

Design and Evaluation of a Propulsion Aid Device for Folding Wheelchairs Members: Amanda Borden (ME & ESS), Megan Jacene (ME), Stephanie Steriti (ME) **Advisors:** Sarah Jane Wodin-Schwartz (MME), Elisabeth Stoddard (ESS)

Collaborator: Charles Croteau

Project Overview

Upper-body injuries caused by overuse from manual wheelchair propulsion is a common challenge that many wheelchair users face. While there are propulsion aid devices on the market, these devices are often expensive, increase the footprint of the wheelchair, or do not fulfill the necessary requirements for physical movement and accessibility. Our

team sought to create a propulsion aid that would address these issues by improving ease of use, enhancing maneuverability, and engaging in sustainable prototyping processes.

Market Review

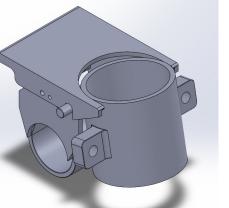
Classification	Evaluation of the Design	
Push-rim controlled [1]	 Difficulty traversing surfaces and obstacles Difficult to visualize due to placement Risk of upper body injuries is not entirely mitigated Covered by Medicare Cost: \$6,600 	Fini • 8 10 0
Joystick controlled [2]	 Device and accessories are heavy Difficulty traversing surfaces and obstacles Expensive and complicated electronics Accommodates for wide range of user ability Cost: ~\$8,000 	• Ite de
Tiller controlled [3],[4]	 Most devices increase chair footprint and have a large turning radius Increase traction on power-wheel for obstacle traversal Attachment for placement behind footplates may require trunk control Cost: \$1,000-3,000 	Tr M

References

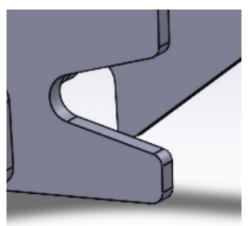
[Online]. Available: https://www.ada.gov/resources/opdmds/ [7] "Factors of Safety - FOS." Accessed: Feb. 27, 2024. [Online]. Available: https://www.engineeringtoolbox.com/factors-safety-fos-d_1624.html

Prototyping

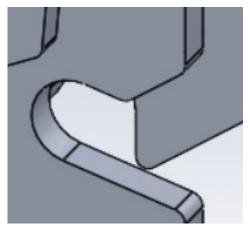
- (a) Initial prototype of a mechanism in which attachment motion lifts caster wheels and locks in place using
 - recycled materials
- (b) Fixed attachment created for testing the power-column



(a)

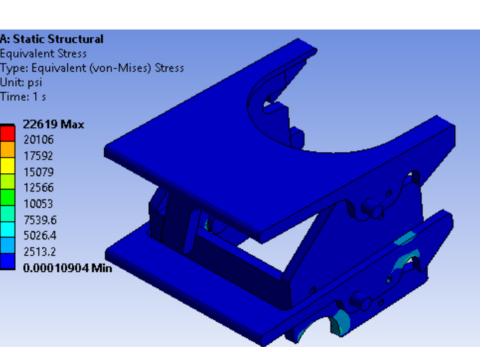

(b)

Design Iterations

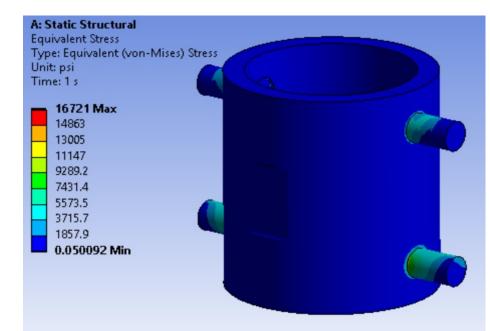


Hook and latch design

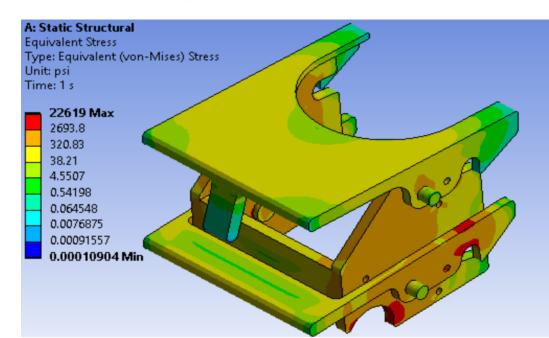
Original peg path



Final peg path for better force distribution


ite Element Analysis

simulations accounting for different bading scenarios


- Attachment system and individual components during stationary
- loading, moving forwards, and moving backwards
- terative process implemented 6 lesign changes based on results

Frue scale simulation results for the latch mechanism during forward acceleration

True scale simulation results for the collar during forward acceleration

Logarithmic scale simulation results for the latch mechanism during forward acceleration

Manufacturing

CNC milling the latch tops

Crossbar and latch bottom after welding

Using hand-tools during assembly

Design Verification

Specification	Result		
Must fit the wheelchair and device in a sedan trunk	Fail; semi-permanent crossbar was used		
Must be able to fold without the use of tools	Fail; semi-permanent crossbar was used		
Weight: ≤ 28.6 lbs [5]	Pass; 17.17 lbs		
Force to operate latch: ≤ 5 lbs [6]	Pass; 1.86 lbs		
Turn radius: 360° in a 5 ft circle [6]	Pass; 6 out of 9 attempts		
Ramp angle: 7.125° for maximum incline length of 20 ft [6]	Pass; 8° for 120 ft incline length		
Attachment angle: $\leq 30^{\circ}$ with the ground	Pass; 60°		
Weight Limit: 250 lbs [5]	Pass; driven with 250 lbs		
Factor of Safety: 2.5–3.0 [7]	Pass; 2.835		

Future Recommendations

- Telescoping crossbar allowing easy removal
- Better electronics and improved wire management
- Lighter battery and motorized wheel
- Create a bearing box with the geometry of the collar
- Improve the braking system