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Abstract 
In C. elegans, the gene bli-3 codes for Duox1, a protein in the NADPH oxidase (Nox) family 

responsible for cuticle cross-linking. The canonical example of a Nox family protein is human Nox2, 

which is responsible for the respiratory burst that occurs in phagocytic leukocytes. In order to determine 

if Duox is important in C. elegans host defense, both available bli-3 mutants and C. elegans subjected to 

RNAi knockdown of bli-3 were subsequently exposed to yeast pathogens, and survival assays were 

performed. When bli-3 mutants were exposed to Saccharomyces cerevisiae, a slight decrease in survival 

was observed, but the decrease was insignificant. However, one of the bli-3 mutants and the whole 

body bli-3 RNAi knockout worms showed a significant decrease in survival when exposed to Candida 

albicans. This indicates that bli-3 does play an innate immune role in C. albicans infections. Tissue-

specific RNAi knockdown was performed in order to determine where this innate immune function is 

localized, and knockdowns appeared to have similar effects regardless of the tissue. 
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Introduction 

Duox and NADPH-Oxidases 
NADPH-oxidases (NOXs) couple the transfer of electrons across biological membranes to the 

receptor, which is usually oxygen, creating superoxides  (Bedard & Krause, 2007). The reaction catalyzed 

is 2O2+NADPH=>2O2
-*+NADP + H+. Superoxides rapidly form hydrogen peroxide, either by enzymatic 

activity (superoxide dismutase) or spontaneously (at low pH)  (Bedard & Krause, 2007). Reactive oxygen 

species (ROS) are created which destroy or permanently alter the function of their target molecule  

(Bedard & Krause, 2007). ROS are radicals, ions, and molecules derived from oxygen that are highly 

unstable and reactive. They can cause damage to organisms that produce them, and have been 

implicated in the aging process and in cellular damage  (Harman, 1956; Beckman & Ames, 1998). 

However, ROS is also involved in a variety of beneficial processes, including regulatory processes and 

host defense, in what is called the respiratory burst, which occurs in phagocytic leukocytes  (Bedard & 

Krause, 2007). This respiratory burst is critical to killing of certain pathogens, but is unnecessary in the 

killing of others (Rada & Leto, 2008). NADPH oxidases in human neutrophils and monocytes are 

important in killing pathogens, including Staphylococcus aureus, Aspergillus fumigates, and Candida 

albicans (Rada & Leto, 2008). The NADPH oxidase respiratory burst uses the chemical reactivity of ROS 

to kill pathogens (Rada & Leto, 2008). The respiratory burst may also increase production of cytokines 

and other proinflammatory mediators (El-Benna et al., 2007). This NADPH-oxidase catalyzed reaction is 

absent in patients with chronic granulomatous disease (CGD), a rare, fatal syndrome in young boys  

(Berendes et al., 1957; Baehner & Nathan, 1967; Quie et al., 1967). These patients show increased 

sensitivity to Gram-positive bacteria, Gram-negative bacteria, and fungi (including Candida albicans) (El-

Benna et al., 2007). NADPH oxidase can also be found in tumor cells  (Szatrowski & Nathan, 1991), 

fibroblasts  (Meier et al., 1991), and vascular muscle cells  (Griendling et al., 2000). 

Mammalian NOX family members have several conserved structures including an NADPH-

binding site (at the COOH terminus), a FAD-binding region, six transmembrane domains, and four 

histidines capable of binding heme  (Bedard & Krause, 2007). No crystal structure is currently available 

for NOX enzymes, but a schematic of their structure can be seen in Figure 1 (Bedard & Krause, 2007). As 

is shown, all families have conserved structural elements, including a NADPH-binding domain near the C 

terminus, an FAD-binding domain (located between the NADPH-binding domain and the most C-

terminal transmembrane domain), and six transmembrane domains with four heme-binding histidines 

(Bedard & Krause, 2007). Heme groups are bound to the third and fifth helices within the lipid bilayer 
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(Groemping & Rittinger, 2005; Vignais, 2002). The canonical example of an NADPH-oxidase is human 

NOX2, a gene expressed in neutrophils and macrophages as well as a variety of other cells, including 

cardiomyocytes  (Heymes et al., 2003), skeletal muscle myocytes  (Javesghani et al., 2002), endothelial 

cells  (Gorlach et al., 2000; Jones et al., 1996; Li & Shah, 2002), hepatocytes  (Reinehr et al., 2005), 

neurons  (Serrano et al., 2003), and even hematopoietic stem cells  (Piccoli et al., 2005). In both humans 

and mice, the gene for NOX2 is located on the X chromosome. NOX2 is localized in intracellular 

compartments in resting neutrophils and is translocated to the surface of the cell as granules fuse with 

the membrane  (Borregaard et al., 1983; Goldblatt & Thrasher, 2000). 

NOX2 cannot be activated without five additional proteins; p22phox, p47phox, p67phox, Rac, and 

p40phox (Bedard & Krause, 2007). The protein p22phox stabilizes the protein complex and docks the 

cytosolic factors and proteins (including p47phox and p67phox) (Bedard & Krause, 2007). The cytosolic 

protein p47phox acts as an organizer, and upon cell stimulation is translocated, along with bound p67phox, 

to the membrane (Bedard & Krause, 2007). Rac activates the protein complex, and p67phox activates 

NOX2 (Takeya, et al., 2003; Quinn et al., 1993). The modulatory subunit p40phox was discovered more 

recently, and less is known about its function (Wientjes et al., 1993).  

In the first step of the NOX2 catalyzed reaction, electrons are transferred from NADPH to FAD, 

producing FADH2  (Nisimoto et al., 1999). Next, a single electron is transferred from FADH2 to the iron of 

the inner heme  (Cross & Segal, 2004; Doussiere et al., 1996; Vignais, 2002). The iron can only accept 

one electron, so it donates the electron to the outer heme in order to be able to accept a second 

electron from the partially reduced FADH2  (Cross & Segal, 2004; Doussiere et al., 1996; Vignais, 2002). In 

order for electron transfer from the inner heme to the outer heme to be energetically favorable, oxygen 

must be bound to the outer heme to receive the electron  (Cross & Segal, 2004; Doussiere et al., 1996;  

Vignais, 2002). An outline of this mechanism can be seen in Figure 2 (Cross & Segal, 2004). NOX family 

members are found in many cell types, including the gastrointestinal system and the respiratory system 

(Bedard & Krause, 2007).  The colon shows high levels of NOX family proteins; however, their function is 

not yet understood (Bedard & Krause, 2007). Two popular hypotheses include a role in host defense and 

regulation of cell proliferation (Bedard & Krause, 2007). In the liver, ROS derived from NOX proteins is 

involved in apoptosis (Lee et al., 2004; (Reinehr et al., 2005). In alveolar macrophages, NOX proteins are 

involved in host defense (Bedard & Krause, 2007). NOX proteins are also found in airway epithelial cells 

