
Modeling Heterogeneous Users Behaviors in Online Systems

A Dissertation

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Data Science

by

Thanh Tran

September 03, 2020

APPROVED:

Professor Kyumin Lee
Worcester Polytechnic Institute
Advisor

Professor Randy C. Paffenroth
Worcester Polytechnic Institute
Committee Member

Professor Elke A. Rundensteiner
Worcester Polytechnic Institute
Program Director

Professor Xiangnan Kong
Worcester Polytechnic Institute
Committee Member

Professor Dongwon Lee
Penn State University
External Committee Member

Abstract

Many online systems such as e-commerce, music/video streaming platforms

have been proliferating in recent decades, creating dramatic changes in peo-

ple’s shopping experiences by providing accessibility to incredible volumes

of products, and enabling millions of users to sell/purchase online commodi-

ties. In such systems, understanding behavior of both product sellers and

customers, two main objects of the online systems, is important to the sys-

tems’ prosperity. Thus, this dissertation makes three unique contributions as

followings:

First, we focus on understanding and characterizing the product delivery ac-

tivities of the product owners. This task has played an essential role in main-

taining not only the trust between the consumers and the product owners but

also the trust between these two objects and the platform providers. Un-

fortunately, in the literature, little is known to address the problem. In this

direction, we extract novel features that reveal factors, which influence to the

product delivery phase of the product owners. As a result, we build predictive

models for on-time product delivery identification and delivery duration time

estimation in the crowdfunding platforms.

Second, we investigate the problem of modeling consumer behaviors with

global constraints. The problem is crucial in many applications like basket-

based shopping platforms, video/music streaming services (i.e. Spotify, YouTube,

etc.). This is mainly because a consumer preference is often decided by the

general taste of all products she/he preferred so far in her/his current session.

In this line, we present a Matrix Factorization (MF) based recommender with

several constraints on global similar product embeddings and global similar

consumer embeddings. Due to the fact that MF based methods are intrin-

sic to a linear nature and dot product operator in MF based methods do not

convey the crucial triangle inequality, we further proposed three novel met-

ric learning-based neural recommenders to encode complex preferences of

customers over products better. Moreover, we improve the robustness of our

models by applying adversarial personalized ranking and customizing it with

a flexible noise.

Finally, we study the task of modeling consumer behaviors with both long-

term and short-term interest dependencies. In many e-commerce platforms

like Amazon, Netflix and Yelp, encoding a consumer long-term preference

dependency based on all of her interacted products so far is not enough. The

main reason is that her preferred next product can have a strong correlation

with her current interest, which is reflected by her recently preferred items.

To address the task, we present signed distance-based neural recommenders.

Furthermore, we go beyond the Euclidean representation space and present

our Quaternion-based recommenders that introduce the benefits of Quater-

nion space in modeling the consumer preferences with both long-term and

short-term dependencies.

Dedication

To my wife, my son, and my parents

Acknowledgements

First of all, I would like to thank my wife, Chung Hoang, for leaving behind

all her great successes in her profession in our country to be here in the U.S

with me, to support me to achieve at this point of my profession, to encourage

me whenever I failed to implement my ideas or when my ideas did not go

well. Together with my son Andrew, they are my biggest motivation to keep

me working hard in this long, challenging, but valuable Ph.D. journey. I am

also grateful to have my best parents – Hai Yen Thi Nguyen and Thach Ngoc

Tran – who inspired me to pursue a doctorate program. Together with my

parents in law, Thuy Do and Vien Hoang, all of them have always been being

by my side to help me. Even though living in another half of the earth, when

my son Andrew was born, my mother and my mother in law travelled to the

U.S to cheer us up and to support us, allowing me to focus on my work during

that hard time, and I am grateful. I also feel blessed when having my lovely

American parents – Christine Hult and Nathan Hult. You have been sharing

the highs and the lows of my Ph.D. adventure since I started. Your emotional

and practical support has nourished my open mindedness, work ethic, and

creative problem solving. I love all my brothers and sisters and thank all of

you for your tremendous supports during my Ph.D. life.

I sincerely thank my advisor, Prof. Kyumin Lee, for supporting me when-

ever I need, providing me with multiple inspiring and valuable discussions

and comments to all my publications. Prof. Lee is always calm to wait for

my academic maturity and to stay together with me to fight against the pub-

lication deadlines. More importantly, Prof. Lee has been giving me so much

life experience and advice since my very first days coming to the U.S with

limited experience and a culture shock. Without his help, I would certainly

not be where I am now in my personal and professional development.

I would like to thank all my committee members, Prof. Dongwon Lee, Prof.

Xiangnan Kong, Prof. Randy Paffenroth, for providing me with a lot of fruit-

ful comments and helpful discussions on my research whenever I got stuck,

and for spending your precious time reading my publications and this dis-

sertation. Especially, I am very grateful to Prof. Dongwon Lee for helping

me formulate my ideas much better in my first days and my first publica-

tion working in recommendation systems, and Prof. Xiangnan Kong for his

detailed attention on theory and motivation of my recent publications to im-

prove its quality to the highest point.

I thank Prof. Elke A. Rundensteiner and the Data Science program of Worces-

ter Polytechnic Institute for providing me with a lot of training classes, great

programs and research colloquiums where I can learn a lot of novel ideas

from other researchers, as well as providing me so many competitions to join

in and learn from my colleagues. Those fundamental materials are undoubt-

edly must-have equipment for my current and future professional develop-

ment.

I would like to thank all my collaborators, Di You, Nguyen Vo, Renee Sweeney,

Yiming Liao, Xinyue Liu, Prudhvi Ratna Badri Satya, for supporting me

with their brilliant ideas and productive collaborations. They elaborated and

polished many unclear important points in many of my publications, and

strengthened my publications and knowledge in many aspects. It was my

great pleasure to have opportunities to collaborate with them.

I also thank members of our research group, Guanyi Mou, Qian Wang, Yichuan

Li and all other members in the DSRG group for sharing with me their re-

searches and helping me to consolidate my research knowledge gap. They

are always there and are so friendly to answer all kinds of questions I have.

I would like to express thanks to Yifan Hu and other members of the Data

Science team for giving me a research opportunity at the Yahoo! Research

Lab.

Last but not least, I would like to thank Mary Racicot, our conscientious

administrative assistant of the Data Science Program, for helping me out with

all administrative works.

Publications

12. Thanh Tran, Yifan Hu, Changwei Hu, Kevin Yen, Fei Tan, Kyumin Lee and Se

Rim Park, “HABERTOR: An Efficient and Effective Deep Hatespeech Detector”, to ap-

pear in Proceedings of The 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2020.

11. Thanh Tran, Di You, and Kyumin Lee, “Quaternion-Based Self-Attentive Long

Short-Term User Preference Encoding for Recommendation”, in Proceedings of the ACM

International Conference on Information and Knowledge Management (CIKM), 2020.

10. Thanh Tran, Renee Sweeney, and Kyumin Lee. “Adversarial Mahalanobis Distance-

based Attentive Song Recommender for Automatic Playlist Continuation”, In Proceed-

ings of the International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (SIGIR), 2019.

9. Thanh Tran, Xinyue Liu, Kyumin Lee, and Xiangnan Kong, “Signed Distance-based

Deep Memory Recommender”, In Proceedings of the Web Conference 2019 (WWW),

2019.

8. Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee, “Regularizing matrix

factorization with user and item embeddings for Recommendation”, In Proceedings of

the ACM International Conference on Information and Knowledge Management (CIKM),

2018.

v

7. Thanh Tran, Kyumin Lee, Nguyen Vo, and Hongkyu Choi, “Identifying On-time Re-

ward Delivery Projects with Estimating Delivery Duration in a Crowdfunding Platform”,

In Proceedings of the International Conference on Advances in Social Network Analysis

and Mining (ASONAM), 2017.

6. Thanh Tran and Kyumin Lee, “Characteristics of On-time and Late Reward Delivery

Projects”, In Proceedings of the International AAAI Conference on Web and Social Media

(ICSWM), 2017.

5. Yiming Liao, Thanh Tran, Dongwon Lee and Kyumin Lee, “Understanding Back-

ing Patterns in Online Crowdfunding Communities”, In Proceedings of the International

ACM Web Science Conference (WebSci), 2017.

4. Nguyen Vo, Kyumin Lee, Thanh Tran, “MRAttractor: Detecting Communities from

LargeScale Graphs”, In Proceedings of the IEEE International Conference on Big Data

(IEEE BigData), 2017.

3. Nguyen Vo, Kyumin Lee, Cheng Cao, Thanh Tran and Hongkyu Choi, “Revealing and

Detecting Malicious Retweeter Groups”, In Proceedings of the International Conference

on Advances in Social Network Analysis and Mining (ASONAM), 2017.

2. Thanh Tran and Kyumin Lee, “Understanding Citizen Reactions and Ebola-Related

Information Propagation on Social Media’, In Proceedings of the International Confer-

ence on Advances in Social Network Analysis and Mining (ASONAM), 2016.

1. Prudhvi Ratna Badri Satya, Kyumin Lee, Dongwon Lee, Thanh Tran and Jiasheng

Zhang, “Uncovering Fake Likers in Online Social Networks”, In Proceedings of the ACM

International Conference on Information and Knowledge Management (CIKM), 2016.

vi

Contents

Publications v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Challenges . 3

1.3 Overview of this Dissertation . 4

1.4 Dissertation Organization . 7

2 Related Work 10

2.1 Crowdfunding activities . 10

2.2 Recommendation Systems . 11

3 Modeling product creator behavior in product delivery activities 14

3.1 Introduction . 14

3.2 Dataset . 16

3.3 Feature Engineering . 19

3.3.1 Latent Reward Difficulty Features 19

vii

CONTENTS

3.3.2 Other Feature Sets . 24

3.4 Identifying On-time and Late Reward Delivery Projects 25

3.4.1 Experimental Setting . 25

3.4.2 Experiment Results . 28

3.5 Predicting Rewards Delivery Duration 29

3.5.1 Experimental Setting . 30

3.5.2 Experiment Results . 32

4 Modeling consumer behaviors with long-term dependencies 34

4.1 Introduction . 34

4.2 Recommending Products with Regularized User and Item Embeddings . . 37

4.2.1 Method . 37

4.2.2 Experimental Settings . 49

4.2.3 Experimental Results . 53

4.3 Recommending Products with a Metric Learning Based Approach 60

4.3.1 Problem Definition . 62

4.3.2 Preliminary . 62

4.3.3 Method . 64

4.3.4 Experimental Settings . 75

4.3.5 Experimental Results . 79

5 Modeling consumer behaviors with long-term and short-term dependencies 86

5.1 Introduction . 86

5.2 Recommending Products with a Neural Signed Distance Based Approach 88

5.2.1 Problem Definition . 90

5.2.2 Method . 91

5.2.3 Experimental Settings . 103

viii

CONTENTS

5.2.4 Experimental Results . 110

5.3 Recommending Products with a Quaternion Representation Based Ap-

proach . 117

5.3.1 Problem Definition . 118

5.3.2 Preliminary . 119

5.3.3 Method . 121

5.3.4 Experimental Settings . 130

5.3.5 Experimental Results . 134

6 Conclusion and Future Work 141

6.1 Conclusion . 141

6.2 Future Work . 143

References 145

ix

List of Figures

1.1 Dissertation Overview . 2

3.1 Crowdfunding: Timeline overview of a crowdfunding project. 15

3.2 Crowdfunding: An update containing shipping information. 18

3.3 Crowdfunding: Category distributions. 19

3.4 Crowdfunding: Semantic reward clusters. 22

3.5 Crowdfunding: Word clouds of three clusters with various difficult levels. 22

4.1 RME: An overview of the model intuition 36

4.2 RME: Performance when varying top-N recommendation list 51

4.3 RME: Performance when varying latent dimension size 52

4.4 RME: Performance when varying regularization hyper-parameter 54

4.5 RME: Performance when varying negative sampling ratio 56

4.6 RME: Performance with dynamic settings of regularization hyper-parameters 57

4.7 RME: Performance on different cold-start user groups 58

4.8 MASR: Dot product and metric learning comparison. 60

4.9 MASR: Architecture of our MDR. 66

4.10 MASR: Architecture of our MASS. 68

4.11 MASR: Performance when varying top-N recommendation list. 81

4.12 MASR: Performance when varying embedding size. 81

x

LIST OF FIGURES

4.13 MASR: Attention scores vs PMI attention scores. 82

4.14 MASR: Runtime comparison . 84

5.1 Density distribution of item-item similarity scores 87

5.2 SDMR: Overall motivation. 88

5.3 SDMR: SDP overall architecture . 93

5.4 SDMR: SDM overall architecture . 95

5.5 SDMR: SDM multi-hop architecture . 100

5.6 SDMR: Attention Visualization . 114

5.7 SDMR: Performance when varying the number of hops 115

5.8 SDMR: Multi-hop attention visualization 116

5.9 QUALSE: Comparison of Euclidean and Quaternion representations . . . 117

5.10 QUALSE: QUALSE overall architecture. 121

5.11 QUALSE: Performance when varying top-N recommendation list and

embedding size. 135

5.12 QUALSE: Density distribution of item-item similarity scores in train/-

vad/test sets. 136

5.13 QUALSE: Attention scores comparison. 139

xi

List of Tables

3.1 Crowdfunding: Feature Sets Summary. 23

3.2 Crowdfunding: Top 10 features at different time periods. 24

3.3 Crowdfunding: Overall Prediction Performance. 27

3.4 Crowdfunding: Feature analysis. 29

3.5 Crowdfunding: Overall delivery estimation performance. 29

4.1 RME: Notations . 38

4.2 RME: Overall Performance . 49

4.3 MASR: Statistics of datasets. 75

4.4 MASR: Overall performance . 78

4.5 MASR: Performance of variants of our MDR and MASS. 79

4.6 MASR: Performance of MASS using various attention mechanisms. . . . 82

5.1 SDMR: Statistics of general recommendation task datasets. 104

5.2 SDMR: Statistics of shopping basket-based recommendation task datasets. 105

5.3 SDMR: Overall performance in the general recommendation task. 110

5.4 SDMR: Overall Performance on Shopping basket-based Recommendation 112

5.5 QUALSE: Dataset statistics. 131

5.6 QUALSE: Overall performance . 134

xii

1

Introduction

1.1 Motivation

Many online systems such as e-commerce, music/video platforms have been proliferat-

ing in the recent decade, enabling hundreds of millions of people to experience online

services. For instance, Amazon, as an e-commerce service provider, has more than 150

millions of prime consumers with more than 2.5 millions of sellers, who are actively sell-

ing on the marketplace1, and more than 350 millions products both from Amazon and

Amazon marketplace sellers. eBay, another e-commerce service provider, has 182 mil-

lions of users around the world with 1.3 billions of listings. In such online systems, there

are three main objects as shown in Figure 1.1: (1) the service provider, (2) the product

owners (i.e. sellers in Amazon, eBay), and (3) the consumers. The service providers pro-

vide online services for both product owners and customers so that they can interact with

each other by selling, purchasing or consuming the products/services. When the online

platforms present products to the customers, they may recommend relevant products to

the customers to help satisfy their needs and improve customer satisfaction.

1https://www.oberlo.com/blog/amazon-statistics

1

1.1 MOTIVATION

Online service providers

. . .

Product owners Consumers

Figure 1.1: Overview of relationships among consumers, product owners, and the online
service providers.

In one side, understanding and characterizing activities of product owners inherent in

goods delivery have played an essential role in the prosperity of online service providers.

Particularly, if the product owners deliver ordered products to consumers in a qualitative

manner, i.e., deliver the products on time and in good quality, consumers will be likely to

re-purchase the products in the future. This helps to maintain not only the trust between

the consumers and the product owners but also the trust between the consumers/product

owners and the platform providers.

In another side, studying and modeling consumer behaviors (i.e., activities associated

with purchasing and consuming commodities) have been a major area in economics and

marketing. From classical microeconomics to behavioral economics, researchers study

consumer behaviors via various approaches such as surveys, interviews, and statistical

tests. Recently, advanced technologies have supported e-commerce systems for storing

massive consumer-product interaction activities, allowing researchers to step into study-

ing consumer behaviors using the stored data, and opening possibilities of modeling con-

sumer behaviors with personalized recommendation systems.

2

1.2 RESEARCH CHALLENGES

1.2 Research Challenges

In the previous section, we described two user groups (i.e., product owners and con-

sumers) in online systems and the need for modeling their behaviors to prosper the suc-

cess of online service providers and improve user satisfaction. In this section, we present

two main research challenges when modeling user behaviors as follows:

• High diversification and variation: consumer’s preferences are highly diverse

and various from applications to applications. For example, in many problems

like automatic playlist continuation in music/video streaming services (e.g. Spo-

tify, Youtube), or shopping basket-based recommendation in e-commerce platforms

(e.g. Tafeng, Tmall), etc., the next product/item to be added in a target group (the

playlist in Spotify/Youtube, or the basket in Tafeng/Tmall) is often decided based on

the general taste of the target group. Thus, encoding the global theme of the target

group based on already-added products is necessary to model the consumer’s ac-

tivities. However, in other applications like next movie recommendation in Netflix,

next product recommendation in Amazon, etc., modeling long-term dependencies

of all previously consumed items is not enough. This is because the next consumed

item of the consumer has a strong correlation with the consumer’s current inter-

est, which is reflected by the recently preferred items. As a result, representing the

consumer’s taste using the latest consumed items should not be neglected.

• Representation Methodology: Due to the high diversification and variations of

consumer’s intents, designing which representation spaces, methodologies, or mod-

eling operators is still in demand. Specifically, Matrix Factorization-based methods

have greatly succeeded in connecting consumers to relevant products, but are sub-

optimal in modeling complex consumer-product relationships due to a linear na-

ture. This urges the need for designing neural network-based recommenders to

3

1.3 OVERVIEW OF THIS DISSERTATION

encode non-linear consumer-product relationships. In another side, the dot product

is mainly adopted in neural recommenders, but is still limited as it does not convey

the crucial triangle inequality. As a result, given that a consumer u1 prefers two

products iPhone 8 (i.e. item i1) and iPhone 8 Plus (i.e. item i2). Here, the two

items i1 and i2 are similar. Learning with dot product can lead to the following two

dimensional results: u=(1, 1), i1=(1, 0), and i2 = (0, 1), as uT1 i1 = 1, and uT1 i2 = 1.

Unfortunately, iT1 i2=0, indicating the two items i1 (iPhone 8) and i2 (iPhone Plus)

are not similar. Thus, by learning with the dot product operator, similar products/-

consumers can not be depicted correctly in the high dimensional space.

1.3 Overview of this Dissertation

In this dissertation, we aim to incorporate high diversification and variation of user’s

interests into proposed models, and propose better representation methodology for im-

proving online service quality and user satisfaction with making scientific innovation.

Therefore, we explore the product delivery behavior of the product owners – one of the

most important parts in establishing/ensuring the relationships between the consumers

and the product owners, as well as the relationships between these users and the online

service providers. Secondly, we aim to model the consumer preferences via two different

methodological traces: (i) long-term consumer interest constraints, and (ii) long-term and

short-term consumer intent constraints. To sum up, this dissertation makes the following

contributions in this direction:

• The first contribution of this dissertation is to examine the product delivery behav-

ior of the product owners. We study various factors affecting the product delivery

phase.

In particular, we focus on the delivery phase of promised rewards in crowdfund-

4

1.3 OVERVIEW OF THIS DISSERTATION

ing activities. Note that, in crowdfunding platforms, rewards are considered as

products, project creators are considered as product owners, and investors are con-

sidered as consumers. Also, our methods can be applied to other similar platforms.

In particular, we characterize which factors made the reward delivery late/on time.

Then, we extract novel features that reveal latent difficulty levels of the rewards.

As a result, we build predictive models to identify whether a creator will deliver

all rewards in a project on time or not. Moreover, we build a regression model to

estimate accurate reward delivery duration (i.e., how long it will take to produce

and deliver all the rewards) to assist the project creators in the platforms.

• The second contribution of this dissertation is to model consumer interests via

global constraints. We consider several factors while designing a personalized rec-

ommender system: (1) which items a user likes, (2) which two users co-like the

same items, (3) which two items users often co-liked, and/or (4) which two items

users often co-disliked.

Hence, we propose a joint Regularized Multi-Embedding recommendation model,

which combines the weighted matrix factorization, the co-liked item embeddings,

the co-disliked item embeddings, and the user embeddings, for both explicit and

implicit feedback datasets. We also design a user-oriented EM-like algorithm to

draw negative samples (i.e., disliked items) from implicit feedback dataset.

Due to the fact that matrix factorization based methods have a linear representa-

tion nature, we further propose three metric learning-based neural approaches to

encode non-linear relationships of consumers and items. Our approaches exploit

a metric-based attention mechanism to account for similarities between consumed

items and the next preferred item of a consumer, as well as utilize a Mahalanobis

metric learning to constraint the distances of similar consumers/items to be closer

5

1.3 OVERVIEW OF THIS DISSERTATION

in high dimensional space. Moreover, we improve the robustness of our models by

applying adversarial personalized ranking and customizing it with a flexible noise

magnitude. As a result, the proposed neural methods overcome the limitation of

our RME model.

• The third contribution of this dissertation is to model the consumer interests via

both global and local constraints. We propose models that reflect both (i) long-term

dependencies and (ii) short-term correlations of the consumer’s preferences.

We design and propose a deep learning framework called Signed Distance-based

deep Memory Recommender (SDMR), which captures non-linear relationships be-

tween users and items explicitly and implicitly. SDMR consists of two main com-

ponents: (i) a Signed Distance-based Perceptron (SDP) component, and (ii) a Signed

Distance-based Memory network (SDM) component. The SDP module measures

the signed distance between a target consumer and a target item, encoding a global

interest of the target consumer. The SDM component measures a signed distance

score between the target consumer and the target item via attentive distances be-

tween the consumer’s recently consumed items and the target item, thus reflecting

the consumer’s short-term interest.

While most existing recommender systems rely on the Euclidean space to repre-

sent consumers/items embeddings, we move further forward to utilize a Quaternion

space to encode consumers and items latent factors. Concretely, we use Quaternion

representations for all users, items and neural transformations in our proposed mod-

els. There are numerous benefits of the Quaternion utilization over the traditional

real-valued representations in Euclidean space. First, Quaternion numbers/vectors

consist of a real component and three imaginary components, encouraging a richer

extent of expressiveness. Second, instead of using dot product in Euclidean space,

6

1.4 DISSERTATION ORGANIZATION

Quaternion numbers/vectors operate on Hamilton product, which matches across

multiple (inter-latent) Quaternion components and strengthens their inter-latent in-

teractions, leading to a higher expressive model. Third, the weight sharing nature

of the Hamilton product leads to a model with a smaller number of parameters.

As a result, we propose novel Quaternion based models to learn a user’s long-term

and short-term interests more effectively. As a part of our framework, we pro-

pose Quaternion self-attention that works in Quaternion space. We also propose a

Quaternion-based Adversarial attack on BPR-loss to improve the robustness of our

models further.

1.4 Dissertation Organization

In this section, we describe the organization of this dissertation as follows:

• Chapter 2: In this chapter, we discuss related work about studying the delivery

behavior phases in crowdfunding platforms, as well as work on the recommendation

models.

• Chapter 3: In this chapter, we present characteristics of project creator in the re-

ward delivery phase in crowdfunding platforms. Specifically, we present various

feature types to distinguish on-time and late reward delivery projects, which further

help us to investigate techniques and develop tools for late/on-time reward delivery

identification of crowdfunding projects, as well as for the reward delivery duration

estimation.

The content of this chapter is extracted from the following publications:

– Thanh Tran and Kyumin Lee. Characteristics of on-time and late reward

delivery projects, In Proc. of ICWSM 2017, pages 676–679.

7

1.4 DISSERTATION ORGANIZATION

– Thanh Tran, Kyumin Lee, Nguyen Vo, and Hongkyu Choi. Identifying on-

time reward delivery projects with estimating delivery duration on kickstarter.

In Proc. of ASONAM 2017, pages 250–257.

• Chapter 4: In this chapter, we present details about the two proposed models: (i)

Regularized Multi-Embedding recommenders, and (ii) the three metric learning-

based neural recommenders including the Mahalanobis Distance-based Recom-

mender, the Mahalanobis distance-based Attentive Item Similarity Recommender,

and the fusion between these two neural models. Both of the proposed models

encode global consumer’s interests using the consumer-product interaction data.

The content of this chapter is extracted from the following publications:

– Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. Regularizing

Matrix Factorization with User and Item Embeddings for Recommendation.

In Proc. of CIKM 2018, pages 687–696.

– Thanh Tran, Renee Sweeney, and Kyumin Lee. Adversarial Mahalanobis

Distance-based Attentive Song Recommender for Automatic Playlist Contin-

uation, In Proc. of SIGIR 2019, pages 245–254.

