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Abstract

Advances in ubiquitous displays and wireless communications have fueled the emergence of

exciting mobile graphics applications including 3D virtual product catalogs, 3D maps, secu-

rity monitoring systems and mobile games. Current trends that use cameras to capture geom-

etry, material reflectance and other graphics elements means that very high resolution inputs

is accessible to render extremely photorealistic scenes. However, captured graphics content

can be many gigabytes in size, and must be simplified before they can be used on small mo-

bile devices, which have limited resources, such as memory, screen size and battery energy.

Scaling and converting graphics content to a suitable rendering format involves running sev-

eral software tools, and selecting the best resolution for target mobile device is often done

by trial and error, which all takes time. Wireless errors can also affect transmitted content

and aggressive compression is needed for low-bandwidth wireless networks. Most render-

ing algorithms are currently optimized for visual realism and speed, but are not resource or

energy efficient on mobile device. This dissertation focuses on the improvement of render-

ing performance by reducing the impacts of these problems with UbiWave, an end-to-end

framework to enable real time mobile access to high resolution graphics using wavelets. The

framework tackles the issues including simplification, transmission, and resource efficient

rendering of graphics content on mobile device based on wavelets by utilizing 1) a Percep-

tual Error Metric (PoI) for automatically computing the best resolution of graphics content

for a given mobile display to eliminate guesswork and save resources, 2) Unequal Error Pro-

tection (UEP) to improve the resilience to wireless errors, 3) an Energy-efficient Adaptive

Real-time Rendering (EARR) heuristic to balance energy consumption, rendering speed and

image quality and 4) an Energy-efficient Streaming Technique. The results facilitate a new



class of mobile graphics application which can gracefully adapt the lowest acceptable render-

ing resolution to the wireless network conditions and the availability of resources and battery

energy on mobile device adaptively.
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Chapter 1

Introduction

1.1 Motivation

Recently, graphics on mobile devices is becoming popular because untethered computing is

convenient and increases the productivity of workers. The following scenario demonstrates

how mobile graphics applications can be used.

Motivating real estate mobile graphics use scenario: Ann is an architect who works

for Ulo corporation. Ulo corporation is a multi-national architectural film with clients and

workers in 50 countries across the world. Ulo maintains a large database of high-resolution

3D architectural drawings of various types of buildings. In order to accommodate workers

with PDAs, laptops and cell phones with graphics capability, different teams of architects

work on different projects that are maintained in Ulo’s database. Initially, an Ulo team visits

a client and after preliminary discussions, retrieves possible design solutions and shows them

to the client. These serve as starting points of the design process. After the client selects a

viable option and requests modifications, the architects annotate the diagrams and return to

Ulo’s office to make necessary amendments. Periodically, the architects return to the client

to show progress and seek more feedback, towards a mutually agreeable design. Some of

Ulo’s clients are not connected to the Internet. In such cases, Internet hotspots can serve as
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CHAPTER 1. INTRODUCTION

valuable affordable meeting locations.

In the scenario above, mobility in the home viewing software allowed teams to retrieve

new architectural designs for clients on the spot after the client rejected the first one and it

was convenient to avoid driving back to their office with clients. Although videos of the

homes could have been used in this scenario, graphics allows teams to answer client what

if question about snow. Clients could also interact with the homes and take a closer look

at aspects that were important to clients. Indeed, mobile graphics is exploding and new

applications are emerging. Computers can reduce border on long commutes by playing mo-

bile versions of their favorite games during commutes. Other mobile graphics applications

include telesurgery, security monitoring systems, 3D maps, and educational animations. Mo-

bile graphics applications offer a new commercial opportunity especially considering that

the total number of mobile devices sold annually far exceeds the number of personal com-

puters sold. The mobile gaming industry already reports revenues in excess of $2.6 billion

worldwide annually, and is expected to exceed $11 billion by the year 2010 [114].

Mobile graphics, which involves running networked computer graphics applications on

mobile devices across wireless network, is a fast growing segment of the networks and graph-

ics industries. The quest for visual realism in graphics is endless. A trend has emerged

whereby real world scenes are now digitized to capture scene geometry, lighting, textures

and material properties that can be used later to generate visually stunning graphics scenes.

However, rendering 3D graphics on mobile devices still faces some fundamental problems

including:

• High-precision capture of graphics content is creating massive data: The quest to

make graphics scenes indistinguishable from the real word is endless. Today, movies

and computer games have become extremely realistic because more precise geometry,

materials and lighting are used. Classic techniques such as modeling object geometry

using software packages and rendering (drawing) using Phong’s shading equation [12]

are now rarely used when extreme realism is desired. The current trend in graphics
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1.1. MOTIVATION

is to place cameras around real objects and digitize scene attributes that can be used

later for rendering. Today, almost every scene attribute can be captured from the real

world including scene geometry (meshes) [42] [43] [44] [45], object reflectance proper-

ties [39], object texture [41] and scene lighting [40]. Several graphics research groups

focus entirely on capturing elements of real graphics scenes. However, the increased

precision of cameras today yields captured graphics content that is extremely large.

For instance, in 1999, a team of 30 researchers from Stanford and the University of

Washington spent a year in Italy, and digitized Michelangelo’s statue to create a mesh

representation. This geometric model can be obtained from their website and used to

create highly realistic images. The largest models they captured had 2 billion faces

and would require hundreds of gigabytes of memory to render. Even powerful desktop

personal computers do not have enough memory to load a model of that size. Many

such models are available on the Stanford group’s website [45].

• Different mathematical representations: Each captured element, such as scene ge-

ometry(meshes), object material properties and scene illumination (lighting) is stored

in a different mathematical representation. Each representation has many different file

formats and each file format is only supported by certain graphics tools. This leads

time-consuming conversion between different content’s formats.

• Manual LoD selection: Since there is no metric for automatically determining the

best resolution for each mobile device configuration, the scaling process is currently

manual, involves trial-and-error to determine the best resolution for the specific mobile

device. This manual approach is limiting with the hundreds of mobile device available

in numerous configurations, such as the memory, battery energy and screen size. Es-

sentially, there are no automatic sizing feature that makes it possible for two users to

access the same graphics scene with a cell phone and headmounted displays respec-

tively, and automatically download content at the best resolution for their devices.

3
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• Low wireless bandwidth and high error rate: Wireless channels can have low band-

width and high Bit Error Rate(BER). Users experience long transmission times on low

bandwidth wireless network links and some latency due to retransmission of damaged

packets. These sometimes affect the usability of real-time graphics applications such

as internet multiplayer games.

• Limited mobile resources: Mobile devices tend to be limited in resources such as

memory, CPU power, disk space, screen resolution and battery energy while graphics

applications require large amount of these resources. Mobile devices also do not have

adequate hardware support of graphics. These limitations make it difficult to process

high resolution meshes and textures, or run sophisticated rendering algorithms that

are necessary for visual photorealism. While the area of LoD management is rich,

previous approaches focussed on controlling frame rates, but did not consider energy

conservation on mobile devices.

In summary, the graphics content must be simplified before they can be used on small

mobile devices. Scaling and converting graphics content to a suitable rendering format in-

volves running several software tools, converting between mathematical representations and

selecting the best resolution for a target mobile device is often done by trial and error, which

all takes time. Wireless errors can also affect transmitted content and aggressive compression

is needed for low-bandwidth wireless networks. At the mobile device, most rendering algo-

rithms are currently optimized for visual realism and speed, but are not resource or energy

efficient on mobile devices.

Therefore, This dissertation focuses on the improvement of rendering performance by

reducing the impacts of these problems with UbiWave, an end-to-end scalable framework to

enable real time mobile access to captured graphics using wavelets. The framework tackles

the issues including simplification, transmission, and energy efficient rendering of graphics

content on mobile device based on wavelets. The results facilitate a new class of mobile

graphics application which can gracefully adapt the lowest acceptable rendering resolution

4
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to the wireless network conditions and the availability of resources and battery energy on

mobile device adaptively.

1.2 The Dissertation

The UbiWave uses wavelets to store and distribute all captured graphics content. Several

groups have independently carried out research to capture graphics content. These include

the capture of geometry [42, 43], texture [41], lighting [40] and material reflectance [39].

Many of these groups have made this content available. One of our goals is to make this

content available to a wide spectrum of mobile devices at multiple levels of detail and save

the energy. The content is encoded using wavelets, transmitted to the mobile device based on

its configuration and rendered on the mobile device with less energy consumption adaptively.

Wavelets can render graphics content at a continuum of levels of detail and thus directly ad-

dress the heterogenity of mobile devices. Using wavelets as the common graphics standard

to represent content is attractive because wavelets are already being applied to many graphics

problems including simplifying geometry, material properties, textures, lighting and also for

speeding up rendering. Using wavelets also offers aggressive compression rates and seamless

integration with existing MPEG video and JPEG2000 image standards where wavelets are

already in use. Our UbiWave framework tackles a gamut of issues including simplification,

transmission, and resource efficient rendering of scanned content on mobile devices. To save

scarce mobile resources, a perceptual metric for automatically computing the best resolution

of graphics content for a given mobile display is presented. The perceptual error metric, Point

of Imperceptibility (PoI) is evaluated by specially designed user studies. To improve the error

resilience to wireless errors, a Forward Error Correction (FEC) scheme based on wavelets,

Unequal Error Protection(UEP), is presented. To save energy consumption while maintain-

ing acceptable image quality at real-time frame rates, an energy-efficient Adaptive Real-time

Rendering (EARR) and an energy-efficient mesh streaming technique are presented. Us-
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CHAPTER 1. INTRODUCTION

ing these four components, the UbiWave framework eliminates the time-consuming manual

processes currently required to prepare captured content for a mobile device. This reduces

the cost of creating most mobile graphics applications including mobile games and movies.

The results also facilitate a new class of mobile graphics application which can adapt their

rendering resolution to the availability of resources.

1.3 Contributions

The main contributions of this dissertation are the design, implementation and evaluation of

UbiWave. The framework uses wavelets to store and render all scalable graphics contents on

heterogeneous ubiquitous computing devices based the availability of their resources. The

specific contributions of the dissertation will include:

1. A complete end-to-end framework for scalable ubiquitous graphics using wavelets.

To render large 3D graphics content and uniform all different graphics mathemati-

cal representations, we construct a uniform system framework for scalable ubiquitous

graphics using wavelets. If all graphics content is converted to wavelets, the wireless

network always transmits base representations and trees of coefficients. Networking

for graphics can be optimized around this structure. directly connect the mobile de-

vices with repositories of captured content and vary the rendering quality of graphics

on mobile devices in real time as resource availability changes. (Chapter 2)

2. Pareto-Based Perceptual error metrics for automatically determining the lowest

acceptable resolution of graphics content on a given mobile device’s display. To

save scarce mobile resources, one of our themes is to render graphics contents at a level

of realism that is just adequate for each type of mobile device. We develop a metric

for automatically determining the levels-of-detail beyond which improvements are not

perceivable on a given mobile display. A comprehensive user study is performed to

validate PoI metric. (Chapters 4)

6



1.3. CONTRIBUTIONS

3. Forward Error Correction scheme(UEP)to make wavelets-encoded graphics con-

tent more resilient to wireless errors. Wireless channels have much higher error rates

than wired networks. While many network protocols can retransmit packets that have

errors, the additional roundtrip delay incurred is unacceptable for many real time ap-

plications such as real-time games. We propose a coding scheme that adds redundant

bits to wavelets data prior to transmission for different parts of the transmitted wavelets

content, depending on the amount of information it contains. (Chapter 5)

4. An Energy-efficient Adaptive Real-time Rendering (EARR) heuristic. As we know,

battery energy of mobile device is the most limiting resource. To save battery energy

while maintaining real-time rendering, the heuristic adaptively changes LoDs or CPU

allocation to compensate for the changing demands of application elements in order to

maintain a constant real time rendering frame rate. It reduces energy consumption by

up to 60% while maintaining acceptable image quality at real-time frame rates. (Chap-

ter 6)

5. A workload predictor to adaptively predict frame rendering times. Most of the

resource management methods use trial and error. This will decrease the performance

of the methods. To make our EARR heuristic predictable, we need a workload predictor

to accurately predict its workload from frame to frame. The relative errors between

predicted workload and real measured workload are bounded in 0.18 in our test scene.

(Chapter 6)

6. A dynamic CPU scheduler to save energy used by 3D applications. To dynamically

allocate the CPU resources, a dynamic CPU scheduler is needed in our EARR heuris-

tic. Our CPU scheduler allocates the proper percentage of CPU resources to the 3D

applications to save energy. (Chapter 6)

7. An Energy-efficient 3D streaming technique. Wireless network is low bandwidth

comparable with wired network. To enable scalable transmission 3D graphics mod-
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els in wireless network and avoid wasting transmitting energy in mobile device, an

energy-efficient mesh streaming technique is presented in UbiWave. Most of previous

approaches focused on the wireless network efficiency, but did not consider the energy

consumption in mobile devices. (Chapter 7)

1.4 Roadmap

The remainder of this dissertation is organized as follows: Chapter 2 provides overview to

our approach in this dissertation; Chapter 3 discusses related research in the areas of this

dissertation; Chapter 4 describes our perceptual error metric(PoI); Chapter 5 describes our

Forward Error Correction scheme(UEP); Chapter 6 describes our Energy-efficient Adaptive

Real-time Rendering (EARR) heuristic; Chapter 7 describes wavelets-based multiresolution

3D streaming in UbiWave; Chapter 8 outlines possible future work; and finally Chapter 9

summarizes this dissertation and draws conclusions.
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Chapter 2

Our Approach

This chapter presents the framework of our approach, UbiWave, a wavelets-based framework

for scalable transmission of large meshes and graphics content.

2.1 Background on Wavelets

This section reviews basic concepts of wavelets and its current applications in computer

graphics.

Wavelets, which originated from the work of Fourier, are a mathematical tool that can

represent input functions at multiple resolution [16]. Figure 2.1 shows the process of wavelets

transformation.

Wavelets can decompose input functions to yield a coarse (rough) base function, plus

a tree of detail coefficients, as shown in Figure 2.1. Reconstructing the original function

starts from the coarse base function. Its resolution is then successively improved by adding

more levels of the detail coefficient tree. In UbiWave, our system for ubiquitous graphics all

rendering inputs such as meshes [28], textures [17] and material reflectance properties [36]

are converted and distributed as decomposed wavelets (base + coefficient tree) to facilitate

scalable rendering on heterogeneous computing devices even when inputs are extremely large

captured files.
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Base Mesh LoD 1 LoD 2

Coarse Detail Fine Detail

LoD 3
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Wavelet Coefficients Trees

..............................................
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—

Figure 2.1: Wavelets-based Multiresolutions

While wavelets has been applied to many diverse fields, we limit our review here to

research that uses wavelets in computer graphics. Wavelets have been used in a wide range of

applications including graphics and image processing, ray tracing [38], information retrieval

[30], FBI fingerprint storage [18], and geographic modeling. Today, published work has

shown that almost all aspects of a graphics scene can be decomposed using wavelets including

meshes, textures, material and reflectance properties. Schroeder [87] was one of the first to

use wavelets in computer graphics and used wavelets to compress geometric and evaluate

global illumination rendering equations.

• Meshes: Lounsbery proposed wavelets-based 3D compression [19, 28] by applying

wavelets transforms to an arbitrary 3D mesh at several detail levels. During wavelets

decomposition of meshes, a mesh is subdivided and deformed to make it fit the surface

to be approximated. The original high resolution mesh is processed to generate a base

connectivity file along with a sequence of smooth and detail cofficients that express

the difference between successive levels of detail. Reconstruction starts with the base
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mesh. As more wavelets coefficients are included, a higher resolution mesh will be

rendered. These steps can be repeated at the required resolution levels. A hierarchy of

meshes is obtained from the simplest one M0, called base mesh, to the original mesh

M∞. The wavelets transform of meshes removes a large amount of correlation between

neighboring vertices. This hierarchy of meshes at different resolutions is the basis of

multiresolution analysis [28]. To make the mesh approximation M j−1 as close as pos-

sible to the original mesh M j, the lifting scheme [31] is used. Valette’s scheme [34]

tries to convert the connectivity simplification to 1:4 subdivision as much as possible.

