle a data rate of 1K per second with

a 50K window. Also, the memory usage of both algorithms increases very

modestly with the growth of the window size.

Second, we investigate the effect of dimensionality on the performance

of our algorithms. As shown in Figure 9.7, the CPU time of both our pro-

posed algorithms, especially Extra-N, increases only modestly with the

number of dimensions. This demonstrates that our algorithms have an

even better than linear scalability in the dimensionality. This is because the

number of dimensions will only affect the CPU time needed for the range

query searches but has no impact on the neighborship maintenance costs.

As we have already largely reduced the number of range query searches

needed in these two algorithms, and even achieved the minimal for Extra-

N (see our cost analysis in Chapter 8.1), they both are expected to have ex-

cellent scalability in the number of dimensions. Our experimental results

confirmed this.

9.2. EXPERIMENTAL STUDIES FOR DENSITY-BASED CLUSTER

EXTRACTION 126

Figure 9.7: Comparison of CPU Scalability on Dimensionality

9.2.6 Evaluation with Real Data

We first evaluate the performance of all five competitors with the GMTI

data, which is a representative for moving object monitoring applications.

We varied the slide size Q.Slide from 10% to 100% of the Q.win. Given

these query parameters, we find there are 6 to 11 clusters in the window at

different time horizons, and ¯N(pi) in the windows varies from 9% to 11% of

the number data points in the windows.

Figure 9.8: Comparison on CPU
Time with GMTI data

Figure 9.9: Comparison on Mem-
ory Usage with GMTI data

As depicted in Figures 9.8 and 9.9, Extra-N has the best time efficiency

compared with all other methods. The memory usage of Extra-N is on

average 16% higher than the naive solution in the five cases. This memory

9.3. EXPERIMENTAL STUDIES FOR DISTANCE-BASED OUTLIER

EXTRACTION 127

overhead is a little bit higher than that of Abstract-M (11% higher than the

naive solution) but still very acceptable.

Figure 9.10: Comparison on CPU
Time with STT data

Figure 9.11: Comparison on Mem-
ory Usage with STT data

For STT data, by using the query parameters learned from our pre-

analysis of the data, the number of clusters existing in the windows ranges

from 17 to 26, and the number ¯N(pi) in the windows varies from 6% to 9%

to the number data points in the windows. Similar behaviors can also be

observed using STT data (as shown in Figures 9.10 and 9.11).

Thus, generally, our experiments on real data also confirm that our

proposed algorithms Abstract-M and Extra-N outperform other alternative

methods and thus are the preferred solutions for density-based cluster de-

tection in sliding windows over all other alternatives.

9.3 Experimental Studies for Distance-Based Outlier

Extraction

9.3.1 Experimental Platform

Our experiments for distance-based outlier detection algorithms are con-

ducted on a HP Pavilion dv4000 laptop with Intel Centrino 1.6GHz pro-

9.3. EXPERIMENTAL STUDIES FOR DISTANCE-BASED OUTLIER

EXTRACTION 128

cessor and 1GB memory, which runs Windows XP professional operating

system. The algorithms are implemented with VC++ 6.0.

9.3.2 Experimental Methodologies

We run all the experiments using both synthetic and real data for 10K win-

dows. We measure two key metrics for stream processing algorithms, re-

sponse time and memory footprint. Those two metrics are also evaluated

by our cost models in Chapter 8.1. In particular, we measure the average re-

sponse time (referred as CPU time henceforth) it takes to answer a pattern

detection query at each window. This response time includes the time con-

sumed by all the four stages of pattern detection at each window. So, the

average response time reflects the average time an algorithm needs from

“input data is ready” to “results are output” for each single window. The

response time is averaged over all the windows in each experiment. The

memory footprint, which indicates the peak memory space cons umped by

an algorithm, is recorded over all the windows.

9.3.3 Alternative Methods

We compare the performance of our outlier algorithm Abstract-C with two

alternatives, namely the naive solution and the exact-STORM [AF07], which

is the only previous work in the literature we are aware of that detects

distance-based outliers in sliding windows. Before we discuss the experi-

ment results, we first describe the exact-STORM algorithm.

Generally, exact-STORM is designed to incrementally detect distance-

9.3. EXPERIMENTAL STUDIES FOR DISTANCE-BASED OUTLIER

EXTRACTION 129

based outliers over count-based windows. Similar with Abstract-C, exact-

STORM requires one range query search for every new data point in each

window. However, it uses a different neighborship maintenance mechanism.

In particular, the exact-STORM algorithm requires every data point pi in the

window to maintain two data structures. The first one, called pi.nn before,

is a list containing the identifiers of the most recent preceding neighbors

of pi. pi.nn before is similar with the “neighbor list” we use in Exact-N

that gives pi direct access to its neighbors. However, it has two special

characteristics. First, pi.nn before only stores the preceding neighbors of

pi, whose arrival and expiration are earlier than those of pi. Second, for

“count- based” based windows, the length of pi.nn before has an upper

bound k = N × θrange, which equals the number of neighbors pi needs to

have to be a “safe inlier”. This is because the number of data points in the

count-based window is fixed. So, if a data point already has k = N × θrange

neighbors, it cannot be an outlier in the current and future windows until

any of them expire. The second data structure pi.count after is a counter

of the number of succeeding neighbors of pi. The succeeding neighbors

denote the neighbors of pi whose arrival and expiration are later than that

of pi. At each window slide, exact-STORM runs one range query search

for every new data point, and updates nn before and count after for each

of them and their neighbors. At the output stage, exact-STORM outputs

the outliers based on the information in each data point’s nn before and

count after. More details about the algorithm can be found at [AF07].

In count-based windows, since exact-STORM achieves both the min-

imum number of range query searches and also the linear memory con-

9.3. EXPERIMENTAL STUDIES FOR DISTANCE-BASED OUTLIER

EXTRACTION 130

sumption (it stores at most k neighbors for each data point), it is equivalent

to our proposed algorithm Abstract-C, while using different neighborship

maintenance mechanisms. However, being designed specifically for the

count-based window scenario, exact-STORM would tend to perform badly

in the time-based window scenario. This is because the “safe inlier” prop-

erty, which it relies on to limit the length of nn before in the count-based

scenario, no longer holds for time-based windows. In particular, for time-

based windows, since the number of data points in the window is not fixed,

the number of neighbors a data point needs to be an “inlier” may change

as well. So, no matter how many neighbors a data point already has, it

can never be viewed as a “safe inlier” in future windows and has to keep

the “identifiers” of all its “preceding” neighbors. So in the time-based win-

dow, exact-STORM would suffer from the same problem as Exact-N does,

namely the huge number of exact neighborships (links) that must be stored.

9.3.4 Performance Evaluation

In our experiments, we compare the performance of exact-STORM and

Abstract-C in both count- and time-based window scenarios using the Gauss

Dataset. In both scenarios, we follow the implementation of exact-STORM

presented in [AF07], except for breaking the upper bound on the length of

nn before as required in the time-based window scenario. The experimen-

tal results are shown in the Figures 9.12 to 9.15.

As shown in Figures 9.12 and 9.13, for count-based windows, exact-

STORM and Abstract-C perform equivalently well and clearly outperform

the naive solution in terms of CPU time.

9.3. EXPERIMENTAL STUDIES FOR DISTANCE-BASED OUTLIER

EXTRACTION 131

Figure 9.12: Comparison on CPU
Time for Count-Based Window
Scenario

Figure 9.13: Comparison on Mem-
ory Usage for Count-Based Win-
dow Scenario

Figure 9.14: Comparison on CPU
Time for Time-Based Window Sce-
nario

Figure 9.15: Comparison on Mem-
ory Usage for Time-Based Win-
dow Scenario

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 132

However, as shown in Figures 9.14 and 9.15, Abstract-C clearly out-

performs both the naive solution and exact-STORM in time-based window

scenarios. This is because the naive solution does not take any advantage

of incremental computation and Exact-STORM suffers from the huge mem-

ory overhead for storing the neighbors in time-based window. In contrast,

Abstract-C does not have either of these two problems and thus shows a

much better performance.

9.4 Experimental Studies for kNN (top-k) Extraction

9.4.1 Experimental Platform

We conducted our experiments for kNN detection on an HP G70 Notebook

PC with an Intel Core(TM)2 Due T6400 2.00GHz processor and 3GB mem-

ory, which runs Windows Vista operating system. We implemented the

algorithms in C++ using Eclipse.

9.4.2 Alternative Methods

We compare our proposed algorithm MinTopk’s performance with two al-

ternative methods, namely the state-of-the-art solution SMA [MBP06] (Sec-

tion 2.2), and the basic algorithm we presented in this work, PreTopk (Chap-

ter 7.2).

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 133

9.4.3 Experimental Methodologies

For all alternatives, we measure two common metrics for stream process-

ing, namely average processing time for each object (CPU time) and the

memory footprint, indicating the maximum memory space required by an

algorithm. We run each experiment 10 times (runs). Within each run, we

process each query for 10K windows (slides for 10K times). The statistics

results are averages from the 10 runs. To thoroughly evaluate the alter-

native algorithms, we compare their performance under a broad range of

parameter settings and observe how these settings affect their performance.

9.4.4 Evaluation for Different k Cases

This experiment is to evaluate how the number of preferred objects, k, af-

fects the performance of the three algorithms. We use the STT data. We fix

the window size at 1M and slide size at 100K, while varying k from 10 to

10K. As shown in Figures 9.16 and 9.17, both the CPU and memory usage of

all three alternatives increases as k increases. This is expected, because the

sizes of the key meta-data, namely the predicted top-k results for PreTopk

and MinTopk (organized differently though) and the skyband for SMA, all

increase linearly with k. However, both the CPU and memory usage of

PreTopk and MinTopk are significantly less than those utilized by SMA.

CPU-wise, both PreTopk and MinTopk saved at least 85% of the pro-

cessing time for each object compared with that used by SMA in the four

test cases. By further analyzing the specific components of the processing

time, we found that SMA used a large portion (around 60%) of its process-

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 134

Figure 9.16: CPU time used by
three algorithms with different k
values

Figure 9.17: Memory space used
by three algorithms with different
k values

ing time on loading and purging large numbers of objects from the grid

file. Such cost is completely eliminated by both PreTopk and MinTopk, as

they do not maintain any index for the whole window and the “useless”

objects are discarded immediately upon their arrival at the system. Also,

we found that SMA used around 10− 30% of the processing time for top-k

recomputation in different cases. More specifically, its recomputation rate

(number of recomputations divided by the number of window slides) in-

creases from 23% to 56%, as k increases from 10 to 10K. This indicates that

the recomputation process is more frequently needed in SMA when the ra-

tio between k to the slide size increases. This is because, when k is large,

it is more likely that the same amount of new objects cannot re-fill the sky-

band to reach the size of at least k. Again, such recomputation process is

needed by neither PreTopk nor MinTopk. In general, the huge CPU time

savings of PreTopk and MinTopk are achieved by eliminating the need for

expensive index maintenance and top-k recomputation.

The memory consumption of both PreTopk and MinTopk is negligible

compared with that used by SMA in all test cases, and especially when k

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 135

is small. The reason is obvious. Namely, both PreTopk and MinTopk only

keep the “necessary” objects (MTK), whose size is only 2k on average (see

Theorem 8.1 in Chapter 7.2), while SMA needs to keep all 1M objects alive

in the window. Our measurement of the size of MTK, namely the length of

super-top-k list, also confirms Theorem 8.1, as in all four test cases, the size

of MTK never exceeds 3.5k and is 2.4k on average.

The performance of MinTopk is also better than PreTopk in all these test

cases. In particular, MinTopk uses on average 23% less processing time and

33% less memory. Such comparable performance of these two algorithms

is caused by the relatively large slide/win rate adopted in this experiment,

which makes the number future windows maintained by both algorithms

small (only 10 for all cases). We will further analyze this issue in experiment

3.

9.4.5 Evaluation for Different win Cases

Next, we evaluate the effect of the window size win on the algorithms. We

use the GMTI data for this experiment. We fix the value of k at 1K and

the slide/window rate at 1
10 , while varying win from 1K to 1M . As shown in

Figures 16.11 and 16.12, both the CPU and memory usage of PreTopk and

MinTopk are significantly less than those utilized by SMA in all test cases,

and especially when win is large.

In particular, both the CPU and memory usage of SMA increase dra-

matically as the window size increases. This is expected, because it requires

full storage of all objects alive in the window and thus its memory usage in-

creases almost linearly with the window size. The increase of the CPU time

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 136

for SMA is also obvious, while less sharp than that of its memory utiliza-

tion. This is because to process the same number of objects, no matter what

the window size is, SMA needs to load and purge each object once into the

index. Thus this part of the processing time is the same for all test cases.

The increase of CPU time for SMA is primarily caused by the increasing

cost of top-k recomputation in larger windows.

Both the CPU and memory usage of PreTopk and MinTopk are not af-

fected by the window size. This confirms our cost analysis in Sections 7.2

and 7.4, namely the costs of PreTopk and MinTopk are independent from

the window size.

Figure 9.18: CPU times for varying
window sizes

Figure 9.19: Memory space for
varying window sizes

9.4.6 Evaluation for Different slide Cases

In this case, we evaluate the effect of the window size win on the algo-

rithms. We use the STT data for this experiment. We fix the value of k at

1K and window size at 1M, while varying the slide/window ratio from

0.01%− 10%, namely the slide size from 100 to 100K.

As shown in Figures 16.7 and 16.8, both the CPU and memory usage

of MinTopk are still significantly less than those utilized by SMA in all test

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 137

Figure 9.20: CPU times for varying
slide sizes

Figure 9.21: Memory space for
varying slide sizes

cases. In particular, in the slide = 100k case, MinTopk only takes 0.097 ms

to process each object on average, while SMA needs 0.172 ms for each ob-

ject. In terms of the response time needed for processing each window, this

means that our method only takes around 10 seconds to update the query

result for each window slide (100K new objects), while SMA needs more

than 2 minutes, This is as expected and can be explained by the same rea-

sons as in the previous test cases. However, an important observation made

from this experiment is that the performance of PreTopk can be strongly

affected by the slide/win rate. In particular, both the CPU and memory us-

age of PreTopk increase dramatically as the slide/window rate decreases.

Its performance is comparable with MinTopk when the slide/window rate

is 10%, while it gets even worse than SMA when it decreases to 0.01%.

This is as expected. Since PreTopk maintains the predicted top-k results for

each future window independently, its resource utilization increases lin-

early with the number of future windows maintained, which is equal to

⌈ win
slide
⌉ (see cost analysis in Chapter 7.2).

The performance of both SMA and MinTopk are not affected by the

change of slide/win rate. Their average processing time even drops a little

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 138

bit, because to process the same amount of objects, the larger slide size will

cause less frequent output and thus requires less output cost.

In conclusion, although PreTopk shows comparable performance with

MinTopk in the cases in which the slide/win rate is modest, its performance

can be very poor when the slide/win rate is small. In short, the performance

of MinTopk has been shown to be stable under any parameter settings.

9.4.7 Evaluation for Non-Uniform Arrival Rate Cases

In this experiment, we evaluate the algorithms’ performance under non-

uniform arrival rate. Namely, the number of objects that arrive at each

window slide varies in this case. We use the STT dataset and use the real

time stamp of each transaction to present the arrival rates of the stream. The

average arrival rate of the transactions in this data is around 400 transac-

tions each second, while the actual arrival rate at each window slide varies

significantly depending on the choice of slide size and the particular time

period.

As in this experiment the number of objects needed to be processed for

each window varies significantly, instead of measuring the average CPU

time for processing each tuple, we measure the response time for process-

ing each window, namely the accumulative time for answering the query

at each window slide from all objects arrived to results outputted. We eval-

uate three different cases with slide size slide equal to 1, 10 and 100 seconds

respectively, while we fix the window size at 1000 seconds and k equal to

1K for all three cases. For each case, we run the query for 10K windows and

we measure the minimum, maximum, average and standard deviation of

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 139

the response time at each window.

Figure 9.22: Response time for processing each window given non-uniform
arrival rate.

As shown in Figure 9.22, we observe that given the non-uniform arrival

rate, the response time of all three algorithms varies by slide sizes. In gen-

eral, when the slide size is small, as in the Slide = 1s case, the variations

of the response time tend to be very large. This is because given very short

time period granularities, the number of objects arriving at each window

can vary significantly. As shown in the Case 1 in Figure 9.22, the minimum

response time of all three algorithms are very close to zero. This is because

in some windows very few objects arrived (less than 20), and thus they

only required limited computation. While when slide size increases, as in

the Slide = 10s and Slide = 100s cases, we can observe that the variations

of the response time of all algorithms tend to be smaller. This is because

the unevenness of the arrival rates in short time periods is now averaged

in the larger time frames.

However, no matter what kind of variations exist in the arrival rate,

our proposed MinTopk algorithm still shows obvious superiorities to the

other two alternatives. Since the overall trends for all three competitor al-

9.4. EXPERIMENTAL STUDIES FOR KNN (TOP-K) EXTRACTION 140

gorithms observed are similar to those trends for the uniform arrival rate

cases, the results can again be explained using similar reasoning as given

in the previous experiments.

141

Chapter 10

Related Work for Part I

Within our target neigbor-based pattern types, density-based clustering

was first proposed in [EKSX96] as DBSCAN algorithm for static data.

Traditionally, the pattern detection techniques are designed for static

environments, where large amounts of data are being collected and stored.

In this work, our target pattern types are density-based clusters [EKSX96,

EKS+98], distance-based outliers [KN98b, KN99] and kNN patterns. They

are all popular pattern types defined by local neighborhood properties.

Well-known algorithms for detecting those patterns from static datasets

include [ZRL96, HW, GRS98, EKSX96, ABKS99] for density-based clus-

ter, [Ord96, RR96, BKNS00, KN98b, KN99] for distance-based outliers and

[TWS04, CwH02] for kNN (top-k) pattern. These techniques designed for

the static environment are based on two assumptions. First, all relevant

data is a priori available, either locally or on distributed servers, before

query execution. Second, the pattern detection queries are ad-hoc queries

executed only one single time. However, both assumptions do not hold

CHAPTER 10. RELATED WORK FOR PART I 142

for streaming environments in which data are continuously coming in and

the top-k queries are continuously re-executed. Thus, clearly, these tech-

niques cannot be directly used to solve our problem, namely continuous

neighbor-based pattern detection in streaming environments.

More recently, pattern detection on streaming data began to be stud-

ied. The earlier clustering algorithms applied to data streams [GMMO00,

GMM+03] are global clustering algorithms adapted from the static k-means

algorithm. They treat the data stream clustering problem as a continu-

ous version of static data clustering. They treat objects with different time

horizons (recentness) equally and thus do not reflect the temporal features

of data streams. Later, [AHWY03] presented a framework of clustering

streaming data using a two stage process. At the first stage, the online com-

ponent works on the streaming data to summarize it into micro-clusters. At

the second stage, an offline component clusters the micro-clusters formed

earlier to form final clustering results using a static k-means algorithm. In

this framework, a subtraction function is used to discount the effect of

the earlier data on the clustering results. Several extensions have been

made to this work, focusing respectively on clustering distributed data

streams [BGM+06], multiple data streams [DHYC06], and parallel data

streams [BH06]. None of these works described above deal with the arbi-

trarily shaped local clusters, nor do they support sliding window semantic.

[BDMO03] is the only work we are aware of that discusses the clustering

problem with sliding windows. However, it again is a global clustering

algorithm maintaining approximated cluster centers only.

[EKS+98] presented techniques to incrementally update density-based

CHAPTER 10. RELATED WORK FOR PART I 143

clusters in data warehouse environments. Since all optimizations in this

work are designed for a single update (a single deletion or insertion) to the

data warehouse, this fits well for the relatively stable (data warehouse) en-

vironments but is not scalable for sustainable environments. [CT07, CEQZ06]

also studied the problem of detecting density-based clusters over streaming

data. However, [CT07, CEQZ06] do not identify the individual members

in the clusters as required by the application scenarios described earlier in

the introduction. Also, to capture the dynamicity of the evolving data, they

both use decaying factors derived from the “age” information of the ob-

jects. These decaying factors put lighter weights on older objects during the

clustering processes. This approach emphasizes the recent stream portion

more compared to the older data, still it does not enforce the discounting of

old data’s effect from the pattern detection results. So, they are not suitable

for the applications requiring sliding window scenarios discussed in this

work, which can only consider the most recent data only.

The problem of detecting outliers in data streams has been studied by

[YiTWM00, Agg05, SPP+06, AF07]. Among these works, [YiTWM00, Agg05]

work with outliers with different definitions from ours. Thus, these tech-

niques cannot be applied to detect distance-based outlier as targeted by

our method. [SPP+06] study the detection of distance- and MEDF-based

outliers in hierarchically structured sensor networks. Also, the outliers de-

tection is based on approximated data distribution. So, this work has a

different goal from us. Most similar to our work, [AF07] introduced an

algorithm to detect the distance-based outliers within sliding window sce-

nario. However, this work only deals with count-based windows, where

CHAPTER 10. RELATED WORK FOR PART I 144

the number of objects in the window is aprioir known and fixed. Both our

analytical and experimental studies reveal that this method is not suitable

for answering queries with the time-based windows, where each window

may have different numbers of objects. Our experimental studies confirm

that our work instead is efficient in handling both cases.

Researchers have also started to look at the problem of processing top-

k queries in streaming environments [MBP06, HMA09, JYC+10, JYC+08].

Among these works, [MBP06] is the closest to our work in that it also tack-

les the problem of exact continuous top-k query monitoring over a sin-

gle stream. This work presents two techniques. First, the TMA algorithm

computes the new answer of a query whenever some of the current top-k

points expire. Second, the SMA algorithm partially precomputes the fu-

ture changes in the result, achieving better running time at the expense of

slightly higher space requirements. More specifically, as the key contribu-

tions of this work, SMA maintains a “skyband structure” which aims to

contain more than k objects. This idea is similar to the one used in [YY+03]

for materialized top-k view maintenance. However, unfortunately, neither

of these two algorithms eliminate the recomputation bottleneck (see Chap-

ter 7.2) from the top-k monitoring process. Thus, they both require full

storage of all objects in the query window. Furthermore, they both need

to conduct expensive top-k recomputation from scratch in certain cases,

though SMA conducts recomputation less frequently than TMA. While our

proposed algorithm eliminates the recomputation bottleneck, and thus re-

alizes completely incremental computation and minimal memory usage.

[HMA09, JYC+08, JYC+10] handle incomplete and probabilistic top-k

CHAPTER 10. RELATED WORK FOR PART I 145

models respectively in data streams. while we work with a complete and

non-probabilistic model. Thus, they target different problems from ours.

In particular, the key fact affecting the top-k monitoring algorithm design

is the meta information maintained for real-time top-k ranking and the cor-

responding update methods , which vary fundamentally by specific top-k

models. For example, due to the characteristics of the incomplete top-k

model, [HMA09] proves that maintaining a object set with its size linear in

the size of the sliding window is necessary for incomplete top-k query pro-

cessing. While in our (complete) top-k model, we maintain a much smaller

object set, whose size is independent from the window size but linear in

the query parameter k only (see Lemma 8.1). Similarly, due to the character-

istics of uncertain top-k models, [JYC+08, JYC+10] maintain a significantly

larger amount of meta information, namely a series of candidate top-k ob-

ject sets (they call Compact Sets) that contain more objects than the Minimal

Top-k Candidate Set (MTK) identified and maintained in this work. These

candidate objects are organized and updated in different manners from us

to serve their specific models. In general, those specific data structures and

the corresponding update algorithms designed for other top-k methods are

not optimized for our problem and thus do not achieve the optimal com-

plexities in system resource utilization for our problem.

146

Part II

Multiple Neighbor-Based

Pattern Extraction

Query Optimization

147

Chapter 11

Problem Definition

We provide specialized shared query processing strategies for workloads of

the same query type. The queries in each workload must be specified on a

commom input stream but with arbitrary pattern and window parameters.

We call all the queries submitted to the system together a Query Group QG,

and each of them a Member Query of QG. All the queries within a same

query group should have the same query type, be it density-based cluster-

ing, distance-based outlier detection or kNN queries. We use a common

assumption that all the member queries are registered to and pre-analyzed

by our system before the arrival of the input stream, indicating that all the

member queries will be started simultaneously 1. Our goal is to minimize

the overall CPU- and memory- resource consumption for executing all the

member queries registered to our system.

1In my dissertation, I do not study the problem of handling the dynamic queries, which
means the queries may be added or removed from the workload during the execution.
Instead, this topic is an important part of my future work (See Chapter 26.3)

148

Chapter 12

A Preliminary Sharing Effort:

Share Range Query Searches

The basic strategy to share the computations among multiple neighbor-

based pattern mining queries is to share the range query searches. Gen-

erally, to execute a query group QG with |QG| = N , we can execute N

single query algorithms, each for a member query, independently (with

each query maintaining its own progressive patterns independently), yet

share the computations needed by the range query searches. Specifically,

at each new query window, the single query algorithms require every new

data point pnew to run a range query search to identify its neighbors, and

communicate with them to update progressive patterns in the window.

This means that, if executed independently, for a query group QG with

|QG| = N , we need to run N range queries for each new data point pnew.

However, by using range query search sharing, we could instead run just

CHAPTER 12. A PRELIMINARY SHARING EFFORT: SHARE RANGE

QUERY SEARCHES 149

one range query search for each pnew, even if the queries in QG have differ-

ent range thresholds θrange.

In particular, we run the range query search for each pnew using Qi.θ
range,

with Qi.θ
range larger or equal to any Qj .θ

range in QG. Using the result set

of this “broadest” range query search, we then gradually filter out the re-

sults for the other queries with smaller and smaller θrange. Clearly, for a

given data point, the result set of a range query search using smaller θrange

is always a subset of that using a larger one. Also, since the range query

search with largest θrange is in any case needed for the particular query, no

extra computation is introduced by this process. This general principle of

sharing range query searches can be applied to any neighbor-based pat-

tern mining request that requires neighbor searches for data points, such as

distance-based outlier detection. Sharing range query searches can be very

beneficial for optimizing the system resource utilizations, especially when

the window size is large.

Discussion. However, sharing range query searches alone is not suf-

ficient for handling a heavy workload containing hundreds or even thou-

sands of queries. Two critical problems still remain: 1) Since every member

query still stores its progressive patterns independently, the memory space

needed by executing a query group QG grows linearly with |QG|. 2) Be-

cause of the independent pattern storage, the pattern maintenance compu-

tation of different queries cannot be shared. To solve these two problems,

we need to further analyze and exploit the commonalities among the mem-

ber queries. Our goal is thus to design an integrated pattern maintenance

mechanism that effectively shares both the storage and computational re-

CHAPTER 12. A PRELIMINARY SHARING EFFORT: SHARE RANGE

QUERY SEARCHES 150

sources needed for multiple queries.

