
MQP AW1 - CELL

Jamming Security for LTE Networks

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in partial

fulfillment of the requirements for the Degree of Bachelor of Science.

Submitted by:

Julien Ataya,

Electrical and Computer Engineering

Matthew Farah,

Electrical and Computer Engineering

Project Advisor:

Professor Alexander Wyglinski,

Electrical and Computer Engineering

Worcester Polytechnic Institute

Submitted on: March 30, 2020

This report represents work of WPI undergraduate students submitted to the faculty as evidence

of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review.

II

Abstract

The goal of this project is to build a 4G LTE jamming detector testbed to demonstrate its

effectiveness during a jamming attack. The setup was implemented through the use of

OpenAirInterface, GNU Radio, Python, and C via multiple software-defined radios and an LTE

capable smartphone. The approach was successful and the base station was able to bypass a random

frequency hopper interfering with the LTE downlink signal.

III

Acknowledgements

 The project would not have been successful without all the help and resources received

from many members of Worcester Polytechnic Institute, National Instruments, and the Air Force

Research Lab. We want to thank Professor Wyglinski, our faculty advisor, for the guidance and

enthusiasm he provided throughout the entirety of the project. We want to thank Kuldeep Gill, a

PhD student working under Professor Wyglinski, for all the time he dedicated in helping us get

acquainted with LTE technology and help throughout the many issues that arose along the way.

We would also like to thank YaYa Brown and Cynthia Teng for helping us develop the testbed

during A Term 2019 and for providing an intelligent jammer for us to use and develop security

measures into the LTE system. We would also like to give our appreciation to Stephen Hary from

the AFRL for helping us in the participation of the Beyond 5G competition and National

Instruments for providing the team with multiple software-defined radios. Finally, we would like

to thank Bob Lee from the Wright Brothers Institute for his role in the competition.

IV

Authorship Page

Both authors contributed an equal amount of time towards project and report completion.

V

Executive Summary

Communication systems, whether it be 4G LTE or 5G, have become an integral part of

society today and have caused people to be reliant on consistent connection between mobile

phones and the LTE signal [1]. However, this connection can be disrupted through the use of a

jamming attack, which can cause denial of service. These denial of service attacks have been

increasing in recent years, making the jamming attacks becoming more complex [2]. Hence, there

is a need to build more advanced security protocols that mitigate the interference of different

jamming attacks. This project has developed an LTE testbed using software-defined radios and

has built security protocols into the testbed to protect the system from wireless denial of service

attacks. The jamming scheme, a single-tone jammer, was provided by another student team.

 There were many different ways of actually building anti-jamming security into the testbed.

The use of the field-programmable gate array (FPGA) found on the software-defined radio

hardware was a potential solution, but it was determined that this low-latency processor was not

necessary to achieve real-time results. The team decided to utilize a radio to act as a receiver and

perform computations using GNU Radio/Python to ultimately bypass jamming. The testbed

included a USRP B210 acting as the base station, a USRP N210 as a jammer, a Samsung Galaxy

S4 as the user equipment, and a USRP X310 acting as the jamming detector. All of these

components were analyzed inside of a Faraday cage to shield RF signals, and a 4-core Linux

computer running Ubuntu 18.04 was connected to all of the software-defined radios in the system

and was used to run the core network. In order to get everything running, the two main tutorials

that were used were one provided by the Open Cells project and the other from Chance Tarver,

who has developed his own step-by-step guide to implementing an LTE network using

OpenAirInterface. Another student team consisting of YaYa Brown and Cynthia Teng developed

VI

the narrow-band jammer using GNU Radio. Figure ES.1 shows this team’s setup inside the

Faraday cage and Figure ES.2 shows the testbed on the Linux computer. The screens are top-left:

jammer and jamming detector terminals, top-right: LTE eNodeB and EPC terminals, bottom-left:

jamming detector running, bottom-right: jammer running.

Figure ES.1: Hardware Setup of Testbed in Faraday Cage

Figure ES.2: Testbed Setup with Jamming Detected

VII

 Figure ES.3 shows a concept diagram of how the jamming detector works in an LTE

cellular network. The uplink signal is not disrupted, but the downlink signal is being targeted by

the jammer and also monitored by the detector.

Figure ES.3: Concept Diagram of LTE Jamming Detection Testbed. USRP Images Taken from [25]

The development of the jamming detector, a USRP X310, was done by modifying a GNU

Radio generated Python script, and this was then interfaced with the OpenAirInterface code to

change the transmission frequency of the downlink signal. This detector would first self-determine

a threshold power level for an ideal LTE signal and decide whether or not the power level is typical

of an LTE signal. If any power spikes were found, then jamming was present and the X310 would

send a signal to notify the eNodeB. To bypass the interference, the eNodeB would change the

downlink center frequency in LTE Band 7 to enable the Samsung Galaxy S4 to reconnect to it.

Figure ES.4 shows a conceptual flow chart of how the jamming detector works.

Figure ES.4: Conceptual Flow Diagram of Jamming Detector

VIII

 In order to test the effectiveness of the anti-jamming approach, Wireshark, an open-source

packet analyzer, was used to evaluate metrics such as throughput and packet receiving rate. Figure

ES.5 shows the graph of the packet receiving rate as a function of time for the LTE system without

the jamming attack and Figure ES.6 shows the plot after the eNodeB changed the downlink signal

frequency to mitigate jamming. The packet loss analysis when the jammer was performing DoS

showed that the packet receiving rate decreased to 0. Once the eNodeB was alerted of the

interfering signal and it changed the downlink transmission frequency, the packet receiving rate

increased. This shows how the jamming was bypassed and the UE was still able to connect to the

Internet.

Figure ES.5: Packing Receiving Rate vs. Time at 2.68 GHz Downlink Frequency

Figure ES.6: Packet Receiving Rate vs. Time After eNodeB Changed Downlink Frequency

IX

Table of Contents

Abstract II

Acknowledgements III

Authorship Page IV

Executive Summary V

Table of Contents IX

List of Figures XI

List of Tables XIII

List of Acronyms XIV

1. Introduction 1

1.1 Motivation 1

1.2 Current State of the Art 2

1.3 Technical Challenges 3

1.4 Contributions 5

1.5 Report Organization 5

2. Overview of LTE Technology 6

2.1 LTE Architecture 6

2.2 LTE Physical Layer 8

2.3 LTE Error Detection 13

2.4 OpenAirInterface 15

2.5 Software-Defined Radios and GNU Radio 18

2.6 Chapter Summary 22

3. Proposed Approach 23

3.1 Project Scope and Metrics for Success 23

3.2 Anti-Jamming Method 24

3.3 Project Planning 26

3.4 Technical Deliverables 31

3.5 Chapter Summary 31

4. Project Implementation 33

4.1 Testbed Implementation 33

4.2 Jamming Detection 37

4.3 Alerting the eNodeB 39

4.4 Chapter Summary 40

X

5. Results & Discussion 41

5.1 Testbed 41

5.2 Jamming Detection and Alerting the eNodeB 46

5.3 Chapter Summary 54

6. Conclusion 55

6.1 Recommendations for Future Work 55

Works Cited 57

Appendix A: Python Code for Jamming Detector 59

XI

List of Figures

Figure ES.1: Hardware Setup of Testbed in Faraday Cage VI

Figure ES.2: Testbed Setup with Jamming Detected VI

Figure ES.3: Concept Diagram of LTE Jamming Detection Testbed VII

Figure ES.4: Conceptual Flow Diagram of Jamming Detector VII

Figure ES.5: Packing Receiving Rate vs. Time at 2.68 GHz Downlink Frequency VIII

Figure ES.6: Packet Receiving Rate vs. Time After eNodeB Changed Downlink Frequency VIII

Figure 1.1: 4G LTE Connections Worldwide 2012-2020 1

Figure 2.1: Timeline of Cellular Technology 7

Figure 2.2: LTE Architecture Overview 7

Figure 2.3: LTE FDD Frame Structure 12

Figure 2.4: LTE Resource Block 13

Figure 2.5: CRC Flow Diagram 14

Figure 2.6: OAI Implementation Diagram 17

Figure 2.7: Block Diagram of the Receiving Functionality of SDR 19

Figure 2.8: Block Diagram of the Transmission Functionality of SDR 20

Figure 2.9: GNU Radio Flowgraph Example 22

Figure 3.1: Logic Diagram for Proposed Approach 25

Figure 3.2: Concept Diagram of LTE Jamming Detection Testbed 26

Figure 3.3: A Term Gantt Chart 28

Figure 3.4: B Term Gantt Chart 29

Figure 3.5: C Term Gantt Chart 30

Figure 4.1: Hardware Setup of Testbed in Faraday Cage 34

Figure 4.2: MME Statistics without eNodeB Connection 36

Figure 4.3: MME Statistics with eNodeB Connection 36

Figure 4.4: MME Statistics with eNodeB and UE Connection 37

Figure 4.5: GNU Radio Flowgraph for Monitoring LTE Downlink Signal 38

Figure 4.6: Conceptual Flow Diagram of Jamming Detector 39

Figure 5.1: FFT Plot and Spectrogram at Center Frequency of 2.68 GHz with Jammer Off 42

Figure 5.2: FFT Plot and Spectrogram at Center Frequency of 2.68 GHz with Jammer On 43