(Bedard & Krause, 2007). Many functions have been proposed for NOX family members in airway 

epithelial cells; including regulation of gene expression (Lavigne & Eppihimer, 2005; Papaiahgari, et al., 
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2004), mucin expression (Shao & Nadel, 2005), acid production (Segal et al., 1981), response to 

mechanical stress (Chapman et al., 2005), apoptosis (Zhang, et al., 2003), and host defense (Geiszt et al., 

2003). Finally, in pulmonary vasculature, NOX enzymes play a role in cell response to changes in oxygen 

concentration (Chowdhury, et al., 2005; Fisher et al., 1999; Marshall et al., 1996; Weissmann, et al., 

2000, 2005). 
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Figure 1: NOX Structure (Bedard & Krause, 2007) 
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Figure 2: NOX2 Reaction Mechanism (Cross & Segal, 2004) 

 Another subset of the NADPH-oxidase family consists of the Duox proteins  (Bedard & Krause, 

2007). The Duox isoforms share about 50% identity with NOX2  (De Deken, et al., 2000). A schematic 

showing the main structural differences between NOX and Duox proteins can be seen in Figure 3 (Cross 

& Segal, 2004). These proteins have a NOX1-4 homology domain, an EF-hand domain, and an additional 

(seventh) transmembrane domain with a peroxidase like domain  (De Deken, et al., 2000). In some 

examples, the EF-hand domain binds Ca2+ and activates the target protein (Ikura, 1996).  Studies suggest 

that the EF-hand domain is functional, as Duox can be activated by Ca2+  (Ameziane-El-Hassani, et al., 

2005). It is unknown whether the peroxidase homology domain functions as peroxidase. The Duox 

peroxidase homology domain lacks many amino acids important for peroxidase function  (Colas & Ortiz 

dde Montellano, 2003; Daiyasu & Toh, 2000;  Nauseef, 2001).  Furthermore, a separate peroxidase is 

often coexpressed in Duox systems  (Bedard & Krause, 2007). However, one study did find peroxidase 

function in Duox peroxidase homology domains that were expressed as recombinant proteins  (Edens, et 

al., 2001). Immature Duox2 produced superoxide, whereas the mature protein produces hydrogen 

peroxidase  (Ameziane-El-Hassani, et al., 2005). One possible reason is that posttranscriptional 

modifications favor intramolecular dismutation  (Ameziane-El-Hassani, et al., 2005). In Drosophila, 

humans, and many other organisms, dual oxidase is involved in reactive oxygen species production in 

response to gut pathogens (Ha et al., 2005). 
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Figure 3: Structural Differences between NOX and Duox enzymes (Cross & Segal, 2004) 

In humans, Duox1 and Duox2 are thyroid epithelial cell enzymes that catalyze the production of 

hydrogen peroxide  (Bjorkman & Ekholm, 1984). The genes for Duox1 and Duox2 are located in a head-

to-head configuration on chromosome 15  (Pachucki et al., 2004). Additional proteins, DuoxA1 and 

DuoxA2, are ER proteins called Duox maturation factors that are necessary to overcome entrapment in 

the ER  (Grasberger & Refetoff, 2006). Duox enzymes do not require activator and organizer subunits 

similar to those required for NOX enzymes  (Bedard & Krause, 2007). Duox1 and Duox2 are also found in 

epithelial cells lining airways, salivary glands, and the GI tract, and provide hydrogen peroxide to 

produce antimicrobial hypothiocyanite ions in a reaction catalyzed by lactoperoxidase (Gerson, et al., 

2000; Klebanoff, 1999). Enzymes such as Duox1 and Duox2 that secrete ROS into the intercellular space 

generally produce less toxic ROS that is slightly less harmful to tissues (Rada & Leto, 2008). Duox2 

catalyzes hydrogen peroxide generation, the rate limiting step in thyroid hormone production  (Dupey et 

al., 1999). Mutations in Duox2 result in congenital hypothyroidism in humans  (Dupey et al., 1999). 

Although usually not life-threatening, patients with hypothyroidism must take hormone replacement 

therapy all of their life  (NCBI, 2010).  

Model System 
 The following study uses the model organism Caenorhabditis elegans, an organism whose entire 

genome sequence has been determined (The C. elegans Sequencing Consortium, 1998). More than half 

of the genes found in C. elegans have human homologues, making it a valuable model organism 

(Kamath, et al., 2003). C. elegans are low in cost, easy to maintain, reproduce by self-fertilization 
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(creating natural clones), are transparent (allowing for easy phenotypic observation), and do not take up 

much laboratory space (Schulenburg et al., 2004; Gravato-Nobre & Hodgkin, 2005). They are often used 

to study host-pathogen interactions, and investigating how worms respond to pathogens can help to 

advance these studies  (Chavez et al., 2009). Although they do not possess adaptive immune systems, C. 

elegans can be used to study the innate immune system, the most ancient and fast-acting type of 

immunity  (Gravato-Nobre & Hodgkin, 2005). Interestingly, C. elegans lack specialized cells equivalent to 

macrophages, neutrophils, or scavenging phagocytes (as are found in invertebrates, such as Drosophila) 

(Schulenburg et al., 2004; Gravato-Nobre & Hodgkin, 2005). They do, however, have scavenger cells 

called coelomytes in the body cavity, although it seems unlikely that these cells have phagocytic 

functions  (Gravato-Nobre & Hodgkin, 2005).  

The C. elegans genome encodes two dual oxidases, Duox1 and Duox2 (the latter of which 

appears to be non- functional) (Edens et al., 2001). The predicted primary amino acid sequence of C. 

elegans Duox1 shows 30% homology with the human dual oxidase proteins and has similar size and 

domain organization (Edens et al., 2001). In Caenorhabditis elegans, Duox1 is encoded by the gene 

blister-3 (bli-3) and has two main functions. The first function, from which the gene gets its name, is 

cuticle cross-linking (Edens et al., 2001). This reaction is outlined in Figure 4 (Edens et al., 2001). 