In our experimental studies shown in Figures 30, 31 and 32 in Chapter

16 we demonstrate how much performance gains that can be achieved by

using this range query search sharing strategy alone. Also, in the same ex-

periments we compare such gains with those can be achieved by our com-

plete proposed solutions, which include more sophisticated sharing strate-

gies introduced in the following Chapters 13 and 14.

151

Chapter 13

Sharing Among Queries with

Arbitrary Pattern Parameters

In this Chapter, we discuss the shared processing of multiple queries with

arbitrary pattern parameters. We first assume that the queries have the

same window parameters, namely the same window size win and the same

slide size slide. In such cases all the member queries will always detect

patterns from exactly the same portion of the data streaming data (those

fall into the current query window). This assumption will later be relaxed

in Chapter 15 to allow completely arbitrary parameters.

To solve this problem, we analyze the relationships between the pat-

tern sets identified by neighbor-based pattern mining queries with differ-

ent pattern-specific parameter setting. In particular, we characterize the

conditions under which one query is “more restricted” than the other, and

discover that a “containment” relationship holds between the pattern sets

13.1. “CONTAINMENT” AMONG NEIGHBOR-BASED PATTERN SETS 152

identified by the queries following such “strictness order”. By exploiting

this containment relationship, we incrementally organize the patterns iden-

tified by multiple queries into an integrated structure, and thus manage to

maintain them in a shared manner. Such shared execution strategy leads to

significant savings in both CPU time and memory utilization.

13.1 “Containment” among Neighbor-Based Pattern Sets

The definition of “containment” between neighbor-based pattern sets is

generally more complex than the traditional “containment relationship”

between the result sets of SPJ queries. In particular, such containment

among neighbor-based pattern sets is not restricted to simple super- or sub-

set relationships. Here we first use density-based clusters, which have one

of the most complicated pattern structures and complex containment rela-

tionships among the neighbor-based pattern family, to explain this concept.

13.1.1 “Growth Property”

We call the specification of such containment relationship among density-

based cluster sets the “Growth Property”. We now first define the “contain-

ment” between two density-based clusters.

Definition 5 Given two density-based clusters Ci and Cj (each cluster is a set of

data points, which are called cluster members of this cluster), if for any data point

p ∈ Ci, p ∈ Cj , we say that Ci is contained by Cj , denoted by Ci ⊂ Cj .

We now give the definition for the “growth property” between two

density-based cluster sets.

13.1. “CONTAINMENT” AMONG NEIGHBOR-BASED PATTERN SETS 153

Definition 6 Given two cluster sets Clu Set1 and Clu Set2 with for i = 1, 2,

Clu Seti =
⋃

1≤x≤nCx, and for any y 6= z, Cy ∩ Cz = ∅. If for any Ci in

Clu Set1, there exists exactly one Cj in Clu Set2 that Ci ⊂ Cj , Clu Set2 is

defined to be a “growth” of Clu Set1. We say the growth property holds between

Clu Set1 and Clu Set2.

Beyond this definition, we now characterize all the possible interrela-

tionships between the clusters belonging to Clu Set1 and Clu Set2.

Observation 13.1 Given Clu Set1 and Clu Set2 with Clu Set2 a growth of

Clu Set1, then any cluster Cj in Clu Set2 must either be a new cluster (for

any p ∈ Cj , p 6∈ Ci, if Ci is in Clu Set1), an expansion of a single cluster in

Clu Set1 (there exists exactly one Ci in Clu Set1 such that Ci ⊂ Cj), or a merge

of multiple clusters in Clu Set1 (there exist Ci, Ci+1,...Ci+n(n > 0) in Clu Set1

with Ci, Ci+1,...Ci+n ⊂ Cj .

Figures 13.1 and 13.2 give an example of two cluster sets between which

“growth property” holds.

Figure 13.1: Cluster Set 1 contain-
ing 3 clusters

Figure 13.2: Cluster Set 2 contain-
ing 3 clusters, which is a growth of
Cluster Set1

13.1. “CONTAINMENT” AMONG NEIGHBOR-BASED PATTERN SETS 154

The black spots in the figures represent the data points belonging to

both cluster sets, while the gray ones represent those belonging to Clu Set2

only. As depicted in the figures, the cluster C4 in Clu Set2 is a “merge”

of clusters C1 and C2 in Clu Set1, while the cluster C5 and cluster C6 in

Clu Set2 are an “expansion” of cluster C2 in Clu Set1 and a “new” cluster

respectively. Generally, if Clu Set2 is a “growth” of Clu Set1, any two data

points belonging to the same cluster in Clu Set1 will also be members of

the same cluster in Clu Set2.

13.1.2 Hierarchical Pattern Representation

If the “growth property” transitively holds among a sequence of cluster

sets, a hierarchical cluster structure can be built across the clusters in these

cluster sets. The key idea is that, instead of storing cluster memberships

for different cluster sets independently, we incrementally store the cluster

“growth information” from one cluster set to another. Figures 13.3 and 13.4

respectively give examples of independent and hierarchical cluster mem-

bership structures built for the two cluster sets shown in Figures 13.1 and

13.2.

As shown in Figure 13.3, if we store the cluster memberships for clus-

ter members in these two cluster sets independently, each cluster member

(black squares) belonging to both clusters has to store two cluster member-

ships, one for each cluster set. However, if we store them in the hierarchi-

cal cluster membership structure as depicted in Figure 13.4, we no longer

need to repeatedly store the cluster memberships for these “shared” clus-

ter members. Instead, we simply store cluster memberships for each cluster

13.1. “CONTAINMENT” AMONG NEIGHBOR-BASED PATTERN SETS 155

Figure 13.3: Independent Cluster
Membership Storage for Cluster
Sets 1 and 2

Figure 13.4: Hierarchical Cluster
Membership Storage for Cluster
Sets 1 and 2

member belonging to Clu Set1, and then store the cluster “growth” infor-

mation from Clu Set1 to Clu Set2. In particular, we just need to correlate

each cluster Ci in Clu Set1 with a cluster in Clu Set2 that contains it, and

thereafter each cluster member can easily find its cluster membership in a

specific cluster set by tracing to the corresponding level of the hierarchi-

cal cluster membership structure. Such “growth” information is that now

based on the granularity of complete clusters rather than the granularity

of individual cluster members. Generally, for a sequence of cluster sets

for which the “growth property” transitively holds, the hierarchical cluster

structure can largely save the memory space needed for storing them.

Lemma 13.1 Given a query group QG for which the growth property transitively

holds among the cluster sets identified by all its member queries, the upper bound

of the memory space needed for storing the cluster memberships using hierarchical

cluster structure is 2 ∗Ncore (independent from |QG|), with Ncore the number of

distinct data points that are at least once identified as core point in any member

query of QG.

13.1. “CONTAINMENT” AMONG NEIGHBOR-BASED PATTERN SETS 156

Proof 13.1 The relationship between the number of cluster memberships stored

and Ncore is equal to the relationship between the total size of a binary heap and the

number of leaf nodes of this heap. This is because a higher level cluster membership

will only be stored if a merge of the cluster memberships happened at the lower

level.

Besides the benefit of potentially huge memory savings, such hierarchi-

cal cluster structure can also help us to realize the integrated maintenance

for multiple cluster sets identified by different queries, and thus save com-

putational resources from maintaining them independently. In the later

parts of this work, we will carefully discuss how this general principle can

be used to benefit our multiple query optimization strategy.

13.1.3 Incremental Representation for Other Pattern Types

The containment relationship of other neighbor-based pattern types, such

as distance-based outliers and top-k nearest neighbors are simpler than

density-based clusters. In particular, as the outlier set or nearest neigh-

bor set identified by a query is simply an object set, the containment rela-

tionship between any two outlier sets or nearest neighbor sets is simply the

super- or sub-set relationship. Thus, the incremental representation of such

pattern sets is simple as well. More precisely, we can store the smallest sets

first and then incrementally store the extra objects for larger and larger sets.

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 157

13.2 Integrated Maintenance for

Multiple Density-Based Clustering Queries

Now we discuss, for density-based clusters, in which cases such contain-

ment relationship holds and how it can help us to conduct shared execution

for multiple queries. For a group of density-based clustering queries, they

can vary on both pattern parameters, namely θrange and θcnt. We first look

at the cases in which the variations are only allowed on one parameter.

Arbitrary θcnt/θrange Cases

In the first case, all queries have the same θrange but arbitrary θcnt. Here,

we make a straightforward observation.

Observation 13.2 Given all queries in a query group having the same θrange, the

neighbors of each data point identified by these queries are the same.

This observation indicates that for all our member queries, the neighbor-

ships identified in each specific window are exactly the same. However,

this does not mean that the cluster structures identified by all queries are

same and we can store them in the same way. This is because the different

θcnts of the member queries may assign different “roles” to a data point.

For example, a data point with 4 neighbors is a “core point” for query Q1

having Q1.θ
cnt = 3, while it is a “none-core point” for Q2 having query

Q2.θ
cnt = 10. As the hybrid neighborship abstraction (discussed earlier

in Chapter 5.2.6) requires each none-core point to store the links to its ex-

act neighbors, while the core points store the cluster memberships only, a

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 158

data point may need to store different types of neighborship abstractions

depending on its roles identified by different queries.

To solve this problem, we turn to the “growth property” of density-

based cluster structure discussed in Chapter 13.1.

Lemma 13.2 Given two queries Qi and Qj specified on the same dataset, with

Qi.θ
range = Qj .θ

range and Qi.θ
cnt ≤ Qj .θ

cnt, the cluster set identified by Qi is

a “growth” of the cluster set identified by Qj (see growth property as defined in

Definition 6).

Proof 13.2 First, since Qi.θ
cnt ≤ Qj .θ

cnt, the “core point” set identified by Qj

is a subset of that identified by Qi. Second, since all the neighborships identified

by Qi and Qj are exactly the same, all the “connections” in any cluster structure

identified by Qj will also hold for Qi. This indicates that the cluster structure

identified by Qj will also be identified by Qi (although it may be further expanded

or merged). Finally, the “additional” core points identified by Qi may only cause

the birth of new clusters or expansion or merge of the clusters identified by Qj , be-

cause they either extend these cluster structures when they are “connected” to one

or more of them (causing expansion or union) or form new clusters by themselves

when they are not “connected” to any (causing birth). This indicates that the clus-

ter set identified by Qi is a “growth” of that identified by Qj (by Observation 13.1).

This proves the lemma 13.2.

Figure 13.5 demonstrate an example of the cluster sets identified by

three queries having the same θrange but different θcnts.

Integrated Representation of Predicted Views across Multiple Queries

with Arbitrary θcnt. As we discussed earlier in Chapter 13.1, once the

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 159

Figure 13.5: Cluster sets identified by three different queries

“growth” property holds among the cluster sets, we can build the hierar-

chical cluster structure for them. We thus build an integrated hierarchi-

cal structure to represent multiple predicted views identified by different

queries for the same corresponding predicted window. We refer to such In-

tegrated Representation of Predicted Views across Queries with arbitrary

θcnt by IntV iew θcnt. For each predicted window, IntV iew θcnt starts from

the predicted view with the most “restricted clusters”. In this context, this

corresponds to the predicted view maintained by Qi with the largest θcnt

among QG. Then, it incrementally stores the cluster “growth information”,

namely the “merge” of existing cluster memberships and the new cluster

memberships, from one query to the next in the decreasing order of θcnt.

Figure 13.6 gives an example of an IntV iew θcnt, which represents the pre-

dicted views (shown in Figure 13.5) identified by three different queries.

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 160

Figure 13.6: IntV iew θcnt: Integrated Representation for density-based
clusters identified by three different queries

IntV iew θcnt successfully integrates the representations of multiple “pre-

dicted views” into a single structure, thus saving the memory space other-

wise needed to store them independently.

Lemma 13.3 Given the maximum window size allowed, the upper bound of the

memory space needed by IntV iew θcnt is independent of |QG|, the cardinality of

the query group.

Proof 13.3 First, there are two types of meta-information that need to be stored

by IntV iew θrange, namely the cluster memberships and the exact neighbors of

the data points. Since IntV iew θrange uses the hierarchical structure described

in Chapter 13.1 to store the cluster memberships for the data points, the upper

bound of the memory space used for storing cluster memberships is independent

from |QG| (as proven in Lemma 13.1). Second, IntV iew θcnt only stores the

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 161

exact neighbors for “non-core” data points, and the maximum number of exact

neighbors a “non-core” point can have is a constant (namely, max(Qi.θ
cnt)− 1).

Thus, the upper bound of the memory space used for storing exact neighbors is

again independent from |QG|. This proves Lemma 13.3.

Without using IntV iew θcnt, the memory space needed for independently

storing the cluster memberships identified by all member queries in QG

will increase linearly with |QG|. Our method now makes it independent

from |QG| (as proven in Lemma 13.3).

Maintenance of IntV iew θcnt. Besides the memory savings, we can

also incrementally update multiple predicted views represented by a IntV iew θcnt,

thus saving computational resources. In particular, for each new data point

pnew, we start the update process from the bottom level of IntV iew θcnt,

namely the predicted view identified by the query with largest θcnt. Then

we incrementally propagate the effect of inserting this new data point to the

next higher level of predicted views. Using the example utilized earlier in

Figure 13.6, a new data point identified to have 3 neighbors in the window

is a “none-core” in the bottom (most restricted) level predicted view, where

θcnt = 4. So, at the bottom level, we simply add all its neighbors to its

neighbor list. However, its effect to upper level predicted views may differ,

as this data point may be identified as a “core point” by a more “relaxed”

query, say when θcnt = 3. Then, we need to generate a cluster membership

for it at that predicted view and merge it with those cluster memberships

(if any) belonging to its neighbors.

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 162

The pseudo-code for the maintenance algorithm of IntV iew θcnt can be

found in Figures 15.2 and 15.3, which is a special case of our final solu-

tion Chandi. In this special case, besides the exact same predicted windows

built for all queries, the neighbor sets of a new data point identified by all

queries are exactly same. We emphasize that the maintenance process is

efficient for the following two reasons: 1) No extra range query search is

needed when a data point is found to be a “core point” in an upper level

predicted view and thus needs to communicate with its neighbors. This is

because as a “none core point” in the lower level predicted views, it would

already have stored the links to all its exact neighborships and thus would

have direct access to them. 2) As the “growth” of cluster sets identified

in predicted views is incremental, less and less maintenance effort will be

needed as we handle the higher level predicted views.

We also found that the “growth property” holds between two queries

with the same θcnt but different θranges.

Lemma 13.4 Given two queries Qi and Qj specified on the same data set with

Qi.θ
cnt = Qj .θ

cnt and Qi.θ
range ≥ Qj .θ

range, the cluster set identified by Qi is a

“growth” of that identified by Qj .

The shared execution strategy for this case is very similar to the pre-

vious case in which all queries have the same θranges. Thus, the detailed

discussion for this case is omitted here.

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 163

Arbitrary θrange, Arbitrary θcnt Case

Now we discuss the shared processing for a query group QG with queries

having totally arbitrary pattern parameters, namely arbitrary θrange and

arbitrary θcnt values. Although the “growth property” holds between the

cluster sets identified by two queries Qi and Qj , if Qi and Qj share at least

one query parameter, it does not necessarily hold if both query parameters

of Qi and Qj differ. To again take advantage of the compact structure of the

Integrated Representation of Predicted Views, we need to explore when the

“growth property” holds between two queries in the most general cases.

Lemma 13.5 Given two queries Qi and Qj specified on the same dataset, with

Qi.θ
cnt ≤ Qj .θ

cnt and Qi.θ
range ≥ Qj .θ

range, the cluster set identified by Qi is a

“growth” of that identified by Qj .

Proof 13.4 Lemma 13.5 can be proven by the transitivity of the “growth prop-

erty”. Given a query Qk with Qi.θ
cnt ≤ Qk.θ

cnt ≤ Qj .θ
cnt and Qk.θ

range =

Qj .θ
range, the cluster set identified by Qk is a “growth” of that identified by Qj

(by Lemma 13.2). This means that for any cluster Ca identified by Qj there exists

a cluster Cb identified by Qj such that Ca ⊆ Cb. Also, the cluster set identified

by Qi is a “growth” of that identified by Qk (by Lemma 13.4). This means that

for any cluster Cb identified by Qj there exists a cluster Cc identified by Qi that

Cb ⊆ Cc. So for any cluster Ca identified by Qj there exist a cluster Cc identified

by Qi such that Ca ⊆ Cc. Thus, the cluster set identified by Qi is a “growth” of

that identified by Qj (by Definition 6).

To more intuitively describe the relationship between any two queries

in a query group, we give the following definition.

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 164

Definition 7 Given two queries Qi and Qj specified on the same dataset, if Qi.θ
cnt ≤

Qj .θ
cnt and Qi.θ

range ≥ Qj .θ
range. we say Qj is a “more restricted” query than

Qi, and Qi is a “more relaxed” query than Qj .

Integrated Representation of Predicted Views across Multiple Queries

with Arbitrary Pattern Parameters. We aim to build a single structure

which represents the “predicted views” identified by all member queries

of QG in the same window. However, given the “growth property” only

holds between two queries if one is more restricted than the other, we can

no longer expect to put all member queries into a single hierarchy.

Our solution is to build a “Predicted View Tree”, which integrates mul-

tiple linear predicted view hierarchies into a single tree structure. In this

tree structure, each predicted view (except the root) only needs to store

and maintain the incremental information (cluster “growth”) from its par-

ent, much like the predicted views in IntV iew θrange and IntV iew θcnt. In

particular, such a “Predicted View Tree” starts from the predicted view that

represents “the most restricted query” among QG. “The most restricted

query” here corresponds to the member query that has both the smallest

θcnt and the largest θrange among QG. If such a “most restricted query”

does not naturally exist in QG, we build a “virtual” one by generating a

query with the smallest θcnt and the largest θrange among QG. The pre-

dicted view representing this “most restricted query” will be the “root” of

our “Predicted View Tree”. If the most restricted query is a virtual query,

its predicted view will be used for “Predicted View Tree” maintenance but

it will never generate any output. Then the predicted views representing

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 165

more relaxed queries will be iteratively put on the next higher level (far-

ther from the root) of the tree. More specifically, after picking “the most re-

stricted query” as the root of the tree, we iteratively pick (and remove) “the

most restricted queries” remaining in QG and put their predicted views as

the next level of the tree. Here, a member query Qj is one of “the most re-

stricted queries” remaining in QG, if there does not exist any other member

query Qi in QG, which is “more restricted” than Qj .

For example, given QG = {Q1(θ
range = 0.5, θcnt = 5), Q2(θ

range =

0.4, θcnt = 7), Q3(θ
range = 0.2, θcnt = 10), Q4(θ

range = 0.3, θcnt = 7), Q5(θ
range =

0.4, θcnt = 8)}. The root of the “Predicted View Tree” is the predicted view

representing “the most restricted query”, namely Q3 in this case. Then, the

second level “most restricted queries” are Q4 and Q5, which are more re-

laxed than Q3 but more restricted than Q1 and Q2. Finally, the third level

“most restricted queries” are Q1 and Q2. This process of figuring out “the

most restricted queries” at each level is equal to the problem of iteratively

calculating the “skyline” [YLL+05, ZMC09, SIK07] in the two dimensional

space of θrange and θcnt. Since this process of building ”Predicted View

Tree” can be conducted offline during query compilation, any existing sky-

line algorithm can be plugged into our system to solve this problem.

The predicted views on the lower level of the tree always represent

more restricted queries than those on the higher levels. Then, the “growth

information”, namely the evolution of cluster memberships and the “ad-

ditional exact neighbors”, will be stored from one predicted view to each

of its “children” on the higher level. Such building process guarantees an

important property of “Predicted View Tree” as described in the following

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 166

lemma.

Lemma 13.6 Given a cluster set Clu Setm identified by a query Qm on the ith

level of the “Predicted View Tree”, and a cluster set Clu Setn identified by a

query Qn on the (i− 1)th level, the “growth information” between Clu Setm and

Clu Setn is no more than that between Clu Setm and any cluster set Clu Seto

identified by a query Qo on the (i− j)th(i > j > 1) level.

Proof 13.5 Since the queries on the (i − j)th level are always more restricted

than those on the (i)th level, we know that Clu Setn is a growth of Clu Seto,

Clu Setm is a growth of Clu Setn and Clu Setm is also a growth of Clu Seto.

This means the “growth information” from Clu Seto to Clu Setm can actually

be divided into two parts, namely the “growth information” from Clu Seto to

Clu Setn and that from Clu Setn to Clu Setm. This proves that the “growth

information” from Clu Setn to Clu Setm is no more than that from Clu Seto to

Clu Setm.

This property assures that each predicted view in the “Predicted View Tree”

maintains the smallest increments and represent multiple predicted views

as compact as possible.

To finalize the tree structure, for each query Qn on the ith level of the

tree, we need to determine its “parent” on the (i − 1)th level. We aim to

find such a “parent” query Qm that is most similar to Qn, indicating that

there exists the least “growth information” from the cluster set identified

by itself to that identified by Qn. Since the queries with similar θranges

tend to identify similar neighborships in the window, this indicates that

the difference on θranges has a larger influence on cluster changes compared

13.2. INTEGRATED MAINTENANCE FOR

MULTIPLE DENSITY-BASED CLUSTERING QUERIES 167

with θcnts. So, when we determine the parent predicted view, although we

consider the similarity between both pattern parameters, more “weight”

is given to that between θranges. To unify the names of the hierarchical

structures representing multiple predicted views, we henceforth call this

the “Predicted View Tree” IntV iew θ.

Although IntV iew θ is a tree structure, instead of a linear sequence like

IntV iew θcnt and IntV iew θrange, they share the core essence that each pre-

dicted view is incrementally built based on the predicted view most similar

with it, and the “growth property” holds between them. We call the mem-

ber queries on each path of IntV iew θ a group of shared queries.

Lemma 13.7 The upper bound of the memory space needed by IntV iew θ for any

group of shared queries is independent from the number of queries in this group.

Since all these queries are on the same path of IntV iew θ structure, indi-

cating that the growth property transitively holds among the cluster set

identified by them. The independency between the upper bound of the

memory space and the number of queries can be proven using the same

method as we used for proving Lemma 13.3.

The maintenance process of IntV iew θ is also similar with that for IntV iew θcnt

and IntV iew θrange. For each new data point, we always start the main-

tenance from the root of the IntV iew θ, namely the predicted view rep-

resenting the most restricted query. Then we incrementally maintain the

predicted views on the next higher level of IntV iew θ. Again, this mainte-

nance process is a special case of our final uniform solution Chandi (pseudo

code shown in Figures 15.2 and 15.3). In this special case, the predicted

13.3. INTEGRATED MAINTENANCE FOR

MULTIPLE DISTANCE-BASED OUTLIER DETECTION QUERIES 168

windows built for all queries are exactly same.

Now we conclude with the contribution of IntV iew θ.

Theorem 13.1 For a given density-based clustering query group QG with mem-

ber queries having arbitrary pattern parameters, IntV iew θ achieves full sharing

of both memory space and query computation.

Proof 13.6 First, the storage mechanism of IntV iew θ is completely incremental.

In particular, since each predicted view in IntV iew θ only stores the increments

from its “parent”, no duplicate information is ever stored among any two predicted

views. This proves that IntV iew θ achieves full sharing of memory space. Second,

since the maintenance process of IntV iew θ is incremental as well, indicating

that each new data point only communicates with each of its neighbors once on

each path of the tree structure, no matter how many different predicted views their

neighborship appears in. This proves that IntV iew θ achieves full sharing of the

computation of multiple queries.

13.3 Integrated Maintenance for

Multiple Distance-Based Outlier Detection Queries

For distance-based outlier detection over sliding windows, the solution for

processing a single request is discussed in the literature [AF07, YRW09].

Using the most up-to-date technique, namely the Abstract-C algorithm [YRW09],

the meta-information that needs to maintained to update the outliers is

simple. In particular, for each data point in the window, its neighbor count

will be sufficient to determine whether it is an outlier or not. Thus, for an in-

13.3. INTEGRATED MAINTENANCE FOR

MULTIPLE DISTANCE-BASED OUTLIER DETECTION QUERIES 169

dividual query, the meta-information it maintains for each predicted view

is the potential outlier set in the corresponding predicted window, namely

the data points that are known to have less than win∗θfra neighbors in that

window, if no new data points were to join its neighborhood. Also, a pre-

dicted neighbor count will be maintained for each potential outlier in each

predicted window. Such neighbor counts will be updated when the new

data points come in. This then helps us to decide whether the data points

should still be kept in the potential outlier set. More specifically, each new

data point updates the predicted neighbor count of its own and of all its

neighbors in each future window. The data points with too many neigh-

bors (neighbor count larger or equal than win ∗ θfra) will be removed from

the potential outlier set of a particular window, since they can no longer be

identified as outliers.

Figure 13.7 shows the predicted views built for two queries Q1 and Q2

on a 2D dataset. That is Q1.θ
range = 0.1, θfra = 25%, win = 8, slide = 2

(for Q1, a data point with 2 or less neighbors will be identified as an out-

lier), and Q2 with Q2.θ
range = 0.15, θfra = 15%, win = 8, slide = 2 (for Q2,

a data point with 1 or less neighbors will be identified as an outlier) . Fig-

ure 13.8 (top 2 lines) shows the corresponding meta-information Abstract-C

maintains for these two queries independently. More details of Abstract-C

can be found in [YRW09].

By analyzing the semantics of distance-based outliers, we observe that

the containment relationship holds between the outlier sets identified by

different queries under certain conditions. First, let us fix the distance

threshold θrange, while varying the fraction threshold θfra among the mem-

13.3. INTEGRATED MAINTENANCE FOR

MULTIPLE DISTANCE-BASED OUTLIER DETECTION QUERIES 170

ber queries in a query group QG. We then note that the outliers identified

by a query Qi with the largest θfra among QG will always cover (be a su-

perset of) all the outliers that are identified by other member queries. For

any two queries Qi and Qj , if Qi.θ
range ≤ Qj .θ

range, the outlier set iden-

tified by Qj is a subset of that identified by Qi. In other words, the iden-

tified outlier set “grows” monotonically as θfra increases. So, in this case,

for each predicted window, we can store and maintain the potential outlier

sets identified by different queries incrementally for all member queries. As

shown in Figure 13.8, we can just store a single copy of the largest potential

outlier set and use a flag (depicted with different levels of darkness) to dis-

tinguish by which queries each outlier is identified. Here a single integer

flag will be sufficient to distinguish among all the possible combinations,

because the “strictness” of the queries are exactly ranked. In other words,

a data point can only be identified as outlier by Qi, if it can be identified by

all queries that have Qj .θ
fra > Qi.θ

fra. Also, since the neighbor count of

each data point identified by all queries will always be same, we can sim-

ply maintain a single predicted neighbor count for each data point and use

it to answer all queries. Thus, in this case both the storage and computation

of the meta-information maintained by all queries are fully shared.

