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Abstract 
Waste plastic is an ever-growing environmental concern with millions of tons of plastic 

entering the environment every year. The strongly bonded carbon backbone of plastics combined 

with their low recyclability results in an accumulation of this recalcitrant polymer with limited 

viable options for reuse. Thermal depolymerization technologies are one of the promising methods 

capable of chemically recycling waste plastics. Hydrothermal liquefaction (HTL) and pyrolysis 

use high temperatures, with or without the presence of oxygen, respectively, to break the strong 

covalently bonded polymer chain to create smaller molecules such a fuel grade oils and platform 

chemical monomers. Regardless of the thermal method, research has shown that thermal 

depolymerization performance is highly dependent on feedstock composition, which requires 

experimental studies of each new feedstock.  

In this work, computational and experimental studies are combined to provide a detailed 

understanding of feedstock compositional effects and thermodynamic and economic potential of 

thermal conversion of waste plastic to fuel and chemicals. The use of thermodynamic Monte Carlo 

modeling revealed the thermodynamic feasibility of self-powered cleanup of oceanic waste 

plastics via conversion into marine fuel, termed “Blue Diesel”. In addition to being 

thermodynamically feasible, it was shown the existing plastic present in the Great Pacific Garbage 

Patch could be entirely cleaned within 50 years, if new plastic input to the ocean can be eliminated. 

Stopping plastic waste in rivers before they can enter the ocean is a major step to turning off plastic 

input to the ocean. To understand the thermodynamic potential of river-based conversion systems, 

machine learning models were developed such that the oil yields from any new feedstocks can be 

predicted and incorporated into thermodynamic models. This work indicated that even in mildly 

polluted rivers, river-based conversion systems were thermodynamically feasible and that machine 
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learned models could be used to analyze the impact of feedstock composition on reaction 

performance. Along with thermodynamic potential, machine learning models were also used to 

predict the oil yield potential of land-based pyrolysis of waste plastic to oil in all 50 states. These 

predictions were incorporated into a technoeconomic analysis, showing an average minimum 

selling price of $170/ton. These models allow for the rapid analysis of new feedstocks without the 

necessity of new experimental studies. Further improvement to the economic potential of thermal 

conversion of waste plastics was studied experimentally through the creation of high value 

oxygenated products from radical induced-HTL of polystyrene. These experiments combined with 

traditional HTL experiments began to shed light on the effect of water on the depolymerization 

mechanism of polystyrene, a mechanism that is not currently known in the literature. Economic 

potential was further analyzed computationally to understand depolymerization kinetics of model 

compounds to target high value products. The work done in this thesis expands the fields 

knowledge of the exceptional potential of thermal conversion technologies to change how the 

world handles end of life waste plastics.  
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Chapter 1: Background and Motivation 
 

1.1 Prevalence of Waste Plastic 

 

 Global production of plastics reached 368 million metric tons in 2019 with only an 

estimated 9% being recycled and 12% being incinerated for energy recovery1, 2. The reaming 79% 

of plastic waste is destined for landfills, with a significant amount ending up in the natural 

environment due to mismanagement of waste. Of the six major classes of plastics, termed the “Big 

Six” (polystyrene (PS), high density polyethylene (HDPE), low density polyethylene (LDPE), 

polypropylene (PP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET)) only PET, 

HDPE and PP can be easily recycled3. Compounding the recycling problem is the fact that these 

plastic only have a recycling rate of approximately 30%4. Low recycling rates for these polymers 

are attributed to a range of factors including, mismanagement of waste by end users (i.e. putting 

plastic waste in the trash or littering), limited recycling facilities5 and issues sorting plastics. In 

order to produce a high-quality recycled product the plastics must be sorted into individual pure 

plastic streams3. Sorting individual plastic types is not trivial and is often complicated further due 

to contaminants such as residual product, labels and polymer additives3.   

HDPE, PET and PP account for approximately 55% of the waste polymer in the US as seen 

in Figure 1-1, leaving 45% of all plastic waste with no recycling options. Being able to handle 

these other polymers, as well as the reaming 70% that is not recycled from PET, HDPE, and PP is 

critical to addressing the plastic waste problem in the world.  It is also critically important to 

develop technologies that can handle mixed waste streams to further increase our recycling 

capabilities by eliminating the need for sorting and reducing the impact of contaminants. One 

promising family of technologies are thermal techniques that convert plastics into fuels and other 
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byproducts as they can handle these mixed wastes creating a diesel grade fuel or converting single 

polymers into high value byproducts.  

 

Figure 1-1 Distribution of plastic types in municipal solid waste in the United States in 20184. 

PLA stands for polylactide and LLDPE stands for linear low-density polyethylene. 

1.2 Environmental Fate of Plastics 

Mismanagement of waste plastic throughout history and continuing today has resulted in a 

huge amount of plastic in the environment. This waste comes from mismanagement at all levels, 

from consumers littering, and waste escaping from landfills to some countries in the world 

practicing environmental disposal methods6.  This results in plastic appearing at all levels of the 

environment and creating a massive cleanup problem. 

 Oceans  

Perhaps the most daunting reservoir of waste plastic existing in the environment exists 

floating in oceans all around the world. Although the amount of plastic already in the ocean is not 
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known, it is estimated 4.8 to 12.7 million tons enters the ocean annually 7.  Oceanic waste plastic 

comes from two primary sources, waste entering the ocean from land-based streams, primarily 

rivers, and waste from the fishing industry8. Once in the ocean that plastic is at the mercy of ocean 

currents, resulting in much of the plastic being accumulated in areas called gyres. Gyres are natural 

current formations in the ocean that currents flow into but that have very little current themselves9. 

The currents push plastic into these gyres where it gets stuck and creates what is often referred to 

as “plastic islands”, the largest of which is the Great Pacific Garbage Patch (GPGP)10, estimated 

to have approximately 80,000 tons of plastic11. The plastic found in these patches is comprised 

primarily of polyethylene, polypropylene and occasionally polystyrene, as these plastics will float 

on water and other types will sink due to their densities11. 

Outside of gyres waste plastics can be found throughout the water column, close to shore 

and in the middle of the ocean12-14.  There is well documented impact to sea life from the 

consumption of plastics15, with plastic being found in fish16, marine birds17 and other sea life such 

as sea turtles18. Plastic also poses a large risk of entanglement for sea life which can have fatal 

results19. Although a daunting task clearing the ocean of plastics is critical to ensuring the longevity 

of critically important ecosystems around the world.  

 Rivers 

Clearing the oceans of plastic is without a doubt an important task, but if new plastic waste 

cannot be prevented entering the ocean, cleaning the ocean will be a never-ending battle. As 

previously highlighted, one of the key mechanisms for plastic entering the ocean is through rivers. 

Rivers act like plastic highways into the ocean20 and if the highways can be closed, a huge amount 

of plastic can be prevented from entering the ocean. It has been estimated that between 1.15 and 

2.41 million tons of plastic flow into the ocean from rivers every year21. Along with transporting 
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massive quantities of plastic into oceans, similar negative impact to ecosystems and wildlife has 

been seen from river-based waste plastic through ingestion and entanglement, among others20. 

Although research on the composition and quantity of plastic in rivers around the world is 

lacking, wastes from rivers have been found to have a higher diversity in polymer type22 and exist 

as both macro (>5mm) and micro-plastics (<5mm)23-27. This increased diversity indicates that 

more of the plastic can be collected in the smaller depth rivers. Along with an increase in plastic 

diversity, collecting plastic from rivers before it enters the ocean allows for the capture of micro-

plastics. Micro-plastics are wildly thought to be un-collectable in the ocean, due to the scale and 

complexity of the world’s oceans. Collecting plastics from river sources will eliminate a massive 

ocean input source term, as well as be technologically easier while advanced collection methods 

are developed for the ocean.   

1.3 Material Recovery Facilities 

  The plastic found in oceans and rivers throughout the world comes from many sources, one 

of which is leakage from landfills6. Plastic ends up in landfills either from disposal in the trash or 

disposal from Materials Recovery Facilities (MRFs). There are approximately 420 MRFs across 

the US that accept co-mingled wastes containing on average 67% paper/paperboard,  4.5% wood,  

13% metals, 4% glass, 6% rubbers/textiles and 4.5% plastics4, 5. This MSW is sorted at the MRF 

by category and can further sorted by type within each category (i.e. by polymer type); plastic that 

can be recycled is cleaned to remove contaminants and any plastic that cannot be adequately 

purified is disposed of. Plastics that do not have recycling mechanisms but were accidentally put 

in a recycling receptacle are disposed of, eventually ending up in landfills. The sorting steps at 

MRFs are non-trivial and often expensive, greatly increasing the cost of any material made from 

recycled materials28, 29. To reduce the amount of sorting necessary MRFs restrict the type of 
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plastics they accept, however the type of plastics accepted by MRFs varies from town to town, city 

to city, often causing confusion for end users and reducing the amount of plastic actually 

recycled30. Developing new technologies that can be used to recycle mixed plastic feeds will 

eliminate the need for extensive pre-processing and increase the types and amounts of plastics that 

can be recycled.  

1.4 Recycling Techniques 

Recycling of plastics can be done in multiple ways. The most commonly practiced is 

mechanical recycling, however new research has led to the rise of chemical recycling as a valid 

recycling technique. Table 1-1 outlines the four key recycling terms and provides examples. The 

following sections will expand on mechanical and chemical recycling techniques.  

Table 1-1 Definitions and examples of plastics recycling31, 32 

ASTM D5033 definitions Equivalent ISO 15270 (draft) 

definitions 

Examples 

Primary recycling Mechanical recycling One to one closed-loop 

recycling 

Secondary recycling Mechanical recycling Downgrading to lower value 

product 

Tertiary recycling Chemical recycling Pyrolysis or Hydrothermal 

liquefaction 

Quaternary recycling Energy recovery Incineration with energy 

recovery 

 

 Mechanical Recycling 

Mechanical recycling is the most prevalent form of recycling today. There are multiple 

ways to perform mechanical recycling but the most common is extrusion technology. Extrusion 

can be performed at large-scale, does not need solvents and can be used for multiple types of 

plastic, all of which make it so popular32. Drawbacks of mechanical recycling methods like 

extrusion include degradation of the polymer structure and properties33 preventing one to one 

closed loop recycling. One to one closed loop recycling is when a plastic product can be recycled 
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and converted back into the original product, like turning a PET water bottle back into a PET water 

bottle. When degradation of the polymer occurs, primary recycling is no longer possible and 

secondary recycling is the only option. Methods have been developed to limit this mechanical 

destruction of polymer properties, but it cannot be prevented entirely.  

Another drawback to mechanical recycling techniques are that they are most effective 

when used on single polymer types. This means the plastics must be sorted prior to recycling. 

Sorting is typically achieved through both automated and manual techniques. Near infrared (NIR) 

can be used to sort select plastics by determining polymer type and sorting clear and colored 

plastics34. NIR can only determine the properties of the bulk polymer, so polymer blends or multi 

layered polymers cannot be identified through this technique. Research and patents have been 

published for developing systems able to distinguish and mark all polymer types, but they are not 

commercially available at this time32. Although polymer mixtures can be recycled using 

mechanical recycling methods the products formed typically have poor mechanical properties32. 

The final limitation of mechanical recycling is that there is a finite number of times a polymer can 

be recycled before its physical properties are too degraded to be used for either primary or 

secondary recycling35   The need for recycling techniques that can handle mixed plastic feeds that 

cannot be separated and recycle end of life polymers that would otherwise be landfilled has led to 

the rise in research and development of chemical recycling technologies.  

 Chemical Recycling 

 

Thermal conversion technologies, also known as chemical recycling, have been studied for the 

conversion of waste plastic for over 50 years. Thermal conversion technologies work by using 

high temperature (>300 ˚C) and sometimes high pressures (>24 MPa) to break the bonds in the 



7 

 

backbone of polymer chains creating smaller molecules. Depending on the reaction operating 

conditions these molecules can vary in size from low molecular weight polymers to monomers of 

the polymer. This variability indicates a strong dependence on reaction conditions but also a 

potential tunability of the products to target desired outputs, either as oils or valuable by-products 

if the processes can be well understood.  Although, these technologies are increasingly being 

studied there still exists gaps in the literature. 

1.4.2.1 Pyrolysis  

Pyrolysis is a thermal technology that utilizes high temperature (>450 ˚C) in the absence 

of oxygen to convert polymers into smaller molecules36. Pyrolysis of plastic has been studied in 

the literature both experimentally and through various modeling techniques. Pyrolysis can be 

operated as either a catalytic or non-catalytic process and under fast or slow pyrolysis conditions36, 

37. Oil yields of greater than 90 wt% have been reported for single stream plastics38-40 and 50 wt% 

for select plastic mixtures under optimized conditions41, 42.  

1.4.2.2 Hydrothermal Liquefaction  

 

 Hydrothermal liquefaction (HTL) is the second thermal technology of interest. HTL also 

operates at high temperatures and high pressures but unlike pyrolysis uses sub- or supercritical 

water43 to create a bio-oil with properties similar to diesel fuel44. HTL is a promising technology 

for wet feedstocks, as drying, a high-cost process, is not required. For this reason, significant 

research has been done on HTL for the conversion of wet organic biomass feedstocks, with only 

recent focus on this technology for the conversion of plastics, a traditionally dryer feedstock. 

Where there is an abundant source of water HTL offers potential benefits over pyrolysis as the 

temperatures necessary for depolymerization are lower. Recent work in the literature has studied 

the use of HTL for the conversion of single stream plastics into oils 45-50 to optimize the oil yields. 
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For these single streams, oil yields of 80% and above were achieved, a significant and promising 

result. While promising, the literature has focused on polymers like PET, PE and PP, and data for 

PS and polycarbonates is lacking. There has also been limited research on the conversion of mixed 

plastic streams. The studies that have been done have shown significantly lower conversions to 

oil, approximately 50% 47, and required higher reaction temperatures (~500 ˚C or higher). 

Decreasing the reaction conditions and increasing the oil yields will be critical for deployment of 

these technologies on a large scale.  

Along with single stream polymers and full mixed waste streams studies have also 

considered polymer mixtures of two to three plastics. Acquiring these polymer mixtures may be 

more feasible than single plastic streams. Some known plastic waste sources are primarily 

composed of only a few plastics, such as the plastic found on the surface of the Great Pacific 

Garbage Patch in the Pacific Ocean which is a majority PE and PP11. Partial separation of polymers 

at MRF’s is also possible by utilizing the density differences between plastics such as PE, PP and 

PS with those of PET and PVC allowing for floatation separation, a relatively simple and cost-

effective process. Advancing the fields knowledge and understanding of these thermal conversion 

technologies will require both experimental and computational study to provide a comprehensive 

analysis.  

1.5 Modeling Techniques  

 Monte Carlo Modeling 

 Thermodynamics, economics and environmental impacts are all critical factors for 

understanding the potential of hydrothermal and pyrolytic technologies. However, there are many 

unknown variables required to calculate the impact of these factors. Traditionally, a value based 

on the literature, and chemical knowledge of the system is chosen for an unknown variable. 

Although a valid way to model the system, the model results are specific to the decisions made 
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about these variables. To address this limitation Monte Carlo (MC) simulation techniques can be 

used.  MC techniques allow the process variables to be a range of values in a known distribution 

(such as uniform or triangular) instead of single points. This allows the whole range of possible 

results to be modeled and the probability of different results studied. MC techniques have been 

proven useful for handling uncertainties in similar types of analyses 51.  

 MC techniques also allow for new information to be easily incorporated into models when 

it becomes available. This is important for studying depolymerization reactions, as the field is 

constantly producing new information.  

 Machine Learning Techniques 

 Waste plastics is an active field currently, with a significant number of studies being 

published every year. This wealth of published data can be utilized to create datasets that can be 

analyzed with various machine learning techniques. Analyzing these datasets can help to predict 

desired reaction features, such as oil yield, and aid in the optimization of these reactions. Although 

a significant amount of data exists in the literature the amount of data points (~300-500) is 

significantly less than the size of data traditionally used in machine learning (>100,000) 52, 53. This 

means that the machine learning techniques utilized must be carefully selected and validated to 

ensure that there is not overfitting, as this is the common challenge faced in these low data 

problems 54, 55.  

 One promising algorithm for handling small datasets is Random Forest regression (RF) 

which is an ensemble method that utilizes multiple decision trees and bootstrapping to predict the 

value of the desired dependent variable 56. By bootstrapping the data, RF allows each decision tree 

to only see a small subset of the data and reduces the correlation between each tree which results 

in an overall more accurate predication 57. RF models can be developed to take the specific reaction 

conditions, such a feed composition, temperature and reaction time and predict the reaction yields 
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(oil, gas and char). With a well-developed model, predictions can be made to understand how 

changing specific reaction conditions or feedstock composition effects the desired yields. This 

allows for the exploration of many more conditions than could be performed in a lab and also can 

aid in determining which experiments should be further studied experimentally. 

 Random forest techniques have been proven successful with small datasets as explained 

previously, however some real data, such as kinetic time series, have even less data than the small 

datasets discussed above. They also suffer from the fact that when each reaction product is tracked 

over time the data has significantly more columns than it does rows which is a critical flaw in most 

regression algorithms. Therefore, in order to be able to do any sort of machine learning on such 

data, regression must be ruled out. These datasets are not large enough to make accurate regression 

predictions, however if studying the features of the dataset alone is important, techniques such as 

dendrograms can be used. Dendrograms are a form of hierarchical clustering that represent data 

from dimensional space as a tree with the height of the tree representing similairty57. Such a 

technique can be used to identify similarities in the products of the kinetic time series data even 

with very few data points. Understanding the similarity of products can aid in the development of 

group type kinetic reaction models and targeting of high value reaction products.  

1.6 Research Objectives  

 

Addressing waste plastics from oceans to rivers and materials recovery facilities will require a 

multifaceted approach from fundamental thermodynamics to developing new technologies. To 

understand the potential of chemical recycling techniques for efficient recycling of waste plastic, 

this work aims to address the following objectives: 

1. Understand the fundamental thermodynamic potential of thermal conversion of waste plastic        

to fuel 
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2. Demonstrate how machine learning can be integrated into chemical recycling problems 

3. Develop enhanced knowledge of thermal depolymerization pathways for optimization of 

reaction products.  

To this end, computational methods were combined with experimental knowledge and data to 

create a complete picture of waste plastic depolymerization through pyrolysis and hydrothermal 

liquefaction. Fundamental thermodynamic modeling and Monte Carlo modeling methods were 

utilized in Chapter 2 to understand if fuel generated from oceanic waste plastic on board a ship 

could produce enough energy to fuel the conversion system and ship itself. The learnings from the 

thermodynamic analysis were then applied to a case study to understand how long cleaning up an 

area of the ocean would take utilizing a self-powered ocean cleanup vessel.  

Chapter 2 highlights the need to not only cleanup the ocean, but also prevent new plastics 

entering the ocean. Chapter 3 combines the thermodynamic modeling developed in Chapter 2 with 

machine learning techniques to understand the exergy potential of waste plastic to fuel systems 

based next to polluted rivers. Machine learning techniques allow for the utilization of all of the 

data that has already been published in the literature and create decision aiding tools that eliminate 

the need for extensive and wasteful experimental work. Chapter 4 will further expand upon the 

power of the machine learning models developed by increasing the type of reaction that can be 

modeled, in order to study the reduction of landfill waste from Material Recovery Facilities 

(MRFs). Reducing the amount of waste plastic that ends up in landfills will also reduce the amount 

of plastic escaping into the environment and therefore ending up in rivers and oceans. Chapter 4 

will further advance the capabilities of machine learning by incorporating machine learning 

estimations with a technoeconomic analysis that will predict the minimum selling price of product 

required for cost effective conversion of waste plastics in all 50 states in the US through pyrolysis.  
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 Finally, Chapters 5 and 6 will address the need for a better understanding of the products 

produced from thermal depolymerization. Enhanced understanding of the mechanisms controlling 

thermal depolymerization will allow for the creation of higher value products further advancing 

the potential of these technologies. Chapter 5 will utilize an external radical source to create 

valuable oxygenated single ring aromatic products. Suggestions are made both in Chapter 5 and 

Chapter 8 as to how these external radicals can be used to advance the understanding of how 

radicals interact in hydrothermal environments. Chapter 6 aims to advance the knowledge of 

product production during thermal degradation by studying a polyethylene model compound, 

dodecane, and utilizing machine learning to do group type kinetic modeling. The use of machine 

learning allows for the parsing of complex kinetic datasets while still producing accurate kinetic 

predictions capable of tracking specific molecules of interest.  
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Chapter 2: Thermodynamic feasibility of shipboard 

conversion of marine plastics to blue diesel for self-

powered ocean cleanup58 
2.1 Introduction 

An estimated 4.8 to 12.7 million tons of plastic enter the ocean each year, distributing widely 

across the ocean’s surface and water column, settling into sediments, and accumulating in marine 

life 7, 11, 59. Numerous studies have shown plastics contribute to sublethal and lethal damages to 

marine life and birds, therefore motivating introduction of effective mitigation and removal 

measures 60. Reducing or eliminating the amount of plastic waste generated is critically important, 

especially when the current loading may persist for years to even decades 7, 61, 62. 

As a highly visible part of an integrated approach for removing plastics from the environment, 

7, 61, 62 efforts are underway to collect oceanic plastic from accumulation zones in gyres formed by 

ocean currents 59, 63. Present approaches to remove plastic from the open ocean utilize a ship that 

must store plastic on board until it returns to port often thousands of kilometers away to unload 

the plastic, refuel, and resupply.  

Optimistic evaluation of cleanup time using the harvest-return approach indicates that at least 

50 years will be required for full plastic removal 63; more conservative estimates suggest that 

partial removal will require more than 130 years 63, 64. Cleanup times of decades mean that 

environmental degradation may have already reduced the existing plastics to microscopic and 

smaller forms that can no longer be harvested before cleanup is completed 7, 60, 64. These 

considerations underscore the massive challenge of removing plastics from the ocean and naturally 

raise the following question: can any approach remove plastics from the ocean faster than they 

degrade?  
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Some current plastic removal strategies involve accumulation via a system of booms, 

consisting of semi-circular buoys fit with a fine mesh extending below the ocean surface 63, 65. 

These booms are positioned so that prevailing currents brings plastic to the boom, where it then 

accumulates. The currently envisioned approach is for a ship to steam to the boom system, collect 

plastic, and then return to port to offload and refuel before resuming collection activities. 

The time required for recovering plastics could be reduced if return trips to refuel and unload 

plastic were eliminated. Indeed, the harvested plastic has an energy density similar to hydrocarbon 

fuels; harnessing this energy to power the ship could thereby eliminate the need to refuel or unload 

plastic from the ship, reducing fossil fuel usage and potentially cleanup times. 

Self-powered harvesting may be the only way to accomplish cleanup using the passive boom 

collection approach at timescales less than environmental degradation. Unfortunately, cleanup 

itself is a moving target, as technology improves 63 and especially as plastic continues to 

accumulate. What is required therefore is a framework to evaluate the impact of self-powered 

harvesting on cleanup time and fuel usage. The framework can then be updated as more data 

become available. 

To be valuable, the cleanup framework must be reducible to practice using actual technology. 

A viable technology for converting plastics into a usable fuel is hydrothermal liquefaction (HTL), 

which utilizes high temperature (300-550 °C) and high pressure (250-300 bar) to transform plastics 

into monomers and other small molecules suitable as fuels 45, 46, 66. Oil yields are typically >90% 

even in the absence of catalysts and, unlike pyrolysis, yields of solid byproducts – which would 

need to be stored or burned in a special combustor – are less than 5% 45, 46, 66, thus conferring 

certain comparative advantages to HTL. Ideally, a vessel equipped with an HTL-based plastic 

conversion system could fuel itself, creating its fuel from recovered materials. The result could be 
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termed “blue diesel”, to reference its marine origin and in contrast with both traditional marine 

diesel and “green diesel”, derived from land-based renewable resources 67. 

To make the HTL approach feasible, the work produced from the plastic must exceed that 

required by the process and, ideally, the ship’s engines so that fuel can be stockpiled during 

collection for later use. Exergy analysis provides a framework to determine the maximum amount 

of work that a complex process is capable of producing without violating the fundamental laws of 

thermodynamics 68. The reliability of an exergy analysis depends on the reliability of the data it 

uses as inputs, and key parameters describing HTL performance and ocean surface plastic 

concentration are currently not known with certainty. A rigorous and statistically meaningful 

analysis of shipboard plastic processing must therefore integrate uncertainty 69. Here, the Monte 

Carlo (MC) simulation method, which has proven its usefulness for similar type of analyses, is the 

appropriate tool for handling the uncertainties inherent to the current application 51 and allows for 

the integration of new information and data as further study of oceanic surface plastic is completed. 

Accordingly, the thermodynamic performance of a shipboard HTL process was evaluated to 

determine if (and when) the process could provide sufficient energy to power itself plus the ship. 

A framework was then developed to evaluate the implications of shipboard plastic conversion on 

fuel use and cleanup times. The results provide valuable insight into the potential use of shipboard 

conversion technologies for accelerating removal of plastics from the ocean and the framework 

should prove useful for guiding future work in this area. 

2.2 Results 

 Thermodynamic Analysis of Shipboard HTL Plastic Conversion 

The first step was a thermodynamic analysis of a realistically configured plastic conversion 

process. Figure 2-1 provides a schematic of the proposed plastic conversion system that includes 

components to collect and shred the plastic, remove salts and other impurities, and convert the 
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plastic feed into blue diesel, a marine plastic derived fuel with similar energy density and volatility 

to marine diesel 70. Details can be found in Appendix A (Section 2.5.2 and Table 2-1). The entire 

process is self-contained and can easily fit on a ship, selected here as 40 meters – smaller than 

current vessels in use for the removal of ocean plastics 63 since the ship with on-board conversion 

does not need to store plastic that it collects. 

 

Figure 2-1 Conceptual design of a shipboard HTL-based process for converting ocean-borne 

plastics into usable fuel: a) process flow diagram. The entire process is designed to fit within a 

standard 20 ft shipping container. 

Thermodynamic performance of the HTL reactor itself is determined by oil yield and 

heating value obtained at a given reaction temperature. The relationship between oil yield and 

temperature depends on the composition of the plastic feed and is measured experimentally. 

Accordingly, simulations were performed for two individual pure plastics commonly found in the 

ocean 11, polypropylene (PP) and polyethylene (PE), as well as a “mixed feed” based on the typical 

composition of marine plastics (2:1 polyethylene: polypropylene) 11.  The operating temperature, 

overall conversion, and product yield for each plastic feed were taken from previous work 45, 46, 66 

and are listed in Appendix A Table A.2-4 and Table A.2-5 (section 2.5.3). Performance in the 
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PP/PE mixed feed case was especially promising as HTL of this feed resulted in 85% oil yield at 

modest temperature (400 °C) and with no solid byproduct. 

HTL produces chemical energy in a form usable by the engine. All peripheral equipment 

detracts from the ideal thermodynamic performance. Parasitic losses required for operation of the 

peripheral equipment required for shredding, heating, pumping, and separations were included in 

the system-level analysis (See Appendix Table A.2-3). Performance of the system consisting of 

both the HTL reactor and the ship itself was evaluated for operation of the ship at either what is 

termed normal speed or extra slow steaming, a speed that is recommended for minimizing fuel 

consumption 71. 

Published performance, thermodynamic properties, and equipment specifications provide 

a basis for a comprehensive exergy model of the HTL-based process. However, most of the 

required parameters are not known with accuracy; projecting them to scale introduces additional 

uncertainty. Accordingly, the uncertainties of key parameters were included in the exergy model 

using a Monte-Carlo (MC) sampling approach. 72. 

After testing the effects of several parameters, the six shown in Table 2-1 were chosen for 

inclusion in the uncertainty analysis. Table A.2-6 (Appendix section 2.5.4) provides justifications 

for the ranges selected for the values of these parameters. Model input uncertainty was then 

propagated through the aforementioned exergy model to derive a probability distribution profile 

and statistically characterize a range of possible performance outcomes rather than generating 

single point estimates as in conventional approaches. 
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Table 2-1 Uncertain Thermodynamic Model Variables and their Uniform Probability 

Distribution Ranges. 

Parameter Uniform Probability Distribution Ranges 

Weight Percent Plastic in Reactor 10-30% 

Surface Ocean Temperature 17-30 °C 

Heat Exchanger Efficiency 50-80% 

Engine Power 1,800-2,200 hp 

Engine Efficiency 35-40% 

Heat of Combustion Variance 0.98-1.02 

 

The MC-based model does not include uncertainty in the loading of plastic on the ocean 

surface, a key parameter governing performance. Unfortunately, the plastic loading has only been 

roughly estimated and varies from location to location 11, 61. Accordingly, to account for 

uncertainty in the plastic loading we combined the aforementioned MC process simulation with a 

traditional sensitivity analysis of plastic loading by simulating the performance over a range of 

plastic loadings.   

Figure 2-2 shows the probability of shipboard HTL producing more exergy than the 

process and the ship itself consume, when the ship travels at full engine power (Figure 2-2a) and 

optimized engine power (1/3 engine power) (Figure 2-2b) to conserve fuel. The PE decomposition 



19 

 

temperature is greater than PP yet has similar oil yields, accounting for the difference in 

performance predicted for PE compared with PP. 

 

Figure 2-2 Probability of producing more exergy than is consumed by the combination of the 

HTL process itself and the ship’s engine for a.) a 2:1 polyethylene to polypropylene mixture b.) 

polypropylene and c.) polyethylene  for full engine power and optimized engine power (15 knots, 

1/3 engine power 71) conditions to simulate worse case (full engine power) and more realistic 

(1/3 engine power) exergy consumption. 

