
i

ii

PATHly Visualizer:

Exploring Anycast Stability in IPv4

and IPv6

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of Bachelor of Science

by

Jack Campanale

Jasper Meggitt

Yash Patel

Cindy Trac

December 16, 2022

Salman Saghafi, Stephen Strowes

Fastly

Professor Mark Claypool

Worcester Polytechnic Institute

This report represents work of one or more WPI undergraduate students submitted to

the faculty as evidence of a degree requirement. WPI routinely publishes these reports

on its website without editorial or peer review.

iii

ABSTRACT

Modern Internet services make significant use of IP Anycast, where multiple locations are

identified by the same IP range, and the network distributes traffic across those locations.

However, Anycast traffic management is difficult and IPv6 deployments are often less mature

than their IPv4 counterparts. This project aimed to build a tool that utilizes publicly available

measurement data to identify and correlate changes between IPv4 and IPv6 Anycast routing.

We created PATHly Visualizer, a web-based traceroute pathing tool, to visualize paths that

packets take from a source probe to Fastly Anycast destinations. PATHly Visualizer allows

users to interactively display traceroute data and better understand and evaluate Anycast

forwarding in IPv4 and IPv6.

iv

ACKNOWLEDGMENTS

This project would not have been possible without the help and guidance of the following

people. We’d like to extend special thanks to

● Salman Saghafi and Stephen Strowes, who served not only as our Fastly sponsors but

also our mentors. They met with us every day during stand-up and were always readily

available to help.

● All the Fastlyans who took the time to chat with us:

○ James White, who gave us a deeper look into Fastlyan culture and diversity.

○ Glitch Team for letting us pick your brains on all things Glitch.

○ WPI alum at Fastly for making time to speak with us and giving us insight into

industry and life beyond WPI. Specifically, thank you to Patrick McManus for all

giving us valuable feedback.

● Professor Mark Claypool for coordinating this experience and guiding us along the

way.

v

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF ACRONYMS viii

AUTHORSHIP ix

1. INTRODUCTION 1

2. BACKGROUND 3

2.1 INTERNET ROUTING 3

Packet Routing 3

IP Addresses: IPv4 and IPv6 4

Border Gateway Protocol 5

Confirming Network Connectivity through Ping 6

Path Tracing with Traceroute 9

Anycast and Its Use Cases for CDNs 11

3. METHODOLOGY 13

3.1 EVALUATION OF ANYCAST 13

Public Data Sources 13

3.2 PROJECT MANAGEMENT 14

3.3 SECURITY CONCERNS 15

4. IMPLEMENTATION 16

4.1 BACK-END 16

Service Model 16

REST API Routes 18

Traceroute Data Ingestion 20

Data Parsing and Storage of RIPE Atlas Probes 21

Cleanup Service 22

4.2 FRONT-END 24

Technologies 24

Data Representation 26

Editing Measurements 32

vi

Hosting 32

4.3 SUMMARY 33

5. FUTURE WORK 35

5.1 Full Route Implementation 35

5.2 More Continuous Integration 35

5.3 Additional Public Data Sources 36

5.4 Better Visualize Difference Between IPv4 and IPv6 36

5.5 Better Visualize Most Frequently Changing Paths 37

6. CONCLUSION 39

REFERENCES 41

APPENDIX A - USER STORIES 44

APPENDIX B - USER INTERFACE MOCKUPS 45

APPENDIX C - GOLANG ISSUES 47

vii

LIST OF FIGURES

Figure 1: Packet Routing Schemes.

Figure 2: IPv4 v. IPv6.

Figure 3: BGP Visualization.

Figure 4: Example of Successful Ping.

Figure 5: Example of Failed Ping Request.

Figure 6: Example Ping Reply.

Figure 7: Visualization of Traceroute Hops to the Destination.

Figure 8: Traceroute Output to google.com.

Figure 9: Screenshot of Trello Board.

Figure 10: Simplified UML Diagram of the Service Model Used.

Figure 11: Server Initializing and Starting Each of the Services.

Figure 12: Application State with Each Data Structure Having a Mutex.

Figure 13: Probe Collection Service Run Function.

Figure 14: Cleanup Service Run Function.

Figure 15: Functional React Component.

Figure 16: Rendering React Component on Page.

Figure 17: Full Traceroute Data Representation with Timeout.

Figure 18: Node Formatting for ReactFlow Implementation.

Figure 19: Edge Formatting for ReactFlow Implementation.

Figure 20: ReactFlow Sub Flow Example.

Figure 21: ASN Color Palette.

Figure 22: Clean Traceroute Data with ASN Boxes.

Figure 23: Clean Traceroute Data with ASN Colors.

Figure 24: Using outboundCoverage to Determine ReactFlow Edge Weight and Label.

Figure 25: Visual Representation of Outbound Node Traffic.

Figure 26: PATHly Edit Measurements Page.

Figure 27: React Boilerplate React-scripts Command Line Prompts.

Figure 28: React Testing Library with Application Rendering Test.

Figure 29: UI Mockup of Combined IPv4 and IPv6 Paths.

Figure 30: Mockup of Representing Edge Usage with Color Scale.

Figure 31: Main Dashboard Mockup.

Figure 32: Data Visualization Mockup 1 - IPv4 and IPv6 Side-By-Side.

Figure 33: Data Visualization Mockup 2 - IPv4 and IPv6 Branching.

Figure 34: Data Visualization Mockup 3 - IPv4 and IPv6 Together.

viii

LIST OF ACRONYMS

API Application Programming Interface

AS Autonomous System

ASN Autonomous System Number

BGP Border Gateway Protocol

CDN Content Delivery Network

CI Continuous Integration

CPU Central Processing Unit

CSS Cascading Style Sheets

DDoS Distributed Denial of Service

DNS Domain Name System

GCP Google Cloud Platform

ICMP Internet Control Message Protocol

IP Internet Protocol

JS JavaScript

JSON JavaScript Object Notation

MQP Major Qualifying Project

MUI Material User Interface

NPM Node Package Manager

POP Point Of Presence

REST API Representational State Transfer Application Programming Interface

RIPE NCC Réseaux IP Européens Network Coordination Centre

RIS Routing Information Service

RTT Round Trip Time

SVG Scalable Vector Graphic

TCP Transmission Control Protocol

TTL Time-To-Live

UI User Interface

UML Unified Modeling Language

VM Virtual Machine

ix

AUTHORSHIP

Section Writer Editor

Abstract All All

Introduction Cindy Jack

Background

Introduction Jack, Cindy Cindy

Packet Routing Jack, Cindy Cindy

IP Addresses: IPv4 and IPv6 Jack Cindy

Border Gateway Protocol Jack Cindy

Confirming Network Connectivity through Ping Yash Jack, Cindy

Path Tracing with Traceroute Yash Cindy

Anycast and Its Use Cases for CDNs Cindy Jack, Cindy

Methodology

Introduction Jack, Cindy Cindy

Evaluation of Anycast Jack, Cindy Cindy

Project Management Cindy Cindy

Security Concerns Jack Cindy

Implementation

Back-end

Technologies Jasper Cindy

Learning Golang Jasper Cindy

Service Model Jasper Jack

REST API Routes Jasper Jack

Traceroute Data Ingestion Jasper Jack

Data Parsing and Storage of RIPE
Atlas Probes

Yash Jasper

Cleanup Service Yash Jasper

Front-end

Introduction Cindy Cindy

Technologies Jack Cindy

Data Representation Jack Cindy

Editing Measurements Jack Cindy

Hosting Jack Cindy

Summary Yash Jack, Cindy

Future Work

Full Route Implementation Jack Cindy

More Continuous Integration Jack Cindy

Additional Public Data Sources Jack Cindy

Better Visualize Difference Between IPv4 and
IPv6

Jack, Cindy Cindy

Better Visualize Most Frequently Changing
Paths

Jack Cindy

Conclusion Jack, Cindy Jack, Cindy

1

1. INTRODUCTION

Modern Internet services make significant use of IP Anycast, where multiple locations

are identified by the same IP range, and the network distributes traffic across those locations. If

one location is taken offline, traffic will be forwarded to one of the remaining locations within the

same IP range. Anycast allows for increased reliability and load balancing. The closer a network

operates to the user, the faster the service. This enables service providers to process network

data closer to users. This makes IP Anycast a valuable tool for Content Delivery Networks

(CDNs) like Fastly.