Second, if we fix the fraction threshold θfra, while varying the dis-

tance threshold θrange among a query group QG, the outliers identified by

a query Qi with smallest θrange among QG will always cover all the outliers

that should be identified by the other member queries. For any two queries

Qi and Qj , if Qi.θ
range ≥ Qj .θ

range, then the outlier set identified by Qj is

a subset of that identified by Qi. In other words, the identified outlier set

13.4. INTEGRATED MAINTENANCE FOR

MULTIPLE KNN QUERIES 171

“grows” monotonically as θfra decreases. This case is very similar to the

previous case just discussed in the last paragraph. Thus, the same incre-

mental maintenance mechanism of potential outlier sets is also applicable

here. The only difference between this case and the previous case is now

the neighbors identified by different queries for the same data point may

be different. However, as the neighbor counts identified for any data point

monotonically increase with the θrange parameter, we simply maintain the

increments on the neighbor counts for each query, if there are any. See data

point 4 in Figure 13.8 for an example.

Finally, we allow arbitrary settings on both distance and fraction thresh-

olds. In this more general case, we can observe that the outlier set identi-

fied by a “stricter” query Qi is a subset of that identified by a more “re-

laxed” query Qj , if Qi.θ
range ≤ Qj .θ

range and Qi.θ
fra ≤ Qj .θ

fra. Thus

we can group the member queries into several non-overlapping subgroups

to ensure that such containment relationship transitively holds among the

queries in each of the subgroups. Then we can use the same techniques

discussed in the previous cases to maintain the outliers integrally for all

queries in each subgroup.

13.4 Integrated Maintenance for

Multiple kNN Queries

This pattern type takes only one pattern-specific parameter, namely the in-

put k. Thus, a group of such queries with different input k settings are all

querying the nearest neighbors of the same given object but are asking for

13.4. INTEGRATED MAINTENANCE FOR

MULTIPLE KNN QUERIES 172

Figure 13.7: Distance-Based Outliers Identified by Q1 and Q2

Figure 13.8: Independent vs. Integrated Representation for Distance-Based
Outliers Identified by Q1 and Q2

13.4. INTEGRATED MAINTENANCE FOR

MULTIPLE KNN QUERIES 173

different numbers of such nearest neighbors. In this case, using the incre-

mental pattern maintenance mechanism is quite straightforward. Basically,

in any predicted window, the k nearest neighbors (kNN) identified by a

query Qi with the largest k among the query group will cover all the kNN

that should be identified by other queries. For any two queries Qi and Qj ,

if Qi.k ≥ Qj .k, the kNN identified by Qj is a subset of that identified by Qi.

So, we can again incrementally store and maintain the k nearest neighbors

identified by different queries in an integrated manner.

In particular, in any predicted window, for a group of kNN queries,

rather than maintaining one kNN set for each query, we only maintain a

single “KNN set” of the query object, namely its K Nearest Neighbors, with

K the largest k setting among all queries in the query group. This single

KNN set will represent the kNN of all queries in the query group. This

KNN set can be simply implemented as a sorted list based on their distance

to the query object.

When a new data point pnew comes into the system, we only compare

the distance between pnew and the query object with the distance between

the query object and its Kth nearest neighbor in KNN. If the pnew is closer

to the query object compared to its Kth nearest neighbor, it qualifies for the

KNN set, indicating that it will be in kNN set for at least one query in the

group. Otherwise pnew is discarded for this predicted window, as it has no

chance to make kNN for any query in this predicted window.

If pnew qualified the KNN set, we use pnew to update the KNN set, We

only need two operations to process the update. First, we put pnew into the

KNN set and then remove the previous Kth nearest neighbor (the farthest

13.4. INTEGRATED MAINTENANCE FOR

MULTIPLE KNN QUERIES 174

one) from KNN. During the output, we simply scan the kNN set from the

1st to kth nearest neighbors. The nearest ones will be reported as kNN for

all queries, while the farther ones will be reported to less and less queries

depending on the k settings of the particular queries. Clearly, the cost of our

integrated maintenance strategy for multiple kNN queries is almost equal

to the cost of executing the single kNN query with the largest k setting.

175

Chapter 14

Sharing Among Queries with

Arbitrary Window Parameters

In this chapter, we discuss our proposed memory and CPU sharing strategy

among multiple neighbor-based pattern queries with different window pa-

rameters, namely variations in the window size win and the slide size slide.

During this discussion, we assume that all these queries have the same pat-

tern parameters. The techniques proposed in this section are general, and

can be equally applied to all the neighbor-based pattern mining queries dis-

cussed in this work and other query types, such as graph mining. This is

because the optimizations introduced here are at the window level, namely,

regarding to the planning and organization of predicted windows but in-

dependent from the specific pattern maintenance within each window. To

explain the proposed ideas in detail, we pick density-based clusters as the

specific pattern type in our running examples.

14.1. SAME WIN , ARBITRARY SLIDE CASE. 176

14.1 Same win, Arbitrary slide Case.

In this case, all member queries have the same window size win, while

their slide sizes may vary. First, we assume that all queries start simul-

taneously. The equality of window sizes implies that all queries always

query on the same portion of the data stream. More specifically, at any

given time the data points falling into the windows of different queries

are the same. Then, the only difference among multiple queries is that

they may need to generate output at different moments, due to their vary-

ing slide sizes. For example, given three queries Q1, Q2 and Q3, with

Q1.win = Q2.win = Q3.win = 10(s), Q1.slide = 2(s), Q2.slide = 3(s)

and Q3.slide = 6(s), the query windows of them cover exactly the same

portion of the data stream at any given time, while they are required to

output the clusters at every 2, 3 and 6 seconds respectively. So, to serve the

different output time points, they need to build predicted windows starting

at different times, each serving a future output time point. In this example,

assuming all three queries start at wall clock time 00:00:00, they all need to

build a predicted window starting at 00:00:00 for generating the output at

00:00:10, which is their first and shared output time point. Then Q1 needs

to build predicted windows starting at 00:00:02, 00:00:04, etc, to serve the

output time points at 00:00:12, 00:00:14, while Q2 and Q3 need to build pre-

dicted windows starting at 00:00:03, 00:00:06, etc, and 00:00:06, 00:00:012,

etc, respectively.

To solve this problem, for a given group QG, we build a single meta

query Qmeta which integrates all the member queries of QG. In particular,

14.1. SAME WIN , ARBITRARY SLIDE CASE. 177

this meta query Qmeta has the same window size with all member queries

in QG, while its slide size is no longer fixed but adaptive during the exe-

cution. More specifically, the slide size of Qmeta at a particular moment is

decided by the nearest moment which at least one member query of QG

needs to be answered. The specific formula to determine the next output

moment is:

Tnextoutput = Min(⌈
T − win

Qi.slide
⌉+ 1) ∗Qi.slide+ win)

With T the current wall-clock time and win the common window size among

all queries. Using the earlier example, for the query group having three

member queries, we build a meta query Qmeta for it with win = 10s. So,

at wall-clock time 00:00:10, the slide size of Qmeta should be 2s, as 00:00:12

will be the nearest time at which a member query (Q1) needs to be an-

swered. Then its slide size is adapted to 1s, 1s and 2s at 00:00:02, 00:00:03

and 00:00:04 respectively for the same reason.

Such adaptive slide size strategy is compatible with the “view predic-

tion” technique. This is because, although the slide size of Qmeta may keep

changing, these changes are still predictable and periodic. In particular,

given the slide size of all the member queries, we always know at which

moments which member queries need to be answered. The interval be-

tween any two successive output moments is actually changing periodi-

cally. So, we can construct an output schedule (with a lookahead a of finite

number of output time points) for Qmeta, which predetermines the slide

size of Qmeta at any given moment.

14.1. SAME WIN , ARBITRARY SLIDE CASE. 178

Knowing the slide sizes of Qmeta, we can just build predicted windows

for Qmeta based on the output time points. Still using the earlier example, at

wall-clock time 00:00:10, we would have built eight “predicted windows”

for Qmeta , which start from 00:00:00, 00:00:02, 00:00:03, 00:00:04, 00:00:06,

00:00:08, 00:00:09 and 00:00:10 respectively, as each of them corresponds to

an output time point for at least one member query. Among these eight

“predicted windows”, many of them are actually serving multiple queries.

For example, the “predicted windows” starting at 00:00:00 and 00:00:06 will

be used to answer Q1, Q2 and Q3 as they correspond to the output time

points that are shared by all three queries. This also means that if we were

to maintain the predicted windows for these queries independently, four

more predicted windows would need to be maintained at this given mo-

ment. In particular, Q2 and Q3 would have needed to maintain their own

predicted windows starting at 00:00:00 and 00:00:06 separately, although

they are exactly the same as those maintained by Q1. In this example, 33

percent of the “predicted windows” are saved from the independent main-

tenance mechanism. This means that 33 percent of storage space and com-

putational resources are saved in this case.

In conclusion, by building a meta query representing all member queries

in a query group, we can save both the memory space and CPU process-

ing time for answering the query group for the following reasons: 1) No

overhead, in particular, no extra predicted views will be introduced, as a

predicted window is built only if at least one member query needs output

at that moment. In other words, all the predicted windows built in our inte-

grated solution need to be maintained by individual member queries any-

14.2. SAME SLIDE, ARBITRARY WIN CASE 179

ways. 2) Many predicted views can be shared as several member queries

may require output at the same time. The specific amount of sharing de-

pends on the percentage of overlaps of member queries’ output time points.

14.2 Same slide, Arbitrary win Case

In this case, although the window size may vary among the member queries,

we hold the slide size steady, indicating that their output schedules are

identical. Here we first work with a common assumption that all the win-

dow sizes of the member queries are multiples of their common slide size.

We observed that, given a query group with member queries having the

same slide size but different window sizes, all the member queries require

output at exactly the same moments. Based on this observation an impor-

tant characteristic can be discovered for such query groups.

Lemma 14.1 Given a query group QG with member queries having the same slide

size slide but arbitrary window sizes (multiples of slide), the “predicted windows”

maintained for Qi, with Qi.win larger or equal to any other Qj .win in QG, will

be sufficient to answer all member queries in QG.

Proof 14.1 This is because the “predicted windows” maintained for Qi will cover

all the “predicted windows” that need to be maintained for all the other queries.

More specifically, at any given moment, say wall-clock time T , the “predicted win-

dows” that need to be maintained for a member query Qn include all those starting

at T − n ∗ slide (1 ≤ n ≤ Qn.win
slide

). As Qi.win is larger or equal than any

Qj .win, the “predicted windows” maintained for Qi cover all those needed by

14.3. ARBITRARY SLIDE, ARBITRARY WIN CASE 180

other queries. At time T , any member query Qj can be answered by the “predicted

window” starting from T −Qj .win.

For example, given three queries Q1, Q2 and Q3, with Q1.slide = Q2.slide =

Q3.slide = 5s, Q1.win = 10, Q2.slide = 15s and Q3.slide = 20s, at wall

clock time 00:00:20, the “predicted windows” built by Q3 start from 00:00:00,

00:00:05, 00:00:10 and 00:00:15 respectively, while those need to be main-

tained by Q1 and Q2 start from 00:00:10, 00:00:15 and 00:00:05, 00:00:10,

00:00:15 respectively. The later all overlap with those built by Q3. At this

moment, the “predicted window” starting from 00:00:00 can be used to an-

swer Q3, while the predicted windows starting from 00:00:10 and 00:00:05

can be used to answer Q1 and Q2 respectively.

In summary, we only need to maintain the predicted windows for a

single member query, namely the query with the largest window size, and

then can answer all the member queries in the query group with different

predicted windows it maintains. Clearly, full sharing is achieved. Here, we

also note that although we made the common assumption in Lemma 14.1

that the window sizes are multiples of slide, to make the problem easier

to understand, it is not crucial for our solution. Our solution can easily

be relaxed to handle the cases where window sizes of member queries are

completely arbitrary.

14.3 Arbitrary slide, Arbitrary win Case

We now give the solution for the more general case that both window pa-

rameters, namely win and slide, are arbitrary. Generally, the solution for

14.3. ARBITRARY SLIDE, ARBITRARY WIN CASE 181

this case is a straightforward combination of the two techniques introduced

in the last two subsections. In particular, we simply build one single meta

query that has the largest window size among all the member queries and

uses an adaptive slide size. These two techniques are fully compatible, be-

cause they were both designed to make sure correct predicted windows

(start and end as required by query semantics) are created to answer the

member queries.

Here we use an example to demonstrate our solution. Given three

queries Q1, Q2 and Q3, with Q1.win = 10, Q1.slide = 4, Q2.win = 9,

Q2.slide = 5, Q3.win = 6 and Q3.slide = 2, and all starting at wall clock

time 00:00:00, we build a meta query Qmeta with Qmeta.win = max(Qi.win)(1≤i≤3) =

10. Then we adaptively change its slide size based on the next nearest out-

put time point required by (at least) one of these three queries. For instance,

at wall clock time 00:00:10, six predicted windows would have been built,

which start from 00:00:00 (serving Q3 for output at 00:00:10), 00:00:01 (serv-

ing Q2 for output at 00:00:10), 00:00:04 (serving Q1 for output at 00:00:12

and Q3 for output at 00:00:10), 00:00:06 (serving Q2 for output at 00:00:13

and Q3 for output at 00:00:12), 00:00:08 (serving Q1 for output at 00:00:18

and Q3 for output at 00:00:14) respectively. Figure 14.1 shows the predicted

views that need to be maintained by each of these three queries indepen-

dently, versus those would instead be maintained by the meta query at wall

clock time 00:00:10.

14.3. ARBITRARY SLIDE, ARBITRARY WIN CASE 182

Figure 14.1: Predicted Views Maintained By Three Queries Q1, Q2 and Q3
Independently versus Those Maintained By a Single Meta Query

183

Chapter 15

Putting IT All Together: The

General Case

Finally, we now discuss the case that the pattern and window parame-

ters are both arbitrary for the queries in a query group. Although sharing

among a group of totally arbitrary queries is a hard problem if we had to

solve it from scratch, we now can easily handle it by combining the two

techniques introduced in last two sections, namely the incremental pattern

representation technique and the meta query technique. These two tech-

niques are orthogonal to each other, and can thus be easily combined. In

particular, the integrated pattern representation technique (introduced in

Chapter 13) is designed to share among a group of queries that are speci-

fied on the same dataset, which in our case is each predicted window. So,

we can consider this here as an “intra-predicted-windows” sharing tech-

nique. On the other hand, the meta query technique (introduced in Chapter

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 184

14) is designed to make sure that the predicted windows, which need to be

maintained by different queries, start and end properly and share across

the different predicted windows. So, it is an “inter-predicted-windows”

sharing technique. Thus, these two orthogonal techniques can be easily ap-

plied together to realize the full potential of sharing of the member queries

on both the inner- and inter-predicted window level.

Here we use an example to demonstrate such a combination. Given

three queries Q1, Q2 and Q3 starting at 00:00:00, with Q1(win = 10, slide =

4, θrange = 0.2, θcnt = 5); Q2(win = 9, slide = 5, θrange = 0.3, θcnt = 4)

and Q3(win = 6, slide = 2, θrange = 0.2, θcnt = 3), we first use the meta

query technique to build the predicted windows they need to maintain. At

wall clock time 00:00:10, the required predicted windows are the same as

those shown in Figure 14.1. Then, for each predicted window built, we

apply the IntV iew θ technique to build an “Predicted View Tree” to in-

tegrate the predicted views (of different queries) in this window. For the

predicted window starting from 00:00:04, which is serving Q1 and Q3, we

build a “Predicted View Tree” representing both Q1 and Q3. Now the “Pre-

dicted View Tree” structures built for different windows may no longer be

all the same as those in the example we demonstrated in Figure 15.1. This

is because the predicted view of a particular query will appear on a “Pre-

dicted View Trees” only if this predicted window needs to be maintained

by this query, indicating this predicted window corresponds to an output

time point for it. Using the same example, Q2 has no predicted view in W4,

as W4 is not a predicted window that needs to be maintained by it.

We call this ultimate hierarchical structure IntV iew. Figure 15.1 depicts

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 185

the final IntV iew built for the three queries mentioned in the earlier exam-

ple.

Figure 15.1: IntV iew: Integrated Representation for Predicted Views Iden-
tified by 3 Queries in 5 Predicted Windows

In particular, IntV iew is a tree structure that starts from the predicted

view acting as the root (rnewest) of the “Predicted View Tree” in the newest

predicted window (with the largest window number). Thus, each root pre-

dicted view in an older predicted window is now incrementally built based

on that in the next window. This indicates that, as subtrees for IntV iew,

each “Predicted View Trees” in an older window is now built based on the

incremental information from the next (the newer) window (as its root itself

now is incremental). We call the final solutions for density-based cluster-

ing, distance-based outlier detection and kNN queries Chandi, SDOD and

SkNN respectively. We give the pseudo-code of them in Figures 15.2, 15.3,

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 186

15.4 and 15.5.

pi: a data point. pnew:a new data point. pi.T :pi’s time stamp.
clu mem:cluster membership. Wi : predicted window. Woldest/newest:
oldest/newest W on IntV iew. W.Tend : ending time of W. Wi.root : the
root predicted view of in Wi. IntV iew: the overall IntView structure.
PV : a predicted view.
Qi : a member query. Qi.PV : a predicted view built for Qi.

Chandi (QG)

1 For each new data point pnew
2 If pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window // purge

4 load pnew into index // load

5 neighbors:=RangeQuerySearch(pnew,max(Qi.θ
range))

6 UpdateIntView (pnew, neighbors) // IntView Maintenance

7 If pnew.T == Toutput

8 Output(); // output

9 add new window Wnewest to IntV iew

Purge(Wi)

1 purge any pi from index If pi.T < Wi.Tend

2 remove Wi from IntV iew

UpdateIntView (p, neighbors)
1 For i:=1 to neighbors.size()
2 DistributeNeighbor(p, neighbors[i],Wnewest.root);
3 UpdatePredictedView(p,Wnewest.root);

Figure 15.2: Chandi: Proposed Algorithm for Multiple Density-Based Clus-
tering Queries (Part 1)

As shown in our pseudo-code in Figures 15.2, 15.3 and 15.4, when a

new data point arrives at the system, the Chandi and SDOD algorithms,

which handles density-based clusters and distance-based outliers respec-

tively, first run a range query search using the largest θrange among the

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 187

DistributeNeighbor(pnew, pi, PV)

1 If dist(pnew, pj) ≤ Qi.θrange

2 add pi to PV.neighbors (neighbors distributed to PV)
3 Else For each Qj .PV at higher level
4 DistributeNeighbor (p,neighbor, Qj .PV);

UpdatePredictView (p, PV)
1 p.neighborcount = PV.neighborsinthisview.size();
2 For i:=1 to PV.neighbor.size()
3 PV.neighbors[i].neighborcount++;
4 If PV.neighbors[i] becomes a new core
5 HandleNewCore(PV.neighbors[i]);
6 If p.neighborcount ≥ Qi.θ

cnt

7 HandleNewCore(p, PV);
8 For each Qj .PV at higher level
9 UpdatePredictView (p,Qj .PV);

HandleNewCore(p, PV)
1 p.type = core;
2 p.clu mem=new clu mem (generate a new cluster membership);
3 For i:=1 to PV.neighbors.size()
4 If PV.neighbors.type == core
5 Merge PV.neighbors[i].clu mem and p.clu mem;
6 If PV.neighbors[i].type == noise
7 PV.neighbors[i].type := edge;
8 PV.neighbors[i].clu mem := p.clu mem;
9 For each Qj .PV at higher level
10 PropagateNewCore(p,Qj .PV);

Figure 15.3: Chandi: Proposed Algorithm for Multiple Density-Based Clus-
tering Queries (Part 2)

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 188

pi: a data point. pnew:a new data point. pi.T :pi’s time stamp.
Wi : predicted window. Woldest/newest: oldest/newest W on IntV iew.
W.Tend : ending time of W. PV.p outlier : the potential outliers in PV .
IntV iewoutlier: the overall IntView structure. Wi.PV : predicted view
built for Wi.
Qi : a member query. Qi.PV : a predicted view built for Qi.

SDOD (QG)

1 For each new data point pnew
2 If pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window // purge

4 load pnew into index // load

5 neighbors:=RangeQuerySearch(pnew,max(Qi.θ
range))

6 UpdateIntView (pnew, neighbors) // IntView Maintenance

7 If pnew.T == Toutput

8 Output(); // output

9 add new window Wnewest to IntV iew

Purge(Wi)

1 purge any pi from index If pi.T < Wi.Tend

2 remove Wi from IntV iew

UpdateIntView (p, neighbors)
1 For each Wi on IntV iewoutlier

2 UpdatePredictedView(p,Wi.PV ,neighbors);

UpdatePredictView (p,Wi.PV, neighbors)
1 For each Qi that maintains Wi (in ascending order of “strictness”)
2 p.neighborcount := 0
3 For i:=1 to neighbor.size()
4 If Distance(p, neighbor[i]) < Qi.θ

range

5 p.neighborcount++;
6 neighbors[i].neighborcount++;
7 If neighbors[i] ∈Wi.PV.p outliers and

neighbors[i].neighborcount ≥ Qi.θ
fra × win

8 mark neighbors[i] as safe non-outlier for Qi;
9 If neighbors[i] marked as safe non-outlier for all queries;
10 remove neighbors[i] from Wi.PV.p outliers;
11 If p /∈Wi.PV.p outliers AND p.neighborcount < Qi.θ

fra × win;
12 put p in Wi.PV.p outliers;

Figure 15.4: SDOD: Proposed Algorithm for Processing Multiple Distance-
Based Outlier Detection Queries

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 189

pi: a data point. pnew:a new data point. pi.T :pi’s time stamp.
Wi : predicted window. W.Tend : ending time of W.
Woldest/newest: oldest/newest W on IntV iew.
pQ: the query object. PV.KNN : the KNN (see Chapter 13.4) in PV .
PV.pQ.Kth NN : the Kth nearest neighbor of pQ in PV .
IntV iewkNN : the overall IntView structure for kNN queries.
Wi.PV : predicted view built for Wi. Qi : a member query.
Qi.PV : a predicted view built for Qi.
Qi.k : the k parameter of Qi .
Qi.Toutput : the next output time for Qi.

SDOD (QG)

1 For each new data point pnew
2 If pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window // purge

4 load pnew into index // load

5 UpdateIntView (pnew) // IntView Maintenance

6 If pnew.T == Toutput

7 Output(QG, Toutput); // output

8 add new window Wnewest to IntV iew

Purge(Wi)

1 purge any pi from index If pi.T < Wi.Tend

2 remove Wi from IntV iew

UpdateIntView (p)
1 For each Wi on IntV iewkNN

2 UpdatePredictedView(p,Wi.PV);

UpdatePredictView (p,Wi.PV)
1 If Wi.PV.KNN.size() < K
2 insert p into Wi.PV.KNN ;
3 Else

4 If Dist(pQ, p) < Dist(pQ,Wi.PV.Kth NN)
5 insert p into Wi.PV.KNN ;
6 remove Wi.PV.pQ.Kth NN from Wi.PV.KNN ;

Output(QG, Toutput)

1 For each Qi ∈ QG 2 If Qi.Toutput == Toutput 3 output the first
Qi.k objects on Wi.PV ; 4 Qi.Toutput+ = Qi.slide;

Figure 15.5: SkNN: : Proposed Algorithm for Processing Multiple kNN
Queries

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 190

query group to collect all its potential neighbors. Then it distributes each

of them to the first predicted view on each path of IntV iew, in which their

“neighborship” truly exists. Then, it starts the IntV iew maintenance pro-

cess from the root of IntV iew, namely the root predicted view of the newest

predicted window in IntV iew, and then incrementally maintains those at

higher levels of IntV iew. During the maintenance of each predicted view,

they only needs to communicate with the neighbors assigned to that partic-

ular view. The computation needed by SkNN is simpler. For each predicted

window, it first decides whether the new object is qualified for the KNN set

in that window. If the answer is “yes”, then it updates the KNN in that win-

dow using the new object, otherwise the new object will not affect the KNN

in that window.

Computation-wise, all three proposed algorithms, namely Chandi, SDOD

and SkNN only require a single pass through the new data points at each

window slide. In particular, Chandi and SDOD only require one range

query search for each new object, and each new object only communicates

with its neighbors once for all shared queries. SkNN only requires each

new object to update the KNN in each window at most once.

Memory-wise, for all three proposed algorithm, as they all maintain the

pattern sets identified by the multiple queries in a single IntV iew struc-

ture, the upper bound of the memory consumption of them for a group

of shared queries on the same path is independent from the “length” of

this path, namely the number of shared queries in this group. This can

be proven using the same method as we used for proving Lemma 13.7.

In conclusion, our proposed algorithms, namely Chandi, SDOD and SkNN

CHAPTER 15. PUTTING IT ALL TOGETHER: THE GENERAL CASE 191

achieve full sharing for multiple density-based clustering, distance-based

outlier queries and kNN queries respectively over the same input stream

in terms of both CPU and memory resources.

192

Chapter 16

Experimental Study

16.1 Experimental Platform

All our experiments in this part of this dissertation are conducted on a

HP Pavilion dv4000 laptop with Intel Centrino 1.6GHz processor and 1GB

memory, which runs Windows XP operating system. We implemented all

algorithms with VC++ 7.0.

16.2 Real and Synthetic Streaming Datasets

labelp2-exp-datasets We use the same real streaming datasets, GMTI [EFK99]

and STT [INE], as we used for experiments in Part I of my dissertation (see

Chapter 9.1.1).

16.3. ALTERNATIVE ALGORITHMS 193

16.3 Alternative Algorithms

As we discussed earlier in Chapter 4, density-based cluster has one of the

most complex pattern structure within the neighbor-based pattern fam-

ily. Also, given the same window size and input rate, each individual

density-based clustering query is much more system-resource consuming

compared with an distance-based outlier or kNN query. Therefore our

experimental evaluation concentrates on thoroughly evaluate the perfor-

mance of our proposed algorithm Chandi which handles multiple density-

based clustering queries. This includes evaluations on its performance un-

der a broad range of parameter settings, how it compares with method

using a straightforward sharing method, and test to its scalability on the

number of queries that can be handled. Beyond that, a theoretical analy-

sis of the performance of the other two pattern types will be given later in

Chapter 16.10.

To evaluate our proposed Chandi algorithm, for any input QG, we com-

pare Chandi’s performance of two major alternative methods, executing QG

with four alternative methods, namely executing one Extra-N algorithm

[YRW09] for each member query with and without sharing of range query

searches (henceforth referred as Extra-N with rqs and Extra-N), and exe-

cuting one IncDBSCAN algorithm [EKS+98] for each member query with

and without sharing of range query searches (referred as IncDBSCAN with

rqs and IncDBSCAN). The reasons why we choose them are: 1) Extra-N

algorithm is the only algorithm we are aware of in the literature solving

density-based clustering over sliding windows; 2) IncDBSCAN algorithm

16.5. EVALUATION FOR ONE-ARBITRARY-PARAMETER CASES 194

is the most well known method for incremental density-based clustering

(but not designed for sliding window semantics).