Organisms with mutations affecting the peroxidase domain of Dual Oxidase, the protein that bli-3 

encodes, show loss of cuticle integrity, resulting in what appear to be blisters  (Brenner, 1974; Edens et 

al., 2001). Several previous studies show that C elegans Duox/BLI-3 is also a catalyst for ROS production 

(Edens et al., 2001; Jain et al., 2009). In C. elegans with Bli-3/Duox knockdown, reduced survival has 

been noted upon exposure to Enterococcus faecalis, indicating that Duox may play a role in host defense 

(Chavez et al., 2009).  
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Figure 4: Topology Model of Duox Enzymatic Activity (Edens et al., 2001) 

Yeast Pathogens 

Several studies have been performed in our lab on C. elegans’ response to the yeast 

Saccharomyces cerevisiae. The work described here studied the host response of C. elegans to the 

common pathogenic yeast, Candida albicans. Candida is the most frequently isolated yeast associated 

with human infection, and causes vaginitis  (Hazen, 1995). As stated earlier, NADPH oxidases in human 

neutrophils and monocytes are important in killing Candida albicans (Rada & Leto, 2008). Duox1 may 

perform a similar Candida killing function in C. elegans. 
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Duox Regulation in Drosophila and C. elegans 
 Duox regulation in Drosophila can be broken down into two possible pathway branches; the 

transcriptional regulation branch, sometimes referred to as the “Duox expression pathway”, and the 

protein activity branch, sometimes called the “Duox activity pathway”  (Ha, et al., 2009a).  

Regulation of Duox Activity 
The p38 MAPK cascade has been shown to act upstream of Duox transcription in Drosophila 

(Rhee, 2001; Ha, et al., 2009b). In C. elegans, the activation of the p38 MAPK Cascade involved in innate 

immunity begins with the activation of G proteins Gα (GPA-12) and Gβ (Rack-1)  (Ziegler, et al., 2009). 

These G proteins go on to activate PLCγ (PLC-3) and PLCβ (EGL-8)  (Ziegler, et al., 2009). These two PLCs, 

or phospholipase C’s, catalyze the hydrolysis of PIP2 (phosphatidylinositol 4,5-bisphosphate) to generate 

two intracellular messengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG)  (Ziegler, et al., 

2009). In a similar process in Drosophila, these products go on to activate the two branches of the Duox 

regulation pathway  (Rhee, 2001; Ha, et al., 2009b).  However, the importance of this pathway for Duox 

regulation in C. elegans has not been determined. 

 In Drosophila, after PIP2 is cleaved, IP3 goes on to increase Duox protein activity  (Ha, et al., 

2009b). Activation of the IP3 receptor results in the release of Ca2+ (Berridge, 1993). The IP3 receptor in 

C. elegans is encoded by the gene itr-1  (Baylis et al., 1999). This protein has 42% conservation at the 

primary amino acid level with mammalian IP3 receptors and its binding domains function analogously  

(Baylis et al., 1999). The Drosophila encoded Duox protein contains a conserved EF-hand Ca2+ domain, 

which is traditionally associated with calcium binding. Previous publications indicate that released Ca2+ 

binds this domain, activating Duox  (Ha, et al., 2009b). The EF-hand domain in C. elegans Duox is only 

partially conserved and may or may not have calcium binding function (Edens et al., 2001). 

Regulation of Duox Transcription 
 Duox activity in Drosophila is also regulated transcriptionally. This branch of the pathway is 

activated when the host requires more Duox in order to increase ROS production  (Ha, et al., 2009a). C 

elegans has been shown to respond to a number of pathogens (including gram-positive and gram-

negative bacteria) through a pathway similar to the Duox transcriptional activation pathway in 

Drosophila (Hayakawa et al., 2006; Ziegler, et al., 2009). In the C elegans pathway, diacylglycerol (DAG), 

the second product of PIP2 hydrolysis, activates protein kinase C δ (PKCδ), which is encoded by tpa-1  

(Ren et al., 2009; Ziegler, et al., 2009). PKCδ activates Tir-1, an ortholog of the human protein SARM  

(Ziegler, et al., 2009).  
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Tir-1 is a toll-interleukin like receptor (TLR) adaptor protein (Liberati et al., 2004). TLRs are 

capable of activating MAPK cascades and inducing transcription (Liberati et al., 2004). Tir-1 is 

responsible for transducing signals from TLRs to downstream components of the p38 pathway in C. 

elegans  (Liberati et al., 2004). Tir-1 has been shown to interact with NSY-1, the MAP3K in the C. elegans 

p38 MAPK pathway  (Sagasti et al., 2001). 

MAPK cascades are among the most conserved pathways among multi-cellular organisms and 

can be found in species including Arabidopsis, Drosophila, and mammals (Asai et al., 2002; Dong, 2002). 

In MAPK pathways, protein kinases attach phosphates to the side chains of serine, threonine, or tyrosine 

residues of specific proteins  (Johnson & Lapadat, 2002). First the stimulus reaches the activator, which 

phosphorylates the MAP3K, which then phosphorylates the MAP2K, which phosphorylates the MAPK, 

which phosphorylates the substrate  (Johnson & Lapadat, 2002). Protein phosphatases remove the 

phosphates that were transferred to the protein substrate by the MAPK, acting as a negative regulator 

for the pathway  (Johnson & Lapadat, 2002).  

Three different MAPK pathways intervene in response to different types of stress  (Ewbank, 

2006). The first is the ERK (Extracellular signal-regulated kinase) pathway, which in multicellular 

organisms is involved in regulation of meiosis, mitosis, and postmitotic functions, and responds to 

stimuli including growth factors, cytokines, viral infection, ligands of G-protein coupled receptors, 

transforming agents, and carcinogens  (Johnson & Lapadat, 2002). In C elegans, the ERK pathway also 

regulates responses to some gram-positive bacterial infections, including Microbacterium nematophilum  

(Nicholas & Hodgkin, 2004)., The second type of MAPK pathway, the C-Jun NH2-terminal kinase (JNK) 

pathway, is activated by stresses such as the inhibition of protein synthesis and is important in apoptosis  

(Johnson & Lapadat, 2002). In C. elegans, organisms with mutations in the JNK pathway show 

uncoordinated locomotion and hypersensitivity to heavy metals and starvation (Sakaguchi et al., 2004; 

(Koga et al., 2000). 

The third MAPK pathway, the P38 pathway, is activated by inflammatory cytokines and 

environmental stresses and may be involved in diseases such as asthma and autoimmunity  (Johnson & 

Lapadat, 2002). The MAP3K in the C. elegans P38 pathway is nsy-1, the MAP2K is sek-1, and the MAPK is 

pmk-1  (Kim, et al., 2002; Ewbank, 2006). The P38 pathway has been shown to be activated by tir-1 

during C. elegans innate immune response to fungi and both gram-positive and gram-negative bacteria  

(Gravato-Nobre & Hodgkin, 2005). TIR-1, NSY-1, and SEK-1 can be co-immunoprecipitated when co-

expressed in cell culture, indicating that they probably form a physical complex (Chuang & Bargmann, 
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2005). Furthermore, the role of the P38 pathway may be somewhat conserved, as TIR proteins and NSY-

1 have been found to be involved in invertebrate and vertebrate innate immune function (Couillault, et 

al., 2004; Liberati et al., 2004). PMK-1 activates a transcription factor called ATF-7, which activates many 

immune pathways (Shivers, et al., 2010). The proposed Duox regulation pathway is shown in Figure 5, 

and components are listed in Table 1. 
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Figure 5: Proposed Duox Regulation Pathway 
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Table 1: Potential Duox Regulatory Proteins 

Pathway Protein Pathway 
Branch 

Role Evidence for Involvement C. elegans 
gene 
name 

Homologous proteins in Humans and Drosophila 
(BLAST) 

Unknown 
Pathogen 
Recognition 
Receptor 

Both Recognizes pathogens, 
activates Gα and Gβ 

-- Unknown Unknown 

Gα and Gβ Both Activates PLCγ and 
PLCβ 

Involved in Drosophila pathway (Ha, et al., 
2009b).  
Shown to act upstream of TPA-1, PLC-3, 
and EGL-8 in C. elegans nlp-29 regulation 
(Ziegler, et al., 2009). 