• Chapter 5: In this chapter, we focus on modeling both long-term and short-term

dependencies of the consumer’s preferences. Particularly, we describe our two pro-

posals: (i) The Signed Distance-based Deep Memory Recommender, and (ii) the

Quaternion-Based Self-Attentive Long Short-Term User Preference Encoding rec-

ommender.

The content of this chapter is extracted from the following publications:

– Thanh Tran, Xinyue Liu, Kyumin Lee, and Xiangnan Kong. Signed Distance-

based Deep Memory Recommender. In Proc. of WWW 2019, pages 1841–

8

1.4 DISSERTATION ORGANIZATION

1852.

– Thanh Tran, Di You, and Kyumin Lee. Quaternion-Based Self-Attentive

Long Short-Term User Preference Encoding for Recommendation, In Proc.

of CIKM 2020.

• Chapter 6: We conclude with a summary of the contributions of this dissertation

and provide a discussion of future research extensions to the results we presented

here.

9

2

Related Work

In this chapter, we summarize related work on crowdfunding activities and recommenda-

tion systems as follows:

2.1 Crowdfunding activities

Researchers analyzed crowdfunding platforms [1, 2]. For example, Kuppuswamy et al.

[3] showed the dynamics of Kickstarter donors. Mollick et al. [4] studied the dynam-

ics of crowdfunding and revealed that personal networks and underlying project quality

were related to the crowdfunding success. Gerber et al. [5] analyzed why people cre-

ated and/or backed projects in crowdfunding platforms. Xu et al. [6, 7] showed various

factors to make a project successful in terms of the fundraising. Joenssen and Müller-

leile [8] analyzed 42k Indiegogo projects, and discovered that scarcity management was

problematic and reduced the chances of projects to successfully achieve the fundraising

goal. Researchers [9, 10, 11] studied the impact of social media and social communities

in raising fund. Joenssen et al. [12] showed that timing and communication were two key

factors to make projects successful.

10

2.2 RECOMMENDATION SYSTEMS

Etter et al. [13] examined 16k Kickstarter projects and proposed a model based on

pledged money features, and project and backer graph features to predict the success of

the projects. Greenberg et al. [14] extracted 13 features from each of 13,000 Kickstarter

projects and developed classifiers to predict project success. In [6, 15], the authors used

different feature traits to predict the success of projects. Li et al. [16] analyzed 18K

Kickstarter projects and built logistic and log-logistic based models to predict the chance

of successfully achieving goal. Solomon et al. [17] discovered that early donation played

an important role in making the project successful. Mitra et al. [18] proposed text features

of project pages for the project success prediction.

Other researchers studied building recommender systems for creators and backers/in-

vestors. An et al. [19] analyzed backers’ pledging behavior, and built a SVM classifier to

suggest potential backers to creators. In [20], the authors used temporal, personal, geo-

location and network traits to recommend a set of potential backers to projects. Rakesh

et al. [21] examined a project status, personal preference of individual investors and pref-

erence of investor groups. Then, they proposed a probabilistic recommendation model to

recommend projects to a group of investors.

Recently, Kim et al. [22] interviewed crowdfunding participants and found various

factors which influenced backers’ trust. They also conducted analysis for 4,089 delayed

projects to understand how 8 factors were related to delayed duration. However, they did

not study which project will pass estimated delivery date, nor how long a reward delivery

including production will take.

2.2 Recommendation Systems

General Recommendation: Matrix Factorization is the most popular method to encode

global user representations by using unordered user-item interactions [23, 24, 25]. Its

11

2.2 RECOMMENDATION SYSTEMS

basic idea is to represent users and items by latent factors and use dot product to learn

the user-item affinity. Despite their success, they cannot model non-linear user-item re-

lationships due to the linear nature of dot product. To overcome the limitation, neural

network based recommenders were recently introduced [26, 27, 28, 29]. [26] combined

a generalized matrix factorization component and a non-linear user-item interactions via

a MLP architecture. [30, 31, 32] substituted the MLP architecture with the auto-encoder

design. [33, 34] used memory augmentation to learn different user-item latent relation-

ship. When non-existed users come with some observed interactions (i.e., recently cre-

ated user accounts with some item interactions), the recommenders need to be rebuilt to

generate their representations. To avoid these issues, current works encode users by com-

bining the users’ consumed item embeddings in two main streams: (i) taking average of

the consumed items’ latent representations [35, 36], or (ii) attentively summing [37] the

consumed items’ embeddings.

Sequential Recommenders: Sequential recommendation is known for its superiority

to capture temporal dependencies between historical items [38]. Early works relied on

Markov Chains to capture item-item sequential patterns [39, 40, 41]. Other works ex-

ploited the convolution architecture to capture more complex temporal dependencies

[42]. These methods used short-term item dependencies to model a user’s dynamic in-

terest. Other sequential recommenders focused on modeling long-term user preferences

using RNN-based architectures [43, 44, 45, 46]. Recent works combined both long and

short-term user preferences in real-valued representations to obtain satisfactory results

[47, 48, 49].

Recommendation with auxiliary information: Another line of recommender systems

is to build recommendation models that take into account auxiliary information. Some

deep learning based works [32, 50, 51, 52] employ auxiliary information such as item

description [53], music content [54], item visual features [55, 56], reviews [57] to address

12

2.2 RECOMMENDATION SYSTEMS

the cold-start problem. However, this auxiliary information is not always available, and it

limits their applicability in many real-world systems.

13

3

Modeling product creator behavior in

product delivery activities

3.1 Introduction

Crowdfunding platforms have successfully connected millions of individual investors to

creators, and helped creators to bring their ideas into the reality. In recent years, a mar-

ket size of crowdfunding platforms has increased exponentially, reaching tens of billions

of dollars. Among various types of crowdfunding platforms, reward-based crowdfund-

ing platforms have become popular, especially, Kickstarter has become the most popular

crowdfunding platform. According to Kickstarter1, more than 2.5 billion dollars were

pledged by approximately 12 million backers to more than 110k projects.

As shown in Figure 3.1, a project in reward-based crowdfunding platforms has two

phases: (1) the fundraising phase – when a creator raises money by promoting the project

after launching it; and (2) the reward delivery phase – when the creator makes and ships

products as the rewards if the project was successful in terms of pledged money ≥ goal.

1https://www.kickstarter.com/help/stats

14

3.1 INTRODUCTION

BUILD
Think of a project idea. Design
and develop a project page
and rewards before launching
the project

LAUNCH
Creators posted their
projects in crowdfunding
platforms.

(Fundraising phase)

END OF FUND RAISING
Creators, who reached the goal,
will begin making promised
rewards

REWARD DELIVERY DUE
Creators are supposed to delivery
all the promised rewards until
their estimated delivery date to
maintain credibility

TP1 TP2

TP4TP3

(Reward delivery phase)

Figure 3.1: Project Timeline. In this study, we build our models at four time points (TP1,
TP2, TP3 and TP4).

In the literature, researchers mostly focused on the fundraising phase, by analyzing

dynamics of crowdfunding platforms [3], understanding why people created projects or

backed other projects [5], studying how to make a project successful [6, 7, 9, 10, 11],

predicting project success [13, 14, 15, 16], and recommending creators to backers or vice

versa [19, 21]. However, researchers rarely paid attention to the reward delivery phase.

According to Kickstarter1, 35% backers did not receive rewards on time. If creators

send rewards to backers on time, backers will be likely to invest in their upcoming projects

[58]. Although the time already passed the fundraising phase, if creators announce pro-

duction and delivery delay with a new estimated date as soon as possible, some backers

will still wait for receiving the rewards without losing much trust and without much sur-

prise. Some backers may request a refund to creators without waiting until the estimated

date (e.g., 1 year).

While on-time reward delivery becomes crucial for retaining backers in the creators’

future projects, it is difficult for creators to estimate an accurate delivery date because

of various reasons. First, 90% creators created a project the first time, so they don’t have

much experience in accurately estimating delivery date [6]. Second, some creators choose

a delivery date with their hunch without understanding the reward’s difficulty level. Third,

there may be other uncertainties like factory issues and unexpected problems in their

1https://www.kickstarter.com/fulfillment

15

3.2 DATASET

prototypes, requiring more time.

Unfortunately, little is known about what factors influence to on-time or late reward

delivery projects, and there is no prior work to estimate reward delivery duration. To fill

the gap, in this chapter, we focus on answering following research questions: Can we

build a predictive model which can predict whether a project will be an on-time delivery

project or not? Can we build a model which can estimate delivery duration accurately?

Completing these two tasks would be a big challenge with only using observable online

data available in a crowdfunding platform.

To answer the research questions, first we defined four time points TP1, TP2, TP3 and

TP4, which are when a project is launched, the middle of the fundraising phase, the end of

the fundraising phase, and the first 5% of the estimated longest reward delivery duration,

respectively as shown in Figure 3.1. An ideal model is supposed to predict on-time or

delay at TP1 and TP2 well so that the investors can decide whether they are going to

back the project or not. However, in practice, it would be very difficult because of many

uncertainties and limited data. Therefore, building models at TP3 and TP4 are important

and valuable as long as it can achieve high accuracy because creators can announce their

delay or re-estimate reward delivery date at TP3 and TP4. In addition, backers can request

issuing refund at TP3 and TP4. According to the refund policy of Kickstarter, it is possible

for creators to refund anytime, and backers can request a refund during the reward delivery

phase.

3.2 Dataset

This section presents our dataset with two types of ground-truth: (1) on-time or late re-

ward delivery project and (2) actual delivery duration.

Ground truth collection: We define an on-time reward delivery project and a late reward

16

3.2 DATASET

delivery project as follows:

• On-time reward delivery project: If all rewards in a project were shipped by the

longest estimated delivery date (LEDD), it would be called an on-time reward de-

livery project. Note that a project creator decides each reward’s estimated delivery

date when she creates her project page.

• Late reward delivery project: If a creator did not ship at least one of rewards by the

LEDD, the project would be called a late reward delivery project.

We collected all project pages (i.e., 168,851 project pages) from Kickstarter which

were created between 2009 and September 2014. Among the 168,851 projects, we ex-

tracted successful projects, each of which had a project goal equal to or greater than $100.

29,499 successful projects satisfied the condition. In addition, we collected updates and

comments associated with the successful projects.

Labeling each project for delivery status and duration requires reading all the updates

and comments. Instead of labeling all the successful projects, we sampled 10% of the

29,499 successful projects with keeping the same project distribution over project cat-

egories, year and goal. Then, three labelers independently labeled the 2,949 sampled

projects based on the following guideline:

• If a labeler could identify that all rewards in a project were shipped by LEDD (based

on updates and comments), and there was no complaint regarding not receiving the

rewards, she would label the project as an on-time reward delivery project.

• If there was at least one update from a creator after LEDD regarding delayed shipping

or a comment with a new delivery date beyond LEDD, a labeler labeled the project as

a late reward delivery project.

We excluded projects if labelers were not able to verify whether a project is an on-time

reward delivery project or not based on the labeling guideline. Finally, 2,198 projects were

17

3.2 DATASET

Figure 3.2: An update containing shipping information.

labeled by them, and consisted of 1,003 on-time and 1,195 late reward delivery projects.

Next, we were interested in collecting true/actual delivery duration as the ground truth

(i.e., how long it took to deliver all the rewards since the end of the fundraising phase).

Out of 2,198 projects, the creators of 1,598 projects posted updates with information

when they shipped all the rewards, as shown in Figure 3.2. Based on the information,

true/actual delivery duration of the 1,598 projects was calculated.

Categorical distribution: Figure 3.3 shows the categorical distributions of on-time and

late reward delivery projects. There was a higher probability of on-time reward delivery

in dance and theater-related projects because the rewards in those categories were often

live performance, show cases or dancing tutor classes, and were served at once for all

backers. In contrast, the rewards in other categories like games, technology, film were

real products (e.g., a game, book, movie), requiring more time to produce and deliver to

backers.

18

3.3 FEATURE ENGINEERING

21% 79%
31% 69%

35% 65%
36% 64%
38% 62%
39% 61%

44% 56%
45% 55%

55% 45%
55% 45%
58% 42%

64% 36%
66% 34%

83% 17%
89% 11%

games
technology

comics
film

journalism
design
music

publishing
food

photography
crafts

fashion
art

theater
dance

0 25 50 75 100
Percentage (%)

C
at

eg
or

y
on−time delivery late delivery

Figure 3.3: Category distributions of on-time and late reward delivery projects.

3.3 Feature Engineering

3.3.1 Latent Reward Difficulty Features

In this section, we propose a novel approach to measure a reward’s difficulty level and

a project’s overall difficulty level toward extracting features, which will be a part of our

final feature set for building models in the following sections. Our hypothesis is that

true delivery duration for a reward depends on its difficulty level, and reward description

may reveal the difficulty level. It makes sense that developing a game as a reward requires

more time and effort than producing a t-shirt. In this section, we study how to measure the

difficulty level of each reward and represent how hard a project is in terms of producing

and delivering its rewards.

Clustering approach to get new features: We group rewards into the same cluster if

their descriptions contain semantically similar meaning. Intuitively, if two reward de-

scriptions are semantically similar, they may have similar difficulty level and thus require

a similar amount of time to produce and deliver.

19

3.3 FEATURE ENGINEERING

Our approach consists of six steps as follows:

• Step 1: 1,273,617 rewards were extracted from 149,189 Kickstarter projects, and

their reward descriptions were preprocessed by removing stop words and punctua-

tion.

• Step 2: Using 1,273,617 reward descriptions, we built Glove model [59], in which

each word is represented by a vector. In our implementation, we set up vector

size=50, maximum number of iterations=20, window size=15, and vocabulary min-

imum count=5.

• Step 3: From Step 2, all words in the 1,273,617 reward descriptions were repre-

sented by Glove vectors. We grouped the words into K1 clusters by running k-

means clustering algorithm. To choose the optimal K1, we varied K1 from 1 to 100

and selected the value that minimized BIC value as follows:

BIC =
K1∑
k=1

∑
i∈wordsk

dist(vi, ck) + log(n) ∗m ∗K1 (3.1)

where vi, ck is the representative vector of the word i in cluster k and the center of

cluster k, respectively, dist(vi, ck) is the Euclidean distance of two vectors vi and ck,

n is the number of rewards (e.g. n = 1, 273, 617), m is the number of dimensions

of the word vector, and K1 is the number of clusters. Finally, the optimal K1 was

67. So at step 3, we clustered words into 67 groups.

• Step 4: From the sampled and labeled 2,198 projects, we extracted 19,266 reward

descriptions.

• Step 5: We represented each of 19,266 reward descriptions to a vector with 67

dimensions, each of which is mapped with a word cluster in Step 3. In particular,

20

3.3 FEATURE ENGINEERING

we counted how many words in each cluster occurred in the reward description, and

used the count as a value of the dimension mapped to the cluster.

• Step 6: Each of 19,266 rewards/reward descriptions was represented by a vector in

67 dimensions. Then, we clustered the rewards into 14 groups. Like Step 3, we did

the same process finding the optimal number of clusters. We call the 14 groups as

14 semantic reward clusters.

By doing the six steps, we got 14 semantic reward clusters. Then, we generated 14

feature values for each of 2,198 projects as follows: given a project pk, rewards in pk and

corresponding number of backers to each reward, we summed up the number of backers

of each reward that belongs to ith semantic cluster ci, and used it as a feature value. We

considered both a difficulty level of each reward and the corresponding number of backers

because more backers mean the creator has to produce more number of outcomes. Finally,

the project pk was represented by a vector in 14 dimensions.

Quality of the clusters: To prove that each semantic reward cluster has a distinguish-

ing difficulty level, first we identified each project pk’s major semantic cluster M(pk), a

cluster (i.e., one of the 14 clusters) to which the large number of rewards in pk belongs.

Then, given a set of on-time delivery projects A, we defined an indicator function 1A of

the project pk as follows:

1A(pk) =


1 if pk ∈ A

0, if pk /∈ A

Then, given a probability of each semantic reward cluster P (ci), we calculated the

conditional probability of the project pk to be an on-time delivery project using Bayes

theorem as follows:

P (1A(pk) = 1|ci = M(pk)) =
P (ci = M(pk)|1A(pk) = 1) ∗ P (1A(pk) = 1)

P (ci = M(pk))

21

3.3 FEATURE ENGINEERING

0.00

0.02

0.04

0.06

0.08

6 13 9 4 10 11 1 7 8 5 12 14 3 2
Cluster ID

P
ro

ba
bi

lit
y

Figure 3.4: 14 semantic reward clusters with their on-time delivery conditional probabilities
in the descending order of difficulty levels.

thank
signshirt

creditsp
ec

ia
l

person websit

relea

dv
d

list

poster

support
choic

no
te

facebook

page

song le
ve

l

autograph

ed
it

packag

limit

sticker

record
ticket

ex
cl

us

email

video

previou

up
da

t

send

book

friend

gratitud

photo

program

shout

make

physic
cast

mail
produc

postcard

game

card

donat

offici

invit

mention

band

ear

parti

ad
di

t

love

print

access

movi

product

complet

live

high

di
re

ct
or

help

featur

design

choo

cu
st

om

handwritten

perform

pre

awesom

date

bi
g

hand
twitter

finish

music

or
ig

in

good

privat

crew

hard

open

gi
ft

screen

team

time

trackweek

button

advanc

donor

ye
ar

dai

dollar

episod

section

end

home

vinyl

(a) Easy level

book
print

sign
edit

copi

limit

art

page

card

thank

ch
ar

ac
t

digit
origin
featur

number comic

pdf

hunter
ha

nd

sketch
artist

ill
us

tr list

issu

exclusspecial

game

beauti

hardcov
co

ve
r

color

version

insid

artwork

choic

collect

le
ve

l packag

select

person

stori
wallpap

addit

credit

delux

file

shirt

ink

posterhunt postcard

imag

trade
websit

complet

photo

paper

draw
mail

screen
custom

make

note

time
design

desktop

tribe

bookmark

piec

drawn

electron

frame

choo

fubar

animmini

storytel

collag

creat
gift

subscript

support

author

email

graphic

seri

collector

echo

individu

short

apocalyp

ashcan

bonu

box

download

dragon

tier

volum

xma

portrait

(b) Medium level

vip
download

filmlimit

person

month

carmanelit
video

choic
game

travel
album

special

copi

note

autograph

credit
thank
date

song

digit

hous

meet

accommod
parti

producrecord

dv
d

pictur

relea

actual

poster

greet

chat

street

changer exclus

laugh

prai

si
ng

l

music
edit

su
pp

or
t

le
ve

l

screen

make

ph
ot

o

privat

cast

packagscene

movi

invit

addit

constel

session

band

gu
es

t

list

websit

citi

execut

offici

dinner

provid

studio

access

filmmak

cr
ew

perform

bonu

celebr

dai

pr
e

track

jo
in

time

angel

boston

lust

to
ad

even

home

postcard

w
bc

n

di
re

ct
or

friend

page

product

shout

associ
book

brian

documentari

donor

live

m
ed

ia

plai

version

(c) Hard level

Figure 3.5: Word clouds of three clusters: cluster 2 (easy level), cluster 1 (medium level) and
cluster 6 (hard level).

where P (ci = M(pk)) is P(pk’s major semantic cluster).

Figure 3.4 presents the conditional probability of P (1A(pk) = 1|ci = M(pk)) in each

semantic reward cluster by descending order of difficulty level. Each cluster had a dif-

ferent probability. Semantic reward cluster 6 had the lowest probability, indicating that

rewards in this group had a higher difficulty level than other groups (e.g. hard level). In

contrast, semantic reward cluster 2 had the highest probability, showing that the rewards

in this cluster were easier in terms of producing and shipping (e.g. easy level). Seman-

tic reward cluster 1 had a middle probability (e.g. medium level). We next plotted the

word clouds of those three clusters to understand what kind of rewards were included in

22

3.3 FEATURE ENGINEERING

Table 3.1: Features that were newly extracted at each time or phase.

At the launching time
Project based features: |images|, |faqs|, goal, project
category, |rewards|, |reward sentences|, |bio descrip-
tion sentence|, fund raising duration, the longest re-
ward delivery duration, SMOG score of project, re-
ward and bio description, and semantic reward clus-
tering features.
During the fundraising phase
Project based features: |backers|, |project’s
comments|, |project’s updates|.
Creator’s activeness features: |creator’s comments|,
|creator’s updates|.
Temporal features: |comments| in each of 20 time
slots.
At the first 5% of the longest reward delivery du-
ration
Creator’s activeness features: |creator’s comments|,
|creator’s updates|, average update time interval, and
average response time between a backer’s question
and a reply from the creator.
Backer’s activeness features : |backers’ comments|,
|backers who posted comments|, |backers’
questions|.
Linguistic features: LIWC feature extracted from up-
dates (12 scores), LIWC feature extracted from com-
ments (5 scores).

the three clusters. In Figure 3.5, we observed that the rewards in easy level (cluster 2)

mostly contained keywords like “thank, credit, shirt, sign, websit” which can be delivered

quickly. Rewards in the medium level (cluster 1) contained keywords like “print, book,

sign, copi”, related to publishing category. Rewards in the hard level (cluster 6) contained

keywords like “film, vip, video, game”, related to the film and game category. As shown

in Figure 3.3, it makes sense that film, games were those categories with the highest late

delivery rate, whereas publishing category had a lower late delivery rate. In the following

section, we show that adding semantic cluster features improved our prediction rate.

23

3.3 FEATURE ENGINEERING

Table 3.2: Top 10 features at TP1, TP2, TP3 and TP4

Launching time (TP1) Middle of fundraising (TP2) End of fundraising (TP3) First 5% of reward delivery duration (TP4)

Features z-score Features z-score Features z-score Features z-score

project category 24.11 project category 22.93 |updates| 22.47 |creator’s updates| (at TP4) 35.73
goal 18.63 goal 15.24 project category 17.47 |creator’s comments| (at TP4) 18.19
longest reward delivery duration 13.40 longest reward delivery duration 10.99 goal 12.76 project category 14.80
smog score of project’s description 9.71 |temporal Comment at slot 1st| 8.52 |creator’s comments| 11.70 longest reward delivery duration 13.60
semantic reward cluster 9th 7.26 |temporal Comment at slot 8th| 8.38 longest reward delivery duration 10.23 |backer’s comments| (at TP4) 13.16
semantic reward cluster 2nd 6.67 |temporal Comment at slot 9th| 8.29 |temporal Comment at slot 18th| 7.65 |project’s comments| 12.69
|images| 5.90 |temporal Comment at slot 2nd| 7.94 |temporal Comment at slot 19th| 7.43 average update time interval 12.07
|Faqs| 4.97 |temporal Comment at slot 7th| 7.74 |temporal Comment at slot 17th| 7.08 goal 10.76
semantic reward cluster 12th 4.89 |temporal Comment at slot 4th| 7.73 |temporal Comment at slot 14th| 6.92 |creator’s comment| (at TP3) 8.16
semantic reward cluster 7th 4.45 smog score of project’s description 7.67 |temporal Comment at slot 16th| 6.88 |temporal comment at slot 18th| 6.53

3.3.2 Other Feature Sets

Toward identifying on-time and late reward delivery projects as well as estimating reward

delivery duration for the projects, we extracted the following features and used in the

following sections:

• Project-based features: We extracted 16 project-related features: |images|, |faqs|,

goal, project category, |rewards|, |reward sentences|, |bio description sentence|,

fund raising duration, the longest reward delivery duration, SMOG score [60] of

project description, SMOG score of reward description, SMOG score of bio de-

scription, |backers|, |project’s comments|, |project’s updates|, and semantic reward

clustering feature.

• Creator activeness features: We extracted 4 features related to the creator’s active-

ness: |creator’s comments|, |creator’s updates|, average update time interval, and

average response time between a backer’s question and a reply from the creator.

• Backer’s activeness features: Backers can post comments and ask for the project

progress. We extracted 3 features related to the backer’s activeness: |backers’

comments|, |backers who posted comments|, |backers’ questions|.

• Temporal features: We converted each project’s fundraising duration into 20 states

(time slots), since projects have various fundraising periods (e.g., 30 days, 60 days).

24

3.4 IDENTIFYING ON-TIME AND LATE REWARD DELIVERY PROJECTS

In each state/time slot, we measured the number of comments posted by creators

and backers.

• Linguistic usage of creators and backers: We used Linguistic Inquire and Word

Count (LIWC) dictionary [61] to discover distinguished linguistic usage patterns of

creators (through their updates). To compute the linguistic usage score of creators

in on-time reward delivery projects and creators in late reward delivery projects over

64 LIWC categories, we performed the same process which was mentioned in [62,

63]. We applied two-sample t-test and assigned α as 0.00078 (=0.05/64) to select

only the LIWC categories in which we observed a significant difference between

two distributions. Finally, we found 12 LIWC categories in which creators in on-

time and late reward delivery projects had a significant linguistic-usage difference.

Via the same process, we measured the different linguistic usage of backers by

their comments. We found 5 LIWC categories in which backers in on-time and late

reward delivery projects had a significant linguistic-usage difference.