16.4 Experimental Methodologies

We measure two common metrics for stream processing algorithms, namely

average processing time for each tuple (CPU time) and memory footprint,

indicating the peak memory space required by an algorithm.

As we know, each density-based clustering query using sliding window

semantics has four input parameters, namely two pattern parameters: θcnt,

θrange, and two window parameters: win and slide. In many cases, the do-

main knowledge or specific requirements of the analysis tasks may restrict

some of them to particular values. For example, a moving object monitor-

ing task may require the θrange to be the maximum distance that two objects

can keep wireless communication, and the window size to be the time in-

terval between two successive reports of a single object. Thus the queries

submitted by different analysts may only differ on a subsets of these pa-

rameters. In our experiments, we first evaluate the four test cases, each has

only one of the four parameters different among the member queries.

16.5 Evaluation for One-Arbitrary-Parameter Cases

For each test case, we prepare a query group QG with |QG| = 20 by ran-

domly generating one input parameter (in a certain range) for each member

query, while using common parameter settings on the other three param-

16.5. EVALUATION FOR ONE-ARBITRARY-PARAMETER CASES 195

eters. The parameter settings in our experiment are learned from a pre-

analysis of the datasets. In particular, we pick parameter ranges that allow

member queries to identify all the different major cluster structures that

could be identified in the datasets. In all our test cases, the largest number

of clusters identified by a member query is at least five times the smallest

number of clusters identified by the other, indicating that the cluster struc-

tures identified by different queries vary significantly. In each test case, we

use different subsets of QG (sized from 5 to 20) to execute against GMTI

data.

16.5.1 Arbitrary θ
cnt case

We use θrange = 0.01, win = 5000 and slide = 1000, while varying θcnt

from 2 to 20. In this test case, at most 16 clusters are identified by the most

restricted query with θcnt = 20, while at least 3 clusters are identified by

the most relaxed one with with θcnt = 3. As shown in Figures 16.1 and

16.2, both the average processing time and the memory space used by all

five alternatives increase as the number of member queries increases. This

is because more meta-information needs to be computed and stored by all

of them. However, the utilization of CPU resources by Chandi is signifi-

cantly lower than those consumed by other alternatives, especially when

the number of the member queries increases, and its memory consump-

tion is almost equal to IncDBSCAN and much lower than Extra-N. This

matches our analysis in Chapter 13, because in this test case, the predicted

windows need to be maintained by Chandi for different queries completely

overlap. Also, since no “extra neighborships” exists in any window, the

16.5. EVALUATION FOR ONE-ARBITRARY-PARAMETER CASES 196

cluster growth information that needs to be maintained by Chandi among

the queries is relatively simple. Thus, the system resource consumption of

Chandi increases very modestly when the number of member queries in-

creases. While since other alternative methods maintain the progressive

clusters independently for different queries, their consumption of system

resources increases dramatically when the number of member queries in-

creases.

Figure 16.1: CPU Time used by
Five Competitors in Arbitrary θcnt

Cases

Figure 16.2: Memory Space used
by Five Competitors in Arbitrary
θcnt Cases

16.5.2 Arbitrary θ
range case

In this case, we use θcnt = 10, win = 5000 and slide = 1000, while varying

θrange from 0.01 to 0.1. In this test case, at most 10 clusters are identified

by the most restricted query with θrange = 0.1, while at least 2 clusters

are identified by the most relaxed one with θrange = 0.1. As shown in the

Figures 16.3 and 16.4, similar situations can be observed that Chandi uses

significantly less CPU and memory resources than other alternatives. In

16.5. EVALUATION FOR ONE-ARBITRARY-PARAMETER CASES 197

this test case, the system resource consumption of Chandi increases more

as the number of queries increases compared with the previous test cases.

This is for of two main reasons. 1) Since the θrange parameters vary among

the queries, the range query search cost increases along with the increase

of the number of queries even with the range query sharing (each data

point needs to figure out its neighbors defined by different queries). 2)

As the neighborships identified by different queries differ, such “extra-

neighborships” are more likely to cause cluster structure changes and thus

requires Chandi to maintain more meta-information in IntV iew. The per-

formance of other competitors, especially for IncDBSCAN, is affected by the

increasing cost of range query searches as well. This is because the perfor-

mance of IncDBSCAN (with rqs or not), which consumes large numbers of

range query searches during the purging process, largely relies on the cost

of range query searches.

Figure 16.3: CPU Time used
by Five Competitors in Arbitrary
θrange Cases

Figure 16.4: Memory Space used
by Five Competitors in Arbitrary
θrange Cases

16.5. EVALUATION FOR ONE-ARBITRARY-PARAMETER CASES 198

16.5.3 Arbitrary win case

In this case, we use θcnt = 10, θrange = 0.01, slide = 500, while varying win

from 1000 to 5000 (we use 500 as granularity for any window parameter).

As shown in Figures 16.11 and 16.12, we can observe that the performance

of Chandi is even better compared with the previous test cases. In particular,

its resource utilizations for both CPU and memory are almost unchanged

as the number of queries increases. This is expected, because in this case

Chandi only maintains the meta-information for a single query, which is

sufficient to answer all the member queries. Thus, the cost of Chandi in this

case only depends on the query with the largest win, which is independent

of the number of queries in the query group.

Figure 16.5: CPU Time used by
Five Competitors in Arbitrary win
Cases

Figure 16.6: Memory Space used
by Five Competitors in Arbitrary
win Cases

16.5.4 Arbitrary slide case

In this case, we use θcnt = 10, θrange = 0.01, window = 5000, while varying

slide from 500 to 5000. As shown in Figures 16.7 and 16.8, the performance

16.6. EVALUATION FOR TWO-ARBITRARY-PARAMETER CASES 199

of Chandi is similar with that in the arbitrary win case. This is because the

cost of Chandi in this case depends on the number of predicted windows

that need to be maintained, which is decided by the query with smallest

slide size but does not necessarily increase with the number of queries in

the query group.

Figure 16.7: CPU Time Used
by Five Competitors in Arbitrary
slide Cases

Figure 16.8: Memory Space used
by Five Competitors in Arbitrary
slide Cases

16.6 Evaluation for Two-Arbitrary-Parameter Cases

labelp2-exp-two-arbitrary We evaluate two test cases, each has two of the

four parameters different among the member queries. In the first test case,

member queries have arbitrary pattern parameters but common window

parameters, indicating that they may have different definition to the clus-

ters but always have the same query window. In the second test case,

member queries have arbitrary window parameters but common pattern

parameters, indicating they may have different query windows but have

the same definition to the clusters.

16.6. EVALUATION FOR TWO-ARBITRARY-PARAMETER CASES 200

16.6.1 Arbitrary Pattern Parameters

In this case, we use win = 5000, slide = 1000, while vary θcnt from 2 to

20 and θrange from 0.01 to 0.1. As shown in Figures 16.9 and 16.10, Chandi

still consumes significantly less CPU time compared with the other alter-

natives, although the increase of CPU consumption caused by the increase

of member queries is more obvious. This is because totally arbitrary pat-

tern parameters lead to an even larger difference in the clusters identified

by different queries, and thus increase the maintenance costs of Chandi.

In particular, in this test case, the largest number of clusters identified by

the number query with θrange = 0.01 and θcnt = 14 reaches 35, while the

smallest number of clusters identified by the query (with θrange = 0.1 and

θcnt = 3) is only 2. The memory space used by Chandi in this case is much

less than Extra-N while being only slightly higher than IncDBSCAN. Again,

this is caused by the more incremental information existing among the pre-

dicted views maintained by Chandi. However, as the CPU performance of

IncDBSCAN is much worse than Chandi, the overall performance of Chandi

is still much better.

16.6.2 Arbitrary Window Parameters

In this case, we use θcnt = 10 and θrange = 0.01, while varying win from

1000 to 5000 and slide from 500 to 5000 (for any query Qi, Qi.slide <

Qi.win). As shown in Figures 16.11 and 16.12, the performance of Chandi is

similar with that observed in the arbitrary win or slide case. This is because,

although the queries now have arbitrary settings on both parameters, such

16.6. EVALUATION FOR TWO-ARBITRARY-PARAMETER CASES 201

Figure 16.9: CPU Time used by
Five Competitors in Arbitrary Pat-
tern Parameter Cases

Figure 16.10: Memory Space used
by Five Competitors in Arbitrary
Pattern Parameter Cases

fact does not affect the principle of how the “meta query” strategy works.

In particular, the cost of answering a query group still only depends on the

largest win in the query group and the number of predicted views that need

to be maintained. Both do not necessarily increase along with the number

of queries.

Figure 16.11: CPU Time used
by Five Competitors in Arbitrary
Window Parameter Cases

Figure 16.12: Memory Space used
by Five Competitors Arbitrary
Window Parameter Cases

16.7. GENERAL CASE: FOUR ARBITRARY PARAMETERS. 202

16.7 General Case: Four Arbitrary Parameters.

labelp2-exp-general-case Finally, we evaluate the general case, with all four

parameters being arbitrary. We divide this experiment into three cases,

each measuring the performance of the algorithms when executing differ-

ent numbers of queries. In particular, for each test case, we generate 30

query groups each with N member queries (N equals to 20, 40 and 60 for

three cases respectively). Each query group is independently generated,

and the member queries in each group are randomly generated with pa-

rameter settings: θcnt = 2 to 20, θrange = 0.01 to 0.1, win = 1000 to 5000, and

slide = 500 to 5000. For each test case, we measure the average cost of each

algorithm for executing all 30 query groups. Beyond that, we zoom into

the overall average cost of each algorithm, and measure the cost caused by

each specific subtask. In particular, the CPU measurement is divided into

two parts, namely the CPU time used by range query searches and that

used by cluster maintenance. For the memory space consumed, we distin-

guish between the memory used by raw data (for storing actual tuples) and

the memory used for meta-data.

As shown in charts C1, C2 and C3 in Figure 16.13, we observe that the

average CPU time used by Chandi is 70, 76, and 85 percent lower then the

best alternative method, Extra-N with rqs, in the three cases respectively. In

particular, the CPU time used by Chandi to conduct range query searches

is always less than 10% compared with that needed by IncDBSCAN with

rqs. This is because Chandi only requires each new data point to run one

range query search when it arrives at the system, while IncDBSCAN relies

16.7. GENERAL CASE: FOUR ARBITRARY PARAMETERS. 203

Figure 16.13: Detailed Comparison on CPU Time Consumption of Five Al-
gorithms

on repeated range query searches to determine the cluster changes. The

CPU time used by Chandi to maintain meta-information is at least 62% less

than that used by Extra-N with rqs. This is because Chandi updates the meta-

information for different queries integrally, while Extra-N maintains them

independently.

Besides the comparison of the average system resource consumption,

we also measure the savings of Chandi for each individual query group in

all three test cases. In particular, for each query group, we measure the dif-

ference in resource utilization between Extra-N with rsq and Chandi, which

corresponds to the difference between executing them using the best exist-

ing technique and our proposed strategy. More specifically, for each group,

we first calculate the difference on CPU (or memory) utilization between

16.8. EVALUATION FOR SCALABILITY 204

two Chandi and Extra-N. Then, we use the difference to divide that used

by Extra-N with rqs to get the saving percentage achieved by Chandi. As

shown in C4 of Figures 16.13, Chandi never performs worse than Extra-N

with rqs for any query group. For the first test case (each query group has

20 queries), the average savings achieved by Chandi in terms of CPU time

are 62%. Although the minimum savings in this case among the 30 groups

is 23%, the maximum savings reach 84% , and the standard deviation is

only 19% . As the number of queries in each group increases, the savings

achieved by Chandi are even higher in the other two test cases. In particu-

lar, the average savings achieved by Chandi of CPU time increases to 80%

when the number of queries in each group increases to 60. The minimum

and maximum savings on CPU time increases to 45% and 92% respectively

in this case, and the standard deviation of the savings decreases to 12%.

This shows the promise of Chandi that, for a query group with 60 queries, it

can achieve savings between 73% to 92% of CPU time in most of the cases.

Among the 30 queries in this query group, 23 of them fall into this range.

The average savings achieved by Chandi on memory space in this 60-query

cases is 89%.

16.8 Evaluation for Scalability

Now we evaluate the scalability of the algorithms in terms of the number

of queries they can handle under a certain data rate. In this experiment,

we use Extra-N, Extra-N with rqs and Chandi to execute query groups sized

from 10 to 1000 against GMTI data. Similar with the earlier experiment,

16.8. EVALUATION FOR SCALABILITY 205

the member queries in the query group are randomly generated with the

arbitrary parameter settings in certain ranges. In particular, the parameters

settings in this experiment are θcnt = 2 to 30, θrange = 0.001 to 0.01, win =

1000 to 5000, and slide = 500 to 5000.

Figure 16.14: CPU Time used by
Five Competitors in Logarithmic
Scale

Figure 16.15: Memory Space used
by Five Competitors in Logarith-
mic Scale

As shown in Figures 16.14 and 16.15, both the CPU time and the mem-

ory space used by Chandi increase modestly as the number of member

queries increases. In particular, the CPU time consumed by Chandi in-

creases around 6 times when the number of queries grows from 10 to 100

(increased 9 times), and then it increases less than 4 times when number of

queries grows from 100 to 1000. Thus totally the CPU time consumed by

Chandi increases 33 times when the number of queries increased from 10

to 1000, which is 100 times. Such increase for Extra-N and Extra-N with rqs

are 105 times and 89 times respectively. More specifically, in our test cases,

the average processing time (CPU) for each tuple used by Chandi to execute

the 100-query and 1000-query query groups are 0.76ms and 3.3ms respec-

tively. This indicates that our system can comfortably handle 100 queries

16.9. CONCLUSION FOR EXPERIMENTAL STUDY OF DENSITY-BASED

CLUSTER DETECTION ALGORITHMS 206

under a 1000 tuples per second data rate, and handle 1000 queries under

a 300 tuples per second data rate. For the memory space used, Chandi has

even better performance as its utilization of memory space only increases

5 times when the number of queries increases from 10 to 1000, while such

increase for Extra-N and Extra-N with rqs are both 98 times.

16.9 Conclusion for Experimental Study of Density-

Based Cluster Detection Algorithms

Generally, Chandi is more efficient than other alternative methods in terms

of both CPU and memory utilization when executing multiple density-

based clustering queries specified on the same input stream. Chandi achieves

most sharing when only one of the four parameters differ among the mem-

ber queries. Among the four one-arbitrary-parameter cases, Chandi achieves

most sharing in the arbitrary win case, while least is achieved in the arbi-

trary θrange case. For the two-arbitrary-parameter cases, Chandi performs

better when the member queries have arbitrary window parameters rather

than arbitrary pattern parameters. For the general cases, where the mem-

ber queries have arbitrary parameter settings on all four parameters, Chandi

still clearly outperforms the other alternative methods by achieving on av-

erage 60 percent savings for CPU time and 84 percent savings in memory

space. Lastly, Chandi shows a good scalability in terms of handling a large

number (hundreds or even thousands) of queries under a high data rate.

16.10. PERFORMANCE ANALYSIS FOR DISTANCE-BASED OUTLIER AND

KNN DETECTION ALGORITHMS 207

16.10 Performance Analysis for Distance-Based Out-

lier and kNN Detection Algorithms

Now we discuss the potential performance of our proposed methods for

other neighbor-based pattern types 1. The savings expected for our pro-

posed methods for the other neighbor-based pattern types are similar to

those observed from our above comprehensive case study with the clustering-

pattern type. Thus we only briefly review these expected savings below.

Performance Analysis for Distance-Based Outlier Queries. For in-

dividual distance-based outlier queries, the CPU processing resources for

query execution are composed of two major parts, namely running range

query searches for each new object arriving at the system and updating

the neighbor-counts for each data point whose neighborhood is affected by

those new objects. This is identical to the situation observed for density-

based clustering queries. In our experiments for density-based clusters, for

a single query execution, the cost for neighbor searches constitutes around

40 percent of the overall CPU processing costs, while the remaining costs

are primarily consumed by updating the cluster structures. For distance-

based outlier queries, this percentage of CPU utilization for conducting

neighbor searches will surely be even much higher, as the pattern struc-

tures to be updated for maintaining outliers are simpler and thus clearly

need much less computational resources for processing updates on them.

Same as clustering queries, the cost of the neighbor searches can be

1This dissertation does not cover experimental studies for evaluating SDOD and SkNN
algorithms. A thorough discussion and experimental studies for multiple kNN query opti-
mization can be found in my collaborative work with Avani Shastri in [SYRW11]

16.10. PERFORMANCE ANALYSIS FOR DISTANCE-BASED OUTLIER AND

KNN DETECTION ALGORITHMS 208

completely shared among all queries using our method. In particular, we

simply need to run one single range query search for each new data point

(using the largest range, of course) to collect all the point’s neighbors for

all participating queries. This indicates that, for executing a large group

of queries, the costs for conducting neighbor searches can almost be com-

pletely saved. This is because the cost of running a single range query

search for each data point is neglectable compared with the cost required

for updating the neighbor counts for potentially large number of queries

upon the arrival of each data point.

For the second part of the cost, namely the cost associated with the

neighbor count maintenance, the savings depend on the overlap of the

stream windows and on the number of queries that identify the same num-

ber of neighbors for each data point. Thus, the savings that can be achieved

in this component may vary somewhat. However, as indicated above we

can completely save the costs associated with neighbor searches (at least

40 percent). In addition, we can expect to have fairly significant amount

of sharing among the pattern update processes for the different patterns,

especially for larger query groups (where similar queries tend to be more

likely). Thus one can safely expect that savings achieved by our method

for distance-based outlier queries will be comparable or even outperform

those for the cluster-based queries.

Memory-wise, the cost for individual distance-based outlier query exe-

cution is composed of both raw and meta data storage. In particular, each

query needs to store all the valid data points in the window and the neigh-

bor counts for each data point. For this pattern type, the major memory

16.10. PERFORMANCE ANALYSIS FOR DISTANCE-BASED OUTLIER AND

KNN DETECTION ALGORITHMS 209

savings that could be achieved by our method should come from the stor-

age of the actual raw streaming objects, as now using incremental pattern

representation, we only need to store one reference for each data point for

all queries. The storage for meta information, namely the neighbor counts,

may not be saved significantly. This is because each neighbor count main-

tained by a query is just an integer. Storing a new count number for a

query or only storing the increments from a “stricter” query will not make

any difference in terms of memory usage.

Performance Analysis for kNN Queries. Computation-wise, the ma-

jor cost for executing individual kNN queries comes from updating the

k nearest neighbors when the new data points arrive. As we discussed in

Chapter 13, the k (the largest k setting among all queries) nearest neighbors

of the query object are incrementally stored, and thus the updating effort

can be completely shared. In particular, if a new data point qualifies for

the kNN of the query object, we only need two operations to first put the

new data point into a single kNN set and remove the previous Kth near-

est neighbor (the farthest one). This cost is much cheaper than placing the

new data point into the kNN sets for all queries, and more importantly, will

almost not be affected by the number of queries in the query group. There-

fore, we envision that the percentage of savings achieved by our method in

terms of CPU time will increase linearly in the number of queries.

Memory-wise, as discussed in Chapter 15, using our shared execution

method, the information (raw and meta) needs to be stored by a group of

query is the same as what needs to be stored by a single query (the query

with the largest k setting). Therefore the memory cost of our method is

16.10. PERFORMANCE ANALYSIS FOR DISTANCE-BASED OUTLIER AND

KNN DETECTION ALGORITHMS 210

independent from the number of queries in the query group.

211

Chapter 17

Related Work for Part II

Algorithms for density-based clustering queries over streaming data in-

clude [YRW09, CT07, CEQZ06]. Among these works, [CT07] and [CEQZ06]

have goals different from ours, because they are neither designed to iden-

tify the individual members in the clusters nor enforce the sliding window

semantics for the clustering process. Thus these two algorithms cannot be

applied to solve the problem we tackle in this work. [YRW09] is the only al-

gorithm we are aware of that detects density-based clusters in sliding win-

dows. Our experimental study conducted in Chapter 16 shows that our

shared execution strategy largely outperforms the strategy of using this al-

gorithm independently for each query. [YGX+10] builds a visual system to

allow analysts to interactively explore density-based clusters in streaming

environments.

[AF07] and [MP07] discuss the problem of detecting distance-based out-

liers and top-k nearest neighbors in data streams respectively. Again, these

works concentrate on single query execution only. We borrow the basic

CHAPTER 17. RELATED WORK FOR PART II 212

ideas of maintaining meta-information, such as potential outlier sets and k

nearest neighbors from them. However, instead of maintaining such meta-

information independently for each query, we developed integrated main-

tenance strategies for shared execution among multiple queries, and thus

achieve significant savings on both CPU and memory resources.

As a general query optimization problem, multiple query optimiza-

tion has been widely studied for not only static but also streaming en-

vironments. Such techniques can be roughly divided into two different

groups, namely “plan level” and “operator level” sharing. “Plan level”

sharing techniques [LRY08, CDTW00, CDN02] aim to allow the different

input queries to share the common operators across their query plans, and

thus lower the overall costs for multiple query execution. Operator level

sharing studies the sharing problem on a finer granularity, namely within

the individual operators. In particular, they aim to share the operator state

as well as the query processing computation within a single operator, when

multiple queries have similar yet not identical operator specifications. For

example, two queries may calculate aggregations for the same input stream

but using different window sizes. The problem we solve in this paper falls

into the operator level sharing category.

Previous research efforts discussing such operator level sharing tech-

niques focus on simple operators, such as selection and join operators [MSHR02,

HFAE03, KFHJ04, WRGB06, ZKOS05], and aggregation operators [KWF06,

AW04, ZKOS05]. To our best knowledge, none of them discuss the sharing

for clustering operators. Some general principles used in these works, such

as query containment [HFAE03], can also be applied in our context (used in

CHAPTER 17. RELATED WORK FOR PART II 213

sharing range query searches for our solution). However, the key problem

we address in this work, namely the integrated maintenance of density-

based cluster structures identified by multiple queries, is different from the

optimization effort required by selection, join or aggregation sharing. In

particular, the meta-information we need to maintain, namely the cluster

structures defined by individual cluster member objects as well as their in-

terrelationships, is much more complex than those for selection, join or ag-

gregation operators, which are usually pair-wise relations or simply num-

bers (aggregation results). Efficient maintenance of such meta-information

requires thorough analysis of the properties of density-based cluster struc-

tures, which is a key contribution of our work. This has not been studied

in any of these works.

214

Part III

Summarization and Matching

of Neighbor-Based Patterns

215

In Part III of this dissertation, we discuss the problem of summariza-

tion and matching of neighbor-based patterns in streaming environment.

It extends the scope of this dissertation from real-time pattern extraction

as covered in Parts I and II to also include long-term pattern analysis and

retrieval.

Within the three neighbor-based pattern types discussed in this work,

density-based clusters have the most complicated pattern structures and

thus are most challenging for pattern summarization and matching. So, in

the third part of my dissertation, I mainly focus on studying these prob-

lems for density-based clusters. In addition, I will discuss matching and

summarization for the other two pattern types in each component of our

framework.

216

Chapter 18

Supported Queries and System

Overview

We aim to support two types of analytical queries:

18.1 Continuous Pattern Extraction Queries

A Continuous Pattern Extraction Query returns both full and summarized rep-

resentation of the extracted patterns (Figure 18.1). The design of our pro-

posed pattern summarization formats will be introduced in Chapter 19.1.

DETECT NeighborBasedPatternf+s FROM stream
USING pattern para 1 = x1 and ... pattern para 2 = x2
IN Windows WITH win = w and slide = s

Figure 18.1: Continuous Pattern Extraction Query Returning Full (f) and
Summarized (s) Representations of Neighbor-Based Patterns

18.3. SYSTEM OVERVIEW 217

18.2 Pattern Matching Queries

Given a user specified to-be-matched pattern Pi, a pattern matching query

finds patterns similar to Pi that reside in the historical pattern archive. We

show a template of such a query in Figure 18.2.

GIVEN NeighborBasedPatterns Pi

SELECT NeighborBasedPatterns Pj FROM History
WHERE Distance(Pi, Pj) ≤ sim threshold

Figure 18.2: Pattern Matching Query finding Patterns Similar to the To-Be-
Matched Cluster Based on Cluster Summarization

The to-be-matched pattern can be any pattern specified by an analyst.

Typically, it may be a pattern detected in the most recent portion of the

stream that represents the newest characteristics of the stream. The matched

patterns, if any, will be found in the historical pattern store, which archives

the patterns extracted by applying the Continuous Clustering Query against

earlier portions of the stream.

18.3 System Overview

To support these two types of analytical queries, we design a framework

composed of four major components (Figure 18.3). Here we give a brief

overview of the functionalities of each component, while in-depth technical

details are discussed later in Chapters 21 to 23.

The Pattern Extractor executes the Continuous Pattern Extraction Query

(Figure 18.1) against the input stream. It outputs both full and summarized

representations of the extracted patterns. Both representations are returned

18.3. SYSTEM OVERVIEW 218

Figure 18.3: System Overview

to the analyst for real-time monitoring. Meanwhile, the extracted patterns

are also passed to the Pattern Archiver for storage, and to the Pattern Ana-

lyzer for pattern matching.

The Pattern Archiver selectively archives the newly detected patterns

into the Pattern Base. These archived patterns constitute the Stream History

available for subsequent Pattern Matching Queries (Figure 18.2). The Pattern

Archiver controls which extracted patterns should be kept in the Pattern

Base and at which resolution they should be archived.

The Pattern Base organizes the archived patterns. To facilitate pattern

matching against historical patterns, it employs multiple feature indices to

organize the archived patterns. This helps the Cluster Matching Queries to

quickly locate any potential matching candidates.

The Pattern Analyzer executes the Cluster Matching Queries (Figure 18.2).

If an analyst is interested in any newly extracted pattern and would like to

learn whether similar patterns had been detected before in the Stream His-

tory, she can submit her Cluster Matching Query to the Pattern Analyzer to

search for matches against the Pattern Base.

219

Chapter 19

Pattern Summarization

19.1 Summarization for Density-Based Clusters

In this section, we present our proposed summarized representation of density-

based clusters, which is critical for both cluster storage and matching.

19.1.1 Features of Density-Based Clusters

Based on our analysis, we identify four key features that define each density-

based cluster, which can be divided into two categories, namely external

and internal features.

External Features:

Location: The location of a cluster indicates its position in the data

space. It provides basic information about each cluster, such as where a

congestion area (a cluster) arises in the traffic, or in which price range an

intensive-transaction area, a cluster based on price, volume and transaction

time, is detected in the stock transaction stream.