Figure 5.3: Testbed Setup with Jamming Detected 45

Figure 5.4: Jamming Detector Changing Receiving Frequency after Detecting Interference 47

XII

Figure 5.5: Jamming Detector Terminal after Detecting Interference 48

Figure 5.6: FFT Plot and Spectrogram at New Center Frequency to Bypass Jamming 49

Figure 5.7: Jamming Detector Terminal after Alerting eNodeB of Interference 50

Figure 5.8: Packing Receiving Rate vs. Time at 2.68 GHz Downlink Frequency 52

Figure 5.9: Packet Receiving Rate vs. Time After eNodeB Changed Downlink Frequency 53

XIII

List of Tables

Table 2.1: Description of EPC Components 8

Table 2.2: 4G LTE Downlink Physical Channels 10

Table 2.3: 4G LTE Downlink Physical Signals 11

Table 2.4: 4G LTE Uplink Physical Channels 11

Table 2.5: 4G LTE Uplink Physical Signals 12

Table 2.6: Software Offerings for OAI 16

Table 4.1: LTE Testbed Setup Process 35

XIV

List of Acronyms

Acronym Description

1G First Generation Cellular Networks

2G Second Generation Cellular Networks

3G Third Generation Cellular Networks

3GPP 3rd Generation Partnership Project

4G LTE Fourth Generation Long Term Evolution

CDMA Code-division Multiple Access

COTS Commercial Off-the-shelf

CRC Cyclic Redundancy Check

DoS Denial of Service

DSP Digital Signal Processors

DSSS Direct Sequence Spread Spectrum

E-UTRAN Evolved UMTS Terrestrial Radio Access Network

EPC Evolved Packet Core

FDD Frequency Division Duplexing

FDMA Frequency-division Multiple Access

FHSS Frequency-hopping Spread Spectrum

FPGA Field-programmable Gate Arrays

GPP General Purpose Processors

GSM Global System for Mobile Communications

GUI Graphical User Interface

HSS Home Subscriber Server

IQ In-phase and Quadrature

MIMO Multiple In Multiple Out

MME Mobility Management Entity

MQP Major Qualifying Project

OAI OpenAirInterface

OFDMA Orthogonal Frequency-division Multiple Access

PGW Packet Data Network Gateway

XV

PHY Physical Layer

RF Radio Frequency

SC-FDMA Single Carrier Frequency-division Multiple Access

SDR Software-defined Radio

SGW Serving Gateway

SoC System on Chip

SON Self-organizing Networks

TDD Time Division Duplexing

UE User Equipment

USRP Universal Software Radio Peripheral

1

1. Introduction

This chapter explains the significance of Long-Term Evolution (LTE) networks and their

presence in society, along with the current work that has been done exploring the effects of

jamming on them. Moreover, this section describes the team’s work and how it is relevant towards

further advancements regarding jamming mitigation for LTE networks.

1.1 Motivation

 Fourth Generation (4G) LTE networks help businesses, both small and large, throughout

the world. Industries such as health, education, and defense have benefited from the use of LTE

due to the significant presence of smartphones in society. Moreover, people use their cell phones

every day and one dropped call or a few seconds of slow data speeds are noticeable. Worldwide,

there are currently over 5 billion smartphone users, which equates to over 60% of the global

population [1]. Figure 1.1 shows the amount of 4G LTE connections around the world since 2012

and the projected amount for 2020. The amount has been increasing significantly and will continue

to do so.

Figure 1.1: 4G LTE Connections Worldwide. Adapted from [3]

2

 In addition to commercial use, the U.S. military uses LTE networks as a means of keeping

soldiers on land, sea, and air all connected. Not only are commercial off-the-shelf (COTS) products

such as smartphones easier to maintain and cheaper to acquire, but they are compatible with high-

speed LTE, making them viable choices for the battlefield [4]. With LTE’s already prominent

presence and continuing growth, its technology is widely known, which also makes it increasingly

vulnerable to jamming attacks. A study done at Virginia Tech discovered that a 4G LTE base

station can be easily disrupted using fairly simple and inexpensive technology. In Particular, Jeff

Reed and Marc Lichtman describe the control instructions that make the network so vulnerable

when they are targeted with high-power noise transmission. According to the study, using a laptop

and a software-defined radio (SDR), which can cost as little as $650, is sufficient to create this

disturbance [5]. The motivation behind this project is to detect these security threats and implement

a method to provide alerts to the cellular base station.

1.2 Current State of the Art

Investigating low-cost LTE networks has been made possible through the use of SDRs.

Moreover, open-source software such as srsLTE [6], GNU Radio [7], and OpenAirInterface (OAI)

[8] [20] can be used to interface with the Universal Software Radio Peripheral (USRP) hardware

and create the LTE systems.

 There is very little research available on LTE jamming mitigation [10], however, there are

a few potential solutions that have been proposed. One group of researchers developed proof of

concepts for methods of enhancing LTE security through the physical (PHY) layer communication

[10]. By using spread spectrum modulation of downlink broadcast channels, this method aims to

counteract jammers that attack key signals in the center 1 MHz frequency of the downlink. Direct

Sequence Spread Spectrum (DSSS) distributes these signals across the entire 10 MHz of

3

bandwidth to make targeted attacks more difficult by increasing the number of key subcarriers

[10]. An alternative method that has been investigated involves the encryption of significant

signals such as the master information block and the system information block. These contain vital

network configuration parameters that allow the user equipment (UE) to connect to the LTE

network, however, the signals are transmitted in the clear and are vulnerable to attacks. Adding

encryption would strengthen this security and mitigate signal corruption [11]. Another study

looking into military applications mentions an LTE system, where the eNodeB can detect jamming

by using self-organizing network (SON) and solves the issue with radio frequency (RF) frequency

hopping [12]. In situations where the frequency of the LTE signal is not known to the jammer,

minimizing the transmitted power can make it difficult for the attacker to discover them [13].

However, if the signal transmissions are already known, maximizing the power would increase

resistance to the jammer by requiring a jamming signal strong enough to disrupt the LTE signal

[13]. The goal for this project is to expand on current research and determine the best solution for

networks experiencing high-power wireless jamming.

1.3 Technical Challenges

 In LTE systems, the scale of importance of reliable service depends on the application, but

oftentimes interference can cause drastic outcomes. Jamming attacks can lead to denial of service

(DoS), which essentially blocks the proper transmission, and can have negative consequences.

According to the latest security incident statistics, DoS attacks have been rising substantially, and

this becomes ever more important with the further advancement of technology that relies on LTE

[14].

DoS attacks have not also become more sophisticated over the years, but can be easily

performed through the use of software-defined radios such as USRPs. These jamming attacks have

4

four major categories: flood attacks, amplification attacks, protocol vulnerability exploitation, and

malformed packets [14]. Due to the complexity associated with each DoS, it is vital for LTE

systems to contain active security measures to prevent DoS from occurring. The main themes

associated with preventing DoS today include: the attack rate, attack attribution, effective traffic

analysis, sophisticated attacks, effective mitigation, performance evaluation, and omnipresent

connections [14]. A successful LTE system contains sufficient security measures to prevent DoS.

Due to the continued increase in cyber-warfare attacks, this issue should not be taken lightly and

further solutions that exist today must be investigated.

Due to the disturbance that jamming attacks create, it becomes even more complex to deal

with all possible scenarios of creating anti-jamming protocols and in the end create a system that

countermeasures most, if not all, jamming methods. Some of the current anti-jamming protocols

include: Hermes Nodes, Control Channel Attack Prevention, MULEPRO, Cross-Layer Jamming

Detection and Mitigation [15].

Hermes Nodes is a hybrid of DSSS and Frequency-hopping Spread Spectrum (FHSS). Here

the DSSS makes use of a wide bandwidth to transmit the signal and makes the jammer believe that

the real data is white noise instead. The FHSS allows for the avoidance of interference [9].

The Control Channel Attack Prevention approach is a way of scanning the control channel

to detect if a node has been jammed or not. When a node has been found to be compromised, then

the control channel is reset through the use of an updated hopping sequence [15].

MULEPRO extends to each node and each specific node will determine whether or not it

is being jammed. This is done by having two modes on the eNodeB: normal mode where the

common channel is only used and exfiltration mode that takes use of a milt-channel approach to

send and receive data in a DoS attack [15].

5

The Cross-Layer Jamming Detection and Mitigation method is based on the PHY layer and

takes use of a tree-based approach, where messages can be transmitted using a single hopping

pattern. Once jamming is detected, the transmitter uses other test patterns in transmission [15].

 Most of the current anti-jamming protocols are based upon spread spectrum techniques that

include frequency hopping and Code-division Multiple Access (CDMA) [16]. These were initially

developed for use in the military, but they do not provide sufficient security measures in the world

today that is run on “high-speed multimedia wireless services” [16].

1.4 Contributions

Throughout the stages of the project, this Major Qualifying Project (MQP) has developed:

1. An LTE System that includes a base station and LTE compatible Samsung Galaxy S4.

The system is located in a Faraday cage to shield RF signal, as this system is operating

at a licensed band (2.68GHz initially). The Samsung Galaxy S4 successfully connects

to the base station and has direct access to the internet, and is quite fast.