3.4 Identifying On-time and Late Reward Delivery Projects

In this section, we build predictive models to classify whether a project is an on-time

delivery project or not and evaluate their performance against baselines.

3.4.1 Experimental Setting

As shown in Figure 3.1, we conducted experiments at the four time points, depending

on what information available at each time point: (1) TP1: when a project is launched;

(2) TP2: in the middle of the fundraising phase; (3) TP3: in the end of the fundraising

phase; and (4) TP4; at the first 5% of the longest reward delivery duration (to see whether

25

3.4 IDENTIFYING ON-TIME AND LATE REWARD DELIVERY PROJECTS

building classifiers in 5% delivery duration improve the classification performance com-

pared with TP1, TP2 and TP3). At each time point, we extracted available features and

conducted 10-fold cross-validation. Table 3.1 presents our proposed features. We added

previously available features to following time points.

At each time point, we did feature selection by removing linearly related features and

unimportant features. Particularly, to remove linearly related features, we measured the

variance inflation factor (VIF) of each feature. VIF value of a feature i is computed as

follows:

V IFi =
1

1−R2
i

where R2
i is the coefficient of multiple determination obtained by doing regression of

the feature i as response to the remaining features. A VIF value is in a range of [0,∞).

If a feature i’s VIF value is 1, it means there is no correlation between the feature and

the other features. But, if its VIF value is equal to 10 or greater, it means there exists

multicollinearity. Removing the multicollinearity follows three steps: Step 1: VIF values

of all n features are computed; Step 2: If some features have VIF score≥10, we remove the

feature with the largest VIF value and recompute VIF values of n-1 remaining features;

Step 3: If all VIF values of n-1 features are less than 10, we stop this process. Otherwise,

we repeat step 2.

To remove unimportant features, we used Boruta algorithm [64]. Boruta exploited a

Random Forest classification algorithm to measure feature importance score (e.g z-score).

For each feature, Boruta produces some statistical scores (e.g. mean, max, min, median

of z-score), and one of three statuses: confirmed, tentative or rejected. Confirmed features

are important features while rejected features are unimportant features. Tentative features

are those with insured importance. We kept only confirmed features in our models.

Table 3.2 shows top 10 features at each of the four time points. Project category, goal

and the longest reward delivery date were in top 10 features at all the time points. Seman-

26

3.4 IDENTIFYING ON-TIME AND LATE REWARD DELIVERY PROJECTS

Table 3.3: Prediction results for on-time and late delivery projects. The improvement of
XGBoost model over the baselines was significant with p-value < 0.001 using the Wilcoxon
directional test.

Approach
Accuracy at four time points

TP1 TP2 TP3 TP4

Baseline 1 54.36% 54.36% 54.36% 54.36%
Baseline 2 [22] 62.65% 62.65% 63.10% 63.10%

Our Model 65.8% 66.4% 71.4% 82.5%

tic reward cluster features were in top 10 features at TP1, and also important features at

the other times points but not in top 10 features. Temporal features were in top 10 features

at TP2 and TP3, whereas creator and backer’s activity features were in top 10 features at

TP4.

Even though there is no prior work directly related to reward delivery status prediction,

we implemented two baselines to compare with our approach:

• baseline 1: It is the majority class selection approach by blindly predicting all projects

as late reward delivery projects (54.36%).

• baseline 2: Kim et al. [22] measured the number of delayed days by 8 features: # of

rewards, goal, project duration, # of backers, percent raised, # of backed projects, #

of created projects, and project type. We built XGBoost model with the 8 features as

a baseline. Note that # of backers and percent raised would be available only at TP3

and TP4.

To build our predictive model, we built a XGBoost model based on all the features

that we listed in Table 3.1. We also tried Naive Bayes, SVM and Random Forest based

classifiers, but XGBoost classifiers achieved the best results with our features.

27

3.4 IDENTIFYING ON-TIME AND LATE REWARD DELIVERY PROJECTS

3.4.2 Experiment Results

Table 3.3 shows experimental results of the two baselines and our predictive model. Our

XGBoost classifier achieved 65.8%, 66.4%, 71.4% and 82.5% accuracy at TP1, TP2,

TP3, and TP4, respectively. It outperformed the baselines at all the time points, espe-

cially, significantly improving the accuracy by 13∼31% at TP3 and TP4 against the best

baseline (p-value < 0.001). The experimental results revealed that achieving high predic-

tion rates at TP1 and TP2 were very difficult with only using limited observable online

data available in Kickstarter because of other factors (e.g., factory issues and unexpected

problems) even though our model was better than the baselines. However, in the bright

side, our model achieved 82.5% accuracy at TP4, so that it can notify to a project creator,

backers and the platform provider whether the rewards delivery will be delayed or not.

The creator can announce this news and let backers know in advance (only passing the

first 5% of the longest delivery duration), or the backers can request a refund if they don’t

want to wait for longer time period.

Next, we analyze which feature group had more distinguishing power between on-

time and late delivery projects. In this study, we focus on TP4 containing all the features.

In each time, we excluded one of the four feature groups: creator’s activeness, backer’s

activeness, linguistic and semantic reward cluster features presented in Table 3.1. Then

we built a XGBoost classifier based on the remaining features.

Table 3.4 presents experimental results. Removing linguistic features, semantic re-

ward cluster features, backer’s activeness features and creator’s activeness features re-

duced the accuracy by 1.7%, 2%, 2.4%, and 10%, respectively. Overall, creator’s active-

ness features were the most important feature group, even though the other feature groups

were also important.

In summary, the experimental results confirmed that our proposed approach was sig-

nificantly better than the baselines, especially achieving 82.5% accuracy at TP4.

28

3.5 PREDICTING REWARDS DELIVERY DURATION

Table 3.4: Feature analysis to understand which feature group degrades our model’s per-
formance. The accuracy difference between our model (using all the features) and the rest
models are significant with p-value<0.01 using two-sample t-test.

Model Accuracy

All 82.5%
All - linguistic features 80.8%
All - semantic clustering features 80.5%
All - backer’s activeness 80.1%
All - creator’s activeness 72.5%

Table 3.5: Prediction results estimating delivery duration at four time points. The improve-
ment of our model over the baseline was significant with p-value < 0.001 using the Wilcoxon
directional test.

Algorithm
RMSE (days) NRMSE@A NRMSE@B

TP1 TP2 TP3 TP4 TP1 TP2 TP3 TP4 TP1 TP2 TP3 TP4

Baseline [22] 180.0 180.0 173.0 173.0 0.248 0.248 0.239 0.239 0.451 0.451 0.434 0.434

Our models:
semantic reward cluster features 106.8 106.8 106.8 106.8 0.148 0.148 0.148 0.148 0.268 0.268 0.268 0.268
other features 106.1 106.1 105.6 93.2 0.146 0.146 0.145 0.128 0.266 0.266 0.265 0.234
All features 100.7 100.4 94.1 78.1 0.139 0.138 0.130 0.108 0.252 0.252 0.236 0.196

3.5 Predicting Rewards Delivery Duration

The previous experimental results motivated us to study how to estimate a project’s

longest reward delivery duration. What if we can estimate delivery duration accurately

at TP1, TP2, TP3 and TP4 in an automated way, it will help the creator to decide better

longest reward delivery duration at TP1 or re-estimate it at TP2, TP3 or TP4. In backers’

perspective, some backers may be willing to wait longer as long as the project creator no-

tify re-estimated delivery duration in advance (say, TP4) [22]. Therefore, in this section,

we build our regression model to estimate delivery duration (in days), and then evalu-

ate its performance compared with 1,598 projects’ ground truth described in the Dataset

Section.

29

3.5 PREDICTING REWARDS DELIVERY DURATION

3.5.1 Experimental Setting

In this study, we used the features presented in Table 3.1 and applied stepAIC algorithm

to choose important features. Then we conducted 10-fold cross-validation for our experi-

ment.

Evaluation Metrics: To evaluate each model’s performance, we used Root Mean Squared

Error (RMSE), and normalized root mean squared error (NRMSE) with regard to the

range and the mean of the ground truth data. Lower RMSE and NRMSE values indicate

a better model. In the literature, researchers used two versions of NRMSEs, so we also

used both of them as evaluation metrics:

NRMSE@A =
RMSE

max(y)−min(y)
; NRMSE@B =

RMSE

ȳ

wheremax(y),min(y) and ȳ are the maximum, the minimum and the mean of the ground

truth values, respectively.

Data Transformation: Given a project i, we denote h(x(i)) as the estimated number

of days the creator needs to deliver all promised rewards, yi as the ground truth of the

project (e.g. the actual/true number of days that the creator needed to deliver all promised

rewards), and x(i) as the feature vector. Before building our regression model, we per-

formed 2-step data transformation as follows:

• Transformation on feature values x(i): all feature values in feature vector x(i) of a

project i were log transformed. In particular, we used x(i) = log(1 + x(i)) instead

of using the original feature values.

• Transformation on ground truth yi: we used box-cox transformation [65] to trans-

30

3.5 PREDICTING REWARDS DELIVERY DURATION

form yi as follows:

y(i)
new =


yλi −1

λ
, if λ 6= 0

log(yi), if λ = 0

To choose the best value of λ, we fit a multiple linear regression h(x) =
∑n

i=0(θixi +

εi) = θTx + ε. We assumed all the errors ε are independent and ε ∼ N(0, σ2). After

doing transformation, the log-likelihood L of the model, with regard to the value of λ, is

calculated as below:

L = −n
2
log

[m∑
i=1

(
ynew − hθ(x(i))

exp(1
n

∑m
i=1 log(yi))λ

)2]

We varied the value of λ in the grid [-1, 1] and selected λ = 0.11 since it maximized

the log-likelihood L. However, if we transform ynew = yλ, the magnitude of the sum of

squared error (SSE) will be changed. In other words, the value of SSE will depend on λ.

To overcome this issue, we normalized ynew by the geometric mean of all raw values yi

as below:

ynew =
(yλi − 1)

λ
∏n

i=1 (n
√
yi)

λ−1

Our Model: To predict how many days the creator of a project i needs to fully deliver all

the promised rewards, we built a multiple linear regression model based on the features in

Table 3.1 except the longest reward delivery duration feature. Let x be the feature vector

(x0 = 1), m be |projects|, θ be the coefficient vector of the feature vector (except that

θ0 is the intercept), and εi be the error term which follows normal distribution. We used

the squared loss and introduced elastic net regularization to find the optimal values of the

coefficient vector θ by minimizing the following loss function:

minL
θ

=
1

2

m∑
i=1

(
n∑
j=1

θijxij − yi)2 + λ1||θ||1 + λ2||θ||22 (3.2)

31

3.5 PREDICTING REWARDS DELIVERY DURATION

Here, λ1 and λ2 were used to control the regularization effect.

Baseline: Kim et al. [22] proposed 8 features and built a simple multiple linear regression

to measure the number of delayed days (e.g. the difference in days between estimated

reward delivery date and real reward delivery date).

3.5.2 Experiment Results

Table 3.5 shows experimental results of all the methods at TP1, TP2, TP3, and TP4. We

implemented 3 models with different feature sets: (i) semantic reward cluster features;

(ii) other features: all features presented in Table 3.1 except semantic reward cluster

features and longest reward delivery duration feature; and (iii) all features: combining

(i) and (ii). All of our models outperformed the baseline. Interestingly, the semantic

reward cluster features model achieved almost same result with the other features model

at TP1, TP2 and TP3. It indicates that the semantic reward cluster features were helpful in

estimating the reward delivery duration. Adding available features at TP4 (e.g. creator’s

activeness features + backer’s activeness features + linguistic features) reduced 12% error

of the other features model. The all features model gained the best result with lowest

RMSE=100.7, NRMSE@A=0.139, and NRMSE@B=0.252 at TP1, significantly reduced

44% error compare to the baseline. It also significantly reduced RMSE, NRMSE@A and

NRMSE@B by minimum 45% and 55% at TP3 and TP4, respectively compared with

the baseline. Comparing with NRMSE@A of another model in another domain [66],

our model performed well, indicating the effectiveness of our regression model. We also

tried SVM, Neural Network and Random Forest based on our features to build regression

models. But, the multiple linear regression with the elastic net regularization got the best

result.

In this context, RMSE=78.1 means the average difference between our estimated de-

livery duration and the ground truth (i.e., actual delivery duration) is 78.1 days. In a

32

3.5 PREDICTING REWARDS DELIVERY DURATION

real-world scenario, project creators at TP1 can use our model to estimate delivery dura-

tion. Then, they can add 101 days to the estimated delivery duration as a buffer to make

sure they can get enough delivery duration. Similarly, creators at TP4 can get estimated

delivery duration from our model, and add 78 days as a buffer to the estimated deliv-

ery duration. The final delivery duration will be safe/enough delivery duration to deliver

reward within the longest delivery duration.

We further investigated to understand whether there is any significant difference be-

tween the most correctly predicted projects and the most incorrectly predicted projects.

In particular, we extracted top 10 correctly predicted projects and top 10 incorrectly pre-

dicted projects. Then we conducted Wilcoxon test which showed that top 10 correctly pre-

dicted projects provided a larger number of projects and contained a larger number of sen-

tences in their reward descriptions compared with top 10 incorrectly predicted projects.

33

4

Modeling consumer behaviors with

long-term dependencies

4.1 Introduction

In this chapter, we investigate and come up with our model to encode the consumer be-

haviors with long-term interacted item dependencies, thus recommending more relevant

products to consumers.

Among popular Collaborative Filtering (CF) methods in recommendation [23, 24,

67, 68], in recent years, latent factor models (LFM) using matrix factorization have

been widely used. LFM are known to yield relatively high prediction accuracy, are

language independent, and allow additional side information to be easily incorporated

and decomposed together [69, 70]. However, most of conventional LFM only exploited

positive feedback while neglected negative feedback and treated them as missing data

[23, 71, 72, 73].

We observe three global constraints while modeling consumer’s long-term dependen-

cies. Taking movie recommender systems as an example, it was observed that many users

34

4.1 INTRODUCTION

who enjoyed watching Thor: The Dark World, also enjoyed Thor: Ragnarok. In this case,

Thor: The Dark World and Thor: Ragnarok can be seen as a pair of co-liked movies. So,

if a user preferred Thor: The Dark World but never watch Thor: Ragnarok, the system

can precisely recommend Thor: Ragnarok to her (first observation). Similarly, if two

users A and B liked the same movies, we can assume A and B have the same movie in-

terests. If user A likes a movie that B has never watched, the system can recommend the

movie to B (second observation). In the same manner, we ask if co-occurred disliked

movies can provide any meaningful information. We observed that most users, who rated

Pledge This! poorly (0.8/5.0 on average), also gave a low rating to Run for Your Wife

(1.3/5.0 on average). If the disliked co-occurrence pattern was exploited, Run for Your

Wife would not be recommended to other users who did not enjoy Pledge This! (third

observation). This will help reduce the false positive rate for recommender systems. The

same phenomena would have also occurred in other recommendation domains.

The first two observations are similar to the basic assumptions of item CF and user

CF where similar scores between items/users are used to infer the next recommended

items for users. Unfortunately, only the first two observations have been exploited in

conventional CF. While treating the negative-feedback items differently from missing data

led to better results [74], to the best of our knowledge, no previous works exploited the

third observation to enhance the recommender systems’ performance.

Therefore, in this chapter, we attempt to exploit all three observations in one model to

achieve better recommendation results. With the recent success of word embedding tech-

niques in natural language processing, if we consider pairs of co-occurred liked/disliked

items or pairs of co-occurred users as pairs of co-occurred words, we can apply word

embedding to learn latent representations of items (e.g., item embeddings) and users (e.g.

user embeddings). Based on this, we propose a Regularized Multi-Embedding based rec-

ommendation model (RME), which jointly decomposes (1) a user-item interaction ma-

35

4.1 INTRODUCTION

2

2

1

1

Us
er
s

Us
er
s

Liked	items

ite
m
s

Co-liked	items

Co-liked	 item	co-occurrence	 matrix

2

2
User	co-occurrence	 matrix

1

1

2

2

ite
m
s

Co-disliked	 items

Co-disliked	 item	co-occurrence	 matrix

p1 p2 p3 p4

p1

p2

p3

p4

p1 p2 p3 p4

p1

p2

p3

p4

p1 p2 p3 p4

p1 p2 p3 p4

Figure 4.1: An overview of our RME Model, which jointly decomposes user-item interaction
matrix, co-liked item co-occurrence matrix, co-disliked item co-occurrence matrix, and user
co-occurrence matrix. (V : liked, X: disliked, and ?: unknown)

trix, (2) a user co-occurrence matrix, (3) a co-liked item co-occurrence matrix, and (4)

a co-disliked item co-occurrence matrix. The RME model concurrently exploits the co-

liked co-occurrence patterns and co-disliked co-occurrence patterns of items to enrich

the items’ latent factors. It also augments users’ latent factors by incorporating user co-

occurrence patterns on their preferred items. Figure 4.1 illustrates an overview of our

RME model.

Both liked and disliked items can be explicitly measured by rating scores (e.g., a

liked item is ≥ 4 star-rating and a disliked item is ≤ 2 star-rating) in explicit feedback

datasets such as 5-star rating datasets (e.g., a Movie dataset and an Amazon dataset).

However, in implicit feedback datasets (e.g., a music listening dataset and a browsing

history dataset), users do not explicitly express their preferences. In implicit feedback

datasets, the song plays and URL clicks could indicate how much users like the items

(i.e., positive samples), but inferring the disliked items (i.e., negative samples) is a big

challenge due to the nature of implicit feedback. In order to deal with this challenge, we

propose an algorithm which infers a user’s disliked items in implicit feedback datasets,

36

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

so that we can build an RME model and recommend items for both explicit and implicit

feedback datasets.

4.2 Recommending Products with Regularized User and

Item Embeddings

4.2.1 Method

Preliminaries: Before discussing about the model details, we define some notations and

terminologies that we will use in our model description as follows:

Item. Items are objects that users interact with or consume. They can be interpreted

in various ways, depending on the context of a dataset. For example, an item is a movie

in a movie dataset such as MovieLens, whereas it is a song in TasteProfile.

Liked items and disliked items. In explicit feedback datasets such as MovieLens

(a 5-star rating dataset), an item ≥ 4 stars is classified to a liked item of the user, and

an item ≤ 2 stars is classified to a disliked item of the user [75]. In implicit feedback

datasets such as TasteProfile, the more a user consumes an item, the more he/she likes it

(e.g., larger play count in TasteProfile indicates stronger preference). But, disliked items

are not explicitly observable.

Top-N recommendation. In this chapter, we focus on top-N recommendation sce-

nario, in which a recommendation model suggests a list of top-N most appealing items to

users. We represent the interactions between users and items by a matrix Mm∗n where m

is the number of users and n is the number of items. If a user u likes an item p, Mup will

be set to 1. From M, we are interested in extracting co-occurrence patterns including liked

item co-occurrences, disliked item co-occurrences, and user co-occurrences. Our goal is

to exploit those co-occurrence information to learn the latent representations of users and

37

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

Table 4.1: Notations.

Notation Description

M a m× n user-item interaction matrix.
U a m× k latent factor matrix of users.
P a n× k latent factor matrix of items.
X a n× n SPPMI matrix of liked items-item co-occurrences.
Y a n× n SPPMI matrix of disliked item-item co-occurrences.
Z a m×m SPPMI matrix of user-user co-occurrences.
αu a k × 1 latent factor vector of user u.
βp a k × 1 latent factor vector of item p.
γi a k × 1 latent factor vector of co-liked item context i.
δi′ a k × 1 latent factor vector of co-disliked item context i′.
θj a k × 1 latent factor vector of user context j.
λ a hyperparameter of regularization terms.
b, d co-liked and co-disliked item bias.
c, e co-liked and co-disliked item context bias.
f, g user bias and user context bias.
wup a weight for an interaction between user u and her liked item p.
w

(u)
uj a weight for two users u and j who co-liked same items.

w
(+p)
pi a weight for two items p and i that are co-liked by users.

w
(−p)
pi a weight for two items p and i that are co-disliked by users.

items, then recommend top-N items to the users.

Notations. Table 4.1 shows key notations used in this chapter. Note that all vectors in

this chapter are column vectors.

Next, we review the Weighted Matrix Factorization (WMF), and co-liked item em-

bedding. Then, we propose co-disliked item embedding and user embedding. Finally, we

describe our RME model and present how to compute it.

Weighted matrix factorization (WMF). WMF is a widely-used collaborative filter-

ing method in recommender systems [23]. Given a sparse user-item matrix Mm×n, the

basic idea of WMF is to decompose M into a product of 2 low rank matrices Um×k and

P n×k (i.e., M = U × P T), where k is the number of dimensions and k < min(m,n).

Here, U is interpreted as a latent factor matrix of users, and P is interpreted as a latent

factor matrix of items.

38

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

We denote UT = (α1, α2, ..., αm) where αu ∈ Rk (u ∈ 1,m) and αu represents the

latent factor vector of user u. Similarly, we denote P T = (β1, β2, ..., βn) where βp ∈ Rk

(p ∈ 1, n) and βp represents the latent factor vector of item p. The objective of WMF is

defined by:

LWMF =
1

2

∑
u,p

wup(Mup − αTuβp)2 +
1

2

(
λα
∑
u

||αu||2 + λβ
∑
p

||βp||2
)

(4.1)

where wup is a hyperparameter to compensate the interaction between user u and item p,

and is used to balance between the number of non-zero and zero values in a sparse user-

item matrix. The weight w of the interaction between user u and item p (denoted as wup)

can be set as wup = l(1+φMup) [23, 76] where l is a relative scale and φ is a constant. λα

and λβ are used to adjust the importance of two quadratic regularization terms
∑

u ||αu||2

and
∑

p ||βp||2.

Word embedding models. Word embedding models have recently received a lot of

attention from the research community. Given a sequence of training words, the embed-

ding models learn a latent representation for each word. For example, word2vec [77] is

one of popular word embedding methods. Especially, the skip-gram model in word2vec

tries to predict surrounding words (i.e., word context) of a given word in the training set.

According to Levy et al. [78], skip-gram model with negative sampling (SGNS) is

equivalent to implicitly factorize a word-context matrix, whose cells are the Pointwise

Mutual Information (PMI) of the respective word and context pairs, shifted by a global

constant. Let D as a collection of observed word and context pairs, the PMI between a

word i and its word context j is calculated as:

PMI(i, j) = log
P (i, j)

P (i) ∗ P (j)

where P (i, j) is the joint probability that word i and word j appears together within a

39

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

window size (e.g. P (i, j) = #(i,j)
|D| , where |D| refers to the total number of word and word

context pairs in D). Similarly, P (i) is the probability the word i appears in D, and P (j)

is the probability word j appears in D (e.g. P (i) = #(i)
|D| and P (j) = #(j)

|D|). Obviously,

PMI(i, j) can be calculated as:

PMI(i, j) = log
#(i, j) ∗ |D|
#(i) ∗#(j)

(4.2)

By calculating PMI of all word-context pairs in D, we can form a squared n × n ma-

trix MPMI where n is the total number of distinct words in D. Next, a Shifted Positive

Pointwise Mutual Information (SPPMI) of two words i and j is calculated as:

SPPMI(i, j) = max(PMI(i, j)− log(s), 0) (4.3)

where s is a hyperparameter to control the density of PMI matrix MPMI and s can be in-

terpreted equivalently as a hyperparameter that indicates the number of negative samples

in SGNS. When s is large, more values in the matrixMPMI are cleared, leadingMPMI to

become sparser. When s is small, matrix MPMI becomes denser. Finally, factorizing ma-

trix MSPPMI , where each cell in MSPPMI is transformed by Formula (4.3), is equivalent

to performing SGSN.

Co-liked item embedding (LIE). As mentioned in the previous studies [76, 79, 80],

when users liked/consumed items in a sequence, the items sorted by the ascending interac-

tion time order can be inferred as a sequence. Thus, performing co-liked item embeddings

to learn latent representations of items is equivalent to perform word embeddings to learn

latent representations of words. Therefore, we can apply word embedding methods to

learn latent representations of items, and perform a joint learning between embedding

models and traditional factorization methods (e.g. WMF).

Given each user’s liked item list, we generate co-liked item-item co-occurrence pairs

40

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

without considering liked time. Particularly, given a certain item in the item sequence, we

consider all other items as its contexts. We call this method as a greedy context generation

method which can be applied to other non-timestamped datasets. After generating item

and item context pairs, we construct an item co-occurrence SPPMI matrix and perform

SPPMI matrix factorization. In particular, given generated item-item co-occurrence pairs,

we construct a SPPMI matrix of items by applying Equation (4.2) to calculate the point-

wise mutual information of each pair, and then by measuring the shifted positive point-

wise mutual information of the pair based on Equation (4.3). Once the SPPMI matrix

of co-liked items is constructed, we incorporate it to the traditional matrix factorization

method to improve the item latent representations.