Interestingly, performance profiles   in the  PP and the PE/PP mixture cases are similar to 

one another, a promising finding given that the PE/PP mixture is most representative of the 

composition of plastic present in the GPGP 7. Based on previous modeling of the depolymerization 
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of mixtures, the likely explanation for the favorable performance observed for PE/PP is an auto-

catalytic effect arising from radicals formed by PP pyrolysis 66.  

The point in Figure 2-2 at which the probability of net exergy production is greater than 50% 

takes specific importance as it represents an interesting condition that balances the risk of 

producing insufficient exergy with the benefit of self-powered cleanup (Appendix A  section 2.5.5 

contains further details). Figure 2-2b shows that the break-even point is reached when the ship 

operates at optimized engine power for all plastic loadings <10%. A plastic loading of 10% is 

within the range predicted for collection by a boom placed within a gyre 64 . However, the break-

even point loading is much greater than is expected without a boom, meaning that HTL conversion 

is not self-powering in the open ocean. 

Figure 2-2 shows a range in predicted outcomes that is the result of current level of 

uncertainties in HTL thermodynamics and conversion rates. Improved data and predictive models 

will reduce the range of predicted outcomes, thereby de-risking investment in the approach. Figure 

2 also suggests that optimizing engine power ( 1/3 engine power 71)  is necessary for 

thermodynamically favorable processing of mixed plastic streams. 

Figure 2-1 provides more detail on the exergy consumed by the various sub-processes, 

taken at the point of >50% probability of producing net exergy. In all cases, the ship itself is the 

main source of exergy consumption followed by heating the feed to the HTL reactor. 

Pyrolysis was also considered as a possible technology option for self-powered ocean 

cleanup. Like HTL, pyrolysis is a thermal depolymerization process that yields an oil product that 

can be used as fuel. Unlike HTL, pyrolysis requires a dry feed, meaning that exergy is required to 

dry the ocean plastic stream prior to pyrolyzing it. Similarly, pyrolysis produces greater yields of 

solid byproducts than HTL; these solid byproducts must be stored on board – which reduces one 
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of the main benefits of shipboard conversion – or burned for heat in a dedicated burner. On the 

other hand, HTL requires pre-heating of the liquid water feed, only part of which can be recovered 

from the product stream. Thermodynamic analysis is required to evaluate these tradeoffs. 

Figure A.2-6 provides a comparison of HTL and pyrolysis for the mixed PE/PP stream. 

Interestingly, thermodynamic performance profiles of HTL and pyrolysis are very similar to one 

another, indicating that the differences in drying, heating, and oil yields obtainable by the two 

processes nearly offset one another 66, 73. From a strictly thermodynamic standpoint, therefore, 

either pyrolysis or HTL could be a viable shipboard technology. That stated, the pyrolysis oil yield 

is much less than obtained from HTL (65 compared with 85%), meaning the byproduct disposal 

is much more difficult for pyrolysis than HTL 73. These byproducts consisting of gasses and chars 

will have to be flashed, stored or burned in solids combustors.  The pyrolysis footprint will be 

greater than that required for HTL to accommodate the dryer required for pyrolysis. These 

secondary considerations indicate that HTL is the more promising technology for shipboard 

conversion; however, pyrolysis remains a viable option should HTL prove difficult to implement. 

Scale is an important consideration, and in addition to the base case, which assumed a 

flowrate of 3.6 m3 h−1, a second case was also considered for the mixed plastic stream with a flow 

rate of 36 m3 h−1. The benefit of increasing the exergy output for a ship of a fixed size more than 

counter-balanced the increased energy requirements of the peripheral equipment, shifting the 50% 

probability point from 20 to 2.2 vol% (Figure A.2-7). Accordingly, thermodynamic considerations 

encourage scaling the process as large as practically possible within size, weight, and economic 

constraints of a given vessel. This suggests a logical extension of the present work: the joint 

optimization of vessel and process size, and vessel endurance, with detailed considerations of 

space and energy needs of the crew and all onboard systems.  
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 A Framework to Evaluate the Implications of Shipboard HTL Conversion on Ocean 

Cleanup 

The previous section (Thermodynamic analysis) predicts that shipboard HTL enables self-

powered harvesting of plastics that have first been collected by a boom placed within a natural 

oceanic gyre. Accordingly, the impact of shipboard HTL conversion was projected within a 

cleanup framework for a concrete application: estimating the yearly removal of plastics from the 

Great Pacific Garbage Patch (GPGP), a gyre located in the central portion of the Pacific Ocean 11. 

Figure 2-3a locates the port of San Francisco CA, far from the GPGP. Figure 2-3b and 

Figure 2-3c show the deployment of the boom array and the filling of a single boom due to ocean 

current respectively and Figure 2-3d shows the conversion of plastic into the “blue diesel” 

replacement fuel. As shown in Figure 2-3, the framework requires the following parameters: the 

size of each boom, the number of booms, the distance between booms, and the distance from the 

booms to the vessel’s home port.  

Existing boom designs (which consist of a series of semi-circular floating buoys equipped 

with a fine mesh extending several feet below the ocean surface) 65 collect plastic at a rate that 

depends on the loading of incoming plastic, and the speed of the local ocean current, as shown in 

Figure 2-3c. Shipboard conversion does not directly change the values of any of these parameters 

compared with an approach consisting of collecting the plastic, storing it on board, and returning 

to port to unload. However, shipboard conversion can reduce the frequency of return trips, 

allowing more booms to be deployed and emptied every year than would be possible with the 

collect-store-return approach. 
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Figure 2-3 Overview of the process for plastic removal out of the Great Pacific Garbage Patch 

showing a.) the total system overview, b.) part of the system of collection booms, c.) a single 

collection boom and d.) the HTL reactor. 

Shipboard conversion suggests a second potential advantage over the collection-storage-

return approach. While plastic harvesting is typically performed manually to minimize fuel use 

(with workers manually scooping the plastic out of the booms and into small bags 63), shipboard 

conversion makes practical automated plastic collection where the ship can pass through the plastic 

in the boom and feed it to the conversion process via a conveyor 63. The continuous collection rate 
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is then related to the speed of the ship and the concentration of plastic trapped by the boom. Due 

to its efficiency, continuous collection was modeled for cases with shipboard conversion. A 

potential problem with automated scooping is dispersion of the plastic. To minimize wake effects 

and fuel usage, the ship speed during collection was set to 0.5 knots and the collection efficiency 

was set to 70% to account for partial dispersion from the ship’s wake during collection. 

The quantity of plastic that could be removed was then calculated for shipboard conversion 

of plastics to fuel. We assumed the booms are deployed at a distance of 25 km from one another. 

This distance was selected to minimize boom-boom interactions that would decrease collection 

efficiency and because 25 km spacing corresponds to the maximum number of booms that can be 

deployed in the GPGP based on space and be serviced by a single ship in a single year. Details of 

all of these assumptions and calculations can be found in Appendix A, Table A.2-7 and Equations 

A.1-A.7. 

Using this framework and corresponding assumptions, 2,500 booms could be harvested per 

year when shipboard conversion was used. A year was assumed to consist of at most 240 days, 

with 16-hour days to account for maintenance down time, weather, sea state, and time off for the 

crew. Using this value for the number of booms that could be harvested per year and the boom-

boom separation distance, the total amount of plastic that could be removed from the GPGP by a 

single ship yearly at several distinct values of the plastic surface concentration was calculated 7, 11. 

The results are summarized in Table 2-2, showing that 1.2×107 kg could be removed for the case 

with the greatest value of plastic surface concentration (2,500 g km-2) 7. As plastic surface 

concentration decreases the amount of plastic removed decreases, a consequence of the effect of 

plastic surface concentration on collection in the booms.  
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Table 2-2  Plastic removed and total project lifetime for removal of plastic from the GPGP using 

shipboard HTL 

Plastic Concentration in 

GPGP (g km-2)a  

Plastic Removed Per 

Year (kg)b 

Percentage of Plastic Derived Fuel 

Consumed Yearly (%)c 

2,500 1.2*107 580 

1,000 4.6*106 230 

500 2.3*106 120 

200 9.2*105 50 

50 2.3*105 12 

(a) Surface concentration of plastic in the GPGP 7 for a fixed value of 79,000 tons of plastic 

contained in the GPGP 11  

(b) Plastic removed from 2,500 booms per year with a 70% collection efficiency 

(c) Percentage of total required fuel consumption that can be covered with plastic derived fuels 

assuming a fuel density of 0.84 kg/L, a conversion range of 60% and fuel consumption of 

90 GPH. 

 

By eliminating trips to port and by replacing marine diesel with blue diesel, shipboard 

conversion reduces fuel requirements and especially fossil fuel requirements, as shown in Table 

2-2. Specifically, for the highest concentrations, enough plastic can be collected to generate fuel 

with an excess of 480% that can be stored and used for trips to and from the GPGP, eliminating 

the need for the use of any fossil fuels. Three of the five concentrations can create an excess of 

fuel, indicating that areas of low plastic concentration can be supplemented with fuel from higher 

concentration areas. 

A key assumption in this analysis is that HTL feed rate and conversion rates are equal to the 

plastic collection rate so that the ship need not pause periodically to allow time for plastic 

conversion. This assumption is generally met for the HTL reactor described in the previous section. 

At the high end of the range of plastic loadings shown in Table 2-2, the ship will require 2-3 

reactors to match conversion rates with collection rates, which should be easily managed. 
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Table 2-2 paints an optimistic picture of GPGP cleanup using shipboard HTL conversion, at 

least if plastic concentration is present in the higher end of the range of current estimates. On the 

other hand, if plastic concentrations are on the lower end of the estimated range, cleanup is 

daunting when considering the current total amount of plastic in the GPGP; the effects of continued 

accumulation make these estimates even less attractive. Similarly, the size of the ship, or the power 

rating of the engine, must be carefully selected and its speed controlled for the process to be 

thermodynamically favorable. The effect of the composition of the plastic in the GPGP on the 

thermodynamics of the HTL process adds an extra degree of uncertainty. 

2.3 Discussion  

Based on the aforementioned considerations, shipboard conversion of oceanic plastic wastes 

to fuels using HTL is predicted to produce enough exergy to power itself, power the ship, and 

generate surplus fuel for later use when booms are used within a gyre – but not in the open ocean 

or within a gyre lacking booms. Unfortunately, using the results from Table 2-2 to calculate 

cleanup times show times at the edge or beyond what is practical for a single ship to accomplish 

(7-340 years, see Appendix A Equations A.1-A.6 and  

 

 

 

 

Table A.2-8). Table 2-2 is based on a 25-km boom-boom separation distance, the distance 

that corresponds to the maximum number of booms deployed in the GPGP that a single ship can 

service per year. Accordingly, the framework used to generate estimates in Table 2-2 was used to 
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evaluate the effects of increasing the number of booms and ships on estimated GPGP cleanup 

times assuming that no new plastic enters the GPGP during the cleanup operation. 

The net effect of decreasing boom-boom separation is to increase the number of booms in 

the GPGP and hence reduce the cleanup times. The boom-boom separation distance must be 

sufficient so that upstream booms do not negatively impact the collection efficiency of downstream 

booms. The minimum distance that avoids the shadow effect is not currently known 74, meaning 

that boom-boom separation distance can be considered as a parameter in the framework. For a 

given GPGP area, the boom-boom distance then controls the number of booms deployed and hence 

the amount of plastic that accumulates – and thereby the estimated cleanup time. 

Figure 2-4 shows estimated cleanup times as a function of the distance between booms. 

Estimates are included for both an optimistic scenario and a conservative one, with the difference 

being the concentration of plastic currently residing within the GPGP 7. Figure 2-4 shows that the 

time required to clear the GPGP is strongly dependent on the boom-boom distance, with times less 

than one year estimated in the optimistic scenario for distances ≤10 km. However, Figure 2-4 also 

shows short clean up times correspond to huge numbers of deployed booms, a trade off in cost and 

practicality that must be considered. Likewise, the boom-boom interactions certainly will impact 

performance at some separation distance, and this effect should be included in future versions of 

this framework. 
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Figure 2-4 Estimation of the time required to completely clear the Great Pacific Garbage Patch 

based on high (2,500 g km-2) and low (50 g km-2) concentration estimations 7 for plastic within 

the GPGP for deployment distance between booms of 1 to 50 km and the corresponding number 

of booms deployed. 

Thermodynamic performance, boom-boom distance, and boom-boom interaction will 

influence economic and environmental performance. Previous techno-economic analysis indicates 

that HTL can produce fuels at approximately $4 per gallon of gasoline equivalent 75, a cost that is 

more than competitive with commercial prices given the fuel savings predicted for self-powered 

cleanup.  

The current analysis has thus far focused on cleanup of the oceanic gyres as areas of high 

plastic concentration. However, the cleanup times estimated here, which are constrained by the 

number of booms that can be deployed in the GPGP, either are similar in magnitude as 

environmental degradation timescales 62 or require thousands of deployed booms. Given the 

cleanup timescales and costs, efforts might be better placed on interception at locations of high 
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plastic flux to prevent plastic reaching the patches in the first place 64. River mouths are one 

potential location where a boom and collection system could be more strategically deployed than 

at the oceanic gyres 64. Similarly, boom systems might be placed to protect especially fragile or 

valuable ecosystems, such as breeding grounds. Alternative approaches involving mobile 

collection technologies are possible, but these options do not appear to reduce collection times 

sufficiently to justify the greater technological complexity. More details are provided in the SI. 

The current analysis shows that collection of plastics that have already entered the 

environment is at most part of a multi-layered approach to mitigate environmental damage from 

plastics. Other key elements include reducing plastic use, 76 improving the recyclability of plastics, 

or increasing the biodegradability of plastics 77. Implementing a plastic waste harvesting 

technology, whether it is based on HTL, pyrolysis, or some other technology, will require 

understanding details that include engine performance and emissions characteristics 78 and fuel 

delivery system integrity 79 when running on the plastic-derived fuel.  

This analysis has focused on HTL as a technologically deployable method suitable for 

plastic conversion. However, the results presented here can reasonably be extended to other 

conversion methods. Enzymatic conversion 80, 81, which has been the subject of several recent 

studies, could be especially attractive for conversion at low temperatures, thereby improving 

thermodynamic efficiency and reducing hazards to the crew. Since HTL already produces 

sufficient energy to power the process and the ship, the thermodynamic benefit of enzymatic 

conversion will be incremental rather than transformative. Similarly, enzymatic conversion rates 

are slower than HTL rates, meaning that larger reactor vessels are required for enzyme-based 

conversion reactions than required for HTL 80. Accordingly, the transformative impact of the 

enzymatic conversion would be for degradation of the plastics into harmless products in the ocean 



30 

 

without harvesting them. The current analysis indicates that research of in situ enzymatic 

decomposition of plastics to harmless products is warranted. 

Converting marine plastics into fuel will ultimately release the carbon they contain as 

greenhouse gas (GHG) emissions. That stated, the quantities of released CO2 are a small 

percentage of the global emissions budget, currently ~485 PgC 82. If the system ran continuously 

for 10 years the total percentage would be less than 0.02% of the global carbon budget. On the 

other hand, converting the plastic into fuel eliminates new fossil emissions while simultaneously 

cleaning the oceans and reducing the amount of plastic being recycled in land-based operations. 

Converting the plastic to fuel also eliminates unnecessary congestion at ports and reduces the 

chance of a nearshore oil spill. Unlike petroleum fuels, plastic-derived fuels have low sulfur 

content, meaning that their combustion will not release sulfur oxides 83, 84, which is a desirable 

outcome given the importance of SO2 in the formation of pollutants 85 and new regulations limiting 

sulfur content in fuels 86.  

 The results of this work provide a strong argument for continued study to advance current 

understanding of the factors that affect marine plastic depolymerization in real systems. Advances 

in the scientific knowledge of depolymerization thermodynamics, rates, and product distributions 

of ocean-borne plastics are required to reduce uncertainty around the HTL approach. Similarly, 

the cleanup framework can be improved by filling gaps in current estimates of marine plastic 

concentrations, quantities, and fluxes to reduce uncertainties in deployment outcomes. Finally, the 

results of this work show the immense challenge facing the prospect of cleaning up the ocean and 

argue for the need to change current plastic use and recycling strategies. Accordingly, the sound 

probability analysis and framework presented here can be incorporated with risk analysis to 

insightfully and reliably inform future decision making and policy responses in this important area. 
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2.4 Methods 

 @Risk Model 

All the uncertain model input variables were modeled using appropriately selected uniform 

distributions in the absence of any accumulated operating experience and pertinent historical data. 

Monte Carlo simulation runs were conducted using the @Risk software  87 with 10,000 iterations 

for each volume percent of plastic in the inlet stream. 

    Process Details 

Table A.2-3 includes a list of the equipment and their energy requirements. Salt is removed 

from the feed to protect the reactor and other materials from corrosion. Residual salt is removed 

using a reverse osmosis system (operating at 99% efficiency) to reduce the salt concentration in 

the system to levels that are compatible with high grade stainless steel (<1 weight percent (wt %)) 

88. To increase the effectiveness of depolymerization and permit feeding to the reactor, the plastics 

must be shredded at the process intake 89, 90. Table A.2-4 shows reaction conditions met by the 

equipment for the plastics studied. The shredded plastic is then combined with desalinated water 

to 10-30 wt% solids, preheated in the heat exchanger, pumped to pressure and heated to reaction 

temperature. The stream exiting the reactor is cooled to form organic and water-rich products 45, 

46, 66 which are separated in a gravity separator. Residual organics in the aqueous phase are 

removed in a hydrogen peroxide/UV oxidation system prior to recycling. The HTL product oil 

(composition seen in Table A.2-5) is fed to an engine, to generate power, operating at an efficiency 

of 35 to 40%. 

 Exergy Calculations 

The exergy of each sub-process was individually calculated and then summed and normalized 

based on the mass of plastic in the inlet. 
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 Chemical Exergies and Combustion 

The chemical exergies and exergy of combustion of the stream were calculated as the weighted 

average of the Gibbs Free energy of each product including water and the weighted average based 

on the enthalpy of combustion and their published yields respectively. Thermodynamic data for 

pure plastics and products were taken from the literature 91-94 and NIST 95 and yields  were found 

in the pertinent literature 45, 46, 66. When the thermodynamic values (enthalpy and entropy) of the 

products could not be found, correlations based on carbon number were used to estimate them (see 

Appendix A Equation A.8-A.13). It was assumed that 100% of the oil formed from HTL could 

be directly combusted without upgrading. 

 UV/Hydrogen Peroxide System 

A UV sub-process was modeled for organic removal using a 300 nm lamp. The solubility 

values of the products of polystyrene in water were found in the pertinent literature 96-99. Further 

details of this calculation can be found in the SI (Appendix A section 2.5.6). 

2.5 Appendix A 

 Model Details  

 Table A.2-3 lists each piece of equipment seen in Figure 2-1 needed for the conversion of 

plastic waste into fuel. The table also contains the power requirements, manufacturer and model 

number for each piece of equipment that was used in the model development.  

 Equipment/System Details 
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Table A.2-3 Process Equipment Energy Requirements 

Equipment Power 

Requirement 

(kW) 

Manufacturer Model 

Number 

Manufacturer Website 

Conveyor 

Belt 

0.37 Titan 

Conveyors 

Model 118 https://www.titanconveyors.com/ 

Shredder 7.5 Franklin 

Miller 

Taskmaster 

TM1600 

Shredder 

https://franklinmiller.com/ 

Centrifugal 

Sifter 

1.49 Kason Centri-Sifter https://www.kason.com/ 

RO System 18.6 Pure Aqua, 

Inc. 

SWI Series 

Model # 

SW-16K-

1480 

https://pureaqua.com/ 

Pump 0.75 Goulds Water 

Technology 

3642/3742 

model 

https://pureaqua.com/ 

UV/H2O2 

System 

4.14 Calculated 

(not from a 

manufacturer)  

N/A N/A 

 

2.5.2.1 Process Equipment Details  

Individual pieces of equipment were chosen among available commercial options to meet the 

desired process conditions (400-520 ˚C, 30 MPa, 3.6 m3 hr−1 (i.e. a 30-minute residence time), 

selected from the literature 45, 46, 66). Two filters at the process inlet remove 99% of the water from 

the plastics, correspondingly removing ~99% of the salt from the plastic-water mixture. Combined 

with the reverse osmosis system the residual salts in the system are reduced to levels that negate 

the need for higher-cost nickel-based alloys 100. 
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The feed was pre-heated by heat recovery from the product stream and additional heat to reach 

the reactor temperature. Heat capacity was approximated as the average value of water over the 

range of temperatures relevant for each plastic studied here and as explained in more detail in the 

appendix. The final assumption made in this calculation was that heat could be released to the 

ocean, which was modeled as an infinite thermal reservoir of fixed temperature. For the UV/H2O2 

system the exergy requirement was modeled off of the power requirements to remove the organics 

from water after formation of aromatics. Polystyrene was considered in the model as its products 

had the highest solubility in water and it was the most previously studied compound in the literature 

96, 101. This assumption will likely result in overestimating the exergy requirements for the other 

plastics and the waste plastic mixture, suggesting that this part of the analysis is probably 

conservative.  

 Reaction Details 

Table A.2-4 and Table A.2-5 show the plastics modeled and their reaction parameters 

including their reaction temperature, conversions, calculated average heat capacity and product 

yields. A sample calculation for the average heat capacity values can also be found after Table 

A.2-5. 
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Table A.2-4 Reaction Conditions of Studied Plastics: Chosen to maximize conversion to oil and 

minimize conversion to gas and residue. 

 

Plastic Molecular 

Weight 

(Da) 

Reaction 

Temperature 

(˚C) 

Conversion 

to Oil 

Conversion 

to Gas 

Average Heat 

Capacity (J 

g−1 K−1) 

Source 

Polypropylene 250,000 420 60-100% 0% 5.73 45 

Polyethylene 117,000 520 60-80% 10-20% 5.80 46 

2:1 PE:PP 

Mixture 

Mixture 460 70-90% 10-30% 5.86 66 

 

Table A.2-5 HTL Product Selectivity Values for Conditions shown in Table SI.2 

Product Phase  Selectivity 

Polypropylene 45   

C6-C13, Alkene Oil 95% 

C6-C11, Alkane Oil 5% 

Polyethylene 46   

C7-C11, Alkene Oil 15.1% 

C7-C11, Alkane Oil 4.1% 

C12-C18, Alkene Oil 22.3% 

C12-C18, Alkane Oil 6.1% 

C19-C24, Alkene Oil 8.3% 

C19-C24, Alkane Oil 2.3% 

>C24, Alkene Oil 3.0% 

>C24, Alkane Oil 0.82% 

Waste Gas 25% 

2:1 PE:PP Mixture    

C7, Alkenes Oil 1.98% 

C7, Alkanes Oil 1.82% 

C8, Alkenes Oil 0% 

C8, Alkanes Oil 2.43% 

C9, Alkenes Oil 10.33% 

C9, Alkanes Oil 0% 

C10, Alkenes Oil 1.54% 
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C10, Alkanes Oil 3.75% 

C11, Alkenes Oil 0% 

C11, Alkanes Oil 2.94% 

C12, Alkenes Oil 3.25% 

C12, Alkanes Oil 3% 

C13, Alkenes Oil 1.69% 

C13, Alkanes Oil 2.91% 

C14, Alkenes Oil 1.73% 

C14, Alkanes Oil 2.86% 

C15, Alkenes Oil 4.29% 

C15, Alkanes Oil 2.98% 

C16, Alkenes Oil 1.46% 

C16, Alkanes Oil 2.97% 

C17, Alkenes Oil 4.8% 

C17, Alkanes Oil 2.81% 

C18, Alkenes Oil 0.56% 

C18, Alkanes Oil 2.67% 

C19, Alkenes Oil 1.67% 

C19, Alkanes Oil 4.13% 

C20, Alkenes Oil 0% 

C20, Alkanes Oil 10.84% 

C21, Alkenes Oil 0% 

C21, Alkanes Oil 2.36% 

C22, Alkenes Oil 1.22% 

C22, Alkanes Oil 0% 

C23, Alkenes Oil 1.07% 

C23, Alkanes Oil 0% 

C24, Alkenes Oil 2.23% 

C24, Alkanes Oil 2.71% 

C25, Alkenes Oil 0% 

C25, Alkanes Oil 2% 

C26, Alkenes Oil 0% 

C26, Alkanes Oil 2.97% 

C27, Alkenes Oil 0% 

C27, Alkanes Oil 1.21% 

 

2.5.3.1 Sample Calculation for Determining Average Heat Capacities 

 

To capture the change in the heat capacity of water with heating, the heat capacity curve 

of water at 30 MPa 102 was integrated to find an average value that incorporates the spike at the 

critical point as well as the rest of the temperature range. A 30 MPa value was chosen to reduce 

the discontinuity of the heat capacity curve as it approached the critical point. An average heat 
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capacity was found for every model in order to accurately represent the varying operating 

temperatures between the different plastics. 

 Model Development  

Table A.2-6 restates the probability distribution ranges for the uncertain model input 

variables considered in the analysis performed as seen in Table 2-1. It also provides the 

justification for each of the ranges, providing a brief explanation of why each range was chosen. 

A more detailed explanation of the ocean temperature range and different scenarios is also 

provided after the table.   

 

Table A.2-6 Probability Distribution Profiles of the Uncertain Model Input Variables  

Parameter Uniform Probability 

Distribution Ranges 

Justification 

Weight Percent Plastic in 

Reactor 

10-30% Maintain realistic pumping 

capabilities 

Ocean Temperature 17-30 ˚C Account for varying ocean 

temperature based on 

location and season 

Heat Exchanger Efficiency  50-80% Based on average heat 

exchanger efficiencies  

Engine Power 1,800-2,200 hp Engine size of an average 

large fishing trawler with a 

10% variance to account 

for variable weather 

conditions and engine 

power draws 

Engine Efficiency  35%-40% Based on current engine 

technology efficiencies  

Heat of Combustion 

Variance  

0.98-1.02 Account for slight variance 

in selectivity of products 

and therefore variance in 

heat of combustion 

 

The effect of ocean temperature on thermodynamic performance was studied to evaluate 

the impact of operation in different waters (e.g., North Atlantic compared with South Pacific). 

Within the proposed analytical framework, additional simulation runs suggest that the difference 
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between the Atlantic and Pacific Ocean temperature generates an almost negligible shift of only a 

few percentage points in the respective probability curves. It is however also interesting to note 

that the probability of net exergy production was found to be higher in the lower temperature 

Atlantic Ocean case due to the fact that the exergy benefit of lowering the dead state temperature 

outweighs the higher exergy consumption attributed to the lower initial temperature in the exergy 

of heating.  

 Expanded Results and Analysis 

Figure 2-2 shows the results of the comprehensive thermodynamic model developed in this 

work. From this figure it can be seen that the 50% probability metric is reached for plastic loading 

values between 19 and 27 vol% for the PP, PE, and PE/PP mixture when the ship operates at full 

power; operating the ship at extra slow steaming conditions shifts the 50% point to <10 vol% for 

all plastic streams. These values should be achievable for plastics that have accumulated in booms, 

displaying a plastic concentration factor of almost 2600 relative to the open ocean 7; however, they 

cannot be realistically achieved in the open ocean or even in natural gyres that lack booms.  

Of the plastics modeled, the process behaves similarly for PP and the PE/PP mixture, with 50% 

probability of net exergy production occurring at nearly identical values of the plastic loading 

under both conditions. Performance for pure polyethylene is the least favorable of the feeds 

considered here, consistent with HTL of this particular mixed stream yielding less oil than the two 

streams 47. These differences are readily explained by the thermodynamic stability of the different 

feeds, with the least stable plastics resulting in the most favorable performance. The sensitivity of 

the analysis to depolymerization thermodynamics – especially the temperature at which 

depolymerization to useful fuels occurs – is a clear gap that must be addressed in future work. 

Similarly, HTL of mixed plastics must be understood more thoroughly for this and similar 

applications. 
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Figure A.2-5 shows the individual exergy contributions of each step of the model for all three 

feeds that were studied. Under all cases, engine power and heating were the main exergy 

consuming processes and fuel combustion was the main exergy producing process.  

 

 

Figure A.2-5 Individual exergy contribution normalized to be unitless by the engine power at full 

steam of a.)  polypropylene b.) polyethylene c.) 2:1 PE/PP mixture 

Figure A.2-6 shows the comparison between HTL and pyrolysis for the 2:1 PE/PP mixed 

stream. Both methods have similar performance profiles in terms of exergy. Although HTL 

requires significantly more energy to heat the feed to reaction temperatures due to the presence of 

large amounts of water, the high conversion to oil and the oil produced in HTL almost entirely 

offsets this higher heating exergy requirement.  
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Figure A.2-6 Probability of producing net exergy for a feed of 2:1 PE to PP for pyrolysis and 

HTL as full engine power and extra slow steaming (1/3 engine power).  

Figure A.2-7 shows the effect of changing the scale on the exergy analysis results. As it 

can be seen increasing the flowrate of plastic through the system, creates a more favorable exergy 

result. The total system and ship can be powered at a lower plastic concentration making the 

proposed option more appealing.  
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Figure A.2-7 Probability distributions for different feed rates of the PE/PP mixture, either 3.6 m3 

h−1 (low flowrate, used as the base case elsewhere) or 36 m3 h−1 (high flowrate) for full engine 

power. 