2. An anti-jamming approach that uses I/Q characteristics across the LTE signal spectrum

to determine if jamming is being present. If jamming is found, a message will be sent

to the base station to change to a different frequency and avoid the jamming.

1.5 Report Organization

 The rest of this report is organized as the following: it provides a detailed explanation of

LTE architecture and the components of the testbed. Chapter 3 outlines the team’s milestones with

a Gantt chart for the academic year. The methodology and implementation of the mitigation

techniques are then described in chapter 4 and analyzed in chapter 5. Recommendations for future

work are given in Chapter 6.

6

2. Overview of LTE Technology

This chapter outlines LTE and provides insight to the multiple layers of the technology. It

explains terms such as the UE and eNodeB, along with how they communicate with each other.

This section also describes the operation of the core network within LTE. The security of this

technology is also explored and the specific areas vulnerable to attack are addressed, along with

potential methods of mitigation.

2.1 LTE Architecture

 4G LTE has emerged from prior mobile telecommunication technologies, beginning with

the first-generation mobile system (1G). This was a fairly basic system that only provided mobile

voice services through Frequency Division Multiple Access (FDMA) for analog radio

transmissions [17]. The second-generation cellular networks (2G) introduced digitization and

compression of speech to increase the capacity of mobile users. 2G includes time and code

multiplexing by using the Global System for Mobile Communications (GSM) and CDMA

standards [17]. As the use of mobile phones began to grow rapidly, the technology continued to

improve with third generation cellular networks (3G). A significant difference between 3G and 2G

is the use of packet switching rather than circuit switching for data transmissions. Along with faster

data speeds, 3G was also an improvement on prior technologies because it is the first technology

to provide Internet access to mobile users. The current 4G LTE offers more bandwidth than 3G,

resulting in faster data rates with peak download speeds of 100 Mbit/s and peak upload speeds of

50 Mbit/s [17]. A timeline visualizing this transition from 1G technology to 4G technology is

shown in Figure 2.1.

7

Figure 2.1: Timeline of Cellular Technology. Adapted from [18]

At a high level, a 4G LTE network is comprised of three main components: the UE, the

Evolved Packet Core (EPC), and the eNodeB. Figure 2.2 illustrates the infrastructure, along with

components of the EPC.

Figure 2.2: LTE Architecture Overview. Adapted from [19]

As shown in the diagram, the UE connects to the eNodeB, which performs dynamic

resource allocation. The S-connections act as an interface between the two entities to which they

are connected [19]. The EPC is responsible for the connection to the internet and is comprised of

the Mobility Management Entity (MME), the Home Subscriber Server (HSS), the Serving

8

Gateway (SGW), and the Packet Data Network Gateway (PGW) [14]. The MME is the control

node that handles the signal processing between the UE and the EPC. The HSS holds the identity

of the MME that the user is attached to [21]. The PGW is responsible for IP address allocation for

the UE and quality of service (QoS). SGW handles IP packet transfers when UE moves between

eNodeBs and keeps the information regarding to the UE in its idle state. Figure 2.2 demonstrates

a single eNodeB, but the overall connection between multiples eNodeBs is known as the E-

UTRAN [19]. The E-UTRAN handles the radio resource management, header compression,

security, and connectivity to the EPC. The roles of each component of the EPC is outlined in Table

2.1.

Table 2.1: Description of EPC Components

Entity Description

Mobile Management Entity (MME) The main control entity for the E-UTRAN. It

communicates with HSS for user

authentication and provides UEs with

mobility management.

Home Subscriber Server (HSS) A central database that stores user profiles. It

provides user authentication information to

the MME.

Serving Gateway (SGW) It performs the routing and forwarding of user

data packets.

Packet Data Network Gateway (PGW) It gives the UE access to packet data

networks, which provides Internet access.

2.2 LTE Physical Layer

 This MQP will primarily deal with the LTE PHY layer when analyzing mitigation

techniques for jamming. This layer is responsible for the communication between the UE and the

eNodeB, which involves both the uplink and downlink. The uplink refers to when the UE sends

9

data to the eNodeB and it uses a Single Carrier Frequency-division Multiple Access (SC-FDMA)

signal, which is beneficial in that it reduces the amount of power that is required to be transmitted.

This is necessary for the uplink due to the low power capabilities of UEs such as smartphones [22].

For the downlink, which is the connection from the eNodeB to the UE, LTE uses an Orthogonal

Frequency-division Multiple Access (OFDMA) scheme. This allows for Multiple In Multiple Out

(MIMO) connections in the system, increasing the overall throughput [22]. This MQP analyzes

jamming mitigation techniques on the downlink, and there are many physical channels and signals

that can be disrupted from jamming attacks. A channel refers to resource elements that carry

information originating from higher layers, while a signal does not carry any information from

higher layers.

 First there are the 4G LTE Downlink Physical Channels. These include: The Physical

Downlink Shared Channel (PDSCH), Physical Broadcast Channel (PBCH), Physical Multicast

Channel (PMCH), Physical Control Format Indicator Channel (PCFICH), Physical Downlink

Control Channel (PDCCH), Physical Hybrid ARQ Indicator Channel (PHICH), and Master

Information Block (MIB). These channels are responsible for carrying data from the higher layers

and are the interface between 3GPP standards. A description of each channel is described in Table

2.2.

10

Table 2.2: 4G LTE Downlink Physical Channels [23]

Channel Description

Physical Downlink Shared Channel (PDSCH) Carries data and signaling messages from

Downlink Shared Channel (DL-SCH) and

paging messages from Paging Channel (PCH).

Physical Broadcast Channel (PBCH) Carries the Master Information Block from

the Broadcast Channel.

Physical Multicast Channel (PMCH) Carries multimedia broadcast/multicast

service data of the Multicast Channel.

Physical Control Format Indicator Channel

(PCFICH)

Carries organization of data and control

information in the downlink.

Physical Downlink Control Channel

(PDCCH)

Carries scheduling commands and grants.

Physical Hybrid ARQ Indicator Channel

(PHICH)

Carries information that indicates an

acknowledgement or negative

acknowledgement for the UE to determine if a

retransmission is necessary.

Master Information Block (MIB) Carriers system information including the

bandwidth and frame number.

Next there are the 4G LTE Downlink Physical Signals. These include: Primary

Synchronization Signal (PSS) and Second Synchronization Signal (SSS), Cell-specific Reference

Signal (C-RS), MBSFN Reference Signal (MBSFN-RS), UE-Specific Reference Signal (UE-RS),

and Positioning Reference Signal (P-RS). These signals do not contain information coming from

the higher layers. A description of each signal is described in Table 2.3.

11

Table 2.3: 4G LTE Downlink Physical Signals [23]

Signal Description

Primary Synchronization Signal (PSS) and

Second Synchronization Signal (SSS)

PSS and SSS each carry information used by

the UE to obtain cell identity.

Cell-specific Reference Signal (C-RS) Sent by the eNodeB to support channel

estimation at the UE.

MBSFN Reference Signal (MBSFN-RS) Reference signal for Multimedia Broadcast

Multicast Service and is used for channel

estimation.

UE-Specific Reference Signal (UE-RS) Sent to the UEs for channel estimation.

Positioning Reference Signal (P-RS) Sent by the eNodeB to support location-based

services.

The uplink connection between the eNodeB and UE has a set of physical channels and

signals, similar to the downlink. The 4G LTE Uplink Physical Channels are: Physical Uplink

Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH), and Physical Random-

Access Channel (PRACH). These channels contain resource elements that come from the higher

levels (similar to the downlink). An in-depth description of these channels is seen in Table 2.4.

Table 2.4: 4G LTE Uplink Physical Channels [23]

Channel Description

Physical Uplink Shared Channel (PUSCH) Carries data and signaling messages and

Uplink Control Information (UCI) when the

UE is transmitting data.

Physical Uplink Control Channel (PUCCH) Carries UCI when the UE is only transmitting

control information.

Physical Random-Access Channel (PRACH) Carries random access transmissions from the

Random-Access Channel.

Finally, the LTE Uplink Physical Signals are: Demodulation Reference Signal (D-RS) and

12

Sounding Reference Signal (S-RS). These two signals are used by the physical layer and do not

actually carry information from higher layers, similarly to the downlink. Table 4.5 discusses these

signals in detail.

Table 2.5: 4G LTE Uplink Physical Signals [23]

Signal Description

Demodulation Reference Signal (D-RS) Sent by the UE to the eNodeB for channel

estimation.

Sounding Reference Signal (S-RS) Sent by the UE and configured by the eNodeB

for power reference to support frequency

dependent scheduling.

The physical uplink and downlink channels/signals are depicted through the use of a frame

structure. LTE uses two types of frame structure: Frequency Division Duplexing (FDD), which

separates the uplink and downlink by frequency, and Time Division Duplexing (TDD), which

separates uplink and downlink by time [24]. Figure 2.3 depicts an FDD frame structure.

Figure 2.3: LTE FDD Frame Structure. Adapted from [26]

13

Each transmitted frame is 10 ms long and is broken up into ten 1 ms subframes containing

two 0.5 ms slots each. In an OFDMA scheme, a resource block is a 1 slot long time slice and 180

kHz wide in frequency [24]. The subframes contain subcarriers that carry the uplink and downlink

signals. Figure 2.4 shows an example of a single LTE subframe. The signals in the subframe

occupy various slots when being transmitted to a receiver.