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 220

Shape: Density-based clusters can have arbitrary shapes. The shape

is a key feature, because a certain shape of the cluster may convey spe-

cific meaning for an application. For example, for the clusters representing

intensive-transaction areas in stock transactions, a cluster having a long

spread on the transaction price but a short range on transaction time con-

veys that a large number of transactions of a certain stock happened in a

short time period while its price fluctuates dramatically within this time

period.

Internal Features:

Connectivity: The connectivity of a density-based cluster describes how

sub-regions within the cluster are connected. It is an important feature for

density-based clusters for both definition and application reasons. First, it

defines the internal structure of each cluster. The definition of the density-

based cluster (see section 2.2.1) relies on the connectivities among sub-

regions to define each cluster. Second, the connectivities among sub-regions

may be relevant to applications. For example, if two sub-regions within a

single cluster representing a group of moving troops are not directly con-

nected, then this may indicate the units in these two sub-regions cannot di-

rectly communicate with each other, because there are no connected “Head

Nodes” (core objects) in these two sub-regions of their wireless network.

Density Distribution: Although the definition of density-based clusters

imposes a minimal density requirement on objects in a cluster, the density

of each cluster can be rather diverse across its sub-regions. The density

distribution within each cluster may be of an analyst’s interest in many

applications. Using the earlier example, even in a single congestion area,

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 221

the level of congestion (density of vehicles) may vary among sub-regions.

Therefore, the density distribution in each sub-regions may be the key for

working out a congestion relief plan, as the super dense sub-regions may

be the key points that cause the congestion.

19.1.2 Skeletal Point Summarization

In general, any effective summarized representation for density-based clusters

has to be able to capture these four key features. Given that any density-

based cluster may have an arbitrary shape, connectivity and also density

distribution, it is clear that using any single aggregation method to repre-

sent any of these features will end up with a poor descriptiveness. There-

fore, we propose an alternative summarization principle for density-based

clusters. Namely we divide each cluster into sub-regions to pursue bet-

ter homogeneity on these features in each sub-region. Then we describe

the features in each sub-region and also the interrelationships among the

sub-regions.

First, we investigate a summarization method based on the representa-

tive points and the connections among them. In general, we divide each

cluster into sub-regions and use one representative point to represent each

sub-region. In particular, for a given cluster Ci, we try to find a subset of

the cluster member objects in Ci to represent it. We call this subset skele-

tal point set and each object in this set a skeletal point. The skeletal point set

should have the following property:

1) coverage: To ensure every sub-region in a cluster is covered, the neigh-

borhood of the skeletal point set needs to cover all the cluster member object

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 222

in a cluster Ci. In particular, every cluster member objects in Ci has to be a

neighbor (see definition in Chapter 19.1) of at least one skeletal point.

2) connectivity: To capture the connectivity within a cluster, the skeletal

point set needs to be self-connected. In particular, any two skeletal points in

a skeletal point set need to be connected (see definition in Chapter 19.1). If

two skeletal points are neighbors to each other, we say there is an “edge”

between them.

3) minimality: To ensure the compactness of the summarization, the

skeletal point set of a cluster Ci should have the smallest cardinality among

all possible subsets of Ci, which have the two properties above.

A skeletal point set and the edges among them constitute a summarized

representation of a cluster. We call it the skeletal point graph. A skeletal point

graph could effectively capture most of the features of a density-based clus-

ter, namely the position, the connectivity and the shape. However, it suffers

from the following limitations.

Limitations. First, the skeletal point graph has a limited descriptiveness

for clusters’ density distributions. This is because using this summariza-

tion method the sub-regions within a cluster, each represented by a skeletal

point’s neighborhood, potentially overlap . Therefore, there is no succinct

expression that can be employed to clearly describe the density distribu-

tion within each cluster. On the one hand, the naive approach of ignoring

the overlaps and expressing the density in each sub-region separately may

cause ambiguities, as each object may be counted in the density calculation

for multiple sub-regions. On the other hand, if one would like to quantify

and explicitly express the overlaps, this would require complex expressions

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 223

Second, such skeletal point graph is not easily computable (identifiable).

Generally, finding such a skeletal point graph for a cluster is equal to the

problem of identifying the minimal connected dominant set in an undi-

rected graph. In particular, we could model any density-based cluster Ci

as an undirected graph Gi, with each cluster member object being a vertex.

In this graph, an edge exists between two cluster member objects if they are

neighbors to each other. Given this graph Gi as input, the minimal connected

dominant set identified for Gi will be equal to the skeletal point set of Ci.

Unfortunately, the problem of identifying a minimal connected dominant

set has been proven to be NP-complete [GK96]. The state-of-the-art approx-

imation techniques can find an approximate set with a cardinality that is no

larger than 3 + ln(θ) times the minimal cardinality in the worst case. How-

ever, their CPU complexity is at least O(n2), with n the number of objects

in each cluster for our problem. And even worse, they need to take this

graph as their input. Namely, this requires the cluster generation process

to not only provide the cluster member objects of each cluster, but also the

edges (pair-wise neighbor relationship) among the cluster member objects.

Based on our best knowledge, none of the state-of-the-art density-based

clustering algorithms provides such “edge ”information. Even if one could

design such a clustering algorithm that were to provide such information,

it would cause a huge memory consumption as the number of edges exist-

ing among the cluster member objects may be very large, n2 in the worst

case.

Third, the skeletal point graph is not easily matchable. The key difficulty

for matching such skeletal point graphs is caused by their indeterminacy. In

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 224

particular, the skeletal point graph of a cluster is non-deterministic, indicat-

ing that a single cluster Ci may not have a unique, but instead multiple

alternative skeletal point graphs with very different graph structures. Thus,

the matching result between the skeletal point graphs of two clusters may not

effectively tell us about the similarity between these two clusters.

In addition, the problem of matching two skeletal point graphs is equal

to the problem of calculating the graph edit distance between two graphs.

This problem is known to be very expensive in terms of CPU utilization

[NRB06], and thus not suitable for real-time query processing.

Conclusion. As a good starting point, the Skeletal Point Summariza-

tion (SKPS) has a good descriptiveness for most of the features of density-

based clusters. However, it suffers from the limitations above and thus

does not constitute an ideal solution for summarizing density-based clus-

ters in streaming environments. As we have observed, these limitations are

caused by its overlapping and non-deterministic sub-region division strat-

egy. Thus, we propose to improve it by adjusting the sub-region division

strategy in the following section.

19.1.3 Proposed Solution: Skeletal Grid Summarization

Basics of Grid-Based Summarization. The limitations suffered by SkPS

are caused by its overlapping and non-deterministic sub-region division

strategy. Thus, we now propose to adapt SkPS by dividing each cluster

into non-overlapping and uniformly sized sub-regions. In particular, we

divide the whole data space into uniformly sized grid cells. For each clus-

ter, its sub-region division is now determined by the grid cells into which

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 225

its members fall. Therefore, a cluster Ci can now be represented by all the

grid cells which contain at least one C ′is cluster member objects.

Connectivity Preservation. However, this simplistic grid-based sum-

marization method clearly lacks one key capability of the SkPS solution,

namely it does not capture the connectivity within clusters. In SkPS, the

connectivity information of each cluster is well preserved. Such connectiv-

ity information can be divided into two categories, namely the inner- and

inter sub-region connections. First, each sub-region in SkPS itself is “well

connected”, as all objects in a sub-region are neighbors of the same skeletal

point. Second, the inter-connections among different sub-regions are explic-

itly expressed by the “edges” in SkPS. While in this simplistic grid-based

summarization, neither of these two types of connectivity information are

available. First, we have no knowledge about whether the objects within a

sub-region (grid cell) are connected. Second, although we know the topo-

logical adjacency among the grid cells, we do not know whether objects in

adjacent grids are connected.

Connectivities In Grid Cells. To solve this problem, we propose to

integrate the concept of “connectivities” into the grid-based solution. As

foundation, we first introduce the concept of status of a grid cell. That is, we

divide the grid cells in each cluster’s summarization into two categories,

namely “core grids” and “edge grids”.

Definition 8 Core cells: a core cell of a cluster Ci contains at least one core object

(See Def. 2.2.1) of Ci.

Edge cells: an edge cell of a cluster Ci contains no core object, but at least one

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 226

edge object (See Def. 2.2.1) of Ci.

noise cells: a noise cell contains neither core objects nor edge objects of any

cluster 1.

For inner-sub-region connections, we follow the basic principle for the

sub-region division strategy, which is to pursue homogeneity in each sub-

region. In particular, we pick a fine grid size to guarantee that the objects

that fall into the same grid cell are neighbors of each other. More precisely,

the diagonal of each grid should be equal to the range threshold θr in the

given clustering query (see Section2.2.1). This grid cell size selection will

be relaxed later in our discussion of the multi-resolution cluster summa-

rization (Chapter 21). Under this fine grid size selection, the core and edge

girds can be shown to have the following properties.

Lemma 19.1 All objects in a core cell belong to the same cluster.

Proof 19.1 Since each core cell contains at least one core object and all the objects

in each core cell are now neighbors of each other, it implies that now all objects in

the same core cell are neighbors of at least one common core object. Based on the

definition of density-based cluster (see Def. 2.2.1), the neighbors of a core object

belong to the same cluster.

Lemma 19.2 The number of objects in an edge cell must be less than the count

threshold θc in the clustering query.

Proof 19.2 We prove this lemma by contradiction. Given that all objects in a grid

cell are neighbors of each other, if there are at least θc objects in an edge cell, those

1noise grid will not appear in our proposed cluster summarization for any cluster. They
are only used in cluster computation stage (see Chapter 20)

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 227

objects would be core objects, as they all have at least θc neighbors. This contradicts

the definition of edge grid (Def. 2.2.1).

Given these properties, each grid cell is “well-connected” and consti-

tutes a basic unit for the inter-grid connection expression, as defined below.

For the inter-sub-region connection, we now define the “connections”

between grid cells.

Definition 9 Two core cells ccl1 and ccl2 are directly connected, if there exists

at least one core object pi in ccl1 and one core object pj in ccl2 that are neighbors

of each other. Two core cells ccl0 and ccln are connected, if they are directly con-

nected to each other, or there exists a sequence of core cells ccl0, ccl1, ...ccln−1, ccln,

where for any i with 0 ≤ i ≤ n − 1, each pair of core cells ccli and ccli+1 are di-

rectly connected with each other.

An edge cell ecli is attached to a core grid cclj , if there exists at least one

object pi in ecli and one core object pj in cclj that are neighbors of each other.

Two edge cells are neither connected nor attached to each other.

Given the connection definition for grid cells above, all core cells of a

cluster are connected to each other, and all edge cells are attached to at least

one core cell of Ci.

Skeletal Grid Summarization. Based on the status and connections of

grid cells, we now give the definition of our proposed Skeletal Grid Sum-

marization (SGS) model.

Definition 10 A Skeletal Grid Summarization (SGS) of a density-based clus-

ter Ci is composed of all grid cells that contain at least one cluster member ob-

ject of Ci. We call each grid cell in a SGS, a Skeletal Grid Cell (Sc) of Ci.

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 228

SGS = {Sc0, Sc1, ...Scn}. Each Sci has five attributes, namely

SGi = (location[], size, population, status, connection[]).

1) location vector: a sequence of values, each indicating the minimum value on

one of the dimensions covered by Sci.

2) side length: the range of values on each dimension.

3) population: the number of objects contained by Sci

4) status: whether Sci is a core or an edge cell.

5) connection vector: a sequence of boolean connection indicators, each indi-

cating Sci’s connection to one of its adjacent skeletal grid cells. For any edge or

noise cell, all connection indicators are “false”. For any core grid, a connection

indicator is “true” if the corresponding adjacent skeletal grid cell Scj is a core cell

and Sci and SGj are directly connected, or if SGj is an edge cell attached to SGi.

Figure 19.1: Example of full representation, basic SGS and compressed SGS
of a 2D cluster

Figure 19.1 shows an example of our proposed Skeletal Grid Summa-

rization (SGS) for a 2D cluster. SGS achieves our goal of preserving all four

features, as shown below.

Lemma 19.3 Fidelity to Location and Shape: The data space covered by Ci.SGS

is larger than that covered by the cluster member objects of Ci by a bounded error.

19.1. SUMMARIZATION FOR DENSITY-BASED CLUSTERS 229

Namely, any point in the data space covered by Ci.SGS is at most θr away from a

cluster member object in Ci.

Proof 19.3 The data space covered by Ci.SGS is composed of the union of that

covered by all its skeletal grid cells. Since all member objects of Ci fall into these

grid cells, the data space covered by Ci.SGS is larger than that covered by Ci’s

member objects. Since each skeletal grid cell in Ci.SGS contains at least one mem-

ber of Ci, and the diagonal of each cell is θr, any point in data space covered by a

skeletal grid cell is at most θr away from a member of Ci.

Lemma 19.4 Fidelity to Density Distribution: For any sub-region in a cluster

Ci, which is composed of n grid cells, Ci.SGS can accurately express its density.

Proof 19.4 Since the skeletal grid cells in Ci.SGS don’t overlap, the population

recorded by each skeletal grid cell accurately reflects the number of objects in it.

Therefore, for any sub-region in a Ci composed of n skeletal grid cells, we can

always accurately calculate its density by dividing its totally population by its

total volume.

Lemma 19.5 Fidelity to Connectivity: If there are two sub-regions in Ci con-

nected through a connected core object path composed of n core objects, there must

exist a core grid path connecting these two sub-regions with at most n core cells

on this path.

Proof 19.5 Since any skeletal grid cell containing at least one core object is a core

cell, if there exists a core object path between two sub-regions, there must exist a

core cell path between them. In the worst case, each core grid on this core grid path

19.2. SUMMARIZATION FOR DISTANCE-BASED OUTLIERS 230

contains only one core object. Thus the length of the core grid path is at most equal

to the length of the core object path.

In conclusion, SGS effectively captures all key features of density-based

clusters using a compact description.

Dimensionality Concern. A concern for such a grid-based data space

division is that it may suffers from the dimensionality problem, namely,

that the number of grids needed to represent a cluster may be huge for

clustering high dimensional data. However, in practice, this problem does

not significantly affect the performance of our summarization method for

the following reasons: First, even for high dimensional data, the cluster-

ing is usually applied to only a subset of the data’s attributes. Second, as

density-based clusters are “overly dense” areas in the whole data space,

it has been observed that they tend to be identified only in compact sub-

areas and less likely to spread across the whole data space [CT07]. Third,

as our proposed summarization strategy supports multiple resolutions, the

analyst can choose the resolution level based on the system budget.

19.2 Summarization for Distance-Based Outliers

When each individual distance-based outlier is viewed as a single pattern,

the pattern structure of each outlier is very simple. In particular, each out-

lier is a single object (tuple). In this case, further summarizing the outliers

may not be necessary, as the amount of information needed to describe

each outlier is already very small.

An alternative way of viewing distance-based outliers is to identify the

19.3. SUMMARIZATION FOR KNN 231

potential “outlier groups” among the detected outliers. In particular, each

outlier group is a group of outliers which appear in a same area of the data

space. The outliers in a same outlier group are usually identified as out-

liers for the same or similar reasons. For example, in the stock transaction

stream, few transaction records with (similar) high volumes may be iden-

tified as outliers, as they are all “far away” from the common transactions

with normal volumes. The two outliers on the lower right corner of Figure

2.2 are example for a potential outlier group.

To identify these outlier groups, we can apply clustering algorithms on

all detected outliers. Then for each detected outlier group, we can summa-

rize its characteristics using the summarization techniques for clusters. To

keep the summarization succinct, we can use simple aggregative summa-

rization techniques, such as Centroid + Radius + Population, combination

to convey the key characteristics of each outlier group.

19.3 Summarization for kNN

For k nearest neighbors of an object, when the constant k is small, further

summarizing them may not be necessary as well, as the amount of informa-

tion needed to describe them is already small. Summarization for k nearest

neighbors may be needed when k is very large. In this case, we can view

the k nearest neighbors of an object as a dataset and summarize it using

dataset summarization techniques, such as histograms [BRV11, dAMFH08]

or clustering methods [JMF99].

232

Chapter 20

Pattern Extractor

In this chapter, we introduce the pattern extractor that executes the Continu-

ous Pattern Extraction Query, and thus extracts the patterns for each window

in real-time. For subsequent cluster analysis, it outputs the patterns in both

full and summarized representations.

20.1 Extracting and Summarizing Density-Based Clus-

ters

20.1.1 A Two Stage Strategy and Its Limitations

For density-based clusters, to provide such functionality, a straightfoward

methodology would be a two-stage process, namely clustering first fol-

lowed by summarizing. In particular, at the first stage, we could employ

the state-of-the-art clustering algorithm [YRW09] to extract the clusters.

Then, at the second stage, we could design a summarization algorithm to

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 233

summarize the extracted clusters into our proposed SGS summarization

format (see Chapter 19.1).

However, this strategy will suffer from significantly lower performance

compared to conducting clustering only (without summarization), as the

summarization stage is expensive in terms of both CPU and memory con-

sumption. Most notably, summarizing a cluster into SGS needs extra in-

formation beyond the regular clustering results, which is not provided by

state-of-the-art clustering algorithm. Namely, same as in the case of the

skeletal point graph, to form SGS of clusters, one needs not only the objects

in each cluster, but also the connections (pair-wise neighborships) among

the objects, because both the status and connections of each skeleton grid cell

needs to be determined by the connections which the objects contained by

it has. We have noted that requiring a clustering algorithm to provide such

connectivity information in the output will cause serious system overhead

for the clustering process itself. The alternative to obtain such connectivity

information is to re-search for all the neighbors for each cluster member

during the summarization process. However, this alternative is obviously

even more computationally expensive and constitutes a significant waste of

CPU time, as the connections among the objects would already have been

identified before during the clustering process.

To solve this problem, we instead propose an integrated strategy that

incorporates cluster extraction and summarization into a single process.

The key observation that motivates this integrated computation method is

given below.

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 234

Observation 20.1 The main tasks for both density-based cluster extraction and

SGS computation are the same, namely to first identify the connections (neighbor-

ships) among the objects and analyze them to form the cluster structures in either

the full or a summarized representation.

This observation reveals the key commonality among the cluster extrac-

tion and summarization processes. Based on it, we design an integrated ex-

traction+summarization method to effectively share the neighborship iden-

tification and cluster formation processes.

20.1.2 Incremental Computation and Challenges

To avoid conducting the prohibitively expensive clustering process from

scratch at each window, our proposed method incrementally maintains the

cluster structures across the windows. To realize incremental computa-

tion, we need to find appropriate meta-data that can be maintained for

both the full and summarized cluster representations. Our proposed so-

lution is that, besides the raw data falling into each window, which needs

to be maintained for cluster extraction in any case, we incrementally main-

tain the skeletal grid cells in the data space. With updated skeletal grid cells,

we can easily output both the summarized and full representations of de-

tected clusters. First, based on connections among the skeletal grid cells, we

can easily determine the summarized representation SGS (a group of con-

nected skeletal grid cells) for each cluster. Second, given the SGS of a cluster

Ci, Ci.SGS, we can figure out the cluster member objects of Ci based on

the objects falling into the respective skeletal grid cells belonging to Ci.SGS.

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 235

However, incrementally maintaining skeletal grid cells in an efficient man-

ner is a challenging task. In particular, tracking the changes to the skeletal

grid cells caused by expired objects can be expensive in terms of system re-

source utilization, and thus constitutes the key performance bottleneck for

skeletal grid cell maintenance.

When an object pexp expires, it needs the connections at the object level,

to update the connections among the skeletal grid cells. For example, when

pexp expires, we first need to know which objects are neighbors of pexp, as

their neighborships with pexp will end from now on. This may break the con-

nections between the skeletal grid cell Sci in which pnew resides and those

in which pexp’s neighbors reside. However, considering the large amount

of pair-wise neighborships that may exist among the objects, maintaining all

of them has been shown to be extremely expensive in terms of system re-

source utilization, analytically and experimentally [YRW09]. Therefore, the

straightforward incremental maintenance method, which updates skeletal

grid cells corresponding to each insertion and deletion, is not practical.

20.1.3 “Lifespan” Analysis

To solve this computation bottleneck, we present a skeletal grid cell mainte-

nance method using “lifespan” analysis. This method elegantly eliminates

the need for handling the impact of expired objects on the skeletal grid cells.

The solution is based on the observation that in the sliding window seman-

tics the lifespan of any object as well as the neighborships among objects are

deterministic. Therefore, at the insertion stage, when we handle the impact

of new objects on the skeletal grid cells, we take the lifespans of the objects

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 236

into consideration. In particular, we pre-determine the changes that will

happen to the skeletal grid cells when these objects expire later. Then at the

expiration stage, no further update is needed to handle the impact of ex-

pired objects. Thus we avoid the bottleneck discussed above.

Among the five attributes of a skeletal grid cell, except location and side

length that are fixed over time, the other three namely population, status and

connections are changing over time as the objects come and go with each

window slide. The population of each skeletal grid cell is easily trackable

with a simple object counter. Thus, we focus on the lifespan analysis of the

status and the connections.

Basics for Lifespan Analysis. First, we start with analyzing the lifespan

of individual objects.

Observation 20.2 Given the slide size Q.slide of a query Q and the starting time

of the current window Wn.Tstart, the lifespan of an object pi in Wn with time

stamp pi.T is pi.lifespan = ⌈pi.T−Wn.Tstart

Q.slide
⌉, indicating that pi will participate

in windows Wn to Wn+pi.lifespan−1.

The number of windows that an object pi can survive in is determined

by after how many window slides that p′is time stamp will still be greater

than the starting time of the window. Based on the lifespan of individual

objects, we analyze the lifespan of neighborship between two objects.

Observation 20.3 Given two objects pi and pj , the neighborship between them,

Neighbor(pi, pj) will hold for

Neighbor(pi, pj).lifespan =Min(pi.lifespan, pj .lifespan) windows, namely,

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 237

it will exist in all windows from Wn to Wn+Neighbor(pi,pj).lifespan−1 until either

pi or pj expires.

Based on these observations, we can further analyze the lifespan of dif-

ferent stages of an object’s “career”.

Observation 20.4 Given an object pi and all its neighbors objects pnb1 to pnbk,

the number of windows in which pi will be a core object pi.core lifespan =

Min(pi.lifespan,win θc nei), with win θc nei the number of windows in which

at least θc objects within pnb1 to pnbk will participate. The number of windows in

which pi will be edge object pi.edge lifespan = Min[pi.lifespan−pi.core lifespan,Max1≤j≤k(pnbj .core l

Basically, an object will be a core object in all the windows that it has at

least θc neighbors. It will be an edge object when it core object career ends (no

longer has enough neighbors) but at least one of its neighbors is still a core

object.

Lifespan Property at Grid Cell Level. To tackle skeletal grid cell main-

tenance, we now extend the concept of lifespan from the object level to the

grid cell level. In particular, we analyze how the lifespan of objects, their

neighborships and their career affects the lifespan of skeletal grid cells’ status

and connections. For each skeletal grid cell Sci, we maintain one lifespan in-

dicator for Sci.status and one for each Sci.connections[i]. Each lifespan

indicates that, based on the objects in the current window, in how many

future windows the value of this attribute will persist. These indicators are

updated whenever new objects arrive.

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 238

Lemma 20.1 Status Lifespan. Given a skeletal grid cell Sci, all the objects p0 to

pn in Sci , the number of windows in which Sci will be a core cell SGi.core lifespan =

Max0≤i≤n(pi.core lifespan).

Lemma 20.1 can be deduced from the definition of a core cell (Def. 8).

Namely, Sci is a core cell if it contains at least one core object.

Lemma 20.2 Connection Lifespan. Given two skeletal grid cells Sci and Scj ,

and all objects in Sci, p
sci
0 to pscin , and all objects in Scj , p

scj
0 to p

scj
m , the number

of windows in which Sci and Scj will be connected is defined as

Connection(Sci, Scj).lifespan = Max[Min(psgia .core lifespan,

p
sgj
b .core lifespan,Neighbor(psgia , p

sgj
b).lifespan)], ∀a ∈ [0, n], b ∈ [0,m].

This indicates that two skeletal grid cells remain connected if at least one pair

of core objects, each from one of the two skeletal grid cells, are neighbors to

each other.

Auxiliary Meta-Data. To insure that we only run one range query

search (rqs) for each new object and never re-run rqs for existing objects,

we maintain an auxiliary meta information for each object in the window.

In particular, we maintain a “non-core-career neighbor list” for each object

pi to store all pi’s neighbors in its “non core career”. For example, pi cur-

rently may have 100 neighbors. Based on the lifespan analysis, it will be a

core object for 3 windows and then due to most of its neighbors expiring, it

will become a edge object for 2 windows before expiration. In this case, the

“non-core-career neighbor list” of pi only contains its neighbors in the last

2 windows of its lifespan, say 5 objects.

The “non-core-career-neighbors” of each object are maintained in a dy-

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 239

namic hash table. The hash table of each object pi is initialized to have n

buckets, with n the number of windows that pi can survive. The hash key

of the table is the number of windows that a neighbor object can survive.

For example, when a data point pi finds a “non-core-career-neighbor” pj ,

pj will be added to the kth bucket of the hash table, with k the number of

windows pj can still survive (if k is larger than the number of buckets re-

mained on pi, pj is put in the last bucket). At each window slide, we can

simply remove the whole first bucket of each remaining object pi, as all the

neighbors in this bucket must be expired after the window slide. Then, the

second bucket becomes the new first bucket and so on. This removal pro-

cess also indicates that the numbers of windows that the other neighbors of

pi can survive decrease by one, as each remaining bucket now is now one

position closer to the first bucket.

The number of neighbors in such “non-core-career neighbor list” is bounded

by the constant θc. Namely an object can never have more than θc neigh-

bors in its non-core career, otherwise it would instead be a core object in

those windows. This theoretical bound guarantees the “lightness” of this

auxiliary meta-data. On the other hand, it provides all necessary access to

the objects’ neighbors needed in our cluster extraction process (see Chapter

5.2.6) It thus guarantees that we only run the minimum number of range

query searches (one for each new object) during the clustering.

20.1.4 Proposed C-SGS Algorithm

We call our proposed algorithm based on the maintenance of Skeletal Grid

Cells (SGS), C-SGS.

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 240

Initialization. For a continuous clustering query, at the initialization

stage, C-SGS builds a grid-based index whose grid cell size is equal to the

size of the finest skeletal grid size for this query (see Chapter 19.1). We assign

to each grid cell in this index the same attributes as the skeletal grid cells,

while we set their status to be noise, density to be “0”, and connections to

be all “false” initially.

Handling Insertions. For each new object pnew inserted into the win-

dow, C-SGS first loads it into its corresponding skeletal grid cell based on its

position in the data space. Then, we run a range query search for pnew to

identify pnew’s neighbors. Based on the lifespan of pnew and its neighbors

(Lemma 20.2), we can determine the lifespan of the neighborships among

pnew and its neighbors (Lemma 20.3), as well as the lifespan of different

stages of p′news “career” (Lemma 20.4). Using this information, we now up-

date the status and connections of the skeletal grid cells in which pnew falls into

and in which its neighbors reside.