The following tables and sample calculations were used in the creation of Table 2-1. Table 

A.2-7 provides all of the pertinent variables and their respective values used in the calculations 

Table A.2-7 Parameters used in Table 2-1 and Figure 2-4 calculations and assumptions 

Variable Nomenclature  Value 

Collection Speed Sc 0.5 knots 

Boom Length L 600 m 

Cruising Speed between 

Booms 

ST 15 knots 

 

Distance Between Booms db 25 km 

Distance to GPGP dG 1930 km 

Total Plastic in GPG Pt 79,000 tonnes 11 

Plastic Concentration in 

GPGP 

C 50-2500 g/km2 7 

Speed of GPGP Current Sp 14 cm s-1 

Plastic Density Ρ 0.9 kg/L 

Fuel Density ρf 0.84 kg/L 
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Conversion Z 60% 

Days of Operation Per Year* T 240 

Hours of Operation Per Day H 16 

Size of GPGP ŧ A 1.6* 106 km2 

Capacity of Boom - infinite 

Max Boat Speed Sm 25 knots 

Engine Power with                  

HTL (calculated) 

E1 2000 hp 

Booms per Trip w/o HTL B 10 

*To allow for maintenance and crew days off 
ŧ Geometry of GPG was assumed to be circular 

Equation A.1 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑝𝑒𝑟 𝑏𝑜𝑜𝑚(𝑃) = (𝐿 ∗ 𝑆𝑝) ∗ 𝐶 

 

Equation A.2 

 

𝐵𝑜𝑜𝑚𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑤𝑖𝑡ℎ 𝐻𝑇𝐿 (𝑥1) = (
𝐿

𝑆𝑐
+

𝑑𝑏

𝑆𝑇
+

(𝑑𝐺 ∗ 2)

𝑆𝑇
)/(ℎ)/(𝑡) 

Equation A.3 

𝑌𝑒𝑎𝑟𝑠 𝑡𝑜 𝐶𝑙𝑒𝑎𝑛(𝑇) = (
𝑃𝑡

(
𝑃

1000) ∗ 𝑥1

) 

Equation A.4 103 

𝐵𝑜𝑎𝑡 𝐹𝑢𝑒𝑙 𝐶𝑜𝑚𝑠𝑝𝑡𝑖𝑜𝑛 (𝐹1) = 0.75 ∗ 𝐸1 ∗ (
185

𝜌𝑓
) ∗ 0.001 ∗

1

3.785
 

 

Equation A.5 

𝑌𝑒𝑎𝑟𝑙𝑦 𝐹𝑢𝑒𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑈) = (
𝐿

𝑆𝑐
+ (

𝑑𝑏

𝑆𝑇
+

(𝑑𝐺 ∗ 2)

𝑆𝑇
) ∗ 𝐹1) 

Equation A.6 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐹𝑢𝑒𝑙 𝐹𝑟𝑜𝑚 𝑃𝑙𝑎𝑠𝑡𝑖𝑐 =  
𝑃 ∗ 𝜌 ∗ 𝑧 ∗

1
3.785

𝑈
∗ 100 
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Table A.2-8 Plastic removed and total project lifetime for removal of plastic from the GPGP 

using shipboard HTL  

Plastic Concentration in GPGP (g 

km-2)a  

Plastic Removed Per Year 

(kg)b 

Total Time 

(years)c 

2,500 1.2*107 7 

1,000 4.6*106 18 

500 2.3*106 35 

200 9.2*105 86 

50 2.3*105 340 

 

(a) Surface concentration of plastic in the GPGP 7 for a fixed value of 79,000 tons of plastic 

contained in the GPGP 11  

(b) Plastic removed from 2,500 booms per year with a 70% collection efficiency 

(c) Total time required to clean up the GPGP using a single ship 

 

A second scenario was considered to see if towing a boom behind 2 ships could reduce not 

only the number of booms needed but also the total fuel consumption and total cleanup times. 

Towing the boom can increase the collection rate per boom by as much as 10-times that possible 

for a boom that relies on current alone. The speedup factor is estimated from the safe towing 

speed of the ship, 2-3 knots, compared with that of the ocean current, which is approximately 0.3 

knots 64. Travel at the maximum speed considered safe (3 knots) would require >500 booms to 

replicate the cleanup speed possible with 2,500 booms relying on current. While reducing the 

number of booms by a factor of 5 clearly has advantages, the towed boom approach would 

require at least one ship per boom, and probably two. Given the cost of each ship and its crew, 

booms that rely on current and that are serviced by a single ship may prove more economically 

feasible than a fleet of towed booms. 

Equation A.7 

𝑩𝒐𝒐𝒎 𝑲𝒏𝒐𝒕 (𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒔𝒑𝒆𝒆𝒅) =  𝒙𝟏 ∗ 𝑺𝒙  

Where Sx can either be Sp (14 cm -1, ~0.3 knots) or ST  



44 

 

 

 Extended Methods Section 

2.5.6.1 Thermodynamic Correlations based on Carbon Number:  

For alkenes where x is the Carbon Number: ∆𝐻𝑓 = −25940𝑥 + 85202                 Eq (A.8) 

           ∆𝐻𝑐 =  −653548𝑥 − 83571  Eq (A.9) 

            𝑆° = 30.224𝑥 + 119.99   Eq (A.10) 

For Alkane’s where x is the Carbon Number: ∆𝐻𝑓 = −25538𝑥 − 45603  Eq (A.11) 

           ∆𝐻𝑐 =  −654899𝑥 − 222305  Eq (A.12)  

            𝑆° = 33.031 + 95.283   Eq (A.13) 

 

2.5.6.2 UV/H2O2 Oxidation System 

The chemical exergy difference within the hydrogen peroxide reaction was found assuming there 

was double the amount of hydrogen peroxide 96 in the system compared to the amount of 

organics remaining in the water after the separation step for polystyrene. 
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Chapter 3: Machine Learning Predictions of Oil Yields 

Obtained by Plastic Pyrolysis and Application to 

Thermodynamic Analysis104  
3.1 Introduction 

 Every year approximately 370 million tons of plastic are generated globally105. In the US, 

approximately 9% of plastic is recycled, 15% is combusted with energy recovery, and the 

remaining 75% is landfilled 106. In other locations, environmental disposal is common practice, 

and combined with losses during transport and loss from landfills, results in an estimated release 

of 10 to 20 million tons of plastic per year into the world’s oceans107. Once in the environment, 

waste plastics have negative impacts on plant and animal life 108, with eventual negative impacts 

on human health 109. 

Increased recycling is an obvious solution to the problem of environmental release. 

Although recent recycling initiatives have increased the amounts of plastic that are recycled, global 

recycling capabilities are limited by the need for single plastic streams for effective recycling and 

further sensitivity to the presence of contaminants like dyes, additives and residual products31. 

Switching to biodegradable plastics has potential to reduce the negative impacts of plastics 

released to the environment, but biodegradable plastics that duplicate the properties of synthetic 

ones are not available110. Without increasing the worlds recycling capabilities or replacing 

synthetic plastics with biodegradable ones, landfilled wastes will continue to end up in the 

environment outside of landfills and in oceans and rivers globally11. 

Reducing the amount of plastics that ends up in landfills and the environment is therefore 

a priority and one area of specific concern is plastic that is transferred into rivers, as it not only 

pollutes the rivers but is also transported to the world’s oceans where it accumulates and becomes 

an environmental threat 77, 111. Recently, a handful of highly industrialized river systems, including 
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the Yangtze, Ganges and Xi, have been identified as especially problematic 21 Because of the 

limitations of recycling and slow progress in replacing synthetic plastics with biodegradable 

versions, new and innovative technologies are needed to valorize waste plastics and  reduce their 

flow into the environment 112, 113. 

 Different plastic valorization techniques have been developed over the years, falling 

mainly in to two categories, mechanical and chemical recycling. A key advantage of chemical 

recycling techniques is they are more compatible with mixed waste plastics than mechanical 

recycling. The end products of chemical recycling are fuels, chemicals, or monomers, depending 

on the feed and the specific process technology114. Although many dozens of plastics are in use, 

many of these are used in low-volume, niche applications. Six plastic types account for >85% of 

all plastic used today115, meaning that reducing plastic waste should prioritize these plastics, which 

include poly(ethylene terephthalate) (PET), high density polyethylene (HDPE), polyvinyl chloride 

(PVC), low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). Collectively, 

these plastics can be termed the “big six”, since they are denoted numerically in the U.S. recycling 

system in this order from one to six 2. 

Recent focus has shifted to circular economy for plastics, with emphasis on “upcycling”, a 

term used to describe processes that yield products that are more valuable than the virgin plastics 

themselves116. Chemical recycling can qualify as upcycling, in certain cases, especially when 

performed in the presence of a catalyst117. On the other hand, recycling to products with value 

equal to the virgin plastic or even down cycling to produce products of less value than the original 

plastic can play an important role. Products such as chemicals, fuels, and monomers are 

undoubtedly more valuable than waste plastics118 and this type of chemical recycling can help 
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reduce plastics entering landfills or the environment. Unlike upcycled products, the market size 

for chemicals, fuels, and monomers is commensurate with the size of the waste plastic feed. 

Of the different forms of chemical recycling, thermal depolymerization techniques such as 

pyrolysis and hydrothermal liquefaction (HTL) have been especially promising for their ability to 

handle mixed wastes, their compatibility with contaminates, and their ability to achieve high oil 

product yields without using a catalyst47. Pyrolysis heats plastics to high temperatures in the 

absence of oxygen to break the carbon-carbon bonds within polymers to return them to their 

monomer states 119. HTL operates similarly to pyrolysis but in the presence of sub- or supercritical 

water 120. Both pyrolysis and HTL have the ability to convert plastics into oils with conversion 

rates of greater than 90%, depending on the process conditions and the plastic feed66, 73. Results 

like these have spurred significant research into thermal depolymerization of plastics 114. 

 Although previous studies show the great promise of thermal depolymerization, a 

technological problem of pyrolysis reactor design is that different polymers have very different 

thermal reactivities. Accordingly, the composition of a given plastic waste stream significantly 

affects both the oil yield and the overall conversion 121. Given the number of potential feed streams, 

an inability to predict oil yields hampers prioritization of resources to the situations that are most 

promising for investment. Further, for every new feed of polymers the operating parameter matrix 

must be reoptimized, which is time consuming and potentially cost prohibitive, especially when 

the oil yields are unknown. An efficient way to determine the oil yield obtainable from a given 

plastic waste stream would permit allocation of finite resources to streams most likely to be 

thermodynamically and economically favorable. 

  Models that describe plastic depolymerization have been available for over 20 years122-124. 

These models are full kinetic networks that track polymer chain length using the method of 
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moments and formation of key products using systems of ordinary differential equations122-124. 

While providing accuracy and reliability, full kinetic models are computationally expensive, 

require years to develop for new plastics or plastic mixtures, and are not available for anything 

more than binary plastic mixtures122-124. Fortunately, the level of resolution offered by full kinetic 

models is not always required for process design, opening an opportunity for lower-resolution yet 

accurate methods of predicting key reaction outcomes, such as pyrolysis oil yields.  

Machine learning techniques have the potential to predict reaction results, such as yield 

and conversion, with significantly less development time and less computational expense than full 

kinetic models. Unlike full kinetic models, which require detailed measurements of polymer chain 

length and key product and intermediate formation rates as a function of conversion, machine 

learning models use abundant historical data to train models capable of predicting outcomes of 

new situations 57. Machine-learned models are black box, meaning they do not provide information 

about the chemistry that is occurring during reaction, yet they have been shown to accurately 

predict the results from thermal depolymerization for complex waste mixtures, such as food 

waste125-127. A handful of machine-learned models have been developed specifically for plastics, 

especially in the classification of polymer types 128-130. The handful of studies that have used 

machine learning to predict depolymerization reactions, have focused on single plastics and not 

mixtures131 or understanding properties of single phases 132. The few studies that have looked at 

mixed plastic streams have focused on specific, and narrow, ranges of operating conditions like 

temperature 133 or specific reactor types 134 and have utilized very little data to train and validate 

the models (<<100 data points).  

 The pertinent literature contains many hundreds of data points on plastic pyrolysis, and 

thus utilizing all of the published literature data can improve the accuracy of machine-learned 
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models as well as expand the range of conditions and reactor types that can be studied. Naturally, 

utilizing the full range of published data requires an approach that can handle differences in feed, 

reaction conditions, reactor type, and the presence of catalyst. Fortunately, modern regression 

techniques have established ways to handle both numerical data as well as categorical data, such 

as reactor type or presence of catalyst135. Emerging methods for filling gaps in the values of 

dependent values – which are not uniformly reported – offer a way to maximize available data and 

harmonize between different reporting standards. The K nearest neighbor (KNN) method has 

proven especially versatile for data harmonization in other fields, but has yet to be applied in a 

plastic pyrolysis case 136. Using models and methods such as these allows for efficient analysis of 

real waste streams and identification of promising experiments and conditions for future work.  

 The objective of this study is the development of machine-learned models for prediction 

of oil yields obtained by pyrolysis of common plastics and their mixtures over a wide range of 

conditions. Unlike previously reported studies, the current effort attempts to harmonize pyrolysis 

data arising from many different polymers – all of the “big six” – and for pyrolysis in different 

reactor types with and without the use of catalysts. The performance of seven different machine 

learning methods was comprehensively evaluated for accuracy. In particular, each of these models 

was trained, optimized, and validated using a dataset curated from the open literature 

encompassing a wide range of possible reaction conditions. The accuracy of model predictions 

was assessed with a test set that was set aside from the data set prior to training. The most accurate 

of these seven models was then used to predict the oil yields obtainable from pyrolysis of real 

plastic waste streams representative of U.S. Municipal Recycling Facilities (MRFs) and present in 

the Rhine River, a river with a high and well characterized plastic load 137, 138. As a further example, 

the utility of the model was evaluated for making thermodynamic feasibility predictions of plastic 
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pyrolysis. Finally, the machine-learned models and the proposed approach to develop them could 

become useful evaluative tools for advancing plastic pyrolysis as part of a comprehensive strategy 

to reduce plastic waste. 

The paper is organized as follows: Section 2 encompasses the conceptual, methodological 

and computational aspects of the proposed modeling and simulation framework. The study’s main 

results are presented in Section 3 followed by a pertinent discussion. Finally, a few concluding 

remarks are provided in Section 4.  

3.2 Methods  

 Overview  

 The aim of this work is to develop a rigorous method for creating, validating, and applying 

machine-learned models to predict the yields that can be obtained from pyrolysis of waste plastics 

and their mixtures. Figure 3-1 shows the overall approach used for model development, 

refinement, selection, and application. The most important step is generation of the data set itself. 

Specifically, the data set was generated by retrieval of data published in the open literature, with 

attempts to be inclusive up until the start of 2022. Once the data were collected and pre-preparation 

steps completed, seven different machine learning algorithms were tested and then validated using 

K-fold cross validation. These models were then used for predicting oil yields and understanding 

how polymer type in the feed affects the oil yields. Future sections will describe each of these steps 

in more detail. 
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Figure 3-1 Outline of model development and deployment including validation process for 

building and validating a robust model capable of predicting plastic pyrolysis oil yields. 

 Data Collection and Preparation 

 The data set was collected from the open literature and consists of 325 individual data 

points corresponding to 39 papers, as seen in the Appendix B . Studies describing pyrolysis of any 

of the “big six” plastics ((polystyrene (PS), high- and low-density polyethylene (HDPE and 

LDPE), polypropylene (PP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET)) were 

included in the retrieval effort, with pyrolysis defined as experiments performed in different 

reactor types with and without a catalyst. The data was collected from reliable sources as described 

in pertinent peer reviewed journal publications. In particular, the data set was derived from studies 

of both pure plastics and plastic mixtures, and the distribution of data points corresponding to 
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different types of pure plastics and mixed plastic streams is shown in Figure 3-2a. Of the plastics 

considered here, HDPE and LDPE along with PP are the most abundant in the current data set.  

 

 
Figure 3-2 Visual representation of the 325 data point pyrolysis data set, showing a.) the 

distribution between pure plastic studies and mixed plastic studies where, N is the number of 

data points and b.) the number of plastics in the mixed plastic studies where Np is the number of 

plastics present in the mixture. Np=6 corresponds to 2 data points.  

 

Studies on mixed plastic streams account for about one third of the entire data set. Figure 

3-2b shows the distribution of the mixed plastic data in terms of the number of plastics in the 

mixture. Binary and ternary mixtures are the most commonly studied mixtures but several studies 

of mixtures including all of the “big six” plastics appear in the data set as well. For studies 

involving waste mixtures, the mass fraction in percent of each plastic type in the feed became its 

own independent variable input to the model. For pure streams, the mass fraction of the plastic 

being pyrolyzed was set to 100 while all other mass fractions were set to 0.0. 

Along with the concentration of each of the plastics present in the feed, six other reaction 

parameters were also recorded in the data set and used as independent variables (called features): 

Pyrolysis reaction temperature, heating rate, particle size, amount of feed utilized, catalyst, and 

reactor type. Pyrolysis reaction temperature, heating rate, particle size, and amount of feed utilized 

are all numerical and can be handled using typical regression methods. After careful deliberation, 

a. b. 
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reaction time was not included as an independent variable, as reaction time is not well-defined for 

different reactor types. More detail is provided in the Discussion section. 

Unlike the quantitative variables, catalyst and reactor type are categorical variables, which 

require special treatment. In order for the model to be able to handle these categorical variables 

they were one-hot encoded135. For example, catalyst was used as an independent variable with its 

value set to either 0 or 1 to represent the absence and presence of a catalyst, respectively. The 

model includes no information on the type of catalyst. Similarly, the reactor type was divided into 

five categories (batch, fixed bed, fluidized bed, horizontal tube and semi-batch) and each of these 

was described by its own independent one-hot encoded variable. 

 One potential drawback of using data from many different papers is inconsistencies in data 

reporting from lab to lab. The upshoot of data reporting inconsistencies is data gaps. To avoid this 

problem for dependent variables, pyrolysis oil yield was selected as the sole dependent variable as 

all studies of plastic pyrolysis report gravimetric oil yield. Oil yield was taken as the mass of liquid 

products recovered at room temperature and pressure. The phase behavior of the oil mixture 

depends on composition and as a rough guide it extends from products that are less volatile than 

pentane to compounds that melt at temperatures less than octadecane. Non-ideal phase behavior 

and solvation effects mean that this range can only be used as a guideline. Since oil composition 

varies from study to study and is not uniformly reported in the literature and since oil recovery 

protocol also vary from study to study, reported oil yield data display natural variability that 

influences model predictability. Data gaps in the independent variables are unavoidable, as not all 

studies report the six operating parameters selected for this study. Two common ways to handle 

data gaps are often used; omitting the data points that have missing data or using a data imputation 

algorithm such as K-nearest neighbor (KNN) to fill in the data gaps139. Although omitting data 
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with incomplete independent variable reporting is the more conservative of these approaches, 

preliminary tests found that eliminating even a handful of data points significantly and negatively 

impacted model performance, as seen in the Appendix B. Therefore, this work used the KNN 

method to fill in the above data gaps. The KNN algorithm works by looking at K of the nearest 

data points to that which is unknown and making an educated prediction based on the votes of 

each of these points. K can be chosen in a multitude of ways, but the conventional approach is to 

use the square root of the number of data points 140:for this data set K was 17 for the training set 

size of 292 data points. KNN was needed to fill gaps for heating rate, particle size, and feed size. 

It should be pointed out that improved consistency of data reporting in future studies could 

potentially reduce the need for methods to handle data gaps. 

 Model Evaluation Metrics 

 Within the context of the present study, the Mean Absolute Error (MAE) criterion was used 

to evaluate model accuracy. Equation 3.1 shows how MAE is calculated:  

𝑴𝑨𝑬 =  
∑ |𝒙𝒊−𝒙̂𝒊|𝑵

𝒊=𝟏

𝑵
    ( 3.1 ) 

where N is the number of data points, xi is the predicted value of x and 𝑥̂i is the experimental 

(true) value of x. Compared to other potentially viable alternatives such as the root-mean square 

error and mean relative error criteria, MAE is the most widely used and easiest to interpret. The 

units of MAE in this work corresponds to the units of oil yield (wt%).  

 Machine Learning Models 

 Seven different machine learning algorithms were evaluated in this study. Of the seven, 

three were linear methods and four were non-linear methods. The linear methods are linear 

regression (LR), linear regression with Lasso regression (LR-Lasso), and linear regression with 

Ridge regression (LR-Ridge). Both Lasso and Ridge regression are forms of linear regression that 

use penalty functions to shrink the model to fewer parameters 57. The non-linear models that are 
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studied are decision tree (DT), eXtreme Gradient Boosting (XGBoost), random forest (RF) and 

artificial neural networks (ANN). Decision tree, XGBoost and random forest are all tree methods57, 

with decision tree using a single tree while  XGBoost and random forest methods rely on a series 

of trees to improve accuracy. 

Each of the models that were tested were run and optimized using Python 3.6 141 and scikit-

learn 1.1.0 packages 142. Model optimization involves tuning internal parameters, termed hyper 

parameters. The optimal hyper parameters for each model can be found in the appendix B Table 

B.3-3. For all methods other than the tree models the data had to be normalized due to the large 

difference in the values for the different reaction parameters (i.e. particle size ranges from microns 

to mm and feed sizes from mg to thousands of g). When normalization was required a Z transform 

was performed on the data including all of the model features. Equation 3.2 shows how the Z 

transform of a variable is calculated,  

      𝒁𝒊 =  
𝒙𝒊,𝒋−𝒙̅𝒊

𝝈𝒊
                                                                            ( 3.2 ) 

where Zi is the new value, 𝑥̅𝑖 is the mean of feature i and σi is the standard deviation of feature i. 

Decision tree methods by nature are not sensitive to these differences and unscaled data were used 

for these model types 57.  

 Data Splitting   

 Development of rigorous, predictive machine learned models requires training the model 

on a data set followed by testing its accuracy for prediction of a separate data set. These two data 

sets are called the training and testing sets. For the current study, 10% of the data was removed 

prior to model optimization, placed into a “vault”, and not touched again until all of the models 

were optimized in order to be able to test the models on “new” data that was not “seen” during 

model development. The remaining 90% of the data was used for KNN and model training. 
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Dividing data into training and test sets is common practice to prevent over fitting; inadvertent use 

of test data for model optimization is termed “ data snooping” and can reasonably be expected to 

result in over fitting57. The splitting of the data set into training and test sets is done through random 

selection. 

Model optimization on the training data utilized a method of validation, which further 

separates the training data into separate sub-sets. The model validation method selected is termed 

K-fold cross validation, which separates the training data into K sub-sets. Here, K was set equal to 

10, meaning that the training data was split into 10 equal groups. Nine of these groups were used 

to train the model (training dataset) and 1 was used to validate (validation data set). This was 

repeated sequentially until all 10 groups had acted as the validation set. Cheng et.al. (2021) 

provided a visual representation of how the K-fold method works 125. K-fold cross validation helps 

to prevent overfitting, or fortuitus fitting as the model must be trained on all of the data and the 

final result represents an average of all 10 models.  

 One of the potential pitfalls of working with small data is ensuring representative splitting 

into test and training data sets. For example, relatively few studies are published that include low-

yield data, which means that random splitting into test and training sets may result in a training set 

that completely lacks low-yield data. The result is a model that cannot accurately predict data with 

low yields. To prevent the problem of non-representative data splitting, the data set was stratified 

based on yield prior to splitting. Stratification grouped data by reported oil yield to create a set of 

bins each with an equal number of data points (10 here). During splitting, at least one data point 

from each bin was included in the test set to ensure that it was representative of the full range of 

data present in the training set. The data were then re-randomized prior to training and validation. 
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3.3 Results/Discussion  

 The goal of this study was to use published data to develop a data-driven, machine-learned 

model to predict oil yields obtained from plastic pyrolysis. A data-driven model has the advantage 

that its predictions do not require detailed understanding of chemical mechanisms. Instead, 

reaction conditions can be used as the independent variables, or features, and inputs to a regression-

type model that does not require knowledge about the underlying chemistry.  

In addition to pyrolysis, the kindred method of hydrothermal liquefaction (HTL) has been 

reported for conversion of waste plastics to useful oils 143. A universal tool that can predict HTL 

or pyrolysis yields obtainable from waste plastics could be very useful. Unfortunately, most studies 

on HTL have focused on plastics other than those in common commercial use, meaning that the 

HTL and pyrolysis data sets have minimal overlap and rendering simultaneous modeling of HTL 

and pyrolysis impractical at present. 

After initial tests, reaction time was not included as an independent variable, due to the fact 

that reaction time is a fundamentally different concept depending on the reactor type. For example, 

reaction time is well-defined as the residence time in a closed, batch reactor on the one extreme 

and in a plug-flow continuous reactor on the other. For the most common pyrolysis reactors, 

including spouted bed reactors, swept-batch or semi-continuous reactors, and fluidized bed 

reactors, residence time of the plastic within the reactor is either poorly defined or impossible to 

compare with other types of reactors. Excluding certain reactor types limits the amount of data 

available for the model. Since the model already is pushing the lower boundary of how much data 

is required for robust predictions, all reactor types were included as independent variables and 

reaction time was excluded. In fact, preliminary tests (seen in the Appendix B) that conflated the 

different types or reaction times did not provide accurate predictions of pyrolysis oil yield. 
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Many different types of machine-learned models have been published in the literature for 

a range of different engineering applications 125-134. Accordingly, a wide variety of model types 

were evaluated, as the ideal model for a given data set cannot be predicted a priori. The seven 

models studied included three linear models (Linear Regression, Ridge Regression and Lasso 

Regression), three non-linear tree models (Decision Tree, Random Forest and Xtreme Gradient 

Boosting) and one non-linear model (Artificial Neural Network). These seven were chosen as they 

are representative of successful model types previously studied in the literature for similar 

problems 125-127. Linear regression represents the simplest starting point and is a good basis of 

comparison. Lasso and Ridge regressions are well-known modifications of the standard linear 

regression model that add an error function intended to improve accuracy 57. Decision tree is the 

simplest Boolean model and Random Forest and XGBoost in particular were chosen because their 

use of multiple trees as well as subsets of the data improves their accuracy, especially when 

working with small data sets 144. 

Each of the seven models consists of multiple parameters (termed “hyper parameters” in 

the machine learning literature 145), which the user must select based on the application at hand. 

Hyper parameter values are optimized during cross validation to minimize model error. The 

optimal model hyper parameters for each individual model can be found in the Appendix B Table 

B.3-3.  

After model optimization, prediction accuracy was assessed for both the validation and test 

sets. MAE was used as the error metric in this work. The most accurate model should minimize 

MAE, exhibit minimal change between the validation and test-set MAEs, and have low standard 

deviation arising from validation. Each of these plays an important role. MAE of the test-set is the 

truest measure of the predictive accuracy of the model. Agreement between the test-set and 
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validation MAEs as well as minimal validation standard deviation guard against over fitting and 

fortuitous division between validation and test sets. Using validation set MAE as the sole basis for 

model selection therefore risks model overfitting, which detracts from accuracy of predictions for 

new data not included in the original data set. 

Figure 3-3 shows both the validation-set and test-set MAE for all seven models as well as 

the standard deviation of the validation set error. The MAE of the benchmark linear regression 

model is approximately 14, for both validation and test set analysis. The corresponding standard 

deviation of the validation set MAE is nearly 3. While the agreement between validation set and 

test set MAE is reassuring, the absolute value of these MAEs is not sufficient for most applications 

and the large standard deviation of the validation set MAE suggests that the regression is prone to 

errors due to fortuitous data selection. The Lasso and Ridge modifications of linear regression 

offer no benefit, indicating that the addition of an error function is insufficient to capture what is 

inherently a highly non-linear data set. Accordingly, linear models should not be expected to 

provide accurate pyrolysis yield predictions, except possibly over very narrow ranges of conditions 

where the problem might be nearly linear. 
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Figure 3-3 Mean absolute error (MAE) of the validation and test sets for linear regression (LR), 

Lasso regression (LR-Lasso), ridge regression (LR-Ridge), decision tree, eXtreme Gradient 

Boosting (XGBoost), random forest (RF) and artificial neural network (ANN)
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All of the nonlinear models tested here provided superior performance compared to the 

linear models. Of the four non-linear methods, the MAE provided by the Random Forest, XGBoost 

and ANN models are less than the Decision Tree model. While the decision tree model fits the 

validation data better than the linear methods, the MAE of the validation and test sets along with 

the validation set standard deviation of Decision Tree is greater than the other three non-linear 

models. In comparison, the modest value of validation set standard deviation observed for Random 

Forest indicates it is much less sensitive to the subset of data it is trained on than any of the other 

models tested here. The comparison of validation set standard deviations recommends selection of 

RF over ANN or XGBoost, especially since all three methods yield similar values of MAE. The 

performance of RF, ANN and XGBoost are nearly identical and therefore any method could 

justifiably be used for further analysis. In this work XGBoost was chosen for future model 

applications due to its relative simplicity; low MAE for validation and test sets (8.7% and 9.1% 

respectively); and low standard deviation in validation (±1.2 %). A parity plot of the experimental 

vs predicted oil yields of the test for the optimal XGBoost model can be found in the Appendix B 

Figure B.3-7. The majority (67%) of predictions fall within ±10% of the experimentally reported 

values, with the remainder contributing to the observed value of MAE (9.1%) as seen in Table 

SI.3. 

 The MAE of the XGBoost model captures the residual error of the current dataset, as it was 

extracted from the literature. Residual error likely arises from several factors and reducing the 

error can be achieved in several ways. First, the available data set (<500 data points) is at the lower 

limit of what can be studied using machine learning. Increasing the amount of data – for example, 

by updating the model periodically as new data appear in the literature – should improve accuracy 

over time53. Second, the experimental data themselves are subject to experimental uncertainty, 
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which is on the order of several percent. Experimental uncertainty detracts from model accuracy 

and reducing the inherent experimental error should reduce the MAE that the model can achieve. 