Gpa-12 
and Rack-
1 

Guanine nucleotide-binding protein subunit α [Homo 
sapiens] and G protein alpha [Drosophila 
melanogaster]; Guanine nucleotide-binding protein 
subunit beta [Homo sapiens] and Receptor of 
activated protein kinase C [Drosophila melanogaster
  

PLCγ and PLCβ Both Hydrolyzes PIP2, yielding 
IP3 and DAG 

Involved in Drosophila pathway (Ha, et al., 
2009b).  
PLC-3 and EGL-8 act upstream of TPA-1 in 
C. elegans nlp-29 regulation (Ziegler, et al., 
2009). 

Plc-3 and 
Egl-8 

1-phosphatidylinositol-4,5-bisphosphate 
phosphodiesterase [Homo Sapiens] and Small wing 
[Drosophila melanogaster]; Phosholipase C [Homo 
sapiens] and [Drosophila melanogaster] 

IP3 receptor Protein 
activation 

Binds IP3 and releases 
Ca2+ (which binds the 
EF-hand domain on 
Duox, activating the 
protein) 

In Drosophila, after PIP2 is cleaved, IP3 
goes on to increase protein activity (Ha, et 
al., 2009b).  
Activation of the IP3 receptor results in the 
release of Ca2+ (Berridge, 1993). 

Itr-1 Inositol 1,4,5-trisphosphate receptor [Homo sapiens] 
and [Drosophila melanogaster] 

PKCδ Transcriptional 
activation 

Activated by DAG, 
phosphorylates (and 
therefore activates) TIR-
1 

Involved in Drosophila pathway (Ha, et al., 
2009b).  
In C. elegans nlp-29 regulation, PKCδ 
activates TIR-1 (Ziegler, et al., 2009). 

Tpa-1 Protein kinase C [Drosophila melanogaster] and 
[Homo sapiens] 

TIR (Toll and 
Interleukin 1 
Receptor) 
domain protein 
family member 
(tir-1)  

Transcriptional 
activation 

Activates MAPK 
cascades 

Involved in Drosophila pathway (Ha, et al., 
2009b).  
Shown to interact with NSY-1, the MAP3K 
in the C. elegans p38 MAPK pathway 
(Sagasti et  al., 2001). 

Tir-1 Ect4 [Drosophila melanogaster] and SARM [Homo 
sapiens] 
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Pathway Protein Pathway 
Branch 

Role Evidence for Involvement C. elegans 
gene 
name 

Homologous proteins in Humans and Drosophila 
(BLAST) 

Neuronal 
Symmetry family 
member (nsy-1)  

Transcriptional 
activation 

Phosphorylates MAP2K Involved in Drosophila pathway (Ha, et al., 
2009b).  
The MAP3K in the C. elegans P38 
pathway is nsy-1 (Kim, et al., 2002). 

Nsy-1 Mitogen-activated protein kinase kinase kinase 15 
[Homo sapiens] and Protein kinase at 92B [Drosophila 
melanogaster] 

SAPK/ERK kinase 
family member 

Transcriptional 
activation 

Phosphorylates MAPK Involved in Drosophila pathway (Ha, et al., 
2009b).  
The MAP2K in the C. elegans P38 
pathway is sek-1(Kim, et al., 2002). 

Sek-1 Dual specificity mitogen-activated protein kinase 
kinase [Homo sapiens] and Stress-activated MAP 
kinase kinase [Drosophila melanogaster] 

Mitogen-
activated protein 
kinase pmk-1 

Transcriptional 
activation 

Phosphorylates 
transcription factor 

Involved in Drosophila pathway (Ha, et al., 
2009b).  
The MAPK in the C. elegans P38 pathway 
is pmk-1 (Kim, et al., 2002). 

Pmk-1 Mitogen-Activated Protein Kinases [Homo sapiens] 
and p38β [Drosophila melanogaster]  

Unknown 
transcription 
factor 

Transcriptional 
activation 

Activates Bli-3 
transcription 

-- Unknown Unknown 

Dual Oxidase  -- -- Bli-3 Dual oxidase [Drosophila melanogaster], dual oxidase 
2 precursor [Homo sapiens], and dual oxidase 1 
precursor [Homo sapiens]  
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Other molecules, including P38 phosphatase, thioredoxin, and H2O2 may play a role in Duox 

regulation. P38 phosphatase, or VHP-1 MAPK phosphatase, a homologue of mammalian MPK7, 

negatively regulates the p38 pathway in C. elegans by dephosphorylating P38 MAPKs, including PMK-1  

(Kim, et al., 2004). Regulation of ASK-1, the mammalian p38 MAP3K (encoded by nsy-1 in C. elegans), 

has also been studied and is pictured below in Figure 6. In non-activated systems, reduced thioredoxin 

(Trx) is bound to two ASK-1 molecules (Fujino, et al., 2007). When reactive oxygen species are present, 

Trx is oxidized and unbinds from the ASK-1, enabling ASK-1 to be activated by TRAF2 and TRAF6 (Fujino, 

et al., 2007). The levels of free versus bound ASK-1 regulate the levels of P38 pathway activity  (Hsieh & 

Papaconstantinou, 2006). Reactive oxygen species dissociate the Trx-ASK-1 complex, increasing P38 

activity  (Hsieh & Papaconstantinou, 2006).  Because the p38 pathway may be an upstream activator of 

Duox in C. elegans, this would constitute a positive feedback loop that might stabilize Duox transcription 

during infection. 

 

Figure 6: ASK-1 Regulation 

Research Plan 
In order to test the effects of bli-3 on survival of worms exposed to Saccharomyces and Candida, 

survival assays were performed utilizing available mutants and RNAi knockdown. Two bli-3 mutants 

were used, bli-3 (e767) and bli-3 (n529). In both cases, the mutation is a single G to A base change  

(Simmer, et al., 2003). Both mutations occur in the sequence encoding the peroxidase domain, which is 

located from amino acids #26-590 (Simmer, et al., 2003). Preliminary observations indicate that bli-3 

(n529) worms bear a more severe blistered phenotype than do the bli-3 (e767) worms. Additionally, E. 
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coli containing vectors expressing double-stranded RNA specific for Bli-3 were fed to wild type C. elegans 

in order to induce an RNA interference response and knockdown bli-3 expression. 