Co-disliked item embedding (DIE). As mentioned in the Introduction section, when

many users disliked two items p1 and p2 together, the two items can form a pair of co-

occurred disliked items. If the recommender systems learned this disliked co-occurrence

pattern, it would not recommend item p2 to a user, who disliked p1. This will help reduce

the false positive rate for the recommender systems. Therefore, similar to liked item em-

beddings, we applied the word embedding technique to exploit the disliked co-occurrence

information to enhance the item’s latent factors.

User embedding (UE). When two users A and B preferred same items, we can as-

sume the two users share similar interests. Therefore, if user A enjoyed an item p that has

not been observed in user B’s transactions, we can recommend the item to user B. Similar

to liked and disliked item embeddings, we applied the word embedding technique to learn

user embeddings that explain the co-occurrence patterns among users.

From the user-item interaction matrix Mm×n, where each row represents consumed

items of a user (e.g. a list of items that the user rated or backed), we only keep liked items

per user in the matrix M ′. Then, we construct a n×m reverse matrix M ′T of M ′, where

each row represents users that liked a certain item. Then, users, who liked the same item,

41

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

form a sequence, and the sequence of users is interpreted as a sequence of words. From

this point, word embedding techniques are applied to the user sequence to enhance latent

representations of users.

Our RME model. It is a joint learning model combining WMF, co-liked item em-

bedding, co-disliked item embedding, and user embedding. It minimizes the following

objective function:

L =

L1︷ ︸︸ ︷
1

2

∑
u,p

wup(Mup − αTuβp)2 (WMF)

+

L2︷ ︸︸ ︷
1

2

∑
Xpi 6=0

w
(+p)
pi (Xpi − βTp γi − bp − ci)2 (LIE)

+

L3︷ ︸︸ ︷
1

2

∑
Ypi′ 6=0

w
(−p)
pi′ (Ypi′ − βTp δi′ − dp − ei′)2 (DIE)

+

L4︷ ︸︸ ︷
1

2

∑
Zuj 6=0

w
(u)
uj (Zuj − αTu θj − fu − gj)2 (UE)

+
1

2
λ

(∑
u

||αu||2 +
∑
p

||βp||2 +
∑
i

||γi||2 +
∑
i′

||δi′||2 +
∑
j

||θj||2
)

(4.4)

where the item’s latent representation βp is shared among WMF, co-liked item embedding

and co-disliked item embedding. The user’s latent representation αu is shared between

WMF and user embedding. X and Y are SPPMI matrices, constructed by co-liked item-

item co-occurrence patterns and disliked item-item co-occurrence patterns, respectively.

γ and δ are k × 1 latent representation vectors of co-liked item context and co-disliked

item context, respectively. Z is a SPPMI matrix constructed by user-user co-occurrence

patterns. θ is a k × 1 latent representation vector of a user context. w(+p), w(−p) and w(u)

are hyperparameters to compensate for item/user co-occurrences in X , Y and Z when

42

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

performing decomposition. b is liked item bias, and c is co-liked item context bias. d is

disliked item bias, and e is co-disliked item-context bias. f and g are user bias and user

context bias, respectively. Incorporating bias terms were originally introduced in [81]. A

liked item bias bp and a co-liked item context bias ci mean that when the two items pi and

pj are co-liked by users, each item may have a little bit higher/lower preference compared

to the average preference. The similar explanation is applied to the other biases. The last

line shows regularization terms along with a hyperparameter λ to control their effects.

Optimization We can use the stochastic gradient descent to optimize the Equation

(4.4). However, it is not stable and sensitive to parameters [82]. Therefore, we adopt

vector-wise ALS algorithm [82, 83] that alternatively optimize each model’s parameter in

parallel while fixing the other parameters until the model gets converged. Specifically, we

calculate the partial derivatives of the model’s objective function with regard to the model

parameters (i.e., {α1:m, β1:n, γ1:n, δ1:n, b1:n, c1:n, d1:n, e1:n, θ1:m, f1:m, g1:m}). Then we set

them to zero and obtain updating rules. Details are given as follows:

From the objective function in Equation (4.4), while taking partial derivatives of L

with regard to each user’s latent representation vector αu, we observe that only L1, L4

and the L2 user regularization 1
2
λ
∑

u ||αu||2 contain αu. Therefore, we obtain:

∂L

∂αu
=
∂L1

∂αu
+
∂L4

∂αu
+
∂λ
∑

u ||αu||2

2∂αu

= −
∑
u,p

wup(Mup − αTuβp)βTp −
∑
u,j

w
(u)
uj (Zuj − αTu θj − fu − gj)θTj + λαTu

Fixing item latent vectors β, user context latent vectors θ, user bias d and user context

bias e, and solving ∂L
∂αu

= 0, we obtain the updating rule of αu as follows:

43

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

αu =

[∑
p

wupβpβ
T
p +

∑
j|Zuj 6=0

w
(u)
uj θjθ

T
j + λIK

]−1

[∑
p

wupMupβp +
∑

j|Zuj 6=0

w
(u)
uj (Zuj − fu − gj)θj

]
,∀1 ≤ u ≤ m, 1 ≤ p ≤ n, 1 ≤ j ≤ m

(4.5)

Similarly, taking partial derivatives of L with respect to each item latent vector βp

needs to consider only L1, L2, L3 and item regularization 1
2
λ
∑

p ||βp||2. By fixing other

parameters and solving ∂L
∂βp

= 0, we obtain:

βp =

[∑
u

wupαuα
T
u +

∑
i|Xpi 6=0

w
(+p)
pi γiγ

T
i +

∑
i′|Ypi′ 6=0

w
(−p)
pi′ δi′δ

T
i′ + λIK

]−1

[∑
u

wupMupαu +
∑

i|Xpi 6=0

w
(+p)
pi (Xpi − bp − ci)γi+

∑
i′|Ypi′ 6=0

w
(−p)
pi′ (Ypi′ − dp − ei′)δi′

]
,∀1 ≤ u ≤ m, 1 ≤ p ≤ n, 1 ≤ i, i′ ≤ n

(4.6)

In the same manner, we obtain the update rules of item contexts γ, δ, and user context

θ alternatively as follows:

γi =

[∑
p|Xip 6=0

w
(+p)
ip βpβ

T
p + λIK

]−1[∑
p|Xip 6=0

w
(+p)
ip (Xip − bp − ci)βp

]

δi′ =

[∑
p|Yi′p 6=0

w
(−p)
i′p βpβ

T
p + λIK

]−1[∑
p|Yi′p 6=0

w
(−p)
i′p (Yi′p − dp − ei′)βp

] (4.7)

θj =

[∑
u|Zju 6=0

w
(u)
ju αuα

T
u + λIK

]−1[∑
u|Zju 6=0

w
(u)
ju (Zju − du − ej)αu

]
,∀1 ≤ u ≤ m, 1 ≤ p ≤ n, 1 ≤ i, i′ ≤ n

The item biases and item context biases b, c, d, e, as well as the user and user context

44

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

biases f , g are updated alternatively using the following update rules:

bp =
1

|i : Xpi 6= 0|
∑

i:Xpi 6=0

(Xpi − βTp γi − ci)

ci =
1

|p : Xip 6= 0|
∑

p:Xip 6=0

(Xip − βTp γi − bp)

dp =
1

|i′ : Ypi′ 6= 0|
∑

i′:Ypi′ 6=0

(Ypi′ − βTp δi′ − ei′)

ei′ =
1

|p : Yi′p 6= 0|
∑

p:Yi′p 6=0

(Yi′p − βTp δi′ − dp)

fu =
1

|j : Zuj 6= 0|
∑

j:Zuj 6=0

(Zuj − αTu θj − gj)

gj =
1

|u : Zju 6= 0|
∑

u:Zju 6=0

(Zju − αTu θj − fu)

(4.8)

In short, the pseudocode of our proposed RME model is presented in Algorithm 1.

Require: M, λ
1: Build SPPMI matrices of liked item X , disliked item Y and user co-occurrences Z

using Eq. (4.2) and Eq. (4.3)
2: Initialize U (or α1:m), P (or β1:n), γ1:n, δ1:n, θ1:m.
3: Initialize b1:n, c1:n, d1:n, e1:n, f1:m, g1:m.
4: repeat
5: For each user u, update αu by Eq. (4.5) (1 ≤ u ≤ m).
6: For each item p, update βp by Eq. (4.6) (1 ≤ p ≤ n).
7: Alternatively update each item context γi, δi′ and user context θj by Eq. (4.7)

(1 ≤ i, i′ ≤ n; 1 ≤ j ≤ m).
8: Alternatively update each bias bp, ci, dp, ei′ , fu, gj by Eq. (4.8) (1 ≤ p, i, i′ ≤ n;

1 ≤ u, j ≤ m).
9: until convergence

10: return U, P

Algorithm 1: RME algorithm

Complexity Analysis In this section, we briefly provide time complexity analysis of

our model. Let ΩM = {(u, p) — Mup 6= 0} , ΩX = {(p, i) — Xpi 6= 0 }, ΩY = {(p,

i′) — Ypi′ 6= 0}, ΩZ = {(u, j) — Zuj 6= 0}. Constructing SPPMI matrices X, Y and Z

45

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

take O(|ΩX |2), O(|ΩY |2) and O(|ΩZ |2), respectively. However, the SPPMI matrices are

calculated once and are constructed in parallel using batch processing, so they are not

costly. For learning RME model, computing α takes O((|ΩM |+ |ΩZ |)k2 + k3) time, and

computing β takes O((|ΩM |+ |ΩX |+ |ΩY |)k2 + k3) time. Also, it takes O(|ΩX |k2 + k3)

for computing co-liked item context γ, and so do other latent contexts δ, θ. It takes

O(|ΩZ |k) time to compute all user bias f and so do the other biases. Thus, the time

complexity for RME is O(η(2(|ΩM |+ |ΩX |+ |ΩY |+ |ΩZ |)k2 + (2m+ 3n)k3)), where η

is the number of iterations. Since k << min(m,n) and M, X, Y, Z are often sparse,

which mean (|ΩM | + |ΩX | + |ΩY | + |ΩZ |) is small, the time complexity of RME is

shortened as O(η(m + 3
2
n)k3), which scales linearly to the conventional ALS algorithm

for collaborative filtering [82].

Inferring Disliked Items in Implicit Feedback datasets Unlike explicit feedback

datasets, there is a lack of substantial evidence, on which items the users disliked in

implicit feedback datasets. Since our model exploits co-disliked item co-occurrences

patterns among items, the implicit feedback datasets challenge our model. To deal with

it, we can simply assume that missing values are equally likely to be negative feedback,

then sample some negative instances from missing values with uniform weights [26, 72,

73, 84]. However, assigning uniform weight is suboptimal because the missing values

are a mixture of negative and unknown feedbacks. A recent work suggests to sample

negative instances by assigning non-uniform weights based on item popularity [74]. The

idea is that popular items are highly aware by users, so if they are not observed in a user’s

transactions, it assumes that the user dislikes them. However, this sampling method is

also not optimal because same unobserved popular items can be sampled across multiple

users. This approach does not reflect user’s personalized interests.

Instead, we follow the previous works [85, 86, 87], and propose a user-oriented EM-

like algorithm to draw negative samples (i.e., inferred disliked items) for users in implicit

46

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

feedback datasets. Our approach is described as follows:

First, we assume that an item with a low ranking score of being liked will have a

higher probability to be drawn as a negative sample of a user. Given ru is the ranked list

of all items of the user u, the prior probabilities of items to be drawn as negative samples

are calculated by using a softmax function as follows:

Pr
(u)
i =

exp (−ru[i])∑n
j=1 exp (−ru[j])

(4.9)

After negative samples are drawn for each user, we built the RME model by using Al-

gorithm 1. The pseudocode of the RME model for implicit feedback datasets is presented

in Algorithm 2.

In Algorithm 2, since each user may prefer a different number of items, we define

a hyper-parameter τ as a negative sample drawing ratio to control how many negative

samples we will sample for each user. In line 6, count(u) returns the number of observed

items of a user u. Then, the number of drawn negative samples for the user u is calculated

and assigned to ns. If a user prefers 10 items and τ = 0.8, the algorithm will sample 8

disliked items. We note that sampling with replacement is used such that different items

are drawn independently. The value of τ is selected using the validation data. In line 8, we

set the ranking of observed items to +∞ to avoid drawing the observed items as negative

samples. In line 12, we build the RME model based on the negative samples drawn in

the Expectation step, and temporally store newly learned user latent matrix, item latent

matrix and corresponding NDCG to U tmp, P tmp, ndcg variables, respectively (NDCG

is a measure to evaluate recommender systems, which will be mentioned in Experiment

section). If we obtain a better ndcg comparing with the previous NDCG prev ndcg (line

13), we will update U, P, prev ndcg with new values (line 14). Overall, at the end of the

Expectation step, we obtain the disliked items for each user. Then, in the Maximization

47

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

Require: M, negative sample drawing ratio τ
1: max iter = 10, prev ndcg = 0, iter = 0
2: Initialize Step: U, P = WMF (M)
3: repeat
4: iter += 1
5: . Expectation Step
6: for u ∈ [1,m] do:
7: ns = τ * count(u)
8: Compute ranked item list: ru = P.αu
9: Assign observed items with ranking of +∞.

10: Measure prior probabilities of items to be drawn as negative samples by Eq.
(4.9) then randomly draw ns negative samples with those prior probabilities.

11: end for
12: . Maximization Step with early stopping
13: U tmp, P tmp, ndcg = RME(train data, vad data)
14: if ndcg > prev ndcg then
15: U, P, prev ndcg = U tmp, P tmp, ndcg
16: else
17: break . Early stopping
18: end if
19: until iter ¡ max iter
20: return U, P

Algorithm 2: RME model for implicit feedback datasets using user-oriented EM-like algo-
rithm to draw negative samples

step, we build our RME model to re-learn user and item latent representations U and P .

The process is repeated until getting converged or the early stopping condition (line 13 to

17) is satisfied.

Time Complexity: In order to construct RME model for implicit feedback datasets, we

need to re-learn RME model, which includes re-building 3 SPPMI matrices in the max-

imization step in η′ iterations to get converged. Thus, it takes O(η′((|ΩX |2 + |ΩY |2 +

|ΩZ |2) + η(m+ 3
2
n)k3)) time where η′ is small.

48

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

Table 4.2: Performance of the baselines, our RME model, and its two variants. The improve-
ment of our model over the baselines and its variants were significant with p-value < 0.05 in
the three datasets under the non-directional two-sample t-test.

Method
MovieLens-10M MovieLens-20M TasteProfile

Recall@5 NDCG@20 MAP@10 Recall@5 NDCG@20 MAP@10 Recall@5 NDCG@20 MAP@10

Item-KNN 0.0137 0.0338 0.0397 0.0131 0.0345 0.0402 0.0793 0.0685 0.0904
Item2vec 0.1020 0.1001 0.0502 0.1066 0.1019 0.0539 0.1455 0.1593 0.0727

WMF 0.1280 0.1245 0.0655 0.1348 0.1290 0.0720 0.1745 0.1853 0.0931
Cofactor 0.1460 0.1381 0.0772 0.1480 0.1387 0.0804 0.1771 0.1873 0.0950

U RME 0.1516 0.1412 0.0818 0.1524 0.1425 0.0847 0.1825 0.1899 0.0997
I RME 0.1511 0.1422 0.0817 0.1530 0.1412 0.0838 0.1826 0.1915 0.0996
RME 0.1562 0.1458 0.0841 0.1570 0.1461 0.0869 0.1876 0.1954 0.1025

4.2.2 Experimental Settings

Datasets: To measure the performance of our RME model, we evaluate the model on 3

real-world datasets:

• MovieLens-10M [68]: is an explicit feedback dataset. It consists of 69,878 users

and 10,677 movies with 10m ratings. Following the k-cores preprocessing [26, 88],

we only kept users, who rated at least 5 movies, and movies, which were rated by

at least 5 users. This led to 58,057 users and 7,223 items (density= 0.978%).

• MovieLens-20M: is an explicit feedback dataset. It consists of 138,000 users,

27,000 movies, and 20 millions of ratings. We filtered with the same condition as

for MovieLens-10M. This led to 111,146 users and 9,888 items (density= 0.745%).

• TasteProfile: is an implicit feedback dataset containing a song’s play count by a

user 1. The play counts are user’s implicit preference and are binarized. Similar

to [76], we first subsampled the dataset to 250k users and 25k items. Then we

kept only users, who listened to at least 20 songs, and songs, which were listened

by at least 50 users. As a result, 221,011 users and 22,713 songs were remained

(density= 0.291%).

1http://the.echonest.com/

49

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

Baselines: To illustrate the effectiveness of our RME model, we compare it with the

following baselines:

• WMF [23]: It is a weighted matrix factorization with l2-norm regularization.

• Item-KNN [89]: This is an item neighborhood-based collaborative filtering method.

• Item2Vec [80]: This method used Skip-gram with negative sampling [77] to learn

item embeddings, then adopted a similarity score between item embeddings to gen-

erate user’s recommendation lists.

• Cofactor [76]: This is a method that combines WMF and co-liked item embedding.

We note that we do not compare our models with user collaborative filtering method (i.e.

User-KNN) because it is not applicable to run the method on the large datasets. However,

[90] reported that User-KNN had worse performance than Item-KNN, especially when

there are many items but few ratings in a dataset.

Our models: We not only compare the baselines with our RME, but also two variants of

our model such as U RME and I RME to show the effectiveness of incorporating all of

the user embeddings, liked-item embeddings and disliked-item embeddings:

• U RME (i.e., RME - DIE): This is a variant of our model, considering only WMF,

user embeddings, and liked-item embeddings.

• I RME (i.e., RME - UE): This is another variant of our model, considering only

WMF, liked-item embeddings, and disliked-item embeddings.

• RME: This is our proposed RME model.

Evaluation metrics. We used three well-known ranking-based metrics – Recall@N, nor-

malized discounted cumulative gain (NDCG@N), and mean average precision (MAP@N).

50

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

5 10 20 50 100
Varying N

0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18

ND
CG

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

(a) NDCG@N on MovieLens-
10M.

5 10 20 50 100
Varying N

0.13

0.14

0.15

0.16

0.17

ND
CG

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

(b) NDCG@N on MovieLens-
20M.

5 10 20 50 100
Varying N

0.16

0.18

0.20

0.22

0.24

0.26

ND
CG

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

(c) NDCG@N on TasteProfile.

Figure 4.2: Performance of all models when varying top N .

Recall@N considers all items in top N items equally, whereas NDCG@N and MAP@N

apply an increasing discount of log2 to items at lower ranks.

Training, validation and test sets. We follow 70/10/20 proportions for splitting the

original dataset into training/validation/test sets [91]. MovieLens-10M and MovieLens-

20M datasets contain timestamp values of user-movie interactions. To create training,

validation and testing sets for these datasets, we sorted all user-item interaction pairs in

the ascending interaction time order in each of MovieLens-10M and MovieLens-20M

datasets. The first 80% was used for training and validation, and the rest 20% data was

used as a test set. Out of 80% data extracted for training and validation, we randomly

took 10% for the validation set. To measure the statistical significance of RME over the

baselines, we repeated the splitting process five times (i.e., generating five pairs of train-

ing and validation sets). Since TasteProfile dataset did not contain timestamp information

of user-song interactions, we randomly split the TasteProfile dataset into training/valida-

tion/test sets five times with 70/10/20 proportions. Averaged results are reported in the

following subsection.

Stopping criteria and Hyperparameters. To decide when to stop training a model, we

measured the model’s NDCG@100 by using the validation set. We stopped training the

model when there was no further improvement. Then, we applied the best model to the

51

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

30 40 50 60 70 80 90 100
Varying K

0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

Re
ca

ll@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

30 40 50 60 70 80 90 100
Varying K

0.12

0.13

0.14

0.15

0.16

ND
CG

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

30 40 50 60 70 80 90 100
Varying K

0.075

0.080

0.085

0.090

0.095

0.100

0.105

M
AP

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

(a) Recall@5, NDCG@5, MAP@5 on MovieLens-10M. Fix λ = 1, and vary k.

30 40 50 60 70 80 90 100
Varying K

0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

Re
ca

ll@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

30 40 50 60 70 80 90 100
Varying K

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

ND
CG

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

30 40 50 60 70 80 90 100
Varying K

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

M
AP

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

(b) Recall@5, NDCG@5, MAP@5 on MovieLens-20M. Fix λ = 0.5, and vary k.

30 40 50 60 70 80 90 100
Varying K

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Re
ca

ll@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

30 40 50 60 70 80 90 100
Varying K

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

ND
CG

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

30 40 50 60 70 80 90 100
Varying K

0.08

0.09

0.10

0.11

0.12

0.13

M
AP

@
N Item2Vec

WMF
Cofactor
U_RME
I_RME
RME

(c) Recall@5, NDCG@5, MAP@5 on TasteProfile. Fix λ = 10, τ = 0.2, and vary k.

Figure 4.3: Performance of models when varying the latent dimension size k with fixing the
value of λ.

test set to evaluate its performance. This method was applied to the baselines and RME.

All hyper-parameters were tuned on the validation set by a grid search. We used the

same hyper-parameter setting in all models. The grid search of the regularization weight

λ was performed in {0.001, 0.005, 0.01, 0.05, ..., 10}. The size of latent dimensions

was in a range of {30, 40, 50, ..., 100}. We set weights w(+p) = w(−p) = w(u) = w

for all user-user and item-item co-occurrence pairs. When building our RME model for

TasteProfile dataset, we do a grid search for the negative sample drawing ratio τ in {0.2,

0.4, 0.6, 0.8, 1.0}.

52

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

4.2.3 Experimental Results

Performance of the baselines and RME. Table 4.2 presents recommendation results of

RME and compared models at Recall@5, NDCG@20, and MAP@10. First, we com-

pared RME with the baselines. We observed that RME outperformed all baselines in

the three datasets, improving the Recall by 6.3%, NDCG by 5.1%, and MAP by 8.3%

on average over the best baseline (p-value < 0.001). Second, we compared two vari-

ants of RME model with the baselines. We see that both U RME and I RME performed

better than the baselines. Adding user embeddings improved the Recall by 3.0∼3.5%,

NDCG by 1.4∼2.2%, and MAP by 4.2∼5.8% (p-value < 0.001), while adding disliked

item embeddings improved the Recall by 3.1∼3.8%, NDCG by 2.2∼3.0%, and MAP by

4.9∼6.0%. Third, we compare RME with its two variants. RME also achieved the best

result, improving Recall by 2.6∼3.0%, NDCG by 2.0∼2.5%, and MAP by 2.6∼2.8%

(p-value < 0.05). We further evaluated NDCG@N of our model when varying top N in

range {5, 10, 20, 50, 100}. Figure 4.2 shows our result (we excluded Item-KNN in the fig-

ure and following figures since it performed extremely worst). Our model still performed

the best. On average, it improved NDCG@N by 6.2% comparing to the baselines, and

by 3.3% comparing to its variants. These experimental results show that both co-disliked

item embedding and user embedding positively contributed to RME.

The experimental results in TasteProfile in Table 4.2 showed that inferring disliked

items in Algorithm 2 worked well since RME model incorporating co-disliked item em-

bedding outperformed the baselines. To further confirm the effectiveness of the algo-

rithm, we also applied it to MovieLens-10M and MovieLens-20M datasets after remov-

ing the explicit disliking information, pretending them as implicit feedback datasets. In

the datasets without disliking information, RME under Algorithm 2 still outperformed the

best baseline with 4.2%, 4.6% and 7.2% improvements on average in Recall, NDCG and

MAP, respectively (p-value ¡ 0.001). Its performance was slightly lower than the original

53

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

0.001 0.01 0.1 1 10
Varying K

0.130

0.135

0.140

0.145

0.150

0.155

Re
ca

ll@
N

WMF
Cofactor
U_RME
I_RME
RME

0.001 0.01 0.1 1 10
Varying K

0.130

0.135

0.140

0.145

0.150

0.155

0.160

ND
CG

@
N

WMF
Cofactor
U_RME
I_RME
RME

0.001 0.01 0.1 1 10
Varying K

0.085

0.090

0.095

0.100

0.105

M
AP

@
N WMF

Cofactor
U_RME
I_RME
RME

(a) Recall@5, NDCG@5, MAP@5 on MovieLens-10M. Fix k = 40, and vary λ.

0.001 0.01 0.1 1 10
Varying K

0.135

0.140

0.145

0.150

0.155

Re
ca

ll@
N

WMF
Cofactor
U_RME
I_RME
RME

0.001 0.01 0.1 1 10
Varying K

0.140

0.145

0.150

0.155

0.160

ND
CG

@
N

WMF
Cofactor
U_RME
I_RME
RME

0.001 0.01 0.1 1 10
Varying K

0.0925

0.0950

0.0975

0.1000

0.1025

0.1050

0.1075

0.1100

M
AP

@
N WMF

Cofactor
U_RME
I_RME
RME

(b) Recall@5, NDCG@5, MAP@5 on MovieLens-20M. Fix k = 40, and vary λ.