Figure 2.4: LTE Resource Block. Adapted from [27]

These symbols carry the uplink and downlink channels and signals previously described.

Figure 2.4 shows how the channels and signals are transmitted within the resource block and how

each symbol is either reserved or unused. Determining the exact frequency and time slices that key

LTE signals are sent at enables jammers to target significant parts of the downlink that can

drastically affect the whole network connection [25]. Frequency hopping randomly targets these

signals and effectively causes DoS.

2.3 LTE Error Detection

 LTE technology has countermeasures for dealing with error, which occurs when the

transmitted data is different from the received data. To detect this, there is a cyclic redundancy

check (CRC) that looks for any issues in bit sequences and the 3GPP-LTE standard uses a 24-bit

14

CRC [29]. These check bits are appended to the end of the transmitted data to make the entire

sequence divisible by a predetermined binary number [29]. The receiver then divides the acquired

bits by this number from which two scenarios can occur. If there is a remainder, the received data

is rejected and must be retransmitted, but if the numbers are divisible, the data is assumed to be

correct and is therefore accepted. Figure 2.5 shows a conceptual flow diagram of the sender and

receiver using CRC to detect corrupt transmission [29].

Figure 2.5: CRC Flow Diagram. Adapted from [29]

The method of error detection via the CRC method is very simple to implement and is

suitable for determining data that was corrupted by noise. However, the CRC does not have the

ability to detect intentional interference not caused by noise, and exposes a large vulnerability in

the LTE system. The narrow-band jamming, which would not be detected by CRC, that this MQP

analyzes is frequency hopping. Here, high-power signals will transmit at random times, disrupting

key signals and the network as a whole. As a result, additional mitigation techniques are necessary

to successfully alert the eNodeB and to avoid a jamming attack, and this MQP explores a potential

solution.

15

2.4 OpenAirInterface

 OAI is an open-source platform that provides software and hardware tools for use in 3GPP

networks (e.g. 3G and LTE). It was developed by the Mobile Communications Department at

EURCOM and offers real-time transceiver applications (e.g. eNodeB, UE, EPC) through the use

of software defined radios [30]. As OAI is open-source, it includes a GitHub code repository to all

the components required to completely set up an LTE testbed with a working eNodeB and UE

[28]. The software packages include a fully functional 4G LTE EPC which contains the MME,

HSS, and SPGW. It also provides the E-UTRAN software to be used by the SDR to get the eNodeB

working. All of the software is designed to be used across a Linux-based system with USRP

functionality. Within the software packages themselves, high-level emulation modes are also

available which offer realistic and controllable experimentation. The purpose of providing all of

these elements to the user is to ease the development of a real-time stack with software-defined

radios [30].

 In order to use the code repository correctly and use it to its full potential, it is important to

understand the software packages and what is and is not offered in them. Table 2.6 shows the OAI

software implementations of the LTE framework.

16

Table 2.6: Software Offerings for OAI [30]

LTE Framework OAI Full Software Implementations of:

Downlink Channels PSS, SSS, PBCH, PCFICH, PHICH, PDCCH,

PDSCH, PMCH

Uplink Channels PRACH, PUSCH, PUCCH, SRS, DRS

Physical Layer MAC, RLC, PDCP, RRC, MCH, MCCH,

MTCH

 Priority-based MAC scheduler with

dynamic MCS selection

 Fully reconfigurable protocol stack

 Standard S1AP and GTP-U interfaces to

the Core Network

 IPv4 and IPv6

Core Network SGW, PGW, MME & HSS

UE UE handling procedures: attach,

authentication, service access, radio bearer

establishment

 Transparent access to the IP network (no

external SGW or PGW are necessary).

Configurable access point name, IP range,

DNS and E-RAB QoS

Hardware USRPs (many different variants, but this

project used B200, B210/N210, X310)

A flow diagram describing the software package layout of OAI is shown in Figure 2.6.

Essentially, it is showing how there are three main components towards implementing OAI. First,

the UE must be correctly configured and is adjustable to multiple UEs, as long as everything is

programmed correctly on the UE. Second, there is the eNodeB component, where the diagram

depicts all the software adjustable and available options for the eNodeB. The final component is

the EPC that shows all of its programmable parts as well.

17

18

2.5 Software-Defined Radios and GNU Radio

In order to build an LTE testbed that is fully operational, it is necessary not only to have

the software required but to also obtain optimal hardware. The hardware that is used to build an

eNodeB and other components for an LTE testbed consist of an SDR, which is a radio where all

the physical layer functions are defined through software [31]. The ability to fully adjust the

hardware properties is significant and due to this property, SDR has become the leading technology

for researching and developing advanced communication systems.

Figures 2.7 and 2.8 show block diagrams of SDR functionality for receiving and

transmitting applications, respectively. On the receive side, there is first an antenna to pick up the

transmitted signal, and an RF tuner that converts that analog signal to IF. The IF signal is then fed

into the analog to digital converter and the outputted samples are sent into the digital down

converter (DDC). At the DDC, the digital mixer and local oscillator shift the IF samples to

baseband and the low pass filter (LPF) confines the bandwidth of the final signal. The output of

the DDC is then sent into the processing block that can be done with one or a combination of DSPs,

FPGAs, and others. The transmitter of an SDR acts in the similar way of the receiver, but does the

reverse process, as shown in Figure 2.8.

https://www.draw.io/?page-id=w0bf60KniFvSzS6BwpSn&scale=auto#G1VeSAmiTF2cdlWerxb1-RJLRKXgB8r0x6
https://www.draw.io/?page-id=w0bf60KniFvSzS6BwpSn&scale=auto#G1VeSAmiTF2cdlWerxb1-RJLRKXgB8r0x6

19

https://www.draw.io/?page-id=iAc_x4q2qyzXMjmHpkxy&scale=auto#G18_gVmVtwDKBuSxpwU0NnZWCba_685w1x
https://www.draw.io/?page-id=iAc_x4q2qyzXMjmHpkxy&scale=auto#G18_gVmVtwDKBuSxpwU0NnZWCba_685w1x

20

21

An SDR is a radio that contains an RF front end where there is typically a transmit and

receive chain that can operate seamlessly together. All of its radio functions are implemented

through the use of programmable processing components that include Field-programmable Gate

Arrays (FPGAs), Digital Signal Processors (DSPs), General Purpose Processors (GPPs), and

Systems on Chip (SoC). This allows an SDR to easily modify its parameters without any physical

intervention [33].

One of the industry leaders in SDR development is Ettus Research, which is a subsidiary

of National Instruments [34]. Their product line includes types of SDRs for different RF

applications that range from DC to 6 GHz, and are the platform of choice for many different

engineers and scientists in the wireless community.

In order to interact with and use SDRs, it is important to understand that there are many

different implementations, each having pros and cons. This project chose to use the OAI platform

due to ease of use and the team being very familiar with C/C++ and Python. Also, the ability to

use GNU Radio/Python as the software development platform was favorable. GNU Radio is an

open-source toolkit that uses signal processing blocks to program an SDR. It handles all the digital

data and can be used to create demodulators, filters, decoders, spectrograms, and many others. It

provides a user-friendly graphic user interface (GUI) for the user and is very powerful in its

features. GNU Radio also generates a Python file from the flowgraph that can be modified based

on user needs. For example, if you so choose to do something that cannot be done with the signal

processing blocks available, you can create your own block to perform the task you desire your

SDR to achieve [34].

22

Figure 2.9: GNU Radio Flowgraph Example [35]

2.6 Chapter Summary

 This chapter explained the evolution of cellular data technology and the current fourth

generation LTE. The architecture of an LTE system was detailed and the physical layer channels

and signals were outlined, along with current error detection methods implemented in the

technology. This section concludes with an explanation of the different components that can be

used to implement an LTE system, including SDRs and OpenAirInterface.

23

3. Proposed Approach

 This chapter described the MQP team’s proposed approach, including the outlined process

for developing an LTE testbed as well as exploring jamming mitigation techniques. Moreover, the

project scheduling and division of labor between teammates is described, along with key

milestones that were identified. The proposed metrics for the project’s success are defined and

evaluation methods are explained.

3.1 Project Scope and Metrics for Success

 DoS attacks can be difficult to defend against, and this MQP explores mitigation techniques

regarding real-time jamming detection and feedback to the eNodeB in the event of narrow-band

jamming that corrupts key downlink signals. This project will explore the PHY layer of the LTE

system and specifically monitor the downlink signal of the base station. The anti-jamming method

will not be able to defend against attacks targeted at the uplink signal. Moreover, the scope of this

project will not explore security for the application and transport layers, as it will solely focus on

the received power from the jammer.

 The success of this project is determined based on how quickly the code can process the

signal and alert the eNodeB of detected jamming. This will be assessed based on metrics from

Wireshark, in which the amount of dropped packets will be monitored. The MQP seeks to evaluate

how quickly the system detects the presence of an unwanted signal and whether or not the base

station is able to evade the jamming attack. If this is accomplished, the UE should be able to

reestablish the connection with the eNodeB and this will be verified by analyzing the packet

receiving rate before and after the jammer runs.