If 4:1 simplification is not possible, other groups of three or two faces are chosen, or

some faces are left unchanged. Several methods for performing wavelets transforms on

meshes are based on interpolating subdivision schemes such as the Butterfly [21] that

defines both interpolating and smoothing parts. The Loop [27] wavelets transform is

an approximating scheme that has the advantage that the inverse transform uses Loop

subdivision and produces the smoothest surfaces. After wavelets decomposition, adap-

tive arithmetic coding is often used to compress the size of the transmitted mesh and

coefficients. In wavelets decomposition, a mesh is subdivided and deformed to make it

fit the surface to be approximated. It consists of basic smooth coefficients and wavelets

detailed coefficients. As more and more wavelets coefficients are included, a mesh of

better resolution will be rendered. These steps can be repeated at the required resolu-

tion levels. We obtain a hierarchy of meshes from the simplest one M0, called base

mesh, to the original mesh M j. Following [19], wavelets decomposition can be applied

to the geometrical properties of the different meshes that are linked by the following

matrix relations:

C j−1 = A jC j (2.1)
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D j−1 = B jC j (2.2)

C j = P jC j−1 +Q jD j−1 (2.3)

where C j is the v j ×3 matrix representing the coordinates of the vertices of M j, v j is

the number of vertices for each mesh M j. D j−1 is the (v j − v j−1)× 3 matrix of the

wavelets coefficients at level j. A j and B j are the analysis filters, P j and Q j are the

synthesis filters. To ensure the exact reconstruction of M j from M j−1 and D j−1, the

filter-bank must satisfy the following constraint:

[
A j

B j ] = [P j|Q j]−1 (2.4)

To make the mesh approximation M j−1 as close as possible to the original mesh M j,

the lifting scheme [31] is used. Valette’s scheme [34], [33] tries to convert the con-

nectivity simplification to 1:4 subdivision as much as possible. If 4:1 simplification

is not possible, other groups of three or two faces are chosen, or some faces are left

unchanged.

• Textures and images: Techniques to compress images and textures using wavelets

have also been proposed. A 2D wavelets transform that can be obtained by a sepa-

rable decomposition in the horizontal and vertical directions [26]. Image compression

based on the Discrete Wavelets Transform (DWT) is used in the JPEG2000 image stan-

dard [17]. Wavelets decomposition of textures and images is slightly different from that

of meshes. In a preprocessing step, a nonstandard 2-D Haar wavelets decomposition

of images is performed, which involves one step of horizontal pairwise averaging and

differencing on the pixel values in each row of the image, followed by applying vertical

pair-wise averaging and differencing to each column of the result.
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• Material reflectance and BRDFs: Wavelets have been used to represent material re-

flectance or Bidirectional Reflectance Distribution Functions (BRDFs). In [36], re-

flections were encoded from one incident direction using a spherical wavelets repre-

sentation, which can represent a slice of the BRDF with several hundreds of coeffi-

cients. [37] extended this work and represents 4D reflectance functions using 4D basis

wavelets functions stored in a compact wavelets coefficient tree that keeps only the

highest coefficients to reconstruct the BRDF and thresholding the rest to zero.

If captured content is available as decomposed wavelets, heterogeneous mobile devices

can retrieve resolutions suitable for their use. Wavelets achieve aggressive compression,

which is also useful for low cellular network bandwidths. Wavelets also support progres-

sive refinement since users can view the increasingly improved intermediate results after

receiving coefficients. Finally, using wavelets for graphics content facilitates integration of

emerging mobile graphics standards with existing MPEG4 video and JPEG2000 image stan-

dards, where wavelets are already used.

2.2 UbiWave

As introduced in chapter 1, Current trends in using cameras to capture geometry, material

reflectance and other graphics elements means that very high resolution inputs is accessi-

ble to render extremely photorealistic scenes. However, since mobile devices and wireless

networks have limited resources, scaling of high-resolution content and conversion to a for-

mat that is suitable for rendering, is usually required. The dissertation presents our approach,

UbiWave, an end-to-end framework that encompasses all stages including retrieving captured

content, transmission and rendering on the mobile device. This wavelets-based framework

ties in current trends in the capture of graphics content with our directions in mobile graphics.

Figure 2.2 is an overview of our approach. Captured content is encoded using wavelets (on

the left of figure). When retrieved, the content is tailored to the resources of a mobile device
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and wireless network, transmitted wirelessly to the mobile device where it is rendered (right

of the figure). The realism of rendering on the mobile device can be varied to accommodate

mobile device constraints on the screen size and battery energy adaptively. Essentially, small

devices such as a cell phone on a GPRS cellular data network or a laptop on a broadband

WiMax network, can render the same scene, access the same rendering parameters from the

same content databases, but automatically achieve the best resolutions for their configuration

with less energy consumption. The network can be used in several ways. It can be pro-

grammed into a software download tool that downloaders of scanned content can use offline.

In a more ambitious scenario, the quality of rendered images in mobile graphics applications

would be varied dynamically based on available resources. For instance, the geometry of

rendered objects and the quality of shading of a mobile flight simulator could be gracefully

degraded as the devices’s battery dies.

To achieve our end-to-end vision in UbiWave, we developed several novel algorithms.

The shaded boxes in Figure 2.2 are novel algorithms and techniques in UbiWave. Our Ubi-

Wave has following benefits and solved the problems introduced in chapter 1.

1. Uniform Representation and Increased Productivity. Captured content will be more

accessible to many heterogenous devices with minimal effort, speeding up prototyping

of mobile graphics applications. Groups that spend months capturing content would

just need a few extra hours to run software that converts captured content to a pre-

agreed wavelets representation. Our envisioned framework takes the wavelets-encoded

content as input and virtually eliminates manual processes currently required to scale

and size graphics content for a target device.

2. Pareto-Based Perceptual error metrics for different mobile device’s display. To

save scarce mobile device, we proposed a perceptual error metrics for automatically

rendering at the lowest level-of-detail that does not show visual artifacts, called the

Point of Imperceptibility (PoI).
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Figure 2.2: The overview of our mobile graphics approach

3. Forward Error Correction scheme to make wavelets-encoded graphics content

more resilient to wireless errors. We propose a coding scheme that assigns redundant

FEC bits to wavelets data prior to transmission for different parts of the transmitted

wavelets content, depending on how important the content is.

4. An Energy-efficient Adaptive Real-time Rendering (EARR) heuristic. To balance

energy consumption, rendering speed and image quality, we proposed the heuristic

adaptively changes LoDs or CPU allocation to compensate for the changing demands

of application elements in order to maintain a constant real time rendering frame rate.

5. An Energy-efficient 3D Streaming. We present an energy-efficient 3D streaming

technique to enable scalable 3D content streaming in wireless network and avoid data
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transmission which can not maintain real-time rendering speed in mobile device.

Figure 2.3: Proposed System Framework

Figure 2.3 shows our proposed system framework. The server only needs to send basic

mesh connectivity information and corresponding wavelets coefficients to mobile devices,

saving bandwidth and memory. The system works using the following three steps:

1. Mesh preprocessing: To speed up rendering, we perform wavelets decomposition as a

pre-process at a server. In this pre-processing step, The server processes the original

high resolution mesh to generate the base connectivity file and coefficient files for

different levels of detail and calculates our perceptual metric for different screen sizes

using different mesh and image LoDs. This computed data (or plot) is stored along

with the corresponding meshes or images.

2. Receiving mobile parameters: At runtime, the mobile device transmits certain parame-

ters to the server, so that the server can decide what LOD to transmit to a given mobile

device. The transmitted mobile parameters include two parts: mobile device speci-

fication and wireless channel conditions. The mobile device specification includes its
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screen size, CPU, memory and battery energy. The wireless channel parameters include

measured bandwidth and error rate measured in the area around the mobile device.

3. Server decision on what wavelets LOD to send: After server receives the mobile

parameters, it decides which level of wavelets coefficients will be sent to the mobile

device using our perceptual error metrics for simplification to render the lowest level-

of-detail that is just adequate for each type of mobile device. And unequal error pro-

tection coding scheme can protect the most important package in the high error rate

wireless network.

4. Client decision on what wavelets LOD to render: After client, mobile device receives

mesh data, it decides which level of wavelets coefficients will be rendered to the mo-

bile device using energy-efficient adaptive real-time rendering heuristic. Typically, this

decision is based on mobile device screen size, available CPU resources and user re-

quirement. It can be expressed in the general form:

f (CPU,energy,screensize,bandwidth,error rate...) = level o f coe f . (2.5)

2.3 Chapter Summary

This chapter presents a wavelets-based multiresolution framework for scalable graphics con-

tent transmission and rendering. The basic concepts of wavelets and its current applications in

computer graphics. Then the UbiWave framework and how our approach benefits the mobile

graphics is introduced. The related work of the dissertation is reviewed in the next chapter,

followed by the discussion of the algorithms and techniques in each novel block.
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Chapter 3

Related Work

This chapter reviews the research work related to the work in this dissertation. Five rele-

vant research areas are covered including scalable graphics systems, perceptual error metrics

for simplification, error protection coding schemes for wireless transmission of wavelets-

encoded meshes, heuristic for energy-efficient rendering and 3D streaming technique.

3.1 Systems for Scalable Graphics

Previously proposed techniques to reduce the bandwidth and resource usage of graphics ap-

plications but do not use wavelets include image based simplification [75] [76] [77] [72],

geometry compression [96, 97, 98, 99, 100, 101, 102, 103], and progressive transmission [89,

90, 91, 92, 93, 94, 95]. Alternate scalable graphics representations such as the use of points [127,

128, 129, 130, 131, 132, 133, 134] has also been proposed. Points supports scalable render-

ing and transmission but does not achieve aggressive compression rates. Spherical harmon-

ics [137, 138, 139, 140, 141] can also be used to factorize low frequency lighting and speed

up rendering, but not geometry or high frequency lighting. A few related graphics systems

are also worth mentioning because they do try to adapt resource usage of graphics applica-

tions to the host machines. The ARTE system [11, 47] implements primarily vertex-based

techniques such as polygon simplification and LoD techniques, but does not use wavelets
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or consider error-resilience techniques against wireless channel errors. Repo3D [46] is a

distributed graphics library that proposes an object-oriented framework for distributing input

graphics models, but does not use wavelets or compress graphics content. The remote render-

ing pipeline [53] uses polygonal LoD techniques, progressive transmission and incremental

encoding but not wavelets. [49, 50, 51, 52] have also proposed other graphics architectures

for mobile devices, [48] combines multiple compression techniques to improve performance.

We adopt wavelets-based multiresolution analysis for simplification because in addition to

facilitating simplification, wavelets also achieve extremely aggressive compression ratios.

We present on a system solution for wavelets-based multiresolution. Our scheme only

sends a base mesh and corresponding coefficients tree from the server side.

3.2 Perceptual Error Metric for Simplification

This section reviews the research work in error metric. The two most related bodies of work

are surface-to-surface geometric simplification metrics and perceptual metrics.

3.2.1 Surface-to-Surface Geometric Simplification Metrics

Typically geometric metrics measure the deviation of the surface of a simplified version of a

mesh from the original mesh. The Simplification envelopes algorithm [58] imposes a bound

on the maximum geometric deviation between the original and simplified surface. Gueziecs

approach to simplification [64, 65] uses a bounding volume approach to measure simpli-

fication error. Ronfard and Rossignac [66] measures for each potential edge collapse, the

maximum distance between the simplified vertex and each of its supporting planes. Bajaj

and Schikores plane mapping algorithm [67] uses a priority queue of vertex removal opera-

tions to simplify a mesh while measuring the maximum pointwise mapping distance at each

step of the simplification. Garland and Heckbert [61] modify the error metric of Ronfard

and Rossignac and propose a quadric error metric. Appearance-preserving simplification by
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Cohen, Olano and Manocha [59], tries to bound the pixel-level shift of a particular point on

the simplified objects surface.

In summary, previous mesh simplification error metrics [54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67] quantify how much a simplified mesh deviates from the original high-

resolution mesh, but these metrics did not factor in the mobile screen dimensions. These

simplification error metrics are insensitive to changes in screen size and using them unmodi-

fied would wrongly select the compute the same optimal mesh resolution for a tiny cell phone

screen as it would for a larger laptop screen.

Tools such as METRO [14] and MESH [13] have been proposed to directly measure

simplification errors, but do not factor in the device screen and behavior of human vision.

3.2.2 Perceptual Simplification Metrics

While surface-to-surface metrics focus mainly on the distortion of mesh geometry, visual

effects such as lighting, shading and texturing also affect how perceivable simplification ar-

tifacts are. To account for these effects, elements of human vision have to be incorporated.

A number of simplification metrics based on human perception have been developed. Rather

than measure simplification errors in object space, perceptual metrics focus on how different

mesh and image LoDs affect the contrast and frequency of pixel color changes. This theory

is formalized as the CSF. Reddy [70] describes early work to guide LoD selection using a

perceptual model. Reddy [70] analyzed the frequency content of objects and their LoDs in

images rendered from multiple viewpoints. Reddy [71] presented a version of this approach

for terrains. Lindstrom and Turk [72] describe an image-driven approach for guiding the sim-

plification process itself. Luebke and Hallen [73] use the CSF to guide local view-dependent

simplification based on the worst-case contrast and spatial frequency of features the simplifi-

cation would induce in the rendered image. Williams et al [68] extends the work of Luebke

and Hallen to 3D texture deviation.

In summary, The look of objects after rendering on a screen is considered by some pro-
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posed perceptual metrics that model human vision [68, 23, 22, 29, 35, 70, 73], but also do

not account for differences in mobile display sizes.

We focus on producing a closed form expression that can be computed easily, while ac-

counting for geometric distortion, lighting effects and screen resolution.

3.3 Unequal Error Protection for Wavelets-encoded Meshes

Recent research efforts in the transmission of 3D objects over unreliable links have mostly

focussed on still images and video sequences [82]. The compression and simplification of

meshes is another active area of research. Very little research has attacked the issue of trans-

mitting 3D graphics models over wireless networks. This is partly due to the fact that pop-

ular applications such as multiplayer games, which require this service have only recently

emerged. Existing techniques for mitigating error while transmitting graphics models ranges

from robust error coding to retransmission schemes for damaged network packets.

Two popular strategies for handling transmission errors are retransmission (Automatic

Repeat-request,ARQ) and Forward Error Correction (FEC). ARQ schemes retransmission is

used in many popular network protocols such as TCP/IP [112] and the IEEE 802.11 Wireless

LAN standard [113]. However, when using ARQ techniques, a receiver has to wait one

roundtrip delay every time a packet is retransmitted. In the worst case, the IEEE 802.11

standard will retransmit a packet up to 7 times. This retransmission delay is inappropriate for

real time applications such as video streaming and mobile online games where latency can

affect the user. For such real time applications or along satellite links where retransmission

can take too long [107], FEC is preferred. FEC adds extra bits to transmitted data such that

a receiver can detect and correct a small amount of bit errors. A retransmission-based error-

resilient technique has been proposed by Bischoff and Kobbelt [83]. In their scheme, the base

mesh is re-transmitted along with every Level-of-Detail (LoD) to guarantee that it is correctly

received at the mobile client. However, the overhead of transmitting the base mesh can be
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significant, making this scheme inefficient when packet loss rate is low.

The Hamming code [108] and Reed-Solomon [109] codes are two popular FEC schemes

that perform well for most applications. However, wavelets-specified FEC schemes fre-

quently outperform these codes for content that is encoded using wavelets. Wavelets-specific

FEC techniques for images [110] and video transmission [111] have been proposed, but not

for meshes. [106, 104, 105] previously applied Unequal Error Protection(UEP) to Com-

pressed Progressive Meshes (CPM), but did not use wavelets encoding. We propose applying

UEP for wireless transmission of wavelets-encoded meshes.

Bajaj et al [84] proposed several robust source coding methods for meshes. Even though

this method adds a level of protection to the transmitted mesh, it does not adapt well to dif-

ferent ranges of channel packet loss rate. Yan et al [85] propose partitioning a 3D model into

several segments that are then transmitted independently. However, they use experimental

calibration to determine the number of error-protection bits assigned to different segments

before transmission, which can be time-consuming. Our proposed technique applies an an-

alytic distortion metric to determine the number of bits assigned per segment and does not

require experimental calibration. MPEG-4 also uses error-resilient coding of 3D models that

is similar to that proposed by Yan et al [85]. UEP is an error coding paradigm that assigns

FEC bits based on the the amount of information a given segment contains. Al-Regib et

al [106, 81] applies UEP to the CPM [86], a popular mesh representation in order to in-

crease its resilience to transmission errors. As our main contribution, we apply UEP method

to meshes that have been encoded using wavelets to make them more resilient to wireless

errors. We note that UEP encoding of any content closely depends on a) the underlying

structure of the content to be encoded and b) the ability to determine the relative importance

of different parts of the mesh.
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3.4 Heuristic for Energy-Efficient Rendering

The two bodies of work that are most related to our work are the areas of Level of Detail

(LoD) management to achieve real-time rendering speeds, and energy management tech-

niques for mobile devices.