For status of skeletal grid cells, the insertion of a new object may only

cause two types of changes. Namely, it may “promote” the skeletal grid cells

to become core cells or “prolong” their core cell lifespans.

status promotion: A new object pnew may promote the skeletal grid cell

Sci that it resides in to become a core cell, if it becomes the first core object

in Sci. In this case, we set the status of Sci to core cell and set its core cell

lifespan equal to the core objects lifespan of pnew. An example of this case

is shown by Case 1 of status promotion in Figure 20.1.

pnew may also cause a status change of a skeletal grid cell by upgrading its

non-core-object neighbors, which reside in these affected skeletal grid cells,

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 241

to core objects. In this case, for each upgraded neighbor pupg of pnew, we first

determine the lifespan of pupg’s career by analyzing itself and its neighbors.

As every pupg was a non-core object, the “non-core-career neighbor list” will

help us to quickly access all its neighbors without running any range query

search again. Thus, we update the status of the skeletal grid cells in which

pupg resides to core cell and set its core grid lifespan equal to the core object

lifespan of pupg. Correspondingly, the “non-core-career neighbor list” of

each pupg also needs to be updated to exclude those objects that will only

be neighbors of pupg in its core object career. An example of this case is

shown in Case 2 of status promotion in Figure 20.1.

status prolong: A new object pnew may prolong the core cell lifespan of

the skeletal grid cell Sci in which it resides, if p′news core object lifespan is

longer than that of any existing object in Sci. In this case, we set Sc′is core

cell lifespan equal to the core object lifespan of pnew. An example of this

case is shown in Case 1 of status prolong in Figure 20.1.

pnew may also prolong the core cell lifespans of the skeletal grid cells by

extending pnew’s neighbors’ core object lifespan. For each pnew’s neighbor

whose core object lifespan is extended because of pnew’s arrival, pcole, we

first determine how long its core object lifespan is extended, by analyz-

ing it would have at least θc neighbors in how many more windows after

pnew joining its neighborhood. Then, we update the core cell lifespan of the

skeletal grid cell in which each pcole resides to the core object lifespan of the

corresponding pcole, if the later is longer. An example of this case is shown

in Case 2 of status promotion in Figure 20.1.

For connections of skeletal grid cells, the insertion of a new object may

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 242

Figure 20.1: Examples of updating cell status. θc = 4, grey circle=edge point,
black circle=core point, number on each object= number of windows the
object can survive.

also only cause two types of changes. Namely, it may build new connec-

tions between skeletal grid cells or prolong the life span of existing connec-

tions.

connection build-up: A new object pnew may build the connection be-

tween the skeletal grid cell Sci that it resides in as a core object to another

skeletal grid cell Scj , if it finds a core object neighbor pj in SGj . In this case,

we first set the corresponding connection indicator of both Sci and Scj to

“true”. Then we set the life span of this connection to the smaller of the two

core objects life spans of pnew and pj .

pnew may also build new connections between skeletal grid cells by up-

grading its non-core object neighbors to core objects. In this case, for each

upgraded neighbor pupg, we first determine its core object life span. Then,

we check whether there already exists any core objects in p′upgs “non-core-

career neighbor list” that are in the adjacent grid cell. If yes, we build the

connections between these grid cells.

20.1. EXTRACTING AND SUMMARIZING DENSITY-BASED CLUSTERS 243

connection life span prolong: A new object pnew may prolong the life

span of the connections between two grid cells, if p′news builds a new core

object neighborship across them that will last longer than any other core object

neighborship existing before across these two grid cells. In this case, we

update the life span of this grid cell connection to the life span of this new

core object neighborship.

pnew may also prolong the life spans of the connections between affected

grid cells by extending its neighbors’ core object career. We again use the

same methodology introduced above to update the life spans of these con-

nections.

Handling Expirations. By using the lifespan analysis technique intro-

duced above, the impact on the skeletal grid cells that could be caused by

expiring objects has been pre-handled when objects arrive. Therefore, no

maintenance effort is needed for handling cluster structure changes when

individual objects expire. After the window slides, the only update needed

for the attributes of skeletal grid cells is to check whether the new window is

out of its lifespans. If the new window is out of its core cell lifespan, its status

needs to be set back to edge cell. If the new window is out of the lifespan of

any of its connections, the corresponding connection needs to be set back

to “false”.

Output Stage. At the output stage, the updated skeletal grid cells can

be viewed as the vertices V in a graph G, and the connections among them

can be viewed as the edges E among the vertices. Therefore, we simply

conduct a depth first search on all the core cells to collect different groups

of connected core cells and the edge cells attached to them. Each connected

20.2. EXTRACTING AND SUMMARIZING DISTANCE-BASED OUTLIERS244

group of skeletal grid cells constitutes the SGS summarization of a cluster Ci,

Ci.SGS. Given Ci.SGS, the full representation of Ci can be easily figured out

by collecting all objects covered by core cells in Ci.SGS and those covered by

the edge cells in Ci.SGS and connected to at least one core object in Ci.SGS′s

core cells.

20.2 Extracting and Summarizing Distance-Based Out-

liers

Given the simple pattern structure of distance-based outliers, the summa-

rization process as discussed in Chapter 19.2 is much simpler and compu-

tationally cheaper than summarizing density-based clusters. In particular,

if we choose to view each individual outlier as a pattern, then no summa-

rization process is necessary, as each outlier is simply a stream object. In

this case, we can simply use the same Abstract-C algorithm that we pro-

posed in Chapter 6 to extract the outliers. If we choose to view the outliers

extracted from a same query window as a pattern and would like to fur-

ther summarizae them, we can group them again by their similarities. To

do so, we can use the same Abstract-C algorithm to extract the outliers,

and use the grid index (same as we used in C-SGS algorithm for density-

based clustering) to support the neighbor search processes in Abstract-C.

Similar to SGS, the idea is to summarize the outliers in the same areas us-

ing grid cells. More specifically, we can use each grid cell to represent the

outliers falling into it, or using a set of adjacent grid cells to represent all

the outliers falling into the data space covered by them. This method has

20.3. EXTRACTING AND SUMMARIZING KNN 245

very little overhead compared to executing Abstract-C alone. This is be-

cause the only extra computation effort needed is to locate and connect (if

needed) the grid cells containing outliers. These processes can be very ef-

ficient. The locating process can be almost free, as we can register each

“outlier containning grid cell” when each outlier is discovered. The con-

necting process needs a depth first search on all the “outlier containning”

grids, which needs N2
ocgc computation time, with Nocgc the number of “out-

lier containning grid cells”. However, as Nocgc tends to be small, if not

trivial, compared to the total number of grid cells covering the data space,

this cost is again very limited.

20.3 Extracting and Summarizing kNN

Similar as density-based outliers, kNN has simple pattern structures. Thus,

the same extraction+summarization two-phase strategy can be used to solve

the extracting and summaring problem for kNN. In particular, we can run

our proposed kNN extraction algorithm, MinTopk, (see Chapter 7.1) to ex-

tract the kNN, and also use grid index to hold all the valid objects in the

window. Then, if we need further summarization for the k nearest neigh-

bors that have been found, we can summarize them using the grid cells as

we discussed above in Chapter 20.2.

246

Chapter 21

Pattern Archiver

In our system, the pattern archiver handles two major tasks, namely pattern

compression and selective pattern archival.

21.1 Pattern Compression

First, depending on the system-resource budget and the specific analyti-

cal tasks, the pattern archiver controls at which resolution the patterns will

be archived into the Pattern Base. Based on the output from the Pattern

Extractor, we have three options, namely archiving clusters in the full rep-

resentation or in the summarized representation or both. Beyond that, to

allow more flexibility in the balance of system-resource budget and accu-

racy of pattern analysis, the Pattern Achiver can further compress the SGS

of clusters provided by the Pattern Extractor.

21.1. PATTERN COMPRESSION 247

21.1.1 Cluster Summarization in Multi-Resolutions.

Our proposed cluster summarization SGS of clusters supports multiple res-

olutions. In general, the SGS in different levels of resolution follows the

design as presented in Chapter 19.1. In particular, an SGS of any resolu-

tion is composed of a sequence of skeletal grid cells, and each skeletal grid cell

has the same 5 attributes, namely the location vector, side length, population,

status, and connection vector.

For any cluster Cx, the SGS of Cx formed in the Pattern Extractor is

based on the finest granularity, namely the smallest skeletal grids cells. Thus

it is of the highest resolution. We call such SGS the “Basic SGS” of Cx.

The Basic SGS of Cx is the base to form the compressed SGS at Cx in lower

resolutions. The SGS in lower resolutions are built based on hierarchically

compressing the Basic SGS. For a cluster Cx, we say that the Basic SGS of

Cx is at the Level 0 of the resolution hierarchy, noted as Cx.SGSL0 . Any SGS

in a lower resolution is at a higher Level n, where n > 0 and n increases as

the resolution decreases, noted as Cx.SGSLn .

Each skeletal grid cell in Cx.SGSLn (n > 0), Cx.Sc
Ln

i , is formed by com-

bining the skeletal grid cells within a certain (θ) sized hypercube space in

Cx.SGSLn−1 . As an example shown in Figure 19.1, a 2-dimensional cluster

Cx has SGS in three resolutions. They are at Levels 0, 1 and 2. In this ex-

ample, θ = 2, indicating that each skeletal grid cell of SGS at Levels 1 or 2 is

made by combining 2 × 2 adjacent skeletal grid cells at Levels 0 or 1 respec-

tively. Both the number of resolutions allowed and parameter (θ) are part

of the configuration of our system.

21.1. PATTERN COMPRESSION 248

This compression process of building Cx.SGSLn can be processed with

in a single scan to the skeletal grids in Cx.SGSLn−1 . In particular, given

Cx.SGSLn−1 and to build Cx.SGSLn , we first generate a sequence of skeletal

grid cells for Cx.SGSLn to cover the whole data space occupied by skeletal

grids in the Cx.SGSLn−1 . Then we set the five attributes for any Cx.Sc
Ln

i

based on the skeletal grid cells covered by it at Level n-1. The side length

of any Cx.SG
Ln

i is simply equal to the side length of a skeletal grid cell at

Level n-1 times θ. The other three attributes, namely the status, population

and connections of a Cx.Sc
Ln

i is decided by the Cx.Sc
Ln−1s covered by it. In

particular, any Cx.Sc
Ln

i is a core cell if at least one Cx.Sc
Ln−1

i covered by it

is a core cell. Otherwise, it is an edge cell. The population of any Cx.Sc
Ln

i

is equal to the sum of the population of the Cx.SG
Ln−1s covered by it The

connection vector of a Cx.Sc0
Ln

i is decided by the connections between the

“boundary” Cx.Sc
Ln−1s covered by it and those covered by its adjacent

Cx.SG
Lns. More precisely, a Cx.SG

Ln

i is connected to an adjacent skeletal grid

Cx.Sc
Ln

j , if at least one pair of Cx.Sc
Ln−1s covered by them respectively are

connected.

21.1.2 Distance-Based Outlier Summarization in Multi-Resolutions

For distance-based outliers, if we use the clustering method to further sum-

marize the extracted outliers, we can use hierarchical clustering methods,

such as single-link clustering method or Birch [JMF99], to balance the amount

of information needed for storing the outliers and the accuracy of outlier

expression.

In particular, if we use the Centroid + Radius+ Density (CRD) to express

21.2. BUDGET- AND ACCURACY-AWARE RESOLUTION SELECTION. 249

each cluster formed by outliers, the information needed for storing each

cluster is fixed, and the key factor that determines the amount of informa-

tion needed for expressing the outliers is the number of clusters formed in

the detected outlier set. To achieve more compact pattern storage, the hi-

erarchical clustering algorithms can incrementally merge the clusters and

thus form less and less clusters. In general, the different numbers of clus-

ters formed based on detected outliers constitute the distance-based outlier

summarization in multi-resolutions.

21.1.3 kNN Summarization in Multi-Resolutions.

For kNN, the same multi-resolution summarization principle can be ap-

plied. In particular, no matter we adopt histogram or clustering methods

to summarize the kNN of an object, we can also pursue high compactness

of kNN expression by using large granularities in the pattern summariza-

tion.

In particular, if we adopted histogram based summarization, we can

pick histogram bins with different sizes for different summarization reso-

lution. If we adopted clustering methods for summarization purpose, the

hierarchical clustering algorithms can again provide us summarization at

different resolution.

21.2 Budget- and Accuracy-Aware Resolution Selection.

Given the multiple resolution choices, the Pattern Archiver can decide in

which resolution to archive the patterns based on both the system-resource

21.2. BUDGET- AND ACCURACY-AWARE RESOLUTION SELECTION. 250

budget and the accuracy required by the specific analytical tasks. Our pro-

posed multiple resolution summarization methods for neighbor-based pat-

terns provide perfect support for such decision making. This is because for

a pattern summarization at certain resolution, both its space consumption

and conciseness are deterministic and easily calculable.

Taking density-based clusters as example, for space consumption, given

the basic SGS of a cluster extracted from the Pattern Extractor, we can eas-

ily determine the number of skeletal grid cells needed in any other resolution

for the same cluster, by calculating how many skeletal grid cells at the certain

resolution level is needed to cover the same data space. Since the SGS in

different resolutions have the same design, the amount of information car-

ried by each skeletal grid cell in any resolution is fixed and foreknown. Thus,

we can easily determine how much storage space is needed exactly for this

cluster if using a certain resolution. For accuracy, as the side length of the

skeletal grid cells at all resolutions are foreknown, the analysts knows ex-

actly the granularity that their analytical task will be working on, if picking

a certain resolution.

In this work, while we propose to provide such functionalities of effi-

ciently summarizing density-based clusters into different resolutions, the

specific methods of deciding in which resolution to archive a given cluster

is not the focus of this work. Instead, I leave this question for my future

work.

21.3. SELECTIVE PATTERN ARCHIVING 251

21.3 Selective Pattern Archiving

The Pattern Archiver also selectively picks which clusters to archive. Cur-

rently, our system supports several simple but useful cluster selection mech-

anism, including using sampling techniques to select certain numbers of

clusters to archive in a period of time and using feature selection to only

archive clusters with certain features (e.g. only archive the clusters reach-

ing a certain population or volume). More sophisticated pattern selection

techniques, such as evolution driven techniques, will be studied in our fu-

ture work.

252

Chapter 22

Pattern Storage and Match

In this Chapter, we discuss the storage and matching of neighbor-based

patterns in our system.

22.1 Storage and Matching for Density-Based Clusters

22.1.1 Cluster Organization in Pattern Base

Our proposed cluster summarization method SGS empowers us to easily

organize the extracted clusters based on their features. In particular, we

build two indices for the archived clusters. One is based on the position of

each cluster, and the second is based on all other features of each cluster

captured in SGS.

We call the first index the locational feature index. As multi-dimensional

objects, we express the position of each cluster using its minimum bound-

ing rectangle (MBR). In our system, we employ one of the most widely used

indices for MBRs, namely the R-tree index to organize them. The second

22.1. STORAGE AND MATCHING FOR DENSITY-BASED CLUSTERS 253

index, called the non-locational feature index, organizes the clusters based on

their non-locational features. We use a four-dimensional grid index to or-

ganize the clusters’ SGS, with the four dimensions: the volume (number of

skeletal grid cells, the status count (number of core cells), the average density

and the average connectivity of each cluster.

22.1.2 Cluster Matching Process

The Cluster Matching Queries (see Figure 18.2) are executed by the Pattern

Analyzer. To execute such queries, we first provide a distance metric (be-

tween 0-1) to measure the distance between two clusters. The metric is

user-customizable based on application semantics.

Dist(Ca, Cb) = ps ∗Distlocation +
∑

wi ∗Distnlf i(Ca, Cb)

ps,Distlocation = 0‖1, ∀wi, Distnlf i = [0, 1],
∑

wi = 1)

In this distance metric, Distlocation indicates whether two clusters over-

lap (1) or not (0). ps indicates whether the matching is “position-sensitive”

(1) or not (0). Distnlfi represents the distance of two clusters on a specific

non-locational feature and wi represents the analyst-specified weight on

this feature.

To use this distance metric, the analyst needs to first specify whether the

matching required by her application is position-sensitive, namely whether

the matched clusters have to overlap in the data space. For the position-

sensitive applications, we set ps = 1. If two clusters do not overlap, Distlocation(Ca, Cb) =

1, the largest possible distance between two clusters, indicating that the two

22.1. STORAGE AND MATCHING FOR DENSITY-BASED CLUSTERS 254

clusters are not similar and no further comparison on other features will be

needed. For the non-position-sensitive applications, since ps = 0, the loca-

tional distance between two clusters is considered to be 0.

The second part of the distance metric measures the distance between

two clusters on the four non-locational features, namely volume, status,

population and connectivity. The distance on these features are used in

both the match candidate search and detailed cell level cluster match.

Candidate Search. Given a to-be-matched cluster, a customized dis-

tance metric and a distance threshold specified by the analyst, our sys-

tem first searches the potential match candidates in the Pattern Base. In

the positional-sensitive case, the Pattern Analyzer first searches the loca-

tional feature index for the candidate clusters. If any overlapped clusters are

found, it will calculate their non-locational distance with the to-be-matched

clusters, and returns similar clusters if their distances are smaller than the

given threshold. In the non-position-sensitive case, the Pattern Analyzer

directly searches the non-locational feature index for the candidates. Given

the distance metric and the distance threshold, the Pattern Analyzer can

determine the range of the search on each dimension (feature). For exam-

ple, given the volume of the to-be-matched cluster equal to 20, the weight

on size distance is 0.20, the overall distance threshold is 0.2, the volume of

the candidate clusters have to be between 14 and 30. This is because any

other number x < 14‖x > 30 will make abs(x− 20)/min(x, 20) > (0.2/0.4),

which will definitely not fulfill the search criteria. The same principle can

be used on other features to determine the range of search. Given the search

ranges on all dimensions, the Pattern Analyzer can quickly narrow down

22.1. STORAGE AND MATCHING FOR DENSITY-BASED CLUSTERS 255

the candidate clusters to a small subset by searching the feature index.

Grid Cell Level Cluster Match. Given a to-be-matched cluster and a

match candidate cluster for it, grid cell level cluster match compares the

features of two clusters in their corresponding sub-regions (skeletal grid

cells). In particular, grid cell level match uses the same customizable dis-

tance metric introduced earlier, while the distance between two clusters is

now measured by aggregating the differences between all the correspond-

ing skeletal grid cell pairs in these two clusters. More precisely, given a

certain alignment between two clusters Ca and Cb,
1 each skeletal grid cell

Sci in Ca may have a corresponding skeletal grid cell in Scj , depending on

whether its corresponding sub-region is also covered by Scj . If Sci has a

corresponding skeletal grid cell Scj in Cb, their difference can be measured

by comparing their status, density and connectivity features. Otherwise,

Sci is assigned the maximum difference with its corresponding sub-region,

which is not a part of Cb and thus can viewed as an empty grid. When

calculating the distance between two clusters Ca and Cb. we sum the dif-

ference between each Sci in Ca and its corresponding sub-region in Cb to

form the overall distance between the two clusters.

In the position-sensitive cases, no alignment is needed, or in other words,

the alignment vector is always equal to [0,0,...,0]. This is because such appli-

cations require any skeletal grid cell Sci in Ca to be matched with the skeletal

grid cell Scj in Cb that have the same absolute position in the data space.

1An alignment for two Skeletal Grid Summarizations (SGS) is a location shifting vector. For exam-
ple, given two three dimensional clusters Ca and Cb, an alignment equal to [1,2,1] indicates that any
skeletal grid cell in Ca with location vector equal to [x,y,z] corresponds to a skeletal grid cell in Cb with
location vector equal to [x+1,y+2,z+1], if any.

22.2. STORAGE AND MATCHING FOR DISTANCE-BASED OUTLIERS

AND KNN 256

Therefore in such cases, we only need a single scan of the skeletal grid cells

in two clusters to calculate the distances between them.

In the non-position-sensitive case, one or more alignments that mini-

mize the distance between two clusters may exist. When given sufficient

computation time, such as in an offline computation, one could apply an

exhaustive search to find such an optimal alignment. In our system, for on-

line computation, we use an A* style anytime search algorithm to search for

the best alignment within a certain computation time budget. In particular,

we start with an alignment that makes two clusters well overlapped. Then

we continuously search along the direction of the most promising “nearby”

alignment, which gives the smallest distance so far. When the given com-

putation time budget is reached, we stop searching and return the smallest

distance found so far as the distance between the two clusters.

22.2 Storage and Matching for Distance-Based Outliers

and kNN

For distance-based outliers, the straightforward matching process is to match

two individual outliers. Since each individual outlier is composed by a sin-

gle stream tuple, such matching process is equivalent to comparing two

individual tuples. Any distance function measuring the distance between

two multi-dimensional objects, such as well-known Euclidean Distance or

Manhattan Distance, can be used to match two outliers. To support such

matching, we can simply organize the individual outliers using a standard

multi-dimensional index, such as multi-dimensional grid index or R-tree

22.2. STORAGE AND MATCHING FOR DISTANCE-BASED OUTLIERS

AND KNN 257

index.

A more interesting outlier matching scenario is to match two outlier sets

detected on different time points. Such matching process can reveal how

the distribution of outliers in the stream changes over time. The matching

process can be conducted directly on the two outlier sets using the subset

matching algorithm presented in our work [YRW07]. This algorithm takes

two datasets and a distance function measuring the distances between any

two objects in the datasets as input. As output, it returns the distance (sim-

ilarity) between two datasets. In this case, we can organize the outlier sets

based on some simple statistics of them, such as the number of outliers in

each outlier set.

Also, the outlier sets matching process can be conducted on the two

summarized outlier sets. In particular, if we use a set of clusters in their

CRD expression (as we discussed earlier) to present each cluster set, the

problem of matching two outlier sets becomes equivalent to matching two

cluster sets. This problem can also be solved by using the subset match-

ing algorithm mentioned above. Namely, we can treat each cluster set as a

dataset, and each cluster in the cluster set as a multi-dimensional object in

the detest. The CRD expression of each cluster, namely the position of its

centroid, radius and density constitute the values on the different dimen-

sions of its corresponding objects. Then, similar as density-based cluster

matching, we can allow analysts to specify a distance function with cus-

tomized weight on each dimension to measuring distance between any two

clusters’ CRD expression. The two cluster sets and the customized distance

function will be used as the distance function in the subset matching algo-

22.2. STORAGE AND MATCHING FOR DISTANCE-BASED OUTLIERS

AND KNN 258

rithm.

The matching process of the kNNs of two objects can be handled simi-

larly as distance-based outliers. Namely, we can either match them as two

datasets directly or summarize them first using histogram or clustering

methods and match the corresponding histograms or cluster sets.

259

Chapter 23

Experimental Study

23.1 Experimental Platform

We conducted our experiments on a Dell desktop with an Intel Core2 2.2GHz

processor and 3GB memory, which runs Windows 7 professional. We im-

plemented the algorithms in VC++ 7.0.

23.2 Real and Synthetic Streaming Datasets

We use the same real streaming datasets, GMTI [EFK99] and STT [INE], as

we used for experiments in Part I and II.

23.3 Alternative Summarization Formats

In our experiment, we compare both the effectiveness and efficiency of our

proposed Skeletal Grid Summarization with three alternative cluster sum-

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 260

marization formats. 1) The traditional “Centroid-Radius-Density” summa-

rization (CRD). 2) Random sampling summarization (RSP). RSP for each

cluster is generated by sampling the cluster members at a certain sampling

rate R. To compare RSP with our proposed SGS summarization, for each

specific cluster in the experiment, R is always set to make its RSP have the

same memory consumption with the SGS for the same cluster. 3) Skeletal

Point Set (SkPS) summarization (See Chapter 19.1).

23.4 Performance of Cluster Extraction and Summa-

rization

First, we evaluate the performance of the alternative cluster summariza-

tion in terms of how many system resources are needed to generate them

respectively. In particular, since our proposed solution, C-SGS, incorpo-

rates the cluster extraction and summarization in a single process, we com-

pare its performance with the following alternatives. 1) Extra-N: Extract

clusters using state-of-the-art algorithm Extra-N [YRW09] only but do not

generate any cluster summarization. 2) Extra-N + CRD: Extract clusters

using Extra-N first and then generate CRD for each extracted cluster. 3)

Extra-N + RSP: Extract clusters using Extra-N first and then generate RSP

for each extracted cluster. 4) Extra-N + SkPS: Extract clusters using Extra-

N algorithm and then generate (approximated) SkPS for each cluster using

MG algorithm proposed in [GK96]. 1.

1The problem of generating exact SkPS has been shown to be NP-complete (Chapter
19.1), and thus clearly not to be affordable in streaming environments.

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 261

We first run each alternative method against the STT stream to extract

clusters based on four dimensions, namely the transaction type (buy/sell),

price, volume and time. To compare the performance of the alternatives

when handling clusters with different characteristics, we use three different

query parameter settings, namely case 1: (θr = 0.05, θc = 10), case 2: (θr =

0.1, θc = 8), case 3: (θr = 0.2, θc = 5). Also, for each case, we use three

different window parameter settings, namely we fix the window size (win)

for all three settings at 10K tuples, while letting slide size slide equal to 0.1,

1K and 5K tuples respectively for three settings.

For each case, we first verify the correctness of our proposed C-SGS

cluster extraction method by comparing the clusters extracted by it in full

representation with those extracted by the state-of-the art technique Extra-

N. In all the test cases, we found that the clusters extracted by C-SGS are

identical with those extracted by Extra-N.

For efficiency evaluation, we measure two major performance metrics

for stream processing: 1) The average response time for each window (de-

noted as Response Time). For each window, we measure the average CPU

time elapsed from the time when the new data arrive until the time when

all clusters are output and cluster summarization is generated. The aver-

age processing time shown in all cases is all averaged among runs for 10K

windows. 2) The memory footprint, namely the peak memory utilization

of each alternative, among the 10K windows.

As shown in Figure 23.1, compared to Extra-N, which extracts clusters

only but does not generate any cluster summarization (the baseline case),

the other four alternatives, each generating a specific type of cluster sum-

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 262

marization, exhibit some overheads in terms of CPU time utilization. How-

ever, the overhead caused by C-SGS, Extra-N + CRD, and Extra-N + RSP,

is very modest, if not neglectable. The reason for such modest overhead

caused by Extra-N + CRD and Extra-N + RSP is obvious. This is because

CRD and RSP are both very simple summarization formats that can easily

be generated by at most two scans of the cluster members of each cluster.

The overhead caused by our proposed solution C-SGS is comparable with

those two simple summarization methods. This is because the major com-

putation needed for generating the SGS cluster summarization, namely de-

termining the status and connection among skeletal grid cells, is elegantly

piggy-backed by the cluster extraction process itself in our C-SGS method.