24

3.2 Anti-Jamming Method

 Developing jamming detection and mitigation schemes to be implemented in real-time

requires a process that detects the occurrence of jamming and acts to correct it with very little

latency. The goal of the project is to create a system that can recognize when jamming is present

and successfully bypasses it without causing a noticeable disruption to the user. Please note that

the jamming has been accomplished previously by two other group members and is already

implemented through the use of random frequency hopping [25]. In order to solve the issue of

jamming, there are many different techniques to choose from. One potential solution is to use

machine learning to learn the random pattern of the jamming and predict which subcarrier is going

to be targeted and prevent the interference. However, due to time constraints and limited resources

this quickly became an unattainable goal.

There is also the possibility of using an FPGA to handle all the data processing and using

it to determine if there is a jamming source present and how to fix the jamming. After researching

the current state of the art regarding this topic, it was determined that this complexity was not

required, as one can handle all the data processing in Python with a similar runtime as that of an

FPGA for this application. Hence, using GNU Radio flowgraphs was the approach that was

ultimately chosen. This allows for the capturing of all the in-phase and quadrature (IQ) data by a

separate SDR. Using this method presents two different options: (1) Exporting the data into a file

to then be read and processed, or (2) modify the generated Python file from the flowgraph to

process the data directly and return an output.

After investigating these possibilities, it was determined that using an external file would

provide a very heavy computational load on the Linux machine and therefore fail to perform in

real-time. As a result, the proposed solution involves creating a flowgraph within GNU Radio and

25

expanding on the Python file. The Fast Fourier Transform (FFT) plot of the received signal can be

used to find the power levels and iterating through these values will allow for the detection of any

unwanted interference. If this is the case, then the SDR can send a signal to notify the base station

to change the frequency that it is transmitting on. Once a signal is sent, then the SDR will revert

to acting as a receiver. However, if there is no jamming occurring, then the SDR will not transmit

a signal and the base station will continue to run normally. Figure 3.1 depicts a logic diagram for

this project’s proposed approach.

Figure 3.1: Logic Diagram for Proposed Approach

A successful demonstration will be one that has an established LTE system, a jammer that

performs narrow-band jamming, and a radio that detects jamming signals and alerts the eNodeB

in real-time to mitigate DoS from the UE. Figure 3.2 shows a concept diagram of the final testbed,

that includes: a B210 acting as the eNodeB, a Samsung S4 acting as the UE, an N210 acting as the

jammer, and an X310 acting as the jammer detector.

https://www.draw.io/?page-id=rQi3z2uA6bMOfhKY-kCg&scale=auto#G1A7L2KBu5VEyZ-UAwCfsfmPEx0Ri_p9Ts

26

Figure 3.2: Concept Diagram of LTE Jamming Detection Testbed. USRP Images Taken from [25]

3.3 Project Planning

 The project tasks and milestones were outlined using Gantt Charts to set deadlines for each

goal and determine which members were responsible for their completion. The MQP project was

divided into three 7-week long stages, corresponding to the terms in WPI’s quarter system. The

team consisted of 4 initial members for the first two terms and then turned into two members for

the third term.

The first term, A term, included the initial stages of the project: the development of an LTE

testbed with an LTE signal being transmitted (eNodeB) and a smartphone (UE) receiving the signal

and successfully demonstrating full use of it. This was accomplished in a fast and efficient manner

by assigning sub-tasks to each team member and having deadlines in order to meet goals. For

example, one person was responsible for implementing the LTE EPC, and another person for

setting up the eNodeB. Figure 3.3 shows the team’s Gantt chart for A term.

In B term, the team split into two sub-teams for the remaining two terms that included a

red team responsible for implementing a unique jamming technique to jam the LTE signal and a

blue team responsible for creating anti-jamming measures. The details of each task are shown in

27

the Gantt charts in Figures 3.4 and 3.5. The red team implementation is explained in [25]. The blue

team approach is discussed in this report.

In C term, the blue team implemented the proposed approach of the anti-jamming

protocols. The first step was to process the received data with the X310 in real-time, and determine

whether or not jamming was occurring across the LTE spectrum. The next step was to interface

with the OAI code repository and notify the eNodeB of jamming being present. One issue that

arose was detecting jamming in an efficient way, as initially the team struggled to come up with

an adaptable way to determine a threshold power level for jamming. Once this was completed,

then the eNodeB would change the downlink frequency in real-time. One way that this approach

can still be improved is by creating two separate scripts, as opposed to one, where one determines

the threshold value alone and outputs that value. The next script would take that output as an input

and use it to implement anti-jamming.

28

29

30

31

3.4 Technical Deliverables

Throughout the course of the project, the following will have been delivered:

1. Fully functioning LTE testbed that includes an eNodeB, a UE, and an EPC. The

purpose of developing an LTE testbed is to establish a reliable and fast connection

between a base station and a cellular phone that can represent a real-time

environment. This helped the project deliver an anti-jamming protocol that has the

potential to be implemented in the real world, rather than just creating security

measures that will have no standing for further development in society.

2. A jamming detector that detects in real-time whether or not jamming is being

performed on the LTE spectrum. This is the goal of this project, as LTE use has

increased, while DoS attacks have also seen a rise in recent years. It is vital to build

more security protocols that go beyond current 3GPP-LTE standards, and this

jamming detector will propose one way to do it.

3. eNodeB that randomly hops to a different frequency in LTE Band 7 where there is

no jamming occurring. This step is important successfully evade the narrow-band

jammer. Having the ability to change to a different LTE downlink frequency is an

essential step for this jamming mitigation approach and this system does it very

quickly.

3.5 Chapter Summary

 This chapter begins by explaining the problems facing LTE security and how this team will

evaluate the success of the project. The team’s plan for implementing the LTE testbed and jamming

detection is outlined using Gantt charts, and a detailed explanation of the milestones is provided

32

so that it is very clear how the jamming will be detected and bypassed. Many approaches were

considered during the planning stage, but it was ultimately decided that using an SDR as a receiver

and GNU Radio will achieve real-time results.

33

4. Project Implementation

 This section discusses the steps needed to successfully implement anti-jamming protocols

into an LTE base station. To establish an LTE system, a testbed was designed and implemented

using OAI and consisted of an eNodeB and a UE. A narrow-band jammer was then added to

analyze the effects of random frequency hopping [25]. The final step involved utilizing an SDR to

perform anti-jamming security measures, which resulted in a mitigation of DoS between the base

station and UE.

4.1 Testbed Implementation

The LTE testbed includes a 4-core computer running Linux with Ethernet and USB port

connectivity that were used to establish a connection to all the SDRs in the system. A USRP B210

was used to act as the LTE system’s eNodeB, a USRP N210 was used to jam the connection, and

a USRP X310 was used as the jamming detector. The UE was a Samsung Galaxy S4 and a

programmed SIM card from Open-Cells was used to allow for the phone to form an LTE

connection with the eNodeB [36]. The LTE testbed was located within a Faraday cage, which

shields all RF wireless signals and must be used in order to comply with federal regulations. Figure

4.1 shows the setup of the testbed, and Figure 3.2 shows the concept diagram of the project setup

as well.

34

Figure 4.1: Hardware Setup of Testbed in Faraday Cage

 Setting up the LTE base station required extensive research and debugging of OAI, as

discussed in the background. In order to perform the setup properly with a functioning eNodeB,

EPC, and UE, the steps outlined in Table 4.1 were performed. The SDRs in the system and the

EPC were all controlled and performed on a four-core Linux machine running on Ubuntu 18.04.

First, the eNodeB was setup by copying the GIT repository of OpenAirInterface5G to the local

machine. All the dependencies were installed and the eNodeB was compiled. Then the EPC was

35

setup on the local machine. The openair-cn repository was copied to the local copy of

OpenAirInterface5G and the software was installed via building the HSS, MME, and SPGW.

Lastly, the UE was then formatted properly to connect to the network. This was done by

configuring the SIM card and installing it into the phone.

Table 4.1: LTE Testbed Setup Process. Adapted from [36] and [37]

eNodeB Steps EPC/Core Network Steps UE Steps

1. Copy the Git

Repository,

OpenAirInterface5G,

to the local Linux

Machine

2. On the local Linux

Machine:

a. Install the

dependencies

b. Compile the

eNodeB

3. Edit the configuration

file for the eNodeB

(i.e. change the center

frequency to 2.68

GHz, and setup the

correct SDR to act as

the base station)

4. Everything is all set,

and the LTE base

station can now be run

1. Copy the Git

Repository for

openair-cn from the

OAI repository

2. Install the software for

the EPC:

a. Build the HSS

b. Build the

MME

c. Build the

SPGW

3. The EPC is setup and

ready for use

1. Connect the SIM Card

to your computer

using the UICC tool

provided by opencells

2. Program the SIM Card

with an: adm,

authentication key,

opc, and spn

3. Remove SIM card

from opencells board

and place into LTE

compatible phone

4. Setup the APN

protocol on the phone

to IPv4 and the bearer

to LTE

5. The phone (UE) is

now ready for

integration

The team referenced Chance Tarver’s OAI Tutorial for the development of the eNodeB

and EPC and Open-Cells to complete the programming of the UE. Once all of these steps were

completed, the LTE testbed became fully functional. The EPC was then run in the command

terminal by using the commands ‘./run_hss’, ‘./run_mme’, and ‘./run_spgw’ in the openair-cn

directory. The eNodeB was run in a similar way using the command

‘cmake_targets/lte_build_oai/build. /lte-softmodem -O ~/opencells-mods/enb. 10MHz.b200’. The

36

eNodeB would transmit the downlink signal at the user designated 2.68 GHz frequency. As soon

as the eNodeB was running, the phone connected to the base station and the team was able to

browse the Internet, seeing a successful LTE connection. When the base station was off, there were

no connected eNodeB according to the MME statistics, shown in Figure 4.2. This changed and

one eNodeB was detected when the B210 began transmitting, shown in Figure 4.3. Once the UE

connected to the base station, the MME gave the statistics shown in Figure 4.4, showing a

successful LTE connection.