While Anycast is beneficial, it is difficult to manage in a variety of ways. Packet routing is

variable, meaning packets can take several path variations going from a source to a destination.

It is never completely clear what path a packet is going to take in Anycast or when a sudden

path change might be made. In addition, the difference in existing infrastructure for Internet

Protocol version 4 (IPv4) versus Internet Protocol version 6 (IPv6) adds another layer of

challenge. On the surface, the main difference between IPv4 and IPv6 seems to be that they

support different bit-size addresses, 32-bit and 128-bit respectively. From this key difference, it

might seem like IPv6 is simply an extension of IPv4. However, the two protocols are managed

separately from one another, implying that a network may take different routing choices

between IPv4 and IPv6. IPv6 is also not as widely deployed as IPv4, so fewer paths are

available.

Our goal is to provide Fastly with a more concrete way of analyzing Anycast path

visibility in both IPv4 and IPv6. To do so, we utilized RIPE Atlas, an open, global network of

Internet connectivity measurement probes, as our main source of data. Although RIPE Atlas

already provides raw data and insight into how the Internet operates, it is difficult to follow. In

addition, raw traceroute data does not combine IPv4 and IPv6. At this time, network engineers

have a difficult time analyzing these large files of text. Making comparisons between different

paths is even more challenging. Our tool, PATHly (Probe ASN Traffic Highway) Visualizer, takes

raw traceroute data and displays it graphically. PATHly visualizes the path a packet takes from

a source probe to its destination. This provides a more user-friendly interface to analyze and

gain further insight into Anycast forwarding.

Through this report, we detail our research, methodology, and implementation of

PATHly. Chapter 2 of this report provides necessary background information on internet routing.

Chapter 3 discusses the team’s approach to evaluating Anycast and project management.

2

Chapter 4 describes our implementation of PATHly through documentation on both the back-

end and front-end of the code. Finally, Chapters 5 and 6 wrap up with future applications and

our concluding takeaways.

3

2. BACKGROUND

As technology continues to adapt and change, so must the systems currently in place to

support and distribute it. By experimenting with the ways in which we are connected, we can

gain insight into how to improve network systems. This background chapter describes various

topics of computer network routing and how they come together to connect billions of users

worldwide every day.

2.1 INTERNET ROUTING

 Internet routing allows computers to connect with one another, enabling the sharing of

information between different networks. Data sharing is only growing more prevalent as

connectivity via messaging, social media, and other avenues become less of a luxury and more

of a staple of everyday life. This growing need for fast and efficient communication serves as a

motivator for more efficient computer network routing.

Packet Routing

Computer network routing enables networks to find the most efficient path for Internet

packets to be sent from a source to a destination. Packets are small segments of larger

messages, recombined at their destination to form the original message.1 One goal of computer

network routing is to find the best route packets can take. Routes can be measured by Round

Trip Time (RTT), which is the time it takes a packet to go from source to destination and receive

an acknowledgment that it reached its destination. Routing a packet can follow one of four

delivery schemes2:

1. Unicast: A method of one-to-one communication, where one source is sending

information to one specified destination (e.g. a device with IP address 151.101.17.1 is

announcing a message specifically for IP address 101.112.19.2).

2. Broadcast: A method of one-to-all communication, where one source is sending

information to all destinations associated with a broadcast endpoint. Local networks

allow for Broadcast routing, but Broadcast traffic networks do not allow Broadcast traffic

to the full Internet.

1 From Cloudflare. (n.d.). What is an autonomous system? | What are ASNs? Cloudflare. Retrieved November 8,

2022, from https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/
2 From Wikimedia. (n.d.). Routing. Wikipedia. Retrieved November 8, 2022, from https://en.wikipedia.org/wiki/Routing

4

3. Multicast: A method of one to many communication, where one or more sources are

sending information to a subset of destinations associated with a multicast endpoint.

4. Anycast: A method of one to one of many communication, where there is one source

and multiple potential receivers all identified by the same IP range. The network

forwards traffic to only one of the receivers.

Figure 1: Packet Routing Schemes.

These four delivery schemes have their own uses and importance within today's network

topology. Our project focused on traffic utilizing Unicast and Anycast. In order to direct

information through any delivery scheme, routers utilize routing tables, which store routes to get

to specific destinations. In the past, routers only required one routing table for IPv4 addresses.

Now, modern routers need the ability to have two routing tables stored, for IPv4 and IPv6

respectively.

IP Addresses: IPv4 and IPv6

IP (Internet Protocol) addresses standardize the way computers communicate with one

another. Computers identify and differentiate themselves through IP addresses. Under IPv4,

there are 4.3 billion unique addresses because of its 32-bit address limit. With the rise in the

number of network-capable devices, IPv6 was created in order to combat the declining amount

of unassigned IPv4 addresses. Under IPv6, addresses have a 128-bit size limit, allowing for 3.4

x 1038 unique addresses. For now, this allows every device in the world to have its own unique

IPv6 address.

With the introduction of IPv6 came a need for new routing technologies. One example of

how developers are adjusting to IPv6 is by having separate IPv6 routing tables. In addition,

because IPv4 addresses are limited, most modern devices that have an IPV6 address also have

an IPv4 address.

5

Figure 2: IPv4 v. IPv6.3

Looking back at the four routing delivery schemes, IPv4 only natively supports Unicast

and Broadcast. However, Anycast being a special kind of Unicast meaning it supports that as

well. Likewise, IPv6 does not support Broadcast natively but does support Multicast.4 This,

however, can be alleviated through workarounds. For example, IPv4 can utilize the Border

Gateway Protocol (BGP) to assign multiple hosts to the same unicast address and announce

routes through BGP.5

Border Gateway Protocol

Border Gateway Protocol (BGP) is an internet routing protocol that aims to determine the

best route a packet can take between autonomous systems. Autonomous Systems (AS) are big

networks that make up the internet, or in other words, large groups of networks with unified

routing policies.6 BGP can connect a path between a source and destination AS using a graph

constructed by information exchanged between BGP routers.7 A visual demonstration of BGP

can be seen below in Figure 3.

3 From Taylor, R. (2021, July 22). IPv4 vs IPv6: What's the difference? – BlueCat Networks. BlueCat Networks.

Retrieved November 8, 2022, from https://bluecatnetworks.com/blog/ipv4-vs-ipv6-whats-the-difference/
4 From Differences between IPv4 and IPv6. (2022, June 28). GeeksforGeeks. Retrieved November 8, 2022, from

https://www.geeksforgeeks.org/differences-between-ipv4-and-ipv6/
5 From How Anycast Works - An Introduction to Networking. (2018, October 4). KeyCDN. Retrieved November 8,

2022, from https://www.keycdn.com/support/anycast
6 From Cloudflare. (n.d.). What is the network layer? | Network vs. Internet layer. Cloudflare. Retrieved November 8,

2022, from https://www.cloudflare.com/learning/network-layer/what-is-the-network-layer/
7 From GeeksforGeeks. (2022, July 1). Border Gateway Protocol (BGP). GeeksforGeeks. Retrieved November 8,

2022, from https://www.geeksforgeeks.org/border-gateway-protocol-bgp/

6

Figure 3: BGP Visualization.