0.001 0.01 0.1 1 10
Varying K

0.172

0.174

0.176

0.178

0.180

0.182

0.184

0.186

0.188

Re
ca

ll@
N

WMF
Cofactor
U_RME
I_RME
RME

0.001 0.01 0.1 1 10
Varying K

0.1825

0.1850

0.1875

0.1900

0.1925

0.1950

0.1975

0.2000

ND
CG

@
N

WMF
Cofactor
U_RME
I_RME
RME

0.001 0.01 0.1 1 10
Varying K

0.118

0.120

0.122

0.124

0.126

0.128

0.130

0.132

M
AP

@
N WMF

Cofactor
U_RME
I_RME
RME

(c) Recall@5, NDCG@5, MAP@5 on TasteProfile. Fix k = 100, τ = 0.2, and vary λ.

Figure 4.4: Performance of models when varying λ with fixing the latent dimension size k.
Item2Vec did not contain regularization, so we excluded it.

54

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

RME (based on explicit disliking information) at 0.3%, 0.7% and 1.3% on average in Re-

call, NDCG, and MAP, respectively. The experimental results confirmed the effectiveness

of Algorithm 2. We note that Algorithm 2 got converged in up to 4 iterations for all three

datasets by the early stopping condition. Due to the space limitation, we do not include

figures which show the loss over iterations.

Parameter sensitivity analysis: We analyze the effects of the parameters in RME

model in order to answer the following research questions: (RQ2-1:) How does RME

work when varying the latent dimension size k?; (RQ2-2:) How does RME model change

with varying λ?; (RQ2-3:) How sensitive is the RME model on an implicit feedback

dataset (e.g. TasteProfile) when varying negative sample drawing ratio τ?; and (RQ2-4:)

Can RME achieve better performance with a dynamic setting of regularization hyper-

parameters?

Regarding RQ2-1, Figure 4.3 shows the sensitivity of all compared models when fix-

ing λ and varying the latent dimension size k in {30, 40, 50, 60, 70, 80, 90, 100}. It is

clearly observed that our model outperforms the baselines in all datasets. In MovieLens-

10M and MovieLens-20M datasets, all six models downgrade the performance when the

latent dimension size k is over 60. In the TasteProfile dataset, when increasing k, al-

though all models gain a higher performance, our model tends to achieve much higher

performance.

In a RQ2-2 experiment, we exclude Item2Vec because this model does not contain

the regularization term. We fix k = 40 in MovieLens-10M and MovieLens-20M. In

TasteProfile dataset, we fix k=100, τ=0.2. We vary lambda in range {0.001, 0.005, 0.01,

0.05, 0.1, 0.5, 1, 5, 10}. Then, we report the average results of Recall@5, NDCG@5,

and MAP@5. As shown in Figure 4.4, the performance of our model is better than the

baselines. In MovieLens-10M and MovieLens-20M dataset, RME increases its perfor-

mance when increasing λ up to 1, then its performance goes down when λ is increasing

55

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

0.2 0.4 0.6 0.8 1.0
0.186

0.187

0.188

Re
ca

ll@
5

0.2 0.4 0.6 0.8 1.0
0.1990

0.1995

0.2000

ND
CG

@
5

0.2 0.4 0.6 0.8 1.0
0.1315

0.1320

0.1325

M
AP

@
5

Figure 4.5: Performance of RME in TasteProfile when varying negative sample drawing ratio
τ with fixing k = 100, λ = 10.

more. In TasteProfile, RME tends to gain a higher performance and more outperformed

the baselines when λ is increasing.

To understand the sensitivity of our model when varying negative sample drawing

ratio τ in the implicit feedback dataset – TasteProfile (RQ2-3), we vary τ in {0.2, 0.4, 0.6,

0.8, 1.0}, and fix k = 100 and λ = 10. Figure 4.5 shows that when τ increases, our model

degrades with a small amount (e.g. around -0.3% in Recall@5 and NDCG@5, and -0.4%

in MAP@5). In NDCG@5, our model gains the best result when τ = 0.4. We note that

our worst case (when τ = 1.0) is still better than the best baseline presented in Table 4.2.

This shows that the sensitivity of our model with regard to the negative sample drawing

ratio τ is small/limited.

In our previous experiments, we used a static setting of regularization hyper-parameters

by setting λα = λβ = λγ = λδ = λθ = λ. To explore if a dynamic setting of those reg-

ularization hyper-parameters could lead to better results for RME model (RQ2-4), we set

λα = λβ = λ1, λγ = λδ = λθ = λ2. Then we both vary λ1 and λ2 in {100, 50, 10,

5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} while fixing the latent dimension size k. Next,

we report the NDCG@5 for all 3 datasets. As shown in Figure 4.6, our model even get a

higher performance with the dynamic setting. For example, it gains NDCG@5 = 0.1613

when λ1 = 100 and λ2 = 0.005 in MovieLens-10M dataset. Similarly, NDCG@5 =

0.1639 when λ1 = 0.5, λ2 = 1 in MovieLens-20M dataset. NDCG@5 = 0.2014 when

λ1 = 100, λ2 = 10 in TasteProfile dataset. The dynamic setting produced 0.3∼2% higher

56

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

100
10

1

6
1

0.1
0.01

0.0010.001
0.01

0.1

6
2

1
10

0.15

0.16

0.155

100

N
D

C
G

@
5

0.148

0.15

0.152

0.154

0.156

0.158

0.16

(a) MovieLens-10M

100
10

1

6
1

0.1
0.01

0.0010.001
0.01

0.1

6
2

1
10

0.15

0.16

0.155

100

N
D

C
G

@
5

0.15

0.152

0.154

0.156

0.158

0.16

0.162

(b) MovieLens-20M

100
10

1

6
1

0.1
0.01

0.0010.001
0.01

0.1

6
2

1
10

0.2

0.195

0.19

0.185

100

N
D

C
G

@
5

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

(c) TasteProfile

Figure 4.6: Performance of RME under a dynamic setting of regularization hyper-parameters.
Set λα = λβ = λ1, and λγ(+) = λγ(−) = λθ = λ2.

results than the static setting presented in Table 4.2.

So far, we compared the performance of our model and the baselines while varying

values of hyper-parameters. We showed that our model outperformed the baselines in all

cases, indicating that our model was less sensitive with regard to the hyper-parameters.

We also showed that our model produced better results under the dynamic setting.

Performance of models for different types of users. We sorted users by the ascend-

ing order of their activity level in terms of the number of liked items. Then we categorized

them into three groups: (1) cold-start users who were in the first 20% of the sorted user

list (i.e., their activity level is the lowest); (2) warm-start users who were in between 20%

and 80% of the sorted user list; (3) highly active users who were in the last 20% of the

sorted user list (i.e., the most active users). Then, we measured the performance of all the

compared models for each of the user groups.

Figure 4.7 shows the performance of all the compared models in MovieLens-10M,

MovieLens-20M and TasteProfile datasets. In MovieLens-10M (Figure 4.7(a)), our model

significantly outperformed the baselines and the two variants in all three user groups, im-

proving Recall@5 by 4.7∼6.7%, NDCG@5 by 6.8∼8.8%, and MAP@5 by 9.2∼11.0%

over the best compared method. In MovieLens-20M dataset (Figure 4.7(b)), our model

significantly outperformed the baselines and its variants in 2 groups: cold-start users and

warm-start users. It improved Recall@5 by 16.1%, 4.0%, 0.8%, NDCG@5 by 15.3%,

57

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.0

0.1

0.2

0.3

Re
ca

ll@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.0

0.1

0.2

0.3
ND

CG
@

5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.00

0.05

0.10

0.15

0.20

0.25

M
AP

@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

(a) Dataset: MovieLens-10M. RME outperformed baselines in all three groups (p-value ¡ 0.05).

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.0

0.1

0.2

0.3

Re
ca

ll@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.0

0.1

0.2

0.3

ND
CG

@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.00

0.05

0.10

0.15

0.20

M
AP

@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

(b) Dataset: MovieLens-20M. RME outperformed baselines in cold-start and highly-active user groups
(p-value ¡ 0.05).

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.00

0.05

0.10

0.15

0.20

0.25

Re
ca

ll@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.00

0.05

0.10

0.15

0.20

0.25

ND
CG

@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

Cold start(*) Warm start(*)Highly active(ns)
user's activeness types

0.00

0.05

0.10

0.15

M
AP

@
5

Item2Vec
WMF
Cofactor
U_RME
I_RME
RME

(c) Dataset: TasteProfile. RME outperformed baselines in highly-active user group (p-value ¡ 0.05).

Figure 4.7: Performance of models for three user groups. Non-directional two-sample t-test
was performed. * indicates significant (p-value < 0.05), and ns indicates not significant. The
error bars are the average of standard errors in the 5 folds.

58

4.2 RECOMMENDING PRODUCTS WITH REGULARIZED USER AND ITEM
EMBEDDINGS

4.4%, 0.9%, MAP@5 by 17.3%, 5.1%, 1.1% in cold-start users, warm-start users and

highly-active users, respectively. Specially, in both MovieLens-10M and MovieLens-

20M datasets, our model on average much improved the baselines in cold-start users

with Recall@5, NDCG@5 and MAP@5 by 27.9%, 24.8% and 23.3%, respectively. It

shows the benefit of incorporating disliked item embeddings and user embeddings. In

TasteProfile dataset (Figure 4.7(c)), our model significantly improved baselines in highly-

active users group, improving Recall@5 by 6.8%, NDCG@5 by 7.4%, and MAP@5

by 10.0% comparing to the best state-of-the-art method, while improving Recall@5 by

5.0%, NDCG@5 by 4.9%, and MAP@5 by 5.7% comparing to its best variant. However,

in cold-start users and warm-start users group, RME got an equal performance compar-

ing with the baselines (i.e., the difference between our model and other methods are not

significant).

Joint learning vs separate learning. What if we conduct learning separately for each

part of our model? Will the separate learning model perform better than our joint learning

model? To answer the questions, we built a separate learning model as follows: first,

we learned latent representations of items by jointly decomposing two SPPMI matrices

X(+) and X(−) of liked item-item co-occurrences and disliked item-item co-occurrences,

respectively. Then, we learned user’s latent representations by minimizing the objective

function in Equation (4.4), where the latent representations of items and item contexts

were already learned and fixed. Next, we compared our joint learning model (i.e., RME)

with the separate learning model in MovieLens-10M, MovieLens-20M, and TasteProfile

datasets. Our experimental results show that our joint learning model outperformed the

separate learning model by significantly improving Recall@5, NDCG@5 and MAP@5

at least 12.1%, 13.5% and 17.1%, respectively (p-value < 0.001).

59

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

u1 p1 s1
u1 p1 s2
u2 p2 s1
u2 p2 s2
u2 p2 s3

s1 s2 s3
u1 ✔ ✔

u2 ✔ ✔ ✔

s1 s2 s3

p1 ✔ ✔

p2 ✔ ✔ ✔

1

1

-1

u1

u2

s1 s2

s3

1

1

-1

p1

p2

s1 s2

s3

1

1

-1

u1

u2

s1 s2 s3

1

1

-1

s1 s2 s3
p1

p2

dot product metric learninginput
interactions

Figure 4.8: Learning with dot product vs. metric learning.

4.3 Recommending Products with a Metric Learning Based

Approach

A common drawback of existing recommender systems is that they rely on the dot prod-

uct to measure similarity. However, dot product is not a metric learning, so it does not

convey the crucial inequality property [92, 93], and does not handle differently scaled

input variables well. We illustrate the drawback of dot product in a toy example using a

simple consumer-playlist-song interaction data in the automatic playlist continuation rec-

ommendation problem, and present Figure 4.81, where the latent dimension is size d = 2.

Assume we have two users u1, u2, two playlists p1, p2, and three songs s1, s2, s3. We

can see that p1 and p2 (or u1 and u2) are similar (i.e., both liked s1, and s2), suggesting

that s3 would be relevant to the playlist p1. Learning with dot product can lead to the

following result: p1 = (0, 1), p2 = (1, 0), s1 = (1, 1), s2 = (1, 1), s3 = (1,−1), because

pT1 s1 = 1, pT1 s2 = 1, pT2 s1 = 1, pT2 s2 = 1, pT2 s3=1 (same for users u1, u2). However, the

dot product between p1 and s3 is -1, so s3 would not be recommended to p1. In contrast, if

1This Figure is inspired by [92]

60

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

we use metric learning, it will pull similar users/playlists/songs closer together by using

the inequality property. In the example, the distance between p1 and s3 is rescaled to 0,

and s3 is now correctly portrayed as a good fit for p1.

There exist several works that adopt metric learning for recommendation. [92] pro-

posed Collaborative Metric Learning (CML) which used Euclidean distance to pull pos-

itive items closer to a user and push negative items further away. [39, 41, 94] also used

Euclidean distance but for modeling transitional patterns. However, these metric-based

models still fall into either Group 1 or Group 3, inheriting the limitations that we described

previously. Furthermore, as Euclidean distance is the primary metric, these models are

highly sensitive to the scales of (latent) dimensions/variables.

According to the literature, Mahalanobis distance1 [95, 96] overcomes the drawback

(i.e., high sensitivity) of Euclidean distance. However, Mahalanobis distance has not yet

been applied to recommendation with neural network designs.

Hence, in this section, we utilize Mahalanobis distance in our three novel metric learn-

ing based neural recommenders. Our first approach, Mahalanobis Distance Based Rec-

ommender (MDR), measures the explicit preference of a target consumer on a target item

via calculating a Mahalanobis distance between the target consumer and the target item.

Our second approach Mahalanobis distance-based Attentive Item Similarity recommender

uses Mahalanobis distance to measure similarities between a target item and consumed

items of the target customer. It incorporates our proposed memory metric-based attention

mechanism that assigns attentive weights to each distance score between the target item

and each member items in order to capture different influence levels. Then, our third

approach fuses both two previous approaches to merge their capabilities. In addition, we

incorporate customized Adversarial Personalized Ranking [97] into our three models to

further improve their robustness.

1https://en.wikipedia.org/wiki/Mahalanobis distance

61

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

In the following sections, we describe our proposed metric learning based neural rec-

ommenders in the automatic playlist continuation problem, which is the most important

one in streaming platforms like Youtube, Spotify, etc. Note that, our methods can be ap-

plied into other problems in a similar manner. First, we will briefly mention the problem

definition and preliminary about Mahalanobis distance. Then, we describe our proposed

methods, and present the experiments settings and experimental results.

4.3.1 Problem Definition

Let U = {u1, u2, u3, ..., um} denote the set of all users, P = {p1, p2, p3, ..., pn} denote the

set of all playlists, S = {s1, s2, s3, ..., sv} denote the set of all songs. Bolded versions of

these variables, which we will introduce in the following sections, denote their respective

embeddings. m, n, v are the number of users, playlists, and songs in a dataset, respectively.

Each user ui ∈ U has created a set of playlists T (ui) ={p1, p2, ..., p|T (ui)|}, where each

playlist pj ∈ T (ui) contains a list of songs T (pj) ={s1, s2, ..., s|T (pj)|}. Note that T (u1) ∪

T (u2)∪...∪T (um) = {p1, p2, p3, ..., pn}, T (p1)∪T (p2)∪...∪T (pn) = {s1, s2, s3, ..., sv}, and the

song order within each playlist is often not available in the dataset. The Automatic Playlist

Continuity (APC) problem can then be defined as recommending new songs sk /∈ T (pj)

for each playlist pj ∈ T (ui) created by user ui.

4.3.2 Preliminary

Given two points x ∈ Rd and y ∈ Rd, the Mahalanobis distance between x and y is

defined as:

dM(x, y) = ‖x− y‖M =
√

(x− y)TM(x− y) (4.10)

62

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

where M ∈ Rd×d parameterizes the Mahalanobis distance metric to be learned during

model training. To ensure that Eq. (4.10) produces a mathematical metric1, M must

be symmetric positive semi-definite (M � 0). This constraint on M makes the model

training process more complicated, so to ease this condition, we rewrite M = ATA

(A ∈ Rd×d) since M � 0. The Mahalanobis distance between two points dM(x, y) now

becomes:
dM(x, y) = ‖x− y‖A =

√
(x− y)TATA(x− y)

=

√(
A(x− y)

)T (
A(x− y)

)
= ‖A(x− y)‖2 = ‖Ax− Ay‖2

(4.11)

where ‖ · ‖2 refers to the Euclidean distance. By rewriting Eq. (4.10) into Eq. (4.11),

the Mahalanobis distance can now be computed by measuring the Euclidean distance

between two linearly transformed points x → Ax and y → Ay. This transformed space

encourages the model to learn a more accurate similarity between x and y. dM(x, y)

is generalized to basic Euclidean distance d(x, y) when A is the identity matrix. If A

in Eq. (4.11) is a diagonal matrix, the objective becomes learning metric A such that

different dimensions are assigned different weights. Our experiments show that learning

diagonal matrix A generalizes well and produces slightly better performance than if A

were a full matrix. Therefore in this chapter we focus on only the diagonal case. Also

note that when A is diagonal, we can rewrite Eq. (4.11) as:

dM(x, y) = ‖A(x− y)‖2 = ‖diag(A)� (x− y)‖2 (4.12)

where diag(A) ∈ Rn returns the diagonal of matrix A, and � denotes the element-wise

product. Therefore, we can parameterize B = diag(A) ∈ Rn and learn the Mahalanobis

distance by simply computing ‖B � (x− y)‖2.

In our models’ calculations, we will adopt squared Mahalanobis distance, since quadratic
1https://en.wikipedia.org/wiki/Metric (mathematics)

63

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

form promotes faster learning.

4.3.3 Method

In this section, we delve into design elements and parameter estimation of our three pro-

posed models: Mahalanobis Distance based Recommender (MDR), Mahalanobis distance-

based Attentive Song Similarity recommender (MASS), and the combined model Maha-

lanobis distance based Attentive Song Recommender (MASR).

Mahalanobis Distance based Recommender (MDR) MDR takes a target user, a

target playlist, and a target song as inputs, and outputs a distance score reflecting the direct

relevance of the target song to the target user’s music taste and to the target playlist’s

theme. We will first describe how to measure each of the conditional probabilities –

P(sk|ui), P(sk|pj), and finally P(sk|ui, pj) – using Mahalanobis distance. Then we will

go over MDR’s design.

Measuring P(sk|ui) Given a target user ui, a target playlist pj , a target song sk, and

the Mahalanobis distance dM(ui, sk) between ui and sk, P(sk|ui) is measured by:

P (sk|ui) =
exp(−(d2

M(ui, sk) + βsk))∑
l exp(−(d2

M(ui, sl) + βsl))
(4.13)

where βsk , βsl are bias terms to capture their respective song’s overall popularity [98].

User bias is not included in Eq.(4.13) because it is independent of P(sk|ui) when varying

candidate song sk. The denominator
∑

l exp(−dM(ui, sl) + βsl) is a normalization term

shared among all candidate songs. Thus, P(sk|ui) is measured as:

P (sk|ui) ∝ −
(
d2
M(ui, sk) + βsk

)
(4.14)

Note that training with Bayesian Personalized Ranking (BPR) will only require calculat-

ing Eq. (4.14), since for every pair of observed song k+ and unobserved song k− , we

64

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

model the pairwise ranking P (sk+|ui) > P (sk−|ui). Using Eq. (4.13), this inequality is

satisfied only if d2
M(ui, sk+) + βs

k+
< d2

M(ui, sk−) + βs
k−

, which leads to Eq. (4.14).

Measuring P(sk|pj) Given a target playlist pj , a target song sk, and the Mahalanobis

distance dM(pj, sk) between pj and sk, P(sk|pj) is measured by:

P (sk|pj) =
exp(−(d2

M(pj , sk) + γsk))∑
l exp(−(d2

M(pj , sl) + γsl))
(4.15)

where γsk and γsl are song bias terms. Similar to P (sk|ui), we shortly measure P (sk|pj)

by:

P (sk|pj) ∝ −(d2
M(pj , sk) + γsk) (4.16)

Measuring P(sk|ui, pj) P(sk|ui, pj) is computed using the Bayesian rule under the

assumption that ui and pj are conditionally independent given sk:

P (sk|ui, pj) ∝ P (ui|sk)P (pj|sk)P (sk)

=
P (sk|ui)P (ui)

P (sk)

P (sk|pj)P (pj)

P (sk)
P (sk)

∝ P (sk|ui)P (sk|pj)
1

P (sk)

(4.17)

In Eq. (4.17), P (sk) represents the popularity of target song sk among the song pool. For

simplicity in this chapter, we assume that selecting a random candidate song follows a

uniform distribution instead of modeling this popularity information. P (sk|ui, pj) then

becomes proportional to: P (sk|ui, pj) ∝ P (sk|ui)P (sk|pj). Using Eq. (4.13, 4.15), we

can approximate P (sk|ui, pj) as follows:

65

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

target user target song

song
embedding

element-wise
subtraction

user-song
distance

user
embedding

target playlist

playlist
embedding

playlist-song
distance

—
B1

—

+
element-wise
summation

Transpose

+

element-wise
multiplication

x
x

—
B2

x

user-playlist-song
distance o(MDR)

Embedding
layer

Mahalanobis
Distance
Module

T

T

T

Figure 4.9: Architecture of our MDR.

P (sk|ui, pj) ∝

exp
(
− (d2

M(ui, sk) + βsk)
)∑

l exp
(
− (d2

M(ui, sl) + βsl)
) × exp

(
− (d2

M(pj , sk) + γsk)
)∑

l exp
(
− (d2

M(pj , sl) + γsl)
)

=
exp

(
− (d2

M(ui, sk) + βsk)− (d2
M(pj , sk) + γsk)

)∑
l exp

(
− (d2

M(ui, sl) + βsl)
)∑

l′ exp
(
− (d2

M(pj , sl′) + γsl′)
)

(4.18)

Since the denominator of Eq. (4.18) is shared by all candidate songs (i.e., normalization

term), we can shortly measure P (sk|ui, pj) by:

P (sk|ui, pj) ∝ −
(
d2
M(ui, sk) + d2

M(pj , sk)
)
−
(
βsk + γsk

)
= −

(
d2
M(ui, sk) + d2

M(pj , sk) + θsk
) (4.19)

With P (sk|ui, pj) now established in Eq. (4.19), we can move on to our MDR model.

MDR Design The MDR architecture is depicted in Figure 4.9. It has an Input, Em-

bedding Layer, and Mahalanobis Distance Module.

Input: MDR takes a target user ui (user ID), a target playlist pj (playlist ID), and a target

song sk (song ID) as input.

Embedding Layer: MDR maintains three embedding matrices of users, playlists, and

66

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

songs. By passing user ui, playlist pj , and song sk through the embedding layer, we

obtain their respective embedding vectors ui ∈ Rd, pj ∈ Rd, and sk ∈ Rd, where d is

the embedding size.

Mahalanobis Distance Module: As depicted in Figure 4.9, this module outputs a dis-

tance score o(MDR) that indicates the relevance of candidate song sk to both user ui’s

music preference and playlist pj’s theme. Intuitively, the lower the distance score is, the

more relevant the song is. o(MDR)(ui,pj , sk) is computed as follows:

o(MDR) = o(ui, sk) + o(pj , sk) + θsk (4.20)

where θsk is song sk’s bias, and o(ui, sk), o(pj , sk) are quadratic Mahalanobis distance

scores between user ui and song sk, and between playlist pj and song sk, shown in the

following two equations. B1 ∈ Rd andB2 ∈ Rd are two metric learning vectors. And,

o(ui, sk) =
(
B1 � (ui − sk)

)T (
B1 � (ui − sk)

)
o(pj , sk) =

(
B2 � (pj − sk)

)T (
B2 � (pj − sk)

)
Mahalanobis distance-based Attentive Song Similarity recommender (MASS)

An overview of MASS’s architecture is depicted in Figure 4.10. MASS has five com-

ponents: Input, Embedding Layer, Processing Layer, Attention Layer, and Output.

Input: The inputs to our MASS model include a target user ui, a candidate song sk for

a target playlist pj , and a list of l member songs within the playlist, where l is the number

of songs in the largest playlist (i.e., containing the largest number of songs) in the dataset.

If a playlist contains less than l songs, we pad the list with zeroes until it reaches length l.

Embedding Layer: This layer holds two embedding matrices: a user embedding ma-

trix U ∈ Rm×d and a song embedding matrix S ∈ Rv×d. By passing the input target user

ui and target song sk through these two respective matrices, we obtain their embedding

vectors ui ∈ Rd and sk ∈ Rd. Similarly, we acquire the embedding vectors for all l

67

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

...

song
embedding

matrix
S

user
embedding

matrix
U

...
... ∑

song
embedding

matrix
S(a)

user
embedding

matrix
U(a)

...
...

input Embedding layer Processing layer Output

Memory metric-based Attention

Distance
scores

Distance
scores

Attentive
scores

Target user

Target song

Target song

Target user

\

 member
songs

 member
songs

... ...

qik

qik(a)

o(MASS)

softmin

Ta
rg

et
 p

la
yl

is
t

Ta
rg

et
 p

la
yl

is
t

Figure 4.10: Architecture of our MASS.

member songs in pj , denoted by s1, s2, ..., sl.