Figure 4.2: MME Statistics without eNodeB Connection

Figure 4.3: MME Statistics with eNodeB Connection

37

Figure 4.4: MME Statistics with eNodeB and UE Connection

In order to develop security measures to defend the downlink signal from jamming attacks,

a jammer was created and introduced to the LTE system. An in-depth explanation of the creation

of the random frequency hopping jammer that was used in this project is outlined in [25]. Once

this jammer disrupted the system, the team needed to detect its presence and notify the eNodeB.

4.2 Jamming Detection

 Before the eNodeB could successfully bypass the jamming, the team first analyzed the

behavior of the N210 to understand how it would disrupt random subcarriers. Using GNU Radio,

a flowgraph was created to display the FFT plot and spectrogram at the center frequency of the

downlink signal. Figure 4.5 shows the flowgraph implementation. The team used the USRP X310

to act as a receiver and another GNU Radio flowgraph to implement a 1024-point FFT for the

10MHz wide downlink signal. This means that each of the 1024 bins were 9.765kHz wide and

were searched through by probing the results, which returned the power levels at each bin. The

first block, Stream to Vector, was used to concatenate all the IQ data into one vector, which was

then provided as an input to the FFT block. Once this FFT provided a result, the Complex to Mag2

block and Log10 block were used to compute the power of the signal. This is the value that was

probed for the jamming detection.

38

39

The method for detecting jamming was to continuously check this value in real-time to see

if it increases above a certain threshold, signifying the presence of an unwanted signal. The default

rate at which the power level is probed is 0.2 Hz, resulting in a return value every 5 seconds, and

this was increased to 10 Hz to sample the power every 0.1s.

To determine the necessary threshold value, the team added code to the GNU Radio

generated Python script to monitor the power levels of the downlink signal and record a sufficient

threshold. Once the base station began transmitting, the X310 would receive the power levels and

then keep track of the first 5000 readings, which took about 5 seconds to complete. The maximum

value of this list was then used as a threshold, as any power level above this was not consistent

with the LTE signal and it was determined that an interfering signal was present. The calibration

period to determine the threshold was necessary for this application because the power of the

wireless signal would change from time to time and this implementation would account for these

situations. After this was completed, jamming was successfully detected and the X310 needed to

notify the eNodeB.

4.3 Alerting the eNodeB

 Once the jamming was successfully detected by the X310, the modified Python script

alerted the eNodeB. This was done by communicating with the OAI code, which resulted in the

base station changing the frequency band of the downlink signal. Figure 4.6 shows a conceptual

flow diagram of the anti-jamming process.

 Figure 4.6: Conceptual Flow Diagram of Jamming Detector

40

 The OAI server is constantly listening for requests to determine if any action is required.

Through a UDP socket, the Python script connects to the server and triggers a change in the

downlink frequency after sending the new transmission frequency. The frequency hopper targets

frequencies from 2.66 GHz to 2.7 GHz, so the downlink frequency value that was sent was

randomly selected to avoid these channels while also remaining in LTE Band 7 so that the UE can

reconnect to it. Once this was accomplished, the X310 then changed the center frequency it

receives at to match the new downlink frequency, resulting in a continuous and adaptive jamming

detection method.

4.4 Chapter Summary

 This chapter explains the LTE testbed along with the jamming mitigation performed using

an SDR and GNU Radio. The LTE connection was verified by connecting the UE to the eNodeB

and browsing the Internet through it. Once the jammer was introduced, the signal was monitored

using a spectrogram to learn how to bypass it. The real-time detection of the X310 was successful

and the eNodeB changed frequency bands when the jammer disrupted the LTE system.

41

5. Results & Discussion

 This chapter explains the results of the jamming detection and its effect on the LTE system.

The outcome of the anti-jamming is measured through analyzing the packets and determining if

the eNodeB is alerted of jamming in real-time.

5.1 Testbed

 Once the testbed was successfully implemented using the OAI platform, a functioning LTE

system was available for testing purposes. The verification of this result was proven through the

observation of an established Internet connection between the eNodeB and UE. Further

investigation of the system could be done through analysis of the spectrogram and FFT plot at the

downlink frequency. Figure 5.1 shows a 10 MHz wide signal being transmitted to the UE without

any interference to the signal. The eNodeB is transmitting at a center frequency of 2.68 GHz

because that is the default value of the LTE Band 7 configuration file. The signals are transmitted

consistently and these plots help understand the regular behavior of the LTE downlink.

Once the jammer was turned on, the graphs showed different results seen in Figure 5.2,

clearly indicating the presence of an interfering signal. The spectrogram shows the energy detected

over time, and the N210 can be seen to transmit at high-power for 10 seconds at a frequency of

2.678 GHz then randomly hop to a 2.677 GHz. The FFT depicts how the power level is an outlier

that can be detected when compared to the strength of the 10 MHz downlink signal.

42

43

44

This project used these tools to monitor the behavior of the LTE downlink spectrum to

determine a sufficient approach for bypassing the random frequency hopper. Figure 5.3 illustrates

the team’s setup for the implementation of the LTE testbed and jamming detector. The screens are

top-left: jammer and jamming detector terminals, top-right: LTE eNodeB and EPC terminals,

bottom-left: jamming detector running, bottom-right: jammer running.

The jamming and jamming detector terminal were used to run the jamming and anti-

jamming scripts, respectively. The terminal with the eNodeB and EPC were used to run the LTE

system. To make sure the UE was connected to the Internet, the HSS, MME, and SGW were ran.

Once the eNodeB was transmitting, the UE was able to identify it and establish a connection.

The jamming detector script played two roles. It would provide a visual at the center

frequency through a spectrogram and an FFT plot, but it would also continuously monitor the

power levels and report to the eNodeB in the event of jamming. The jamming script shows the

FFT plot of the frequency hopper, verifying that the N210 was transmitting at high power and

randomly changing frequencies.

45

46

5.2 Jamming Detection and Alerting the eNodeB

 Probing the power levels at the center frequency at a fast rate allowed for the fast detection

of jamming. While running the modified Python script shown in Appendix A with the jammer was

turned on, the interfering signal was identified in real-time and the frequency channel was then

changed to minimize the disruption to the LTE system. Figure 5.4 shows the X310 responding to

the detection of jamming by changing the frequency channel at which it acts as a receiver. Figure

5.5 shows the output signaling jamming detection. In these figures, the X310 has not yet notified

the eNodeB of jamming and it only changed the receiving frequency. The purpose of this is to

demonstrate its fast response time, as it reacted before the jamming signal was plotted on the

spectrogram. The FFT results shows how the received power was decreased to 0. The terminal

notifies the user that jamming was detected by the X310.

Once the receiver alerted the eNodeB of the jamming, the downlink frequency was changed

and the plots depicted an undisrupted LTE signal. Figure 5.6 shows the new spectrogram and FFT

plot after the jamming detector notified the eNodeB to hop frequencies. Figure 5.7 shows the

command terminal output signifying that the UDP socket has been sent. The spectrogram shows

the key LTE signals such as the PSS and SSS being transmitted. The FFT verifies that the X310 is

receiving a 10 MHz wide signal at an expected power level. The command terminal informs the

user that the value of the new downlink frequency has been sent to the eNodeB and the system has

evaded the jammer.

47

48

49

50

51

Once the real-time jamming detection was achieved and the base station was alerted,

monitoring the wireless packets was necessary to evaluate the success of the jamming mitigation

and ensure that the LTE system was not drastically disrupted. This was done through analyzing

the packet receiving rate of the UE. This allowed the team to discover how many packets failed to

reach the UE, resulting in slower throughput of the LTE system. Wireshark, an open-source packet

analyzer, was used for this evaluation [38]. Figure 5.8 shows the Wireshark calculated packet

receiving rate for an uninterrupted connection between the eNodeB and UE and Figure 5.9 shows

the packet receiving rate after the eNodeB changed downlink frequencies. Figure 5.6 from [25]

shows the packet loss analysis of the LTE system when the jammer was performing DoS, and the

packet receiving rate decreased to 0. Once the eNodeB was alerted of the interfering signal,

depicted by the red dotted line in Figure 5.8, and it changed the downlink transmission frequency,

the packet receiving rate increased. The dotted green line in Figure 5.9 shows the point in time that

the base station hopped frequencies. The results indicate that the UE was successful receiving

packets and the DoS was evaded. As a result, the UE was still able to connect to the Internet and

the LTE system was able to successfully bypass the jamming attack.