Experiments were aimed at testing the hypothesis that Duox/BLI-3 activity is required for 

optimal survival of worms exposed to yeast pathogens, and that this immune function occurs in the 

intestine. If this were the case, the loss of function mutants bli-3 (e767) and bli-3 (n529), and worms 

subjected to knockdown of bli-3 would show decreased survival (enhanced susceptibility) when exposed 

to the yeast pathogens. Furthermore, worms with Duox/BLI-3 knocked down in the intestine would 

show decreased survival when compared with worms with the same protein knocked down in the 

hypodermis or muscle cells. It was especially important that testing be performed on worms with 

Duox/BLI-3 knocked down in the hypodermis in order to see if the effects on the cuticle also reduce 

survival of worms exposed to yeast. 

Previous research indicates that decreasing expression of Duox/BLI-3 reduces Enterococcus 

faecalis-induced ROS production by C. elegans, and that C. elegans exposed to Bli-3 dsRNA produced 

significantly less ROS than worms fed the vector control dsRNA  (Chavez et al., 2009). Furthermore, 

reduction of Duox in the intestine and hypodermis, but not in the muscle, causes increased sensitivity to 

E. faecalis  (Chavez et al., 2009, 2007). This makes sense, given that pathogens that manage to pass 

through the pharyngeal grinder often exert their effect on the intestine (Schulenburg et al., 2004;  

Gravato-Nobre & Hodgkin, 2005). Duox has been shown to function in the intestine in Drosophila, 

further suggesting that this may be the case in C. elegans (Ha et al., 2005, 2009b). It is hypothesized that 

Duox/BLI-3 is also involved in C. elegans’ innate immune response to yeast pathogens.  

In order to determine the location of bli-3 immune function, rde-1 mutants will be used for 

tissue specific RNAi knockdown. The gene rde-1 codes for an argonaute protein, a part of the RISC 

complex  (Tabara, et al., 1999). Rde stands for RNAi deficient, and loss of function rde-1 mutants render 

the RNAi machinery inactive (Tabara, et al., 1999). This leads to no obvious defects in growth or 

development  (Tabara, et al., 1999). Wild-type rde-1 can be expressed under a tissue-specific promoter 

in rde-1 mutant worms, and RNAi sensitivity only occurs in tissues expressing rde-1 (Qadota, et al., 

2007). Feeding worms E. coli expressing dsRNA is usually sufficient to induce interference, making this a 

fairly simple experimental procedure (Timmons & Fire, 1998). In order to determine in which tissue bli-3 

functions, rde-1 mutants containing the rde-1 gene driven by a tissue specific promoter (intestine, 

muscle, or hypodermal) will be used. Bli-3 activity will then be knocked down by RNAi only in the tissue 

expressing rde-1. Survival assays will be run on worms with bli-3 activity knocked down in different 
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tissues in order to determine where it is required for resistance to yeast infection. This procedure is 

outlined in Figure 7. The current estimated frequency of false-positive RNAi phenotypes is less than 1%, 

meaning that positive results are very significant (Kamath, et al., 2003). However, RNAi is not completely 

effective, so results can be difficult to obtain and false negatives are high (Kamath, et al., 2003); 

(Simmer, et al., 2003). RNAi results (even from experiments done in the same laboratory) vary from 10% 

to 30% (Simmer, et al., 2003). 
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Figure 7: RNAi Experimental Procedure
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Materials and Methods 

Stocks 
Four C. elegans strains were used in this experiment. The control strain was the wild type strain, 

N2.Two bli-3 mutants were used, MT 1141 bli-3 (n529) and CB 767 bli-3 (e767). Finally, rde-1 mutants 

with the wild type rde-1 gene expressed under a tissue specific promoter were used for tissue-specific 

RNAi bli-3 knockdown. NR222 (rde-1 (ne219) V; kzls9[pKK1260(lin-26p::nls::gfp), pKK1253(lin-26p::rde-

1), pRF4(rol-6 marker)]), which has a dominant rol-6 allele as a marker, was used for hypodermal RNAi 

knockdown. NR350 (rde-1(ne219) V; kzls20 [pDM#715(hlh-1p::rde-1) + pTG95(sur-5p::nls::GFP)]], which 

uses GFP as a marker gene, was used for muscle specific RNAi knockdown. WP303, which also uses rol-

6(d) as a marker and contains rde-1 driven by the nhx-2 intestinal specific promoter, was used for 

intestinal significant RNAi (K. Strange, personal communication; see also Espelt et al 2005). NR222 and 

NR350 were obtained from the Caenorhabditis Genetics Center.  WP303 was obtained from the 

laboratory of Kevin Strange. These strains all contained the transgenes as integrated multi-copy arrays.  

All strains were kept on NGM agar plates with E. coli OP50 as a food source, and were incubated at 16 or 

20°C. Yeast strains used were Y101 (S. cerevisiae) and SC5314 (C. albicans). Single colonies of the yeast 

strains were picked from YPD agar plates to  a liquid culture containing 2mL YPD that was incubated 

overnight at 300C (S. cerevisiae) or 370C (C. albicans).   

Survival Assays without RNAi 

Saccharomyces and E. coli 

 Survival assays were first performed without the use of RNA interference. The survival of bli-3 

mutants and wild type worms was tested on both Saccharomyces cerevisiae and E. coli (control). NGM 

agar plates were spotted with 20μL of 1:1:2 Saccharomyces stock: YPD: Streptomycin (50mg/mL stock, 

used to prevent contamination) and incubated at 30°C overnight. Saccharomyces stock cultures were 

created by inoculating 2mL YPD with a single colony from a streaked plate, followed by overnight 

incubation at 300C. E. coli plates were spotted with 40μL of E. coli stock solution (OP50 grown on LB 

broth overnight at 370C) and incubated at 37°C overnight. More E. coli was added to plates than 

Saccharomyces because Saccharomyces lawns grow much more quickly on the plates than do E. coli, and 

20µL of E. coli culture was insufficient to last to the end of the assay. Thirty L4 stage worms were 

individually picked from stock plates to each test plate. Three plates of each worm strain to be tested 

(wild type, bli-3 (n529), and bli-3 (e767)) were started at the same time. Live and dead worms on each 
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plate were counted and recorded daily. Dead worms were removed after each count to avoid double 

counting. Worms that crawled off the agar were not counted, as their cause of death could not be 

determined.  Adult worms were re-plated every 2-3 days to avoid confusion between the original worms 

and their progeny.  