BGP peers, routers designated for exchanging BGP information, initialize connection through a

Transmission Control Protocol (TCP) handshake, verifying they both seek to be in

communication with each other. They can then regularly announce how to reach certain

networks.7 BGP’s ability to connect larger networks together makes it the base routing protocol

of the Internet.

Confirming Network Connectivity through Ping

Ping is a simple command that is used for troubleshooting, information gathering, and

preventing cyberattacks. Ping confirms if there is network connectivity between a source and

destination node.8 The command relies on Internet Control Message Protocol (ICMP) at the

internet layer TCP/IP.9 Ping sends an ICMP echo request and it expects an ICMP echo

response back.

Here is an example of a ping command:

ping 10.1.1.42

8 From Garn, D. M. (2022, April 4). The Ping Command | Computer Networking. CompTIA. Retrieved November 8,

2022, from https://www.comptia.org/blog/understanding-ping-command-results

7

If the command returns an ICMP echo message, then there is network connectivity between the

devices. If anything else is returned, the command has failed.

Figure 4: Example of Successful Ping.

Figure 5: Example of Failed Ping Request.

8

 A ping program can be called using either a hostname or IP address. The hostname is a

label assigned to a device on a network.9 On DNS servers, these are simpler, easy-to-

remember names compared to the entire IP address. If you send a ping to a hostname, it will

resolve the hostname to get an IP address that it can use to run the ping. A name resolution

issue is where the DNS server cannot correlate the hostname to a corresponding IP address. If

both IP address and hostname fail, then there is a network connectivity problem.10

 An ICMP echo message can either be a ping request or ping reply. A ping request is the

message that gets sent to the destination. The ping reply is the message that the destination

sends back to the source. Figure 6 gives an example of a successful ping reply when sending a

ping to www.firewall.cx.

Figure 6: Example Ping Reply.11

A ping on Windows sends four ping requests, shown in Figure 6 with four replies and four

packets sent. On Linux and macOS, the ping requests are continuous and only stop when the

user asks it to.11 Referencing Figure 6 part (a), is the ping command with the hostname. Part (b)

is the IP address that the hostname resolves to. Part (c) is the number of bytes in each packet.

9 From Fisher, T. (2022, March 8). What Is a Hostname? (Host Name Definition). Lifewire. Retrieved December 6,

2022, from https://www.lifewire.com/what-is-a-hostname-2625906
10 From Garn, D. M. (2022, April 4). The Ping Command | Computer Networking. CompTIA. Retrieved November 8,

2022, from https://www.comptia.org/blog/understanding-ping-command-results
11 From ICMP - Echo / Echo Reply (Ping) Message. (n.d.). Firewall.cx. Retrieved December 6, 2022, from

https://www.firewall.cx/networking-topics/protocols/icmp-protocol/152-icmp-echo-ping.html

9

This is the message that is sent and contains information on whether it is a request or reply,

code, header checksum, identifier, sequence numbers, and variable data. Each reply has a

Round Trip Time (RTT), or the total amount of time in milliseconds it took for the message to

reach the destination and come back to the source. Part (d) is the Time to Live (TTL), which is

the limit on how long it should take the message to reach its destination. The value decrements

by one for each time a packet goes through a router.12

 A ping can fail for multiple reasons. For example, the local machine could not determine

the destination to send the ping to, resulting in a “destination host unreachable” error.13 The

“request timed out,” which happens when a network drops ICMP messages, so no response is

received and the ping client gives up or times out. Although Ping is one of the simplest

commands used in network connectivity, it can be expanded and used with other commands

such as Traceroute.

Path Tracing with Traceroute

Traceroute is a command-line tool for tracing the path an IP packet takes across one or

more networks.14 System administrators and network engineers use traceroute to view traffic

flows within their organization and identify irregular or suboptimal paths. From there, corporate

networks can use this insight to block or filter traceroute packets to mitigate attackers. While

Ping is used to test connectivity between the source and destination, traceroute can trace an

IPv6 network and check the paths between both addresses.14

 Traceroute utilizes the TTL of an IP packet to keep track of hops, the different nodes or

servers that are in the path to the destination. The TTL (IPv4) / hop limit (IPv6) is a mandatory

field in the packet header and is always set with regular traffic. The routing decisions can be

transient and the TTL field is intended to flush the networks of packets where a forwarding loop

is formed. Traceroute starts when the user invokes the traceroute command with a specific

target hostname or IP address.

Traceroute then sends a data packet with a TTL of 1. The first router will decrement the

TTL by 1, which will trigger a TTL exceeded limit message that gets sent back to the source.

Once the source gets the error message, it sends a new data packet with a TTL of 2. This

12 From ICMP - Echo / Echo Reply (Ping) Message. (n.d.). Firewall.cx. Retrieved December 6, 2022, from

https://www.firewall.cx/networking-topics/protocols/icmp-protocol/152-icmp-echo-ping.html
13 From Garn, D. M. (2022, April 4). The Ping Command | Computer Networking. CompTIA. Retrieved November 8,

2022, from https://www.comptia.org/blog/understanding-ping-command-results
14 From Grimmick, R. (2022, June 25). What is Traceroute? How It Works and How to Read Results. Varonis.

Retrieved December 6, 2022, from https://www.varonis.com/blog/what-is-traceroute

10

means that the second router will set the TTL to 0 and send back a TTL exceeded message.

This will repeat itself until the destination is reached or an upper limit of hops is reached.

Traceroute will then print all the hops on the path with the Round Trip Time or RTT.15

Figure 7: Visualization of Traceroute Hops to the Destination.16

 Traceroute output, as shown in Figure 8, gives the path from the source to the

destination. Immediately after the command, the metadata lists the destination IP address,

upper limit of hops, and size of the data packets. Each hop is listed and numbered, starting at 1,

and contains the IP address of the router that responded and the RTT. By default, traceroute

sends three data packets, hence the three RTT samples per hop.17 As mentioned before, some

corporations block or filter traceroute so their routers do not send a response. When there is no

response from a router, traceroute uses an asterisk (*) as an output. Since there are three data

packets being sent, there is no guarantee that all three packets will take the same paths. This

would be why some hops list two different IP addresses, such as hop 11 in Figure 8.18

15 From Grimmick, R. (2022, June 25). What is Traceroute? How It Works and How to Read Results. Varonis.

Retrieved December 6, 2022, from https://www.varonis.com/blog/what-is-traceroute
16 From Gridelli, S. (2019, November 27). Traceroute Benefits and Limits. NetBeez. Retrieved December 3,

2022, from https://netbeez.net/blog/traceroute/

11

Figure 8: Traceroute Output to google.com.17

 We can view the geolocation of each IP address by referencing its ASN. Using

geolocation, we can map out on a world map how far our data is traveling. Traceroute is an

important tool to be able to view how and where we are connecting to our destination.

Anycast and Its Use Cases for CDNs

Anycast is a routing scheme designed to make a particular IP Address available from

multiple locations. Packets then can be routed to one available device within the specified

location. This means that content is able to be distributed to many locations while directing

traffic to the closest data center for low latency and better performance. It can be considered a

one-to-nearest mapping.18 Anycast allows Content Delivery Networks (CDN) like Fastly to

process network requests more efficiently by routing incoming network traffic to the closest data

center. Anycast allows CDNs to have better system performance, security, and load balancing.

System Performance

Since multiple points of presence (POP) can have the same IP range, a POP can be

withdrawn from the Anycast group and the network will still have destinations to send

traffic. This is ideal for CDNs, which aim to give end users the most direct route to their

destination. Latency is reduced because of the greater availability and variety of possible

connection points. More widespread points, both in terms of location and number, allow

the user to connect to their destination faster.