3.4.1 LoD selection to achieve real-time frame rates

Funkhouser and Sequin [120], and Gobetti [122] both implement systems that bound ren-

dering frame rates by selecting the apprioprate Level-of-detail (LoD). While Funkhouser and

Sequin used discrete LoDs, Gobetti extended their work by using multiresolution represen-

tations of geometry. Wimmer and Wonka [123] investigated a number of algorithms for

estimating an upper limit for rendering times on graphics hardware. The problem of main-

taining a specified rendering speed has also been addressed in the Performer system [125],

which reacts to changes in frame rate by switching LoDs. A model for predicting the time

budget for rendering on mobile devices can be found in Tack et al [124].

3.4.2 Application-Directed Energy Management Techniques

Application-specific energy management schemes use either Dynamic Voltage and Frequency

Scaling (DVFS) [115, 116, 119] or trade off the application’s quality to increase energy effi-

ciency [117, 118]. For instance, energy consumption can be reduced by intelligently reducing

video quality [118] or document quality [117]. DVFS techniques save energy by dynamically

reducing the processor’s speed (or voltage) when possible and does not change the applica-

tion’s quality. GRACE-OS [116] proposes a DVFS framework for periodic multimedia ap-

plications. The GRACE-OS framework probabilistically predicts the CPU requirements of

periodic multimedia applications in order to guide CPU speed settings. Chameleon [119]

proposes CPU scheduling policies for a diverse applications including soft real-time (mul-

timedia), interactive (word processor) and batch (compiler) applications. However, to the
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best of our knowledge, dynamic CPU scheduling to conserve energy has not previously been

applied to graphics applications. Moreover, our approach saves energy savings while main-

taining acceptable frame rates and image quality.

3.5 3D Streaming

Streaming geometry involves piece-wise incremental transmission of mesh geometry from

a server to a client. Streaming of multiresolution geometry is closely related with multires-

olution representation and compression. Any type of multiresolution representation can be

naturally extended to a view-independent geometry streaming framework. Moreover, using

streaming, we can reduce the required network bandwidth between a server and a client with

compressed multiresolution representation.

Progressive meshes was the first algorithm for progressive representation on meshes and

was introduced by Hoppe [15]. This progressive representation is based on successive mesh

simplification by edge contractions, which remove one vertex at a time. The inverse, that

is, the reconstruction, is achieved by vertex splits. Khodakovsky et al. [25] presented a com-

pression technique for semi-regular meshes. Valette and Prost [34] proposed a wavelets-based

progressive compression scheme for irregular meshes.

Rusinkiewicz and Levoy proposed a new view-dependent streaming based on QSplat [134].

They provide a network based visualization for very dense polygon meshes but the splatting

approach is not suitable when the client requires the full mesh connectivity. Therefore, a

small number of errors during communication does not affect the global shape of the recon-

structed mesh on the client side. However, loss of mesh connectivity can occur, since the

technique ignores the original mesh connectivity.

Yang et al. [135] introduced a patch-based viewdependent streaming technique. They

divide a mesh into several patches and compress each patch offline. In the streaming of a

mesh, the entire connectivity information of the mesh is first transmitted to the client and

25



CHAPTER 3. RELATED WORK

then the compressed patches are selected and streamed with respect to the client viewing

information. With this approach, the resolution of the mesh cannot be changed smoothly on

the client side.

Kim et al. [136] introduce a framework for view-dependent streaming of multiresolution

meshes. The transmission order of the detail data can be adjusted dynamically according to

the visual importance. This approach has to send the operation packets, which increases the

network overhead. So it is not suitable for wireless network with low bandwidth.

3.6 Chapter Summary

This chapter presents the related work to each parts of our framework including scalable

graphics systems, perceptual error metrics for simplification, error protection coding schemes

for wireless transmission of wavelets-encoded meshes, heuristic for energy-efficient render-

ing and 3D streaming technique.
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Pareto-Based Perceptual Error Metric

This chapter presents the research work for Pareto-Based Perceptual Metric (PoI) for Simpli-

fication on Mobile Displays. This work has been published in [5, 6, 7, 8].

4.1 Overview

Our work focusses on a typical mobile graphics scenario shown in figure 4.1. Very high

resolution graphics meshes and textures are stored on a server, and then simplified when

requested by a mobile client. Meshes and textures are simplified on mobile devices for several

reasons. First, mobile devices have limited battery energy, memory and disk space and lower

resolution meshes and textures consume less of these scarce system resources. Secondly,

increasing mesh and texture resolutions generally increases visual realism. However, above

a certain Level-of-Detail (LoD), users cannot perceive these increases in mesh and texture

resolution. We call this LoD the Point of Imperceptibility (PoI). Essentially, increasing LoD

above the PoI wastes mobile resources since users cannot perceive improvements in image

quality.

In order to minimize wasting mobile resources, a mobile client should render meshes and

textures that are as close as possible to its PoI. Our preliminary experiments [5, 6] showed

that the level of detail users can perceive depends on the screen size: smaller screens show
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Figure 4.1: Mobile graphics scenario

less detail and hence have a lower PoI. For instance, we found that for a given mesh, a laptop’s

display had a PoI of 20K faces, while a cell phone’s PoI was 5K faces for the same mesh.

This represents a 4x change in the acceptable LoD level based on screen size. Previous work

has neglected to directly relate selected LoD levels with target screen size. Other factors such

as distance of the rendered object from the screen, object details and whether the user zooms

in all affect the perceptibility of simplification artifacts. However, we focus primarily on how

PoI changes with screen resolution.

In the scenario in figure 4.1, we need metrics that enable the server to compute the PoI

that corresponds to a mobile device’s screen size. Since so many different mobile display

resolutions exist, experimentally determining PoI for each mobile display resolution would

be impractical. Thus, we would prefer a closed form expression that can be easily computed

on-the-fly to determine PoI. Walkthrough applications that are dynamically scaled down for

mobile clients would benefit from a PoI metric. Follow-me applications graphics applica-
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tions [69] in mobile environments are another class of applications that emphasize the need

for a PoI that can be quickly computed based on screen resolution. In follow-me mobile

applications, mobile users physically move between mobile devices but can access the same

applications using these devices from different locations. The server would need to easily

compute the PoI of the user’s current device and then transmit graphics files that correspond

to the PoI of that mobile display’s resolution. We adopt wavelets-based multiresolution anal-

ysis for simplification because in addition to facilitating simplification, wavelets also achieve

extremely aggressive compression ratios that are suitable for ultra-low bandwidth wireless

links such as wide-area cellular phone networks.

Metrics for LoD selection while accounting for different target screen resolutions is a

general problem that is addressed by this paper. We develop a metric that can be used to find

the PoI of both meshes and textures (images). Our metric is developed in two distinct stages.

First, we consider the geometry of test meshes without considering the effects of lighting.

In addition to the influence of screen size, visual effects such as lighting and antialiasing

make simplification artifacts less perceiveable and hence further reduce the PoI. Luebke and

Hallen [73] showed that mesh lighting can reduce the perceptibility of simplification errors

by a factor of 2-3. To account for the effects of lighting, we then extend our geometry-only

metric using results from work on perceptual simplification metrics. In summary, our metric

determines the mesh (and texture) LoD that corresponds to the PoI and takes as input 1)

the original mesh (or texture) LoD 2) mobile device screen size and 3) lighting that will be

applied to the mesh. We validate our proposed metric through extensive user studies.

Our metric generates a pareto distribution that corresponds to meshes or images at var-

ious LoDs. We use this pareto shape to determine thresholds on the perceptibility of mesh

distortion on various mobile screen sizes. Since our metric explicitly factors in screen size,

a family of slightly shifted pareto plots are generated for mobile displays at different resolu-

tions. To account for reductions in error perception when meshes are lit and shaded, we use

Contrast Sensitivity Function (CSF) curves that have become the basis for many perceptual
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metrics in graphics. As a contribution, we are able to easily determine mesh undulation fre-

quencies during our wavelets decomposition of meshes and use these frequencies as inputs

to the CSF curve. The rest of the chapter is organized as following: Section 4.2 reviews the

fundamental knowledge; Section 4.3 gives an overview of our approach; Section 4.4 presents

the derivation of our metric; Section 4.5 presents user studies to validate our metric; Fi-

nally, Sections 4.6 summarizes the chapter. The results studied in this chapter are used in

our Energy-efficient Adaptive Real-time Rendering Heuristic in chapter 6 and 3D streaming

technique in chapter 7.

4.2 Background

4.2.1 Wavelets for Mesh Simplification

Our mobile graphics framework uses wavelets for representing meshes and textures at various

Levels of detail (called multiresolution analysis). While wavelets have been applied in many

diverse fields, we now provide some background focussing mainly on research that has used

wavelets for the multiresolution analysis of mesh geometry and textures. Schroeder [87] was

one of the first to use wavelets in computer graphics, using wavelets to compress geometry

and evaluate global illumination rendering equations. Multiresolution analysis using wavelets

is described in [28], [24]. In wavelets decomposition, a mesh is subdivided and deformed to

make it fit the surface to be approximated. This decomposition generates a base mesh, along

with smoothness and detail wavelets coefficients. During reconstruction, starting with the

base mesh, as more wavelets coefficients are included, a higher resolution mesh is gener-

ated. These reconstruction steps can be repeated until the desired mesh resolution (LoD) is

achieved. Thus, considering all intermediate mesh LoDs generated during reconstruction, a

hierarchy of meshes is obtained starting from the simplest one M0, called base mesh,to the

original mesh M j.

In our mobile framework, our goal is to select the mesh (or texture) LoD that is suitable for
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each mobile display’s resolution. We note that many alternative vertex-based simplification

algorithms have been proposed including vertex decimation [87], edge contraction [15], and

valence-based simplification [20]. We simplify meshes and images using wavelets for two

main reasons. First, wavelets decomposition achieves very aggressive compression ratios

that significantly speed up mesh transmission over ultra-low bandwidth links such as cellular

phone networks. After wavelets decomposition of a mesh, the total size of the base mesh plus

wavelets coefficients is much smaller (over 100x smaller in our experiments) than the size

of the original mesh. Secondly, since we can easily determine the frequencies of wavelets

decomposition filters, we can use these filter frequencies to parameterize CSF (explained

below) used in the perceptual aspects of our PoI metric that account for mesh lighting. In

fact, using the wavelets filter frequency to directly parameterize the perceptual CSF curves

is one of our contributions. Our mesh simplification implementation is based on the Loop

wavelets transform. After wavelets decomposition, adaptive arithmetic coding is often used

to compress the size of the transmitted mesh and coefficients.

4.2.2 Lp Norm distortion metric

The Lp norm is a popular metric to measure the level of surface-to-surface distortion intro-

duced by wavelets-based simplification. Both the Hausdorff distance and the general map-

ping distance compute the final distance between two surfaces as the maximum of all the

pointwise distances(known as the L∞ norm). In some cases, we could take the average, the

root mean square(the L2 norm or Euclidean norm), or some other combination. Tack et al [32]

derived a form of the Lp norm metric that we find useful for our work. Their expression is:

Lp(S1,S2) = max(l p(S1,S2), l p(S2,S1))

Lp(S1,S2) = ((
1

A(S1)
)
∫

a∈S1

d(a,S2)pda)
1
p (4.1)

31



CHAPTER 4. PARETO-BASED PERCEPTUAL ERROR METRIC

S1 and S2 in equation 4.1 are the surfaces to compare, d(a,B) is the Euclidean distance

between point a of surface S1 and the closest point q on surface S2. The A(x) term is a

function returning the area of the surface x in object coordinates. The MESH [13] software

tool implements these error metrics by calculating the error per triangle and then averages the

results for all triangles weighted by their respective areas.

Lp(S1,S2) =
∑F

i=0 A(Ti)l p(Ti,S2)
∑F

i=0 A(Ti)
(4.2)

In Equation 4.2, F is the number of triangles in the surface and Ti is triangle i of the

surface. Tack’s Lp norm metric satisfies the conditions that: Lp(A,B) = 0 if A and B are of

identical features, Lp(A,B) is small if A and B have small dissimilar features and Lp(A,B) is

large if A and B have very dissimilar features.

4.2.3 Perceptual Simplification Metrics

Most research to incorporate elements of human vision into simplification metrics is based on

the Contrast Sensitivity Function (CSF) [70, 73]. The CSF plots contrast sensitivity against

spatial frequency of sinusoidal color changes, as shown in figure 4.2. In contrast grating

tests, users are shown these sinusoidally changing images with varying degrees of contrast

sensitivity and spatial change to determine the limits of human vision. The CSF essentially

graphs the results of these contrast grating tests and determines the threshold of human vision

for a single or average observer. The highest contrast and lowest spatial frequency exhibited

by a complex rendered image at the pixel level essentially determines what point on the CSF

curve that image lies. The CSF takes into account many of the non-linearities inherent in the

human visual system.

Determining the highest contrast and lowest frequency exhibited by a given image is usu-

ally the most challenging aspect of using CSF curves to develop perceptual metrics. Exten-

sive user studies using images rendered using different LoDs (calibration) can determine user
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Figure 4.2: contrast sensitivity function

sensitivity thresholds. In extreme cases, an inverse Fourier transform of the final rendered

image [63] was used to determine the frequency components of a rendered image. As one

major contribution of our work, we use the frequency of the wavelets decomposition filters

directly as the frequency of the CSF curves.

4.3 Our Approach for Perceptual Simplification

In this section, we give an overview of our approach with an emphasis on building intuition

and presenting our hypotheses. Our proposed metric for imperciptible simplification extends

the work of Tack et al [32]. Tack et al expressed the surface-to-surface Lp norm error due

to mesh simplification but did not explicitly address how perceptible these errors were on

different screen resolutions, or consider the effects of lighting on the final rendered mesh.

We integrate the original mesh LoD, the target display size, and the effects of scene lighting

on error perceptibility into a single expression that can easily be computed. We develop

our PoI in two distinct phases. First, in section 4.4.1 only distortion in mesh geometry is
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considered without considering the effects of lighting. Next, in section 4.4.2, we extend our

PoI metric by integrating perceptual elements (using the CSF) to account for scene lighting.

At this point, we preview some of our final results and give a qualitative description of our

general direction. Figure 4.3 shows sample pareto plots generated by the version of our metric

that considers distortions in mesh geometry. Three plots are shown corresponding to three dif-

ferent target screen resolutions (laptop:640x720, PDA:240x320, cellphone:120x160). Start-

ing with an original high-resolution mesh, we generate fourteen levels of detail. We then use

our PoI metric to compute the root mean square error generated by an LoD on each of our

three target screens and plot them. Essentially, our metric produces a family of plots, one for

each target screen resolution. Based on figure 4.3, we hypothesize that:

• Hypothesis 1: Each of the curves in figure 4.3 follows a pareto distribution. Starting

with the original mesh on the left of the plots, relatively low errors are generated as

LoD is reduced up until a knee point. Beyond the knee point, reducing LoD levels

result in sharp increases in error. We conjecture that a) users will be unable to perceive

simplification errors to the left of the knee point b) the knee point corresponds to the

Point of Imperceptibility (PoI); and c) To the right of the PoI (knee point), errors rise

quickly and users easily perceive simplification errors.

• Hypothesis 2: Based on the results of Luebke and Hallan, we conjecture that lighting

will further reduce the perceptibility of errors, essentially lowering PoI. Referring to

figure figure 4.3, lighting will essentially shift our pareto plots to the right (knee point

occurs at higher LoDs).

The original metric proposed by Tack et al and other previously mentioned surface-to-

surface metrics are oblivious of the perceptibility of simplification errors when rendered on

various screen sizes. As a further note, Tack’s original expression would generate the same

pareto plot (and not a family of plots) for all three target screen resolutions. Essentially, our

goal is extend Tack’s expression to account for changes in the pareto distribution plots to
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Figure 4.3: Sample pareto plots of our final PoI metric

account for different mobile screen sizes and then factor in the effects of lighting on error

perception.