Experimentalists should adopt methods such as mass balance and carbon balance closure to ensure 

data quality and reduce uncertainty. Third, different studies use slightly different methods – 

including reactor types, as previously discussed, and also analytical methods for recovering and 

quantifying oil yields. Differences in methodology give rise to systematic differences between oil 

yields reported in different studies. Greater consistency in analytical methods, especially in 

recovery conditions and oil yield definitions (e.g., instead of reporting total gravimetric yield, 

reporting yield obtained over a certain distillation range), should improve consistency in the data 

set and help to reduce uncertainty. Application of XGBoost-based regression on a single, uniform 

data set – of sufficient size (>500 data points) – can realistically be expected to achieve MAE 

values less than seen here. That data set does not exist in the public domain at this time. 

 A common analysis of regression error is to determine the statistical significance of the 

various features. For linear models, a common method is the F test 146. For decision tree models, 

the corresponding metric is feature importance. Figure B.3-8 provides the feature importance 

extracted from the XGBoost model. Plastic type and particle size have similar levels of importance 

(~10%), indicating that they have statistically significant effects on model predictions. 

Interestingly, the feature importance of catalyst was negligible compared with the other features. 

Effectively, the pyrolysis oil yields obtained using a catalyst may often be reproduced by 

increasing the pyrolysis temperature. However, other studies find that catalyst use has minimal or 

even negative effects on yields and instead mainly effects product distribution 147 – a dependent 

variable not considered here, outside of how product distribution affects oil yield. Data on the use 

of catalysts may be biased to lower temperatures that accentuate the perceived benefit on yield. In 
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these cases, the benefit of using a catalyst is not so much as to increase oil yields, but to lower the 

temperature at which an acceptable yield can be obtained. The net effect of catalyst use in these 

cases is to improve energy yield, an outcome that is not explicitly predicted by the models 

presented here. 

 The feature importance also highlights that the influence on oil yield of pyrolysis of plastics 

falls into two categories: factors that capture chemical reactivity and factors that are related to heat 

transfer. The chemical reactivity factors include plastic type, temperature, and presence of catalyst, 

and together they account for 57.2% of the observed correlation. Heat transfer factors include 

particle size, plastics loading, and heating rate, combine to account for 40% of the correlation. The 

importance of chemical reactivity and heat transfer factors is consistent with intuition148, which is 

a comforting result for a data-driven model that is ignorant of physics. 

Of all of the features considered in the present study, the value of the feature importance 

assigned to temperature was the greatest (43.6%), indicating that temperature had the most 

significant effect on pyrolysis yields. Due to the high feature importance of temperatures, 

understanding how temperature appears in the current data set is critical to understand before the 

corresponding model can be used to make predictions of new systems. Since model predictions 

can only be trusted for conditions that fall within the limits established by the data set, the 

temperature limits where model predictions can be trusted are based on the appearance of 

temperature in the data set. As a temperature-activated process, pyrolysis temperatures will 

naturally be biased to values that result in appreciable oil yields. Researchers use their knowledge 

of the system to determine the temperatures at which they run their experiments, meaning that 

temperatures much less and much greater than optimal do not appear in the literature. The result 

is that predictions for conditions that fall outside of the limits appearing in the data set cannot be 
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trusted. Because each plastic has its own temperature which optimizes pyrolysis oil yields, the 

available data set must be evaluated to understand the temperature range over which each plastic 

has been studied. 

Figure 3-4 plots the temperature range covered by each of the plastics included in this 

study, as well as the temperature range covered by pyrolysis of mixtures, as a box-line plot where 

the box represents the 25% and 75% limits of the available data and the line represents the absolute 

limits. As expected, the temperature range studied for each plastic varies with the plastic, with PP, 

PS, and PET tending to be studied at low temperatures and PE at higher ones. PVC pyrolysis has 

been studied at a single temperature (700 °C). Fortunately, in aggregate, the temperature range 

over which pyrolysis yields are optimized, from 400 to 700 °C, is well covered in the data set – 

provided that pure PVC is excluded from the analysis. PVC is generally regarded as an unsuitable 

feed for plastic pyrolysis, due to the formation of hydrochloric acid during pyrolysis. Hydrochloric 

acid is corrosive and chlorine contamination detracts from fuel properties149. Hence, a predictive 

model that is appropriate for pure or mixed plastics, with the exception of PVC, in the range from 

400 to 700 °C is valuable for many applications. Predictions made outside this range are not 

physically realistic, with the consistent over prediction of pyrolysis oil yields at temperatures less 

than 400 °C. 
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Figure 3-4. Temperature distribution for each polymer and mixtures in the data set showing the 

25 %-75% range (box), the min-max range (line), the median line and the mean (▫). 

 

Figure 3-3 and Figure 3-4 indicate that an XGBoost model can make accurate pyrolysis 

oil yield predictions, in the temperature range from 400 to 700 °C. The next step was to 

demonstrate the method for two realistic applications: pyrolysis of plastics collected at municipal 

recycling facilities (MRFs) and pyrolysis of plastics present in river outflows to the ocean.  

A major benefit of pyrolysis co-located with MRFs is that they exist in centralized locations 

where plastic is collected. Although the exact composition of plastics at these facilities can change 

from location-to-location representative averages exist for different countries/areas. These 

averages can vary significantly from country to country and therefore the expected oil yields from 
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converting the plastic to fuels are also expected to vary. The machine-learned model can predict 

oil yields for these different streams. To ensure reliable model predictions, the model was run in a 

batch reactor and at a constant temperature of 500 °C, well within the limits suggested by Figure 

4.  

Table 3-1 provides average compositions and corresponding predictions of oil yields for 

municipal solid waste (MSW) collected in both the U.S. and E.U. The two plastic streams vary 

considerably, especially in their relative ratios of HDPE and LDPE and their amounts of PS and 

PVC. These composition differences translate into predicted oil yields that differ by almost 15% 

from one another, with the oil yield predicted for pyrolysis of E.U. plastic waste being greater than 

that predicted for U.S. waste. That difference is likely related to the greater PS content of E.U. 

waste than U.S. waste, since PS is more easily pyrolyzed to obtain high oil yields than PP or PE 

150. 

Table 3-1 Comparison of Plastic in European and American Municipal Solid Waste and their 

Predicted Oil Yields 

Location HDPE LDPE PP PS PVC PET Predicted 

Oil Yield 

US 115 17.86% 24.08% 22.78% 6.29% 2.4% 14.79% 35.3% 

Europe 47 44.4% 0% 21.2% 13.3% 12.2% 8.9% 48.9% 

 

The XGBoost model can be used to explore the benefits of partial separation for optimizing 

oil yields. In addition to PVC, oil yields obtained from pyrolysis of PET are generally less than 

those obtained from HDPE, LDPE, PS, and PP 150, 151. Consistent with this expectation, the 

XGBoost model predicts that pyrolysis of pure PET at 500 °C results in 28% oil yield, much less 

than that predicted for PP, PS, or HDPE at the same conditions (74, 70, and 63%, respectively, as 
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seen in Appendix B Figure B.3-9). Similarly, whereas HDPE, LDPE, PS, and PP are all 

hydrocarbon plastics that yield oils with properties similar to hydrocarbon fuels, PET is an 

oxygenate that yields small oxygenated compounds, especially ethylene groups and benzoic acid 

152, that are more suitable for use as monomers than as fuels. Finally, of the six commonly used 

plastics, PET has the most robust recycling market, meaning that recycled PET has an existing 

valorization channel that the other plastics lack 153. For these reasons, separation of PET prior to 

pyrolysis is worth evaluating. Both new and existing 154 technologies can be used for PET 

separation.  

To evaluate the effect of PET on pyrolysis oil yields, the XGBoost model was run many 

times for different ratios of PET in a PP and HDPE mixture and separately for PET in a PP and PS 

mixture. The combinations of plastics shown in Figure 5 were chosen due to the prevalence of 

HDPE, PP and PS in both US and European MSW 47, 115. The result of these simulations are ternary 

diagrams relating composition to predicted oil yields, as shown in Figure 3-5. The oil yield 

analysis was performed for a mixture of LDPE, PP and PET and results can be found in the 

Appendix B as Figure B.3-9.The general trend observed in Figure 5 is that oil yields decrease with 

increasing PET content, strongly recommending PET removal prior to pyrolysis. Some interesting 

areas of potential synergy exist, for example mixtures of approximately 80% PET and 20% PP. 
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Figure 3-5 Predicted oil yields for mixtures of HDPE, PP and PET and PS, PP, and PET 

pyrolyzed in a horizontal tube reactor at 500 ˚C, with a heating rate of 10 ˚C/min, a particle size 

of 13mm, plastics loading of 200g without catalyst. 

 

In addition to waste already collected at MRFs, significant waste ends up in the 

environment. Waste plastic in rivers throughout the world is especially damaging as it not only 

pollutes the river ecosystems, but also eventually pollutes the ocean as rivers act like highways to 

transport waste plastic to the ocean 111. Rivers polluted with waste plastic exist all over the world, 

21 and targeting these rivers as sources of plastic for conversion to oil could cut off these plastic 

highways into the world’s oceans. The complete system would include a mechanism to collect the 

plastic, remove it from the river, feed it to the pyrolysis process, pyrolyze the plastic, and recover 

the oil, similar to a system designed for ocean plastics58. 

The composition of plastics varies significantly from river to river,22 due to differences in 

regional industry and community usage. The natural consequence of these differences in 

composition is differences in oil yields obtainable by pyrolysis. Prioritizing specific rivers to 

implement plastic capture and conversion systems allows for optimal use of finite resources. One 
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way to prioritize rivers is to predict the oils yields that can be obtained for pyrolyzing the plastic 

present in them, potentially feeding those predictions into economic models to optimize return on 

investment. Alternatively, prioritization could be based relative ecological importance (i.e., 

proximity to fragile ecosystems), in which case predictions of oil yields are necessary to build a 

business model. 

As a concrete example, the XGBoost model was used to predict the oil yields obtainable 

from pyrolysis of plastic found in the Rhine River in Europe. This river was chosen for the 

abundantly available data about plastic type and concentrations found along the length of the river 

137, 138. The Rhine River waste plastic consists of mainly HDPE, PP and PS (27, 37 and 26% by 

mass respectively). This average composition was then used along with a common set of reaction 

parameters (found in the Appendix B Table B.3-5 and Table B.3-6) to predict an oil yield range 

of 44.1 to 56.7% for pyrolysis temperatures from 400 to 650 °C, comparable to the value observed 

for the MRF present in the E.U. The predicted oil yields for each temperature can be found in the 

Appendix B Table B.3-7. 

The predicted oil yields were then input to a stochastic process model that utilizes the 

Monte Carlo (MC) technique for evaluating thermodynamic outcomes58 of a plastic recovery and 

conversion process as a function of pyrolysis temperature and feed rate. In addition to the pyrolizer 

itself, the process includes pumps, shredders, blowers, filters, and other peripheral equipment. 

Modifications to the model previously published by Belden, et. al. can be found in the SI. In brief, 

the system consists of collection, shredding, pyrolysis, and oil recovery steps. The energy 

requirements for all auxiliary steps was taken from manufacturer specifications and assumed not 

to allow turn down to less than full power consumption. The energy requirement of the pyrolysis 

step was taken from thermochemical analysis of the enthalpy of reaction. 
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A major unknown in the analysis is the amount of plastic exiting the river that can be 

harvested. Accordingly, simulations were performed over a range of plastic feed rates with the 

goal of identifying under what conditions the process can be expected to be self-sufficient. All 

equipment in the process were off-the-shelf parts, and their energy consumption was based on 

vendor specifications and did not scale with plastic feed rate. The exergy required for the pyrolysis 

reactor was based on the heat of reaction and the exergy of the oil product was the process output; 

both of these values scaled linearly with the mass flow rate of plastic entering the process. To 

handle parameter uncertainty, the pyrolysis oil yield was handled as a stochastic variable in the 

Monte Carlo simulation; its value was varied to reflect the observed model MAE (± 9.1%). The 

remaining stochastic variables can be found in the Appendix B Table B.3-7. 

Figure 3-6 shows the results of this analysis as a function of flow rate over a range of 

realistic temperatures as the probability of producing more exergy (based on fuel heating value) 

than is consumed (“net exergy production”). For feed rates of 1.0 and 2.0 kg/hr, the process is 

unlikely to produce more exergy than it consumes (<20%), since the energy required by the 

peripheral equipment is predicted to be greater than that in the fuel product. Between a feed rate 

of 2.0 kg/hr and 2.5 kg/hr and for temperatures less than 550 °C, the probability of net exergy 

production increases by a factor of 4; this sharp increase corresponds to the point at which the 

exergy embodied in the pyrolysis oil exceeds that required by the auxiliary equipment (~5 kW of 

fixed consumption). Increasing from 2.5 kg/hr to 3.0 kg/hr results in >80% probability of net 

exergy production for pyrolysis temperatures less than 550 °C.  

In general, the model predicts that thermodynamic efficiency decreases with increasing 

pyrolysis temperature, a consequence of the high reactivity of the Rhine River plastic mixture. The 

exception to this trend is that the probability of net exergy production predicted at 500 °C is greater 
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than that predicted at 450 °C. Here, the model predicts that the oil yield at 450 °C is slightly less 

than at 500 °C (53% compared to 55.2%), accounting for the counter-intuitive finding. In fact, this 

difference in oil yield is within model uncertainty, meaning that the model indicates operating in 

the range between 400 and 500 °C for optimal thermodynamic efficiency. This range can be then 

used to minimize time spent in the evaluation of process performance with actual plastic mixtures.  

Figure 3-6 can be interpreted to predict that pyrolytic conversion of Rhine River plastic is 

very likely to be energy self-sufficient, assuming that 100% of the plastic carried by the river can 

be captured. An estimated 20 to 30 tons of plastic is discharged from the Rhine annually155, which 

corresponds to plastic flowrates of ~ 2 to 3 kg/hr, right in line with the predictions seen here for 

thermodynamically self-contained capture and pyrolytic conversion. Lower ends of this plastic 

exit rate may argue for the accumulation of plastic and the semi-continuous operation of the 

conversion system to permit modest process scale-up to achieve energy self sufficiency – or for 

re-design to improve efficiency. The analysis shown in Figure 6 assumes fixed power requirements 

for peripheral equipment, whereas the energy required for pyrolysis and embodied in the fuel scale 

with plastic feed rate. If the energy consumed by peripheral equipment can somehow be scaled to 

the feed rate – i.e., less energy might be consumed by the shredder for a dilute mixture than a 

concentrated one – then more favorable outcomes can be achieved for lower flow rates than are 

shown here. The analysis presented here for the Rhine River also suggests that other rivers with 

higher plastic discharge rates, including the Yangtze, Ganges and Xi 21, may yield self-sustaining 

plastic removal and pyrolysis systems, especially when complete capture of plastics is not possible, 

even accounting for the possibility that the oil yields for those rivers may be less favorable than 

predicted for the Rhine. 
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Figure 3-6 Percent probability of net exergy production for the Rhine River from 1 to 5 kg/hr 

flowrates and over a pyrolysis temperature range of 400 ˚C to 650 ˚C.  

  

 The examples of MRF and Rhine River plastic pyrolysis demonstrate how the current 

model can be used. The emphasis has been placed on predicting pyrolysis oil yields, with the end 

application of replacing petroleum-derived fuels. Because the origin of synthetic plastics is 

petroleum, combustion of plastic-derived fuels releases the same amount of CO2 into the 

atmosphere as does combustion of petroleum-derived fuels. Using estimates of the global use of 

plastics156 minus PVC and PET and the current model, approximately 130 million metric tons of 

plastic-derived fuel can be produced annually. Using typical emissions factors157, combustion of 

this plastic-derived fuel would be equivalent to 230 million tons/year of CO2, approximately 1% 

of annual emissions158. That stated, on a per mass basis, the environmental impact of plastic 
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entering the environment is almost certainly greater than that of CO2, despite the threat of climate 

change. 

Nonetheless, the CO2 emissions analysis indicates that using pyrolysis to produce fuels 

incurs unacceptable climate penalties. Therefore, pyrolysis to fuel should be used as part of a 

comprehensive strategy, which includes pyrolysis for chemical production, increased recycling, 

and increased use of biodegradable plastics, to prevent plastic entering landfills or the 

environment. Similarly, the climate impact of using plastic-derived fuels can be minimized if they 

are reserved for use in applications that are difficult to decarbonize using available technologies, 

such as shipping or air transport159. Alternatively, to avoid new CO2 emissions entirely, pyrolysis 

can be used to produce products other than fuels, such as lubricants, monomers, or other chemicals. 

The current model method can easily be adapted for these alternative products, provided that data 

are available. 

The results presented here indicate that the accuracy of the current model is sufficient for 

many practical applications. More generally, the accuracy of the model with the available data set 

indicates substantial scope for improvement, as more data become available. Some of the 

uncertainty of the current model likely arises from incomplete reporting of independent variables 

– necessitating the use of KNN to fill data gaps – and a lack of a uniform way to report oil yields. 

A consistently used volatility-defined measure of oil yield, based on simulated distillation or 

thermogravimetric analysis of the product, would improve data quality and model predictability. 

More uniform and quantitative reporting of individual product yields would allow the model to be 

adapted for predictions of chemicals production. 

3.4 Conclusions  

 Seven machine-learned models were optimized and evaluated for predicting oil yields 

obtained from pyrolysis of the big six plastics using feed composition, reaction conditions, reactor 
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type, and the presence or absence of catalyst as independent variables. Of these seven models, the 

accuracy profile of non-linear models was found to be superior to the one associated with 

conventional linear models included in the study, with XGBoost providing the most accurate 

predictions based on the Mean Absolute Error (MAE) criterion. Because of the content of the 

specific data set used to train the proposed machine-learned models, they are expected to be 

accurate in the temperature range from 400 to 700 °C, inclusive. 

As a demonstration, the eXtreme Gradient Boosting model was used to predict the oil 

yields expected from pyrolysis of U.S. and E.U. plastic recycling waste, with the finding that E.U. 

waste appears to be a superior feed candidate for pyrolysis. The same regression model was used 

as part of a probabilistic Monte Carlo-based thermodynamic analysis that was performed on a 

process to remove plastic from the Rhine River, shred it, feed it to a pyrolyzer, and convert it into 

fuel. Thermodynamic analysis indicated that the process could be a net exergy producer under 

realistic conditions, provided that the scale of the pyrolyzer was sufficient to produce enough oil 

to offset fixed energy requirements associated with the peripheral equipment. 

The model used here is therefore deemed sufficient for many practical applications 

involving waste plastic pyrolysis, and in particular can be used in conjunction with thermodynamic 

analysis to evaluate feasibility. As more data are reported, the model can gradually be refined and 

its predictive and performance evaluative capacity considerably enhanced. In addition to pyrolysis, 

the general methodological, modeling and simulation framework proposed in the present study 

could be readily applied to different technology options as well as inform strategies and policy 

responses for plastic waste reduction and management. 

3.5 Appendix B 
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3.5.1.1 Data 

 

Table B.3-2 Data set of 325 data points used in modeling 

HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

0 100 0 0 0 0 500 10 2.5 - No Fixed Bed 95 160 
0 100 0 0 0 0 400 10 2.5 - Yes Fixed Bed 84 160 
0 100 0 0 0 0 450 10 2.5 - Yes Fixed Bed 81 160 
0 100 0 0 0 0 500 10 2.5 - Yes Fixed Bed 80 160 
0 100 0 0 0 0 550 10 2.5 - Yes Fixed Bed 76 160 
0 100 0 0 0 0 600 10 2.5 - Yes Fixed Bed 71 160 
0 100 0 0 0 0 400 10 2.5 - Yes Fixed Bed 83 160 
0 100 0 0 0 0 450 10 2.5 - Yes Fixed Bed 80 160 
0 100 0 0 0 0 500 10 2.5 - Yes Fixed Bed 77 160 
0 100 0 0 0 0 550 10 2.5 - Yes Fixed Bed 72 160 
0 100 0 0 0 0 600 10 2.5 - Yes Fixed Bed 70 160 
0 100 0 0 0 0 500 - - - No Fluidized Bed 81.2 161 
0 100 0 0 0 0 550 - - - No Fluidized Bed 73.9 161 
0 100 0 0 0 0 550 - - - No Fluidized Bed 72.7 161 
0 100 0 0 0 0 550 - - - No Fluidized Bed 65.3 161 
0 100 0 0 0 0 550 - - - No Fluidized Bed 64.7 161 
0 100 0 0 0 0 600 - - - No Fluidized Bed 28.5 161 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

100 0 0 0 0 0 500 5 3 100 No Fixed Bed 62 162 
100 0 0 0 0 0 550 5 3 100 No Fixed Bed 71 162 
100 0 0 0 0 0 600 5 3 100 No Fixed Bed 69 162 
100 0 0 0 0 0 650 5 3 100 No Fixed Bed 68 162 
100 0 0 0 0 0 700 5 3 100 No Fixed Bed 69 162 
100 0 0 0 0 0 750 5 3 100 No Fixed Bed 63 162 
100 0 0 0 0 0 800 5 3 100 No Fixed Bed 64 162 

0 100 0 0 0 0 400 5 0.5 0.6 No Batch 93.1 39 
100 0 0 0 0 0 400 5 0.5 0.6 No Batch 84.7 39 

0 100 0 0 0 0 550 5 0.5 0.6 Yes Batch 18.3 39 
100 0 0 0 0 0 550 5 0.5 0.6 Yes Batch 17.3 39 

0 100 0 0 0 0 550 5 0.5 0.6 Yes Batch 61.6 39 
100 0 0 0 0 0 550 5 0.5 0.6 Yes Batch 41 39 

0 68 16 16 0 0 430 - 3 - No Batch 93 163 
0 16 68 16 0 0 430 - 3 - No Batch 90 163 
0 16 16 68 0 0 430 - 3 - No Batch 92 163 
0 100 0 0 0 0 430 - 3 - No Batch 90 163 
0 0 100 0 0 0 430 - 3 - No Batch 92 163 
0 0 0 100 0 0 430 - 3 - No Batch 95 163 
0 33 33 33 0 0 430 - 3 - No Batch 91 163 

100 0 0 0 0 0 450 6.5 - - No Batch 84 164 
100 0 0 0 0 0 400 20 - 20 No Batch 11.2 165 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

100 0 0 0 0 0 450 20 - 20 No Batch 23.96 165 
100 0 0 0 0 0 500 20 - 20 No Batch 72.25 165 
100 0 0 0 0 0 550 20 - 20 No Batch 79.08 165 

0 0 0 100 0 0 450 5 1.5 10 No Batch 95.77 150 
0 0 0 100 0 0 450 10 1.5 10 No Batch 95.79 150 
0 0 0 100 0 0 450 15 1.5 10 No Batch 92.75 150 
0 0 0 100 0 0 450 20 1.5 10 No Batch 92.65 150 
0 100 0 0 0 0 450 5 1.5 10 No Batch 81.65 150 
0 100 0 0 0 0 450 10 1.5 10 No Batch 81.33 150 
0 100 0 0 0 0 450 15 1.5 10 No Batch 72.63 150 
0 100 0 0 0 0 450 20 1.5 10 No Batch 61.24 150 
0 0 0 0 0 100 450 5 1.5 10 No Batch 39.02 150 
0 0 0 0 0 100 450 10 1.5 10 No Batch 35.4 150 
0 0 0 0 0 100 450 15 1.5 10 No Batch 29.71 150 
0 0 0 0 0 100 450 20 1.5 10 No Batch 29.16 150 
0 0 100 0 0 0 450 5 1.5 10 No Batch 83.34 150 
0 0 100 0 0 0 450 10 1.5 10 No Batch 82.67 150 
0 0 100 0 0 0 450 15 1.5 10 No Batch 82.92 150 
0 0 100 0 0 0 450 20 1.5 10 No Batch 68.06 150 

26.2 31.1 8.2 13 0 0 500 20 2.5 400 No Fixed Bed 29 166 
17.8 19.6 13.9 8.7 0 0 500 20 2.5 400 No Fixed Bed 26.33 166 
3.5 25 22.2 4 0 0 500 20 2.5 400 No Fixed Bed 44.62 166 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

17 34 15.4 12.4 0 0 500 20 2.5 400 No Fixed Bed 43.2 166 
100 0 0 0 0 0 500 - 3 50 No Batch 81 167 
100 0 0 0 0 0 600 - 3 50 No Batch 79.1 167 
100 0 0 0 0 0 700 25 - - No Fixed Bed 79.72 143 

0 100 0 0 0 0 700 25 - - No Fixed Bed 84.25 143 
0 0 100 0 0 0 700 25 - - No Fixed Bed 84.44 143 
0 0 0 100 0 0 700 25 - - No Fixed Bed 83.77 143 
0 0 0 0 100 0 700 25 - - No Fixed Bed 31.69 143 
0 0 0 0 0 100 700 25 - - No Fixed Bed 41.3 143 

31.25 31.25 7.29 13.5 11.46 5.21 700 25 - - No Fixed Bed 75.12 143 
43 43 9.7 0 0 0 500 35 3.5 40 No Horizontal Tube 63.91 168 
43 43 9.7 0 0 0 550 50 3.5 40 No Horizontal Tube 56.08 168 
43 43 9.7 0 0 0 550 50 3.5 40 No Horizontal Tube 59.21 168 
43 43 9.7 0 0 0 550 20 3.5 40 No Horizontal Tube 59.7 168 
43 43 9.7 0 0 0 450 50 3.5 40 No Horizontal Tube 48.38 168 
43 43 9.7 0 0 0 550 20 3.5 40 No Horizontal Tube 60.48 168 
43 43 9.7 0 0 0 450 50 3.5 40 No Horizontal Tube 13.61 168 
43 43 9.7 0 0 0 450 20 3.5 40 No Horizontal Tube 46.79 168 
43 43 9.7 0 0 0 450 20 3.5 40 No Horizontal Tube 15.4 168 
43 43 9.7 0 0 0 550 35 3.5 40 No Horizontal Tube 58.97 168 
43 43 9.7 0 0 0 450 35 3.5 40 No Horizontal Tube 34.94 168 
43 43 9.7 0 0 0 500 50 3.5 40 No Horizontal Tube 63.41 168 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

43 43 9.7 0 0 0 500 20 3.5 40 No Horizontal Tube 66.51 168 
43 43 9.7 0 0 0 500 35 3.5 40 No Horizontal Tube 64.56 168 
43 43 9.7 0 0 0 500 35 3.5 40 No Horizontal Tube 64.22 168 

29.3 29.3 26.9 8.8 0 5.6 500 10 - - No Batch 75.8 37 
29.3 29.3 26.9 8.8 0 5.6 500 20 - - No Batch 82 37 

0 0 100 0 0 0 250 - - 2 No Batch 57.27 169 
0 0 100 0 0 0 300 - - 2 No Batch 69.82 169 
0 0 100 0 0 0 350 - - 2 No Batch 67.74 169 
0 0 100 0 0 0 400 - - 2 No Batch 63.23 169 

100 0 0 0 0 0 300 - - 2 No Batch 30.7 169 
100 0 0 0 0 0 350 - - 2 No Batch 80.88 169 
100 0 0 0 0 0 400 - - 2 No Batch 54.17 169 

0 0 100 0 0 0 460 - - 10 No Batch 86 170 
0 34 66 0 0 0 460 - - 10 No Batch 84 170 
0 66 34 0 0 0 460 - - 10 No Batch 63 170 
0 100 0 0 0 0 460 - - 10 No Batch 95 170 
0 66 34 0 0 0 460 10 - 10 Yes Batch 67 170 
0 34 66 0 0 0 460 10 - 10 Yes Batch 62 170 
0 0 100 0 0 0 460 10 - 10 Yes Batch 57 170 
0 100 0 0 0 0 460 10 - 10 Yes Batch 50 170 
0 100 0 0 0 0 500 6 2 - No Batch 80.41 171 
0 100 0 0 0 0 500 8 2 - No Batch 79.64 171 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

0 100 0 0 0 0 500 10 2 - No Batch 76.45 171 
0 100 0 0 0 0 500 12 2 - No Batch 74.32 171 
0 100 0 0 0 0 500 14 2 - No Batch 71.11 171 
0 0 0 0 0 100 500 6 2 - No Batch 38.89 171 
0 0 0 0 0 100 500 8 2 - No Batch 34.16 171 
0 0 0 0 0 100 500 10 2 - No Batch 32.13 171 
0 0 0 0 0 100 500 12 2 - No Batch 30.33 171 
0 0 0 0 0 100 500 14 2 - No Batch 29.14 171 
0 0 100 0 0 0 500 6 2 - No Batch 82.12 171 
0 0 100 0 0 0 500 8 2 - No Batch 81.32 171 
0 0 100 0 0 0 500 10 2 - No Batch 80.65 171 
0 0 100 0 0 0 500 12 2 - No Batch 79.41 171 
0 0 100 0 0 0 500 14 2 - No Batch 78.26 171 

100 0 0 0 0 0 430 3 - 10 No Batch 84.7 172 
0 100 0 0 0 0 430 3 - 10 No Batch 84.3 172 
0 100 0 0 0 0 430 3 - 10 No Batch 84.6 172 

50 50 0 0 0 0 430 3 - 10 No Batch 83.7 172 
0 0 0 100 0 0 450 10 - 1000 No Batch 80.8 173 

50 50 0 0 0 0 450 10 - 1000 No Batch 25 173 
0 0 100 0 0 0 450 10 - 1000 No Batch 42 173 
0 0 50 50 0 0 450 10 - 1000 No Batch 25 173 

25 25 0 50 0 0 450 10 - 1000 No Batch 54 173 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

25 25 50 0 0 0 450 10 - 1000 No Batch 24 173 
12.5 12.5 25 50 0 0 450 10 - 1000 No Batch 49 173 
10 10 20 40 0 20 450 10 - 1000 No Batch 40 173 
0 100 0 0 0 0 450 7.5 - 17 No Batch 79.8 174 