17 From codstar. (2019, May 27). traceroute command in Linux with Examples. GeeksforGeeks. Retrieved December

6, 2022, from https://www.geeksforgeeks.org/traceroute-command-in-linux-with-examples/
18 From Kesavan, A. (2016, May 19). Using Anycast for Internet Services. ThousandEyes. Retrieved December 5,

2022, from https://www.thousandeyes.com/blog/using-anycast-for-internet-services

12

System Security

The backup, failsafe system when connection points go down also affords Anycast

systems more protection when it comes to distributed denial-of-service (DDoS) attack

mitigation. In the event that a server is targeted or compromised, there are measures in

place so that an adversary cannot maliciously flood servers with excessive traffic.

Anycast as a load balancing method can be used as a tool to not only combat DDoS

attacks but also to control nonmalicious traffic spikes (e.g. a sports website during the

Super Bowl or news sites during a Presidential Election).

System Load Balancing

For a CDN of Fastly’s scale, it is important to be able to handle many incoming requests.

Especially when dealing with high-volume traffic customers like Reddit or The New York

Times, it is vital for Fastly to be able to spread incoming traffic amongst many servers. If

there is a traffic spike, load balancing allows the incoming requests to be divided up

among different servers. This prevents one server from being overloaded.

13

3. METHODOLOGY

 This methodology chapter discusses the team’s approach to tackling different parts of

the project. For the technical portion, we discuss the tools and data sources needed to

effectively evaluate Anycast traffic. We outline the team’s approach to project planning and

management. Finally, we address potential security concerns as a result of the project.

3.1 EVALUATION OF ANYCAST

The evaluation of Anycast traffic involves many different factors. While a CDN, such as

Fastly, can know its own specific network policies and configurations, it has no jurisdiction over

that of other providers. In order to successfully and efficiently deliver its traffic, Fastly relies on

thousands of other players. To begin to understand the paths that inbound connections to Fastly

take, we can use external resources. Measuring external data sources can provide Fastly with

more information on how the network is actually behaving rather than just what Fastly is

dictating. This can allow Fastly to better optimize how the network is flowing into its Anycast

servers. In order to measure from external sources, the team looked into publicly available data

sources.

Public Data Sources

 RIPE Atlas is an open, global network of Internet connectivity measurement probes,

dedicated to providing a better understanding of the Internet as a whole.19 RIPE Atlas users can

utilize active probes to monitor specific measurements like ping or traceroute, test IPv6

connectivity, and investigate and troubleshoot network issues.20 To create a measurement, a

user must have credits, which they can earn by hosting or sponsoring one or more probes.20

The team ultimately chose RIPE Atlas as PATHly’s main public data source because of sponsor

recommendations and credit allowance. This decision afforded the team more help avenues

when it came to troubleshooting and also a no-cost option for data.

19 From What is RIPE Atlas? (n.d.). RIPE Atlas. Retrieved December 8, 2022, from https://atlas.ripe.net/about/

14

3.2 PROJECT MANAGEMENT

 The team utilized an agile methodology framework for project management. An agile

approach enabled the team to break up the project into several one-week sprints. Through this

iterative process, the team focused on key tasks each week and reflected on our progress. The

following agile methodology components allowed us to better manage both the project and the

team’s resources:

Sprints and Sprint Planning

The team broke down the overall project by sprints. We planned and organized our

sprints on Trello, a visual tool for task organization. Trello allowed us to have a

centralized task management system. At the beginning of the project, we brainstormed

all deliverables and the steps to them. This became our Backlog, which we referenced

each sprint. Before every sprint, our team met with our product owner to choose tasks

from the Backlog. Our Sprint Backlog consisted of the tasks we would focus on for the

week. Each task would be assigned a Fibonacci number, a Story Point amount, to

indicate the amount of time and effort we thought would go into that task. During the

sprint, team members would assign themselves to Story Cards and move them through

the board as they progressed through the task.

Figure 9: Screenshot of Trello Board.

Stand-Up

Due to the many moving parts of the project, communication was key to the team’s

success. This took the form of daily check-in meetings, scheduled for 20 minutes. Each

team member, along with the product owner and sponsors, would state what work they

did, what work they’re doing, and what they will be doing. Team members would also

discuss any issues that may be blocking progress so that the team would be able to help

15

if applicable. These quick Stand-Up meetings allowed the team to have a better idea of

each member’s progress and the overall project.

Retrospective

At the conclusion of each sprint, the team reflected on what went well and not as well in

the Retrospective. The team would take 5 minutes to categorize their thoughts and

feedback on the week into three categories: Good, Okay, and Bad. Afterward, the team

would dot vote by upvoting five retro cards that they agreed with. This allowed the team

to cover top discussion items. The Retrospective was a chance for all team members to

let their voices be heard. Retrospectives provided an avenue for the team to reflect and

change course as necessary. It opened us up to constant feedback in order to avoid

being stuck in unproductive habits for too long.

3.3 SECURITY CONCERNS

 Our project presented little to no security concerns. The application is hosted on a virtual

machine managed by fastly, running inside the Google Cloud Platform (GCP). This application

is openly available on the internet, but because it’s being hosted on GCP, access to any internal

services through GCP are restricted to only those with public key access, being the team and

Fastly Employees. In addition, all data sources utilized in our project are open-source, meaning

all data used in PATHly is accessible to the general public.

16

4. IMPLEMENTATION

In this section, we break down the implementation of PATHly Visualizer. For both the

front-end and back-end components of PATHly, we describe the technologies used and their

applications.

4.1 BACK-END

For the backend of the project, we used the Golang (Go) programming language and

implemented a service model.

Service Model

We made use of a service model for our project when communicating between different

systems, based on how we would need the ability to run many threads (goroutines in this case)

and a uniform way of communicating between them. The design of the model is shown in Figure

10. We created a server that will store a list of all the services of the project and a pointer to an

application state which contains the shared application state structure. While we considered

making more use of channels, we found it did not fit our use case, as our REST API service

would need to have access to nearly all data on the system to fulfill requests. So for important

shared information, we used our shared thread-safe application state.

Each of our services implement the Service interface which contains the name of the

service, initialization function, and run function. This allows services to store their own data and

allows for direct service to service communication by sharing channels during initialization. It

also helped cut down on time spent debugging service-to-service interactions since services

were only free to share information between themselves in two locations. By enforcing this

service interface, we also benefited from standardized logging through a service’s creation and

initialization.

17

Figure 10: Simplified UML Diagram of the Service Model Used.

The server starts the project by calling the Init() function in a thread on each of the

services as shown in Figure 11. The purpose of the Init() functions is for each service to initialize

their own data structures and load in any information prior to what the service is intended to do.

Once all the services are initialized, the server starts each of the services with their Run()

function in their own thread. This gets handled in the startServices() function in Figure 11. The

purpose of the thread, or goroutine, is to ensure each of the services work concurrently.

Services utilize the shared data in the application state pointer they are given in the Init() and

Run() functions. The application state is thread safe by using mutexes for each of the data

structures within it as shown in Figure 12.

18

Figure 11: Server Initializing and Starting Each of the Services.

Figure 12: Application State with Each Data Structure Having a Mutex.

With the service model outlined, we can now explain how each of the services work.

REST API Routes

 After finishing our MQP, we are unable to continue providing updates to the project or

maintain the codebase. This could become problematic for our sponsor if they need to extend

19

the functionality or do some additional analysis on the data PATHly provides. Thus we designed

our server around a few REST API that can be interfaced with directly to pull data or modify the

existing server configuration. We used the Gin web framework20 in Go for our API. From there,

we split our REST API functionality into sections.The core routes we needed to focus on were

configuring which measurements to collect, retrieving traceroute route graphs, and gathering

information on which probes were collecting data.