4.4 Point of Imperceptibility Error Metrics

4.4.1 Geometry-only PoI Metric

This section derives the first part of our metric that considers only the distortion of mesh

geometry without factoring in the effects of lighting. Our derivation has three steps: 1)

Calculate mesh distortion due to simplification; 2) Render the simplified mesh to a large

virtual screen M1; 3) Minify blocks of pixels of M1 to a pixel of the mobile device’s screen

M2. We can magnify if M2 > M1 as in a large tiled display. For screen-aligned images, only

step 3 is performed; Figure 4.4 summarizes the steps to derive our metric. Equation 4.3 is our

PoI metric for geometry only.

l p(S1,S2) = (1− F2

F1
)
∑F

i=0 A(Ti)l p(Ti,S2)
∑F

i=0 A(Ti)︸ ︷︷ ︸
Ob ject−space

+ Ep︸︷︷︸
Screen−space

(4.3)

where F1 is the number of triangles in the surface S1, F2 is the number of triangles in the
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Figure 4.4: Steps in deriving our PoI metric

surface S2. If F1 < F2, we can rewrite the factor 1− F2
F1

as 1− F1
F2

.

The first part of Equation 4.3 deals with surface-to-surface LoD simplification errors in

object space and the second term (Ep) deals with pixel-level minification errors as a result

of rendering to different screen resolutions (see figure 4.5). A high-resolution mesh that is

rendered to a small screen potentially incurs errors in both terms. In section 4.4.3, we apply

our metric to texture simplification. A screen-aligned texture incurs errors only due to the

second (Ep) term. Likewise, if the same mesh LoD (no surface simplification) is rendered

to two different screen sizes, the error due to the first term is zero and the error due to the

second term is calculated. For a target mobile display width, W (in pixels) and height H (in

Figure 4.5: Minifying virtual screen pixels onto mobile screen
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pixels), the term Ep is defined as:

Ep =
p

√√√√√ 1
W2 ×H2

W2×H2

∑
i=1

(
W2 ×H2

W1 ×H1

W1×H1
W2×H2

∑
j=1

p
√

Sp)p

where Sp =
1
3
[(

Ri2−R j1

256
)p +(

Gi2 −G j1

256
)p +(

Bi2 −B j1

256
)p] (4.4)

where W1 and H1 are the width and height of screen M1 and W2 and H2 are the width and

height of screen M2. We assume that W1 >W2. Otherwise, W1 and W2 should be interchanged.

In our system, we use relative Root Mean Square Error (RMSE) (p = 2). In Equation 4.4,

we calculate the screen space RGB error pixel by pixel and normalize it. As shown in figure

4.5, Sp calculates the average relative mean square error of RGB values between one pixel on

the smaller screen and the corresponding group of pixels on the larger screen. If the screen

sizes are not same, we compare the W1×H1
W2×H2

pixels on the large screen with one corresponding

pixel on small screen and calculate the relative root mean square error between them.

We calculated and averaged our final error metric in equation 4.5 for all pixels on a target

screen while considering four different meshes. Three different screen sizes were considered:

640x720 pixels for laptop, 240x320 pixels for PDA and 120x160 pixels for the cellphone.

Figure 4.6 shows the computed errors which when plotted resemble a pareto distribution

with a knee point. One way to calculate the knee point of the pareto plots, the slope of

segments of the could be calculated. The point between two consecutive segments with the

highest change in slope is the knee point (PoI).

4.4.2 Perceptural Metric

In this section we extend our PoI metric to account for lit meshes using the the CSF described

in section 4.2.3. First, we note that effects such as lighting and shading can reduce the per-

ceptibility (sharpness) of mesh edges, hiding differences in detail between LoDs. Essentially,

37



CHAPTER 4. PARETO-BASED PERCEPTUAL ERROR METRIC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

65.0K 55.4K 45.3K 34.6K 24.2K 13.6K 3.3K

Number of Faces

R
el

at
iv

e 
R

M
S

E 640*720
240*320
120*160 PoI

Figure 4.6: Our metric plotted for meshes at different LoDs using the final PoI metric

lighting and shading makes geometric distortion less visible. We can model this reduction in

the perceptibility of errors as passing the rendered mesh image (sharp) through a filter that

removes some of the distortion. To account for the error masking caused by lighting, we

multiply our geometry-only expression (equation 4.3) by a factor Mp(S1,S2). As before, this

Mp(S1,S2) factor considers the perceptibility of errors when rendering our lit mesh onto a

large virtual screen of size S1 and minifying the image onto a target mobile display of size

S2. Thus our new PoI expression takes the form:

l p(S1,S2) = [(1− F2

F1
)
∑F

i=0 A(Ti)l p(Ti,S2)
∑F

i=0 A(Ti)
+Ep]×Mp(S1,S2) (4.5)

Next we derive an expression for Mp(S1,S2). The human visual system is often mod-

eled as a linear system and its response to visual excitation is expressed as a convolution

of the input stimulus with the visual cortex’s impulse response. Equivalently, to determine

the perceptibility of a lit mesh, we can determine the eye’s visual response by multiplying

the wavelets transform of the mesh by the CSF. The CSF measures the response of human

vision at different spatial frequencies. Mannos and Sakrison [74], after conducting a series of

psychophysical experiments on human subjects, found that the CSF can be modeled by the

function in the equation 4.6. Here fs is spatial frequency in cycles per degree.
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Cs( fs) = [0.0499+0.2964 fs]× exp[−(0.114 fs)1.1] (4.6)

where fs is spatial frequency in cycles per degree. To integrate the CSF into our met-

ric, during wavelets decomposition we determine the frequency ranges corresponding with

each LoD. We then multiply each mesh frequency range with the CSF’s response curve in

that range. Figure 4.7 shows the CSF function mapped to frequency ranges obtained during

wavelets decomposition of a mesh. This curve essentially defines how sensitive the human

eye is to frequency ranges generated during wavelets transformation of the original mesh.

Thus, for each frequency band a sensitivity weight, Cm can be computed by integrating the

CSF curve in figure 4.7 over that frequency band. The weight measures the average contrast

sensitivity value of the CSF curve in each band. We then multiply the wavelets coefficients

at each LoD (frequency level) by the CSF sensitivity weights Cm corresponding to that fre-

quency range. Wavelets transformation involves the iterative application of two mirror filters,

L, a low-pass filter and H, a high-pass filter. Thus, by applying H to a discrete input with

bandwidth (0,π), a level of coefficients with bandwidth (π/2,π) is acquired. Thus, after m

iterations, the weight for level m is:

Figure 4.7: Contrast Sensitivity Function Curve
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Cm =

∫
Fm

CSF(ω)dω

A(Fm)
(4.7)

where Fm is the frequency subband
(

π
2m , π

2m−1

)
and A(Fm) is the width of the band.

We now describe how the sensitivity weight, Cm can be incorporated during wavelets

transformation of meshes. Wavelets decomposition of a mesh yields a coarse mesh and a

tree of wavelets coefficients as described in section 4.2. To determine the perceptibility of a

mesh LoD, all wavelets coefficients at that tree level are multiplied by the the CSF sensitivity

weight corresponding to that level. When a given mesh LoD is rendered to a screen, each

wavelets coefficient i in that level of the wavelets tree refines (modifies) a mesh face at that

LoD which in turn maps to a block of pixels when rendered. For each mesh LoD, we need

to track which group of pixels are modified by each wavelets coefficients at that level. A

brute force approach would be to render all LoD levels to a screen and determine what pixels

each face maps to. However, the following method to track this relationship requires only

one rendering of the original mesh. At the lowest level of the wavelets tree (finest LoD), each

wavelets coefficient maps to a triangle in the original mesh which in turn maps to a group

of pixels after rendering. By rendering the original mesh, we can track what group of pixels

each triangle (wavelets leaf node) maps to. At any higher (coarser) level in the wavelets

coefficient tree we can calculate what screen pixels each coefficient in that level maps to as

the union of all pixels corresponding to all leaf nodes that are its children in the tree. Thus,

for each pixel (i,j) on the target mobile device, we can multiply the wavelets coefficients in

a given frequency band with the contrast sensitivity weight corresponding to that frequency

band giving:

D1(m, i, j) = CmW (m, i, j) (4.8)

Here Cm is the contrast sensitivity weight and W (m, i, j) is the wavelets coefficient at level

m and pixel location (i, j). Essentially, we quantify the perceptibility of error to the frequency
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input at pixel (i, j) in the mth sub-band frequency. Our perceptual comparison metric is then

computed as:

Mp(S1,S2) =
∑

m,i, j
|D1(m, i, j)−D2(m, i, j)|2

Nh ×Nv
(4.9)

where D1 and D2 are error values of pixel i, j, when considering level m of the wavelets

coefficients. Nh and Nv are the number of pixels in horizontal and vertical directions on

the small screen. If the screen size are not the same, we calculate the screen error between

one pixel on the smaller screen and the corresponding group of pixels on the larger screen

(minification) as shown in figure 4.5. Figure 4.8 shows our final results using equation 4.5.

The errors with lighting and shading are clearly smaller than the errors without lighting and

shading.

Figure 4.9 shows meshes of the different LoD levels of the model. This demonstrates the

visual depiction of the results of using our perceptual error metric.

4.4.3 Applying our PoI metric to Image Simplification

Our proposed metric can also be used to compute the PoI of a high resolution image (texture).

To compute image PoI, we note that since there is no surface-to-surface error for a 2-D image,

Figure 4.8: Curves with shading and without shading
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Figure 4.9: File size and Relative RMSE A: 640*720, B:240*320, C: 120*160
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we only calculate the screen-space term in equation 4.5, and the Ep and Mp(S1,S2) terms.

Figure 4.10 shows the image error on different screen sizes.
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Figure 4.10: Perceptual Error for image on different screen sizes

In Figure 4.10, the black dot indicates the resolution where PoI lies. From Figure 4.10,

we see that when the screen size is 640x720, the PoI occurs at a coefficient file of size 64KB,

which means that a user perceives very little improvements by using a coefficient file greater

than 64KB. Thus, even if a mobile device has adequate resources to receive and render the

image at full resolution, we can save valuable resources by sending the 64KB coefficient file.

Figure 4.11 shows images generated using different sizes of coefficients files.

4.5 Metric Validation and Analysis

4.5.1 User Studies

Having derived a metric that can be computed to automatically determine the PoI of a given

mesh or image, we needed to validate that it works for real users. Specifically, we needed to
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Figure 4.11: Coefficients file size and Relative RMSE A: 640*720, B:240*320, C: 120*160
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ascertain that our metric accurately selects the LoD at which users stop perceiving increases

in mesh or image resolution. Our approach was to generate a series of mesh and image LoDs

and use our metric to determine the PoI LoD. We then asked real users to visually inspect

the actual rendered meshes and images that correspond to those LoDs. Our metric worked

correctly if it correctly determined the same PoI chosen by real users. Our user studies

involved 84 participants.

In our study, several LoDs of a bunny model were rendered at three different screen

sizes (laptop:640x720, PDA:240x320 and cellphone:120x160). Figure 4.12 shows one set

of bunny images for screen size 240x320 pixels, ordered from highest(left) to lowest (right)

resolution. Each LoD level is placed beside the original and shown to the user in pairs. For

instance, images 1 and 2, 1 and 3, 1 and 4, and 1 and 5 in figure 4.12 are presented to the

user in pairs. For each pair of images, users are required to respond in one of three ways: a)

A is more detailed than B; b) A and B are approximately same; c) B is more detailed than A.

The permutations of the two mesh models and three different screen sizes generate eighteen

different image pairs that we randomly show the user as questions 1-18. For example, in

figure 4.14, Q05 presents two images to the user with the option of responding with ”A is

more detailed than B”, ”A and B are approximately same” or ”B is more detailed than A” as

described above.

For each screen size, as we proceed from high resolution pairs to low resolutions pairs,

as long as the user is able to correctly distinguish between pairs of images, the PoI has not

been reached. Once the number of incorrect answers (or user answers ’approximately same’)

becomes significantly less than the number of correct answers, the lower resolution of the

1 5432 6 7

Figure 4.12: An example of rendered meshes of seven different LoDs in user study
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pair is regarded as the PoI that we are looking for. We then compare this experimentally

determined PoI with PoI calculated by our metric.

The relative positions of each image pair are also randomized so that the user does not

use the image position as a cue to guess which one is more detailed. For instance, if we

always placed the high resolution image to the right (image B) and the user happened to

notice this, she may always guess that B is more detailed even if she visually cannot see this.

To minimize the effect of ambiguities in our phrasing of our questions or problems due to

language barriers (English was not the first language of some participants), the users are first

shown sample images along with the correct answers.

Figure 4.13 is the screen shot of the survey pages.

Figure 4.14 shows sample results of user study. Each question corresponds to a pair of

images at a particular screen size. For instance Q05 refers to images 1 and 6 rendered to a

PDA screen size. In Figure 4.6, the resolutions employed in our user studies are shown as

black squares. The red line shows where the PoI computed by our metric lies. Comparing the

result in figure 4.14 and figure 4.6, we observe that users indeed begin to wrongly distinguish

the models or answer incorrectly (The answers of ”almost same” are scored as incorrect) at

the PoI. Our calculated error metric is shown with each image to assist the reader in visually

mapping calculated error values to an actual image quality.

4.5.2 Error Distribution

Thus far, our analysis has focussed entirely on the relative Root Mean Square Error (RMSE)

resulting from the simplification process. The relative RMSE value however does not show

what parts of the simplified model or image exhibits the most errors. It would be instructive

to investigate the error distribution of the models of a given resolution on different screen

sizes. To do this, we perform error calculations per pixel and map them to colors that give a

sense of the degree of errors occurring at that pixel. For each pixel in the smaller screen, we

calculate the relative RMSE. Then we normalize the relative RMSE so that all errors occur

46



4.5. METRIC VALIDATION AND ANALYSIS

Figure 4.13: Screen shot of survey pages
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Figure 4.14: Sample results of the user study
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in the 0-1 range and map the value of the per-pixel relative RMSE to colors that depict the

magnitude of the relative RMSE at that pixel. Suppose relative RMSE is ρ, we use red when

ρ = 1 (maximum error) and yellow when ρ = 0 (minimum error). This gives us equation

4.10 below:

(r,g,b) = (255,255,0)∗ (1−ρ)+(255,0,0)∗ρ (4.10)

Figure 4.15 shows the different error distributions of different screen sizes. As expected,

regions of great undulation (small triangles for the mesh and fast changing RGB values of

neighboring pixels for images) such as the face of the feline and wheels of the car, show

the most errors when simplified. However, as we compare the same mesh resolution across

different screen sizes, we notice that as the screen size reduces, the ranges (peaks and troughs)

of the errors are reduced. This is probably due to the averaging or minification process. In

contrast, in the larger screen sizes peaks are preserved and regions of error are more easily

discerned. Information is lost on smaller screen sizes in this reduction process and the net

result is that a smoother distribution of errors occurs and peaks are lost.

4.5.3 Resource Saving Using PoI

Battery energy, CPU cycles, memory and disk space are all resources that are scarce on

mobile devices. Using a mesh or image at the PoI instead of its original resolution can

improve usage of these resources. We measure encoding, transmission and decoding times,

and quantify potential battery energy savings by using a lower resolution mesh. We measure

the energy consumption of receiving, decoding and rendering a given mesh resolution on the

mobile client by using our tool [10]. PowerSpy is a software tool that tracks the energy

consumption of MS Windows applications at the thread and I/O device levels. We calculate

the total energy consumption, E, by summing up the energy consumption of the CPU, disk

and network cards giving E = ECPU +EDisk +ENetwork Card .
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Screen Size:    640*720 120*160240*320

Feline

Car

Image

Figure 4.15: Error Distribution on a mesh and image
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For a screen size of 640x720, our metric yields a PoI of 13654 faces for a bunny mesh,

meaning that there is no significant perceptual difference if the number of faces is greater than

13654. If we use 13654 faces instead of the original mesh, the difference in resource usage

is saved. Table 4.16(a) summarizes the saved transmission time, decoder time and energy

consumption in the mobile device.