Candida 

Survival of the bli-3 mutants and wild type worms was also tested on Candida albicans lawns. Each 

agar plate was spotted with 20µL of 1:1:2 Candida stock: YPD: Streptomycin solution and incubated 

overnight at 30°C. Liquid Candida stock was prepared by picking single colonies from an agar plate and 

incubating them at 370C overnight in 2mL YPD. Thirty L4 worms were individually picked from stock 

plates to each test plate. Each strain was tested on three separate plates. Live and dead worms were 

counted and recorded every 8-20 hours. Dead worms were removed after each count to avoid double 

counting. Worms that crawled off the agar were not counted, as their cause of death could not be 

determined. Adult worms were re-plated every 2-3 days to avoid confusion between the original worms 

and their progeny. 

Survival Assays with RNAi 

E. coli RNAi feeding strains 

 Two E. coli plasmids were utilized for RNAi experimentation. The first plasmid, L4440, is the 

RNAi vector without insert, was used as a control in feeding experiments (Kamath, et al., 2003). The 

second plasmid, F56 C11.1, contained an inserted sequence from the Bli-3 gene expressed under control 

of a lac promoter on each strand in an anti-parallel arrangement (Kamath, et al., 2003). The lac 

promoter is expressed in the presence of IPTG (which is present in the agar on the feeding plates). 

Transcription occurs from both promoters, resulting in dsRNA containing a sequence from the bli-3 

gene.  Both vectors contained an ampicillin-resistance gene for plate selection of transformed colonies.  

Tetracycline resistance was encoded by an insertion into the E. coli host genome. Strains were obtained 

from Source Biosource, Oxford, UK.  

Streaking Plates 

 LB plates containing 10µg/mL tetracycline and 50µg/mL ampicillin were used to select for 

presence of plasmids, check the viability of the strains through streaking, and grow colonies to be used 
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to make feeding and freezing cultures. The LB formula used can be found in the “Molecular Cloning: A 

Laboratory Manual” (Maniatis et al., 1982). 

 Plates were streaked with the E. coli strains containing L4440 and F56 C11.1 using a sterile 

inoculating loop. 

Freezing Stocks 

  A sterile inoculating loop was used to inoculate 5mL of media (LB with 10µg/mL tetracycline 

and 50µg/mL ampicillin) with a colony from a streaked plate. This culture was incubated overnight at 

37oC. A solution of 15% glycerol was created by combining 0.85mL of the overnight culture with 0.15mL 

glycerol. This culture was frozen at -80OC for long term storage.  The culture was re-streaked from the 

frozen stock to confirm viability after freezing. 

Making Feeding Plates 

 500mL of NGM agar was made containing 25µg/mL Carbenicillin and 1mM IPTG. Fifty 60mm 

Petri dishes were poured, each containing 10mL of this media. Plates were allowed to sit for one week 

at room temperature. Liquid cultures of the feeding strains were made in 2mL LB containing 50µg/mL 

ampicillin. One tube was inoculated with a single colony of L4440 or F56 C11.1. Feeding stocks were 

incubated overnight at 37oC. Feeding plates were spotted with 150µL of the overnight culture (Ahringer, 

2006). 

Harvesting Progeny 

 Twenty L4 worms were plated to each feeding plate. The original worms were transferred to 

new feeding plates once progeny were observed. This process was repeated as necessary.  After enough 

progeny had been obtained, L4 progeny were transferred to Candida plates and survival assays were run 

in the same fashion as described for the non-RNAi survival assays. 
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Results 

Survival Assays without RNAi 

Comparison of Pathogens 

 In the survival assay without the use of RNAi, wild type, bli-3 (e767), and bli-3 (n529) worms 

were exposed to E. coli, S. cerevisiae, and C. albicans. As is shown in Figure 8, all C. elegans strains 

survived longest on the control, E. coli, and showed the largest decrease in survival on C. albicans. In all 

worm strains, differences in survival were statistically significant between E. coli vs. S. cerevisiae, E. coli 

vs. C. albicans, and S. cerevisiae vs. C. albicans (see appendix 1 for tabulated p values).  

 
Figure 8: Yeast pathogens decreased the survival rates of all three C. elegans strains, and Candida 
albicans affected survival more than Saccharomyces cerevisiae. Wild-type (N2), bli-3 (e767), and bli-3 
(n529) C. elegans were exposed to an E. coli control (red) and two different yeast pathogens, 
Saccharomyces cerevisiae  (blue) and Candida albicans (green).  All three worm strains survived longest 
on E. coli, and showed a significant decrease in survival when exposed to either pathogen (log-rank test, 
p < 0.001). Worms of all three strains exposed to Candida albicans also had significantly decreased 
survival when compared to worms exposed to Saccharomyces cerevisiae (log-rank test, p < 0.001 in all 
cases). Each survival curve represents results combined from three plates, with 30 worms per plate. 
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Effects of bli-3 mutations 
 Differences in survival between different C. elegans strains plated on the same food source (E. 

coli, S. cerevisiae, or C. albicans) were also observed.  Data from Figure 8 were re-plotted for comparison 

(Fig. 9, Fig. 10, and Fig. 11). The bli-3 (e767) strain showed no significant decrease in survival compared 

with wild type when exposed to Saccharomyces or Candida (Fig. 10 and Fig. 11, respectively). However, 

surprisingly, the bli-3 (e767) strain survived significantly longer than the N2 strain on E. coli (Fig. 9).  In 

contrast, the bli-3 (n529) strain showed a significant decrease in survival compared to wild-type when 

exposed to E. coli (Fig. 9) or  Candida (Fig. 11). Although there appeared to be a decrease in survival of 

bli-3 (n529) C. elegans exposed to Saccharomyces when compared to N2 and bli-3 (e767) worms, the 

difference was not statistically significant (Fig. 10).  

  

Figure 9: Differential survival of wild type and bli-3 mutant C. elegans exposed to E. coli. Wild-type 
(N2) (yellow), bli-3 (e767) (fuchsia), and bli-3 (n529) (purple) C. elegans were plated on E. coli. Data are 
re-plotted from Figure 8. The bli-3 (e767) worms survived longer than wild-type or bli-3(n529). When 
compared to wild-type using the Log-Rank test, bli-3 (e767) worms had a p value of 0.0004 and bli-3 
(n529) worms had a p value of 0.0436. When compared to each other, the mutants had a p value of 
<0.0001. Results included three plates per strain, with 30 worms per plate. 
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Figure 10: Differential survival of wild-type and bli-3 mutant C. elegans exposed to Saccharomyces 
cerevisiae. Wild-type (N2) (yellow), bli-3 (e767) (fuchsia), and bli-3 (n529) (purple) C. elegans were 
exposed to Saccharomyces cerevisiae. The slight apparent decrease in survival between each mutant 
and wild-type was not significant (Log-Rank test p values were as follows: bli-3 (e767) – 0.0994 and bli-3 
(n529) –0.1933). Results included three plates per strain, with 30 worms per plate. 