52

53

54

5.3 Chapter Summary

 This chapter verified the results achieved from the implementation of the LTE jamming

detection. The spectrogram and FFT plots of the LTE downlink center frequency of 2.68 GHz

were shown when the jammer was both off and on. The response of the X310 was seen through

these visual plots. Moreover, Wireshark was used to analyze the packet loss of the LTE system

and evaluate the effectiveness of the jamming detector. The base station was able to successful

change the downlink frequency and bypass the denial of service attack.

55

6. Conclusion

 This project utilized an LTE testbed and a narrow-band jammer to investigate the

effectiveness of an SDR for the detection of an unwanted signal. The use of OAI software allowed

for the development of an LTE system that consisted of an eNodeB and a UE with access to the

Internet. Although LTE technology is vulnerable to various jamming attacks such as DoS,

investigating the transmission frequencies can help develop security protocols. Using a USRP

X310 was a reliable hardware component for fast and continuous jamming detection. GNU Radio

is an efficient GUI tool to monitor signals and perform computations on them. By implementing a

flowgraph and modifying the GNU Radio generated Python script, this project was able to achieve

real-time detection of jamming using an X310. This research on LTE security is an important topic

in cellular technology that can be expanded upon for future generations of cellular networks.

6.1 Recommendations for Future Work

 There are many opportunities to expand on this research and make further advancements

towards the security of cellular networks. Regarding the detection method, the way the jamming

detection is being done is by looking at the LTE downlink waterfall curve. The maximum power

level, in dB, of the downlink signal is then measured in the script. This value is then set as the

threshold and if power levels rise above this plus a certain range in the frequency spectrum of the

LTE downlink signal, then it is determined that a jammer is present. Finding a more adaptable way

that does not slow down the system and is able to constantly update the threshold value while

continuing to return real-time jamming detection would be a beneficial addition to this approach.

 Another way to improve upon this project is to introduce multiple eNodeBs into the system,

as it would be interesting to see how the jamming and anti-jamming protocols developed, would

56

interact with the system. One can also introduce multiple UEs and do further experiments on the

impact of using more than one UE for a single eNodeB. Also, how the UEs would react to there

being multiple eNodeBs in the system is of importance as well.

This project can also be applied to a 5G cellular network. The use of OAI can be used to

implement a 5G testbed similar to the one that was done for LTE. Understanding the physical layer

of this new technology is essential to bypassing random frequency hopping, as the downlink signal

may have different characteristics and the addition of millimeter waves may require an alternative

approach.

57

Works Cited

[1]

[2]

L. Silver, “Smartphone Ownership Is Growing Rapidly Around the World, but Not

Always Equally,” Pew Research Center, 2019.

R. Ghannam. A. Chung ,“User-targeted Denial-of-Service Attacks in LTE Mobile

Networks,” International Conference on Wireless and Mobile Computing, Networking

and Communications, 2018

[3] S. O’Dea, “Number of 4G LTE Connections Worldwide from 2012 to 2020,” Statista,

2020.

[4] H. Jensen. J. Sharpe, “LTE infrastructure for today’s military networks,” PICMG

Systems and Technology, 2014.

[5] D. Talbot, “One Simple Trick Could Disable a City’s 4G Phone Network,” 2012.

[6]

[7]

[8]

[9]

I. Miguelez. P. Sutton, “srsLTE: an open-source platform for LTE evolution and

experimentation,” ACM International Workshop on Wireless Network Testbeds,

Experimental Evaluation, and Characterization, 2016

J. Demel. S. Koslowski. F. Jondral, “A LTE Receiver Framework Implementation in

GNU Radio,” Karlsruhe Institute of Technology, 2013

R. Knopp. L. Gathier, “Demo: OpenAirInterface: an open LTE network in a PC,”

EURECOM, 2014.

M. Litchtman and others, “LTE/LTE-A Jamming, Spoofing, and Sniffing: Threat

Assessment and Mitigation,” IEEE Communications Magazine, 2016.

[10] R. Jover. J. Lackey. A. Raghavan, “Enhancing the security of LTE networks against

jamming attacks, EURASIP Journal on Information Security,” Eurasip Journal on

Information Security, 2014.

[11] S. Barros, “LTE Jamming Mitigation Based on Frequency Hopping Strategies,” IEEE

Latin-American Conference on Communications, 2016.

[12]

[13]

V. Sruk. K.Fertalj. V. Zlomislić, “Denial of Service Attacks, Defenses and Research

Challenges,” Sage Journals, 2017.

G. Pantziou, “A survey on jamming attacks and countermeasures in WSNs,” IEEE, 2009

[14] K. Grover, “Jamming and Anti-Jamming techniques in Wireless Networks,” Montana

State University, 2014.

[15] Li. Song. Liang, “Wireless Communications under Hostile Jamming: Security and

Efficiency,” Springer, 2018.

[16]

[17]

[18]

T. Mshvidobadze, “Evolution Mobile Wireless Communication and LTE Networks,” 6th

International Conference on Application of Information and Communication

Technologies, 2012.

Rajiv, “Evolution of wireless technologies 1G to 5G in mobile communication,” RF

Page, 2018.

C. Cox, “An introduction to LTE: LTE, LTE-advanced, SAE,” VoLTE and 4G

MobileCommunications. John Wiley & Sons Ltd., 2014.

[19]

[20]

[21]

Netmanias, “LTE Network Architecture: Basic,” Netmanias, 2013.

OpenAirInterface Software Alliance, “About us,” 2020

Alcatel-Lucent, “The LTE Network Architecture,” Alcatel-Lucent, 2009

[22] N. Gompa, “What is LTE?,”,Extreme Tech, 2015.

58

[23] Y. Chaudhari, “Need of Physical Layer Security in LTE: Analysis of Vulnerabilities in

LTE Physical Layer,” 2017 International Conference on Wireless Communications,

Signal Processing and Networking, 2017.

[24]

[25]

Keysight Technologies, “LTE Physical Layer Overview,” Keysight Technologies, 2019.

Y. Brown C. Teng, “LTE Frequency Hopping Jammer,” Worcester Polytechnic Institute,

2019.

[26] Techplayon, “Explain LTE Frame Structure both for FDD and TDD,” Techplayon, 2018.

[27]

[28]

M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and J. H. Reed, “LTE/LTE-a

jamming, spoofing, and sniffing: Threat assessment and mitigation,” IEEE Commun.,

2016.

OpenAirInterface5G, “OpenAirInterface Implementation Code Repository,” GitLab,

2019

[29] GeeksforGeeks, “Error Detection in Computer Networks,” GeeksforGeeks, 2019.

[30] N. Nikaein, “OpenAirInterface: A Flexible Platform for 5G Research,” ACM

SIGCOMM Computer Communication Review, 2014.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

A. Tato, “Software Defined Radio: A Brief Introduction,” Proceedings, 2018.

J. Fernández, “Software Defined Radio: Basic Principles and Applications,” Faculty of

Engineering Journal, 2014.

Wireless Innovation, “What is Software Defined Radio?,” Wireless Innovation Forum,

2015.

Ettus Research, National Instruments, 2020.

Creative Commons Attribution-ShareAlike, “What is GNU Radio?,” 2019.

GNU Radio, “Guided Tutorial GRC,” GNU Radio, 2020

OpenCells, All in one OpenAirInterface, 2019.

C. Tarver, “OAI Tutorial,” Academic Theme for Hugo, 2019.

Wireshark, 2020.

59

Appendix A: Python Code for Jamming Detector

#!/usr/bin/env python2
-*- coding: utf-8 -*-

GNU Radio Python Flow Graph
Title: Fftsamples
Generated: Mon Feb 10 14:32:35 2020

if __name__ == '__main__':
 import ctypes
 import sys
 if sys.platform.startswith('linux'):
 try:
 x11 = ctypes.cdll.LoadLibrary('libX11.so')
 x11.XInitThreads()
 except:
 print "Warning: failed to XInitThreads()"

from PyQt4 import Qt
from gnuradio import blocks
from gnuradio import eng_notation
from gnuradio import fft
from gnuradio import gr
from gnuradio import qtgui
from gnuradio import uhd
from gnuradio.eng_option import eng_option
from gnuradio.fft import window
from gnuradio.filter import firdes
from optparse import OptionParser
import sip
import sys
import threading
import time
from gnuradio import qtgui
import socket
import random

class fftSamples(gr.top_block, Qt.QWidget):

 def __init__(self):
 gr.top_block.__init__(self, "Fftsamples")
 Qt.QWidget.__init__(self)

60

 self.setWindowTitle("Fftsamples")
 qtgui.util.check_set_qss()
 try:
 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
 except:
 pass
 self.top_scroll_layout = Qt.QVBoxLayout()
 self.setLayout(self.top_scroll_layout)
 self.top_scroll = Qt.QScrollArea()
 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
 self.top_scroll_layout.addWidget(self.top_scroll)
 self.top_scroll.setWidgetResizable(True)
 self.top_widget = Qt.QWidget()
 self.top_scroll.setWidget(self.top_widget)
 self.top_layout = Qt.QVBoxLayout(self.top_widget)
 self.top_grid_layout = Qt.QGridLayout()
 self.top_layout.addLayout(self.top_grid_layout)

 self.settings = Qt.QSettings("GNU Radio", "fftSamples")
 self.restoreGeometry(self.settings.value("geometry").toByteArray())