Faces o f Number 13654 64951 Saved
ttrans. 1.23ms 7.03ms 82.5%

RenderingTime 463ms 832ms 44.4%
Energy Consumption 12,865mwh 33,298mwh 61.4%

(a) Saved Resources for bunny mesh

Size o f Coe f . File 64KB 173KB Saved
ttrans. 47.6ms 120.5ms 60.5%

RenderingTime 340ms 530ms 35.8%
Energy Consumption 7,467mwh 12,156mwh 38.6%

(b) Saved Resources for image

Figure 4.16: Resource savings

Thus, using our perceptual metric, in this example we save over 80% of the transmission

time, 44% of the decoding time and 61% of the total battery energy. Similar results for an

image are tabulated in table 4.16(b). For the image in this example, it is possible to save over

60% of transmission time, 35% of the decoding time and 38% of the total battery energy.

The above numbers on savings clearly depend on how large the original mesh (or image) is

compared with the PoI. Our numbers are included above mainly for illustration purposes.

It is important to note that in calculating our PoI metric, the mesh is rendered from a single

viewpoint. However, as an object is moved, different viewpoints will lead to different screen

errors and PoIs. To make our metric view independent, in the server pre-processing step, the

PoI can be calculated from multiple view points around the mesh. The PoI’s generated from

multiple viewpoints can then be averaged, maximum or the minimum used in a conservative

scheme.
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4.6 Chapter Summary

This chapter presents a wavelets-based multiresolution framework for scalable graphics con-

tent transmission and rendering. We present a Point of Imperceptibility (PoI) error metric that

accurately picks the lowest acceptable mesh (or image )resolution based on the target mobile

device’s screen size. We develop versions of our PoI that considers only mesh geometry

without considering lighting, as well as an extension that considers the effects of lighting on

the perceptibility of distortion. We present LoD selection heuristics based on our proposed

metric and analyzed the relative Root Mean Square Error (RMSE) our metric. We perform

user studies to validate our metric, employed our metric in a heuristic to save mobile device

resources and quanitified resulting resource savings.
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Chapter 5

Unequal Error Protection for

Wavelet-Based 3D Transmission

This chapter presents the research work for Unequal Error Protection(UEP) for Wavelets-

Based Wireless 3D Mesh Transmission. This work has been published in [9] and has been

submitted to [1].

5.1 Overview

To minimize transmission times on low-bandwidth network links, several compression [78,

79, 80, 103] techniques have been developed to reduce transmitted mesh sizes. Additionally,

the wireless channel is well known to have significantly high error rates. Retransmission of

damaged packets or Forward Error Correction (FEC) are two strategies that are frequently

used to mitigate wireless channel errors. However, the roundtrip delays caused by retrans-

missions in network protocols such as TCP/IP and the IEEE 802.11 Wireless LAN protocol

appear as latency to users, which sometimes affects the interactivity of networked graph-

ics applications. For such applications, FEC is preferred to retransmissions. FEC schemes

add redundant bits to the original meshes before transmission such that minor errors can be

corrected by the receiver, hence avoiding retransmissions.
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To speed up large mesh transmission over low-bandwidth wireless links, we have pro-

posed a encoding meshes using wavelets prior to transmission in chapter 2, because wavelets

achieve over 100x compression ratios and facilitates piece-wise transmission of large meshes.

Using wavelets, a server only needs to send a small base mesh along with wavelets coeffi-

cients that refine it, saving memory and bandwidth.

As one of our main contributions, we propose a FEC scheme to protect wavelets-encoded

meshes from wireless errors. The Hamming code [108] and Reed-Solomon [109] codes are

two popular FEC schemes that mitigate error well for most applications. However, FEC

schemes that consider the underlying structure of wavelets-encoded content frequently out-

perform more general schemes that do not. Wavelets-specific FEC techniques for image [110]

and video transmission [111] have been proposed, but not for wavelets-encoded meshes. We

propose FEC scheme based on the principle of Unequal Error Protection (UEP). In UEP [81],

the number of FEC bits alloted to each part of the mesh is proportional to the amount of infor-

mation it contains: more bits are added to parts with more information. Thus, areas of a mesh

such as a human face that has many fine details are allocated more FEC bits than areas such

as the back with less details. The rest of the chapter is organized as following: Section 5.2

describes our UEP scheme for wavelets-encoded meshes; Section 5.3 describes our channel

model and simulation results; Finally, Sections 5.4 summarizes the chapter.

5.2 Unequal Error Protection of Wavelets-Encoded Meshes

5.2.1 Unequal Error Protection

Approaches to mitigate wireless channel errors packets losses can be network-oriented solu-

tion such as retransmissions in TCP, post-processing solutions such as error concealment, or

pre-processing solutions such as FEC codes. The roundtrip delay incurred make retransmis-

sions unsuitable for real-time graphics applications. In multicast environments, retransmis-

sions would also flood the sender with acknowledgements and performance could suffer. We
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consider the use of FEC. FEC strategies include Equal Error Protection (EEP) and Unequal

Error Protection (UEP). EEP methods apply the same FEC code to all parts of the mesh’s

bit stream and is suitable when the channel has a low packet loss rate. However, at higher

packet loss rates, considerable degradation on the decoded model quality may occur because

of the high possibility that important parts might be lost. In this case, UEP is more suitable

since important parts of the decoded mesh get more assigned more FEC bits. Figure 5.1

shows if the information in base mesh lost, the holes will happen after rendering. But if some

coefficients lost, the LoD will decrease after rendering.

In our approach, after applying wavelets decomposition to a mesh, the base mesh as well

as wavelets coefficients are assigned an FEC code rate depending on their contribution to the

decoded mesh quality. The distribution of these FEC codes is calculated using a statistical

distortion measure. Based on this measurement, we determine the number of error-protection

codes to be assigned to the base mesh and each level of detail. The FEC codes used in our

methods are Reed-Solomon (RS) codes. These error codes are perfect for error protection

against bursty packet losses because they are maximum distance separable codes. An (n,k)

RS-code encodes k information symbols where each symbol is represented by q bits. These

k symbols are encoded into a codeword of n symbols, which is restricted by n ≤ 2q −1. As

soon as k symbols are received, all lost symbols can be reconstructed.

5.2.2 UEP in Wavelets-Based Multiresolution

After wavelets decomposition, the base mesh and first few levels of wavelets coefficient tree

should be strongly protected to prevent packet loss. We examine several strategies for adding

FEC bits to the base mesh and wavelets coefficients. First, we apply Equal Error Protection

where an equal number of FEC bits are applied to all parts of the base mesh and to all levels

of the wavelets coefficient tree. That is, S1 = S2 = ... = SM+1, where Sk is the number of FEC

bits added to on the kth level of wavelets coefficients. Next, we propose applying Unequal

Error Protection where bits in the encoded mesh are classified based on their contributions to
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Figure 5.1: The importance of different level

the final look of the reconstructed mesh. Each class is then protected by a number of FEC

bits that can provide a certain level of protection against channel losses. In our research, each

level of the wavelets coefficient tree and the base mesh, is assigned an FEC code based on

amount of distortion that would be introduced into the reconstructed mesh if that portion of

the bitstream is lost. Parts of the bitstream that distort the look of the reconstructed mesh

most when they are lost are the most important and hence we apply the largest portion of

the FEC bit budget. Wavelets coefficients with large absolute values contain the most detail

receive more error bit budget, since this level of coefficients contains more information (e.g.

fine details such as eyes and nose of a face) compared to other levels. The FEC codes used

are the Reed-Solomon (RS) codes. Reed-Solomon codes are block-based error correcting

codes with a wide range of applications for error protection against burst packet losses. We

also adapt our encoding order of our bitstream to further increase resilience to burst errors.

The output bitstream is encoded in blocks of packets, where the data is placed in horizontal

packets and then RS is applied across the block of packets vertically. Each block of packets
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is protected with a FEC code that is proportional to the importance of the corresponding base

mesh or coefficients.

Since all types of error protection add extra bits to the original mesh bitstream prior to

transmission, both EEP and UEP incur overheads that reduce the number of actual data bits

sent compared with No Error Protection (NEP). However, since reconstruction starts from the

base mesh, loss of the base mesh or parts of it are particularly devastating. Essentially, the

base mesh as well as coarser wavelets coefficients are more important than detail coefficients.

At high packet loss rates, losing the base mesh or coarser wavelets coefficients degrades the

decoded mesh quality significantly even if the detail coefficients are received correctly. EEP

distributes error correction bits equally to the base mesh, and all levels of detail coefficients.

5.2.3 Distortion Measure

To determine the level of channel coding associated with each level of the wavelets coefficient

tree, we need to evaluate the importance of those coefficients. In this section, we develop a

distortion metric that evaluates the relative importance of the various levels of a wavelets

coefficient tree. After we determine the importance of each level of the wavelets coefficient

tree, we can then assign a fraction of the total FEC bits that is proportional to their importance.

The main factors integrated into this distortion measure are: 1) The amount of information

contained in the wavelets coefficient, 2)the total number of error-protection bits. As figure

5.2 shows, in each LoD, some new coefficients are added to the mesh, which provide more

detailed information to the final rendered mesh.

To calculate the importance of each level of the wavelets coefficient tree, we evaluate the

distortion that would be present in the final decoded mesh if all the coefficients in that level

of the tree were lost. We associate a coefficients distortion quantity, D( j)
wLOD with the jth LOD,

which is defined as the average distortion (per coefficient) added when all coefficients that

are added by this LOD are lost. The D( j)
wLOD is given by:
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Figure 5.2: Wavelets coefficient tree for a mesh with three LODs. C j
i is the wavelets coeffi-

cient at level j.

D( j)
wLOD =

1
Nj

∑Nj

i=1 |c
j
i | (5.1)

Where Nj is the number of coefficients added by LOD( j). This distortion measure esti-

mates the error between the meshes with the jth LOD and the ( j + 1)th LOD. We use this

distortion measure to calculate the fraction of the total error protection bit budget that is as-

signed to each level in UEP. In EEP, the available error protection bit-budget can be calculated

as follows:

S =
M+1

∑
j=1

(n− k)×q×B j (5.2)

where q is the codeword size. B j is the number of codewords in each horizontal packet.

In the case of UEP, the bit-budget, S, and the total packet size, n, are provided. Therefore,

the RS code rates for all M layers need to be computed. Let α j be the portion of the total

bit-budget to protect jth level of decoded mesh. That is, α j = S j

S . So the jth level bit-budget

is given by:

(n− k j) =
α j ×S
q×B j (5.3)

From Equation 5.3, we know α j is the main factor to determine the RS code rate. We set

α j to be equal to the coefficients distortion quantity, D( j)
wLOD which was given in Equation 5.1.
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In this way, we can calculate RS code (n− k j) using Equation 5.3 for each part of decoded

mesh.

5.2.4 Block-based Encoding:

To further increase the error-resilience of our transmitted meshes, we apply block-based en-

coding after UEP encoding, before transmission. A simple example of our approach to block-

based error correcting is described. Consider a 3D model that has been decomposed into a

base mesh and three levels of wavelets coefficients (L1, L2 and L3). Applying RS codes,

the resulting packets are shown in Figure 5.3. The base mesh consists of five data packets

with five error protection packets. The wavelets coefficients corresponding to level one, L1,

consists of six data packets with four error protection packets. Wavelets coefficient level L2

consists of eight data packets with two error protection packets and level L3 consists of ten

data packets with no error protection packets. The base mesh and its associated RS packets

are transmitted first, followed by the coarse wavelets coefficients, until the finest one. As

shown in Figure 5.3, more FEC codes are assigned to the coarser level of coefficients than

the finer one. Such an allocation of FEC codes is calculated by a distortion quantity that is

described above. At a certain packet loss rate, some of the packets will be lost. Taking an

example of three packets for each block being lost. Since the base mesh uses (10,5) error

correction codes, when the number of lost packets is not more than five, the client can re-

cover all lost packets. Therefore, in this example, it can recover all three lost packets. For the

same reason, all three lost packets in L1 can be recovered. But the lost packets in L2 and L3

can not be recovered by the assigned RS codes. At the client, the base mesh and L1 level of

coefficients have adequate protection but L2 and L3 levels of coefficients get lost. Therefore,

the more important parts of the mesh are protected, are correctly received by the client and

decoded even when the wireless channel loses a significant number of packets.
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Figure 5.3: Example of transmitted packets in unequal error protection methods

5.3 Result

In this section, we describe tests that we conducted using meshes to evaluate the performance

of our method. In particular, the performance of the UEP, EEP and NEP are compared. First

we describe a two-state Markov model known as the G-E model [88] for the wireless channel.

5.3.1 Channel Model

We use a Markov model with only two states to model a wireless channel with high bit error

rates [88]. We shall now briefly describe its main characteristics.

G-E models are defined by the distribution of error-free intervals, which are called gaps.

The gap is defined as the interval of length v−1 packets between two consecutive received

error packets. This model is illustrated in figure 5.4 and the probability density function (pdf)

g(v) and cumulative distribution function (cdf) of the gaps greater than v− 1 packets G(v)

are defined as equation 5.4 and equation 5.5, respectively.

g(v) =




1−PBG , v = 1

PBG(1−PGB)v−2PGB , v > 1
(5.4)

G(v) =




1 , v = 1

PBG(1−PGB)v−2 , v > 1
(5.5)

Let R(m,n) denote the probability of having m−1 packet losses within the n−1 packets
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1-PGB1-PBG

PBG

Bad 
Channel 

State

Good 
Channel 

State

PGB

Figure 5.4: G-E two state Markovian Channel Model. PGB is the transition probability from
the good state to the bad state while PBG is the transition probability from the bad state to the
good state

following a lost packet. Then R(m,n) is given by:

R(m,n) =




G(n) , m = 1
n−m+1

∑
v=1

g(v)R(m−1,n− v) , 2 ≤ m ≤ n
(5.6)

So, the probability of losing m symbols, each of which is of q bits in length, within a

block of n symbols can be written as:

p(m,n) =




n−m+1
∑

v=1
PBg(v)R(m,n− v+1) , 1 ≤ m ≤ n

1−
n
∑

m=1
p(m,n) , m = 0

(5.7)

5.3.2 Simulation Results

We applied the proposed unequal error protection (UEP) method on several models and here

we report the results for the small bunny mesh. We consider three cases: encoding the original

mesh into a base mesh and 5 levels of detail, 10 levels of detail and 15 levels of detail.

In general, the more levels of detail we use, the less information each layer contains. We

use the Hausdorff distance to measure the amount of distortion in our received mesh. The

Hausdorff distance expresses the geometric distance between two surfaces as the maximum

of all pointwise distances. In general, more distortion increases the Hausdorff distance.

Figure 5.5 depicts the distortion as a function of the packet loss rate for the small bunny

model. Three curves in this figure represent the cases of EEP, UEP, and NEP with level 5. As
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Figure 5.5: Maximum Error(Hausdorff distance) between the transmitted and the decoded
mesh when the RS code used for EEP is a: (n,k) = (63,45) and b: (n,k) = (63,51). NEP: no
error protection is applied, EEP: equal error protection is applied, and UEP: unequal error
protection is applied

can be seen from these curves, for an error-free channel no packets are lost and the distortion

in the transmitted mesh is zero. As the packet loss rate increases, the performance of EEP

and NEP become closer to each other since neither technique can recover when packets of the

base mesh or coarse level of coefficients are lost. However, UEP manages to protect the base

mesh and coarse wavelets coefficients by assigning more error-protection bits and therefore

62



5.3. RESULT

improving the quality of the decoded mesh quality is better compared to other two methods.

When the packet loss rate PLR ≥ 0.2, the base mesh information is lost and only UEP is able

to protect the base mesh.
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Figure 5.6: Maximum Error(Hausdorff distance) between the transmitted and the decoded
mesh when different level of detail (5,10,15) are used with RS code (n,k) = (63,45)

Figure 5.6 shows the distortion as a function of the packet loss rate for the small bunny

mesh. Three curves in this figure represent the cases of 5, 10, 15 levels of detail. The figure

shows a slow increase in the Hausdorff distance up till a knee point at which the Hausdorff

distance (or distortion) increases quickly. Before the knee point, only wavelets coefficients

are lost while the base mesh is correctly received. Beyond the knee points the high error rates

cause the base mesh to get lost, causing a large increase in distortion (Hausdorff distance).