The CPU overhead of Extra-N + SkPS is significantly higher than that of

the other alternatives. This is because generating SkPS is very expensive

computationally [GK96]. For different window parameter settings, C-SGS

has lower overhead in the settings that have a larger win/slide rate. This is

because the performance of Extra-N is affected by the increasing win/slide

rate [YRW09], while the performance of C-SGS is not sensitive to this ratio.

Memory-wise, the overhead caused by Extra-N + SkPS is also signif-

icant, while those caused by other alternatives are very modest (Figure

23.1). For Extra-N + SkPS, since it requires a cluster to be expressed as a

graph when it is output for the SkPS summarization generation, a large

amount of extra memory space is needed to store the connections among

objects in both cluster extraction and summarization generation stages. For

Extra-N + RSP and Extra-N + CRD, their little overheads on memory space

are expected. This is because they almost do not need extra memory space

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 263

to compute their very simple cluster summarization formats. For our pro-

posed method C-SGS, low memory overhead is also expected, because

the process of generating SGS happen in place with the clustering pro-

cess. It only needs to maintain a very limited amount of extra meta-data,

mainly the connections between skeletal grid cells, which can be efficiently

expressed as bit strings.

The overall CPU and memory costs for all alternatives increase in the

test cases with larger θr and smaller θc. This is because such parameter

settings tend to let a query identify more “connections” (neighbor rela-

tionships) among the objects, which in general consumes more system re-

sources. As expected, they tend to form larger clusters in terms of both pop-

ulation and volumes. In our experiment, the largest clusters (population-

wise) identified in the three test cases are composed of around 0.5K, 3.2K

and 9.2K objects. This increases the cost of the clustering process itself, and

the extracted clusters with larger population and spread will also cause

more resource utilization for generating summarization formats for them.

Similar performances are also observed in our experiments using GMTI

data. As shown in Figure 23.2, our proposed method C-SGS has very mod-

est overheads in both CPU and memory utilization compared to the base-

line.

Evaluation for Time-Based Windows. To further evaluate the perfor-

mance of the alternative methods using time-based windows and under

fluctuate input rates, we conduct the following experiments. In particu-

lar, we run three queries using the same pattern parameter settings (test

cases 1-3) as used in previous experiments against both STT and GMTI

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 264

Figure 23.1: CPU Time and Memory Comparison for Generating Alterna-
tive Summarizations on STT Stream

Figure 23.2: CPU Time and Memory Comparison for Generating Alterna-
tive Summarizations on GMTI Stream

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 265

streams but now give them a time-based query window (Win = 5min,

Slide = 0.5min). In these experiments, we measure not only the average

response time of all windows but also the lowest and the highest response

time for each window during the query execution.

For the STT stream, the average data rate is around 50 tuples per second,

and the minimum and maximum data rates are 6 and 188 tuples per second

respectively. Thus, within a 5 min query window, the average number of

objects valid in the window is around 15K. As we are using 0.5 min as slide

size, the average number of objects for each window slide is around 1.5K.

The minimum and maximum number of objects in each window slide are

0.68K and 2.9K respectively.

Figure 23.3: CPU Time Comparison Using Time-Based Window (STT
Stream)

As shown in Figure 23.3, similar performance of the alternatives can be

observed compared with previous experiments using count-based query

windows. Namely, the overhead of our proposed method C-SGS com-

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 266

pared to the baseline (Extra-N alone) is very modest in terms of the lowest,

the highest and the average response time. For average response time, the

overheads of C-SGS are only 6%, 9% and 7% in three test cases respectively

compared to Extra-N, which are again comparable to generating other two

simple summarization formats, namely CRD and RSP. The overhead of

Extra-N + SkPS is significant higher than that of the others.

In our experiment, the fluctuate input rate shows a strong but similar

impact on four alternatives, namely Extra-N, Extra-N + CRD and Extra-N

+ RSP and C-SGS. For the first three Extra-N algorithm based alternatives,

large variations on their response time are caused by the different execution

times of the Extra-N algorithm when very different number of objects ar-

rive at each window slide. This is because the Extra-N algorithm execution

constitutes the key computation costs for those method, and the followed

summarization step is simple and thus cost little CPU time. For C-SGS, the

variation on its response time is caused by the similar reason, as its compu-

tation costs are also decided by the number of objects arriving at each win-

dow. For Extra-N+ SkPS, the variations in response times are also similar

to those of the other alternatives in terms of absolute amount but relatively

insignificant. This is because, in Extra-N + SkPS, a large percentage of CPU

time is used for computing SkPS (61%, 72% 69% respectively for test cases

1, 2 and 3), which is related to the characteristics of the clusters extracted

but independent from the input rate.

As shown in Figure 23.4, similar performance of the alternatives is also

observed when running the same queries against the GMTI stream. In the

GMTI stream, the average data rate is around 10 tuples per second, and

23.4. PERFORMANCE OF CLUSTER EXTRACTION AND

SUMMARIZATION 267

the minimum and maximum data rates are 0 and 32 tuples per second re-

spectively. Within the 5 min query window, the average number of objects

valid in the window is around 3K. The average number of objects arriving

at each window slide is around 0.3K. The minimum and maximum number

of objects arriving at each window slide are 0.1K and 0.8K respectively.

Figure 23.4: CPU Time Comparison using Time-Based Window (GMTI
Stream)

In conclusion, using our proposed C-SGS solution, we can efficiently

generate the Skeletal Grid Summarization (SGS) for extracted clusters dur-

ing online clustering process, with very limited system resource overhead.

Its performance is comparable with generating very simple cluster sum-

marization formats, namely CRD and RSP. The system overhead needed

for generating SkPS is significantly higher than those of the other alterna-

tives in terms of both CPU and memory utilization. We run the same ex-

periments on the GMTI stream as well. Similar performances are observed

for all the alternatives, which confirm the conclusions that we have drawn

23.5. EFFECTIVENESS FOR CLUSTER MATCHING QUERIES 268

above.

23.5 Effectiveness for Cluster Matching Queries

Now we study the effectiveness of the alternative cluster summarization

formats in terms of matching clusters through a user study. Namely, we

evaluate whether our proposed summarization format SGS and other al-

ternatives can provide good quality in terms of cluster matching. Before

our experiment, we remind the readers that our proposed cluster summa-

rization format SGS guarantees to preserve the four key features of each

density-based cluster (Chapter 19.1), while none of the other alternatives

achieves this. Also, our proposed cluster matching mechanism for SGS

(Chapter 22) takes all four features into consideration when deciding on

the similarity between clusters. This indicates that similar clusters found

using our proposed SGS summariztion and the corresponding similarity

metrics are guaranteed to be similar on these four features to a certain level,

depending on the similarity threshold setting.

To confirm the superiority of our proposed solution against other clus-

ter summarization formats in terms of cluster matching quality, we ask hu-

man analyst to visually analyze the similarity between the matched clus-

ters found using our method and other alternatives. The reasons why we

use human analysts to visually confirm the similarity between clusters are:

1) Since matching density-based clusters is still an open research problem,

there does not exist any proven analytical metric in the literature, which

can be used as the “golden criteria” for measuring cluster similarity. 2) The

23.5. EFFECTIVENESS FOR CLUSTER MATCHING QUERIES 269

capability of human analysts to visually observe and compare data patterns

has been proven by the visualization community [War94, BW96], especially

when proper visualization tools are provided.

In particular, we run the three queries as we used earlier for perfor-

mance analysis against the STT data using our proposed C-SGS method.

During the online clustering process of each query, we archive all the clus-

ters detected in the stream into the Pattern Base until the number of clus-

ters in the pattern base reaches 1K. Also, for each archived cluster, we gen-

erate and keep the other three alternative cluster summarization formats,

namely RCD, RSP and SkPS. The full representation (cluster member tu-

ples) of each archived cluster is also kept for later visual analysis.

Then, we stop cluster archiving but keep the clustering process run-

ning, and randomly pick 10 new clusters detected as the to-be-matched

cluster for each query. For each of the to-be-matched cluster, we run four

cluster matching queries for it, using one alternative cluster summariza-

tion format. In particular, we implement a subtraction function to measure

the distance between the CRD of two clusters, which gives equal weight to

the three cluster features captured in CRD, namely the centriod, range and

density. We use the subset matching algorithm presented in [YRW07] to cal-

culate the distance between the SkPS of two clusters. We use the graph edit

distance algorithm presented in [NRB06] to calculate the distance between

the SkPS of two clusters. We give equal weight to all four features when

measuring the distance between the SGS of two clusters. For all the alter-

native summarization methods, we take the top three similar clusters (with

smallest distances to the to-be-matched cluster) found by each method for

23.5. EFFECTIVENESS FOR CLUSTER MATCHING QUERIES 270

evaluation. We call them the “matched clusters”.

To measure the quality of cluster matching, we invite 20 human ana-

lysts, all graduate students at WPI, to visually compare each to-be-matched

cluster Ci with all matched clusters returned by four alternative summa-

rization formats. The analysts are asked to equally consider all four key

features of the density-based clusters, namely the position, shape, density

distribution and connectivity. The visual analysis process of the analysts is

supported by ViStream [YGX+10], a freeware multivariate data visualiza-

tion tool, which has been shown to be effective in helping human analysts

to observe and understand mutil-dimensional clusters in streaming envi-

ronments. For each to-be-matched cluster, the analysts are asked to rate all

the matched clusters found for it into three categories, namely “very sim-

ilar”, “similar”, “not similar”. The analysts are not told which “matched”

clusters are found using which cluster summarization format.

As shown in Figure 23.5, the analysts rated a high percentage of matched

clusters found using our proposed solution SGS as “very similar” or “sim-

ilar”, while the three alternatives have significantly lower rate in these two

categories. In particular, given the total 90 matched clusters found for the

30 to-be-matched clusters, the 20 analysts gave 20×90 = 1800 ratings in to-

tal. Within these ratings, 486 (27%) of them are “very similar”, 972 of them

are (54%) of them are “similar” and only 19% are “not similar”. Within the

other alternatives, the one received the highest “similar rate” is the SkPS,

which received 12% “very similar”, 25% “similar” and 65% “not similar”.

The other two alternatives, namely CRD and RSP, got even lower ratings.

By analyzing the cases in which “not similar” ratings are given, we

23.5. EFFECTIVENESS FOR CLUSTER MATCHING QUERIES 271

found that the majority of such cases for our SGS method happened on

very large in population but sparsely distributed clusters. Namely, when

the clusters are spread to very large areas, usually in more than 100 skeletal

grid cells, the matched clusters may not be recognized as similar by visual

analysis. This is because, when the SGS are composed of many skeletal grid

cells, our distance metric may decide that the distance between two clus-

ters is small, because they are similar in a large percentage of the skeletal

grid cells. However, the difference between two clusters on those “not simi-

lar” skeletal grid cells may appear to be significant for human analysts visu-

ally, as the absolute numbers of them are no longer trivial compared to the

compact clusters. However, such cases are found to be not common in our

experiments. The lower ratings of simple summarization formats CRD and

RSP are expected, because they are only capable of capturing the difference

between clusters on simple statistical features. The ineffectiveness of SkPS

is also expected. As our analysis in Chapter 19.1.2 reveals, the key prob-

lem of SkPS for cluster matching lies in its undeterminancy and its lack of

ability for expressing density distributions.

In conclusion, our proposed cluster summarization demonstrates good

effectiveness for cluster matching queries in our experiments, while none of

the other alternatives achieves comparable effectiveness for cluster match-

ing.

23.6. EFFICIENCY OF CLUSTER MATCHING QUERIES 272

Figure 23.5: Similar Rating by Users for Matched Clusters found by Alter-
native Summarization Methods

23.6 Efficiency of Cluster Matching Queries

Now we study the efficiency processing cluster matching queries in our

system. In particular, we measure the resource utilization for running the

cluster matching queries using our proposed summarization SGS, and com-

pare it with running cluster matching queries for the same to-be-matched

clusters but using an alternative cluster summarization. Same as in the pre-

vious experiment for effectiveness, we run the same three queries against

the STT data using our proposed C-SGS method. To measure the perfor-

mance of matching queries against the Pattern Base with different sizes, for

each query, we evaluate three test cases. Namely, the number of clusters

in the Pattern Base equal to 0.1K, 1K and 10K respectively. In each test

case, we run a clustering query and archive all the clusters detected into

the Pattern Base until the size of the pattern base reaches the required num-

ber. Also, for each archived cluster, we generate and keep the other three

23.6. EFFICIENCY OF CLUSTER MATCHING QUERIES 273

alternative cluster summarization formats for evaluating other matching

method. Once the required number of clusters are archived, we stop archiv-

ing and randomly pick 100 clusters detected to conduct the cluster match-

ing queries. Same as in the previous experiment, we run four matching

queries for each to-be-matched cluster using one alternative cluster sum-

marization method and the corresponding distance metric.

In this experiment, we measure the average response time for each

cluster matching query and memory space consumed by storing cluster

summarizations. To accurately measure the response time for the cluster

matching queries, the online clustering process is ceased during the cluster

matching in this experiment. Also, to be fair to other alternatives, a popula-

tion filter are used for all of them to filter out the candidates with significant

population difference with the to-be-matched clusters.

As shown in Figure 23.6, our proposed summarization SGS has the sec-

ond lowest average response time among all alternative methods. In par-

ticular, when matching against 0.1K archived the clusters, the average re-

sponse time for each cluster matching query using SGS is less than 0.1 sec-

ond. For the 1K and 10K cases, the average response time for our solution

is only around 0.5 seconds and 3 seconds. Such efficiency is comparable

with cluster matching using CRD, which is very fast because of the sim-

ple matching mechanism (simply three subtraction operations, one on each

feature). This thanks to the design of SGS, which effectively summarize the

key features of each cluster on both cluster and grid levels. In particular,

by using our proposed two-phase matching strategy, the majority of the

candidates in the pattern base are filtered out in the cluster level statis-

23.6. EFFICIENCY OF CLUSTER MATCHING QUERIES 274

tic matching phase. Thus, the more expensive grid level matching is only

needed for a very small portion of the candidates. In our experiment, we

found that for each to-be-matched cluster only 6% of the candidate clusters

necessitated the grid level match on average during the cluster matching

process.

The average response time for the other two alternatives, namely RSP

and SkPS, are significantly higher. This is because of the high complexity of

the algorithms that are needed for matching these two summarization for-

mats. In particular, the both algorithms for matching RSP and SkPS [GK96]

have O(n3) CPU complexity, with n the number of objects in the connected

dominant set and sampling set respectively.

Memory-wise, our proposed method SGS consumes only 0.12M, 1.38M

and 12.24M memory space to store 0.1K, 1K and 10K clusters respectively

(Figure 23.7). In particular, each 4-dimensional skeletal grid cell only con-

sumes 23 bytes, position: 16 bytes (4 integers), status: 1 byte (1 boolean),

density: 4 bytes (1 integer), connection: 2 bytes (24 = 16 booleans). In

all test cases, the average number of skeletal grid cells in each cluster is 68.

Therefore, only 1.5K memory is needed to store the SGS of each cluster

on average. Compared with the memory space needed for storing the full

representation of the clusters, which need 6.4M, 75.2M and 680.2M to store

0.1K, 1K and 10K clusters respectively, the average compression rate of SGS

in our experiment is around 98%. Such compactness of SGS is comparable

with SkPS, which consumes a similar amount of memory space for express-

ing each cluster. In our experiment, since we always set the sampling rate

of RSP to make its memory consumption equal to that of SGS, their con-

23.7. EVALUATION FOR SGS AT MULTIPLE RESOLUTIONS 275

sumptions are always equal. As very simple summarization method, CRD

has even lower memory consumption. However, its matching quality has

been shown to be far below our proposed summarization in the previous

experiment.

In conclusion, our proposed solution demonstrates high efficiency for

cluster matching queries, which is significantly better than matching SkPS

or RSP. Its performance is comparable with that of matching simple CRD

cluster summarizations. However, as we have shown earlier in the previ-

ous experiment, CRD is not able to provide satisfactory matching quality.

Therefore, our solution is the best alternative method in terms of both ef-

fectiveness and efficiency for cluster matching queries.

Figure 23.6: CPU Time Compari-
son for Cluster Matching Queries
using Alternative Cluster Summa-
rization Methods

Figure 23.7: Memory Comparison
for Cluster Matching Queries us-
ing Alternative Cluster Summa-
rization Methods (in Logarithmic
measure)

23.7 Evaluation for SGS at Multiple Resolutions

In this experiment, we evaluate the effectiveness and efficiency of our pro-

posed SGS method, when lower resolution SGS are used for matching queries.

23.7. EVALUATION FOR SGS AT MULTIPLE RESOLUTIONS 276

In particular, we use the same experimental methods applied in experiment

2 (Chapter 23.5) and 3 (Chapter 23.6), while now using the GMTI stream

as data source. For cluster extraction, we also use 4 dimensions in GMTI

stream as in the previous experiments, including the latitude and longi-

tude of the objects. We pick 20 large-spread clusters to evaluate the qual-

ity and performance of the cluster matching queries for them when SGS

of different resolutions are used. More precisely, we run the same three

queries against the GMTI data, and archive all detected clusters until the

pattern base reaches the size of 1K. Different from previous experiments,

we run each query three times and each time we archive SGS of the de-

tected clusters using SGS at different resolutions. Namely, besides basic

SGS with highest resolution, in the other two runs, we archive cluster us-

ing “half-” and “quarter-” resolution SGS, whose Skeletal Grids’ length on

each dimension are two and four times to that of the basic SGS Skeletal

Grids respectively. Then, we pick the same clusters detected in each run

to conduct the cluster matching queries using these. The criteria of pick-

ing those clusters is that they have to reach certain volume. In particular,

each of the selected to-be-matched cluster occupies at least 200 basic skele-

tal grid cells, which needs to be expressed by at least 13 “half” resolution

Skeletal Grids and 2 “quarter” resolution Skeletal Grids. This is because,

only in such cases, those lower resolution SGS may be necessary, other-

wise the basic SGS is already very compact and efficient. For each test case,

namely for SGS at each resolution, we compare both its matching quality

and performance with other alternatives.

As shown in Figure 23.8, the performance of the matching queries us-

23.7. EVALUATION FOR SGS AT MULTIPLE RESOLUTIONS 277

ing SGS increases as the resolution of SGS decreases. In particular, when

using half and quarter resolution SGS, the average response time of each

cluster matching query are 38% and 18% of that of using the basic SGS.

Such performance gain is significant, while it is not proportional with the

ratio between the number of skeletal grid cells in the SGS with different res-

olutions. In particular, for these 4 dimensional clustering queries, the half

and quarter resolution SGS respectively only consume around 6% and 0.4%

skeletal grid cells for each cluster compared with the basic SGS. However,

the response time for matching clusters using these lower resolution SGS

constitute higher percentages compared with such ratio. This is because,

although the CPU time needed for grid level matching is directly decided

by the number of Skeletal Grids in the cluster summarization, a large por-

tion of the CPU time needed for the cluster matching query is consumed

by feature index searching, which is independent from the number of skele-

tal grid cells in SGS. Also, the cluster level matching using lower resolution

SGS tend be less selective. This explains why the response time gain is not

proportional with the resolution ratio.

Compared to other alter naives, the average response time using half

and quarter resolution SGS are better than SkPS and RPS in all test cases,

and even comparable with CRD in the quarter resolution case. Since we

pick the same to-be-matched clusters for all test cases, the performance

and matching quality of CRD and SkPS in these cases are the same. Be-

sides SGS, the only alternative that has a varying performance and match-

ing quality in different test cases is RSP. This is because the sampling rate

of RSP in each test case is specifically set to make its memory consumption

23.7. EVALUATION FOR SGS AT MULTIPLE RESOLUTIONS 278

equal to the corresponding SGS at a certain resolution. The response time

for cluster matching using RSP also decreases.

Memory-wise, as shown in Figure 23.9, the amount of memory space

needed for archiving the same number (1K) of clusters decreases signifi-

cantly as the resolution of SGS decreases. Unlike the response time, such

performance gain on memory space is proportional to the resolution ratio.

This is because, the memory space needed by SGS is strictly proportional

to its resolution, namely the number of Skeletal Grids in the SGS. In the

half and quarter resolution cases, the memory space needed by SGS is even

less than that needed by SkPS. In the quarter resolution cases, the memory

consumption of SGS is even comparable with CRD. This is because in the

quarter resolution case only very few, usually less than 5, Skeletal Grids

are needed for expressing each cluster in SGS. Such very limited number of

Skeletal Grids only needs a very modest amount of memory space.

Figure 23.8: CPU Time Compari-
son for Cluster Matching Queries
using Alternative Cluster Summa-
rization Methods

Figure 23.9: Memory Comparison
for Cluster Matching Queries us-
ing Alternative Cluster Summa-
rization Methods

As shown in Figure 23.10, the quality of cluster matching using SGS

decreases as the resolution goes down. This is as expected, because the

lower the resolution of SGS, the less descriptiveness SGS can provide to

23.7. EVALUATION FOR SGS AT MULTIPLE RESOLUTIONS 279

the cluster. In particular, in our experiment, using the finest resolution,

SGS received a 76% “similar rate”, including “similar” and “very similar”

ratings. While when using half and quarter resolution SGS, such “similar

rate” decreases to 62% and 29% respectively. Compared to other alterna-

tives, the half resolution SGS still shows significantly better matching qual-

ity. Namely, its “similar rate” 62% is much higher than that of the second

best alternative, SkPS 38% However, the quarter resolution SGS does not

show significantly better matching quality to other alternatives. The “sim-

ilar rate” received by quarter resolution SGS (29%) is lower than that of

SkPS (38%). But in general, SGS is he best method among all alternatives

in terms of cluster matching quality, especially when higher resolutions are

adopted.

Figure 23.10: Similar Ratings by Users For Matched Clusters using Multiple
Resolutions

In conclusion, our experiment shows that the demands of SGS in terms

of system resource utilization decrease significantly as lower resolutions

23.7. EVALUATION FOR SGS AT MULTIPLE RESOLUTIONS 280

are used. This provides flexibility for the applications that needs different

query response time and the systems that have different resource budget.

As trade-off, the cluster matching quality provided by SGS also decreases

as lower resolutions are used. However, given the same resource utiliza-

tion, SGS consistently provides the best cluster matching quality among all

alternatives in our experiment.

281

Chapter 24

Related Work for Part III

Pattern summarization is a general topic for database community. Many

previous works have studied the problem of summarizing various kinds

of pattern types in both static and streaming environments. For example,

[NRS08, LDS11, LT10] study the problem of summarizing graphs; [AU11,

LLL11, WL10] discuss the summarization of documents; [VvLS11, GRDG11]

present techniques for summarizing frequent itemsets. Each category of

these effective summarization mechanisms are designed based on deep un-

derstandings to the unique pattern structure of each pattern type.

However, the problem of summarizing neighbor-based pattern patterns

has not been studied in the literature yet. Without an effective yet compact

summarization method, each neighbor-based pattern has to be expressed

by its full representation. For example, each density-based cluster has to

be expressed by all its cluster member objects. Obviously, such full rep-

resentation is neither succinct nor does it explicitly reflect the features of

each pattern. It causes serious inconvenience for both storing and analysis

CHAPTER 24. RELATED WORK FOR PART III 282

of neighbor-based patterns, especially in streaming environments in which

real-time responsiveness may be required.

As, we discussed earlier in this Chapter, density-based clusters have

one of the most complex pattern structures in neighbor-based pattern fam-

ily. Traditional clustering methods [HW, ZRL96], such as k-mean style clus-

tering, usually treat clusters as statistical phenomena. Therefore, many key

features of the clusters, such as their shapes and densities, are summarized

using a rather simplistic description. In particular, first, these works as-

sume clusters are spherically shaped. Therefore, the shape of a cluster is

usually described using a simple “centroid + radius” formula. Second,

the previous work do not capture the internal features of the clusters, such

as how its density is distributed. For example, the density of the cluster

is either treated as uniform or varying along the radius only. Obviously,

such simple formula cannot well describe the complex cluster structure of

density-based clusters. This is because the shapes of density-based clusters

can be arbitrary and the objects within each cluster can be arbitrarily dis-

tributed as well, not to mention the complex sub-region connectivities in

each cluster. To the best of our knowledge, no summarization method has

been specifically designed for density-based clusters.

For computing cluster summarization in streaming environments, if the

clusters are treated as statistical phenomena, they are considered to be “ag-

gregatable” over time [AHWY03, DHYC06]. For example, the centroid of

a cluster (the average of values on cluster member objects) is acquired by

continuously aggregating the values of each new cluster member object)

. In particular, [AHWY03] used one cluster feature vector to represent each

CHAPTER 24. RELATED WORK FOR PART III 283

micro-cluster detected in the stream. They rely on the additivity property

of the cluster feature vectors to aggregate the cluster features over time and

compare the features of a same cluster at different time points by subtract-

ing its cluster feature vectors on corresponding time points.

However, the complex cluster structure of density-based clusters are

not simply aggregatable over the sliding windows. The continuous expi-

ration of old objects and arrival of new objects at each window may cause

complex cluster structural changes, such as merge and split and connec-

tivity changes within the clusters, which cannot be simply captured by

aggregation results. Thus, these techniques cannot effectively capture the

features of density-based clusters within sliding window scenario.

Pattern matching is also a general topic for database community [NRB06,

MCH11, WFZZ10]. However, to our best knowledge, these does not exist

any previous work studying the specific problems of matching neighbor-

based patterns.

284

Chapter 25

Conclusions of This

Dissertation

In this dissertation, I tackle the problem of mining and managing neighbor-

based patterns in streaming environments. My disseration solves the prob-

lems in three major aspects of neighbor-based pattern mining and manage-

ment, namely efficient neighbor-based pattern extraction, multiple query

optimization for neighbor-based pattern mining queries and summariza-

tion and matching for neighbor-based patterns. It extends the traditional

stream processing systems, which mainly focused on efficient processing

of SPJ queries, to now have the capabilities of extracting and managing

complex patterns in data streams.

In the first part of my dissertation work, I study the problem of ef-

ficient extraction of neighbor-based patterns from sliding windows over

streaming data. I first identify that the major difficulty of incremental de-

CHAPTER 25. CONCLUSIONS OF THIS DISSERTATION 285

tection of the neighbor-based patterns exists in the handling of expired ob-

jects. For this reason, my two primitive incremental algorithms Exact-N

and Abstract-C suffer from either massive CPU or memory consumption

for detecting density-based clusters. Then, I design the third algorithm

Abstract-M based on a proposed “view prediction” technique, which ele-

gantly discounts the effect of expired data points from the patterns. Finally,

the combination of the “view prediction” technique and a proposed hybrid

neighborship maintenance mechanism leads to our proposed solution Extra-

N, achieving both linear memory consumption and the minimum number

of range query searches. Both my analytical and experimental studies con-

firm that: 1) My proposed algorithms Extra-N and Abstract-M are near-

optimal in detecting density-based clusters over sliding windows in terms

of CPU time, memory space and also scalability. 2) My proposed algorithm

Abstract-C is a CPU- and memory-efficient algorithm for distance-based

outlier detection in sliding windows. It clearly outperforms the only pre-

vious algorithm [AF07] when detecting outliers in time-based windows,

while performing equivalently with it when dealing with count-based win-

dows. 3) My proposed algorithm for kNN detection, MintTopk, by identi-

fying and elegantly updating the minimal object set (MTK) that is necessary

and sufficient for top-k monitoring, not only minimizes the memory uti-

lization for executing top-k queries in sliding windows, but also achieves

optimal CPU complexity when returning the top-k results in a ranked or-

der.