 For traceroute data, we needed to have 3 different routes. These routes correspond to

retrieving the full, cleaned, and raw data. As the names imply, the full API route retrieves all of

the data the server stores on a given route. The raw API route retrieves the raw data from RIPE

Atlas that was used to build that route. As for the clean API route, it works very similarly to the

full API route with some small tweaks to improve the readability of the output graph. The main

change made to this route is the removal of timeout nodes. Depending on the stability,

responsiveness of the nodes along a route, and the statistics period the data is stored for,

timeout nodes can quickly add up. These nodes can begin to clutter the view and complicate

the graph layout process when drawing boxes around autonomous systems. To remove them,

we assume that the timeout nodes do not exist within the graph and connect disconnected

layers. However, the next main issue we encountered with the clean data was the prevalence of

false edges on the graph. These edges are frequently caused by the route changing midway

through a measurement or an inconsistent decementation of the packet time to live value.

These edges are almost always unhelpful and can make it harder for the viewer to pick out the

primary edges at a glance. To combat this issue, we pruned edges from the graph which did not

meet a minimum percentage of the occurrences out of all the edge occurrences from the source

node. At first we attempted to use a flat percentage across all of our graphs, but we ran into

some issues with nodes that connected to many children. By splitting the occurrences among so

many children it became possible for none of the children to meet the threshold leading to many

disconnected nodes being left in the graph. We were able to solve this problem by scaling the

minimum threshold by the number of connected nodes. This led to a satisfactory result where

most of the false edges were removed without hurting any of the main edges.

 Next, we added routes for retrieving probes involved in a specific measurement. The

purpose of this route was to enable selection on the front-end of valid nodes for a given

destination. However, we quickly found it could be used for a number of other features. This

included location information on each probe to allow for the ability to select probes by region

20 From gin-gonic. (n.d.). gin-gonic/gin. GitHub. Retrieved December 15, 2022, from https://github.com/gin-gonic/gin

20

and metadata to enable searches to be done on probes to filter by ASN, network prefix, and

route stability. Unfortunately, we did not get to implement many of these features on the

frontend due to limited time, but this route does have most of the functionality so it can be used

if future work is done on the project.

 Lastly, we needed API routes to control which measurements were being monitored by

the server. This was important since up to this point, the specific RIPE Atlas measurement IDs

we were collecting data on were hard coded into the program. These API routes allowed a user

to list which measurements are in use, add new measurements, and remove/stop existing

measurements. Additionally, this added the differentiation between live collection and loading

historical data. Using these routes a user can determine which type of collection is being

performed on each measurement, switch between collection modes, or drop a measurement’s

data from the server.

Traceroute Data Ingestion

 To load traceroute data, we used three systems throughout the project. This includes

caching measurements data, pulling a measurement’s history, and listening to live data as it is

collected.

Through the project, our primary method for debugging and testing made use of our

cached measurement API. The primary goal of this approach was to reduce the turnaround time

of running tests and starting up the server. It was able to achieve this goal by storing

measurement data locally as a file instead of performing the timely request to RIPE Atlas. Since

the primary, and only, use case of this approach was for debugging, it was implemented with no

global eviction strategy under the understanding that we only used a couple of hard-coded

measurements for tests. Instead we used a time-to-live strategy for each individual cached entry

based on when the entry was last refreshed. The cache period is configurable and allowed for

data to be kept mostly up to date without slowing down production. As for the performance

gains, we were successfully able to reduce the load time of a measurement from minutes to

seconds. However, without any compression or cleanup of unused entries within the cache, one

member of our team struggled with limited storage space for measurement data.

Next, we provided the option to pull a measurement’s history. Unlike the previous option,

this was intended for production to be used by users of our dashboard to fetch data for a quick

inspection of a specific measurement. Unlike our observations when debugging, we saw little

utility in attempting to cache this data since it is far less likely to see reuse and would likely eat

through the available storage on our system. The storage concerns of caching could be

21

mitigated if we were to spend the time upgrading to a least recently used cache model. But due

to added complications due to concurrent requests, we did not think this would be an effective

use of our time.

Lastly, the primary data collection route for our application is through live collection of

measurements. Unlike the previous options, this approach simply receives new measurements

instead of allowing for the retrieval of historical data. This approach closely lines up with the

project’s user stories since it enables the ability to highlight interesting networking features as

they appear in the output data.

Data Parsing and Storage of RIPE Atlas Probes

The probe collection service has two main functions. The first is to obtain the metadata

from RIPE Atlas. The second is to get information from the Traceroute measurements and

update our destination-to-probe map. As shown in Figure 13, we have a refresh period which is

the time we wait before we refresh our main probe map. The default is once a day. After a day

has passed we retrieve the data from RIPE Atlas. If we are within the refresh period, we wait for

probes from the traceroute measurements to add to our destination to probe map.

Figure 13: Probe Collection Service Run Function.

22

 One unexpected challenge of this project was keeping an up-to-date list of collected.

RIPE Atlas probes are constantly updated regardless of if they are connected, disconnected, or

abandoned. We need to periodically check the RIPE Atlas servers for their active probes.

To solve this, we created a Probe Collection Service to continuously pull probes from the

RIPE Atlas servers using the RIPE Atlas golang library released by DNS OARC21. This library is

used to pull every probe and keep the metadata on each one. We then take in the metadata and

parse out information about the probe ID, IPAddress, ASN, Country Code, Longitude, and

Latitude. Ripe Atlas stores all of its probes on about 400 different web pages. The issue is that

the library can only read data from one page of nodes at a time leaving hundreds of pages to

parse through, causing a processing time of about 4 minutes. To solve this, we implemented

worker goroutines for each CPU on the server to concurrently wait on and parse many pages at

a time. This significantly dropped the processing time to an average between 8-25 seconds.

While we store all of the probes we still need to map them to the traceroute

measurements they are used for. To do this, each IP address has a list of corresponding probes

that they are connected to. While we ingest traceroute measurements, we send the destination

IP and probe to the Probe Collection Service in a channel. We then add that information to our

destination-to-probe map. The destination-to-probe map is stored in the application state

because this is global information that is used by other services.

Cleanup Service

 With the large ingestion of data, we need to periodically evict the old data. We use the

Cleanup Service to handle this. We have configuration variables for the Cleanup Period and

Statistics Period. The cleanup period is how often we need to clean up the data and by default

is once a day. The statistics period is how far back we keep the data and by default is two

weeks.

 There are two main data structures that we need to clean. The first is the Traceroute

Data. For each of the traceroute measurements, we remove the old nodes, edges, clean edges,

and probe IPs. We check if they are old by checking the last used time in each of those

attributes to see if they are before the statistics period. We also need to increase the upper

bound of the nodes and edges for the moving statistics. The second structure we need to clean

is the Destination to Probe Map. We iterate through each probe list in each destination IP and

21 From DNS-OARC/ripeatlas: Go bindings for RIPE Atlas API. (n.d.). GitHub. Retrieved December 12, 2022, from

https://github.com/DNS-OARC/ripeatlas

23

compare when the last time the probe was used. We create a new list of probes that are more

recent and have that to be attached to the destination IP.

 Figure 14 helps show how the Cleanup Service is implemented. We wait until the

cleanup period is reached and then evict the data. Since we are modifying the shared data we

have to lock each data structure with its corresponding mutex. We then update the last time the

project was cleaned.

Figure 14: Cleanup Service Run Function.

24

4.2 FRONT-END

 The front-end component of our application is what the user sees and interacts with. To

guide our design process, our sponsor provided us with user stories that outlined what a user

should be able to do with the application (see Appendix A). From these user stories, we

designed user interface (UI) mock-ups to provide a static visualization of what the front-end

could look like (see Appendix B). This allowed us to get feedback from our sponsor and iterate

the design process. This section covers the technologies and other considerations taken to

implement these designs.

Technologies

 We used Figma to design UI mock-ups and React, a Javascript framework, to develop

the front-end of this application. React applications are built upon a Node.js web server. We

utilized several open-source packages made available on npm. The following is a list of the

most important packages we used in development:

● ReactFlow is an open-source React-based flowchart library. This library was used as

the base of the path visualization as it had the capability to represent nodes and edges,

provide easy customization, and allow for automatic path layouts utilizing external

automatic layout algorithms.