100 0 0 0 0 0 450 7.5 - 17 No Batch 79.8 174 
0 100 0 0 0 0 450 7.5 - 17 No Batch 79.1 174 
0 0 100 0 0 0 450 7.5 - 17 No Batch 85 174 
0 50 50 0 0 0 450 7.5 - 17 No Batch 79.4 174 

33.3 33.3 33.3 0 0 0 450 7.5 - 17 No Batch 82.4 174 
25 50 25 0 0 0 450 7.5 - 17 No Batch 79.7 174 

34.6 34.6 9.6 9.6 10.6 1.1 450 7.5 - 17 No Batch 75.4 174 
25 50 25 0 0 0 450 - - 17 No Batch 79.7 175 
0 100 0 0 0 0 450 - - 17 No Batch 79.1 175 

44.4 0 21.2 13.3 12.2 8.9 500 5 7.5 35 No Batch 48.7 176 
100 0 0 0 0 0 500 5 3.5 35 No Batch 93 176 

0 0 100 0 0 0 500 5 3.5 35 No Batch 95 176 
0 0 0 100 0 0 500 5 3.5 35 No Batch 71 176 
0 0 0 0 0 100 500 5 3.5 35 No Batch 15 176 
0 100 0 0 0 0 500 5 3 - No Fluidized Bed 89.2 177 
0 100 0 0 0 0 550 5 3 - No Fluidized Bed 78.6 177 
0 100 0 0 0 0 600 5 3 - No Fluidized Bed 75.8 177 
0 100 0 0 0 0 650 5 3 - No Fluidized Bed 59.9 177 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

0 100 0 0 0 0 700 5 3 - No Fluidized Bed 28.6 177 
100 0 0 0 0 0 640 10 - - No Fluidized Bed 68.5 178 
100 0 0 0 0 0 680 10 - - No Fluidized Bed 39.6 178 
100 0 0 0 0 0 730 10 - - No Fluidized Bed 18 178 
100 0 0 0 0 0 780 10 - - No Fluidized Bed 9.6 178 
100 0 0 0 0 0 850 10 - - No Fluidized Bed 16.2 178 
50 50 0 0 0 0 500 10 5 2 No Fixed Bed 83 179 
0 0 100 0 0 0 500 10 5 2 No Fixed Bed 81 179 
0 0 0 100 0 0 500 10 5 2 No Fixed Bed 97 179 
0 0 0 0 0 100 500 10 5 2 No Fixed Bed 38.5 179 

30 30 13 18 0 0 500 10 5 2 No Fixed Bed 80 179 
30 30 13 18 0 0 500 10 5 2 No Fixed Bed 88 179 

100 0 0 0 0 0 500 10 - 2 Yes Fixed Bed 57 179 
0 0 100 0 0 0 500 10 - 2 Yes Fixed Bed 51 179 
0 0 0 100 0 0 500 10 - 2 Yes Fixed Bed 93 179 
0 0 0 0 0 100 500 10 - 2 Yes Fixed Bed 43 179 

30 30 13 18 0 0 500 10 - 2 Yes Fixed Bed 51 179 
30 30 13 18 0 0 500 10 - 2 Yes Fixed Bed 57 179 

29.4 29.4 26.9 8.7 0 5.6 450 20 20 200 No Batch 78 180 
29.4 29.4 26.9 8.7 0 5.6 500 20 20 200 No Batch 80.5 180 
29.4 29.4 26.9 8.7 0 5.6 550 20 20 200 No Batch 82 180 
29.4 29.4 26.9 8.7 0 5.6 600 20 20 200 No Batch 84 180 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

100 0 0 0 0 0 645 - 0.225 - No Fluidized Bed 79.7 181 
100 0 0 0 0 0 640 - 0.225 - No Fluidized Bed 78.9 181 
100 0 0 0 0 0 650 - 0.225 - No Fluidized Bed 68.5 181 
100 0 0 0 0 0 650 - 0.225 - No Fluidized Bed 72.3 181 
100 0 0 0 0 0 685 - 0.225 - No Fluidized Bed 33.4 181 
100 0 0 0 0 0 685 - 0.225 - No Fluidized Bed 39.6 181 
100 0 0 0 0 0 700 - 0.225 - No Fluidized Bed 32.1 181 
100 0 0 0 0 0 685 - 0.225 - No Fluidized Bed 40.7 181 
100 0 0 0 0 0 730 - 0.225 - No Fluidized Bed 19.6 181 
100 0 0 0 0 0 725 - 0.225 - No Fluidized Bed 20.7 181 
100 0 0 0 0 0 715 - 0.225 - No Fluidized Bed 19.2 181 
100 0 0 0 0 0 730 - 0.225 - No Fluidized Bed 13.5 181 
100 0 0 0 0 0 780 - 0.225 - No Fluidized Bed 15.3 181 
100 0 0 0 0 0 780 - 0.225 - No Fluidized Bed 9.6 181 
100 0 0 0 0 0 780 - 0.225 - No Fluidized Bed 13.4 181 
100 0 0 0 0 0 800 - 0.225 - No Fluidized Bed 13.7 181 
100 0 0 0 0 0 850 - 0.225 - No Fluidized Bed 11.4 181 
100 0 0 0 0 0 850 - 0.225 - No Fluidized Bed 16.2 181 
100 0 0 0 0 0 850 - 0.225 - No Fluidized Bed 15.4 181 
100 0 0 0 0 0 850 - 0.225 - No Fluidized Bed 12.2 181 

0 0 0 100 0 0 450 5 3.5 10 No Fluidized Bed 97.6 182 
0 0 0 100 0 0 500 5 3.5 10 No Fluidized Bed 96.4 182 



84 

 

HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

0 0 0 100 0 0 550 5 3.5 10 No Fluidized Bed 95.3 182 
0 0 0 100 0 0 600 5 3.5 10 No Fluidized Bed 98.7 182 
0 0 0 100 0 0 650 5 3.5 10 No Fluidized Bed 90.7 182 
0 0 0 100 0 0 700 5 3.5 10 No Fluidized Bed 90.2 182 
0 100 0 0 0 0 425 10 2 10 No Batch 89.5 183 
0 100 0 0 0 0 450 10 2 10 No Batch 72.4 183 
0 100 0 0 0 0 500 10 2 10 No Batch 37.5 183 
0 0 0 100 0 0 350 10 2 10 No Batch 99 183 
0 0 0 100 0 0 450 10 2 10 No Batch 79.4 183 
0 0 0 100 0 0 500 10 2 10 No Batch 67.1 183 
0 70 0 30 0 0 400 10 2 10 No Batch 96 183 
0 70 0 30 0 0 425 10 2 10 No Batch 90.2 183 
0 70 0 30 0 0 450 10 2 10 No Batch 83.7 183 
0 0 100 0 0 0 380 3 - 10 No Batch 64.9 147 
0 0 100 0 0 0 380 3 - 10 No Batch 80.1 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 54.5 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 68.8 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 78.3 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 47 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 75.4 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 80.6 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 86.4 147 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

0 0 100 0 0 0 380 3 - 10 Yes Batch 85.4 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 83.3 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 83.7 147 
0 0 100 0 0 0 380 3 - 10 Yes Batch 83 147 

100 0 0 0 0 0 430 3 - 10 No Batch 69.3 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 67.8 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 74.3 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 49.8 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 71.1 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 81.4 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 80.1 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 81.9 147 
100 0 0 0 0 0 430 3 - 10 Yes Batch 75.2 147 

0 0 100 0 0 0 250 - 50 1000 No Batch 51.76 184 
0 0 100 0 0 0 300 - 50 1000 No Batch 68.98 184 
0 0 100 0 0 0 350 - 50 1000 No Batch 79.68 184 
0 0 100 0 0 0 400 - 50 1000 No Batch 80.14 184 
0 0 100 0 0 0 250 - 50 1000 No Batch 52.31 184 
0 0 100 0 0 0 300 - 50 1000 No Batch 69.32 184 
0 0 100 0 0 0 350 - 50 1000 No Batch 85.06 184 
0 0 100 0 0 0 400 - 50 1000 No Batch 88.86 184 

25 35 40 0 0 0 400 12 1.4 - No Fixed Bed 18.89 185 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

25 35 40 0 0 0 500 12 1.4 - No Fixed Bed 30.66 185 
25 35 40 0 0 0 450 12 1.4 - No Fixed Bed 26.68 185 
25 35 40 0 0 0 475 12 1.4 - No Fixed Bed 28.26 185 
25 35 40 0 0 0 500 12 1.4 - No Fixed Bed 32.8 185 
25 35 40 0 0 0 525 12 1.4 - No Fixed Bed 28.8 185 
25 35 40 0 0 0 500 12 1.4 - No Fixed Bed 28.8 185 
25 35 40 0 0 0 500 12 1.4 - No Fixed Bed 30.37 185 
40 0 35 18 4 3 460 20 3 100 No Semi Batch 72 186 
40 0 35 18 4 3 500 20 3 100 No Semi Batch 65.2 186 
40 0 35 18 4 3 600 20 3 100 No Semi Batch 42.9 186 
0 100 0 0 0 0 300 - 3.5 100 Yes Fixed Bed 53.5 187 
0 90 10 0 0 0 560 10 4 22.5 Yes Batch 29 188 
0 70 30 0 0 0 560 10 4 22.5 Yes Batch 68 188 
0 50 50 0 0 0 560 10 4 22.5 Yes Batch 70 188 
0 30 70 0 0 0 560 10 4 22.5 Yes Batch 78 188 
0 10 90 0 0 0 560 10 4 22.5 Yes Batch 80 188 

10 90 0 0 0 0 560 10 4 22.5 Yes Batch 55 188 
30 70 0 0 0 0 560 10 4 22.5 Yes Batch 75 188 
50 50 0 0 0 0 560 10 4 22.5 Yes Batch 78 188 
70 30 0 0 0 0 560 10 4 22.5 Yes Batch 75 188 
90 10 0 0 0 0 560 10 4 22.5 Yes Batch 61 188 
10 0 0 90 0 0 560 10 4 22.5 Yes Batch 81 188 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

30 0 0 70 0 0 560 10 4 22.5 Yes Batch 68 189 
50 0 0 50 0 0 560 10 4 22.5 Yes Batch 70 189 
70 0 0 30 0 0 560 10 4 22.5 Yes Batch 80 189 
90 0 0 10 0 0 560 10 4 22.5 Yes Batch 81 189 
0 0 100 0 0 0 500 20 2.5 20 No Batch 83 189 
0 0 100 0 0 0 500 20 2.5 20 Yes Batch 84 189 
0 0 100 0 0 0 500 20 2.5 20 Yes Batch 85 189 
0 0 100 0 0 0 500 20 2.5 20 Yes Batch 83 189 
0 0 100 0 0 0 500 20 2.5 20 Yes Batch 77 189 
0 100 0 0 0 0 500 20 2.5 20 No Batch 76 189 
0 100 0 0 0 0 500 20 2.5 20 Yes Batch 78 189 
0 100 0 0 0 0 500 20 2.5 20 Yes Batch 82 189 
0 100 0 0 0 0 500 20 2.5 20 Yes Batch 75 189 
0 100 0 0 0 0 500 20 2.5 20 Yes Batch 68 189 

100 0 0 0 0 0 500 20 2.5 20 No Batch 78 189 
100 0 0 0 0 0 500 20 2.5 20 Yes Batch 79 189 
100 0 0 0 0 0 500 20 2.5 20 Yes Batch 80 189 
100 0 0 0 0 0 500 20 2.5 20 Yes Batch 79 189 
100 0 0 0 0 0 500 20 2.5 20 Yes Batch 73 189 
33.3 33.3 33.3 0 0 0 500 20 2.5 20 No Batch 77 189 
33.3 33.3 33.3 0 0 0 500 20 2.5 20 Yes Batch 79 189 
33.3 33.3 33.3 0 0 0 500 20 2.5 20 Yes Batch 80 189 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

33.3 33.3 33.3 0 0 0 500 20 2.5 20 Yes Batch 78 189 
33.3 33.3 33.3 0 0 0 500 20 2.5 20 Yes Batch 76 189 

0 0 100 0 0 0 400 - 25 1000 No Batch 78 190 
0 0 100 0 0 0 450 - 25 1000 No Batch 79.6 190 
0 0 100 0 0 0 500 - 25 1000 No Batch 81 190 
0 0 100 0 0 0 400 - 25 1000 Yes Batch 78.4 190 
0 0 100 0 0 0 450 - 25 1000 Yes Batch 75.5 190 
0 0 100 0 0 0 500 - 25 1000 Yes Batch 53.2 190 
0 0 90 0 0 10 400 - 25 1000 Yes Batch 73 190 
0 0 75 0 0 25 450 - 25 1000 Yes Batch 54.7 190 
0 0 65 0 0 35 500 - 25 1000 Yes Batch 45 190 
0 0 0 100 0 0 450 5 20 1000 Yes Batch 70 191 
0 0 0 100 0 0 450 10 20 1000 Yes Batch 60 191 

50 50 0 0 0 0 450 10 20 1000 Yes Batch 40 191 
50 50 0 0 0 0 450 10 20 1000 Yes Batch 42 191 
0 0 100 0 0 0 450 10 20 1000 Yes Batch 40 191 
0 0 100 0 0 0 450 10 20 1000 Yes Batch 54 191 
0 50 0 50 0 0 450 10 20 1000 Yes Batch 44 191 
0 50 0 50 0 0 450 10 20 1000 Yes Batch 52 191 
0 0 50 50 0 0 450 10 20 1000 Yes Batch 54 191 
0 0 50 50 0 0 450 10 20 1000 Yes Batch 34 191 
0 50 50 0 0 0 450 10 20 1000 Yes Batch 44 191 
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HDPE 
(wt%) 

LDPE 
(wt%) 

PP 
(wt%) 

PS 
(wt%) 

PVC 
(wt%) 

PET 
(wt%) 

Temperature 
(°C) 

Heating Rate 
(°C/min) 

Particle Size 
(mm) 

Feed Size 
(g) 

Catalyst Reactor Type Oil Yield 
(wt%) 

Source 

0 50 50 0 0 0 450 10 20 1000 Yes Batch 40 191 
0 25 25 50 0 0 450 10 20 1000 Yes Batch 44 191 
0 25 25 50 0 0 450 10 20 1000 Yes Batch 40 191 
0 20 20 20 0 20 450 10 20 1000 Yes Batch 28 191 
0 20 20 20 0 20 450 10 20 1000 Yes Batch 30 191 
0 100 0 0 0 0 450 55 0.5 15 Yes Semi Batch 34.5 192 
0 100 0 0 0 0 500 55 0.5 15 Yes Semi Batch 56.53 192 
0 100 0 0 0 0 550 55 0.5 15 Yes Semi Batch 53 192 
0 100 0 0 0 0 600 55 0.5 15 Yes Semi Batch 48.97 192 
0 17 0 17 0 66 450 6 100 60 No Semi Batch 10 151 
0 17 0 66 0 17 450 6 100 60 No Semi Batch 36 151 
0 100 0 0 0 0 450 6 100 60 No Semi Batch 30 151 
0 100 0 0 0 0 450 6 100 60 No Semi Batch 32 151 
0 0 0 0 0 100 450 6 100 60 No Semi Batch 4 151 
0 50 0 0 0 50 450 6 100 60 No Semi Batch 8 151 
0 33 0 33 0 33 450 6 100 60 No Semi Batch 33 151 
0 50 0 50 0 0 450 6 100 60 No Semi Batch 52 151 
0 0 0 0 0 100 450 6 100 60 No Semi Batch 2 151 
0 0 0 100 0 0 450 6 100 60 No Semi Batch 49 151 
0 0 0 50 0 50 450 6 100 60 No Semi Batch 27 151 
0 67 0 17 0 17 450 6 100 60 No Semi Batch 34 151 
0 0 0 100 0 0 450 6 100 60 No Semi Batch 40 151 
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3.5.1.2 Initial Testing  

Preliminary tests eliminated all data that had a data gap in one or more features, resulting 

in a dataset consisting of 149 data points. Although the corresponding MAE of the stripped-down 

validation set was 8.0% for Random Forest and 8.5% for XGBoost (less than what was found for 

the final models recommended here), the standard deviations on the validation sets were 1.5% and 

±1.8%, much greater than the recommended models which indicates a strong dependence on the 

data used for training. Further, the test set MAE values were 9.9% for RF and 11.5% for XGBoost, 

and the corresponding differences between validation and test set MAE were 1.9 and 3, much 

greater than observed for the final models recommended here. Taken together, these observations 

indicate that the stripped-down data set led to a much stronger reliance on selection of training 

data and a much greater propensity for over fitting than observed in the models recommended here. 

Instead of data removal and to develop more robust models that were less prone to 

overfitting, the K nearest neighbor (KNN) method was used to populate gaps in the reported 

values of features. 

 Further testing that tried to conflate the different reactor types or reaction times yielded a 

Random Forest validation set MAE of 9.6% and a test set MAE of 8.8%. The fact that the test set 

MAE is lower than the validation set indicates in this case that the model has been over specified 

and the accuracy of the predictions cannot be trusted.  

3.5.1.3 Model Parameters 

Each of the seven models studied in this work were optimized such that their hyper 

parameters gave rise to the minimum MAE for that model. The optimal hyper parameters can be 

seen below for each of the seven models in Table B.3-3. 
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Table B.3-3 Optimal Model Hyper Parameters for Seven Models Studied 

Model Hyper Parameters 

Linear Regression Random State  

50 

Lasso Regression Random State Alpha Max iterations  

10 0.0001 5000 

Ridge Regression Random State Alpha Max iterations  

50 0.001 5000 

Decision Tree Random State Max Features Max Depth  

55 11 16 

XGBoost Random State Number of 

Estimators 

Learning Rate  

50 640 0.05 

Random Forest Random State Number of 

Estimators 

Max Features Max Depth 

100 108 5 16 

Artificial Neural 

Network 

Random State Max Iterations Hidden Layer 

Sizes 

Batch Size 

25 3000 (640,) 190 

 

3.5.1.4 Additional Model Results and Figures 

 Figure B.3-7 shows the parity plot for the reported experimental oil yield vs the oil yields 

predicted by the optimal XGBoost model, along with the 1:1 line and the ±10% region.  
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Figure B.3-7 Parity plot for the reported experimental oil yield vs the oil yield predicted by the 

optimal XGBoost model for the test set.  

 For the data points in the test set that lay outside of the ± 10% region Table B.3-4 

Analysis of conditions for outliers from Figure B.3-7 evaluates the reaction conditions in order 

to determine if there was any systematic error. As can be seen from this table there is no trend 

that can be identified and no indication of any systematic error. 
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Table B.3-4 Analysis of conditions for outliers from Figure B.3-7 

Difference 

in 

Prediction 

Plastic Type Temperature Reactor 

Type 

Catalyst # of KNN 

Predicted 

Features 

16.6 PS 700 Fluidized 

Bed 

No 0 

28.7 HDPE 350 Batch No 2 

25.4 LDPE 500 Fixed Bed Yes 1 

-10.5 PS 450 Batch No 0 

42.4 LDPE 550 Fluidized 

Bed 

No 2 

-10.9 2:1 LDPE:PP 460 Batch No 2 

13.5 LDPE 300 Fixed Bed Yes 1 

-15.3 LDPE 460 Batch Yes 1 

30.1 43:43:9.7 

HDPE:LDPE:PP 

450 Horizontal 

Tube 

No 0 

-20.6 PP 450 Batch Yes 0 

 

Figure B.3-8 shows the feature importance of each of the model features from the optimal 

XGBoost model. The plastic types each have their own feature importance but were grouped in 

Figure B.3-8 due to their relatively small values and for simplicity.  



94 

 

 

Figure B.3-8 Feature Importance for each feature included in the final optimal XGBoost Model. 

Plastic types are lumped into one category for simplicity  

 

 Figure B.3-9 shows the oil yields predicted for pyrolysis of pure plastics at 500 °C. The 

other features were chosen as representative values and are found in Table B.3-6. 
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Figure B.3-9 Predict oil yield (mass percent) for the pyrolysis of pure plastics at 500 °C 

 

Figure B.3-10 shows the effect of PET on a mixture of PP and LDPE.  
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Figure B.3-10 Predicted oil yields for mixtures of LDPE, PP and PET pyrolyzed in a horizontal 

tube reactor at 500 ˚C, with a heating rate of 10 ˚C/min, a particle size of 13mm, plastics loading 

of 200g without catalyst. 

Table B.3-5 and Table B.3-6 provide the feed composition (Table B.3-5) and reaction 

parameters (Table B.3-6) used for the prediction of oil yields from the pyrolysis of real waste 

plastic found in the Rhine River in Europe.  

Table B.3-5 Composition of Plastic Found in the Rhine River 137, 138 

Plastic Type Weight Percent in Mixture (%) 

HDPE 27 

LDPE 0 

PP 37 

PS 26 

PVC 2 

PET 0 
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Table B.3-6 Estimated Reaction Parameters Used for Rhine River Oil Yields 

Feature Value 

Particle Size 13 mm 

Heating Rate 10 °C/min 

Feed Size 200 g 

Catalyst None 

Reactor Type Horizontal Tube 

 

3.5.1.5 Thermodynamic Model Modifications 

 The Monte Carlo (MC) model previously developed by the group 58 utilized oil yields and 

specific oil composition from data published in the literature. In this work the specific composition 

of the oil products is not known as new feeds are studied. In order to handle this, the exergy of 

combustion of the oil is calculated using an estimated HHV of the oil instead of the specific heats 

of combustion of the products. An average HHV of 41 MJ/kg was used and varied by ± 10% to 

capture how the feed composition could affect the HHV of the oil 193. Other necessary 

modifications to the model included removing one of the water filter steps and removal of the RO 

as these were not necessary in fresh water. Finally, as the system would be stationary and not 

operating on a ship the exergy required for the boat engine was removed from the model. The full 

list of stochastic variables used in the MC simulation can be found in Table B.3-7 and the constant 

variables used in the model can be found in Table B.3-8.  

Table B.3-7 Uniform distribution of stochastic variables used in the MC model 

Variable Minimum Value Maximum Value 

Oil Yield (%) at 400 °C 47.6 65.8 

Oil Yield (%) at 450 °C 43.9 62.1 

Oil Yield (%) at 500 °C 46.1 64.3 

Oil Yield (%) at 550 °C 36.5 54.7 

Oil Yield (%) at 600 °C 35.6 53.8 
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Oil Yield (%) at 650 °C 35 53.2 

HHV (MJ/kg) 36.9 45.1 

Heat Exchanger efficiency  0.5 0.8 

Dryer Efficiency  0.4 0.6 

Ambient Water Temperature 

(K) 

291 296 

Heat of Combustion Variance 0.98 1.02 

 

Table B.3-8 Constant Variables Energy Draw in the MC Model 

Variable Value 

Pump (kW) 0.7457 

Shredder (kW) 2.2 

Conveyor Belt (kW) 0.372 

Exergy Difference b/w polymer and fuel (kW) 1.36 
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Chapter 4: Predictive machine learning for thermal 

depolymerization of plastics and application to 

economic analysis of municipal recycling facilities 
 

4.1 Introduction 

Municipal solid waste (MSW) generation in the US is continually rising, with an estimated 

292.4 million tons generated in 20184. Waste plastic accounted for 12.2% of all MSW resulting in 

approximately 35.7 million tons of plastic waste. MSW is separated based on the fate of the 

materials, with recyclables (24% of MSW) being directed to Materials Recovery Facilities 

(MRFs). There are approximately 420 MRFs across the US that accept co-mingled wastes 

containing paper/paperboard, wood, metals, glass, rubbers/textiles and plastics5. The scale and 

composition of wastes varies from MRF to MRF but on average the MSW being sent to MRFs is 

composed of 5% plastics4. This means that only 9% of plastic waste generated annually ends up 

at a recycling facility.  

Of the approximately 3.1 million tons of plastic at MRFs, only a portion will recycled due to 

factors such as contamination and poor recycling mechanisms for specific polymer types194. 

Developing technologies that can handle plastics that are currently landfilled will not only increase 

the amount of plastic recycled, by reducing confusion caused by which plastics can be recycled 

but also divert massive amounts of wastes from landfills that are rapidly filling. A promising family 

of technologies are thermal depolymerization technologies that can convert mixed plastic waste 

feedstocks into fuels. These technologies such as pyrolysis and hydrothermal liquefaction (HTL) 

use high temperatures to break the bonds in the polymer backbones and convert them into smaller 

molecules that can be used as fuels and chemicals44, 195.  
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These thermal technologies have been proven to be effective depolymerization methods in the 

literature with oil yield typically being the primary metric of performance. If economically 

feasible, deploying thermal depolymerization systems across the US, either at MRFs or in their 

own facilities, would allow for the diversion of plastic from landfills and into usable products. 

These technologies however have been seen to be sensitive to both feedstock composition and 

reaction conditions, with relatively minor changes causing large impacts on oil yield which could 

in turn have significant impact on the process economics 196-198. With 420 MRFs spread across 50 

states experimentally determining the expected oil yield based on each specific plastic waste 

composition is not realistic. Instead, utilizing the extensive data already existing in the literature 

for both pyrolysis and HTL reactions allows for the development of machine learned models 

capable of predicting oil yields for any given feedstock and reaction conditions.  Models such as 

these are valuable as they can aid in decision-making and optimization of resources.  

Chapter 3 aimed to develop a machine learning model capable of accurately predicting oil 

yields from pyrolysis reactions for the “Big-Six” plastics. This model, although as accurate as 

could be expected, did have some limitations in its applicability, that this work aims to address, 

expanding the use of the model. Primarily the restriction of reaction type to pyrolysis means that 

it could not be used to understand the potential of HTL reactions. HTL is also a viable technology 

but is not as well studied as pyrolysis and enough data does not exist in the literature to make a 

model for HTL reactions alone. Creating a model capable of predicting both reactions allows for 

the learning from pyrolysis to be applied to HTL and predictions made for both. The other 

limitation of the previously developed model was its restriction to “Big Six” polymers. These 

plastics are the most commonly found in US MSW, but an increasing number of other plastics are 
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being developed and found in waste. Allowing for a wider range of feedstock compositions further 

increases the applicability of any model developed.  

Along with oil yields, another key factor in understanding the economic potential of using 

thermal depolymerization technologies in the US is the scale of the process. The amount of plastic 

varies from state to state and at a more granular level, from MRF to MRF. While exhaustive data 

for the size and composition of MRFs across the US does not exist, recently published work 

analyzed the average composition and quantity of plastic in all 50 states199. Further, the quantity 

and composition of plastic collected at the 9 MRFs accepting plastic waste within the state of 

Massachusetts has also been reported200. While the composition does not vary greatly from state 

to state the quantity of plastic does which will impact the economics of deploying thermal 

depolymerization technologies. Techno-economic analysis (TEAs) of converting waste plastic into 

liquid products have been previously completed 29, 201, 202. These studies have included processes 

to separate specific liquid products such as naphtha29 or have looked at estimated plastic 

compositions at large scales201. They often rely on experimental data for the yield and composition 

of the product oil composition202. Other studies have analyzed the economics of converting waste 

plastic into high value products such as lubricants203 or fuel gases such as hydrogen204 or 

methanol205 and ammonia206  

This work aims to utilize machine learning models to predict the oil yields for the specific 

waste plastic compositions in all 50 states and 9 Massachusetts MRFs. These predicted yields will 

then be integrated with a techno-economic analysis to determine the minimum selling price of the 

product oil necessary to make the process economical. Through this work the use of integrated 

machine learning with traditional modeling techniques like TEAs will be demonstrated and their 

use as decision aiding tools highlighted.  
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4.2 Methods 

 

 Data Collection and Preparation 

This work expands upon work the work previously published104 and outlined in Chapter 3. 

The dataset used in the machine learning model is composed of the data set previously published 

for pyrolysis reactions of Big Six polymer as well as new data points for HTL and pyrolysis 

reaction of any plastic with an oxygen, nitrogen, or chlorine as the heteroatom. To allow for a 

wider range of polymer to be included outside of the Big Six, the classification of the polymer in 

the expanded data set is the elemental composition of the polymer (in % C, H, O, Cl and N) along 

with the molecular weight of the monomer. For polymer mixtures the elemental composition and 

molecular weight of the monomer were both calculated as the weighted average of the components. 

The inclusion of the molecular weight of the monomer allows for the differentiation of plastics 

that have the same elemental composition but are known to react differently (i.e. polyethylene and 

polypropylene).  

Along with the composition of the polymer, the other features included in the model are 

reaction temperature (in degrees C), particle size (in mm), reaction time (in minutes), residence 

time (in seconds), presence of a catalysts(1 indicates yes, 0 indicates no), HTL or pyrolysis (1 

indicates HTL, 0 indicates pyrolysis), and reactor type (1 indicates yes, 0 indicates no). Presence 

of a catalyst, HTL or pyrolysis and reactor type are all categorical variables and are therefore one-

hot-encoded as indicated above. The reactor types included in the model are batch, fixed bed, 

fluidized bed, continuous horizontal tube, swept batch and semi batch reactors. Due to 

discrepancies on the naming of reactor type in the literature a series of rules were used to categorize 

the reactor type in the model. Regardless of how they are classified in the literature, any reactor 

that has a sweep gas removing products during reaction was classified as a swept batch reactor. 
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Semi-batch reactors were any reactors that did not use a sweep gas but had continuous removal of 

products during reaction. Literature classifications were kept for any reactors that fell outside these 

specific categories. 

In order to allow for the inclusion of both reaction time and residence time when only one 

would be applicable depending on the reactor type a modified one-hot encoding was used. 