 

 

Figure 11: Differential survival of wild-type and bli-3 mutant C. elegans exposed to Candida albicans. 
Wild-type (N2) (yellow), bli-3 (e767) (fuchsia), and bli-3 (n529) (purple) C. elegans were exposed to 
Candida albicans. The bli-3 (n529) strains showed a statistically significant decrease in survival when 
compared to either N2 (p<0.0001) or bli-3 (e767) worms (p<0.0001). Although there appeared to be a 
slight decrease in survival of the bli-3 (e767) worms when compared to N2, this difference was not 
significant according to the Log-Rank test (p= 0.3961). This graph represents combined results which 
included three plates per strain, with 30 worms per plate. 
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Survival Assays with RNAi 

 The effects of Bli-3 on survival were also studied using an RNAi knockdown procedure. 

An E. coli strain transformed with a vector containing a short sequence of Bli-3 dsRNA 

expressed under the lac promoter was used to induce Bli-3-specific RNAi in worms. Wild type C. 

elegans were fed E. coli containing either an empty vector (control) or the vector expressing 

dsBli-3. Based on the greater severity of survival reduction in worms exposed to Candida 

albicans, we chose to use C. albicans rather than S. cerevisiae as the pathogen in the RNAi tests.  

The progeny of worms receiving RNAi or control treatment were then exposed to Candida 

albicans and a survival assay was performed. Results of the assay are shown in Figure 12. C. 

elegans from the  Bli-3 RNAi treated sample showed a significant decrease in survival when 

compared with the control.  

  

Figure 12: Reduction in survival in C. elegans treated with dsBli-3 (green) prior to exposure to Candida 
albicans. L4 C. elegans were fed transformed E. coli with either an empty vector insert (L4440, orange) 
or a vector insert with bli-3 dsRNA (F56 C11.1, green). Their progeny were then plated on Candida 
albicans when they reached the L4 stage. Survival curves were generated using the Graph Pad Prism 
software. When compared to worms fed empty-vector transformed E. coli, whole body RNAi bli-3 
knockout worms show a decrease in survival. This difference is statistically significant according to the 
Log-Rank test (p=0.0209). This graph represents combined results which included three plates per strain; 
with 30 worms per plate. 
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TD50s and Relative Mortalities of Mutant and Knockdown Worms 
 

 TD50 is defined as the estimated time for 50% of the individuals in a survival test to die.  Results 

are summarized in Figure 13 and tabulated in Table 2. It can be seen that for wild-type as well as the two 

bli-3 mutants, exposure to yeast reduced TD50, with exposure to Candida having a more severe effect 

than Saccharomyces.  As described above, the TD50 for bli-3 (e767) worms on E. coli was surprisingly 

high.    

 

Figure 13: TD50 Values of wild-type bli-3 mutant, and previously RNAi-treated C. elegans exposed to 
yeast.  Data from the experiments shown in Figures 9-12 were used to estimate TD50 using a nonlinear 
regression, dose-response model (GraphPad Prism software).  TD50 numerical values are also tabulated 
in Table 2. 
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 TD50s were used to determine relative mortality, defined as the ratio of the TD50 of the control 

group to the TD50 of the test group. The equation for relative mortality can be seen in Equation 1: 

Relative Mortality. In survival assays without the use of RNAi, wild type C. elegans were used as the 

control and the test groups were bli-3 (e767) and bli-3 (n529). In the whole-body RNAi survival assay, C. 

elegans exposed to empty vector were used as a control and C. elegans exposed to the vector carrying 

the dsBli-3 message were the test group. Relative mortalities greater than one indicate that the test 

group showed a decrease in survival, whereas relative mortalities of less than one indicate that the test 

group survived better. The latter was the case in the relative mortality of bli-3(e767) on E. coli.  

Calculated relative mortalities of the strains tested are shown in Table 2.  

Equation 1: Relative Mortality 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 =
𝑇𝐷50𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑇𝐷50𝑚𝑢𝑡𝑎𝑛𝑡

 

 The final measurement of mortality calculated was corrected relative mortality. This adjusts the 

relative mortality to remove bias due to the fact that mutants generally show decreased survival, even 

under control conditions. For this calculation, relative mortality of the mutant on E. coli was used as a 

control, and the relative mortality of the mutant on the yeast was divided by this control. The equation 

can be seen in Equation 2: Corrected Relative Mortality. In order to use this correction, strains had to be 

compared after exposure to both E. coli and a yeast pathogen.  When compared in this way, the 

corrected mortality for bli-3(n529) on both yeast pathogens was still greater than one (Table 2), 

indicating that changes in survival on E. coli did not change the interpretation of the reduction in survival 

as having resulted from the pathogen.  In the case of the bli-3 (e767) mutant, corrected relative 

mortality may be misleading, as it is surprising that the relative mortality is less than one, and further 

experimentation would need to be performed in order to see if the population was in fact 

representative of the strain’s survival under these conditions.   The misleading nature of corrected 

relative mortality in this example led to the choice to graphically represent the relative mortality of 

different experimental groups on Candida, rather than the corrected relative mortality (Figure 14). 

 

Equation 2: Corrected Relative Mortality 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 =
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑦𝑒𝑎𝑠𝑡
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝐸.𝑐𝑜𝑙𝑖
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Table 2: Relative Mortalities of C. elegans exposed to yeast 

Strain RNAi 
Vector 

TD50 
E. coli 

TD50 
Saccharomyces 

TD50 
Candida 

Relative 
Mortality 

E. coli 

Relative 
Mortality 

Saccharomyces 

Relative 
Mortality 
Candida 

Corrected 
Relative 

Mortality 
Saccharomyces 

Corrected 
Relative 

Mortality 
Candida 

N2  8.98 5.569 1.862      
bli-3 (e767)  22.47 4.639 1.652 0.399644 1.20047424 1.127119 3.003859262 2.820307 
bli-3 (n529)  7.732 4.174 1.024 1.161407 1.334211787 1.818359 1.148789036 1.565652 

N2 Empty   1.83      
N2 dsBli-3   1.0525   1.738717   
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Figure 14: Relative Mortality on Candida albicans. Relative mortality was calculated for mutants and 
RNAi knockdown C. elegans. Relative mortalities that are greater than 1 are shown in red and indicate a 
decreased level of survival.  bli-3 (e767) mutants showed only a small decrease in survival, whereas N2 
worms treated with Bli-3-specific RNAi and bli-3(n529) worms showed comparable decreases.  
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Tissue Specific RNAi 
 Tissue specific RNAi and survival assays on Candida were performed in order to identify in what 
tissue Duox’s immune function is required. Bli-3 knockdowns were performed in the hypodermis, 
muscle, and intestine. As is shown in Figure 15, differences in survival were not significant and survival 
was similar in all groups. 