The knee point of the 5-level LoD is larger (more resilient to errors) than that of the 10-level

and 15-level LoDs. This is intuitive since as the mesh is encoded into more LoD levels,

each level of the wavelets coefficient tree as well as the base mesh all receive fewer error

protection bits. Hence, meshes that are encoded into more LoD levels will lose the base

mesh information easier than meshes encoded with fewer LoD levels. Thus for a fixed UEP

bit budget, we find an inverse relationship between the number of mesh LoDs used and the

error resilience of the wavelets-encoded mesh. Before the knee points, the base mesh is

received and only wavelets coefficients are lost. As the mesh is encoded into more LoDs, the

importance of each level of the wavelets tree level is reduced and the degradation introduced
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when wavelets coefficients are lost are also reduced. Therefore, before the knee point, the

distortion of the meshes encoded with more LoDs is slightly lower than that of meshes that

use fewer LoDs.

NEP P
LR

= 0.1

NEP P LR= 0.2

NEP P
LR

= 0.3

NEP P LR= 0.5

EEP P LR= 0.1

EEP P LR= 0.2
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UEP P
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UEP P LR = 0.2

UEP P
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UEP P LR = 0.5

Figure 5.7: Subjective results of applying no error protection (NEP), equal error protection
(EEP), and unequal error protection (UEP) methods on the SMALL BUNNY model. The
caption under every image gives the error protection method and the packet loss rate of the
channel. RS code (n,k) = (63,45)

Objective results have been presented above. We also compare the three methods, NEP,

EEP, and UEP, subjectively by looking at images of the final rendered mesh after passing
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them through a simulated wireless channel. Figure 5.7 shows the experimental results for the

small bunny mesh. The first column on the left shows the decoded mesh in the NEP case

for different packet loss rates. Similarly, the second and the third columns show the decoded

meshes for EEP and UEP respectively. As shown, UEP maintains a reasonable decoded mesh

quality as the packet loss rate increases. We have encoded the mesh into 5 Levels of Detail.

As the error rate increases, UEP loses some detail coefficients but the base mesh and coarse

coefficients are adequately protected and correctly received. Hence, only minor artifacts can

be observed on the UEP as error rates increase. We can thus conclude that using our proposed

UEP method on wavelets multiresolution, the quality of the decoded meshes is better as the

packet loss rate increases.

5.4 Chapter Summary

This chapter presents Unequal Error Protection (UEP), a Forward Error Correction (FEC)

scheme for the error-resilient transmission of meshes that have been encoded using wavelets,

to increase decoded mesh quality. Error-protection bits are allocated according to the impor-

tance of parts of the wavelets-encoded mesh. The importance of each level is determined

by a distortion measure that reflects the information the coefficients contain. Theoretically,

the UEP method increases the resilience of wavelets-based mesh transmission to high error

rates. By simulating mesh transmission using our proposed scheme on two different channel

models, we compare the performance of the proposed UEP, EEP and NEP methods.
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Chapter 6

Energy-efficient Adaptive Real-time

Rendering Heuristic

This chapter presents the research work for Energy-efficient Adaptive Real-time Rendering

(EARR) heuristic. This work has been published in [3, 4].

6.1 Overview

The most limiting resource on a mobile device is its short battery life. While mobile CPU

speed, memory and disk space have grown exponentially over the years, battery capacity has

only increased 3-fold in the past decade. Consequently, the mobile user is frequently forced

to interrupt their mobile graphics experience to recharge dead batteries.

Application-directed energy saving techniques have previously been proposed to reduce

the energy usage of non-graphics mobile applications. Our main contribution is the introduc-

tion of application-directed energy saving techniques to make mobile graphics applications

more energy-efficient. The main idea of our work is that energy can be saved by schedul-

ing less CPU timeslices or lower the CPU’s clock speed (Dynamic Voltage and Frequency

Scaling (DVFS)) for mobile applications during periods when its requirements are reduced.

In order to vary the CPU timeslices alloted to a mobile application, we need to accurately
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predict its workload from frame to frame. Workload prediction is a difficult problem since the

workload of real-time graphics applications depends on several time-varying factors, such as

user interactivity level, the current Level-of-Detail (LoD) of scene meshes and mip-mapped

textures, visibility and distance of scene models, and the complexity of animation and light-

ing. Without dynamically changing the application’s CPU allotment to correspond to its

needs, the mobile application’s frame rate fluctuates whenever there is a significant change in

scene LoD, animation complexity, or other factors that affect its workload. Such spikes above

25-30 Frames Per Second (FPS) drain the mobile device’s battery and increased energy con-

sumption by up to 70% in our measurements (see figure 6.1). We propose an accurate method

to predict the mobile application’s workload and determine what fraction of the CPU’s cy-

cles it should be alloted to maintain a frame rate of 25 FPS. As the application’s workload

changes, we update its CPU allotment at time intervals determined by a windowing scheme

that is sensitive to applications with fast-changing workloads and prudent for applications

with slow-changing workloads. Our adaptive CPU scheduling scheme dampens frame rate

oscillations and saves energy.

Many techniques have been proposed to achieve three desirable qualities of mobile graph-

ics: photorealism, real-time rendering and energy efficiency. For instance, Level-of-Detail

(LoD) management allows scenes to be rendered at real-time speeds while maximizing vi-

sual realism. Also, intelligent scheduling and application-directed Dynamic Voltage and Fre-

quency Scaling have been proposed to save energy on mobile devices. While these techniques

work if applied separately, they can create conflicts when they are integrated into the same

graphics framework. Specifically, techniques that improve one attribute can degrade another.

For instance, improving image quality requires increasing mesh LoD, which need more CPU

cycles and memories accesses which kills (degrades) the mobile devices battery. Essentially,

we can think about these three attributes as orthogonal axes. Ideally, we would like to make

progress along all three axes. However, in practice, proposed techniques have fundamental

limitations that allow them to only make progress along one or two axes but typically not all
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Figure 6.1: Application running at high frame rate

three axes (See table 6.1 for examples).

Since the application’s workload changes and should be re-estimated whenever LoDs

are switched, we have coupled our CPU scheduler with the application’s LoD management

scheme. When switching scene LoD, we minimized energy consumption by selecting the

lowest LoD at which the user does not see visual artifacts, also known as the Point of Im-

perceptibility (PoI) [6]. Although our primary goal was to minimize the mobile application’s

energy consumption, we also ensured that the frame rates and visual quality of the rendered

LoD were acceptable. In summary, our integrated EARR (Energy-efficient Adaptive Real-

time Rendering) heuristic minimizes energy consumption by i) selecting the lowest LoD that

yields acceptable visual realism, ii) scheduling just enough CPU timeslices to maintain real-

Technique Realism Rendering Speed Energy Efficiency
LoD Reduction ⇓ ⇑ ⇑
Voltage Scaling ⇓ ⇓ ⇑

Frequency Scaling ⇓ ⇓ ⇑
CPU Scheduling ⇓ ⇓ ⇑

Ray tracing ⇑ ⇓ ⇓
Complex (HDR) lighting ⇑ ⇓ ⇓

Complex material (BRDF) ⇑ ⇓ ⇓

Table 6.1: Proposed techniques improve one or two desirable mobile graphics attributes while
degrading the third one.
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time frame rates (25 FPS). EARR also switches scene LoD to compensate for workload

changes caused by animation, lighting, user interactivity and other factors outside our con-

trol. To the best of our knowledge, this is the first work to use CPU scheduling to save energy

in mobile graphics. Our results on animated test scenes show that CPU scheduling reduced

energy consumption by up to 60% while maintaining real time frame rates and acceptable

image realism. The rest of the chapter is organized as following: Section 6.2 presents our

heuristic architecture and overview of our approach; Section 6.3 presents our windows-based

workload predicting model. Section 6.4 presents the CPU scheduling policy; Section 6.5

presents the complete heuristic in detail; Section 6.6 describes our experimental results; Fi-

nally, Sections 7.4 summarizes the chapter.

6.2 Our Approach

6.2.1 Heuristic Architecture

Our framework includes components for monitoring application frame rate and the rendered

appearance of a selected mesh LoD, as well as a component for allocating CPU resources to

our mobile graphics application. Our adaptation algorithm balances desired attributes using

these components, which is shown along with our system architecture in figure 6.2. The

energy monitor measures system-wide energy consumption.

6.2.2 Overview of EARR Heuristic

Our approach is a generalization of the predictive strategy. We predict the LoDs that will be

rendered at the speed threshold of 25 frames per second. Within a real-time application such

as a game, LoD is just one of many factors that affect the application’s frame rates. Other

aspects include lighting, texturing, system animation, artificial intelligence and networking

of the application. In fact, in complex real-time graphics application such as a game or flight

simulator, it is difficult to accurately model and predict all factors that affect observed frame
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Figure 6.2: Heuristic Architecture

rates including when the user will interact with the scene or to anticipate the animation paths

of meshes. We can not hope to consider all of these complex factors that can be computed

efficiently. However, using efficient workload predict model, we have developed approximate

heuristics that are both efficient to compute and accurate enough to be useful. Our algorithm

takes actions such as switching mesh LoD or CPU allocation to compensate for the demands

of game components outside its control, such that the frame rate of the entire application

remains within the threshold frame rate.

More formally, we define Energy(O,S,R), to be the energy required required to render

an instance of a mesh or object O, rendered in the scene S, with adaptive algorithm R. Our

approach can be stated as:

Minimize : Energy(O,S,R)

Sub ject to : Rendering f rame rate ≥ T hreshold (6.1)

Sub ject to : Visual Realism ≥ T hreshold (6.2)

This formulation captures the essence of 3D graphics rendering on mobile devices with

real-time constraints. Verbally stated, our goal is to reduce mobile device energy consumption

as much as possible, while rendering the lowest LoD that meets the PoI (visual realism)
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within the target frame rate.

6.3 Workload Predicting Model

6.3.1 Overview

The workload predicting model predicts what fraction of available CPU timeslices should be

alloted to our mobile application in order to render a given mesh LoD or scene at our target

frame rate of 25 FPS. We derive our predicting model in two parts. The first part predicts the

workload of a single mesh object. Since most real world scenes consist of multiple objects,

as a next step, we extend our workload predicting model to estimate the workload of complex

scenes with multiple objects.

In general, as a given mesh is rendered faster, more CPU timeslices are consumed per

unit time, and more battery energy is expended with no improvement in visual realism. Thus,

to minimize energy consumption, the goal of the CPU scheduler is to allot just enough CPU

cycles to finish rendering each frame just before its deadline expires. We strived to maintain a

frame rate of 25 FPS, which means that each frame should finish rendering within a deadline

of 40 milliseconds. Based on this deadline, if the rendering time of each frame using a

particular LoD is estimated to be 20 milliseconds when 100% of CPU resources are alloted

to our mobile graphics application, then the alloted CPU resources (and rendering speed) can

be halved without exceeding the frame’s deadline. The optimal (fewest) CPU resources Copt

to meet our task’s deadline can be expressed as:

Copt =
τ

rmax
×Cmax (6.3)

where Cmax is the maximum available allotment of the processor’s timeslices, Copt is

a reduced allotment of CPU timeslices generated by our algorithm, which just meets the

frame’s deadline. rmax is the rendering time of a mesh with all available processor cycles
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alloted to our application and τ is the deadline for the frame. Since our target frame rate is

25 Frames Per Second, we set τ , the deadline for each frame, to 40 ms.

We apply our workload predictor as follows. At runtime, given a frame rendering dead-

line, τ , we use equation 6.3 to calculate the optimal CPU processor allotment, Copt . We then

use our pre-generated statistics to estimate the mesh LoD that corresponds to Copt .

For our workload predictor to be successful, we derive our predicting model in two parts.

The first part predicts the workload of a single mesh object. Since most real world scenes con-

sist of multiple objects, as a next step, we extend our workload predicting model to estimate

the workload of complex scenes with multiple objects.

6.3.2 Workload Predicting Model for a single Object

Given a scene, we would like to use certain observable features to predict its rendering time.

Funkhouser and Sequin [120] previously suggested that the number of triangles in a mesh was

a good predictor of its rendering time. To examine how accurately the number of triangles

in a mesh predicts of its rendering time, we set up experiments to study how correlated ren-

dering times are with mesh LoD. In a offline calibration pre-process, various meshes (bunny,

feline, venus) were rendered at different LoDs and statistics were collected on their rendering

times and corresponding processor demand for each LoD. To formally establish the degree of

correlation between mesh LoDs and their rendering times, we calculated the first and second

order statistics of measured rendering times and triangle counts.

Let x and y be two random variables corresponding to the mesh size(number of triangles)

and rendering time, respectively; and let µx and σx be the mean and standard deviation of the

mesh size; and also let µy and σy be the mean and standard deviation of the rendering time,

respectively. Thus the theoretical correlation coefficient ρxy between x and y is given by:

ρxy =
E[(x−µx)(y−µy)]

σxσy
(6.4)
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Now assume we have N experimentally measured pairs of x and y values. The correlation

coefficient ρxy may be estimated from these N pairs of data as:

rxy =
∑N

i=1 (xi − x)(yi − y)
[∑N

i=1(xi − x)2 ∑N
i=1(yi − y)2]1/2

(6.5)

In general, a correlation coefficient of 1.0 is the highest achievable value and implies that

given a value of x, the corresponding value of y can be predicted with 100% accuracy. Fig-

ure 6.3 shows three meshes (bunny, feline and venus) with calculated correlation coefficients,

respectively. These results show strong correlation between mesh LoD and rendering time.

In fact, there is a linear relationship between the number of triangles and rendering time,

which corroborates corroborate the results of Funkhouser and Sequin [120]. The slope of this

linear relationship depends on the mesh features and how powerful the machine on which it

is rendered is. Thus, for a particular mesh and rendering machine, the slope and intercept of

the linear function can be determined during pre-processing by rendering the same model at n

LoDs, and graphing measured rendering time versus the number of triangles. Depending on

its features, different meshes produce functions of different slopes. For instance, increasing

the LoD of a complex model by 1000 triangles yields a larger increase in its rendering time

than if the LoD of a simpler mesh were increased by 1000 triangles. Hence, complex models

have steeper slopes than simple models. For example, the feline model is more complex than

the bunny mesh, and thus yields a steeper slope.

Finally, using observed data points of rendering times for different LoDs, we can use

linear regression to generate a line of best fit. Let si and rti denote the number of triangles

a. Bunny model (r xy=0.9343) b. Feline model (r xy=0.8974) c. Venus model (r xy=0.9438)

Figure 6.3: Sample Meshes and their Correlation Coefficients
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and rendering time of the ith LoD, respectively, with all available CPU cycles alloted to our

mobile graphics application. Thus the slope (b) and intercept (a) of the line of best fit are

given as:

s = ∑n
i=1 si

n

rt =
∑n

i=1 rti
n

b =
∑n

i=1(si − s)rti
∑n

i=1(si − s)2

a = rt −bs (6.6)

Figure 6.4 shows a sample best fit line. This line of best fit is used in our workload predic-

tor. To charactize the overall accuracy of our workload predictor, the relative error between

actual measured rendering times and predicted rendering times produced by our workload

predictor, was calculated for various LoDs. Figure 6.5 is a plot of calculated relative error

corresponding to different LoDs. The figure shows that our workload predictor is reasonably

accurate where all relative errors are less than 5%.
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6.3.3 Workload Predicting Model for Multiple Objects

Note that in a real game or application, there are typically many objects at various LoDs.

Our proposed method should also predict the workload of multiple objects in a game or

applications.

In complex scene with multiple objects, the workload for rendering the scene depends

on the visibility of objects in the scene, which can vary over time as objects and the camera

move. Tens of thousands of polygons might be simultaneously visible from some observer

viewpoints, whereas just a few can be seen from others. Thus, the rendering effort for a

dynamic scene is proportional to the triangles that are visible. We used an eye-to-object

visibility algorithm described in [126] to determine a set of potentially visible objects to

be rendered in each frame. Thus, the workloads of all visible objects (as determined in

section 6.3.2), are then linearly combined to generate the workload of the complex scene.

Next, we considered changes in the application’s workload over time. Since application

workload changes only slightly from one frame to the next (milliseconds), the workload of

successive frames are highly correlated. Thus, we use the current frame’s workload to predict

the workloads of next n frames. We define the window size as the number of frames in the

future n for which current frame’s workload is used as an estimate. The choice of n affects

the performance of our algorithm. If n is too small, then we need to updated workload value
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too often and it will increase the computation overhead; If it n is too large, then the variance

between the predicted and actual workload will be high, and the variance could be too high to

be accepted. Therefore, in our predicting model, this window size (n) is updated adaptively

at run-time. Figure 6.6 shows how the window size is updated in our predicting model, which

is inspired by the Transmission Control Protocol (TCP) in networking. It starts from 2. At

the end of window size time point, we check the workload error. If it is smaller than the

threshold, then the window size is doubled or increased by 1. Normally, there will not be

much workload change within 8 frames. Therefore, if the window size is less than 8, then we

double window size, otherwise increase window size by 1. If the workload error is larger than

threshold, which means the workload predicting value is not accurate, we reset the window

size to 2 and update the workload predicting value with current actual workload. Figure 6.7

shows the working flow.