Processing Layer: We first need to consolidate ui and sk. Following widely adopted

deep multimodal network designs [99], we concatenate the two embeddings, and then

transform them into a new vector qik ∈ Rd via a fully connected layer with weight matrix

W1 ∈ R2d×d, bias term b ∈ R, and activation function ReLU. We formulate this process

as follows:

qik = ReLU

(
W1

ui
sk

+ b1

)
(4.21)

Note that qik can be interpreted as a search query in QA systems [100, 101]. Since we

combined the target user ui with the query song sk (to add to the user’s target playlist),

the search query qik is personalized. The ReLU activation function models a non-linear

68

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

combination between these two target entities, and was chosen over sigmoid or tanh due

to its encouragement of sparse activations and proven non-saturation [102], which helps

prevent overfitting.

Next, given the embedding vectors s1, s2, ..., sl of the l member songs in target

playlist pj , we approximate the conditional probability P(sk|ui, s1, s2, ..., sl) by:

P (sk|ui, s1, s2, ..., sl) ∝ −
(l∑

t=1

αiktd
2
M(qik, st) + bsk

)
(4.22)

where dM(·) returns the Mahalanobis distance between two vectors, bsk is the song bias

reflecting its overall popularity, and αikt is the attention score to weight the contribution

of the partial distance between search query qik and member song st. We will show how

to calculate d2
M(qik, st) below, and αikt in Attention Layer at 4.3.3.

As indicated in Eq. (4.12), we parameterize B3 ∈ Rd, which will be learned during

the training phase. The Mahalanobis distance between the search query qik and each

member song st, treatingB3 as an edge-weight vector, is measured by:

d2
M(qik, st) =

∥∥eTikteikt∥∥2

2
where eikt = B3 � (qik − st) (4.23)

Calculating Eq. (4.23) for every member song st yields the following l-dimensional

vector: 

d2
M(qik, s1)

d2
M(qik, s2)

. . .

d2
M(qik, sl)


=



∥∥eTik1eik1

∥∥2

2∥∥eTik2eik2

∥∥2

2

. . .∥∥eTikleikl∥∥2

2


(4.24)

Note thatB3 is shared across all Mahalanobis measurement pairs. Now we go into detail

of how to calculate the attention weights αikt using our proposed Attention Layer.

Attention Layer: With l distance scores obtained in Eq. (4.24), we need to com-

69

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

bine them into one distance value to reflect how relevant the target song is w.r.t the target

playlist’s member songs. The simplest approach is to follow the well-known item simi-

larity design [36, 103] where the same weights are assigned for all l distance scores. This

is sub-optimal in our domain because different member song can relate to the target song

differently. For example, given a country playlist and a target song of the same genre,

the member songs that share the same artist with the target song would be more similar

to the target song than the other member songs in the playlist. To address this concern,

we propose a novel memory metric-based attention mechanism to properly allocate dif-

ferent attentive scores to the distance values in Eq. (4.24). Compared to existing attention

mechanisms, our attention mechanism maintains its own embedding memory of users and

songs (i.e., memory-based property), which can function as an external memory. It also

computes attentive scores using Mahalanobis distance (i.e., metric-based property) in-

stead of traditional dot product. Note that the memory-based property is also commonly

applied to question-answering in NLP, where memory networks have utilized external

memory [104] for better memorization of context information [105, 106]. Our atten-

tion mechanism has one external memory containing user and song embedding matrices.

When the user and song embedding matrices of our attention mechanism are identical to

those in the embedding layer, it is the same as looking up the embedding vectors of target

users, target songs, and member songs in the embedding layer (Section 4.3.3). Therefore,

using external memory will make room for more flexibility in our models.

The attention layer features an external user embedding matrix U(a) ∈ Rm×d and

external song embedding matrix S(a) ∈ Rv×d. Given the following inputs – a target user

ui, a target song sk, and all l member songs in playlist pj – by passing them through the

corresponding embedding matrices, we obtain the embedding vectors of ui, sk, and all

the member songs, denoted as u(a)
i , s(a)

k , and s(a)
1 , s

(a)
2 , ..., s

(a)
l , respectively.

We then forge a personalized search query q(a)
ik by combining u(a)

i and s(a)
k in a mul-

70

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

timodal design as follows:

q
(a)
ik = ReLU

(
W2

u(a)
i

s
(a)
k

+ b2

)
(4.25)

where W2 ∈ R2d×d is a weight matrix and b2 is a bias term. Next, we measure the

Mahalanobis distance (with an edge weight vector B4 ∈ Rd) from q
(a)
ik to a member

song’s embedding vector s(a)
t where t ∈ 1, l:

d2
M(q

(a)
ik , s

(a)
t) =

∥∥(e(a)
ikt

)T
e

(a)
ikt

∥∥2

2
where e

(a)
ikt = B4 �

(
q

(a)
ik − s

(a)
t

)
(4.26)

Using Eq. (4.26), we generate l distance scores between each of l member songs and

the candidate song. Then we apply softmin on l distance scores in order to obtain the

member songs’ attentive scores1. Intuitively, the lower the distance between a search

query and a member song vector, the higher its contribution level is w.r.t the candidate

song.

αikt =
exp

(
−
∥∥(e(a)

ikt

)T
e

(a)
ikt

∥∥2

2

)∑l
t′=1 exp

(
−
∥∥(e(a)

ikt′
)T
e

(a)
ikt′
∥∥2

2

) (4.27)

Output: We output the total attentive distances o(MASS) from the target song sk to

target playlist pj’s existing songs by:

o(MASS) = −
(l∑

t=1

αiktd
2
M(qik, st) + bsk

)
(4.28)

where αikt is the attentive score from Eq. (4.27), dM(qik, st) is the personalized Ma-

halanobis distance between target song sk and a member song st in user ui’s playlist

(Eq. (4.24)), bsk is the song bias.

1Note that attentive scores of padded items are 0.

71

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Mahalanobis distance based Attentive Song Recommender (MASR = MDR +

MASS) We enhance our performance on the APC problem by combining our MDR and

MASS into a Mahalanobis distance based Attentive Song Recommender (MASR) model.

MASR outputs a cumulative distance score from the outputs of MDR and MASS as follows:

o(MASR) = αo(MDR) + (1− α)o(MASS) (4.29)

where o(MDR) is from Eq. (4.20), o(MASS) is from Eq. (4.28), and α ∈ [0, 1] is a hyper-

parameter to adjust the contribution levels of MDR and MASS. α can be tuned using a

development dataset. However, in the following experiments, we set α = 0.5 to receive

equal contribution from MDR and MASS. We pretrain MDR and MASS first, then fix MDR

and MASS’s parameters in MASR. There are two benefits of this design. First, if MASR

is learnable with pretrained MDR and MASS initialization, MASR would have too high

a computational cost to train. Second, by making MASR non-learnable, MDR and MASS

in MASR can be trained separately and in parallel, which is more practical and efficient

for real-world systems.

Parameter Estimation Learning with Bayesian Personalized Ranking (BPR) loss

We apply BPR loss as an objective function to train our MDR, MASS, MASR as follows:

L(D|Θ) = argmin
Θ

(
−

∑
(i,j,k+,k−)

log σ(oijk− − oijk+) + λΘ‖Θ‖2
)

(4.30)

where (i, j, k+, k−) is a quartet of a target user, a target playlist, a positive song, and a neg-

ative song which is randomly sampled. σ(·) is the sigmoid function; D denotes all training

instances; Θ are the model’s parameters (for instance, Θ = {U,S,U(a),S(a),W1,W2,B3,

B4,b} in the MASS model); λΘ is a regularization hyper-parameter; and oijk is the out-

put of either MDR, MASS, or MASR, which is measured in Eq. (4.20), (4.28), and (4.29),

respectively.

72

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Learning with Adversarial Personalized Ranking (APR) loss It has been shown in

[97] that BPR loss is vulnerable to adversarial noise, and APR was proposed to enhance

the robustness of a simple matrix factorization model. In this work, we apply APR to fur-

ther improve the robustness of our MDR, MASS, and MASR. We name our MDR, MASS,

and MASR trained with APR loss as AMDR, AMASS, AMASR by adding an “adversarial

(A)” term, respectively. Denote δ as adversarial noise on the model’s parameters Θ. The

BPR loss from adding adversarial noise δ to Θ is defined by:

L(D|Θ̂ + δ) = argmax
Θ=Θ̂+δ

(
−

∑
(i,j,k+,k−)

log σ(oijk− − oijk+)
)

(4.31)

where Θ̂ is optimized in Eq. (4.30) and fixed as constants in Eq. (4.31). Then, training

with APR aims to play a minimax game as follows:

arg min
Θ

max
δ,‖δ‖≤εs(Θ̂)

L(D|Θ) + λδL(D|Θ̂ + δ) (4.32)

where ε is a hyper-parameter to control the magnitude of perturbations δ. In [97], the

authors fixed ε for all the model’s parameters, which is not ideal because different param-

eters can endure different levels of perturbation. If we add too large adversarial noise, the

model’s performance will downgrade, while adding too small noise does not guarantee

more robust models. Hence, we multiply ε with the standard deviation s(Θ̂) of the target-

ing parameter Θ̂ to provide a more flexible noise magnitude. For instance, the adversarial

noise magnitude on parameter B3 in AMASS model is ε × s(B3). If the values in B3

are widely dispersed, they are more vulnerable to attack, so the adversarial noise applied

during training must be higher in order to improve robustness. Whereas if the values are

centralized, they are already robust, so only a small noise magnitude is needed.

Learning with APR follows 4 steps: Step 1: unlike [97] where parameters are saved

73

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

at the last training epoch, which can be over-fitted parameter values (e.g. some thousands

of epoches for matrix factorization in [97]), we first learn our models’ parameters by

minimizing Eq. (4.30) and save the best checkpoint based on evaluating on a development

dataset. Step 2: with optimal Θ̂ learned in Step 1, in Eq. (4.31), we set Θ = Θ̂ and fix Θ

to learn δ. Step 3: with optimal δ̂ learned in Eq. (4.31), in Eq. (4.32) we set δ = δ̂ and fix

δ to learn new values for Θ. Step 4: We repeat Step 2 and Step 3 until a maximum number

of epochs is reached and save the best checkpoint based on evaluation on a development

dataset. Following [97, 107], the update rule for δ is obtained by using the fast gradient

method as follows:

δ = ε× s(Θ̂)× 5δ(L(D|Θ̂ + δ))∥∥5δ(L(D|Θ̂ + δ))
∥∥

2

(4.33)

Note that update rules of parameters in Θ can be easily obtained by computing the partial

derivative w.r.t each parameter in Θ.

Time Complexity

Let Ω denote the total number of training instances (=
∑

j N(pj) where N(pj) refers

to the number of songs in training playlist pj). ω = max(N(pj)), ∀j = 1, n denotes

the maximum number of songs in all playlists. For each forward pass, MDR takes O(d)

to measure o(MDR) (in Eq. (4.20)) for a positive training instance, and another forward

pass with O(d) to calculate o(MDR) for a negative instance. The backpropagation for

updating parameters take the same complexity. Therefore, the time complexity of MDR

is O(Ωd). Similarly, for each positive training instance, MASS takes (i) O(2d2) to make

each query in Eq. (4.21) and Eq. (4.25); (ii) O(ωd) to calculate ω distance scores from

ω member songs to the target song in Eq. (4.24); and (iii) O(ωd) to measure attention

scores in Eq. (4.27). Since embedding size d is often small, O(ωd) is a dominant term

and MASS’s time complexity is O(Ωωd). Hence, both MDR and MASS scale linearly

to the number of training instances and can run very fast, especially with sparse datasets.

When training with APR, updating δ in Eq. (4.33) with fixed Θ̂ needs one forward and one

74

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Table 4.3: Statistics of datasets.

Statistics 30Music AOTM

of users 12,336 15,835
of playlists 32,140 99,903
of songs 276,142 504,283
of interactions 666,788 1,966,795
avg. # of playlists per user 2.6 6.3
avg. & max # of songs per playlist 18.75 & 63 17.69 & 58
Density 0.008% 0.004%

backward pass. Learning Θ in Eq. (4.32) requires one forward pass to measure L(D|Θ)

in Eq. (4.30), one forward pass to measure L(D|Θ̂ + δ) in Eq. (4.31), and one backward

pass to update Θ in Eq. (4.32). Hence, time complexity when training with APR is h times

higher (h is small) compared to training with BPR loss.

4.3.4 Experimental Settings

Datasets:

To evaluate our proposed models and existing baselines, we used two publicly ac-

cessible real-world datasets that contain user, playlist, and song information. They are

described as follows:

• 30Music [108]: This is a collection of playlists data retrieved from Internet radio

stations through Last.fm1. It consists of 57K playlists and 466K songs from 15K

users.

• AOTM [109]: This dataset was collected from the Art of the Mix2 playlist database.

It consists of 101K playlists and 504K songs from 16K users, spanning from Jan 1998

to June 2011.

For data preprocessing, we removed duplicate songs in playlists. Then we adopted a

1https://www.last.fm
2http://www.artofthemix.org/

75

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

widely used k-core preprocessing step [88, 110] (with k-core = 5), filtering out playlists

with less than 5 songs. We also removed users with an extremely large number of

playlists, and extremely large playlists (i.e., containing thousands of songs). Since the

datasets did not have song order information for playlists (i.e., which song was added to

a playlist first, then next, and so on), we randomly shuffled the song order of each playlist

and used it in the sequential recommendation baseline models to compare with our mod-

els. The two datasets are implicit feedback datasets. The statistics of the preprocessed

datasets are presented in Table 4.3.

Baselines:

We compared our proposed models with eight strong state-of-the-art models in the

APC task. The baselines were trained by using BPR loss for a fair comparison:

• Bayesian Personalized Ranking (MF-BPR) [111]: It is a pairwise matrix factoriza-

tion method for implicit feedback datasets.

• Collaborative Metric Learning (CML) [92]: It is a collaborative metric-based method.

It adopted Euclidean distance to measure a user’s preference on items.

• Neural Collaborative Filtering (NeuMF++) [26]: It is a neural network based method

that models non-linear user-item interactions. We pretrained two components of

NeuMF to obtain its best performance (i.e., NeuMF++).

• Factored Item Similarity Methods (FISM) [36]: It is a item neighborhood-based

method. It ranks a candidate song based on its similarity with member songs using

dot product.

• Collaborative Memory Network (CMN++) [29]: It is a user-neighborhood based

model using a memory network to assign attentive scores for similar users.

• Personalized Ranking Metric Embedding (PRME) [39]: It is a sequential recom-

mender that models a personalized first-order Markov behavior using Euclidean dis-

76

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

tance.

• Translation-based Recommendation (Transrec) [41]: It is one of the best sequen-

tial recommendation methods. It models the third order between the user, the previous

song, and the next song where the user acts as a translator.

• Convolutional Sequence Embedding Recommendation

(Caser) [42]: It is a CNN based sequential recommendation. It embeds a sequence of

recent songs into an “image” in time and latent spaces, then learns sequential patterns

as local features of the image using different horizontal and vertical filters.

We did not compare our models with baselines that performed worse than above listed

baselines like item-KNN[90], SLIM[103], etc.

MF-BPR, CML, and NeuMF++ used only user/playlist-song interaction data to model

either users’ preferences over songs P(s|u) or playlists’ tastes over songs P(s|p). We ran

the baselines both ways, and report the best results. Two neighborhood-based baselines

utilized neighbor users/playlists (i.e., CMN++) or member songs (i.e., FISM) to recom-

mend the next song based on user/playlist similarities or song similarities (i.e., measure

P(s|u, s1, s2, ..., sl) and P(s|p, s1, s2, ..., sl), of which we report the best results).

Protocol: We use the widely adopted leave-one-out evaluation setting [26]. Since both

the 30Music and AOTM datasets do not contain timestamps of added songs for each

playlist, we randomly sample two songs per playlist–one for a positive test sample, and

one for a development set to tune hyper-parameters–while the remaining songs in each

playlist make up the training set. We follow [26, 34] and uniformly random sample 100

non-member songs as negative songs, and rank the test song against those negative songs.

Evaluation metrics: We evaluate the performance of the models with two widely used

metrics: Hit Ratio (hit@N), and Normalized Discounted Cumulative Gain (NDCG@N).

The hit@N measures whether the test item is in the recommended list or not, while the

NDCG@N takes into account the position of the hit and assigns higher scores to hits

77

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Table 4.4: Performance of the baselines, and our models. The last two lines show the relative
improvement of MASR and AMASR compared to the best baseline.

Methods 30Music AOTM

hit@10 ndcg@10 hit@10 ndcg@10

(a) MF-BPR 0.450 0.315 0.699 0.473
(b) CML 0.600 0.452 0.735 0.481
(c) NeuMF++ 0.623 0.461 0.741 0.498
(d) FISM 0.544 0.346 0.686 0.446
(e) CMN++ 0.536 0.397 0.722 0.505
(f) PRME 0.426 0.260 0.570 0.354
(g) Transrec 0.570 0.417 0.710 0.450
(h) Caser 0.458 0.289 0.681 0.448

Ours

MDR 0.705 0.524 0.820 0.631
MASS 0.670 0.500 0.834 0.639
MASR 0.731 0.564 0.854 0.654

AMDR 0.764 0.581 0.850 0.658
AMASS 0.753 0.581 0.856 0.659
AMASR 0.785 0.604 0.874 0.677

Imprv.
(%)

MASR +17.34 +22.34 +13.36 +28.24
AMASR +26.00 +31.02 +17.95 +34.19

at top-rank positions. For the test set, we measure both metrics and report the average

scores.

Hyper-parameters settings: Models are trained with the Adam optimizer with learning

rates from {0.001, 0.0001}, regularization terms λΘ from {0, 0.1, 0.01, 0.001, 0.0001},

and embedding sizes from {8, 16, 32, 64}. The maximum number of epochs is 50,

and the batch size is 256. The number of hops in CMN++ are selected from {1, 2, 3,

4}. In NeuMF++, the number of MLP layers are selected from {1, 2, 3}. The number

of negative samples per one positive instance is 4, similar to [26]. The Markov order

L in Caser is selected from {4, 5, 6, 7, 8, 9, 10}. For APR training, the number of APR

training epochs is 50, the noise magnitude ε is selected from {0.5, 1.0}, and the adversarial

regularization λδ is set to 1, as suggested in [97]. Adversarial noise is added only in

training process, and are initialized as zero. All hyper-parameters are tuned by using the

78

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Table 4.5: Performance of variants of our MDR and MASS. RI indicates relative average
improvement over the corresponding method.

Methods 30Music AOTM RI(%)
hit@10 ndcg@10 hit@10 ndcg@10

MDR us 0.684 0.500 0.815 0.594 +3.68
MDR ps 0.654 0.476 0.746 0.547 +10.79

MDR ups (i.e., MDR) 0.705 0.524 0.818 0.613

MASS ups 0.651 0.479 0.789 0.581 +4.12
MASS ps 0.621 0.450 0.764 0.523 +10.82

MASS us (i.e., MASS) 0.670 0.500 0.820 0.631

development set. Our source code is available at https://github.com/thanhdtran/MASR.git.

4.3.5 Experimental Results

Performance comparison: Table 4.4 shows the performance of our proposed models

and baselines on each dataset. MDR and baselines (a)-(c) are in Group 1, but MDR

shows much better performance compared to the (a)-(c) baselines, improving at least

11.14% hit@10 and 18.81% NDCG@10 on average. CML simply adopts Euclidean dis-

tance between users/playlists and positive songs, but has nearly equal performance with

NeuMF++, which utilizes a neural network to learn non-linear relationships between user-

s/playlists and songs. This result shows the effectiveness of using metric learning over

dot product in recommendation. MDR outperforms CML by 19.04% on average. This

confirms the effectiveness of Mahalanobis distance over Euclidian distance for recom-

mendation.

MASS outperforms both FISM and CMN++, improving hit@10 by 18.4%, and NDCG@10

by 25.5% on average. This is because FISM does not consider the attentive contribution

of different neighbors. Even though CMN++ can assign attention scores for different

user/playlist neighbors, it bears the flaws of Group 1 by considering only either neighbor

79

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

users or neighbor playlists. More importantly, MASS uses a novel attentive metric design,

while dot product is utilized in FISM and CMN++. Sequential models, (f)-(h) baselines,

do not work well. In particular, MASS outperforms the (f)-(h) baselines, improving 24.6%

on average compared to the best model in (f)-(h).

MASR outperforms both MDR and MASS, indicating the effectiveness of fusing them

into one model. Particularly, MASR improves MDR by 5.0%, and MASS by 6.7% on

average. Performances of MDR, MASS, MASR are boosted when adopting APR loss with

a flexible noise magnitude. AMDR improves MDR by 7.7%, AMASS improves MASS

by 9.4%, and AMASR improves MASR by 5.8%. We also compare our flexible noise

magnitude with a fixed noise magnitude used in [97] by varying the fixed noise magnitude

in {0.5, 1.0} and setting λδ = 1. We observe that APR with a flexible noise magnitude

performs better with an average improvement of 7.53%.

Next, we build variants of our MDR and MASS models by removing either playlist

or user embeddings, or using both of them. Table 4.5 presents an ablation study of ex-

ploiting playlist embeddings. MDR us is the MDR that uses only user-song interactions

(i.e., ignore playlist-song distance o(pj, sk) in Eq. (4.20)). MDR ps is the MDR that uses

only playlist-song interactions (i.e., ignores user-song distance o(ui, sk) in Eq. (4.20)).

MDR ups is our proposed MDR model. Similarly, MASS ups is the MASS model but

considers both user-song distances and playlist-song distances in its design. The Embed-

ding Layer and Attention Layer of MASS ups have additional playlist embedding matrices

P ∈ Rn×d and P(a) ∈ Rn×d, respectively. MASS ps is the MASS model that replaces user

embeddings with playlist embeddings. MASS us is our proposed MASS model.

MDR (i.e., MDR ups) outperforms its derived forms (MDR us and MDR ps), improv-

ing by 3.7∼10.8% on average. This result shows the effectiveness of modeling both users’

preferences and playlists’ themes in MDR design. MASS (i.e., MASS us) outperforms its

two variants (MASS ups and MASS ps), improving MASS ups by 3.7%, and MASS ps by

80

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

N

(a) 30Music.

N

(b) AOTM.

Figure 4.11: Performance of our models and the baselines when varying N (or top-N recom-
mendation list) from [1, 10].

Figure 4.12: Performance of all models when varying the embedding size d from {8, 16, 32,
64} in 30Music dataset.

10.8% on average. It makes sense that using additional playlist embeddings in MASS ups

is redundant since the member songs have already conveyed the playlist’s theme, and

ignoring user embeddings in MASS ps neglects user preferences.

Varying top-N recommendation list and embedding size: Figure 4.11 shows per-

formances of all models when varying top-N recommendation from 1 to 10. We see that

all models gain higher results when increasing top-N, and all our proposed models out-

perform all baselines across all top-N values. On average, MASR improves 26.3%, and

AMASR improves 33.9% over the best baseline’s performance.

81

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Table 4.6: Performance of MASS using various attention mechanisms.

Attention Types 30Music AOTM RI(%)
hit@10 ndcg@10 hit@10 ndcg@10

non-mem + dot 0.630 0.454 0.785 0.574 +8.51
non-mem + metric 0.660 0.490 0.803 0.601 +3.43
mem + dot 0.659 0.475 0.791 0.585 +5.40

mem + metric 0.670 0.500 0.834 0.639

(a) ρ=0.153 (b) ρ=0.215 (c) ρ=0.171 (d) ρ=0.254

Figure 4.13: Scatter plots of PMI attention scores vs. attention weights learned by various
attention mechanisms, showing corresponding Pearson correlation score ρ). (a)non-mem +
dot, (b)non-mem + metric, (c)mem + dot, (d)mem + metric.

Figure 4.121 shows all models’ performances when varying the embedding size d from

{8, 16, 32, 64} for the 30Music dataset. Note that the AOTM dataset also shows similar

results but is omitted due to the space limitations. We observe that most models tend to

have increased performance when increasing embedding size. AMDR does not improve

MDR when d = 8 but does so when increasing d. This phenomenon was also reported

in [97] because when d = 8, MDR is too simple and has a small number of parameters,

which is far from overfitting the data and not very vulnerable to adversarial noise. How-

ever, for more complicated models like MASS and MASR, even with a small embedding

size d = 8, APR shows its effectiveness in making the models more robust, and leads to an

improvement of AMASS by 12.0% over MASS, and an improvement of AMASR by 7.5%

over MASR. The improvements of AMDR, AMASS, AMASR over their corresponding base

models are higher for larger d due to the increase of model complexity.

1Figure 4.12 shares the same legend with Figure 4.11 for saving space.

82

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Is our memory metric-based attention helpful? To answer this question, we eval-

uate how MASS’s performance changed when varying its attention mechanism as fol-

lows:

• non-memory + dot product (non-mem + dot): It is the popular dot attention introduced

in [112].