In this second part of my disseration work, I present the first framework

for the efficient shared processing of a large number of neighbor-based pat-

CHAPTER 25. CONCLUSIONS OF THIS DISSERTATION 286

tern mining requests over streaming windows. It is the first step of apply-

ing multiple query optimization principles from the field of databases to

process large numbers of data mining requests in stream environments. I

propose several general optimization principles that are applicable to dif-

ferent (at least three) neighbor-based pattern mining query types. Both my

analytical and experimental studies show that these principles can bring

significant system resource sharing among multiple queries. In particu-

lar, my proposed algorithms Chandi, SDOD and SkNN, which are based on

these optimization principles, respectively achieve full sharing of both CPU

and memory utilization when simultaneously executing multiple density-

based clustering, distance-based outlier and kNN queries. My experimen-

tal study shows that, my proposed solution Chandi that handles the density-

based clustering queries, which has the most complex pattern structure

within neighbor-based pattern family, is on average four times faster than

the best alternative method while using 85% less memory space. More sav-

ings can be achieved if the queries have similar parameter settings. Chandi

also exhibits excellent scalability in terms of being able to handle large

numbers of queries under high speed input streams in my experiments. My

performance analysis for distance-based outlier and kNN queries shows

that the similar performance can be expected from my proposed strategies

for those two pattern types as well.

In the third part of my disseration work, I present a framework to sup-

port summarization and matching of neighbor-based patterns in streaming

environments. First, my work solves several open problems for density-

based cluster analysis, namely, designing a descriptive yet compact sum-

CHAPTER 25. CONCLUSIONS OF THIS DISSERTATION 287

marization method for such clusters. Second, I present an efficient compu-

tation strategy to quickly summarize the detected clusters into SGS during

the online clustering. Lastly, I design a pattern archiving and matching

mechanism, which allows the analysts to submit cluster matching queries

to find similar pattern detected earlier in the stream history. My experimen-

tal study demonstrates the clear superiority of my proposed methods on

both the efficiency and effectiveness for pattern summarization and match-

ing to other alternative methods.

As I have concluded above, my dissertation does not only present spe-

cific techniques, but also propose several general optimization principles

for neighbor-based pattern mining and management in streams. This in-

cludes the predicted view, meta query composition for multiple sliding

window queries, incremental pattern maintenance across multiple queries,

and etc.

Analysts in stream mining fields, such as financial analysts, traffic con-

trollers and bank managers, can directly use our proposed techniques through

our to-be-released freeware interactive stream mining system, ViStream

[YGX+10], by plugging in their own data sources. Researchers and engi-

neers can further improve our proposed techniques by editing ViStream

system, or puttting their own implementations to my proposed techniques

together. Also, as many of my proposed optimization strategies are gen-

eral, namely they are not restricted to neighbor-based patterns but appli-

cable to other pattern types as well, researchers and engineers can design

their customized mining strategies based on those proposed principles.

288

Chapter 26

Future Work

As an early effort in the database community to tackle the problem of min-

ing and managing complex patterns in data streams, my dissertation work

opens a broad area for future research in streaming data mining and man-

agement, as described below.

26.1 Efficient Pattern Extraction for Other Complex Pat-

tern Types

Clearly, although the neighbor-based pattern family covers a group of im-

portant pattern types, there exist many other complex pattern types worth

mining in streaming environments, such as mining graphs [BHPG11, AW10],

text [WZJS09, WEC09] or association rules [LWC11]. Same as extracting

neighbor-based patterns, the efficient extraction strategies of these complex

patterns constitute the foundation for analyzing them in the streaming en-

vironments. Based on the characteristics of each pattern type, specific ex-

26.2. PATTERN EVOLUTION MODEL AND EVOLUTION TRACKING 289

traction algorithms may need to be designed to extract each type of them

efficiently. However, the general optimization principles that I presented

in this dissertation, such as the “predicted view” technique and the “in-

tegrated pattern representation” may be leveraged for assisting the opti-

mization process for those queries. For example, when a pattern extraction

query uses sliding window semantics and the object expiration constitute

the major resource-consuming bottleneck for pattern extraction, the “pre-

dicted view” technique may be applied to efficiently handle the object ex-

piration. In general, the neighbor-based pattern extraction techniques that

I presented in this work is a good resource for optimization strategies for

extracting other complex pattern types in data streams.

26.2 Pattern Evolution Model and Evolution Tracking

Pattern evolution is also an important future work direction for my disser-

tation. Due to the temporal characteristics of streaming environments, an

important type of knowledge that the analysts would like to learn about the

streams is how the patterns in the streams change over time. Such evolu-

tion knowledge may reveal a lot of valuable information for streaming ap-

plications. For example, in traffic monitoring applications, an analyst does

not only need to know the major traffic congestions (clusters) just detected

in the traffic streams, but also needs to keep track of how these clusters

evolve over time. This is because the change of the congestions may be the

key indicator of whether the congestion-relief strategy applied is effective

or not.

26.2. PATTERN EVOLUTION MODEL AND EVOLUTION TRACKING 290

To provide such knowledge to the analysts, one first needs to study

and define evolution model for the target pattern type, which can effective

describe the pattern changes over time. Such definition of a pattern evo-

lution model takes careful analysis of both the target pattern structure and

the specific analytical tasks. My work [YGRW11] on density-based cluster

evolution in sliding windows provides ideas for modeling the evolution

of complex patterns in sliding windows. In particular, a pattern evolution

model can model both the 1-to-1 evolution, such as a single pattern pre-

serves or expands in a certain period of time, and the 1-to-N (or N-to-1)

evolution, such as a single pattern splits into several smaller patterns (or

several smaller patterns merge to become a larger pattern). The similar

pattern evolution semantics may also be applied to other complex pattern

type.

After defining the evolution model, another important task for the evo-

lution study is to efficiently track the pattern evolution in the stream. De-

pending on the specific pattern structures and evolution model, different

evolution tracking algorithms can be designed. However, a general op-

timization strategy, which I used in [YGRW11] for tracking evolution of

density-based clusters, may benefit such algorithm design. That is to inte-

grate the pattern evolution tracking process within the incremental pattern

extraction process, if the target patterns are incrementally maintainable. As

the key task for both evolution tracking and incremental pattern extraction

is to track the pattern structure changes over time, combining them into a

single process may significantly save both the computational and storage

resources, that otherwise may need to be spent twice for each of them.

26.3. DYNAMIC STREAM MINING QUERIES 291

26.3 Dynamic Stream Mining Queries

Another important future research direction for stream data mining is to

study the optimization problem for dynamic stream mining queries. Un-

like the static continuous queries studied in this work, which have fixed

mining parameter settings and are assumed to be running from the start to

the end of the applications, the dynamic stream mining queries may change

their parameter settings during their execution and be added or removed

from the mining system at any time. For this research topic, one needs

to tackle the research problem in two major aspects. First, how to realize

smooth query parameter migration. In particular, when the parameter set-

tings of existing queries change, one needs to design query migration tech-

niques to minimize the time needed for switching the query execution from

the old parameter settings to the new parameter settings. Second, how to

coordinate the relationships between all the mining queries in the system

as queries come and go, especially when mining queries are executed in the

shared manner as we discussed in the second part of my dissertation.

Those problems are challenging problems, while some of the optimiza-

tion principles presented in my dissertation, such as maintaining proper

abstraction format for pattern structures and using integrated representa-

tion for multiple queries, can be exploited as the starting point for design-

ing their solutions.

292

Bibliography

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar,
Keith Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer
Widom. Stream: The stanford stream data manager. In SIG-
MOD Conference, page 665, 2003.

[ABK+06] Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath,
Alexey Pryakhin, and Matthias Renz. Efficient reverse k-
nearest neighbor search in arbitrary metric spaces. In ACM
SIGMOD Conference, pages 515–526, 2006.

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and
Jörg Sander. Optics: Ordering points to identify the clustering
structure. In SIGMOD Conference, pages 49–60, 1999.

[ABW06] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: semantic foundations and query execution. VLDB
J., 15(2):121–142, 2006.

[AF07] Fabrizio Angiulli and Fabio Fassetti. Detecting distance-based
outliers in streams of data. In CIKM, pages 811–820, 2007.

[Agg05] Charu C. Aggarwal. On abnormality detection in spuriously
populated data streams. In SDM, 2005.

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
tomatic subspace clustering of high dimensional data for data
mining applications. Proceedings of ACM SIGMOD?8 Interna-
tional Conference on Management of Data, p. 94-105, 1998.

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.
Yu. A framework for clustering evolving data streams. In
VLDB, pages 81–92, 2003.

BIBLIOGRAPHY 293

[AKK+09] Elke Achtert, Hans-Peter Kriegel, Peer Kröger, Matthias Renz,
and Andreas Züfle. Reverse k-nearest neighbor search in
dynamic and general metric databases. In EDBT Conference,
pages 886–897, 2009.

[AU11] Massih-Reza Amini and Nicolas Usunier. Transductive learn-
ing over automatically detected themes for multi-document
summarization. In SIGIR, pages 1193–1194, 2011.

[AW04] A. Arasu and J. Widom. Resource sharing in continuous
sliding-window aggregates. In VLDB, pages 336–347, 2004.

[AW10] Charu C. Aggarwal and Haixun Wang. A survey of clustering
algorithms for graph data. In Managing and Mining Graph Data,
pages 275–301. 2010.

[BDMO03] Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan
O’Callaghan. Maintaining variance and k-medians over data
stream windows. In PODS, pages 234–243, 2003.

[BGM+06] Sanghamitra Bandyopadhyay, Chris Giannella, Ujjwal
Maulik, Hillol Kargupta, Kun Liu, and Souptik Datta. Clus-
tering distributed data streams in peer-to-peer environments.
Inf. Sci., 176(14):1952–1985, 2006.

[BH06] Jürgen Beringer and Eyke Hüllermeier. Online clustering of
parallel data streams. Data Knowl. Eng., 58(2):180–204, 2006.

[BHPG11] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Ricard
Gavaldà. Mining frequent closed graphs on evolving data
streams. In KDD, pages 591–599, 2011.

[BKNS00] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and
Jörg Sander. Lof: identifying density-based local outliers. SIG-
MOD Rec., 29(2):93–104, 2000.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and Ralf Schneider.
Comparison of approximations of complex objects used for
approximation-based query processing in spatial database
systems. In ICDE, pages 40–49, 1993.

[BRV11] Antonio Balzanella, Lidia Rivoli, and Rosanna Verde. Data
stream summarization by on-line histograms clustering. In
EGC, pages 317–318, 2011.

BIBLIOGRAPHY 294

[BW96] C.L. Bentley and M.O. Ward. Animating multidimensional
scaling to visualize n- dimensional data sets. Proc. of Infor-
mation Visualization ’96, p. 72-3, 1996.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over
data streams. SIGMOD Record, 30(3):109–120, 2001.

[CDN02] Jianjun Chen, David J. DeWitt, and Jeffrey F. Naughton. De-
sign and evaluation of alternative selection placement strate-
gies in optimizing continuous queries. In ICDE, pages 345–
356, 2002.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang.
Niagaracq: A scalable continuous query system for internet
databases. In SIGMOD Conference, pages 379–390, 2000.

[CEQZ06] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou.
Density-based clustering over an evolving data stream with
noise. In SDM, 2006.

[CKW+12] Xian Chen, Yoo-Ah Kim, Bing Wang, Wei Wei, Zhijie Jerry Shi,
and Yuan Song. Fault-tolerant monitor placement for out-of-
band wireless sensor network monitoring. Ad Hoc Networks,
10(1):62–74, 2012.

[CLW12] Yue Cui, Kaihua Liu, and Junfeng Wang. Direction-of-arrival
estimation for coherent gps signals based on oblique projec-
tion. Signal Processing, 92(1):294–299, 2012.

[CMR05] Graham Cormode, S. Muthukrishnan, and Irina Rozen-
baum. Summarizing and mining inverse distributions on data
streams via dynamic inverse sampling. In VLDB, pages 25–36,
2005.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition, 2001.

[CT07] Yixin Chen and Li Tu. Density-based clustering for real-time
stream data. In KDD, pages 133–142, 2007.

[CwH02] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal
probing: supporting expensive predicates for top-k queries. In
SIGMOD Conference, pages 346–357, 2002.

BIBLIOGRAPHY 295

[dAMFH08] José de Aguiar Moraes Filho and Theo Härder. Accurate
histogram-based xml summarization. In SAC, pages 998–1002,
2008.

[DHYC06] Bi-Ru Dai, Jen-Wei Huang, Mi-Yen Yeh, and Ming-Syan Chen.
Adaptive clustering for multiple evolving streams. IEEE Trans.
Knowl. Data Eng., pages 1166–1180, 2006.

[DHZS02] Chris Ding, Xiaofeng He, Hongyuan Zha, and Horst Simon.
Adaptive dimension reduction for clustering high dimen-
sional data. In Proc. 2nd IEEE Int’l Conf. Data Mining, pages
147–154, December 2002.

[DSJ+12] Lauren Davis, Funda Samanlioglu, Xiaochun Jiang, Daniel
Mota, and Paul Stanfield. A heuristic approach for alloca-
tion of data to rfid tags: A data allocation knapsack problem
(dakp). Computers & OR, 39(1):93–104, 2012.

[EFK99] J. N. Entzminger, C. A. Fowler, and W. J Kenneally. Jointstars
and gmti: Past, present and future. IEEE Trans on Aero and Elec
Sys, 35(2):748–762, april 1999.

[EKS+98] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu. Inc.
clustering for mining in a data warehousing environment. In
VLDB, pages 323–333, 1998.

[EKSX96] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In KDD, pages 226–231, 1996.

[GK96] Sudipto Guha and Samir Khuller. Approx. algo. for connected
dominating sets. Algorithmica, 20:374–387, 1996.

[GKMS01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Mar-
tin Strauss. Surfing wavelets on streams: One-pass summaries
for approximate aggregate queries. In VLDB, pages 79–88,
2001.

[GKS01] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On com-
puting correlated aggregates over continual data streams. In
SIGMOD Conference, pages 13–24, 2001.

BIBLIOGRAPHY 296

[GM06] Marcin Gorawski and Rafal Malczok. Aec algorithm: A
heuristic approach to calculating density-based clustering ps
parameter. In ADVIS, pages 90–99, 2006.

[GMM+03] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Mot-
wani, and Liadan O’Callaghan. Clustering data streams: The-
ory and practice. IEEE Trans. Knowl. Data Eng., 15(3):515–528,
2003.

[GMMO00] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams. In FOCS, pages 359–
366, 2000.

[GRDG11] Francisco Guil-Reyes and Marı́a Teresa Daza-Gonzalez. Sum-
marizing frequent itemsets via pignistic transformation. In
EPIA, pages 297–310, 2011.

[GRS98] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering
algorithm for large databases. SIGMOD Record, vol.27(2), p.
73-84, 1998.

[GW02] Like Gao and Xiaoyang Sean Wang. Continually evaluating
similarity-based pattern queries on a streaming time series. In
SIGMOD Conference, pages 370–381, 2002.

[Han05] Jiawei Han. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[HFAE03] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and
Ahmed K. Elmagarmid. Scheduling for shared window joins
over data streams. In VLDB, pages 297–308, 2003.

[HMA09] Parisa Haghani, Sebastian Michel, and Karl Aberer. Evalu-
ating top-k queries over incomplete data streams. In CIKM,
pages 877–886, 2009.

[HW] J. A. Hartigan and M. A. Wong. A k-means clustering algo-
rithm. Applied Statistics, 28(1):100–108.

[HYJS06] Yih-Ling Hedley, Muhammad Younas, Anne E. James, and
Mark Sanderson. Sampling, information extraction and sum-
marisation of hidden web databases. Data Knowl. Eng.,
59(2):213–230, 2006.

BIBLIOGRAPHY 297

[IKM00] Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identify-
ing representative trends in massive time series data sets using
sketches. In VLDB, pages 363–372, 2000.

[INE] Inc. INETATS. Stock trade traces. http://www.inetats.com/.

[JMF99] A. Jain, M. Murty, and P. Flynn. Data clustering: a review.
ACM Computing Surveys, 31(3):264–323, 1999.

[JOT+05] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui
Zhang. idistance: An adaptive b+-tree based indexing method
for nearest neighbor search. ACM Trans. Database Syst., 30:364–
397, June 2005.

[JWK01] Moon Jeung Joe, Kyu-Young Whang, and Sang-Wook Kim.
Wavelet transformation-based management of integrated
summary data for distributed query processing. Data Knowl.
Eng., 39(3):293–312, 2001.

[JYC+08] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey Xu Yu, and Xuemin Lin.
Sliding-window top-k queries on uncertain streams. PVLDB,
1(1):301–312, 2008.

[JYC+10] Cheqing Jin, Ke Yi, Lei Chen, Jeffrey Xu Yu, and Xuemin Lin.
Sliding-window top-k queries on uncertain streams. VLDB J.,
19(3):411–435, 2010.

[KFHJ04] Sailesh Krishnamurthy, Michael J. Franklin, Joseph M. Heller-
stein, and Garrett Jacobson. The case for precision sharing. In
VLDB, pages 972–986, 2004.

[KN98a] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining
distance-based outliers in large datasets. In Proc. VLDB, pages
392–403, 1998.

[KN98b] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining
distance-based outliers in large datasets. In VLDB, pages 392–
403, 1998.

[KN99] Edwin M. Knorr and Raymond T. Ng. Finding intensional
knowledge of distance-based outliers. In Malcolm P. Atkin-
son, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik,
and Michael L. Brodie, editors, VLDB’99, Proceedings of 25th In-
ternational Conference on Very Large Data Bases, September 7-10,

BIBLIOGRAPHY 298

1999, Edinburgh, Scotland, UK, pages 211–222. Morgan Kauf-
mann, 1999.

[KOTZ04] Nick Koudas, Beng Chin Ooi, Kian-Lee Tan, and Rui Zhang.
Approximate nn queries on streams with guaranteed er-
ror/performance bounds. In VLDB Conference, pages 804–815,
2004.

[KWF06] Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin.
On-the-fly sharing for streamed aggregation. In SIGMOD Con-
ference, pages 623–634, 2006.

[LDS11] Xuan Li, Liang Du, and Yi-Dong Shen. Graph-based marginal
ranking for update summarization. In SDM, pages 486–497,
2011.

[LLL11] Jingxuan Li, Lei Li, and Tao Li. Mssf: a multi-document sum-
marization framework based on submodularity. In SIGIR,
pages 1247–1248, 2011.

[LLYZ03] Xuemin Lin, Qing Liu, Yidong Yuan, and Xiaofang Zhou. Mul-
tiscale histograms: Summarizing topological relations in large
spatial datasets. In VLDB, pages 814–825, 2003.

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and
Peter A. Tucker. No pane, no gain: efficient evaluation
of sliding-window aggregates over data streams. SIGMOD
Record, 34(1):39–44, 2005.

[LRY08] Zhen Liu, Srinivasan Parthasarathy 0002, Anand Ran-
ganathan, and Hao Yang. Near-optimal algorithms for shared
filter evaluation in data stream systems. In SIGMOD Confer-
ence, pages 133–146, 2008.

[LS09] Levi Lelis and Jörg Sander. Semi-supervised density-based
clustering. In ICDM, pages 842–847, 2009.

[LT10] Kristen LeFevre and Evimaria Terzi. Grass: Graph structure
summarization. In SDM, pages 454–465, 2010.

[LWC11] Wen-Yang Lin, You-En Wei, and Chun-Hao Chen. A generic
approach for mining indirect association rules in data streams.
In IEA/AIE (1), pages 95–104, 2011.

BIBLIOGRAPHY 299

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papa-
dias. Continuous monitoring of top-k queries over sliding
windows. In SIGMOD, pages 635–646, 2006.

[MCH11] Fei Mai, C. Q. Chang, and Y. S. Hung. A subspace approach
for matching 2d shapes under affine distortions. Pattern Recog-
nition, 44(2):210–221, 2011.

[MP07] Kyriakos Mouratidis and Dimitris Papadias. Continuous near-
est neighbor queries over sliding windows. IEEE Trans. Knowl.
Data Eng., 19(6):789–803, 2007.

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and
Vijayshankar Raman. Continuously adaptive continuous
queries over streams. In SIGMOD Conference, pages 49–60,
2002.

[Mun00] Jame.R Munkres. Topology. Prentice Hall, 2000.

[MVW98] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-
based histograms for selectivity estimation. In SIGMOD Con-
ference, pages 448–459, 1998.

[NH94] R. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. VLDB’94, p. 144-155, 1994.

[NRB06] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. H.: Fast
suboptimal algorithms for the computation of graph edit dis-
tance. In SSSPR, pages 163–172, 2006.

[NRS08] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava.
Graph summarization with bounded error. In SIGMOD Con-
ference, pages 419–432, 2008.

[NZTK08] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik.
The v*-diagram: a query-dependent approach to moving knn
queries. PVLDB, 1(1):1095–1106, 2008.

[Ord96] Keith Ord. Outliers in statistical data. International Journal of
Forecasting, 12(1):175–176, March 1996.

[Pei09] Jian Pei. Association rules. In Encyclopedia of Database Systems,
pages 140–142. 2009.

BIBLIOGRAPHY 300

[RLL06] Faraz Rasheed, Young-Koo Lee, and Sungyoung Lee. Towards
summarized representation of time series data in pervasive
computing systems. In UIC, pages 658–668, 2006.

[RR96] Ida Ruts and Peter J. Rousseeuw. Computing depth contours
of bivariate point clouds. Comput. Stat. Data Anal., 23(1):153–
168, 1996.

[SIK07] Mohamed A. Soliman, Ihab F. Ilyas, and Nick Koudas. Finding
skyline and top-k bargaining solutions. In IEEE ICDE Confer-
ence, pages 1263–1267, 2007.

[SPP+06] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos. Online outlier detection in sensor data
using non-parametric models. In VLDB, pages 187–198, 2006.

[SYRW11] Avani Shastri, Di Yang, Elke A. Rundensteiner, and
Matthew O. Ward. Mtops: scalable processing of continu-
ous top-k multi-query workloads. In CIKM, pages 1107–1116,
2011.

[THP08] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel.
Efficient aggregation for graph summarization. In SIGMOD
Conference, pages 567–580, 2008.

[TWS04] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-
k query evaluation with probabilistic guarantees. In VLDB,
pages 648–659, 2004.

[VNB03] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximiz-
ing the output rate of multi-way join queries over streaming
information sources. In VLDB, pages 285–296, 2003.

[VvLS11] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes.
Krimp: mining itemsets that compress. Data Min. Knowl. Dis-
cov., 23(1):169–214, 2011.

[W09] Changliang Wang and Lei Chen 0002. Continuous subgraph
pattern search over graph streams. In ICDE, pages 393–404,
2009.

[War94] M.O. Ward. Xmdvtool: Integrating multiple methods for vi-
sualizing multivariate data. Proc. of Visualization ’94, p. 326-33,
1994.

BIBLIOGRAPHY 301

[WEC09] Paul Whitney, Dave Engel, and Nick Cramer. Mining for sur-
prise events within text streams. In SDM, pages 617–627, 2009.

[WFZZ10] Xiaopeng Wei, Xiaoyong Fang, Qiang Zhang, and Dongsheng
Zhou. 3d point pattern matching based on spatial geometric
flexibility. Comput. Sci. Inf. Syst., 7(1):231–246, 2010.

[WL10] Dingding Wang and Tao Li. Many are better than one: improv-
ing multi-document summarization via weighted consensus.
In SIGIR, pages 809–810, 2010.

[WRGB06] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and
Sudeept Bhatnagar. State-slice: New paradigm of multi-query
optimization of window-based stream queries. In VLDB Con-
ference, pages 619–630, 2006.

[WZJS09] Xiang Wang, Kai Zhang, Xiaoming Jin, and Dou Shen. Mining
common topics from multiple asynchronous text streams. In
WSDM, pages 192–201, 2009.

[YGRW11] Di Yang, Zhenyu Guo, Elke A. Rundensteiner, and
Matthew O. Ward. Clues: a unified framework supporting in-
teractive exploration of density-based clusters in streams. In
CIKM, pages 815–824, 2011.

[YGX+10] Di Yang, Zhenyu Guo, Zaixian Xie, Elke A. Rundensteiner,
and Matthew O. Ward. Interactive visual exploration of
neighbor-based patterns in data streams. In SIGMOD, pages
1151–1154, 2010.

[YiTWM00] Kenji Yamanishi, Jun ichi Takeuchi, Graham J. Williams, and
Peter Milne. On-line unsupervised outlier detection using fi-
nite mixtures with discounting learning algorithms. In KDD,
pages 320–324, 2000.

[YLL+05] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu,
and Qing Zhang. Efficient computation of the skyline cube. In
VLDB, pages 241–252, 2005.

[YOTJ01] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. In-
dexing the distance: An efficient method to knn processing. In
VLDB Conference, pages 421–430, 2001.

BIBLIOGRAPHY 302

[YRW07] Di Yang, Elke A. Rundensteiner, and Matthew O. Ward.
Nugget discovery in visual exploration by query consolida-
tion. In CIKM, pages 603–612, 2007.

[YRW09] Di Yang, Elke A. Rundensteiner, and Matthew O. Ward.
Neighbor-based pattern detection for windows over stream-
ing data. In EDBT, pages 529–540, 2009.

[YSRW11] Di Yang, Avani Shastri, Elke A. Rundensteiner, and
Matthew O. Ward. An optimal strategy for monitoring top-
k queries in streaming windows. In EDBT, pages 57–68, 2011.

[YY+03] Ke Yi, Hai Yu, Jun Yang 0001, Gangqiang Xia, and Yuguo
Chen. Efficient maintenance of materialized top-k views. In
ICDE, pages 189–200, 2003.

[ZKOS05] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivas-
tava. Multiple aggregations over data streams. In ACM SIG-
MOD Conference, pages 299–310, 2005.

[ZMC09] Shiming Zhang, Nikos Mamoulis, and David W. Cheung.
Scalable skyline computation using object-based space parti-
tioning. In ACM SIGMOD Conference, pages 483–494, 2009.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient
data clustering method for very large databases. SIGMOD,
vol.25(2), p. 103-14, 1996.