The adaptive workload predictor is then used to estimate the workload of each frame at

full processor speed, so that we can get the fraction of available CPU timeslices required

to render a frame at our target frame rate. We tested it with two scenes provided by the

Benchmark for Animated RayTracing(BART) [121], The results are shown in figure 6.8. As

we can see, the relative errors are both bounded in 0.18.
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6.4 CPU scheduler

To conserve battery energy, our CPU scheduler runs a three-phase algorithm. The phases of

the scheduler algorithm are workload estimation, estimating processor availability and de-

termining processor resource allocation. More detail is now given on each of these steps.

(1) Estimated workload: In this step, our workload predictor in section 6.3 is used to esti-

mate how many CPU timeslices running the mobile graphics application will consume. (2)

Estimating processor availability: Since the system may be running other applications or per-

forming system house-keeping functions, the amount of CPU cycles available to our mobile

graphics application varies over time. In this step, the amount of CPU resources currently

available for applications is estimated. (3) Determine processor resource allocation: The

last step chooses what fraction of available CPU resources are alloted based on the predicted

workload and processor availability. For instance, if the predicted workload is only one third

of the CPU resources available, then the mobile graphics application can save energy by using

one third of available CPU resources. Likewise, if the predicted workload exceeds available

CPU cycles, all available CPU cycles are allocated to the mobile graphics application and a

lower mesh is selected to maintain a frame rate of 25 FPS.

We shall now formalize our CPU scheduling algorithm. For each real-time task T , let us

denote its start time by ts and its deadline as td . Let Cmax denote the maximum fraction of CPU

timeslices that are currently available for running applications. It is important to note that

without the intervention of our scheduling algorithm, all tasks will run with 100% allocations

of all available CPU timeslices, Cmax. The number of processor timeslices required by T will

be denoted by p. We note that the execution time of the task T is inverse proportional to p. In

summary, a feasible schedule of the task guarantees that the task T receives at least a fraction,

A, of the maximumum available CPU cycles such that it receives A∗Cmax CPU cycles before

its deadline, where A ≤ 1.

Given the application workload p, maximum processor availability Cmax and interactivity

deadline td, as shown in figure 6.9, our policies to allocate processor resources fall into two
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distinct cases that are now described.

Case 1: If Cmax < p, then the application’s demand for CPU timeslices exceeds CPU

availability. In this case, the CPU schedule has allocated 100% of all available CPU re-

sources to the task and cannot meet the task’s deadline while using the current mesh LoD.

Our scheduling algorithm shall allot all available CPU timeslices to the task and additionally

reduces mesh LoD to lower the offered workload p.

Case 2: If ts + p < td , the task can complete before its deadline. If all available CPU

resources are alloted to this task, the rendering speed achieved is larger than 25 frames per

second. In this case, the algorithm reduces the fraction of CPU timeslices alloted such that

the demanded workload p is just adequate to complete the task before its deadline. The

percentage of CPU resources alloted should be:

A =
p

min(Cmax, td − ts)
(6.7)

In the equation 6.7, the deadline td − ts is known. In our case, we choose td − ts as 40 ms,

p is determined by using our workload predictor. The maximum CPU resources currently

available, Cmax can be monitored by our resource adaptor.

Given an estimated p̂ of the demanded workload and the maximum processor availability,

ˆCmax, the optimal CPU resource allocation is computed as:

Application Workload p

Max. Processor Availability Cmax

Time

ts td

Figure 6.9: Symbols Illustration
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Copt =




Cmax : ˆCmax < p̂

min(Cmax × p̂
min( ˆCmax,td−ts)

,Cmax) : otherwise
(6.8)

6.5 EARR Heuristic

Building on our workload predictor and CPU scheduling policy, we now describe our com-

plete optimization algorithm to balance application frame rate, visual realism and energy

consumption constraints. Our algorithm monitors predicted frame rate and the rendered ap-

pearance of meshes and takes corrective action such as switching mesh LoD or changing the

CPU resource allocation, when frame rate or LoD changes considerably.

Our optimization algorithm works as follows. At the start of the algorithm, the LoD of

meshes corresponding to their PoI is selected for rendering. As the mesh moves during an an-

imation, the algorithm reallocates CPU resources using the CPU scheduling policy discussed

in section 6.4 and the workload predicting model discussed in section 6.3. If the predicted

frame rate becomes less than 25 FPS, the algorithm chooses a lower LoD that increases appli-

cation frame rate to 25 FPS. The optimal CPU allotment that minimizes energy consumption

without affecting frame rate is then computed. The algorithm chooses the PoI LoD of the

mesh for rendering when the adequate CPU resource can be alloted to render meshes at our

speed threshold of 25 FPS.

There are three cases to which our heuristic is required to adjust the application parame-

ters, each require different action. If we let d denote the current LoD of a mesh and dp denote

its PoI LoD. Let f denote the frame rate at which that mesh is currently being rendered.

Essentially, there are three cases that our algorithm reacts to:

Case 1, predicted frame rate drops such that fi < 25, current LoD i = minimum LoD

possible, and 100% of CPU cycles already alloted to this task: In such a case, since we are at

the limits of the factors under our control (minimizing LoD and maximizing CPU cycles), we

conclude that it is impossible to meet the rendering speed threshold of 25 FPS. Essentially,
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the resources of mobile devices are not enough to render the mesh and animation and we

cannot rectify the situation. In such a scenario, we simply choose the minimum possible LoD

and set the CPU cycles to a maximum and achieve the highest frame rate possible with this

setting (best effort).

Case 2, predicted frame rate drops such that fi < 25, current LoD i = PoI, dp: In such a

case, the algorithm will allocate more CPU resources to increase the rendering frame rate. If

the rendering speed is still less than 25 FPS, the algorithm will choose a lower LoD level that

can be rendered at 25 FPS and allocate the optimal fraction of CPU cycles, Copt accordingly.

We note that in this case, to achieve 25 FPS, we are forced to use an LoD below the mesh

PoI, which introduces simplification artifacts.

Case 3, predicted frame rate increases such that fi >> 25, current LoD i = PoI, dp: the

algorithm continues to use the PoI LoD but tries to save energy by reducing the percentage of

CPU timeslices scheduled for our application to the minimum required to maintain a frame

rate of 25 FPS. Figure 6.10 is the flow chart of our algorithm and the complete pseudocode

of the algorithm is shown in algorithm 1.

6.6 Experiment and Results

6.6.1 Experiment

We extensively evaluated the performance of our proposed algorithm both a laptop and PDA.

The laptop used was a Gateway 3040GZ laptop equipped with an Intel Celeron 1.5GHz pro-

cessor and 512MB RAM. The laptop’s operating system is Linux. The PDA is a HP iPAQ

Pocket PC h4300 with a 400 MHz intel XScale processor and 64MB RAM. The operating

system of the PDA is windows CE. We repeated all experiments eight times, eliminated the

minimum and maximum values before averaging all other values. We animated a mesh bunny

along a pre-determined animation path in a scene provided by the Benchmark for Animated

RayTracing (BART) [121]. The test animation path was chosen because it is representative of
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Algorithm 1 Balancing Heuristic in Animation
1: Choose the PoI {Rendering the possible lowest LoD without perceivable difference}
2: if Mesh Move then
3: if ( fpredicted < 25) and (dp is the lowest LoD) then
4: Break
5: else
6: if dp is not the lowest LoD then
7: Choose the suitable lower LoD within current CPU resource constraint by pre-

dicting model.
8: if Can not find such kind of di then
9: Break

10: end if
11: end if
12: end if
13: if ( fpredicted > 25) then
14: Do CPU scheduling using our CPU scheduling policy to maintain rendering speed

almost 25 FPS
15: end if
16: if ( fpredicted < 25 in some point) then
17: Increase allocated CPU resource to the maximum available CPU resource
18: if still f predicted < 25 then
19: choose the suitable lower LoD within current CPU resource constraint by predict-

ing model.
20: choose PoI to render until CPU resource is enough to maintain frame rate of 25
21: end if
22: end if
23: end if
24: Choose the LoD nearest to PoI when it reaches the destination
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Figure 6.10: Algorithm Flow Chat

typical behavior of real applications. We ran a three sets of experiments using the bunny mesh

animated along a sample path in the museum scene, applying three levels of adaptations:

• Simple (No LoD switching, no CPU scheduling: The bunny model is rendered at

the highest LoD all the time. No LoD changes are made throughout the application’s

running time and no dynamic CPU scheduling for energy conservation is done. The

measured performance of this level of adaptation provides a baseline for establishing

how much performance improves with our adaptations.

• LoD Selection (LoD switching, no CPU scheduling): The bunny model is rendered,

switching mesh LoD as necessary either to react to significant frame rate deviations

from 25 FPS, or to react to significant deviations in mesh appearance from acceptable
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visual realism (PoI). However, no dynamic CPU scheduling for energy conservation is

employed in this case.

• Our Complete Optimization (LoD selection with CPU scheduling): LoD Selection

is done to satisfy achieve a frame rate of 25 FPS and also to satisfy the visual realism

constraint. Additionally, the CPU scheduling policy described in Section 6.4 is also

applied. Essentially, this is our complete algorithm to balance visual realism, frame

rate and energy conservation.

We now present more details about our experiments. First, we generated a series of mesh

LoDs and found the LoD corresponding to the PoI of each mesh. Figure 6.11 shows the PoI

curves of bunny model with five LoDs in Laptop. LoD1 is the coarsest one and LoD5 is the

finest one. From the figure, we see that LoD2 is the PoI (knee point). Above LoD2, there no

perceivable difference as mesh LoD increases. So to satisfy our visual realism constraint, we

initially choose to render LoD2.

Next, we calibrated our workload predictor for the bunny mesh. The rendering times for

three different LoDs were measured. These measured values were then used to generate a

line of best fit that predicts rendering time with error rates of less than than 5% as described

in section 6.3.

Our goal was to minimize energy consumption of the CPU excluding peripherals and

other system components. Thus, to track how well our algorithm worked, we needed to
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Figure 6.11: PoI for Bunny Model
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measure the energy consumption of the CPU alone. Measuring the exact energy consumption

of the CPU alone is a fairly hard problem. We use a subtractive technique for estimating

CPU energy consumption. First, we measured the power consumption of the entire laptop

while running our test application. We then measured the base power consumption of the

laptop while running just the operating system in idle mode. Finally, we subtracted this base

idle power from measured application energy values. In our experiment, the base power

consumed by the laptop in idle mode is 7.19W.

6.6.2 Discussion

During our experiments, we set 20 check points along the animation path of the mesh. Fig-

ure 6.12 is a plot of measured frame rates at these check points along the test path with dif-

ferent algorithms tested. Three different plots are used to compare the a) Simple rendering;

b) LoD selection and c) optimization algorithms described in section 6.6.

In the experiments called simple, the mesh is always rendered at the highest LoD. In

such a case, the rendering speed is low, as figure 6.12.a shown. The straight dashed line is

the target minimum frame rate of 25 FPS. Without appropriate LoD selection in the simple

experiment, the target frame rate of 25 FPS cannot be achieved.

In the expriments called LoD selection algorithm, LoD selection is performed but no CPU

scheduling is done to conserve energy. In this case, the mesh does not show visual artifacts

due to LoD reduction and the application frame rate is always above 25 FPS. However, since

no CPU scheduling is done, 100% of all available CPU cycles are always alloted (Cmax) to

the application, and at many points during the application’s lifetime, the LoD selected can be

rendered much faster than (overshoots) 25 FPS. Figure 6.12.b shows an example. At frame 30

and frame 150, since the frame rate drops, we choose the lower LoD to render and the frame

rate goes up. However, this lower LoD will show some visual artifacts since it is below the

PoI LoD. At frame 50 and frame 120, since the available CPU resource is enough maintain

a frame rate greater than 25 FPS, we choose render the PoI LoD since visually there is little
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noticeable difference between PoI and original LoD.

In contrast, in addition to performing LoD selection, our complete optimization algorithm

reduces alloted CPU resources when the frame rate is far above 25 FPS to save the energy.

As a result, the frame rate generated using our optimization algorithm is much more uniform

with less fluctuations, as shown in figure 6.12.c. As in the LoD selection algorithm, at frame

30 and frame 150, the frame rate drops. Our complete optimization algorithm first tries to

increase alloted CPU timeslices while using the PoI LoD. Since the frame rate continues to

drop, the optimization algorithm selects a lower LoD and runs the CPU scheduler algorithm,

which reduces the CPU resources alloted to 40% of the maximum available. An application

frame rate of 25 FPS is maintained while energy is saved.

Figure 6.13 shows screenshots of our test applications. In figure 6.13.a, the simple algo-

rithm is used with the bunny at its original LoD. The achieved frame rate is only 4.43 FPS.

In figure 6.13.b, our complete optimization algorithm is used with the bunny at the PoI LoD.

Visually, there is no noticeable difference between the original and PoI LoD. However, the

PoI LoD can be rendered at up to 27.01 FPS. In figure 6.13.c, since the target frame rate

can not maintained even when all available CPU resource are allocated to the application, a

lower LoD is chosen. This LoD is lower than the PoI and introduces some visual artifacts.

However, the target frame rate of 25 FPS is maintained. Figure 6.14 shows screenshot of our

test applications on a PDA.

Algorithm Before(mwh) After(mwh) Saved
Simple 9690 9690 0.00%

LoD Selection 9690 7035 27.4%
Our Optimizations 9690 3653 62.3%

Table 6.2: Energy savings

Table 6.2 summarizes the energy saved before and after employing the simple, LoD se-

lection and optimization algorithms. The LoD selection algorithm saves 27.4% of the energy,

while our complete Optimization algorithm saves around 62.3% of the energy consumption.
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6.7 Chapter Summary

This chapter presents our heuristic to balance energy consumption, rendering speed and im-

age quality. In summary, our integrated EARR (Energy-efficient Adaptive Real-time Ren-

dering) heuristic minimizes energy consumption by i) selecting the lowest LoD that yields

acceptable visual realism, ii) scheduling just enough CPU timeslices to maintain real-time

frame rates (25 FPS). EARR also switches scene LoD to compensate for workload changes

caused by animation, lighting, user interactivity and other factors outside our control. To the

best of our knowledge, this is the first work to use CPU scheduling to save energy in mo-

bile graphics. Our results on animated test scenes show that CPU scheduling reduced energy

consumption by up to 60% while maintaining real time frame rates and acceptable image

realism.
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Figure 6.12: Frame Rates at check points along animation path
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a) Simple Algorithm (4.43 FPS)

b)  Optimization algorithm (27.01 FPS)

c)  Optimization algorithm (40.77 FPS)

Figure 6.13: Screenshots on laptop using a) simple algorithm with bunny at original LoD; b)
Our Optimization algorithm with bunny at the PoI LOD, and c) optimization algorithm with
bunny at LoD lower than PoI.
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Figure 6.14: Screenshot on a HP iPaq Pocket PC
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Chapter 7

Energy-efficient 3D Streaming

This chapter describes a wavelets-based multiresolution mesh streaming technique in Ubi-

Wave that utilizes PoI perceptual error metric 4, unequal error protection coding scheme 5

and energy-efficient adaptive real-time rendering heuristic 6. This work is being submitted to

[2].

7.1 Overview

In this section, we will outline our proposed technique for 3D streaming in UbiWave.

Normally 3D objects are stored and maintained by either a central or distributed servers.

A client sends requests to the server for model retrieval, and the requested models are trans-

mitted accordingly by available communication channels from the server to the client. This

scenario is typical when using wireless PDA or cell phone as a tool for Internet access. Since

the storage of these mobile device tends to be very limited so that it is difficult to store a lot of

3D data locally. And the size of high resolution 3D data causes long download times in low

bandwidth wireless channels, making it is difficult to maintain real-time rendering speeds.

UbiWave uses wavelets as the uniform representation for 3D content, which forms the ba-

sis to 3D streaming from servers to clients, making rendering 3D data without a complete

download.
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Figure 7.1 depicts the proposed mesh streaming technique in UbiWave.