 

Figure 15: Survival rates are similar among C. elegans with bli-3 knockdown in the hypodermis, muscle, and intestine. C. 
elegans expressing rde-1, a gene necessary for RNAi function, in specific tissues (hypodermis, muscle, and intestine) were 
exposed to dsRNA for bli-3 and survival assays were performed on Candida. Differences in survival between worms with bli-3 
knocked down in certain tissues were not significant according to the Log-Rank test. P values were as follows: hypodermal v. 
muscle – 0.1187, muscle v. intestinal – 0.4019, and hypodermal v. intestinal – 0.3293. 
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Discussion 

Survival assays were performed utilizing available mutants, RNA interference, and tissue specific 

RNAi in order to test the hypothesis that bli-3 is required for immune function, and that this immune 

function is mainly localized in the intestine. Survival assays with available mutants showed that bli-3 

(n529) mutants had a significant decrease in survival after exposure to Candida albicans when compared 

to wild-type worms. Whole body RNAi knockdowns of bli-3 also showed decreased survival on Candida, 

further supporting the hypothesis that C. elegans’ Bli-3/Duox has an immune function. Tissue specific 

RNAi results indicated no significant differences in survival between worms with bli-3 knocked down in 

different tissues, but these results were inconclusive as to bli-3 function because the appropriate 

controls with the non-RNA inducing empty vector strain L4440 were not performed.  The tissue-specific 

RNAi experiments should be repeated in future experiments, with the inclusion of these controls. 

Survival assays utilizing bli-3 (e767) and bli-3 (n529) mutants plated on E. coli, Saccharomyces 

cerevisae, and Candida albicans were used to assess the effects of bli-3 mutation on survival rates of C. 

elegans exposed to different yeast pathogens. The effects of bli-3 mutations on innate immunity were 

more visible and statistically significant when assays were performed with Candida than with 

Saccharomyces. As a result of this observation, RNAi survival assays were performed using Candida as a 

pathogen. Another advantage of using Candida is that the shorter survival time resulted in a shorter 

assay and less time for the RNA interference effect to wear off. 

 The results of the first survival assay gave partial support for the hypothesis that bli-3 mutation 

reduces survival when exposed to yeast pathogens compared to wild type strains. The bli-3 (e767) strain 

showed no significant decreases in survival when exposed to Candida. However, the bli-3 (n529) strain 

showed a significant decrease in survival rate when exposed to E. coli and Candida. Both bli-3 (e767) and 

bli-3 (n529) showed no significant decrease in survival of when exposed to Saccharomyces. 

The bli-3 (e767) worms did not show a statistically significant decrease in survival on Candida, 

indicating that the site of mutation may play a role in the effect on the immune response.  Both bli-3 

(e767) and bli-3 (n529) are point mutations in the peroxidase domain-encoding sequence of bli-3. 

However, the mutations occur at different nucleotides.  

 In addition to assays using available mutants, RNAi knockdown C. elegans were used in order to 

determine the effect of loss of bli-3 function. Worms treated with dsRNA for the bli-3 gene showed a 
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significant decrease in survival when compared to worms exposed to an empty vector. The decrease in 

survival was slightly less than that of bli-3 (n529) worms. This is likely due to the fact that RNAi 

knockdowns do not destroy all transcripts, and therefore small amounts of the Duox protein may still be 

present.  Together with the observation that bli-3 also showed decreased survival on Candida, these 

results indicated that Bli-3 likely plays a role in host defense. RNAi knockdown assays do have pitfalls, so 

more should be performed. For example, knockdown may affect other genes similar in sequence to Bli-

3. The F56 C11.1 vector may target multiple polypeptide sequences; whole body RNAi using this vector 

results in 10% embryonic lethality (Kamath, et al., 2003). 

 Worms in the whole-body RNAi survival assay lived longer than the other survival assays. 

However, the TD50s from this assay were similar to those of other assays. This is likely due to a large 

number of censored worms and a few outliers that lived significantly longer than expected. Possible 

confounding variables include the age of the liquid Candida culture, which was stored at 4°C for up to 

several weeks, and consequent variability of rate of growth of the Candida lawn.  

 Tissue specific RNAi results indicated no significant difference in survival among C. elegans with 

bli-3 knockdown in different tissues after exposure to Candida. However, Chavez et al. observed a 

significant decrease in survival among C. elegans with bli-3 knockdown in the intestine and the 

hypodermis, but not in the muscle (Chavez et al., 2007, 2009).  Chavez et al (2009) recognized that the C. 

elegans strains engineered for tissue-specific RNAi had different lifespans, even when grown on the 

empty vector E. coli strain.  They therefore calculated relative mortality to compare the strains. In future 

experiments, survival assays should also include exposure of each strain to the empty vector control, 

and relative mortalities should be calculated for control vs. RNAi treated in order to determine if 

differences in survival exist between worms with bli-3 knocked down in different tissues. 

The NADPH oxidase family of proteins is found in a variety of cell types and tissues and is implicated 

in aging, cellular damage and apoptosis, cellular signaling, and host defense. Mutations in Nox family 

proteins can result in a variety of diseases, ranging from congenital hypothyroidism to chronic 

granulomatous disease (a rare, fatal syndrome in young boys lacking the Nox catalyzed respiratory 

burst). Studies of Nox family proteins in well-understood and easily manipulated model organisms can 

increase the scientific communities understanding of these important proteins and lead to novel 

treatments for disorders related to mutations in these proteins. 
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Appendices 

Appendix I: Log-Rank p Values for Survival Assays without RNAi 
Table 3: p Values for Survival Assays without RNAi 

 
N2 Ec N2 Sc N2 Ca e767 Ec e767 Sc e767 Ca n529 Ec n529 Sc n529 Ca 

N2 Ec   <0.0001 <0.0001 0.0004 0.0002 <0.0001 0.0436 <0.0001 <0.0001 
N2 Sc <0.0001   <0.0001 <0.0001 0.0994 <0.0001 0.0009 0.1933 <0.0001 
N2 Ca <0.0001 <0.0001   <0.0001 <0.0001 0.3961 <0.0001 <0.0001 <0.0001 
e767 Ec 0.0004 <0.0001 <0.0001   <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
e767 Sc 0.0002 0.0994 <0.0001 <0.0001   <0.0001 0.0001 0.5944 <0.0001 
e767 Ca <0.0001 <0.0001 0.3961 <0.0001 <0.0001   <0.0001 <0.0001 <0.0001 
n529 Ec 0.0436 0.0009 <0.0001 <0.0001 0.0001 <0.0001   <0.0001 <0.0001 
n529 Sc <0.0001 0.1933 <0.0001 <0.0001 0.5944 <0.0001 <0.0001   <0.0001 
n529 Ca <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001   

*Red numbers indicate that the difference is insignificant 
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