 ##
 # Variables
 ##
 self.variable_function_probe_0 = variable_function_probe_0 = 0
 self.samp_rate = samp_rate = 10e6

 try:
 self.center_freq = center_freq = self.get_center_freq()

 except:
 self.center_freq = center_freq = 2.68e9

 ##
 # Blocks
 ##
 self.probe = blocks.probe_signal_f()

 def _variable_function_probe_0_probe():
 jamming = False
 has_jammed = False
 values = []
 count = 0
 while True:
 val = self.probe.level()

61

 if val == 0: # val is initialized to 0
 continue
 else:
 try:
 if val > threshold+2: # threshold for power level
 jamming = True
 if (jamming and not has_jammed):
 print ('Jamming Occuring')
 TX_FREQS = [2625, 2630, 2635, 2640, 2645, 2650]
 TX_FREQ = random.choice(TX_FREQS)
 #send signal to base station to change center frequency
 self.uhd_usrp_source_0.set_center_freq(TX_FREQ*1e6, 0) # change the
center frequency of receiver
 self.qtgui_waterfall_sink_x_0.set_frequency_range(TX_FREQ*1e6,
self.samp_rate)
 self.qtgui_freq_sink_x_0.set_frequency_range(TX_FREQ*1e6,
self.samp_rate)

 #send freq to base station
 oai_ip ='127.0.0.125'
 port =12000
 oai_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 oai_sock.connect((oai_ip,port))
 BUFFER = 'd'+ str(int(TX_FREQ))
 oai_sock.send(BUFFER.encode())
 print('Send')

 has_jammed = True
 else:
 continue

 except:
 values.append(val)
 count = count + 1
 if count == 5000:
 threshold = max(values)
 print threshold

 try:
 self.set_variable_function_probe_0(val)
 except AttributeError:
 pass
 time.sleep(1.0 / (1000))
 _variable_function_probe_0_thread =
threading.Thread(target=_variable_function_probe_0_probe)
 _variable_function_probe_0_thread.daemon = True

62

 print(_variable_function_probe_0_thread.start())

 self.uhd_usrp_source_0 = uhd.usrp_source(
 ",".join(("addr=192.168.10.2", "")),
 uhd.stream_args(
 cpu_format="fc32",
 channels=range(1),
),
)
 self.uhd_usrp_source_0.set_samp_rate(samp_rate)
 self.uhd_usrp_source_0.set_center_freq(center_freq, 0)
 self.uhd_usrp_source_0.set_gain(28, 0)
 self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
 1024, #size
 firdes.WIN_BLACKMAN_hARRIS, #wintype
 center_freq, #fc
 samp_rate, #bw
 "", #name
 1 #number of inputs
)
 self.qtgui_waterfall_sink_x_0.set_update_time(0.10)
 self.qtgui_waterfall_sink_x_0.enable_grid(False)
 self.qtgui_waterfall_sink_x_0.enable_axis_labels(True)

 if not True:
 self.qtgui_waterfall_sink_x_0.disable_legend()

 if "complex" == "float" or "complex" == "msg_float":
 self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)

 labels = ['', '', '', '', '',
 '', '', '', '', '']
 colors = [0, 0, 0, 0, 0,
 0, 0, 0, 0, 0]
 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0]
 for i in xrange(1):
 if len(labels[i]) == 0:
 self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data {0}".format(i))
 else:
 self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i])
 self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
 self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])

 self.qtgui_waterfall_sink_x_0.set_intensity_range(-140, 10)

63

 self._qtgui_waterfall_sink_x_0_win =
sip.wrapinstance(self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget)
 self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_win)
 self.qtgui_number_sink_0 = qtgui.number_sink(
 gr.sizeof_float,
 0,
 qtgui.NUM_GRAPH_HORIZ,
 1
)
 self.qtgui_number_sink_0.set_update_time(0.10)
 self.qtgui_number_sink_0.set_title("")

 labels = ['', '', '', '', '',
 '', '', '', '', '']
 units = ['', '', '', '', '',
 '', '', '', '', '']
 colors = [("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"),
("black", "black"),
 ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"),
("black", "black")]
 factor = [1, 1, 1, 1, 1,
 1, 1, 1, 1, 1]
 for i in xrange(1):
 self.qtgui_number_sink_0.set_min(i, -1)
 self.qtgui_number_sink_0.set_max(i, 1)
 self.qtgui_number_sink_0.set_color(i, colors[i][0], colors[i][1])
 if len(labels[i]) == 0:
 self.qtgui_number_sink_0.set_label(i, "Data {0}".format(i))
 else:
 self.qtgui_number_sink_0.set_label(i, labels[i])
 self.qtgui_number_sink_0.set_unit(i, units[i])
 self.qtgui_number_sink_0.set_factor(i, factor[i])

 self.qtgui_number_sink_0.enable_autoscale(False)
 self._qtgui_number_sink_0_win =
sip.wrapinstance(self.qtgui_number_sink_0.pyqwidget(), Qt.QWidget)
 self.top_grid_layout.addWidget(self._qtgui_number_sink_0_win)
 self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
 1024, #size
 firdes.WIN_BLACKMAN_hARRIS, #wintype
 center_freq, #fc
 samp_rate, #bw
 "", #name
 1 #number of inputs
)
 self.qtgui_freq_sink_x_0.set_update_time(0.10)

64

 self.qtgui_freq_sink_x_0.set_y_axis(-140, 10)
 self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB')
 self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
 self.qtgui_freq_sink_x_0.enable_autoscale(False)
 self.qtgui_freq_sink_x_0.enable_grid(False)
 self.qtgui_freq_sink_x_0.set_fft_average(1.0)
 self.qtgui_freq_sink_x_0.enable_axis_labels(True)
 self.qtgui_freq_sink_x_0.enable_control_panel(False)

 if not True:
 self.qtgui_freq_sink_x_0.disable_legend()

 if "complex" == "float" or "complex" == "msg_float":
 self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)

 labels = ['', '', '', '', '',
 '', '', '', '', '']
 widths = [1, 1, 1, 1, 1,
 1, 1, 1, 1, 1]
 colors = ["blue", "red", "green", "black", "cyan",
 "magenta", "yellow", "dark red", "dark green", "dark blue"]
 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0]
 for i in xrange(1):
 if len(labels[i]) == 0:
 self.qtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i))
 else:
 self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
 self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
 self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
 self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

 self._qtgui_freq_sink_x_0_win =
sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
 self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win)
 self.fft_vxx_0 = fft.fft_vcc(1024, True, (window.blackmanharris(1024)), True, 1)
 self.blocks_vector_to_stream_0 = blocks.vector_to_stream(gr.sizeof_float*1, 1024)
 self.blocks_stream_to_vector_0 =
blocks.stream_to_vector(gr.sizeof_gr_complex*1, 1024)
 self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, 1024, 0)
 self.blocks_complex_to_mag_squared_0 =
blocks.complex_to_mag_squared(1024)

 ##

65

 # Connections
 ##
 self.connect((self.blocks_complex_to_mag_squared_0, 0),
(self.blocks_nlog10_ff_0, 0))
 self.connect((self.blocks_nlog10_ff_0, 0), (self.blocks_vector_to_stream_0, 0))
 self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0))
 self.connect((self.blocks_vector_to_stream_0, 0), (self.probe, 0))
 self.connect((self.blocks_vector_to_stream_0, 0), (self.qtgui_number_sink_0, 0))
 self.connect((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_0, 0))
 self.connect((self.uhd_usrp_source_0, 0), (self.blocks_stream_to_vector_0, 0))
 self.connect((self.uhd_usrp_source_0, 0), (self.qtgui_freq_sink_x_0, 0))
 self.connect((self.uhd_usrp_source_0, 0), (self.qtgui_waterfall_sink_x_0, 0))

 def closeEvent(self, event):
 self.settings = Qt.QSettings("GNU Radio", "fftSamples")
 self.settings.setValue("geometry", self.saveGeometry())
 event.accept()

 def get_variable_function_probe_0(self):
 return self.variable_function_probe_0

 def set_variable_function_probe_0(self, variable_function_probe_0):
 self.variable_function_probe_0 = variable_function_probe_0

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)
 self.qtgui_waterfall_sink_x_0.set_frequency_range(self.center_freq,
self.samp_rate)
 self.qtgui_freq_sink_x_0.set_frequency_range(self.center_freq, self.samp_rate)

 def get_center_freq(self):
 return self.center_freq

 def set_center_freq(self, center_freq):
 self.center_freq = center_freq
 self.uhd_usrp_source_0.set_center_freq(self.center_freq, 0)
 self.qtgui_waterfall_sink_x_0.set_frequency_range(self.center_freq,
self.samp_rate)
 self.qtgui_freq_sink_x_0.set_frequency_range(self.center_freq, self.samp_rate)

def main(top_block_cls=fftSamples, options=None):

66

 from distutils.version import StrictVersion
 if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):
 style = gr.prefs().get_string('qtgui', 'style', 'raster')
 Qt.QApplication.setGraphicsSystem(style)
 qapp = Qt.QApplication(sys.argv)

 tb = top_block_cls()
 tb.start()
 tb.show()

 def quitting():
 tb.stop()
 tb.wait()
 qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)
 qapp.exec_()

if __name__ == '__main__':
 main()