● Dagre is an open-source JavaScript-based automatic graph layout algorithm. This

library helped position all the nodes and edges of the received traceroute data, as

ReactFlow does not have built-in automatic layout functionality.

● Material UI Core (MUI Core) is an open-source React-based library that provides

several prebuilt and stylized React components. MUI Core’s main functionality in our

application was to provide pop-ups with node information when clicking on any individual

node in a graph.

● React Bootstrap is a form of the popularly used front-end framework Bootstrap,

designed specifically for React. It makes use of React components to allow for easy use

of Bootstrap implementations like Navigation bars and Popovers. We used this Library to

create the top navigation bar in PATHly.

Furthermore, React, being a Javascript framework, has several built-in upgrades to vanilla

Javascript that we utilized throughout development:

25

● Components are portions of code created to be reused. For example, say that we want

more than one of the same form on a page. Instead of copying and pasting the form

twice in the code, we can create a React component with the form's code, import it into

our page, and only have to use one line of code. An example of a functional react

component being displayed as code can be seen in Figure 15, and it is seen being used

in a separate file in Figure 16.

Figure 15: Functional React Component.22

Figure 16: Rendering React Component on Page.23

● Hooks were created to be used with Functional React components. There are two types

of components: Function and Class. Class components have access to helpful React

features like accessing state. Prior to React v. 16.8, Functional components were unable

to make use of these features. Version 16.8 added Hooks, which provide Functional

components with these features. Our project's components are Functional. Because of

this, we made use of the following hooks:

○ The useState hook gives Functional components the ability to track state. State

is a React-specific feature, essentially being the metadata of a component. This

data can be changed, which causes a re-render of the component on the client

side.

22 From React Components. (n.d.). W3Schools. Retrieved December 5, 2022, from

https://www.w3schools.com/react/react_components.asp
23 From React Components. (n.d.). W3Schools. Retrieved December 5, 2022, from

https://www.w3schools.com/react/react_components.asp

26

○ The useCallback hook caches specified functions in order to avoid resource

intensive re-renders of specific parts of code. This hook can be provided with

props, and the code within this hook will only be called when the specified props

are updated.

○ The useMemo hook is extremely similar to useCallback. The main difference is

that useCallback returns functions while useMemo returns values.

Data Representation

 Data is collected from the back-end utilizing custom-built REST API Routes. The front-

end sends requests through these routes using the Fetch API. The front-end then parses the

received response and is able to represent it in several meaningful ways:

● The full traceroute route collects all recorded traceroute data with no cleaning. This

means that all timeouts are represented in the data. These timeouts, as shown in Figure

17, are labeled with the * character because their IP addresses are unknown.

Figure 17: Full Traceroute Data Representation with Timeout.

● The clean traceroute route collects cleaned traceroute data. This means that timeouts

and redundant paths are cleaned from the data. No timeouts are rendered when utilizing

this route.

Timeout

27

● The raw traceroute route collects all traceroute data from the specified input probe and

destination IP in the form of an attachment. A blob is then created to put this data into a

JSON file. If the file is unable to be created, a new window will open with the appropriate

loaded data.

The traceroute path data is represented using the ReactFlow library. The retrieved data

from the back-end is formatted so the nodes and edges objects include the required ReactFlow

object elements. Nodes must include an ID, position, and data. The data included in a node only

requires a label, any other amount of data may be included aside from that. Figure 18 shows

how an average node in our data is formatted for ReactFlow. Edges must include an ID, source,

and target. Figure 19 shows how an average edge in our data is formatted for ReactFlow.

Figure 18: Node Formatting for ReactFlow Implementation.

Figure 19: Edge Formatting for ReactFlow Implementation.

28

Several of these nodes collected by the back-end belong to an AS and will be passed to the

front-end with a specified ASN. This data is important in understanding BGP and Anycast

forwarding, so we needed to be able to represent which ASNs the nodes belong to. To do this,

we began by looking at ReactFlow’s sub flow functionality. ReactFlow sub flows are defined as

a flow inside of a node. This logic can be seen in Figure 20 below.

Figure 20: ReactFlow Sub Flow Example.24

However, difficulty sprang up when we were using sub flows as the size of the sub flow must be

specified beforehand. This meant we needed to devise a way to calculate how large a sub flow

must be to cover each node that belonged to it. Furthermore, sub flow size caused issues with

the automatic layout algorithm, Dagre. Sizing needed to occur after every node was placed,

meaning the sub flows would often cover nodes that did not belong to it as they were in the way

of another node that did. While this did not always present issues, it would in larger datasets. To

combat this, we decided to implement an option to represent node ASNs through their colors.

 The colors decided on needed to be accessible to those who are color blind. To verify

their safety, we used the Adobe Color Contrast Analyzer.25 This tool has built in Color Blind

Safety functionality which we were able to use to verify the colors we were using. Figure 21

shows the color palette we ended up using. If there are ever more ASNs than colors, the color

coordination restarts from the beginning. An example of ASNs being represented by boxes can

24 From Sub Flows Guide. (n.d.). React Flow. Retrieved December 7, 2022, from

https://reactflow.dev/docs/guides/sub-flows/
25 From Color contrast checker analyzer tool. (n.d.). Adobe Color. Retrieved December 7, 2022, from

https://color.adobe.com/create/color-contrast-analyzer

29

be seen in Figure 22. The same path with ASNs being represented by colors can be seen in

Figure 23.

Figure 21: ASN Color Palette.

Figure 22: Clean Traceroute Data with ASN Boxes.

30

Figure 23: Clean Traceroute Data with ASN Colors.

Additional data, outbound and total traffic coverage, is provided to the edges to specify

how often they are used. This data is important to understanding the frequency of path changes

for certain nodes. To visualize this data, we made use of ReactFlows customization. ReactFlow

edges are treated as Scalable Vector Graphics, SVG, objects. SVG objects can be customized

using basic CSS properties. As shown below in Figure 24, we modified the edges’ stroke width

with its “outboundCoverage” element. This means the lines will be thinner when they are less

traversed on. Also shown in Figure 24, we made use of the ReactFlow edge property “label” in

order to label each edge with its percent usage of all packets that have traversed it.

Figure 24: Using outboundCoverage to Determine ReactFlow Edge Weight and Label.

These visual representations, like shown in Figure 25, provide insight on which nodes frequently

change outbound paths.

Calculated label and
line weights

 Label and line weights
used in edge
metadata

31

Figure 25: Visual Representation of Outbound Node Traffic.

Most frequented
path

Least
frequented path

32

Editing Measurements

 A separate page was created to make use of the RIPE Atlas measurement changing API

routes discussed previously. This page allowed users to start and stop measurements being

performed on the back-end, as well as list what measurements are being performed. Figure 26

below shows what the page looks like.

Figure 26: PATHly Edit Measurements Page.

Hosting

Because React applications run on a Node.js server, utilizing an NPM package called

react-scripts, we can start the application and server with a command line prompt. Listed below

in Figure 27 are react-scripts command line prompts that come with the prebuilt package.json

file in the React boilerplate application.

33

Figure 27: React Boilerplate React-scripts Command Line Prompts.

The front-end is hosted on one of the provided GCP Virtual Machines (VMs). We first installed

all the necessary dependencies and node modules using the command “npm install --legacy-

peer-deps”. We wanted to use “npm start” to boot up the application. However, “react-scripts

start” defaults to hosting on port 3000, which is restricted access on the VM. We modified the

command to “PORT=8000 react-scripts start” so that “npm start” boots up on port 8000, a public

port, instead of 3000.