To maintain real-time rendering of 3D graphics model, UbiWave decompose 3D meshes

into a base mesh and a coefficient tree that is stored in the server so that only base mesh and

a certain level of coefficient in coefficient tree need to be encoded and transmitted. Once

a mobile device successfully establishes a connection to a server, the parameters of mobile

device and network , such as the resources of mobile device and network conditions will be

sent to the server. The server determines the PoI of 3D meshes and sends back the data ac-

cordingly. The received data is stored at the mobile device side for rendering. Mobile devices

use energy-efficient adaptive real-time rendering heuristic to guide rendering so that real-time

rendering speed is maintained with minimum energy consumption, while not degrading im-

age quality on mobile devices. Although mobile device has enough resources to maintain

real-time rendering speeds, if the network condition is poor, the mobile device still need to

wait to receive the whole data so that the real-time rendering speed can not be maintained. A

Level of Detail selection algorithm in the server is needed to avoid wasted reception energy

consumption in mobile device.

7.2 3D Streaming in UbiWave

From the mobile devices’ perspective, the most important qualities of a mesh streaming tech-

nique are battery energy, rendering speed and visual quality. our EARR heuristic in the

mobile device will balance these three factors.

From the server’s perspective, it is preferable if the LoD that is just adequate for each

type of mobile device is sent through wireless network with as little data lost as possible.

Mesh streaming has two stages: the selection of LoD of the meshes (as determined by the

specifications of mobile device) and the efficient transmission of selected data. The first

stage involves our PoI perceptual error metrics, while the second stage involves an optimal

transmission strategy, unequal error protection coding scheme.
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Figure 7.1: The proposed mesh streaming technique in UbiWave

The proposed mesh streaming in UbiWave consists of the following three steps which

described in the following subsection.

7.2.1 Stream Generation

Streaming data of the model were generated offline in a preprocess stage in the server. The

streaming data has two features: (1) the availability of finer granularity, which can provide

a more flexible data organizing structure during transmission; and (2) the remarkable reduc-

tion of the size of the base mesh and refinement data, which can dramatically decrease the

transmission time.

Figure 7.2 shows the transmission time for meshes and coefficient files of bunny model

with wireless network speed 11Mbps. It can be observed that the time required to transfer

coefficient files is significantly less than the transfer time for the actual mesh. This demon-

strates that the use of wavelets to encode meshes can save transmission time and network

bandwidth.
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Figure 7.2: Transmission Time of Bunny model

Figure 7.3 shows the transmission time for images and coefficient files with wireless

network speed 11Mbps. Again, it can be observed that the time required to transfer coefficient

files is significant less than the transfer time for the actual images. This demonstrates that the

use of wavelets to encode images can save transmission time and network bandwidth.

In UbiWave, wavelets transform decomposes the 3D mesh into base mesh (structural data)

and coefficients (geometric data). The coefficients (geometric data) are then decomposed

into different levels. Each level of coefficients is related to one level of detail mesh. After

preprocessing, the 3D data is stored as structural and geometric levels. Note that the pre-

processing needs to be performed only once offline for a given 3D data stream. All 3D

content are initially stored at a server, and mobile devices obtain them through a streaming

process from the server.

7.2.2 Server Decision Algorithm

As mentioned in section 7.1,mesh streaming has two stages: the selection of LoD of the

meshes and the efficient transmission of selected data. In this section, we describe these two

stages in server decision algorithm in detail.

(1) Level-of-Detail Selection
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Figure 7.3: Transmission Time for images

The Level of Detail of each mesh is determined on the basis of the three factors: (1)

Human perceptual error in different mobile devices; (2) Configurations of mobile device,

such as display size, CPU resource and battery energy; (3) Network conditions, such as

bandwidth and package loss rates.

The flow of data in our system is illustrated in figure 7.1. The Level-of-Detail Selection

algorithm can be illustrated as three basic steps, as shown in figure 7.4:

1. Once a mobile device establishes a connection to a server, the server will immediately

transmit the base mesh to the mobile device and the configurations of the mobile device

are periodically sent to the server. The transmitted configurations information from mo-

bile device is used to determine the level of coefficients to be streamed, which includes

the resolution of displayer of mobile device and the current available resources.

2. After the server receives the configurations information of a mobile device, it can cal-

culate the PoI for the mobile device and record the LoD, dsent , which has been sent

to the mobile device, starting with base mesh. This information is organized in the

following format in the server: [Device ID][Model ID][PoI][Level of Detail]

3. The server monitor the channel information when the configuration information of mo-
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Figure 7.4: The Communication Process of Level of Detail Selection algorithm

bile device is received by the server. In mobile devices, it predicts the real-time ren-

dering time, rti for possible acceptable LoD i, di within the current available resources

and sends them to the server. The server calculates the transmission time, ttrans. for the

mesh data of LoD i, di. Then we have three cases:

(1) if di is lower than dsent , there is no need to stream it.

(2) if di is higher than dsent , but the transmission time, ttrans. is larger than the real-time

rendering time, rti, there is pointless to stream it to the mobile device, since mesh data

can not be transmitted to the mobile device on time.

(3) if di is higher than dsent , and the transmission time, ttrans. is smaller than the real-

time rendering time, rti, the difference will be streamed to the mobile device.

Figure 7.5 is the flow chart of the Level of Detail selection algorithm.

Note that there is no significant visual error for the Level of Detail above the PoI for the

specific model and mobile device. So the highest Level of Detail for a model sent to a specific
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Figure 7.5: Flow chart of Level of Detail selection algorithm

mobile device is its PoI.

(2) Efficient Data Transmission

We then use the UEP coding scheme to protect data from being corrupted. First, to

guarantee the same connectivity of the decoded mesh as the original mesh, we assign more

FEC bits on the base mesh. Next, we consider the importance of the coefficients and assign

more FEC bits. Since the loss of the coefficient data only affects the quality of the decoded

mesh and will not make it crash, we can assign less FEC bits to them. The detailed discuss

about UEP coding scheme is in Chapter 5.

7.2.3 Rendering

Once the connection between mobile device and server is established, the server sends the

base mesh to the mobile device. Normally the size of base mesh is small enough for most

of the mobile device to render. Then the mobile device predicts the possible acceptable

LoD using EARR heuristic discussed in chapter 6 and sends the request to the server. If
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the requested LoD satisfies the Level of detail selector requirement, the server streams the

additional requested coefficients to the mobile device. Since the available resources may

change, when the coefficients arrive the mobile device, the mobile device decides whether to

render the new LoD or not based on EARR heuristic.

7.3 Results

The bunny model in the kitchen scene is transmitted over low bandwidth, high error rate

wireless channel. We compare the performance without mesh streaming decision technique

in terms of rendering speed, image quality and energy consumption. Table 7.1 summarizes

rendering speed, image quality and energy consumption in both wireless network channel.

Without our streaming technique With our streaming technique
Rendering Speed 31fps 27fps

Image Quality( f aces) 7328 7328
Energy Consumption 16432 mwh 10387 mwh

Table 7.1: Performance Comparison

From this tables, we know that the rendering speed and image quality are almost the same

since our EARR heuristic will maintain the real-time rendering speed around 25fps. There

are two advantages of our approach:

1. Streaming Latency: With our streaming technique, the server will not send the re-

quested data to mobile device and deny the request when the network conditions are

not good, although the mobile device has enough resources to render the 3D mod-

els. The mobile device do not need to wait for the data sending from the server. Our

streaming technique achieves a better streaming latency.

2. Energy Efficiency: Without our proposed mesh streaming, the server keep sending

mesh data with higher LoD. Because of the additional transmission time the mobile
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device can not maintain real-time rendering speed, our EARR heuristic will lower the

LoD rendered in mobile device automatically. The received data from server with

higher LoD is not useful in mobile device. Therefore the reception energy is wasted.

With our proposed mesh streaming technique, if the transmission time is longer than

the real-time rendering time, the server will deny the request from the mobile device,

and the mobile device will not waste energy receiving data with higher LoD from the

server. From the above table, the energy could be saved by 36.8%.

7.4 Chapter Summary

This chapter presents our wavelets-based energy-efficient streaming technique in UbiWave.

Our streaming technique includes three steps: 1) Streaming Generation; 2) Server Decision

Algorithm and 3) Rendering in mobile devices. Our streaming technique is useful in wireless

network with low bandwidth. It reduces the wasted energy for data transmission. Our exper-

iment results show that Level-of-Detail selection in our steaming technique achieves better

streaming latency and saves energy consumption up to 36.8% in low bandwidth wireless

networks.
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Chapter 8

Future Work

This chapter presents some possible future work that can be extended from this dissertation.

• Even though our Point of Imperceptibility (PoI) error metric works well for meshes,

we could make our metric view independent. We propose calculating our PoI metric

for each object from multiple view points around the object, and then combines these

values. This approach is similar to the image-driven simplification approach of Lind-

strom and Turk [72]. We intend to investigate the behavior of the average, minimum

and maximum of the PoI calculated from these different views.

• Texture is another factor which affects on human perception. The future work should

consider texture mapping and how it affects on human perception and make the Point

of Imperceptibility (PoI) more accurate.

• We analysis the performance of Unequal Error Protection (UEP) scheme and compare

the performance with Equal Error Protection (EEP) and None Error Protection (NEP).

Comparing the performance of the proposed UEP shceme when applied to wavelets-

encoded meshes to UEP on Compressed Progressive Meshes could also be considered.

• We also could investigate the benefits of zero-tree coding. In zero-tree coding, coef-

ficients with values greater than some appropriate threshold value are kept and low-
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valued coefficients (little information) are replaced by zero.

• Currently, we only did simulations on simple G-E two state Markovian Channel Model.

A more complicated channel model, like noise channel model could be applied in the

simulations.

• Improve energy saving by integrating Dynamic Voltage Scaling (DVS) and Dynamic

Frequency Scaling (DFS). DVS and DFS are popular to be used in graphics hardware.

We expect our heuristic will yield further savings after integrating DVS or DFS.

• Improve PoI by integrating eye’s gaze pattern. Eye’s gaze pattern is another important

factor affecting human visual perception. With cues about the eye’s gaze pattern, we

can increase the LoD of objects that user focuses on while reducing the LoD of objects

outside of the focus area. In this way, even more rendering costs can be saved..

• Accurately measuring CPU energy usage. We currently estimate CPU energy usage

using a subtractive technique described in section 6.6, which can be improved in ac-

curacy. We plan to develop more accurate methods to more accurately measure CPU

energy consumption on mobile devices.
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Chapter 9

Conclusions

This dissertation presents an UbiWave, an end-to-end framework using wavelets solution for

improving mobile graphics application performance in mobile device by balancing energy

consumption, rendering speed and image quality. The solution includes four parts: 1) a per-

ceptual error metric to guide mobile graphics scenes at the lowest LoD at which users do not

perceive distortion due to simplification (PoI); 2) a novel Forward Error Correction scheme

based on Unequal Error Protection (UEP); 3) an Energy-efficient Adaptive Real-time Ren-

dering (EARR) Heuristic to balance energy consumption, rendering speed and image quality

and 4) an Energy-efficient 3D streaming technique. With PoI, UEP, EARR and streaming

technique, the performance of mobile graphics applications in wireless networks can be sig-

nificantly improved in terms of energy consumption, rendering speed and image quality. This

chapter summarizes the major contributions and draws conclusions from the dissertation re-

search.

Mobile displays have a wide range of resolutions that affect the scene Level-of-Detail

(LoD) that users can perceive: smaller displays show less detail, therefore lower resolution

meshes and textures are acceptable. Mobile devices frequently have limited battery energy,

low memory and disk space. To minimize wasting limited system resources, in Chapter 4,

we try to render mobile graphics scenes at the lowest LoD at which users do not perceive
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distortion due to simplification. We call this LoD the Point of Imperceptibility (PoI). Increas-

ing the mesh or texture resolution beyond the PoI wastes valuable system resources without

increasing perceivable visual realism. The PoI depends on several factors including screen

size, scene geometry and lighting levels. We propose a perceptual metric that can easily be

evaluated to identify the LoD corresponding to a target mobile display’s PoI and accounts for

object geometry, lighting and shading. Previous work either focussed on the deviation of a

simplified mesh’s surface from the original high-resolution mesh or were perceptual metrics

that needed to be experimentally calibrated in order to parameterize the Contrast Sensitivity

Function (CSF). Neither approach directly computes changes in the PoI due to target screen

resolution. Our perceptual metric generates a screen-dependent Pareto distribution with a

knee point that corresponds to the PoI. We employ wavelets for simplification, which gives

direct access to the mesh undulation frequency that we then use to parametrize the CSF curve.

A comprehensive user study has been performed to validate our results.

To speed up large mesh transmission over low-bandwidth wireless links, we use a wavelets-

based technique that aggressively compresses large meshes and enables progressive (piece-

wise) transmission. Using wavelets, a server only needs to send the full connectivity infor-

mation of a small base mesh along with wavelets coefficients that refine it, saving memory

and bandwidth. To mitigate packet losses caused by high wireless error rates, in chapter 5, we

propose a novel Forward Error Correction (FEC) scheme based on Unequal Error Protection

(UEP). UEP adds more error correction bits to regions of the mesh that have more details.

Previous work applied UEP to CPM. Our work uses UEP to make wavelets-encoded meshes

more resilient to wireless errors. Experimental results shows that our proposed UEP scheme

is more error-resilient than No Error Protection (NEP) and Equal Error Protection (EEP) as

the packet loss rate increases. Challenges for future research are also discussed. Our scheme

can be integrated into future mobile devices and shall be useful in application areas such as

military simulators on mobile devices.

To use the benefit of PoI provided by Chapter 4, Chapter 6 presents an energy-efficient
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adaptive real-time rendering heuristic to balance energy consumption, rendering speed and

image quality. Graphics rendering on mobile devices is severely restricted by available bat-

tery energy. In real-time graphics applications continual changes in user interactivity, the

LoD, visibility and distance of scene objects, complexity of lighting and animation, and many

other factors cause its frame rate to fluctuate. Such frame rate spikes waste precious battery

energy. We use a PoI error metric to accurately pick the lowest acceptable mesh resolution

considering the screen size. Our proposed heuristic uses a workload predictor to adaptively

predict frame rendering times and a dynamic CPU scheduler to save energy in a mobile 3D

application and render the scene at a target rate of 25 FPS.

To improve the real-time rendering performance in wireless network, a 3D streaming

technique is presented in Chapter 7. Since the wireless network has low bandwidth, some

of the mesh data can not be transmitted on time, although the mobile device has enough

resources to render graphics models, thus waste the reception energy of mobile device. We

proposed an energy-efficient 3D streaming in UbiWave. It estimates the transmission time

prior to transmission and decides whether it could be transmitted to the mobile device on

time or not. If not, the server denies the requests from mobile device. With this technique,

we achieve a better streaming latency and save the reception energy consumption of mobile

device.

Based on the summary of this dissertation, the following conclusion can be drawn:

• Our Point of Imperceptibility (PoI) error metric accurately picks the lowest acceptable

mesh (or image) resolution based on the target mobile device’s screen size, which is

validated by our user studies. By using our perceptual metric, it can save up to 61% of

the total battery energy.

• Our Unequal Error Protect Scheme allocates more Forward Error Correction (FEC) to

the important parts of the decoded mesh. The performance is better than Equal Error

Protection and No Error Protection.
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• Windows based workload predictor can predictor workload adaptively. The relative

errors are usually bounded in 0.2.

• Our integrated Energy-efficient Adaptive Real-time Rendering heuristic reduces energy

consumption by up to 60% while maintaining acceptable image quality at real-time

frame rate of 25 FPS.

• Energy-efficient 3D streaming enables scalable rendering in mobile device with better

streaming latency and reduces energy consumption by up to 36% while maintaining

the real-time frame rate.

In conclusion, This dissertation presents an UbiWave, an end-to-end scalable framework

using wavelets solution for improving mobile graphics application performance in mobile

device by balancing energy consumption, rendering speed and image quality. Using analyt-

ical mathematical models, experiments and user studies, this dissertation shows that our 3D

mobile graphics solution, consisting of PoI, UEP, EARR and Energy-efficient 3D Streaming

technique can effectively improve the 3D mobile graphics application performance in terms

of energy consumption, rendering speed and image quality on a variety of mobile devices and

wireless network conditions.
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