Whichever time definition did not apply (i.e. residence time for a batch reaction) was given a value 

of zero and the other definition would be the value reported in the literature. For swept batch 

reactions, reactor size and sweep gas flowrate was used to calculate the residence time, as most 

often total reaction time is reported and not the residence time within the reactor. Any data point 

that provides neither reaction time nor residence time (or the information necessary to calculate 

residence time) was excluded from the final dataset for lacking critical reaction details.  

Data handling, splitting and evaluation was handled in the same manner explained in detail 

in Chapter 3.2. Random Forest (RF) was chosen as the machine learning model used in this work, 

due to its performance shown in Chapter 3, its relative simplicity of interpretation, its ability to 

handle small data and its ability to handle data that has not been normalized. Models were 

developed in Python 3.6141 and scikit-learn 1.1.0 packages142 

 Techno-economic Analysis 

 Oil yields for each feedstock were predicted using the optimized RF model. Model features 

outside of feedstock composition were modeled based on average values found in the literature. 

These values can be seen in Table 4-1. The feedstock compositions can be found in the Appendix 

C Table C.4-3 and Table C.4-4. For the composition of waste plastic in the state of Massachusetts, 

waste reported as commingled plastic was assumed to have the same composition as the state 

average reported by Milbrandt, et.al.199. Due to the well-established recycling pathways for PET 

and the known challenges of reacting PVC (chlorine by-products) it was assumed these plastics 
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were separated from the mixtures prior to reaction. This would be a relatively simple separation 

step to achieve as PET and PVC both have densities greater than water and could be removed with 

flotation separation. The composition of the plastic mixtures was readjusted to 100% after the 

removal of PET and PVC and the elemental composition and molecular weight of the monomer 

calculated.  

Table 4-1 Reaction Conditions used in machine learning model predictions 

Feature Value 

Temperature  500 °C 

Particle Size 7.5 mm 

Reaction Time 0 min 

Residence Time 300 seconds 

Catalysts None 

HTL Pyrolysis  

Reactor Type Continuous Horizontal Tube 

 

 A simplified pyrolysis reactor system was developed in Aspen V.14 as seen in Figure 4-1. 

This process does not include pre-processing steps such as baling or flaking the polymers. Further 

information including process details can be found in Appendix C. For each scenario (i.e. state or 

specific MRF) the predicted oil yield from the machine learning model was fed into the Aspen 

model accounting for composition of the feedstock, composition of the pyrolysis oil (py-oil) and 

feed flowrate. It was assumed that the yield of gaseous product was 5% and the remainder was 

unreacted solid/char and pyrolysis oil. The total equipment cost, and annual utility cost were taken 

from Aspen economic predictions.  



105 

 

 

 

Figure 4-1 Process diagram for pyrolysis system including drying the feedstock, the pyrolysis 

reactor and separation of the residual solids, pyrolysis oil and waste gas. 

 The predictions for equipment cost and utility costs from Aspen were used in the techno-

economic analysis. The parameters used to calculate the Total Capital Investment and assumptions 

used in calculating Net Present Value (NPV) can be found in Appendix C Table C.4-6 and Table 

C.4-7. Annual operating costs comprised of the utilities predicted by Aspen, transportation costs 

and the cost of disposing of the residual solid/char after the reaction. The disposal cost was taken 

as the average tipping fee for the state based on what region of the country they are in 207. The cost 

of transporting the waste plastic from the MRF to the pyrolysis reactor system was taken as $50/ton 

208. The minimum py-oil selling price was calculated for a NPV of zero over a 30-year plant life.  
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4.3 Results 

 Machine Learning Model 

 Previously published work analyzed a dataset that encompassed data for pyrolysis reactions 

of the Big Six plastics (high and low-density polyethylene, polypropylene, polystyrene, 

polyethylene terephthalate, and polyvinyl chloride)104. In this work the dataset is expanded to 

encompass both pyrolysis and HTL reactions and any polymer with a nitrogen, oxygen or chlorine 

atom as the heteroatom. The new dataset allows for the expansion of reactions and reaction 

conditions that can be predicted using a machine learned model and therefore the size of the 

dataset.  The dataset used in this work had 442 datapoints and 18 features. The features included 

in the model were the elemental composition of the feedstock and the molecular weight of the 

monomer, reaction temperature, particle size, reaction time, residence time, catalysts, HTL and 

reactor type (batch, fixed bed, fluidized bed, continuous horizontal tube, swept batch and semi 

batch). 

 The expanded dataset was used to optimize a Random Forest model; the optimized 

hyperparameters can be seen in Appendix C Table C.4-8. The mean absolute error (MAE) of the 

test set for the optimal model was ±10.78%. The performance of the model on the test set can be 

visualized in Figure 4-2. A majority of the test set data falls within the ±10% region around the 

1:1 line, however approximately 40% of the data falls outside of this region. The 1:1 line represents 

where the model prediction is equal to the reported experimental yield. Figure 4-2 provides a 

visual representation of the MAE, showing that although much of the test set falls within the ±10% 

region, the data falling outside of this region, and some by a large margin, skew the MAE to a 

value greater than ±10%. It should also be noted that no trend exists between the data points falling 

outside these regions, indicating the model is not systematically inaccurate for specific conditions. 
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Figure 4-2 Parity plot of the predicted oil yield (wt%) vs the experimentally reported oil yield 

for the data test set. The data points for HTL vs pyrolysis reactions are identified, along with the 

±10% region around the 1:1 line where the predicted oil yield is equal to the experimental oil 

yield. 

 The distribution of data type within the dataset can also be visualized through the test set 

seen in Figure 4-2. The dataset is comprised of approximately two thirds pyrolysis reactions and 

one third HTL reactions (as seen also in the Appendix C Figure C.4-6). This split in data 

represents the current state of the literature and research in the field. As the field advances and 

more data becomes available the dataset will be become more balanced between reaction types 

which should aid in reducing overall model error and increase the prediction accuracy of HTL 

reactions in particular. The current form of the data still shows the ability to predict both pyrolysis 
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and HTL reactions with accuracy. However, a higher percentage of pyrolysis reactions predictions 

lying inside of the ±10% region (30% vs 41% for HTL), and the data within this region is clustering 

more tightly around the 1:1 line indicates the model predicts these reactions with slightly more 

accuracy than the HTL reactions.  

 In comparison with the previously published work the MAE seen here is higher than the 

MAE for the dataset including pyrolysis reactions only (MAE of ±9.1%104). Although the dataset 

size increased by a factor of 1.4, by including HTL reactions, the variability and diversity between 

data points has increased. This indicates that there is a tradeoff between model accuracy and model 

applicability. Depending on the use of the model a more accurate but less applicable model may 

be better and likewise in other situations a more widely applicable model may be best. As a 

decision aiding tool for analyzing new feedstocks, being able to use a single model to explore a 

wide range of reaction conditions has significant value, especially when the loss of accuracy is less 

than 2%.  

 Technoeconomic Analysis 

 A key factor in the success of a new technology is if it is economically viable at scale. A 

technoeconomic analysis is a way to study the economic feasibility but the oil yield of the 

feedstock of interest must be known in order to complete the analysis. By integrating the machine 

learning model into the TEA, the oil yield of any feedstock can be predicted and used to understand 

the economics of that feedstock. To this end in this work the machine learning model was used to 

predict the oil yield based on the average composition of waste plastic in all 50 states199 and a TEA 

was used to understand the minimum selling price (MSP)of the product in $/ton necessarily to 

make the process profitable.  

As waste plastic is typically a dry feedstock (less than 1% moisture)209 and the economics 

of its equipment is better understood210-212, pyrolysis was chosen as the technology to be modeled, 
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although the same process could be applied for HTL reactions. In each state it was assumed that 

all of the waste plastic in the state can be collected and converted into pyrolysis oil in a single 

localized pyrolysis plant. The one exception to this assumption is for the state of Texas, which due 

to the quantity of plastic two plants of equal size were necessary.  

 Although every state has slight variations in the average composition of waste plastic the 

RF model predicted the oil yield of all 50 states as 64% ± 1.4%. This shows that the difference in 

plastic waste composition state to state is not large enough to make a major impact on the predicted 

oil yield. Instead, the primary feature that could impact the economics of deploying pyrolysis 

systems in various states will be the scale of such a system, as the quantity of plastic state to state 

varies drastically199. Figure 4-3 shows the results of the TEA for all 50 states except for 

Connecticut, as CT primarily collects PET for recycling and the remaining plastic quantity was 

too low to be economically viable ($1,300/ton).  

 

Figure 4-3 Predicted minimum selling price in $/ton of pyrolysis oil for each state if all waste 

plastic in the state is converted to oil in a single pyrolysis plant. Connecticut is not included due 

to the very low amount of non-PET plastic collected in the state.  
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 Figure 4-3 indicates a regional dependence on the MSP, with states in the Northeast and 

Northern Plains regions having a higher MSP. States in the Southeast have a lower MSP on 

average. The regional grouping of MSP is due in part to scale (small states in the Northeast and 

lower populations in the Northern Plains) and also in part due to the higher cost of disposing of 

residual solids in those regions. The Northeast in particular has the highest average landfill tipping 

fee of any region in the US at $75.92/ton207. Figure 4-3 shows that conversion of waste plastic 

into pyrolysis oil is economically promising in every state, considering the price of crude oil in the 

US is approximately $550/ton213. Interestingly the range in minimum selling prices does not 

correlate to the range in the quantity of waste plastics across the US. That is to say the range in the 

amount of plastic state to state is much more significant than the range in MSP. This difference 

cannot not be explained purely by the regional difference in tipping fees, as states such as Texas 

and Oklahoma have the same tipping fee, but Texas has 6 times as much waste plastic and the 

difference in MSP is less than $10/ton. The assumption that all of the waste plastic in the state will 

be collected into one centralized location makes the scale of the process large enough that the 

economy of scale plays a major role, and the individual scale of the state no longer has a significant 

impact on MSP. This effect can be seen in Figure 4-4. 



111 

 

 

Figure 4-4 Minimum selling price in $/ton based on the scale of the pyrolysis plant in tons per 

day. The composition and predicted yield for the state of Massachusetts was used to demonstrate 

the economies of scale seen across all states. The scale and predicted MSP of select states are 

shown to follow the same trend as seen for the state of Massachusetts.  

 Figure 4-4 shows that there is a strong dependence on scale when the flowrate is less than 

100 tons per day (TPD). Figure 4-4 also shows that all flowrates greater than 350 TPD will have 

the same MSP regardless of the flowrate through the system. With the assumption of a single 

centralized pyrolysis plant, every state would have a flowrate greater than 100 TPD based on the 

quantity of waste plastic in the state, with the exception of CT. This means that the scale of the 

required pyrolysis plant state to state will have little to no impact on the MSP as can be seen in 

Figure 4-3. The slight regional dependence on scale can be been seen through the select states 



112 

 

scale and MSP highlighted in Figure 4-4, showing states in the Northeast and Northern Plains 

region fall below 350 TPD and have slight scale dependence. 

While scale was shown to have little to no impact of the MSP, factors such as transportation 

and feedstock costs could have a major impact. A sensitivity analysis was completed in order to 

understand the effect of 8 major factors contributing to the MSP. This analysis can be seen in 

Figure 4-5 for the case study of the state of Massachusetts. The values for each of these parameters 

can be seen in Appendix C Table C.4-9. The average MSP for the state of Massachusetts is 

predicted to be $190/ton. This average value assumes zero feedstock cost, and the analysis in 

Figure 4-5 shows that the prediction of MSP is most sensitive to feedstock cost. If a negative 

feedstock cost is available (if for example landfill tipping fees are being offset at a MRF), the 

process can become even more cost effective. On the other hand, if a feedstock cost is charged the 

product will become more expensive. The MSP is also sensitive to how much it costs to transport 

the waste plastic to a recycling facility, indicating thought should be put into the location of 

conversion systems to limit the necessity of transportation. A key parameter not included in the 

analysis shown in Figure 4-5 is yield, which is a factor that MSP can be very sensitive to. To 

understand the sensitivity of MSP on oil yield the MSP was plotted vs theoretical oil yields from 

10-80% as seen in Figure C.4-7. This analysis indicated that the MSP decreases with increasing 

oil yields, suggesting optimizing of reactor conditions for optimal oil yields is beneficial when 

considering economic viability.  
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Figure 4-5 Sensitivity analysis of 8 key parameters effecting the predicted minimum selling 

price of products produced from pyrolysis of waste plastic for the case study of the state of 

Massachusetts. The average MSP is $190/ton and the sensitivity is expressed as ± dollar values 

off of the average MSP.  

The assumption that all plastic is collected in a centralized location makes the pyrolysis 

plant scale large enough to make the process very economically promising but this assumption, 

especially in large states, may be unreasonable. If a centralized pyrolysis plant is not feasible, 

another logical location for waste plastic pyrolysis units is co-located with the MRFs that collect 

and sort the recycling wastes. Reliable data for the quantity and more importantly the composition 

of waste plastics at MRFs is not widely reported across the US. Data of this kind is reported for 

the state of Massachusetts and therefore Massachusetts was used as a case study in this work to 

understand the economics of co-locating the pyrolysis conversion system at the MRF.  

There are 9 MRFs across Massachusetts that accept plastic wastes and of these 9, only 5 

collect more than 1,000 tons per year once PET and PVC have been removed. 1,000 TPY was used 
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as the minimum threshold for co-locating a pyrolysis system in this work. The MSP for each of 

the remaining 5 MRFs along with their scale can be seen in Table 4-2. Table 4-2 also shows the 

predicted MSP for the state of Massachusetts from Figure 4-3 and the predicted MSP if the 

reported quantity and composition of plastic from all 9 MRFs was summed. There is a large 

difference in the quantity of plastic for the state from these two sources, indicating not only the 

challenges in differences in how data is reported, but also a potential large amount of plastic that 

is going directly to landfill in the trash and never reaching a MRF.  

Table 4-2 Scale and minimum selling price for a pyrolysis system co-located with Municipal 

Recycling Facilities across the state of Massachusetts 

Location Name Scale (ton/yr) Minimum Selling Price ($/ton) 

Casella Auburn MRF 1,693 $2,810 

Casella Charlestown 1,387 $3,300 

El Harvey 1,091 $4,120 

WM Avon MRF 1,323 $3,470 

WM Billerica MRF 1,235 $3,690 

Mass MRF Total1 8,580 $600 

Mass Total2 117,500 $190 

  1Summation of the reported quantity of waste plastic collected at all 9 MRFs across the state. 
   2As used in Figure 4-3Figure 4-4 199, 200 

 

 It can be seen that in a smaller state like Massachusetts co-locating pyrolysis units with 

MRFs reduces the scale of each plant and greatly increases the required minimum selling price of 

the pyrolysis oil. With MSPs of greater than $3,000/ton in most locations using a pyrolysis 

conversion system at a MRF would not be economically viable and would argue for using a 

centralized pyrolysis plant. Table 4-2 also shows that the more plastic that can be captured before 
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it ends up landfilled the better the economics of the py-oil becomes, but even under business as 

usual a centralized pyrolysis unit that takes waste plastics from MRFs would be highly feasible 

and a valid alternative to landfilling that plastic which cannot be otherwise recycled.  

4.4 Conclusions 

Through this work the integration of machine learning models with technoeconomic analysis 

methods has been demonstrated. Utilizing the extensive data existing in the literature allows for 

the development of accurate models capable of predicting oil yields for both pyrolysis and 

hydrothermal liquefaction reactions for any feedstock. These models can be used to predict the oil 

yield of new feedstocks of interests and these yields can be used to understand the economic 

viability of the feedstock. In this work it has been shown that converting waste plastic at centralized 

pyrolysis plants is economically feasible in all 50 states, except CT. Smaller plants are also viable 

with flowrates greater than 100 TPD and these models can be used to understand the viability for 

any desired scale and feedstock composition. The integration of machine learning allows for an 

understanding of economics before significant resources have been invested into experimental 

exploration of a potentially non-viable feedstock. 

4.5 Appendix C 

 

Table C.4-3 Feedstock Compositions and Quantity by State199 

State C (wt%) H (wt%) O (wt%) Cl (wt%) N (wt%) MW (g/mol) 

AK 86.14067 13.85933 0 0 0 37.77631 

AL 86.34336 13.65664 0 0 0 39.14479 

AR 86.14067 13.85933 0 0 0 37.77631 

AZ 86.18932 13.81068 0 0 0 38.53002 

CA 86.34529 13.65471 0 0 0 40.1815 

CO 86.24671 13.75329 0 0 0 39.29557 

CT 86.0382 13.9618 0 0 0 36.38491 

DE 86.01806 13.98194 0 0 0 35.87506 

FL 86.27706 13.72294 0 0 0 38.67796 
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GA 86.34552 13.65448 0 0 0 39.19558 

HI 86.28353 13.71647 0 0 0 39.30113 

IA 85.97548 14.02452 0 0 0 35.80615 

ID 85.89517 14.10483 0 0 0 35.0168 

IL 86.13153 13.86847 0 0 0 37.19476 

IN 86.07457 13.92543 0 0 0 37.02895 

KS 86.31109 13.68891 0 0 0 39.12453 

KY 86.07167 13.92833 0 0 0 37.29557 

LA 86.14067 13.85933 0 0 0 37.77631 

MA 85.92159 14.07841 0 0 0 35.08492 

MD 86.11668 13.88332 0 0 0 37.65784 

ME 86.02928 13.97072 0 0 0 36.46361 

MI 86.05922 13.94078 0 0 0 39.52348 

MN 85.96159 14.03841 0 0 0 36.26306 

MO 85.99021 14.00979 0 0 0 36.00349 

MS 86.14067 13.85933 0 0 0 37.77631 

MT 86.14067 13.85933 0 0 0 37.77631 

NC 86.09496 13.90505 0 0 0 36.76766 

ND 86.14067 13.85933 0 0 0 37.77631 

NE 86.04655 13.95345 0 0 0 36.93052 

NH 86.14067 13.85933 0 0 0 37.77631 

NJ 86.27925 13.72075 0 0 0 38.88049 

NM 86.14067 13.85933 0 0 0 37.77631 

NV 86.2097 13.7903 0 0 0 37.87723 

NY 86.00076 13.99924 0 0 0 36.22479 

OH 86.12039 13.87961 0 0 0 37.86167 

OK 86.14067 13.85933 0 0 0 37.77631 

OR 85.95913 14.04087 0 0 0 36.11182 

PA 86.20481 13.79519 0 0 0 37.927 

RI 86.18693 13.81307 0 0 0 38.52952 

SC 86.14067 13.85933 0 0 0 37.77631 

SD 86.14067 13.85933 0 0 0 37.77631 

TN 86.29608 13.70392 0 0 0 39.75856 

TX 86.6502 13.3498 0 0 0 43.68308 

UT 86.14067 13.85933 0 0 0 37.77631 

VA 86.24945 13.75055 0 0 0 37.96748 

VT 86.20992 13.79008 0 0 0 38.07041 

WA 85.94659 14.05341 0 0 0 35.57341 

WI 85.98095 14.01905 0 0 0 36.22733 

WV 86.14067 13.85933 0 0 0 37.77631 

WY 86.35128 13.64872 0 0 0 40.35329 
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Table C.4-4 Feedstock composition and quantity by Massachusetts MRF200 

MRF C (wt%) H (wt%) O (wt%) Cl (wt%) N (wt%) MW (g/mol) 

Casella 
Auburn MRF 

85.6017 14.3983 0 0 0 29.96115 

Casella 

Charlestown 

85.6 14.4 0 0 0 31.30472 

El Harvey 85.65767 14.34233 0 0 0 32.56617 

Brockton 

Recyclery 

85.6 14.4 0 0 0 37.0052 

Repub 

Peabody 

85.6 14.4 0 0 0 28.05 

WM Avon 

MRF 

85.6 14.4 0 0 0 33.14279 

WM 

Billerica 

MRF 

85.6 14.4 0 0 0 31.82512 

WM RRT 

MRF 

85.6 14.4 0 0 0 32.15935 

ZWS 
Rochester 

85.62655 14.37345 0 0 0 29.79255 

Mass MRF 
Total 

85.61 14.39 0 0 0 31.39 

 

 Aspen Model 

The py-oil composition was assumed to be comprised of the model compounds of 

hexadecane and styrene to represent polyethylene/polypropylene components and polystyrene 

components respectively. The weight percent of each model compound was modeled such that it 

was equal to the weight percent of the combined PE/PP for hexadecane and PS for styrene.   

The equipment cost predicted by Aspen for the state of the Massachusetts is shown below 

in Table C.4-5. The equipment cost increases with increasing process scale.  

Table C.4-5 Sample Process Equipment Costs for the State of Massachusetts (16,319.41 kg/hr 

flowrate) 

Equipment Cost ($) 

Flash Vessel 31,700 

Chiller 28,700 

Flash Vessel 2 27,200 

Pyrolysis Reactor 702,500 
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Dryer 872,900 

Heat Exchanger 23,800 

 

 Techno-economic Analysis  

Parameters and factors used to calculate TCI and NPV in the technoeconomic analysis are 

detailed below in Table C.4-6 and Table C.4-7 

Table C.4-6 Estimation of the Total Capital Investment (TCI)75  

Total Direct Costs (TDC) 

1. Total Installed Cost (TIC) (2.2x equipment cost214) 

2. Buildings (1.0% TIC) 

3. Site Development (9.0% TIC) 

4. Additional Piping (4.5% TIC) 

Indirect Costs 

1. Prorated expenses (10% of TDC) 

2. Home Office & construction fees (20% of TDC) 

3. Field Expense (10% of TDC) 

4. Project Contingency (10% of TDC) 

5. Startup and permits (5% of TDC) 

Fixed Capital Investment (FCI) 

1. Total Direct Costs 

2. Indirect Costs 

Total Capital Investment (TCI) 

1. Fixed Capital Investment 

2. Working Capital (5% of FCI) 

 

Table C.4-7 Assumptions made for the calculation of Net Present Value75 

Parameter Value 

Equity  40% 

Loan Interest 8.0% 

Loan Term, years 10 

Plant Depreciation Period, years 7 

Construction Period, years 3 

% Spent in Year -3 8% 

% Spent in Year -2 60% 

% Spent in Year -1 32% 

Start-up Time, years 0.5 

Revenues (% of Normal) 50% 

Variable Costs (% of Normal) 75% 

Fixed Cost (% of Normal) 100% 

Internal Rate of Return 10% 
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Income Tax Rate 35% 

Operating Hours Per Year  7,200 

 

 Machine Learning Model and Dataset 

The hyperparameters from the optimized Random Forest model used throughout this work are 

outline in Table C.4-8 and the breakdown of the dataset in terms of HTL vs pyrolysis and mixed 

plastic vs single stream plastic studies can be seen in Figure C.4-6.  

Table C.4-8 Optimal random forest model hyperparameters 

Hyperparameter  Value 

Random State 186 

Number of Estimators 152 

Maximum Features 7 

Maximum Depth 19 

Min_sample_split 2 

Min_samples_leaf 1 
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Figure C.4-6  Overview of dataset with N indicating the number of data points falling within 

each category. 

 Massachusetts Case Study 

 

Table C.4-9 Minimum and Maximum Values for Sensitivity Analysis Parameters 

TEA Parameters Minimum Value Maximum Value 

Equipment Installation Cost 

Factor 

1.98 2.42 

Total Direct Costs (% of TIC) 105 % 125% 

Indirect Costs (% of TDC) 45% 65% 

Transportation Costs $0/ton $100/ton 

Solid Waste Disposal Cost $60/ton $100/ton 

Utility Cost (% of predicted 

cost) 

-20% 20% 

Equipment Cost (% of predicted 

Cost 

-50% 50% 

Feedstock Cost -$75/ton $75/ton 
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Figure C.4-7 Effect of predicted minimum selling price in $/ton for theoretical oil yields from 

10% to 80%. The predicted MSP based on the oil yield predicted for the state of Massachusetts is 

indicated by the red star.  
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Chapter 5: Oxygenated monomer production from the 

depolymerization of polystyrene in the presence of a 

radical source 
5.1 Introduction 

Polystyrene, both expanded PS (EPS) and solid PS, is a versatile polymer used in packing 

materials, food containers, and other rigid containers and products61. Most of these products made 

from PS are single use in their application, meaning they are disposed of and not used again. 

Considering approximately 15 and a half million metric tons of polystyrene was produced globally 

in 2022215, PS accounts for huge amounts of waste every year. Compounding the waste problem 

is the less than 1% of PS that is recycled globally216. Once a PS product is used it will end up either 

taking up valuable space in rapidly filling landfills217 or as pollution in the environment, harming 

ecosystems218-220. As a stable polymer PS will take hundreds of years to fully decompose61, but 

will undergo continuous environmental degradation into smaller and smaller micro plastics221 

further complicating any cleanup efforts. 

Polystyrene traditionally has low recycling rates for a multitude of reasons. Due to the large 

volume and low density of PS, especially EPS, transportation costs for transport to recycling 

centers are high222, which in turn increases the cost of any recycled material made. When 

polystyrene does make it to a recycling facility, the current recycling techniques available for 

polystyrene use toxic solvents223 and there is limited use for the byproducts224. Dissolution by 

solvents is the most common way to recycle PS. Dissolution is able to separate contaminants from 

the polystyrene waste and also greatly reduce the volume, and therefore transportation costs, of 

the waste222. However, the solvents used are typically highly toxic and dangerous to work with in 

large quantities223 and prevents the recovered material being converted back into food 

packaging224, which significantly impacts the potential market for the post recycling materials. 
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These factors combine to make recycling of PS difficult resulting in an end product that is more 

expensive than virgin PS223.  

Alternative methods for recycling of PS are necessary to address the large amounts of PS waste 

generated. A promising new category of technologies are thermal depolymerization technologies. 

These technologies such as pyrolysis and hydrothermal liquefaction (HTL) use high temperatures 

to convert waste plastics, both mixed and pure plastics, into fuels, monomers and chemicals. 

Pyrolysis, which uses high temperatures in the absence of oxygen, has been studied extensively 

for the conversion of PS225. Oil yields, as oil is the primary product of interest, nearing 100%, 

indicating complete depolymerization of the PS, have been achieved with reaction temperatures 

greater than 450 °C150, 182. The pyrolysis oil produced from these reactions is comprised of single 

ring aromatic compounds such as toluene, ethylbenzene, alpha-methylstyrene and styrene 

monomers, along with styrene dimers and trimers176, 179, 182. Although the product distribution after 

pyrolysis is relatively simple and high conversion to styrene monomers and BTEX compounds 

(benzene, toluene, ethylbenzene and xylene) are possible163, 179, pyrolysis performance is 

susceptible to contaminants176. This means significant preprocessing of the waste to remove 

contaminants is needed, increasing costs and impacting the economic viability. 

HTL, which uses high temperature and high pressure, in the presence of sub- or supercritical 

water, has also been shown in the literature to convert PS into usable products48, 226. The presence 

of sub- or supercritical water allows HTL to operate at lower temperatures compared to pyrolysis 

(>350 °C). It should be noted studies have reported high oil yields at 350 °C, but the use of 

dimethyl chloride as a wash solvent can cause dissolution of unreacted PS, making separation of 

oil and dissolved solid impossible70. Along with lowering the reaction temperatures necessary for 

high oil yield, HTL also has the benefit of being less susceptible to contaminants176. These factors 
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mean that the preprocessing required for pyrolysis can be greatly reduced or eliminated for HTL 

reactions. However, a major drawback of PS HTL is the oil mixtures are much more complected 

than pyrolysis oil and the monomer recovery is limited48. With a lower monomer recovery rate, 

the products formed during HTL are not as valuable, hurting the process economics. Increasing 

the value of HTL byproducts would take advantage of the benefits of HTL over pyrolysis while 

addressing the major technological drawback of HTL.  

It is proposed that adding an external oxidative radical source will promote the creation of high 

valued oxidative single ring aromatic compounds while also reducing the severity of conditions 

necessary for complete conversion of PS. The critical role of radicals in the depolymerization of 

polystyrene has been theorized for many years and shown in the pyrolysis literature124, 227, 228, 

however how this role changes in hydrothermal liquefaction is not as well understood. In thermal 

depolymerization of PS, the major reaction is a radical induced beta-scission, where the radicals 

are formed primarily through random scission or hydrogen abstraction reactions229. The random 

scission and hydrogen abstracts reactions in pyrolysis have activations energies nearly three times 

are large as for beta-scission124. This means that the severity of conditions necessary for complete 

depolymerization are for the creation of radicals and not the main depolymerization mechanism. 

It is hypothesized that adding an external radical source to HTL reactions (called Radical Initiated 

Hydrothermal Liquefaction, RI-HTL) will initiate beta-scission at its lower activity energy without 

the need for the higher activation energy reactions.  These radical sources should be inexpensive 

and green chemicals for RI-HTL to be an improvement on current recycling techniques.  

In this work the effect of an external radical source added to HTL reactions, on reaction 

severity and product composition is explored. The role of radicals in traditional HTL is also 

explored. 
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5.2 Methods 

 Materials 

 Virgin polystyrene pellets with a weight-average molecular weight of 176,000 Da 

(Scientific Polymer Products, Inc., Ontario, NY) were used as the primary feedstock in this study. 

The radical source used was 30 wt% hydrogen peroxide (Fisher Scientific, USA). Deionized water 

(DI) was obtained from a Barnstead E-pure system.  