During testing and development, to be able to access backend Rest API routes, all route

paths in the front-end were changed to directly access the VM with its IP address:

http://<ip_addr_here>:8080/…

4.3 SUMMARY

Our implementation of PATHly Visualizer utilized a service model in Go. Our services

included retrieving traceroute data from RIPE Atlas, parsing the traceroute data for internal

storage, managing probe information, and cleaning up old data. Our services are linked to our

front-end, developed in React JS, through REST API routes. PATHly Visualizer has a “Create

34

Visualization” page where users can interactively display traceroute data. This can allow them to

better understand and evaluate Anycast forwarding in IPv4 and IPv6. There is also a page to

edit ongoing measurements, where users can view, add, and stop tracking RIPE Atlas

measurements. PATHly Visualizer is hosted on a Google Cloud Platform VM.

35

5. FUTURE WORK

 While the team successfully implemented a minimum viable product to suit Fastly’s

needs, there is more work to be done to improve the reach and application of PATHly. This

section will discuss what we believe to be the most important key features to prioritize in future

project iterations.

5.1 Full Route Implementation

 One integral implementation would be the full implementation of missing routes specified

in documentation. Currently, the work is mostly complete for the “Get Probes” API route.

However, it was not fully working by the time we needed to complete active development, so it

was left undone. This API route would work by checking when a user selects a destination IP

address on the front-end, and sending a request with the destination address as the body to get

all probes linked with it. These probes would then be used to populate a selection menu, rather

than having the user input a probe manually. This would eliminate user input error, as any probe

that a user could choose should both exist and be connected to the corresponding destination

address. The “Get Destinations” API route would also be an important addition. Currently, users

are able to start new RIPE Atlas measurement tracking from the front-end, but are unable to

visually represent these measurements. If the “Get Destinations” API was implemented, the

front-end would create a GET request to fetch the array of all possible current destinations

every time PATHly’s home page is opened. These destinations would then populate the

destination selection menu.

5.2 More Continuous Integration

While we did thoroughly test this project, further methods of testing can be implemented.

Firstly, there could have been more Continuous Integration (CI) using GitHub Actions. The tests

we have are necessary and important for ensuring that newly pushed code does not break any

functionality. However, more tests related to key features of the program and not just

dependency installation or build tests would be an important addition. Furthermore, UI testing is

minimal within our project and can be vital to verify its functionality. A potential testing option is

Jest, a JavaScript testing framework that works with React projects as well.26 Tests can be

26 From (n.d.). Jest · Delightful JavaScript Testing. Retrieved December 9, 2022, from https://jestjs.io/

36

made using the React testing library in the App.test.js file. Figure 28 shows an example of a test

that verifies the application renders correctly.

Figure 28: React Testing Library with Application Rendering Test.

5.3 Additional Public Data Sources

Another future improvement would be including publicly available BGP data. Earlier in

the project, we performed experiments collecting RIS (Routing Information Service) Live data

from RIPE NCC27 using a golang websocket library.28 This data could be used to gain a high

level view of global routing. This could then inform our decision on which routes we measure

and how frequently. We believe that this data would better enable network engineers to analyze

Anycast routing on PATHly and is a vital feature to implement in future work.

5.4 Better Visualize Difference Between IPv4 and IPv6

PATHly’s goal as an application is to allow for network engineers to ascertain differences

between IPv4 and IPv6 Anycast forwarding. As PATHly is now, engineers are left to do that at

an eye level as IPv4 and IPv6 paths are rendered separately on the visualized graphs. At the

start of the project, we created UI mockups trying to determine the best way to visualize the

traceroute data. We ended up splitting up the IPv4 and IPv6 paths as we were unsure how often

the paths truly lined up with each other. To make determining path differences easier, we

believe it would be important to create a better method of visualizing the two paths. This would

require work on figuring out how to determine if an IPv4 and IPv6 address belong to the same

probe. Figure 29 shows a mockup of one potential graphical visualization, how the graphs could

have looked where the different protocols are represented by shapes. IPv4 nodes are squares.

IPv6 nodes are hexagons. Their intersections are then represented by circles.

27 From (n.d.). RIS Live — RIPE Network Coordination Centre. Retrieved December 9, 2022, from

https://ris-live.ripe.net/
28 From gorilla/websocket: A fast, well-tested and widely used WebSocket implementation for Go. (n.d.).

GitHub. Retrieved December 9, 2022, from https://github.com/gorilla/websocket

37

Figure 29: UI Mockup of Combined IPv4 and IPv6 Paths.

5.5 Better Visualize Most Frequently Changing Paths

PATHly would benefit from features that make it easier to identify what graphs have

more frequently changing paths. Currently, network engineers using PATHly must identify what

graphs have frequently changing paths by eye. Furthermore, there’s no current visual

representation for how long ago a path was used by a packet. We had previously discussed a

feature that would change an edge’s color based on its “lastUsed” Unix Timestamp. These

colors could be on a scale where a lighter shade represents a path that hasn’t been used

recently, while a darker shade represents a path used not that long ago. A mockup of this

feature can be seen in Figure 30. Furthermore, users representing multiple graphs may want to

compare graphs based on how often their paths change. This could be done by creating a

sorting method that leaves graphs that change often towards the top of the page, and graphs

that don’t change often towards the bottom.

38

Figure 30: Mockup of Representing Edge Usage with Color Scale.

Path used
less recently

Path used more
recently

39

6. CONCLUSION

IP Anycast is a routing delivery scheme where multiple locations are identified by the

same IP range, and the network distributes traffic across those locations. If one location fails to

connect, traffic can be redirected to another location within the IP range. Modern Internet

services make significant use of IP Anycast as it allows CDNs like Fastly to process and cache

network data closer to the end users. Anycast usage bolsters system performance, security,

and load balancing. However, Anycast traffic management is difficult. This is especially evident

in IPv6 Anycast variations due to their lack of maturity in comparison to their IPv4 counterparts.

Packet routing is variable, meaning packets can take several path variations going from a

source to a destination.

 To address this, this project’s aim was to create a tool that utilizes public measurement

data in order to identify and analyze differences in IPv4 and IPv6 Anycast routing. To fulfill this

project’s vision, we developed a traceroute visualization tool called PATHly Visualizer, using

RIPE Atlas data being forwarded towards Fastly’s Anycast servers. PATHly provides clean and

customized visualizations of RIPE Atlas’ traceroute data. PATHly users are also able to modify

what RIPE Atlas measurements are being tracked on the backend. Network engineers can

utilize PATHly to discern where path changes often occur and identify differences between both

the IPv4 and IPv6 forwarding.

We evaluated our code's efficiency and functionality through GitHub Actions, rigorous

code reviews, and application testing. GitHub Actions were written to verify specific functionality

whenever new code was pushed to our codebase. Code reviews were done often by several

different reviewers to make sure all code was written efficiently and documented well. Finally,

the application was run dozens of times to verify its functionality and to make any minor tweaks

to its appearance. PATHly is hosted on Fastly distributed VMs on GCP, which allowed us to

host a prototype of the application and receive feedback from our sponsor. Given all the testing

performed throughout the project, we validated PATHly’s functionality and efficiency.

PATHly enables users to visualize the path a packet takes from a source probe to its

destination in an accessible and low-cost manner. This method of analyzing Anycast path

visibility provides for a more user-friendly experience and can open more doors in the world of

Anycast stability research. There are existing tools that do similar work, but they are often only

available at the enterprise-level and at high costs. PATHly provides Fastly engineers with a way

to visually explore packet routes. As technology continues to grow and the world becomes more

interconnected, it is crucial to be able to better understand the systems and networks in place.

40

PATHly is one step to gaining more insight into Anycast stability, which can lead to a wealth of

technological development.