• non-memory + metric (non-mem + metric): It is our proposed attention with Maha-

lanobis distance but no external memory.

• memory + dot product (mem + dot): It is the dot attention but exploiting external

memory.

• memory + metric (mem + metric): It is our proposed attention mechanism.

We do not compare with the no-attention case because literature has already proved

the effectiveness of the attention mechanism [113]. Table 4.6 shows the performance

of MASS under the variations of our proposed attention mechanism. We have some key

observations. First, non-mem + metric attention outperforms non-mem + dot attention

with an improvement of 4.9% on average. Similarly, mem + metric attention improves the

mem + dot attention design by 5.4% on average. This enhancement comes from different

nature of metric space and dot product space. Moreover, these results confirm that metric-

based attention designs fit better into our proposed Mahalanobis distance based model.

Second, memory based attention works better than non-mem attention. Particularly, on

average, mem + dot improves non-mem + dot by 2.98%, and mem + metric improves

non-mem + metric by 3.43%. Overall, the performance order is mem + metric ¿ non-

mem + metric ¿ mem + dot ¿ non-mem + dot, which confirms that our proposed attention

performs the best and improves 3.43∼8.51% compared to its variations.

Deep analysis on attention: To further understand how attention mechanisms work,

we connect attentive scores generated by attention mechanisms with Pointwise Mutual

83

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

Figure 4.14: Runtime of all models in 30Music and AOTM.

Information scores. Given a target song k and a member song t, the PMI score between

them is defined as: PMI(k, t) = log P (k,t)
P (k)×P (t)

. Here, PMI(k,t) score indicates how likely

two songs k and t co-occur together, or how likely a target song k will be added into song

t’s playlist.

Given a playlist that has a set of l member songs, we measure PMI scores between

the target song k and each of l member songs. Then, we apply softmax to those PMI

scores to obtain PMI attentive scores. Intuitively, the member song t that has a higher

PMI score with candidate song k (i.e., co-occurs more with song k) will have a higher

PMI attentive score. We draw scatter plots between PMI attentive scores and attentive

scores generated by our proposed attention mechanism and its variations. Figure 4.13

shows the experimental results. We observe that the Pearson correlation ρ between the

PMI attentive scores and the attentive scores generated by our attention mechanism is the

highest (0.254). This result shows that our proposed attention tends to give higher scores

to co-occurred songs, which is what we desire. The Pearson correlation results are also

consistent with what was reported in Table 4.6.

Runtime comparison: To compare model runtimes, we used a Nvidia GeForce GTX

1080 Ti with a batch size of 256 and embedding size of 64. We do not report MASR

and AMASR’s runtimes because their components are pretrained and fixed (i.e., there is

no learning process/time). Figure 4.14 shows the runtimes (seconds per epoch) of our

84

4.3 RECOMMENDING PRODUCTS WITH A METRIC LEARNING BASED
APPROACH

models and the baselines for each dataset. MDR only took 39 and 173 seconds per epoch

in 30Music and AOTM, respectively, while MASS took 88 and 375 seconds. MDR, one of

the fastest models, was also competitive with CML and MF-BPR.

85

5

Modeling consumer behaviors with

long-term and short-term dependencies

5.1 Introduction

Recommender Systems [114] have become the heart of many online applications such as

e-commerce, music/video streaming services, social media, etc. Recommender systems

proactively helped (i) users to explore new/unseen items, (ii) potentially the users stay

longer on the applications, and (iii) companies increase their revenue.

Matrix Factorization techniques [23, 24, 74] extracted features of users and items to

compute their similarity. Recently, deep neural network boosted performance of a recom-

mender system by providing non-linearity which helped modeling complex relationships

between users and items [26]. However, these prior works only focused on a user and

a target item without considering the user’s previously consumed items, some of which

may be related to the target item. While some prior works [35, 36] largely premised

on unordered user interactions, users’ interests are intrinsically dynamic and evolving.

Based on the observation, [40, 41, 42, 43, 47] followed two paradigms to capture a user’s

86

5.1 INTRODUCTION

0 200 400
Time Interval (days)0.0

00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

Pr
ob

ab
ili

ty
 d

en
si

ty

(a) Video Games.

0 200 400
Time Interval (days)0.0

00
00.0

02
50.0

05
00.0

07
50.0

10
0

Pr
ob

ab
ili

ty
 d

en
si

ty

(b) Toys and Games.

Figure 5.1: Density distribution of item-item similarity scores on Amazon Video Games, and
Toys and Games datasets.

sequential pattern: (i) short-term item-item transitions, or (ii) long-term item-item transi-

tions.

However, user’s interests can be highly diverse, so modeling only either short-term or

long-term user intent does not fully capture the user’s preferences, producing less effective

recommendation results. To illustrate the point, we conducted an empirical analysis on

Amazon Video Games, and Toys and Games datasets. First, we represent each item by a

multi-hot encoding, where item j is represented by a vector t ∈ Rm, position i = 1 if user

i consumed the current item, and m denotes the total number of users in a dataset. For

each user, her consumed items are sorted in the chronological order. Then, we calculated

a cosine similarity score between each item and each of its previously consumed items.

Then we selected the largest cosine similarity score per item per user. Figure 5.1 presents

the density distribution of the consumed time interval (x-axis) between each pair of item

and its most similar previously consumed item. We observe that there exists a bimodal

distribution, where one (left) peak lays at a relative short-term period and the other (right)

peak locates in a long-term period. The observation confirms that both long-term and

short-term preferences played important roles on the user’s current purchasing intent. We

observe the same phenomenon from the other four datasets described in Section 5.3.4.

87

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

user-item latent space item-item latent space
Personalized
Metric-based

Attention

Target Pair

attention

embedding embedding

embedding

Euclidean
distance

+
learned by SDP

learned by SDM

Consumed

Figure 5.2: We consider a recommender as a signed distance approximator, and decompose
the signed distance between a user and an item into two parts: the left box learns an explicitly
signed distance between the user and item (i.e., the camera lens), the right box learns an
implicitly signed distance between the user and the item via the user’s recently consumed
items (i.e., the book, CD and camera). Our novel personalized metric-based soft attention is
applied to the consumed items to optimize their contributions to the output signed distance
score. Then the two parts are combined to obtain a final score. Most of linear latent factor
models are equivalent to simply measuring the linear Euclidean distance in the user-item
latent space (shown as the green line).

In the following sections, we describe our two proposals for modeling consumer be-

haviors with long-term and short-term dependencies. Note that the two terms “user” and

“consumer” are used interchangeably.

5.2 Recommending Products with a Neural Signed Dis-

tance Based Approach

In a perspective, we can view most of the recommendation models as a measurement of

similarity or distance between a user and an item. For instance, the well known latent

factor (i.e., matrix factorization) models [35] usually employ an inner product function

to approximate the similarity between the user and the item. Although the latent factor

88

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

models achieved competitive performance in some datasets, they did not correctly capture

complex (i.e., non-linear) relationships between users and items because the inner product

function follows limited linear nature.

Existing recommendation algorithms faced difficulties in finding good kernels for dif-

ferent data patterns [115], only focused on user-item latent space without considering

the item-item latent space together [26, 31, 116, 117, 118], or required additional auxil-

iary information (e.g., item description, music content, reviews) [53, 54, 55, 56, 57]. To

overcome the drawbacks, in this section, we aim to propose and build a deep learning

framework to learn a non-linear relationship between a user and a target item by measur-

ing a distance from the observed data. In particular, we propose Signed Distance-based

Deep Memory Recommender (SDMR), which captures the long-term and short-term de-

pendencies of the non-linear relationship of the user and item explicitly and implicitly,

combines explicitly and implicitly measured relationship to produce a final distance score

for the recommendation, and performs well in both general recommendation task and

shopping basket-based recommendation task.

SDMR internally combines two signed distances, each of which is measured by our

proposed Signed Distance-based Perceptron (SDP) and Signed Distance-based Memory

Network (SDM). On one hand, SDP explicitly measures a global non-linear signed dis-

tance between the user and the item. Many existing models [23, 74] rely on a pre-defined

metric such as Euclidean distance (the green line in Figure 5.2) which is much more lim-

ited than the customized non-linear signed distance learned from the data (the red curves

in Figure 5.2). On the other hand, SDM implicitly measures a non-linear signed distance

between the user and the item via the user’s recently consumed items, and captures the

short-term dependencies of the user’s interest. SDM is similar to the item neighborhood-

based recommender [90, 103] in nature. However, it is more advanced in several aspects,

as shown in the right side of Figure 5.2. First, SDM only focuses on a set of recently

89

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

consumed items of the target user (e.g.the book, CD and camera in Figure 5.2) as con-

text items to encode the user’s current taste. Second, it employs additional memories to

learn a novel personalized metric-based attention on the consumed items. The goal of

our proposed attention is to compute weights of each consumed item w.r.t. the target item

(i.e., the camera lens). In the example, the attention module assigns higher weights on

the camera and lower weights on the book and CD. Unlike our approach, most of the ex-

isting neighborhood-based models consider contribution of consumed items to the target

item equally, leading to suboptimal results. Last but not the least, we update the attention

weights via a gated multi-hop to build a long-term memory within SDM. This multi-hop

design helps refine our attention module and produces more accurate attentive scores.

In the following sections, we describe the problem definition, and our proposed mod-

els. Then, we present the experimental settings and discuss about the experimental results.

5.2.1 Problem Definition

In this section, we describe two recommendation problems: (i) general recommendation

task; and (ii) shopping basket-based recommendation task. In the following sections, we

focus on solving them.

General recommendation task: Given a whole item set V = {v1, v2,

..., v|V |}, and a whole user set U = {u1, u2, ..., u|U |}. Each user ui ∈ U may consume

several items {vi1, vi2, ..., vik} in V , denoted as a set of context items c. In this task,

given a user’s previously consumed items, a recommendation model predicts a next target

item vj that user ui may prefer, denoting this task as estimating P (ui, vj|c). Note that

some existing works assume independent relationships between vj and context items in

the set c, leading to P (ui, vj|c) = P (ui, vj) [26, 74]. In our work, we model the ui’s

preference on vj in two steps: (i) an explicit preference of ui on vj in a signed distance

based perceptron, and (ii) an implicit preference of ui on vj via summing attentive effects

90

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

of context items toward target item vj in a signed distance based memory network.

Shopping Basket-based recommendation task: This problem is based on the fact

that users go shopping offline/online and add some items into a basket/cart together. Each

shopping basket/cart is seen as a transaction, and each user may shop once or multiple

times, leading to one or multiple transactions. Let T (u) = {t1, t2, ..., t|T (u)|} as a set of

the user u’s transactions, where |T (u)| denotes the number of user u’s transactions. Each

transaction ti = {v1, v2, ..., v|ti|} consists of several items in the whole item set V . In this

problem, it is assumed that all the items in ti are inserted into the same basket at the same

time, ignoring the actual order of the items being inserted and considering ti’s transaction

time as each item’s insertion time. Given a target item vj ∈ ti, the rest of the items in ti

will be seen as the context items of vj , denoted as c (i.e. c = tin{vj}). Then, given the set

of context items c, a recommendation model predicts a conditional probability P (u, vj|c),

which is interpreted as the conditional probability that uwill add the item vj into the same

basket with the other items c.

Both of the recommendation tasks above are popular in the literature [26, 39, 40, 119].

The general recommendation task differs from the shopping basket-based recommenda-

tion task because there is no specific context items of the target item in the general rec-

ommendation task. Note that the two tasks are personalized recommendation problems.

In fact, there are non-personalized recommendation problems such as session-based rec-

ommendation [43], where users (i.e. user IDs) are not available in transactions. However,

in this chapter, we focus on personalized recommendation tasks because they are more

preferred in the literature [39, 40, 119].

5.2.2 Method

Our proposed Signed Distance-based Deep Memory Recommender (SDMR) consists of

two major components: Signed Distance-based Perceptron (SDP) and Signed Distance-

91

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

based Memory network (SDM). We first describe an overview of our models as fol-

lows:

• Given a target user i and a target item j as two one-hot vectors, we pass the two

vectors through the user and item embedding spaces to get user embedding ui and

item embedding vj .

• On one hand, our proposed Signed Distance-based Perceptron (SDP) will measure a

signed distance score between ui and vj by a multi-layer perceptron network.

• On the other hand, given target user i, target item j, and the user i’s recently consumed

context items s as the input, our Signed Distance-based Memory network (SDM) will

measure a signed distance score between user i and item j via attentive distances

between context items s and target item j.

• Then, the Signed Distance-based Deep Memory Recommender (SDMR) model will

measure a total distance between user i and item j by learning a combination of SDP

and SDM. The smaller the total distance is, the more likely user i will consume item

j.

Next, we describe SDP, SDM, and SDMR in detail.

Signed Distance-based Perceptron (SDP)

We first propose Signed Distance-based Perceptron (SDP) that explicitly learns a

signed distance between a target user i and a target item j. An illustration of SDP is

shown in Figure 5.3. Let the embedding of a target user i be ui ∈ Rd, and the embedding

of a target item j be vj ∈ Rd, where d is the number of dimensions in each embedding.

First, SDP takes a concatenation of these two embeddings as the input and proceeds as

follows:

92

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

target user target item

concatenate
item

embedding
…

element-wise square

estimated signed
distance o(SDP)

user
embedding

BPR loss ground
truth

MLP
layers e(1)

e(l)

e(l+1)

Figure 5.3: The illustration of our SDP model.

e(1) = f1(W(1)

ui
vj

+ b(1)) (5.1)

e(2) = f2(W(2)e(1) + b(2)) (5.2)

· · · (5.3)

e(`) = f`(W
(`)e(`−1) + b(`)) (5.4)

e(`+1) = square(e(`)) (5.5)

o(SDP) = w(o)>e(`+1) + b(o) (5.6)

where fl(·) refers to a non-linear activation function at the layer lth (e.g. sigmoid, ReLu

or tanh), and square(·) denotes an element-wise square function (e.g square([2, 3]) =

[6, 9]). Through experimental results, we choose tanh as the activation function because

it yields slightly better results than ReLu. From now on, we will use f(·) to denote

the tanh function. It can be easily observed that Eq. (5.1) – (5.4) form a trivial Multi-

93

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Layer Perceptron (MLP) network, which is a popular design [26, 120] to learn a complex

and non-linear interaction between user embedding ui and item embedding vj . Our new

design starts at Eq. (5.5) – Eq. (5.6). In Eq. (5.5), we apply the element-wise squared

function square(·) to the output vector e(l) of the MLP and obtain a new output vector

e(l+1). Next, in Eq. (5.6), we use a fully connected layer w(o) to combine different di-

mensions in e(l+1) and yields a final distance value o(SDP). Our idea of using w(o) in

here is that after applying the element-wise square function square(·) in Eq. (5.5), all the

dimensions in e(l+1) will be non-negative. Thus, we consider each dimension of e(l+1)

as a distance value. The edge weights w(o) will then be used to combine those distant

dimensions to provide a more fine-grained distance.

We note that SDP can be reduced to a squared Euclidean distance with the follow-

ing setting: at Eq. (5.1), W(1) = [1,−1] with 1 denotes an identity matrix and so

W(1)

ui
vj

 = ui − vj; the activation f(·) is an identity function; the number of MLP

layers ` = 1; the edge-weights layer at Eq. (5.6): w(o) = 1 (e.g. the all-ones matrix),

bias b(o) = 0. Note that ifw(o) in Eq. (5.6) is an all-negative layer, it will yield a negative

value, which we name as a signed distance1 score. If we see each user i as a point in

multi dimensional space, and the user’s preference space is defined by a boundary Ω, we

can interpret this signed distance score as follows: When the item j is out of the user i’s

preference boundary Ω, the distance d(i, j) between them is positive (i.e. d(i, j) ¿ 0) and

it reflects that user i does not prefer item j. When the distance between user i and item

j is shortened and j is right on the boundary Ω, the distance between them is zero and it

indicates user i likes item j. As j is coming inside Ω, the distance between them becomes

negative and reflects a higher preference of user i on item j. In short, we can see SDP

as a signed distance function, which could learn a complex signed distance between a

1https://en.wikipedia.org/wiki/Signed distance function

94

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Input Memory

target
item

item
embedding

V(i)

Personalized Metric-based Attention Module
pairwise
concat

target
user

Wc

Wc

Wc

Wc

Wc

Output Memory

target
item

user
embedding

U(o)

item
embedding

V(o)

pairwise
concat target

user

 softmax

L2-norm

L2-norm

L2-norm

L2-norm

L2-norm

extract

extract

attention
weights

Output Module

Wd

Wd

Wd

Wd

Wd

qij

pij

zij

Input Module

Wa

Wb

square

weighted
summation

eij

estimated
signed

distance

ground truth

aij

oij

BPR
loss

we

square

square

square

square

user
embedding

U(i)

Figure 5.4: The illustration of single-hop SDM, which consists of a memory module, an
input module, an attention module, and an output module.

user and an item via a MLP architecture with non-linear activations and an element-wise

square function square(·). In the recommendation domain, the signed distances will pro-

vide more fine-grained distance values, thus, reflecting a user’ preferences on items more

accurately (i.e. accurately rank items for the user).

Signed Distance-based Memory Network (SDM) We propose a multi-hop memory

network, Signed Distance-based Memory network (SDM), to model implicit preference

of a user on the target item via the user’s previously consumed items (i.e., context items).

The implicit preference is represented as a signed distance. First, we describe a single-hop

SDM, and then describe how to extend it into a multi-hop design. Following the tradi-

tional architecture of a memory network [100, 104, 121], our proposed single-hop SDM

has four main components: a memory module, an input module, an attention module, and

an output module. The overview of SDM’s architecture is presented in Figure 5.4. We

will go into details of each SDM’s module as follows:

Memory Module: We maintain two memories called input memory and output mem-

95

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

ory. The input memory contains two embedding matrices U(i) ∈ RM×d and V(i) ∈ RN×d,

where M and N are the number of users and the number of items in the system, respec-

tively. d denotes the embedding size of each user and each item. Similarly, the output

memory also contains two embedding matrices U(o) ∈ RM×d and V(o) ∈ RN×d. As

shown in Figure 5.4, the input memory will be used to calculate attention weights of a

user’s consumed items (i.e., context items), whereas the output memory will be used to

measure a final signed distance between the target user and the target item via the user’s

context items.

Given a target user i, a target item j and a set of user i’s consumed items as context

items Tij , the output of this module is the embeddings of user i, item j, and all context

items k ∈ Tij: (ui,vj, ¡v1,v2, ...,vk¿). Since this module has a separated input memory

and output memory, we obtain (u(i)
i ,v

(i)
j , ¡v(i)

1 ,v
(i)
2 , ...,v

(i)
k ¿) as the output of the input

memory, and (u(o)
i ,v

(o)
j , ¡v(o)

1 ,v
(o)
2 , ...,v

(o)
k ¿) as the output of the output memory. It is

obvious that u(i)
i is the i-th row of U(i), v(i)

j and v(i)
k are the corresponding j-th and k-th

row of V(i). A similar explanation is applied to u(o)
i v

(o)
j , and v(o)

k .

Input Module: The goal of the input module is to form a non-linear combination

between the target user embedding and the target item embedding. Given the target user

embedding u(i)
i and the target item embedding v(i)

j from the input memory in the memory

module, following the widely adopted design in multimodal deep learning work [99, 122],

the input module simply concatenates the two embeddings, and then applies a fully con-

nected layer with a non-linear activation f(·) (i.e. tanh function) to obtain a coherent

hidden feature vector as follows:

qij = f
(
Wa

u(i)
i

v
(i)
j

+ ba

)
(5.7)

where Wa ∈ Rd×2d is the weights of input module. Note that qij ∈ Rd can be seen as a

96

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

query embedding in Memory Network [104].

Similarly, if the inputs of the input module are the target user embeddings u(o)
i and

the target item embeddings v(o)
j from the output memory, we can form a non-linear com-

bination between u(o)
i and v(o)

j (i.e. an output query), denoted as pij , as follows:

pij = f
(
Wb

u(o)
i

v
(o)
j

+ bb

)
(5.8)

Attention Module: The goal of the attention module is to assign attentive scores to

different context items (or candidates) given the combined vector (or a query) qij of the

target user i and target item j obtained in Eq. (5.7). First, we calculate the squared L2

distance between qij and each candidate item v
(i)
k as follows:

zijk =
∥∥∥f(Wc

qij
v

(i)
k

+ bc

)∥∥∥2

2
(5.9)

where || · ||2 refers to the L2 distance (or Euclidean distance), which is widely used

in previous works to measure similarity among items [39] or between users and items

[92]. To better understand our intuition in Eq. (5.9), we will break it into smaller parts

and explain them. First, similar to the intuition of Eq. (5.7), we have f
(
Wc

qij
v

(i)
k

 +

bc

)
component to define a non-linear combination between the input query qij and each

context item embeddings v(i)
k . Then, || · ||22 will measure the squared L2 distance of the

combined vector. It is worth to note that with a following setting: Wa = [0,1] where 1

refers to an identity matrix and 0 is an all-zeros matrix; f(·) is an identity function;Wc =

[1,−1]; bias terms ba = bc = 0. Then, in Eq. (5.7), qij = f
(
Wa

u(i)
i

v
(i)
j

 + ba

)
= v

(i)
j ;

97

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

in Eq. (5.9), f
(
Wc

qij
v

(i)
k

 + bc

)
= v

(i)
j − v

(i)
k , and zijk = ||(v(i)

j − v
(i)
k)||22, which

simply generalizes a squared L2 distance between the target item j and the context item

k. Additionally, with another setting: Wa = [1,−1]; f(·) is an identity function; Wc =

[1,1]; bias terms ba = bc = 0. Then, in Eq. (5.7), qij = f
(
Wa

u(i)
i

v
(i)
j

 + ba

)
= u

(i)
i −

v
(i)
j , in Eq. (5.9), f

(
Wc

qij
v

(i)
k

+bc

)
= u

(i)
i −v

(i)
j +v

(i)
k , and zijk = ||(v(i)

k +u
(i)
i −v

(i)
j)||22,

which simply generalizes a squared L2 distance between the target item j and the context

item k where the user i plays as a translator [41]. The two examples above show that our

proposed design can learn a more generalized distance between target and context items.

The output squared L2 distance in Eq. (5.9) will show how similar the target item j

and the context item k are. The lower the distance score is, the more similar two items

j and k are. Next, we use the Softmax function to normalize and obtain attentive score

between j and k as follows:

aijk =
exp(−zijk)∑
p∈Tij

exp(−zijp)
(5.10)

where Tij is the set of user i’s neighborhood items. The minus sign in Eq. (5.10) is used

to assign a higher attention score for a lower distance between two items (j, k).

We note that the L2 distance (or Euclidean distance) satisfies four conditions of a

metric 1. While the crucial triangle inequality property of a metric was shown to provide

a better performance compared to the inner product [92, 93, 123] in recommendation

domains, to our best of knowledge, most of existing attention designs [112, 113, 124,

125, 126, 127, 128] adopted the inner product for measuring attentive scores. Hence, this

proposed attention design is the first attempt to bring metric properties into the attention

1https://en.wikipedia.org/wiki/Metric (mathematics)

98

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

mechanism.

Similar to [129], we limit the number of considering context items by choosing the

user i’s smost recently consumed items before target item j as the context items of target

item j. Here, s can be selected via tuning with a development dataset. The soft attention

vector containing attentive contribution scores of s context items toward the target item j

of a user i is given as follows:

aij =


aij1

· · ·

aijs

 (5.11)

Output Module: Given the attentive scores aij in Eq.(5.11) and the combined vector

pij ∈ Rd of the user embedding u(o)
i and item embedding v(o)

j from the output memory

U (o) and V (o), the goal of this output module is to measure a total output distance o(SDM)
ij

between the output target item embeddings v(o)
j and all the user i ’s output context item

embeddings v(o)
k (k ∈ T ij) using attention weights aij and the output query pij as follows:

o
(SDM)
ij = w>e eij + be (5.12)

where eij ∈ Rd is calculated as follows:

eij =
∑
k∈Tij

aijk × square
(
f
(
Wd

pij
v

(o)
k

+ bd

))
(5.13)

In here, let rijk = f
(
Wd

pij
v

(o)
k

 + bd

)
. Similar to the previously discussed intuition in

Eq (5.9), rijk is a flexible combination between pij and each output context item embed-

dings v(o)
k ; square(·) is an element-wise squared function. Our idea in Eq. (5.12), (5.13)

99

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Input
Memory

Output
Memory

a(0)

q(0)
Input

Module

Attention
Module

Output
Module

e(0)p(0)

Wg(0)

g(0)

1-g(0)

q(0)

+

q(1)

Attention
Module

a(h)

e(h)

…

q(h)

…

Output
Module

p(h)

ground truth

BPR
loss

we

estimated
signed

distance

o(SDM)

Figure 5.5: The illustration of our multi-hop SDM.

is similar to the idea in Eq. (5.5), (5.6) of the SDP model. First, in Eq. (5.13), each con-

text item k will attentively contribute to the target item j via a squared Euclidean measure.