 Experimental 

 Thermal experiments were conducted in a 100 cm3 Hastelloy Parr batch reactor with 

reaction temperatures ranging from 325 °C to 400 °C. For each run 5 g PS was loaded into the 

reactor, and 28 g of DI water were added for HTL reactions. For RI-HTL reactions hydrogen 

peroxide was added in O:C ratios ranging from 0.091 to 0.25 and DI water was added so that the 

reaction always had 28 g of water. After loading and sealing the reactor the headspace was purged 

with nitrogen three times to ensure an inert environment. The reactor was then pressurized to an 

initial pressure of 1000 psi for runs less than 400°C. At 400 °C the initial pressure was set to 850 

psi to ensure the maximum operating pressure remained under 4,000 psi. High initial pressure was 

necessary to prevent small molecules repolymerizing in the reactor head cold spots during reaction. 

The reactor was continuously stirred using a Parr magnetic stirring drive during heat up, reaction 

and cool down. Reaction times from 0 to 20 minutes were studied where 0 minutes correlates to 

the time at which the reactor reaches the desired reaction temperature. The reactor was rapidly 

quenched to 20 °C using an ice bucket at the end of the reaction time. After quenching and 

depressurization, the reactor was weighed in order to determine the gravimetric gas yield.  

Extraction of the reaction products was done in a 3-step process. The aqueous phase was 

removed from the residual solids and oils through vacuum filtration with 11-micron Whatman 1 

filter paper. Under select conditions when oil also went through the filter paper with the aqueous 
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phase, the aqueous phase was centrifuged and removed from the oil phase through pipetting. The 

oil product that did not go through the filter was removed from the residual solid using a methanol 

solvent rinse. Methanol was chosen as the solvent as PS is insoluble in methanol, unlike many 

other common extraction solvents. This ensures that all oil recovered was formed during the 

reaction and is not dissolved residual solid. The oil/residual solid remaining in the filter paper after 

the aqueous phase extraction is rinsed with methanol until the methanol ran clear. The reactor was 

also rinsed and scraped repeatedly with methanol until the methanol ran clear. The remaining 

residual solid in the filter is weighed and dried in a 60 °C oven overnight to remove any residual 

methanol or water. The oil is separated from the methanol through rotary evaporation.  

 Analysis Techniques 

 The oil sample compositions were classified using gas chromatography mass 

spectroscopy (Shimadzu GCMS-QP2010 SE) on a RESTEK Rtx-5 column (30m, 0.25 mm ID). 

The GC-MS method temperature profile used was 33-290 °C with a ramp rate of 4 °C/min and a 

column flow rate of 0.61 mL/min. Specific components were quantified using GC-FID (Shimadzu 

GC-2010 Plus) on a RESTEK Rxi-5Sil column (30m, 0.25 mm ID). Oil samples were also 

analyzed on GCxGC-FID and GCxGC-MS, which was performed by Woods Hole Oceanographic 

Institution, in Woods Hole, MA. The molecular weights of the residual solids were determined 

through gel permeation chromatography. This analysis was performed by the University of Akron 

Testing Services.  

 Sensitivity Analysis 

A severity factor was developed to quantify the severity of the reaction conditions 

including time, temperature and peroxide loading. The traditional severity factor for time and 

temperature developed by Chum, et.al.230 was used as the base form and a second term accounting 
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for peroxide loading was added. The form of the severity factor used can be seen in Equation 5-

1. 

                                                                    𝑅𝑤 = 𝑒𝑥𝑝 (
𝑇𝑅−100

𝜔
) ∆𝑡 + 𝑒𝑥𝑝(𝑃 ∗ 𝑘)       Eq 5-1 

 Where TR is the reaction temperature in °C, ∆𝑡 is the reaction time, P is the peroxide 

loading in O:C ratio and 𝜔 and k are fit parameters, with values of 5.9 and 4.358 respectively. The 

fit parameters were estimated by minimizing the R2 for severity vs oil yield.  

5.3 Results 

PS is known to depolymerize primarily through beta-scission reactions that are initiated by a 

radical229. These radicals are traditionally formed from other high activation energy reactions such 

as hydrogen abstraction and random scission. Adding an external radical source to reactions has 

the potential to initiate beta-scission reactions at less severe conditions, negating the need for 

higher activation energy reactions to create the radicals. Hydrogen peroxide was chosen as a 

radical source in this work for a multitude of reasons; hydrogen peroxide breaks down at 

approximately 250 °C 231 which is less than HTL reaction temperatures for PS, it is a green radical 

source as it decomposes into water and oxygen and it is not an expensive source. Hydrogen 

peroxide also has the added benefit of being an oxygen source which could create valuable 

oxygenated byproducts from the reaction. To understand both the role of radicals in traditional 

HTL reactions and the potential of radical initiated HTL, reactions were run over a series of 

temperatures, times and peroxide loadings.  

 Optimization of Reaction Conditions 

Existing work in the literature has shown that supercritical conditions are necessary for 

high oil yields48, 226, therefore in this work a subcritical temperature of 350 °C was chosen for 

initial studies. This allows for the potential benefit of RI-HTL to highlighted. Figure 5-1 shows 

the oil and residual solid yields for traditional HTL and three different peroxide loadings relative 
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to the plastic loaded prior to reaction. Peroxide loading is represented as the ratio of oxygen in the 

hydrogen peroxide to the carbon in the polymer. At 350 °C the HTL reaction (0 peroxide loading) 

has zero oil yield, and the primary reaction product is residual solid. This residual solid has the 

appearance of unreacted PS. It should be noted that there are also two other reaction products, the 

aqueous phase and the gas phase, but the amount of carbon in the aqueous phase is negligible and 

the gas is less that 5 wt% and comprised of primarily methane. The lack of oil and minimal gas 

production indicates that under these conditions HTL does not cause depolymerization of PS. The 

ceiling temperature, the rate at which depolymerization is equal to repolymerization in a polymer, 

can give insight into what temperature conditions may be necessary for complete conversion. PS 

has a ceiling temperature of approximately 390 °C 232, which means that below this temperature 

the rate of repolymerization will be greater than depolymerization and oil will not be the primary 

product. It should be noted that the exact impact of water on the ceiling temperature of plastics is 

not yet well understood and the exact ceiling temperature of PS in a hydrothermal system may 

vary.  
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Figure 5-1 Effect of peroxide loading on oil and solid residue yields at 350 °C and 20 minutes 

for HTL (0 loading) and three different peroxide loadings 

 Going from HTL conditions to RI-HTL conditions, Figure 5-1 shows an increase in oil 

yield and a decrease in residual solid, as the peroxide loading, and therefore quantity of radicals in 

the system, is increased. Both the 0.091 and 0.167 condition see an increase in oil yield compared 

to HTL, but residual solid remains the primary reaction product. This indicates that the presence 

of free radicals in the system has increased the depolymerization reaction as compared to HTL, 

but that the amount of radical is not sufficient for complete depolymerization. At a peroxide 

loading of 0.25 a complete flip in product distribution can be seen as compared to HTL. The oil 

yield at this condition is 88% ± 7% and the residual solid is less than 5% indicating near complete 

conversion of the PS into products. When sufficient radical is added to the system complete 

conversion can be achieved at conditions that result in no yield for HTL, proving external radicals 
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are capable of initiating depolymerization. This is a promising result but, temperature is known to 

be a critical factor in thermal depolymerization technologies, and understanding its effect 

combined with a radical source will allow for the optimization of reactor conditions and optimal 

technology performance.  

Figure 5-2 shows the oil and solid residue yield for HTL and RI-HTL reactions with 

reaction temperatures from 325 °C to 400 °C. For both HTL and RI-HTL, an increase in oil yield 

is seen with increasing temperature with the exception of RI-HTL at 400 °C. The reduction of oil 

yield at 400 °C is due to the severity of reaction conditions being too high and the oil being further 

broken down into gas. The full mass balance including all four phases (oil, residual solid, gas and 

aqueous) can be seen in Appendix D Figure D.5-9.  For subcritical conditions, other than 365 °C, 

HTL reactions do not result in any oil yield. While there is no oil produced at subcritical conditions, 

further analysis of the solid phase has shown significant chemistry has occurred within the solid. 

The molecular weight of the starting polymer is 176,000 Da and the molecular weight of the 

residual solid from HTL at 350 °C is 7,998 Da, indicating mid-chain depolymerization is occurring 

within the solid prior to oil production. Reactions at 365 °C show higher performance than the 

other subcritical conditions. This is believed to be from the water at these conditions (subcritical 

temperature by 9 degrees, but critical pressure) having near supercritical properties, explaining the 

higher performance of HTL at this temperature. For subcritical conditions, RI-HTL reactions with 

a 0.25 O:C ratio increase the oil yield compared to HTL. RI-HTL reactions at 350 °C result in a 

maximum benefit when compared to HTL increasing oil yield from less than 5% to greater than 

85%.  
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Figure 5-2 Yield in g/g plastic wt% of oil product and solid residue for HTL and RI-HTL 

reactions with reaction temperatures from 325 °C to 400 °C with a 20-minute reaction time. All 

RI-HTL runs had a O:C ratio of 0.25.  

The performance of HTL reactions in the supercritical region improve significantly with 

HTL at 400 °C having equal yield with RI-HTL at 350 °C. At 365 °C, a near supercritical 

condition, HTL results in yields approximately 5% less than oil yield RI-HTL at 350°C. Although 

a 15-degree difference is not large, it correlates to a pressure difference of nearly 500 psi. A 

reduction in temperature of 15 degrees and pressure of 500 psi can drastically impact the materials 

and thickness of construction for reactors making the process less expensive and increase overall 

process safety.  Figure 5-1 Figure 5-2 established the optimal reaction conditions of 350 °C and 
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a 0.25 O:C ratio but further reduction of reaction condition severity could be achieved if the 

reaction time can be reduced.   

Figure 5-3 shows the oil yield for reaction times ranging from 0 to 20 minutes at 350 °C 

and a 0.25 O:C ratio. With a 0-minute reaction time the oil yield is 40% ± 2%. This means that a 

portion of the PS is being depolymerized before the reaction temperature has been met. 

Considering the RI-HTL reaction at 325 °C resulted in 24% oil yield this result would be expected. 

As time increases to 10 and 15 minutes no increase in oil yield is observed. This result gives some 

insight into the depolymerization mechanism, as if the polymer was depolymerizing primarily 

through end-chain unzipping, as is seen for pyrolysis of PS, you would expect an increase in oil 

yield with reaction time. Instead, what was observed here was that there was a decrease in the 

molecular weight of the residual solid with time but no change in oil yield. This would suggest 

that the primary depolymerization mechanism in RI-HTL is mid-chain beta-scission and that with 

sufficient reaction time the chains will depolymerize down into small liquid molecules. The 

molecular weight for the 20-minute reaction is not reported as the amount of residual solid was 

less than could be captured and tested through GPC. The decrease in molecular weight of the 

residual solids can be seen visually in Appendix D Figure D.5-10. Further work is needed to fully 

understand the mechanism of both HTL and RI-HTL reactions, which will be expanded upon in 

Chapter 8. 
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Figure 5-3 Oil yield and GPC determined molecular weight of the residual solid for reaction 

times from 0 to 20 minutes with a reaction temperature of 350 °C and a O:C ratio of 0.25. The 

molecular weight of the virgin PS was found to be 176 kDa.  

In order to quantify how the severity of the reaction conditions change with the addition of 

hydrogen peroxide, a severity factor was developed as seen in Equation 5-1. This relationship was 

used to calculate the severity of all conditions analyzed above as seen in Figure 5-4. The region 

highlighted with the red box is the region in which RI-HTL and HTL reactions have similar oil 

yield performance. How the addition of hydrogen peroxide effects the severity in this region was 

of particular interest to fully quantify the change in severity. It can be seen that the severity of HTL 

at 365°C (severity of 21.8) is less than the severity of RI-HTL at 350°C with a peroxide loading 

of 0.25 (severity of 22.7). This indicates that although the severity of the temperature and pressure 

decreases, the overall reaction severity is slightly increased for RI-HTL.  
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Figure 5-4 Severity analysis compared to oil yields for all reactions. The red box represents the 

region where RI-HTL and HTL have similar performance. The two HTL reactions within this 

box are at 365°C (severity factor of 21.8) and 400°C (severity factor of 24.4). 

 Compositional Understanding of RI-HTL Oils 

The work completed in Figure 5-1-5-3 established the optimal reactor conditions (350°C, 

0.25 peroxide loading and 20-minute reaction time) for maximum oil yield from RI-HTL reactions. 

Although high yield is a critical factor, the composition of the oil is also critical for understanding 

the use and potential of any oils formed. The oil formed during the depolymerization is a complex 

mixture of aromatics, styrene monomers, styrene dimers and styrene trimers. To understand this 

complex mixture, representative samples for HTL and RI-HTL were analyzed using GCxGC-MS 

and GCxGC-FID and all samples were analyzed using GCMS. 
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Figure 5-5 shows the GCxGC-FID of the oil produced by an HTL reaction at 400 °C and 

a 20-minute reaction time. There are three distinct regions seen within the chromatogram, which 

have been identified as regions of single ring aromatics, two-ring aromatics, and three-ring 

aromatics. The single ring aromatic region which is in the region of 500s to 3000s in the first-

dimension retention time is comprised primarily of styrene monomer and other simple one-ring 

aromatics such as toluene, ethylbenzene and alpha-methylstyrene. The second region from 3000s 

to 6500s is comprised of styrene dimers and other two-ring aromatics. The final region seen is 

comprised of styrene trimers and 3-ring aromatics. It should be noted that there are no oxygenated 

components found in the oil formed during HTL reactions. From the overlaid one-dimensional GC 

chromatogram and from the GCMS chromatogram seen in Appendix D Figure D.5-11, it can be 

seen that the one-dimensional GC is able to identify all major peaks within the oil.  

 

Figure 5-5 GCxGC-FID of HTL at 400 °C and 20-minute reaction time with the one-

dimensional GC-FID chromatogram overlaid. 
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 Figure 5-6 shows the GCxGC-FID for the RI-HTL reaction at 350 °C and a 5:1 C:O ratio. 

Once again three distinct regions correlating to single ring, two-ring and three-ring aromatics can 

be seen. Although the three key regions still exist, the single ring aromatics identified are primarily 

oxygenated aromatics such as benzaldehyde and acetophenone, with some styrene and other 

unoxygenated aromatics. The two and three-ring aromatic regions remain primarily unchanged. 

Once again, this representative two dimensional GC when compared to the overlaid one-

dimensional GC-FID and the GCMS chromatogram seen in Appendix D Figure D.5-12, indicates 

all major peaks are being capture in the one-dimensional GC. Figures 5-5 and 5-6 give confidence 

to the predictions made by GCMS and GCMS was used for all further analysis.  

 

Figure 5-6 GCxGC-FID of RI-HTL at 350 °C, 0.167 O:C ratio and 20-minute reaction time with 

the one-dimensional GC-FID chromatogram overlaid. 

 As the hydrogen peroxide loading is increased more and more oxygen is added to the 

system ending up primarily in either the gas or oil phases. Figure 5-7 tracks 5 key product 
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categories based on their percentage of the total area in the GCMS chromatogram. The correlating 

GCMS chromatograms can be seen in Appendix D Figure D.5-12. The product categories of 

interest are oxygenated single ring aromatics (such as benzaldehyde and acetophenone), single 

ring aromatics (such as styrene and toluene), two-ring aromatics (including styrene-dimers), 

oxygenated two-ring aromatics and three-ring aromatics (including styrene trimers). As the 

amount of hydrogen peroxide in the reaction increases, the amount of oxygenated single-ring 

aromatics found in the oil increases and the amount of unoxygenated single-ring aromatics 

decreases. There is also an interesting optimal recovery of single-ring aromatics when the peroxide 

loading is 0.167, however this also correlates to the lowest oil yield. The reason for this optimal 

requires further study that will be explained further in Chapter 8. Figure 5-7 suggests that for 

optimal oil yield and maximum oxygenated single ring aromatics recovery a peroxide loading of 

0.25 should be used. 
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Figure 5-7 Effect of peroxide loading on oil composition and oil yield for reactions at 350 ˚C 

and 20-minute reaction time 

 Increasing the temperature with a constant peroxide loading will increase the severity of 

the reaction conditions and the effect of this severity on oil composition can be seen in Figure 5-8. 

The corresponding chromatograms can be seen in Appendix D Figure D.5-13. As the reaction 

temperature increases from 350°C to 365 °C, an increased degree of depolymerization can be seen 

in the increase in single ring aromatics, oxygenated or unoxygenated, and the corresponding 

decrease in two and three-ring aromatics. This suggests that at the high reaction temperature the 

two and three-ring aromatics are being further depolymerized into single ring aromatics. The 

amount of oxygenated single ring aromatics also decreases at 365 °C. At 400 °C the percentage of 
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the oil comprised of two and three ring aromatics increases, indicating that the gas produced 

(correlating to the drop in oil yield) comes primarily from the decomposition of the single ring 

compounds. Figure 5-8 indicates that with relatively small changes in reaction temperature there 

is a tunability to the composition of the oil. The optimal temperature for high value oxygenated 

single ring aromatics is seen at 350 °C.  

 

Figure 5-8 Effect of temperature on oil composition for a 0.25 peroxide loading and 20-minute 

reaction time based on the percentage of total area under their corresponding GCMS 

chromatogram. 

 Finally the effect of time on the composition of the oil was studied. It was seen in Figure 

5-3 that increasing reaction time did not correspond to increasing oil yield until 20 minutes, 

however it did correspond to an decrease in the molecular weight of the solid. Figure D.5-14 and 
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Figure D.5-15 in Appendix D shows the compositonal changes in the oil with time. A minor 

decrease in the amount of oxygenated single ring aromtics was seen from 0 to 15 minutes, but no 

notable differences in the oil composition were observed. This suggests that as the reaction time 

progresses depolymerization happens primarily in the solid phase. Only once the solid phase has 

been almost entirely converted to oil does the composition of the oil start to have appreciable 

changes.   

5.4 Conclusions 

The work done in this study has shown the potential for radical initiated hydrothermal 

liquefaction to reduce the severity of reaction conditions necessary for complete depolymerization 

of polystyrene. It has shown that external radicals can eliminate the need for the high activation 

energy reactions that produce radicals in traditional HTL and initiate beta-scission at milder 

conditions. It has also demonstrated the potential of this technology to increase the value of the 

reaction products by producing high value oxygenated single ring aromatic compounds. The effect 

of reaction temperature, reaction time and radical loading on both oil and residual solid yields and 

oil compositions have been shown and an optimal reaction condition of 350 °C, 20-minutes and 

3:1 loading has been demonstrated to result in highest oil yield and oxygenated single ring aromatic 

recovery. 
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5.5 Appendix D 

 

Figure D.5-9 Full mass balance for HTL and RI-HTL reactions with reaction temperatures from 

325 °C to 400 °C 

 

 

a. b.

. 

c.

. 
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Figure D.5-10 Residual solid and wax from RI-HTL reactions at 350 °C and a 0.25 peroxide 

loading for a.) 0-minute reaction time, b.) 10-minute reaction time and c.) 15-minute reaction 

time. 

 

Figure D.5-11 GCMS chromatogram for HTL at 400 °C and 20-minute reaction time with select 

single ring aromatic compounds highlighted  

 



143 

 

 

Figure D.5-12 GCMS chromatograms of RI-HTL reactions at 350 °C, 20-minute reaction for 

peroxide loadings of 0.091, 0.167 and 0.25 
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Figure D.5-13 GCMS chromatograms of RI-HTL reactions with 0.25 peroxide loading and 20 

minute reaction times for various reaction temperatures.  
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Figure D.5-14 Effect of reaction time of RI-HTL reactions at 350 °C and a 0.25 peroxide 

loading on the composition of the oil in percentage of the total area from GCMS analysis. 
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Figure D.5-15 GCMS chromatograms for RI-HTL reactions at 350 °C and a 0.25 peroxide 

loading at reaction times from 0 to 20 minutes. 
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Chapter 6: Data driven discovery of reaction pathways for 

understanding catalytic cracking of hydrocarbons in 

the presence of catalyst 
6.1 Introduction  

 Polyethylene (PE) accounts for 42% of the plastic found in municipal solid waste in the 

United States4. Although high density polyethylene (HDPE) is one of the three plastics with a 

robust recycling market 3 its recycling rate is only approximately 30%4. Various factors like 

needing pure PE streams for recycling and sensitivity to contaminants (i.e., plastic additives, 

residual products, labels, etc.) contribute to this low recycling rate. On the other hand, low density 

polyethylene (LDPE) has limited recycling potential under current technologies4. The low 

recycling rate and high landfill rate has led to accumulation of PE waste in the environment 7, 233. 

Addressing the issue of waste plastic will require a comprehensive strategy including 

development and greater use of biodegradable plastics77, reduced waste,76 and improved upcycling 

technologies. Even with all of these techniques there will still be waste plastic that must be 

valorized, since eventually it will accumulate defects and impurities that result in it reaching the 

end of its useful life 234. Chemical recycling is a promising way to address this remaining waste 

fraction but further study is needed to bet understand these reactions, for optimal recycling.   

 Thermal cracking of polyethylene molecules via thermal processes such as pyrolysis and 

hydrothermal liquefaction (HTL) have showed promise in converting the long PE chains into 

shorter linear alkanes 169, 235-237. These linear alkanes can be used as a diesel like fuel or be further 

upgraded using catalysts into valuable chemicals 238-240. Using at least a portion of these fuels for 

chemical conversion is economically promising due to the higher value of the chemical products 

as compared to the fuel. The thermal conversion of PE into short linear alkanes has been studied 

significantly already  169, 235-237, and therefore this work aims to better understand the second half 
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of the previously described upgrading scheme, the upcycling of the short chain linear alkanes into 

valuable chemicals.  

 Upgrading these short chain linear alkanes into commercially viable yields of 

valuable products will require the use of catalysts. The oil that results from the thermal 

depolymerization of polyethylene is a highly complex mixture of alkanes, alkenes, aromatics and 

napthenes183. Catalytic upgrading allows for the conversion of these complex mixtures into 

specific desired products and with specific properties. Studies have demonstrated the power of 

catalytic upgrading of bio-oils for targeting BTEX (benzene, toluene, ethylbenzene and xylene) 

and other aromatic hydrocarbon compounds241. Catalysts have also been used to increase the 

quality of oils by increasing the higher heating value, reducing viscosity and increasing the C/H 

ratio 242. The use of catalysts for upgrading of oils is therefore a beneficial process but further adds 

to the complexity of the system when needing to understand reaction kinetics.   

 Understanding reaction networks, including reaction rate constants, is required for reactor 

design and currently remains an unsolved challenge due to the complexity of the decomposition 

pathways. The decomposition products from the thermal conversion of PE span a large range of 

carbon numbers, with products primarily in the range from C7 to C18 reported,243 and tracking the 

kinetics of each product during upgrading results in an immensely complex reaction network. To 

address this complexity this work utilizes dodecane as a model compound, as dodecane is a 

common short chain linear alkane produced during PE decomposition. Furthermore, the data used 

in this study looks at the supercritical cracking of dodecane in the presence of ZSM-5 240, as ZSM-

5 has been shown in previous studies to be a good catalyst for upgrading short chain alkanes244, 

245.  
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 Historical approaches to modeling reaction networks often involve either attempting to 

reconstruct from elementary reactions 246 or group type models 240. Group type models simplify 

the reaction network by grouping like products and tracking the product groups during the reaction, 

instead of tracking each individual product247-249. The products that are grouped together are 

determined through a combination of chemical knowledge, published models and a researchers 

“chemical intuition” of the system. However, this approach quickly becomes complex as the 

number of products increases, until the system is too complex for human intelligence. Utilizing 

data-drive methods, allows for the mathematical identification of similarity to form like product 

groups, allowing for the analysis of immensely complex systems.  

 A promising data-driven method for this type of identification is dendrograms. 

Dendrograms represent data from dimensional space as a tree with the vertical axis indicating 

similarity 57. The branches at the bottom of the tree will be most similar to each other and become 

less similar with every node going up the tree. This method is promising for the application of 

group type modeling as it mathematically determines the similarity between products and offers 

multiple layers of possible groups depending on the desired number of product groups. 

Dendrograms also can work with data that has more features than data points, which is often the 

case in kinetic modeling data sets.  

 In this work dendrograms will be used to indicate similar product groups for use in a group 

type model for the supercritical cracking of dodecane in the presence of ZSM-5. These groups will 

then be used to model the reaction network for this reaction, including the optimal reaction 

pathway and the targeting of specific desirable products.   
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6.2 Methods 

 Algorithm Development  

Traditionally in machine learning large amounts of data are required (>100,000 data points52, 

53) and there are significantly more data points than features (i.e. more rows than columns), 

however for this application studying the supercritical cracking of dodecane in the presence of 

ZSM-5 the data has 6 rows corresponding to 6 time points and 21 columns corresponding to  the 

time-dependent dodecane conversion and the carbon yield of 20 reaction products. This 

misbalance of data points to features limits the type of data-driven method that can be used. For 

this reason, dendrograms were chosen as they are an unsupervised classification method that can 

be used to determine the similarity between data. Dendrograms are a form of hierarchical 

clustering that represent data from dimensional space as a tree with the height of the tree 

representing similairty57. Similarity is typically calculated using one of four methods, single 

linkage, complete linkage, average linkage and centroid distance 57. The similarity method that 

was used within the dendrogram algorithm was chosen to be average linkage. Equation 6.1 shows 

how average linkage is computed. 

                                                     𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =  
𝑻𝒓𝒔

(𝑵𝒓× 𝑵𝒔)
                                                           ( 6.1 )                                                       

Where Trs is the sum of all the pairwise distances between cluster r and s, and Ns and Nr are 

the sizes of cluster s and r respectively250. The raw experimental data was fed into the hierarchy 

dendrogram package from scripy cluster in Python 3.6.9. 

The data was also normalized in two different ways, a scale transform and a z-transform. The 

scale transform seen in Equation 6.2 normalized the data between the values of zero and one.  

                                                      𝑿𝒊,𝒋 𝒏𝒆𝒘 =  
𝒙𝒊,𝒋

𝒙𝒊,𝒎𝒂𝒙
                                                                    ( 6.2 ) 
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Where X i,j new is the new x value, xi, j is the carbon yield value of x for product i at time j 

and xi, max is the maximum value of x for product i across all time points. 

The z-transform, seen in Equation 6.3, standardizes the data such that the mean of the 

sample is zero251. 

      𝒁𝒊 =  
𝒙𝒊,𝒋−𝒙̅𝒊

𝝈𝒊
                                                                            ( 6.3 ) 

Where Zi is the new value, 𝑥̅𝑖 is the mean of the yields for product i and σi is the standard 

deviation of product i. 

 Data Selection  

 The dataset used in this study was chosen for two key reasons. The first was that dodecane 

is a common product formed during the depolymerization of PE and therefore a good model 

compound for understanding the upcycling potential of PE products. The second key reason this 

dataset was chosen was because the data has already been analyzed using group type modeling 240, 

providing an important comparison for the performance of data-driven methods.  

 Kinetic Model Development 

 The kinetic model used for the group type reaction modeling was a first order reaction. The 

model was developed in MATLAB and estimated the value of the group carbon yield by 

minimizing the error between experimental and calculated yields by changing the rate coefficients. 

The model tested all possible reaction pathways with the limitations of the C12 group being first 

and that only in series or in parallel reactions are allowed, no combinations were allowed in this 

study. The accuracy of the kinetic model was determined using two error metrics, Sum of Squared 

Error (SSE) and Maximum Absolute Error (MAE) as seen in Equations 6.5 and 6.6 respectively.  

𝑺𝑺𝑬 = ∑ ∑(𝑪 − 𝑪𝒆𝒙𝒑)
𝟐

                                                           ( 6.4 ) 

𝑴𝑨𝑬 = 𝒎𝒂𝒙|𝑪 − 𝑪𝒆𝒙𝒑|                                                           ( 6.5 ) 
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 Where C is the calculated value of the carbon yield of the group and Cexp is the experimental 

carbon yield.  

6.3 Results & Discussion 

 Identification of group type modeling groups using dendrograms 

The previous study that the data in this work is sourced from created a kinetic model for the 

supercritical cracking of dodecane using group type modeling 240. Zaker, et. al. used a combination 

of literature, knowledge of chemical groups and analysis of conversion to group the products into 

five groups; aromatic, aliphatic, heavies, coke and gas. These groups were then used for a kinetic 

study of dodecane cracking in the presence or absence of supercritical water. While a viable and 

established method for determining groups in group type modeling, this approach can be time 

consuming and is susceptible to human bias. This study aims to develop a rapid and unbiased 

mathematical method to group products in kinetic studies for group type modeling. 

In order to develop this method the raw experimental data (seen in the Appendix E Table 

E.6-4) was fed into the dendrogram algorithm. Since dendrograms are an unsupervised method the 

time data associated with the carbon yields of each product is not fed to the algorithm. The resulting 

dendrogram can be seen in Figure 6-1. C12, which is the dodecane feed, is the most dissimilar 

compound in the data as its node has the largest distance indicated by the vertical axis. Dodecane 

should be dissimilar from its products as it the only component present at the start of the reaction, 

so this result matches what is expected. This is an initial indicator that although there is very little 

data the dendrogram is able to identify this dissimilarity. Once the dendrogram is created human 

intuition is needed in order to read and interpret the results. The dendrogram itself could be read 

such that each pairing, or individual compound is its own group, however this only reduces the 

number of groups by half or less which still leaves a fairly complex reaction to model. For this 
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reason, larger groups were identified from the dendrogram, by making the group cuts higher on 

the vertical axis. 

 

Figure 6-1 Dendrogram for the experimental carbon yield data from the supercritical cracking of 

dodecane computed using average linkage.  

The groups that were indicated from Figure 6-1 can be seen in Table 6-1. Group 3 consists of 

the products in the cluster directly to the left of the C5/Heavy cluster up to C1 and Group 4 consists 

of all the products from coke to C9. C4 was combined with the C5 and heavies cluster due to the 

insignificant difference in similarity. It should be noted that these groups are very different from 

those that were identified using the previous method described240. Non-mathematical methods 

group the gases, the aliphatic and the aromatic compounds in separate groups. In this analysis these 

compounds are distributed throughout the various groups.  