41

REFERENCES

(n.d.). RIS Live — RIPE Network Coordination Centre. Retrieved December 9, 2022,

from https://ris-live.ripe.net/

(n.d.). Jest · Delightful JavaScript Testing. Retrieved December 9, 2022, from

https://jestjs.io/

(n.d.). DNS-OARC: Home. Retrieved December 12, 2022, from https://www.dns-

oarc.net/

Cloudflare. (n.d.). What is an autonomous system? | What are ASNs? Cloudflare.

Retrieved November 8, 2022, from https://www.cloudflare.com/learning/network-

layer/what-is-an-autonomous-system/

Cloudflare. (n.d.). What is the network layer? | Network vs. Internet layer. Cloudflare.

Retrieved November 8, 2022, from https://www.cloudflare.com/learning/network-

layer/what-is-the-network-layer/

codstar. (2019, May 27). traceroute command in Linux with Examples. GeeksforGeeks.

Retrieved December 6, 2022, from https://www.geeksforgeeks.org/traceroute-command-

in-linux-with-examples/

Color contrast checker analyzer tool. (n.d.). Adobe Color. Retrieved December 7, 2022,

from https://color.adobe.com/create/color-contrast-analyzer

Differences between IPv4 and IPv6. (2022, June 28). GeeksforGeeks. Retrieved

November 8, 2022, from https://www.geeksforgeeks.org/differences-between-ipv4-and-

ipv6/

DNS-OARC/ripeatlas: Go bindings for RIPE Atlas API. (n.d.). GitHub. Retrieved

December 12, 2022, from https://github.com/DNS-OARC/ripeatlas

42

Fisher, T. (2022, March 8). What Is a Hostname? (Host Name Definition). Lifewire.

Retrieved December 6, 2022, from https://www.lifewire.com/what-is-a-hostname-

2625906

Garn, D. M. (2022, April 4). The Ping Command | Computer Networking. CompTIA.

Retrieved November 8, 2022, from https://www.comptia.org/blog/understanding-ping-

command-results

GeeksforGeeks. (2022, July 1). Border Gateway Protocol (BGP). GeeksforGeeks.

Retrieved November 8, 2022, from https://www.geeksforgeeks.org/border-gateway-

protocol-bgp/

gin-gonic. (n.d.). gin-gonic/gin. GitHub. Retrieved December 15, 2022, from

https://github.com/gin-gonic/gin

gorilla/websocket: A fast, well-tested and widely used WebSocket implementation for

Go. (n.d.). GitHub. Retrieved December 9, 2022, from

https://github.com/gorilla/websocket

Gridelli, S. (2019, November 27). Traceroute Benefits and Limits. NetBeez. Retrieved

December 3, 2022, from https://netbeez.net/blog/traceroute/

Grimmick, R. (2022, June 25). What is Traceroute? How It Works and How to Read

Results. Varonis. Retrieved December 6, 2022, from https://www.varonis.com/blog/what-

is-traceroute

How Anycast Works - An Introduction to Networking. (2018, October 4). KeyCDN.

Retrieved November 8, 2022, from https://www.keycdn.com/support/anycast

ICMP - Echo / Echo Reply (Ping) Message. (n.d.). Firewall.cx. Retrieved December 6,

2022, from https://www.firewall.cx/networking-topics/protocols/icmp-protocol/152-icmp-

echo-ping.html

43

Kesavan, A. (2016, May 19). Using Anycast for Internet Services. ThousandEyes.

Retrieved December 5, 2022, from https://www.thousandeyes.com/blog/using-anycast-

for-internet-services

React Components. (n.d.). W3Schools. Retrieved December 5, 2022, from

https://www.w3schools.com/react/react_components.asp

Sub Flows Guide. (n.d.). React Flow. Retrieved December 7, 2022, from

https://reactflow.dev/docs/guides/sub-flows/

Taylor, R. (2021, July 22). IPv4 vs IPv6: What's the difference? – BlueCat Networks.

BlueCat Networks. Retrieved November 8, 2022, from

https://bluecatnetworks.com/blog/ipv4-vs-ipv6-whats-the-difference/

What is RIPE Atlas? (n.d.). RIPE Atlas. Retrieved December 8, 2022, from

https://atlas.ripe.net/about/

Wikimedia. (n.d.). Routing. Wikipedia. Retrieved November 8, 2022, from

https://en.wikipedia.org/wiki/Routing

44

APPENDIX A - USER STORIES

As a network operator, I want to be able to:

● view IPv4 + IPv6 paths from a particular probe to a target (Fastly, or other) to show the

inbound paths taken

● view IPv4 + IPv6 paths from a particular ASN to a target to show the inbound paths

taken

● view IPv4 + IPv6 paths from a particular country to a target to show the inbound paths

taken

● view IPv4 + IPv6 paths via a particular ASN to identify paths that traverse a problematic

network

● view all paths taken from a probe recently and show recent changes to help identify

network instability

● view all paths taken from a probe recently and show which paths are taken most

frequently, to indicate typical vs. atypical paths

● visualize side-by-side IPv4 and IPv6 paths at the IP or ASN level, to identify differences

by eye

● prioritize and view paths that change frequently, as a means to identify routing issues

● identify AS paths where IPv4 and IPv6 paths do not match, as a sign of mismatched

network policy

45

APPENDIX B - USER INTERFACE MOCKUPS

Figure 31: Main Dashboard Mockup.

Figure 32: Data Visualization Mockup 1 - IPv4 and IPv6 Side-By-Side.

46

Figure 33: Data Visualization Mockup 2 - IPv4 and IPv6 Branching.

Figure 34: Data Visualization Mockup 3 - IPv4 and IPv6 Together.

47

APPENDIX C - GOLANG ISSUES

Our team had little experience with Go, but with it being one of Fastly’s primary

languages and a huge learning opportunity, we decided to take on the challenge of learning and

utilizing Go.

After beginning to learn Go, we ran into a number of issues with the language. These

issues may have been mitigated had we known which tools and frameworks we would be using

earlier in the project preparation term. This would have allowed us to front-load gaining more

familiarity with the language. Despite having decided to break into two teams for the frontend

and backend, all project team members spent roughly the first two weeks learning and working

with Go on the backend. If given the opportunity to do the project again, the team should split

into sub teams earlier on to make more effective use of time.

Of the challenges we faced with Go, many were derived from how the language is set

up. Some of these stumbling blocks were relatively minor since they could be overcome by

gaining more experience and familiarity with the language. However, some complications that

arose from Go included:

● Go’s insistence on no unused variables. This could be frustrating at times since it

inhibited learning through trial-and-error. If an unused variable gave a linter warning

rather than a full compilation error, it would have made for better error handling.

● Lack of support for iterators. This can greatly complicate the process of abstraction.

You can choose to follow one convention, but it starts to break down when dealing

with other libraries and value/error pairs. For example, the steps involved in

processing traceroute data could be easily described by an iterator chain. However,

this would require that we implement our own iterator type and functionality that would

normally be provided by the standard library (map, filter, fold, chain, flatten, etc.).

● Lack of first class support for tuples. Go tries to get around this by allowing

functions to return tuples that must be immediately unwrapped. However since these

are not types so they don’t play well with the new generics system.

● Poor error handling. While treating errors as values can have some benefits, Go

lacks an easy way to do propagation. It is frustrating to manually propagate errors and

checking errors before using the function result is not enforced in any way. This issue

could have been mitigated if the Go language had support for a try operator or builtin

macro support.

48

● Using absolute dependency paths is okay, but Go enforces their use

everywhere. If you want to fork a project then you need to change every import to

your repository instead.

● Lack of operator overloading. This is a minor point, but it would make a lot of code

more maintainable. This was not too much of an issue for our project though, as there

were not many areas that would have benefitted from operator overloading.

● Poor standard library collections. They are not inefficient, but do have limited

options. Slices are difficult to mutate as they are exclusively passed by value. You

also do not get many standard library options other than maps and slices. If you want

anything even slightly more complex like a dequeue, min heap, or binary tree map you

will need to implement it yourself or find a library.