 

 

Table 6-1 Groups indicated by experimental and z-transformed carbon yield dendrograms. 
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Group Number Experimental Carbon Yield Z-Transformed Carbon Yield 

1 C12 C12 

2 C4, C5 and Heavies Benzene/C6 

3 Small alkanes and aromatics 

(not benzene) 

C11/C8/C7/C9 

 

4 Large alkanes, benzene and 

coke 

Small Alkanes, Aromatics, 

Heavies and Coke 

 

In an attempt to determine if the lack of data was impacting the dendrogram, and therefore 

the group’s, various fit methods were applied to the raw data to generate more artificial data 

between the experimental time points. Linear regression, piecewise linear regression and spline 

fitting were tested with 1,000 data points generated and the resulting dendrograms differed from 

Figure 1 in the scale of their vertical axis alone. This means that they indicated the same groups as 

the raw data, further strengthening the mathematical validity of the groups indicated above. The 

resulting dendrograms can be found in the Appendix E Figure E.6-9Figure E.6-11.  

Due to the decision to create larger groups, further analysis tracking the carbon yield of each 

group over time was performed. This analysis, seen in Figure 6-2, confirms that these groups are 

physically different over time. If they were not physically different, i.e., the carbon yields of certain 

groups were the same as each other, it could indicate that cuts made in order to form the groups 

were made too high up on the dendrogram and the dissimilarities seen in the dendrogram have 

been lost.  



155 

 

 

Figure 6-2 Concentration of each dendrogram indicated group over time 

In addition to feeding the raw data into the dendrogram algorithm, the data was also normalized 

using both a scale transform and a Z-transform. By normalizing the data, the impact of the absolute 

value of carbon yields can be eliminated in order to determine if those values are more important 

in the dendrogram than the shape of the data over time. This normalized data was fed into the same 

dendrogram algorithm and the resulting dendrogram for the Z-transformed data can be seen in 

Figure 6-3 and in Figure E.6-12 for the scale transform data. As can be seen in Figure 6-3 and 

the groups in Table 6-1, the dendrogram changes significantly as compared with the dendrogram 

using the raw data. This indicates that the absolute value of the carbon yields is the strongest factor 

impacting similarity when the raw data is used. Depending on the application this should be 

considered when determining which dendrogram to use. 
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Figure 6-3 Dendrogram for the Z-transformed carbon yields of supercritical cracking of dodecane 

 Kinetic modeling utilizing dendrogram identified groupings 

To test the accuracy of the groups that were indicated in the previous section, they were used 

in a kinetic model to predict the carbon yields of each group over time. Although the dendrograms 

can be used to group similar reaction products, they do not provide any information as to what 

order these groups are formed. Therefore, all possible reaction pathways were modeled with the 

only restrictions being C12 must be the first group and all following reactions occur either all in 

parallel or all in series.  

The results of the kinetic modeling can be seen in Table 6-2 for the groups indicated from 

Figure 6-1 (Experimental Carbon Yield in Table 1). When considering the range of carbon yield 

for each group seen in Figure 6-2 all of the reaction pathways give a decent fit depending on the 

required accuracy of the specific application.  Some of the reaction pathways did have more 

accuracy than others especially reaction P and reactions S1 and S2.   
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Table 6-2 Sum of squared errors and average maximum absolute error for kinetic modeling of 

each possible reaction pathway  

Reaction 

Pathway  

Reaction Name Sum of Squared 

Errors 

Average Max Absolute 

Error 

    ↗ 2 

1 →    3 

   ↘  4 

P 0.0332 0.0582 

1 → 2 → 3 → 4 S1 0.0337 0.0584 

1 → 2 → 4 → 3 S2 0.0344 0.0589 

1 → 4 → 2 → 3 S3 0.0466 0.0787 

1 → 4 → 3 → 2 S4 0.0765 0.0776 

1 → 3 → 2 → 4 S5 0.0703 0.0756 

1 → 3 → 4 → 2 S6 0.0778 0.0819 

 

For the lowest error reported in Table 6-2 (reaction P) the calculated carbon yields were 

plotted verse time and verses the experimental yields as seen in Figure 6-4. Figure 6-4a shows 

the parity plot for this model with the solid line indicating the 1:1 line where calculated and 

experimental data are equal and the dotted lines showing ± 5%. Overall, there is a good clustering 

around the 1:1 line showing that the calculated yields are close to the experimental data. This trend 

can also be seen in Figure 6-4b where the calculated (solid line) carbon yields are tracked over 

time and the experimental yields are shown through the open circles. The calculated yields seem 

to have the most trouble matching the experimental data at the 60-minute time point, which could 
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be due to the fact that the standard deviation of the experimental data at 60 minutes is the highest 

of any time point.   

 

Figure 6-4 Kinetic modeling results for reaction P (all reactions in parallel) vs a.) the experimental 

carbon yields for each group and b.) time with the open circles indicating experimental data and 

the solid line being the calculated yields 

Seeing the accuracy achieved with the four groups indicated from the dendrogram, the 

method was tested again but with three groups, combining groups 2 and 3. Testing three groups 

allowed for the determination of whether there was a lower limit on the number of groups modeled 

and still have accurate carbon yield predictions. The results of this analysis can be seen in 

Appendix E Figure E.6-13 and  

 

 

 

 

 

 

a. 

 

b. 
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Table E.6-5. Once again, the reaction pathway of all reactions in parallel gave the lowest 

error with an SSE of 0.0322. The errors with three or four groups are very similar for the all 

reactions in parallel pathway indicating that this reaction pathway gave the most accurate 

prediction of carbon yields. For this reason, future sections will look at the reaction pathway of all 

reactions in parallel.  

The same kinetic model was also used to model the groups that were indicated in Figure 

6-3 from the normalized carbon yield data. Again, the reaction pathway of all reaction in parallel 

gave the lowest SSE and these results can be seen in Figure 6-5. The SSE of these groups for all 

reactions in parallel was found to be 0.0414 which is higher than the kinetic model for the raw 

data. From Figure 6-5 it can be seen that the change in overall model SSE is due to more of the 

data falling outside of the ±5% range. However, given that the SSE is only 5% of the maximum 

carbon yield value, this can still be considered an accurate model. This indicates that although 

different groups are indicated when the data is normalized, these groups can also be used to 

accurately model the kinetics. 
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Figure 6-5   Kinetic modeling results for reaction P (all reactions in parallel) vs a.) the 

experimental carbon yields for each group and b.) time with the open circles indicating 

experimental data and the solid line being the calculated yields for the group indicated by the 

normalized carbon yield dendrogram 

 Targeted modeling of desired reaction products 

One of the possible drawbacks of group type reaction modeling is the fact that it can conceal 

the yields of especially important products. The specific concentrations of individual products 

could be important for a variety of reasons whether they are of high economic value or a fouling 

product and being able to track them can be critical. In the previous section the aim was the 

minimize the error overall for all the groups, in this section the aim will be to minimize the error 

for specific targeted compounds without significantly impacting overall accuracy. To achieve this 

the same groups that were identified from the raw data dendrogram were used but the targeted 

product was pulled out of its group and made its own. The same kinetic model was then used to 

calculate the carbon yields of each group when all reactions occur in parallel.  
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The targeted compounds studied were toluene and xylene as toluene came out of group 4 and 

xylene came out of group 3. The targeted compounds became their own group, group 5. As can be 

seen in Table 6-3 the maximum absolute error for the targeted compound groups is the lowest out 

of any group and the overall model SSE is within the same range as the analysis without the 

targeted groups. This can also be seen in Figure 6-6, with Figure 6-6a showing the parity plot and 

concentration over time for toluene and Figure 6-6b showing these plots for xylene. All groups 

have a good overall fit between the experimental and calculated carbon yields. This indicates that 

without sacrificing any overall model accuracy, specific targeted compounds of interest can be 

accurately modeled and tracked over the reaction time.  

Table 6-3 Sum of Squared Errors and Individual Group Max Absolute Error for Targeting Toluene 

and Xylene 

Compound SSE Group 1 

MAE 

Group 2 

MAE 

Group 3 

MAE 

Group 4 

MAE 

Group 5 

MAE 

Toluene 0.0329 0.0956 0.0745 0.0425 0.0189 .0074 

Xylene 0.0324 0.0958 0.0746 0.0337 0.0170 .0107 

 

 

 

a. 

b. 
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Figure 6-6 Parity and carbon yield over time plots for the targeting of desired compounds a.) 

toluene and b.) xylene 

 Method expansion to new datasets 

The previous three sections have shown that the groups indicated by a dendrogram can be 

accurately used to model the kinetics of the supercritical cracking of dodecane using group type 

kinetic modeling. To test the validity of this method when applied to different datasets the same 

procedure was followed to model the supercritical cracking of dodecane in the presence of 

supercritical water. The presence of supercritical water changes the chemistry as the reaction is 

now hydrothermal instead of pyrolytic and therefore this can be considered a new dataset.  

This data set tracks dodecane and 21 reaction product carbon yields over 6 time points. This 

data was once again fed into the dendrogram algorithm using average linkage and the resulting 

dendrogram can be seen in Figure 6-7. Once again C12 is the most dissimilar compound, which 

is a good indicator. In the presence of supercritical water, C12 is even more dissimilar than the 

products as compared to when there is no supercritical water. This is believed to be due to the fact 

that the carbon yields of the products are reduced in the presence of supercritical water.  
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Figure 6-7 Dendrogram using average linkage of supercritical cracking of dodecane in the 

presence of supercritical water  

Figure 6-7 indicates four groups, 1.) C12, 2.) C4 and C5, 3.) C1, C2 and C6 and 4.) 

everything else. However, when the concentrations of each group were plotted over time (Figure 

E.6-14) it can be seen that there was very little difference between the C1/C2/C6 group and the 

group of the remaining products. It was determined that these groups were not dissimilar enough 

(<5%) to separate and going forward the groups indicate by the dendrogram are as follows: 

1.) C12 

2.) C4 and C5 

3.) Alkanes, aromatics, C1, C2 and C6 

As all reactions occurring in parallel showed the lowest error in previous sections, this 

reaction pathway was used again to model the kinetics of this data set. The results can be seen in 

Figure 6-8, where Figure 6-8a shows the calculated yields verse the experimental and Figure 

6-8b shows the yields over time. Once again, with the exception of one of the C12 predications, 

the data points on Figure 6-8a are clustered closely to the 1:1 line showing a good fit between 
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calculated and experimental carbon yields. This trend can also be seen in Figure 6-8b, where with 

the exception of the final C12 data point, there is close agreement between the calculated and 

experimental yields.  

 

 

Figure 6-8 Kinetic modeling results for reaction P (all reactions in parallel) vs a.) the experimental 

carbon yields for each group and b.) time with the open circles indicating experimental data and 

the solid line being the calculated yields for the supercritical cracking of dodecane in the presence 

of supercritical water  

6.4 Conclusion  

 Through this work it has been shown that the machine learning algorithm of dendrograms 

can be used to determine similarity within reaction products for the purpose of creating groups for 

group type kinetic modeling. These groups can then be used to accurately calculate the carbon 

yields over time and specific compounds of interest can still be individually tracked without 

reducing overall model accuracy. Use of this method is an alternative way to determine groups in 

group type kinetic modeling that eliminates the need for human and chemical intuition.  
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6.5 Appendix E 

 

Table E.6-4 Raw Experimental Carbon Yields for Supercritical Dodecane Cracking in the Presence of ZSM-5240 

Time 0 15 30 60 90 120 

C1 0.031344 0.036597 0.058363 0.057159 0.104064 0.093325 

C2 0.018537 0.021644 0.03507 0.035064 0.058302 0.059046 

C3_propane 0 0 0.000626 0.000231 0.000264 0.000339 

C4 0.106899 0.124813 0.164924 0.174162 0.231039 0.187319 

C5 0.057025 0.073119 0.099562 0.122736 0.118234 0.121025 

C6 0.054097 0.05056 0.043092 0.061143 0.031843 0.042762 

C7 0.018467 0.018922 0.023451 0.030279 0.018906 0.030915 

C8 0.054097 0.05056 0.043092 0.061143 0.031843 0.042762 

C9 0.003772 0.001988 0.004845 0.005943 0.004006 0.007328 

C11 0.003539 0.001877 0.001956 0.001065 0.000612 0.005929 

C12 0.588101 0.545709 0.333201 0.150742 0.071616 0.130674 

C13 0 0.002315 0.000319 0.002414 0.003099 0.003708 

Benzene 0.003582 0.004649 0.002055 0.001783 0.004258 0.003834 

Toluene 0.01305 0.00874 0.017626 0.017149 0.01923 0.019403 

Ethylbenzene 0.003782 0.004428 0.005836 0.005433 0.007471 0.006463 

Xylene 0.024378 0.021355 0.039799 0.041816 0.047776 0.044157 

C9_aromatic 0.024621 0.02535 0.041513 0.049675 0.056171 0.052645 

C10_aromatic 0.017396 0.020178 0.030116 0.040664 0.06126 0.041188 

alkylnaphthalene 0.006611 0.004901 0.014337 0.011917 0.011625 0.016507 

Heavy 0 0 0.049902 0.154947 0.11681 0.087235 

Coke 0.0179 0.0182 0.018255 0.01857 0.01998 0.02139 
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Figure E.6-9 Dendrogram for the carbon yields for supercritical cracking of dodecane with 

1,000 artificial data points generated using linear regression. 

 

Figure E.6-10 Dendrogram for the carbon yields for supercritical cracking of dodecane with 

1,000 artificial data points generated using piecewise linear regression. 
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Figure E.6-11 Dendrogram for the carbon yields for supercritical cracking of dodecane with 

1,000 artificial data points generated using Cubic Splines. 

 

Figure E.6-12 Dendrogram for the supercritical cracking of dodecane in the presence of ZSM-5 

when the data is normalized between 0 and 1 using a scale transform 
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Figure E.6-13 Kinetic modeling results for reaction P (all reactions in parallel) with three groups 

vs. the time with the open circles indicating experimental data and the solid line being the 

calculated yields for the supercritical cracking of dodecane in the presence of supercritical water 
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Table E.6-5 Sum of squared errors and average maximum absolute error for kinetic modeling of 

each possible reaction pathway  

Reaction 

Pathway  

Reaction Name Sum of Squared 

Errors 

Average Max Absolute 

Error 

    ↗ 2 

1  

   ↘  3 

P 0.0332 0.0674 

1 → 2 → 3  S1 0.0415 0.0847 

1 → 3 → 2  S5 0.0619 0.0970 
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Figure E.6-14  Normalized concentration over time for the groups identified in Figure 6-7 for 

SCDSCW
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Chapter 7: Use of Machine Learning and Monte Carlo 

Analysis to Various Applications  
 

The machine learning and Monte Carlo modeling techniques developed in this thesis were also 

be applied to other feedstocks and problems. This chapter will briefly outline the work done to 

apply these techniques to organic biomass feedstocks as well as a different application of 

polystyrene pyrolysis. 

7.1 Wet Organic Biomass 

HTL has been extensively studied for the conversion of wet organic biomass feedstocks into 

bio-oils. Diverting these wet organic biomasses away from landfills is important not only in terms 

of the limited space available in landfills, but also due to the emissions created when these 

feedstocks degrade in landfills. Utilizing the extensive data existing in the literature allows for the 

development of machine learning models that can predict oil yields for HTL of biomass feedstocks. 

Chen, et. al.125 created a dataset of 525 data points for any wet organic biomass HTL data existing 

in the literature. The correct handling of data for small datasets was detailed extensively to 

highlight limitations of the work previously published. The dataset was used to optimize 8 different 

machine learning algorithms, of which Random Forest, XGBoost and ANN had the best 

performance. The performance of the model was benchmarked against models existing in the 

literature and the predictions applied to a technoeconomic analysis. The TEA showed that biocrude 

yield has a significant impact on Minimum Fuel Selling Price up until approximately 40%, after 

which the impact is greatly reduced.  

The knowledge and methods developed in this thesis aided in the development of the data 

handling protocols outlined in this work, as well as the bench marking of model performance 

compared to other models in the literature.  
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7.2 Bamboo 

Ekwe, et.al.252 explored the mechanochemical pretreatment of Bambusa vulgaris for the 

creation of waste free renewable sugars. The Monte Carlo techniques developed in this thesis were 

applied to this problem to understand the amount of ethanol that could be created in Nigeria using 

mechanochemical pretreatment followed by subsequent fermentation. Uncertain parameters for 

glucose, and xylose yields along with available land were incorporated into the model. The results 

of the Monte Carlo model indicated that utilizing all marginal land not necessary for solar to grow 

bamboo, could offset 50-80% of Nigeria’s domestic gasoline usage. With no more than 30% of 

arable land also used for bamboo growth, 100% of Nigeria’s domestic gasoline usage could be 

offset using bamboo derived ethanol.  

7.3 Distillation of Polystyrene to raw styrene 

Chemical recycling of waste plastics will be an important part of the recycling portfolio 

necessary to address the worlds waste plastic problem. The products that can be produced from 

chemical recycling must be diverse and have markets available for the technologies to be viable. 

In this work the conversion of waste plastic back to styrene monomers through pyrolysis and two 

stage distillation was explored. Both the energy requirements and economics of the process was 

analyzed using a mixture of Aspen modeling and economic modeling. The learnings from this 

thesis were applied to the problem to account for uncertainty in the economic performance 

parameters. A Monte Carlo analysis was completed to get estimations and uncertainties for the 

Levelized Production Costs, as well as Total Product Cost and Total Capital Investment, for plant 

scales from 15 to 120 tons per day. Levelized productions costs less than $3/ kg of styrene 

produced were achievable with scales greater than 60 tons per day regardless of product feedstock 

costs. This work indicated the potential of using pyrolysis to convert waste polystyrene back into 

styrene monomer, a promising result for the development of circular plastics recycling.  
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Chapter 8: Future Work  
 

The work in this thesis has added to the knowledge of how thermal depolymerization 

technologies can be used to expand waste plastic recycling capabilities. However, there is still 

work to be done before wide spread deployment of these technologies is feasible. As promising as 

pyrolysis and hydrothermal liquefaction are, the impact of real waste contaminants such as 

additives, colorants and plasticizers, which are often trade secrets, is just starting to be understood. 

Large scale deployment of thermal depolymerization technologies is currently limited by two 

major factors: understanding the impact of real waste and associated contaminants on not only 

reaction yields, but also product compositions and finding markets for byproducts. In this chapter 

suggestions will be made for how to overcome these limitations at all three scales studied in this 

thesis; oceans, rivers and MRFs. 

 It was shown that fuel created from theoretical ocean plastics in an onboard HTL 

conversion system can thermodynamically fuel self-powered ocean cleanup. This work relied on 

studies published in the literature that used virgin polymers. Although HTL is known to be able to 

handle contaminants, the exact composition of fuels created from real ocean plastics cannot be 

known without more study. These plastics will have the inherent additive contaminants all real 

waste plastic has along with organic matter containment from its exposure to the environment. 

Acquiring waste from the GPGP would allow for experimental optimization of reaction conditions 

for optimal oil yield.  

  Along with optimizing oil yields, it is critical to also understand the composition of the 

oils made from real GPGP waste. A compositional understanding of both the waste and the oil will 

expand the fields knowledge of how real waste composition effects oil composition. For self-

powered ocean cleanup to be feasible the oil properties cannot change drastically with feedstock 
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composition changes. It is also important for more study to be done on how the oils created act in 

a marine diesel engine. If a traditional marine diesel engine cannot use blue diesel directly research 

into modified engines may be necessary. A reliable fuel that the selected engine can efficiently 

consume is required for deployment. The research done using real waste will help overcome the 

major remaining questions about the feasibility of self-powered ocean cleanup.  

 Similar to ocean plastics, river plastics will have organic contaminants that could impact 

the performance of pyrolysis reactions. Plastics found at MRFs on the other hand may have 

contaminants in the form of residual product and label contaminants. Regardless of its origin and 

specific contaminants the models developed in this work are made with data that is almost entirely 

for virgin plastics. Even the mixtures that have been studied are typically created using virgin 

polymers. This means that if contaminants have a major role in the performance of thermal 

depolymerization technologies, the models developed in this work will not be able to account for 

and predict these impacts. Addressing this limitation is a two-fold approach, the first of which is 

continuing research being done on real waste streams, as it was for ocean plastics. The models 

developed here can be used to choose the best real waste feeds to do further research on. Careful 

analysis of both oil yield and oil composition along with reporting of the yields of the other phases 

(i.e. gas, residual solid and aqueous when applicable) of these feedstocks will enhance the quality 

and amount of data existing in the literature. The results should be compared to the predictions 

made to understand the potential impact contaminants have on oil yield and understand if the 

models created here are accurate for real waste. As more and more data become available, the 

datasets can be expanded and the models re-run to increase accuracy and applicability of the 

predictions that can be made. Continuous improvement of the models as the field continues to 

advance will only increase the power and knowledge that can be gained from them.  
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 Along with increasing the amount of data for real wastes, improvements to the way data is 

reported in the literature will allow for the development of more accurate models. Currently, in the 

field there is no agreed upon definition of what constitutes oil. Some papers report all liquid 

product as oil, while others will distinguish between heavy and light phases of oil. This results in 

comparisons not always being one to one and incorporating inherent error into any model trained 

on the data. Along with varying oil definitions, there is also large variability in the extraction 

processes used from research group to research group. Complete uniformity in the experimental 

process is not realistic, nor is it necessarily a good idea as it could limit research progression, but 

uniformity in reporting the processes used is necessary. This will allow for a better understanding 

within the field on how these experimental decisions impact process performance. A complete 

understanding of the process at the lab scale experimental level will aid in scale up of these thermal 

conversion technologies along with allowing for the development of more accurate models by 

reducing the inherent error in the dataset.  

 For systems designed to consume HTL or pyrolysis derived fuels directly, such as self-

powered ocean cleanup or river-based conversion systems, understanding potential product 

markets is unnecessary. While also true at MRFs, where fuel generated could be used to offset any 

liquid fuel consumption at the facility, creating products with higher values than diesel fuel will 

improve the technoeconomic performance. To create the highest value products, a fundamental 

understanding of the technology is necessary. The work outlined in chapter 5 of this thesis began 

the process of understanding the critical role of radicals in the depolymerization of polystyrene. 

However, more work is required to fully understand the depolymerization mechanism in the 

presence of sub- or supercritical water and how it differs from the more well understood pyrolysis 

mechanism. There are two key areas that need more study, the first of which is the impact of time 
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on HTL reactions, at conditions that create oil (365 °C or 400 °C) and at conditions that do not 

generate any oil (350 °C). At both of these conditions, study of the solid phase is required to fully 

understand the mechanism. It was seen for RI-HTL that changes in the molecular weight of the 

solid were occurring even when oil yield was not changing.  

A time study at 350 °C is important because initial studies of HTL at 350 °C with a 20-minute 

reaction time showed that although no oil was created, the molecular weight of the residual solid 

was significantly reduced. Reactions with reaction times less than 20 minutes will verify the 

hypothesis that the molecular weight of the solid is reducing with time, indicating that the presence 

of water in HTL promotes mid-chain scission, as compared to in pyrolysis where the primary 

mechanism is end-chain unzipping. Increasing the reaction time past 20 minutes will also give 

insight into whether 350 °C is a severe enough condition to produce oil in traditional HTL reactions 

if enough time is given.  

Further study at either 365 °C or 400 °C will aid in understanding the mechanism of HTL 

depolymerization and also aid in understanding if RI-HTL fundamentally changes the 

depolymerization mechanism or just promotes it at less severe conditions. It is hypothesized, based 

on the knowledge of thermal depolymerization of PS, that radicals initiate beta-scission reactions 

which are the primary depolymerization mechanism. It was hypothesized that RI-HTL will initiate 

these reactions and not fundamentally change the depolymerization mechanism. Therefore, it 

would be expected that a time study at an HTL condition that produces oil would have the same 

behavior as RI-HTL at 350°C. RI-HTL at 350°C showed a decrease in the molecular weight of the 

residual solid with no increase in oil yield. A similar result for HTL would strongly suggest that 

the key depolymerization mechanism in the presence of water is mid-chain scission as stated 

previously.  
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The other key area that needs more study is understanding the role of oxygen in RI-HTL and 

answering whether RI-HTL is dominated by radicals or by oxidation reactions. Initial studies were 

completed using a radical source that did not have oxygen (dimethyl diphenyl butane) which 

showed promising oil yield performance, but DMDB was too stable and partially remained in the 

oil product after reaction making determining oil yield difficult. Oxidative runs were also 

completed where HTL reactions at 350°C were charged with oxygen in quantities equaling a O:C 

ratio of 0.091. These runs did not result in any oil yield but did result in visible decay of the residual 

solid. These results strongly suggest that it is a combination of both radical initiated and oxidative 

chemistry but more studies with various radical and oxygen sources are needed to confirm this 

theory.  

This work has shown the importance of understanding not only the oil produced in these 

reactions but also the residual solids. In the literature for HTL of polymers, analysis of the solid 

phase is rarely if ever completed. There is significant room for research into not only the state of 

these residual solids in the reaction but also the best ways to analyze them. Not studying the 

residual solid phase leaves a massive gap in the fields understanding of HTL depolymerization 

mechanisms, which negatively impacts the ability to tune the reaction for production of specific 

desired compounds.  

Production of fuels from waste plastics is a promising way to handle end of life plastics and 

mixtures that cannot be separated but production of higher value products is also important. 

Production of higher value products, such as oxygenated single-ring aromatics has been 

demonstrated in this work but finding a market for these products could be difficult. Future work 

that demonstrates how these compounds can be used to create high value products, potentially 

without the need for extensive distillation to separate products, will aid in deployment of these 
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systems. Proof that these oils can be used to create products will promote further investment in the 

field and expand the market potential.  

Finally, in this work RI-HTL was demonstrated for polystyrene which is a polymer that cannot 

currently be recycled and therefore an important polymer to understand. However, polystyrene 

accounts for only approximately 6% of US waste plastic. Understanding how other polymer types 

respond to RI-HTL can further expand its potential impact. It is also important to further the 

research for both mixed plastic feedstocks and real waste feedstocks to once again understand the 

potential impact of contaminants on the process performance.  

Although there are limitations that exists in the current understanding of thermal 

depolymerization technologies, deployment of these technologies is feasible with little effort. This 

work has shown that these technologies are not only thermodynamically feasible, but also 

economically feasible. With a limited amount of future research to understand the effect of 

contaminants on performance, these technologies can be widely deployed and greatly reduce the 

amount of plastic going to landfills and ending up polluting the environment. These technologies 

are only one part of a multi-faceted approach to eliminating waste plastic that must also include 

research into biodegradable polymers, enhanced and truly circular recycling and a reduction in the 

world’s reliance on plastic.  
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Chapter 9: Conclusions 
 

The studies performed here have combined computational methods, including machine 

learning, with experimental work to demonstrate the potential of thermal depolymerization 

technologies as a viable waste plastic recycling method. Utilizing computational methods, such as 

thermodynamic modeling and machine learning are critical for optimizing experimental resources 

and driving deployment of these technologies within the next decade. This work identified key 

areas that can benefit from the incorporation of machine learning models, along with ways to 

increase the value of byproducts.  

In order to create a valuable fuel product from waste plastic, the fuel must have an energy 

quantity greater than the energy consumed to create said fuel. This work developed a method to 

analyze the thermodynamic potential of a feedstock, while accounting for uncertainty in process 

parameters. It was shown that both self-powered ocean cleanup and self-powered conversion of 

river plastics is thermodynamically feasible. Furthermore, this work has shown how machine 

learning models can be combined with thermodynamic modeling, allowing for the thermodynamic 

potential of any new feedstock to be studied, regardless of the availability of experimental work 

completed at those conditions.  

Along with thermodynamic feasibility, understanding the economic potential of new feedstocks 

is a critical aspect for widescale deployment of thermal depolymerization technologies. This work 

was able to combine machine learning models with a technoeconomic analysis to demonstrate how 

machine learning can be used to rapidly predict the oil yield of a new feedstock. These predictions 

can then be integrated into Aspen and a technoeconomic analysis to predict the minimum selling 

price of any products produced. Pyrolysis of waste plastic in nearly all 50 states was found to be 

economically feasible.  



180 

 

 This work identified methods to identify, track and produce select desired reaction products 

through machine learning modeling. It was once again demonstrated how machine learning can be 

integrated into traditional kinetic modeling techniques and produce equally accurate predications 

while eliminating a reliance on a specific researcher’s chemical intuition and decision making. 

This further supports that machine learning can be effectively used in chemical engineering in a 

variety of ways, and future work should continue to expand how machine learning is applied in 

the field. 

 Lastly, this work created high value oxygenated single-ring aromatic compounds during 

HTL reactions of polystyrene by adding an oxygenated external radical source, hydrogen peroxide. 

It has also reduced the severity of conditions necessary for complete depolymerization of 

polystyrene, an important advancement in both technology and safety. This RI-HTL technology 

has been demonstrated for the first time in this work. RI-HTL has the potential to change the HTL 

deployment landscape by creating new products with higher economic value than the fuels 

traditionally made from waste plastics HTL.  

 The work presented here begins to shed light on the thermodynamic and economic viability 

of deploying thermal conversion technologies to convert waste plastics to valuable products. It 

also advances the fields knowledge of how machine learning can be integrated into traditional 

chemical engineering problems. Through continued research in both machine learning and the 

depolymerization mechanism for plastics in the presence of water, deployment of thermal 

depolymerization technologies will become less expensive and more common.  
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