Second, in Eq. (5.12), each non-negative dimension in eij will be considered as a distance

dimension and we use an edge-weights layer we to combine them flexibly. When there

is only one context item in Tij , then in Eq. (5.13), the attention score aijk=1.0, leading

to eij = square(rijk), which is similar to Eq. (5.5). In this case, SDM will measure the

distance between target item j and context item k in the same way as SDP model does.

Note that Eq. (5.13) is similar to Eq. (5.6) so SDM can also learn a signed distance value,

which also provides a more fine-grained distance compared to a general distance value.

Multi-hop SDM: Inspired by previous work [104] where the multi-hop design helped

to refine the attention module in Memory Network, we also integrate multiple hops to

further extend our SDM model to build a deeper network (Figure 5.5). As the gated

multi-hop design [121] was shown to perform better than the original multi-hop design

with a simple residual connection in [104], we employ this gated memory update from

hop to hop as follows:

100

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

g(h−1) = σ(W(h−1)
g q(h−1) + b(h−1)

g) (5.14)

q(h) = (1− g(h−1))� e(h−1) + g(h−1) � q(h−1) (5.15)

where q(h−1) is the input query embedding as shown in Eq. (5.7) at hop h − 1, W(h−1)
g

and bias b(h−1)
g are hop-specific parameters, σ is the sigmoid function, e(h−1) is the output

of Eq. (5.13) at hop h − 1, q(h) is the input query embedding at the next hop h. So the

attention could be updated at hop h accordingly using q(t) as follows:

α
(h)
ijk =

exp(−z(h)
ijk)∑

p∈Tij
exp(−z(h)

ijp)
(5.16)

where z(h)
ijk is measured by:

z
(h)
ijk =

∥∥∥f(W(h)
c

q(h)
ij

v
(i)
k

+ bc

)∥∥∥2

2
(5.17)

The multi-hop architecture with gated design further refines the attention for different

users based on the previous output from hop to hop. Hence, if the final hop is h then the

SDM model with h hops, denoted as SDM-h, will use a(h)
ij to yield a final signed distance

score as follows:

o
(SDM−h)
ij = w>e e

(h)
ij + b(h)

e (5.18)

where eij is calculated as:

e
(h)
ij =

∑
k∈Tij

a
(h)
ijk × square

(
f
(
W

(h)
d

p(h)
ij

v
(o)
k

+ b
(h)
d

))
(5.19)

101

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Weight constraints in multi-hop SDM model: To save memory, we use the global

weight constraint in multi-hop SDM. Particularly, input memory U (i),V (i) and output

memory U (o),V (o) are shared among different hops. All the weights are shared from

hop to hop W (1)
a = W (2)

a = ... = W (h)
a ; W (1)

b = W (2)
b = ... = W (h)

b ; W (1)
c = W (2)

c = ...

= W (h)
c ; W (1)

d = W (2)
d = ... = W (h)

d ; and so do all bias terms. The gate weights are also

global weights: W (1)
g =W (2)

g = ... =W (h)
g .

Signed Distance-based Deep Memory Recommender (SDMR) Now we propose

Signed Distance-based Deep Memory Recommender (SDMR), a hybrid network that

combines SDP and SDM. The first approach to combine them is to employ a weighted

summation of the output scores from SDP and SDM as follows:

o = βo(SDP) + (1− β)o(SDM) (5.20)

where o(SDP) is the signed distance score obtained at Eq. (5.6), o(SDM) is the signed distance

score obtained at Eq. (5.18), and β ∈ [0, 1] is a hyper-parameter to control the contribution

of SDP and SDM. When β=0, SDMR becomes SDM. When β=1, SDMR becomes SDP.

However, to avoid tuning an additional hyper-parameter β, we do not use Eq. (5.20)

for SDMR. Instead, we let SDMR self-learns the combination of SDM and SDM as fol-

lows:

o = ReLU

(
w>u

e(`+1)

e(h)

+ bu

)
(5.21)

where e(`+1) is the final layer embedding from SDP and is obtained at Eq. (5.5), e(h)

is the final hop output from the multi-hop SDM obtained at Eq. (5.19). We note that

SDP and SDM are first pre-trained separately using the BPR loss function (see the next

section). Then, we obtain e(`+1) from SDP, and e(h) from SDM, and keep them fixed in

102

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Eq. (5.21) to learn wu and bu. We use ReLU in Eq. (5.21) because ReLU encourages

sparse activations and helps to reduce over-fitting when combining the two components

SDP and SDM.

Loss Functions We adopt the Bayesian Personalized Ranking (BPR) as our loss func-

tion, which is similar to the idea of AUC (area under the curve):

L = argmin
θ

(
−

∑
(u,i+,i−)

log σ(oui− − oui+) + λ‖θ‖2
)

(5.22)

where we uniformly sample tuples in a form of (u, i+, i−) for user u with positive item

(consumed) i+ and negative item (unconsumed) i−. λ is a hyper-parameter to control the

regularization term, and σ(·) is the sigmoid function. Note that other pairwise probability

functions could be plugged in Eq. (5.22) to replace σ(·). Both SDP and SDM are end-

to-end differentiable since we uses soft attention over the output memory. Hence, we can

utilize back-propagation to learn our models with stochastic gradient descent or Adam

[130].

5.2.3 Experimental Settings

We evaluate our SDP, SDM, SDMR models against ten state-of-the-art baselines in two

recommendation tasks: (i) general recommendation task, and (ii) shopping basket-based

recommendation task. We mainly aim to answer the following research questions (RQs):

• RQ1: How do SDP, SDM, and SDMR perform compared to other state-of-the-art

models in both general recommendation task and shopping basket-based recommen-

dation task?

• RQ2: Why/How does the multi-hop design help to improve the proposed models’

performance?

103

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Table 5.1: Statistics of the four datasets in the general recommendation task.

Statistics ML-100k ML-1M Netflix Epinions

of users 943 6,040 1,888 23,137
of items 1,682 3,706 3,724 23,585
of interactions 100,000 1,000,209 103,254 461,982
Density (%) 6.3% 4.5% 1.5% 0.08%

Datasets: We compare our models against the baselines in different recommendation

tasks as follows:

General recommendation task: In this task, we evaluate our proposed models and

state-of-the-art methods using different datasets with various density levels as follows:

• Movielens [68]: It is a widely adopted benchmark dataset for collaborative filtering

evaluation. We use two versions of this benchmark dataset, namely MovieLens100k

(or ML-100k) and MovieLens1M (or ML-1M).

• Netflix Prize 1: It is a real-world dataset collected by Netflix. This dataset was col-

lected from 1999 to 2005, and consists of 463,435 users and 17,769 items with 56.9M

of interactions. Since the dataset is extremely large, we subsample the Netflix dataset

by randomly picking one-month data for evaluation.

• Epinions [131] 2: It is an online rating dataset where users can share product feedback

by giving explicit ratings and reviews.

In preprocessing preparation, we adopted a popular k-core preprocessing step [31, 88,

110] (with k-core = 5) to filter out inactive users with less than five ratings and items

which are consumed by less than five users. Since ML-100k and ML-1M are already pre-

processed, we only apply 5-core preprocessing step on the Netflix and Epinions datasets.

We also binarize the rating scores as implicit feedback by converting all observed rating

1https://www.netflixprize.com/
2http://www.trustlet.org/downloaded epinions.html

104

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Table 5.2: Statistics of the two real-world transactional datasets in the shopping basket-based
recommendation task.

Statistics IJCAI-15 Tafeng

of users 2,433 22,851
of items 4,534 22,291
avg # of items in a transaction 6.28 9.28
of generated instances 15,422 523,653
Density (%) 0.14% 0.10%

scores as positive interactions and the remaining as negative interactions. The statistics of

the four datasets are summarized in Table 5.1.

Shopping basket-based recommendation task: We use two real-world transaction

datasets as follows:

• IJCAI-15 1: It consists of shopping logs of users from Tmall 2. Since the original

dataset is extremely large scale. We subsample IJCAI-15 by randomly picking 20k

transactions for evaluation.

• Tafeng 3: It is a grocery store transaction data. It contains four month transaction data

from November 2000 to February 2001 by T-Feng supermarket.

In both IJCAI-15 and Tafeng datasets, each user behavior is logged under four types of

actions: click, add-to-cart, purchase, and add-to-favourite. We consider all the four types

as the click action. We only keep transactions with at least five items. This is because

we will take one item out for testing, another item for development. In the remaining

three items, one will be taken out as a target item and the two items will be used as

the context items. Attentive scores will be assigned to the context items. In each of

original transactions, we generate data instances of the format < c, vc > where vc is

the target/predicting item and c is a set of all other items in the same transaction with

1https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
2https://www.tmall.com
3http://stackoverflow.com/questions/25014904/download-link-for-ta-feng-grocery-dataset

105

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

vc. In particular, in each transaction t, each time we pick one item out as a target item

and leave the rest of items in t as corresponding context items. Subsequently, for each

transaction t containing |t| items, we can generate |t| data instances. The statistics of the

two transactional datasets are summarized in Table 5.2.

For an easy reference, we call (ML-100k, ML-1M, Netflix, Epinions) as Group-1

dataset and (IJCAI-15, Ta-Feng) as Group-2 datasets.

Baselines and State-of-the-art Methods We compared our proposed models against

several strong baselines in the general recommendation task as follows:

• ItemKNN [90]: It is an item neighborhood-based collaborative filtering method. It

exploited cosine item-item similarities to produce recommendation results.

• Bayesian Personalized Ranking (MF-BPR) [111]: It is a state-of-the-art pairwise

matrix factorization method for implicit feedback datasets. It minimizes the following

loss function: ∑
i

∑
j+,j−

−logσ(uTi vj+ − uTi vj−) + λ(||ui||2 + ||vj+||2)

where (ui, vj+) is a positive interaction and (ui, vj−) is a negative sample.

• Sparse LInear Method (SLIM) [103]: It learns a sparse item-item similarity matrix

by minimizing the squared loss ||A − AW ||2 + λ1||W || + λ2||W ||2, where A is a

m × n user-item interaction matrix and W is a n × n sparse matrix of aggregation

coefficients of context items.

• Collaborative Metric Learning (CML) [92]: It is a state-of-the-art collaborative

metric-based model that utilizes Euclidean distance to measure similarities between

users and items. For fair comparison, we learn CML with BPR loss by minimizing

−
∑

i,j+,j− log(σ(||ui − vj−||22 − ||ui − vj+||22)), where || · ||22 is a squared Euclidean

distance, (ui, vj+) is a positive interaction and (ui, vj−) is a negative sample.

• Neural Collaborative Filtering (NeuMF++) [26]: It is a state-of-the-art matrix fac-

106

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

torization method using deep learning architecture. We use a pre-trained NeuMF to

achieve its best performance, and denote it as NeuMF++.

• Collaborative Memory Network (CMN++) [29]: It is a state-of-the-art memory

network based recommender. Its architecture follows traditional user neighborhood

based collaborative filtering approaches. It adopts a memory network to assign atten-

tive weights for other similar users.

Even though our proposed methods do not model the order of consumed items in the

user’s purchase history (e.g. rigid orders of items), since we consider latest s items as

the context items to predict the next item, we still compare our models with some key

sequential models to further show our models’ effectiveness as follows:

• Personalized Ranking Metric Embedding (PRME) [39]:

Given a user u, a target item j, and a previous consumed item k, it models a per-

sonalized first-order Markov behavior with two components: dujk = α||vu − vj||2 +

(1− α)||vk − vj||2, where || · ||22 is a squared L2 distance. Then PRME is learned by

minimizing BPR loss.

• PRME s: It is our extension of PRME, where the distance between the target item j

and the previous consumed item k is replaced by the average distance between j and

each of previous s items: dujs = α||vu − vj||2 + (1− α) 1
|s|
∑

k∈s ||vk − vj||2. We use

BPR loss to learn PRME s.

• Translation-based Recommendation (TransRec) [41]: It uses first-order Markov

and considers a user u as a translator of his/her previous consumed item k to a next

item j. In another word, prob(j|u, k) ∝ βj − d(u+ vk − vj) where βj is an item bias

term, d is a distance function (e.g. L1 or L2 distance). We use L2 distance because it

was shown to perform better than L1 [41]. TransRec is then learned with BPR loss.

• Convolutional Sequence Embedding Recommendation

107

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

(Caser) [42]: It is a state-of-the-art sequential model. It uses convolution neural net-

work with many horizontal and vertical kernels to capture the complex relationships

among items.

The strong sequential baselines above surpassed many other sequential models such as:

TransRec outperformed FMC[40], FPMC [40], HRM [132]; Caser surpassed GRU4Rec

[43] and Fossil [133], so we exclude them in our evaluation.

Comparison: In the general recommendation task, we compare our proposed models

with all ten strong baselines listed above. In the shopping basket-based recommendation

task, since the sequential models often work better than general recommendation-based

models (see Table 5.3), we only compared our proposed models with sequential base-

lines. We name general recommendation baselines (i.e. ItemKNN, BPR, SLIM, CML,

NeuMF++, CMN++) as Group-1 baselines, and call sequential baselines (i.e. PRME,

PRME s, TransRec, Caser) as Group-2 baselines for an easy reference.

Experimental Protocol: We adopt the widely used leave-one-out setting [26, 120],

in which for each user, we reserve her last interaction as the test sample. If there are no

timestamps available in the dataset, then the test sample is randomly drawn. Among the

remaining data, we randomly hold one interaction for each user to form the development

set, while all others are utilized as the training set. Since it is very time-consuming and

unnecessary to rank all the unobserved items for each user, we follow the standard strategy

to randomly sample 100 unobserved items for each user. Then, we rank them together

with the test item [26, 35].

Assigning item orders: Sequential models need rigid orders of consumed items but

consumed items in the same transaction (in IJCAI-15 and TaFeng datasets) are assigned

the same timestamp of the transaction containing these items. Hence, we assigned the

item timestamps where the orders of items are kept as in the original dataset. This may

give credits to sequential models but not our methods (because our methods will use

108

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

all consumed items in the same transaction as context items and do not model the item

orders).

Hyper-parameters selection: We perform a grid search for the embedding size from

{8, 16, 32, 64, 128} and regularization terms from {0.1, 0.01, 0.001, 0.0001, 0.00001} in

all the models. We select the best number of hops for CMN++ and our SDM from

{1, 2, 3, 4}. In NeuMF++, we select the best number of MLP layers from {1, 2, 3}. In

our models, we fix the batch size to 256. We adopt Adam optimizer [130] with a fixed

learning rate of 0.001. Similar to CMN++ and NeuMF++, the number of negative samples

is set to 4. We use one layer perceptron for SDP (more complex datasets may need more

than one layer to get better results). We initialize the user and item embeddings using

N(µ = 0, σ = 0.01), and initialize the edge-weights layers using He normal initializer

(e.g. w(o), we, wu in Eq. (5.6), (5.18), (5.21), respectively). In the four datasets used

in general recommendation task (e.g ML-100k, ML-1M, Netflix, Epinions), to avoid too

many zero paddings for users with a smaller number of consumed items or too many con-

text items are kept in the memory, which unnecessarily slow down the model’s execution,

we follow [129] to limit the number of context items using latest s consumed items. We

search s in {5, 10, 20}. In the two shopping basket-based recommendation datasets (i.e.

IJCAI-15 and TaFeng), since the maximum number of items in a transaction is small (e.g.

13 in IJCAI-15, and 18 in TaFeng), we consider all the other items in the same transaction

with the target item as its context items. All the hyper-parameters are tuned using the de-

velopment dataset. Our source code is available at: https://github.com/thanhdtran/SDMR.

Evaluation Metrics: We evaluate all models’ performance by two widely used met-

rics: Hit Ratio (HIT@k), and Normalized Discounted Cumulative Gain (NDCG@k),

where k is a truncated number or top-k item recommendation. Intuitively, HIT@k shows

whether the test item is in the top-k list or not, while NDCG@k accounts for the position

of the hits by assigning higher scores to the hits at top ranks and downgrading the scores

109

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Table 5.3: General Recommendation Task: Overall performance of the baselines, and our
proposed SDP, SDM, and SDMR on four datasets. The last four lines show the relative im-
provement of the SDM and SDMR over the best baseline method in General Recommenders
(Group 1) and Sequential Recommenders (Group 2), respectively.

Method type Method
ML-100k ML-1M Netflix Epinions

HIT@10 NDCG@10 HIT@10 NDCG@10 HIT@10 NDCG@10 HIT@10 NDCG@10

General
Recommenders

(Group 1)

Item-KNN 0.166 0.073 0.235 0.110 0.039 0.019 0.121 0.096
SLIM 0.520 0.298 0.677 0.420 0.358 0.212 0.249 0.189
MF-BPR 0.554 0.316 0.595 0.352 0.352 0.193 0.384 0.232
CML 0.596 0.326 0.662 0.390 0.447 0.254 0.376 0.237
NeuMF++ 0.623 0.341 0.716 0.438 0.509 0.279 0.428 0.274
CMN++ 0.620 0.344 0.729 0.442 0.523 0.293 0.423 0.272

Sequential
Recommenders

(Group 2)

PRME 0.638 0.381 0.724 0.486 0.509 0.329 0.538 0.346
PRME s 0.674 0.398 0.734 0.491 0.539 0.348 0.380 0.244
TransRec 0.684 0.402 0.770 0.524 0.511 0.345 0.551 0.357
Caser 0.674 0.386 0.826 0.606 0.480 0.253 0.326 0.268

Ours
SDP 0.616 0.349 0.694 0.424 0.497 0.279 0.416 0.266
SDM 0.713 0.435 0.816 0.584 0.584 0.379 0.575 0.390
SDMR 0.695 0.562 0.810 0.662 0.592 0.449 0.568 0.423

Compared to
Group 1

Imprv. of SDM 14.54% 26.51% 11.93% 32.13% 11.71% 29.32% 34.35% 42.34%
Imprv. of SDMR 11.65% 63.44% 11.11% 49.77% 13.24% 53.20% 32.71% 54.38%

Compared to
Group 2

Imprv. of SDM 4.24% 8.21% -1.21% -3.63% 8.35% 8.91% 4.36% 9.24%
Imprv. of SDMR 1.61% 39.80% -1.94% 9.24% 9.83% 29.02% 3.09% 18.49%

to hits by log2 at lower ranks.

5.2.4 Experimental Results

RQ1: Overall results in general recommendation task: The performance of our pro-

posed models and the baselines are shown in Table 5.3. First, we observe that SDP signif-

icantly outperformed BPR in all four datasets in Group-1 datasets, improving HIT@10

from 8.33∼41.19%, and NDCG@10 from 10.44∼44.56%. Even though SDP and BPR

shared the same loss function, the difference between them is SDP measured a signed dis-

tance score between a target user and a target item via a MLP which modeled a non-linear

interaction between them, while BPR went along with Matrix Factorization that exploited

inner product. This result confirms the effectiveness of using signed distance based simi-

larity over inner product in the general recommendation task. Second, we compare SDP

with CML. CML worked by trying to minimize the squared Euclidean distance scores

between target users and target items. Our SDP, in another hand, works by minimizing

110

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

signed distance scores of non-linear interactions (via non-linear activation functions) be-

tween target users and target items. We observe that SDP performed better than CML

in all Group-1 datasets, improving HIT@10 from 8.33∼11.19%, and NDCG@10 from

7.06∼12.24%. On average, SDP improved HIT@10 by 7.5% and NDCG@10 by 9.5%

compared to CML. Our SDP even gain competitive results compared to NeuMF++ and

CMN++. On average, SDP is just slightly worse than NeuMF++ and CMN++ by -2.67%

for HIT@10, and -1.68% for NDCG@10. All of these results show the effectiveness of

using signed distance in our SDP model.

Next, we compare SDM with neighborhood-based baselines. Both SLIM and item-

KNN used previously consumed items of a user to make the prediction for the next item.

SDM significantly outperformed both baselines, improving HIT@10 from 20.53∼130.92%

and NDCG@10 from 39.05∼106.35% compared with SLIM. It is an obvious result be-

cause the neighborhood-based baselines barely measured linear similarities between the

target item and the user’s consumed items. In contrast, our SDM produced signed distance

scores and assigned personalized metric-based attention weights to each of consumed

items that contribute to the target item.

We then compare SDM with CMN++ and NeuMF++. SDM outperformed CMN++

in all Group-1 datasets, improving HIT@10 from 11.71∼35.93% and NDCG@10 from

26.51∼43.38%. On average, it improves HIT@10 by 18.63% and NDCG@10 by 32.84%

compared to CMN++. This result shows the effectiveness of our personalized metric-

based attention with signed distance and item-based neighborhood design over the tra-

ditional inner product-based attention in a user-based neighborhood design in CMN++.

SDM also outperformed NeuMF++, improving HIT@10 from 13.97∼34.35%, and NDCG-

@10 from 27.42∼42.34%. On average, in all Group-1 datasets, SDM outperformed all

the baselines in “General Recommenders” (Group 1), improved HIT@10 by 18.13% and

NDCG@10 by 32.58% compared to the best baseline in Group 1.

111

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

Table 5.4: Shopping basket-based Recommendation Task: Overall performance of the base-
lines, and our proposed models on two datasets. The last two lines show the relative improve-
ment of the SDM and SDMR over the best baseline.

Method
IJCAI-15 Ta-Feng

HIT@10 NDCG@10 HIT@10 NDCG@10

PRME 0.276 0.177 0.594 0.365
PRME s 0.229 0.133 0.590 0.355
TransRec 0.262 0.168 0.622 0.401
Caser 0.173 0.096 0.605 0.373

SDP 0.323 0.201 0.633 0.401
SDM 0.316 0.189 0.646 0.439
SDMR 0.336 0.222 0.627 0.559

Imprv. of SDM 14.49% 6.78% 3.86% 9.48%
Imprv. of SDMR 21.74% 25.42% 0.80% 39.40%

Finally, we look at the performance of SDMR model, which is the proposed fusion

of SDP and SDM. Compared to SDM, our SDMR insignificantly downgrades SDM on

HIT@10 measurement with a very small amount, but it does help a lot in refining the

ranking of items and boosting NDCG@10 results. As shown in Table 5.3, SDMR im-

proved from 8.46∼29.20% for NDCG@10, and by 17.37% for NDCG@10 on average

compared to SDM in Group-1 datasets. SDMR also surpassed all the methods in Group

1. On average, SDMR improved HIT@10 by 17.18% and NDCG@10 by 55.20% com-

pared to the best model in Group 1.

We also compared our models with some strong sequential models in Table 5.3. Se-

quential models exploited consuming time of items and model their rigid orders, which

often lead to a much improved performance compared to general recommendation mod-

els in Group-1 baselines. As such, compared to the best sequential baseline model, on

average, SDM improves HIT@10 by 3.94% and NDCG@10 by 5.68% , and SDMR im-

proves HIT@10 by 3.15% and NDCG@10 by 24.14% compared to the best sequential

model reported in Table 5.3.

Overall results in shopping basket-based recommendation task: Table 5.4 shows

112

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

the performance of our models and sequential baselines in Group-2 datasets. Again, our

models outperformed all the sequential baselines. On average, SDM improved HIT@10

by 9.2% and NDCG@10 by 8.1%, SDMR improved HIT@10 by 11.3% and NDCG@10

by 32.4% compared to the best reported baseline.

RQ2: Understanding our multi-hop personalized metric-based attention design?

In the previous section, we see that our models outperformed many strong baselines in six

different datasets of the two different recommendation problems. In this part, we explore

why did we achieve those better results? As “attention is all you need” [113], the core

reason brought us an surpassed performance accredit to the metric-based attention which

are further refined via multi-hop design. Therefore, we want to explore quantitatively and

qualitatively how our attention with multi-hop design worked by answering two smaller

research questions: (i) what did our metric-based attention with multi-hop design learn?,

(ii) did the metric-based attention with multi-hop design improve recommendation re-

sults? Without a special mention, since our SDMR model just learned a combination

between SDP and SDM without re-learning the learned-already parameters in SDP and

SDM, we explore SDM in this section to understand how attention with multi-hop design

works. Note that we conduct this analysis for ML-100k only due to space limitation and

the availability of movies genre in ML-100k (for visualization in Figure 5.8).

What did our metric-based attention with multi-hop design learn? To answer this

research question, we first measure the point-wise mutual information (PMI) between

two certain items j and k as:

PMI(j, k) = log
P (j, k)

P (j)× P (k)
(5.23)

where P (j, k) is the joint probability between two items j and k, which shows how likely

j and k are co-preferred (P (j, k) = #(j,k)
|D| , where D denotes a collection of all item-item

pairs, and |D| refers to the total number of item-item co-occurrence pairs in D). Similarly,

113

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

0 2 4
PMI score

0.00

0.25

0.50

0.75

At
te

nt
iv

e
sc

or
e

(a) Hop 1.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(b) Hop 2.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(c) Hop 3.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(d) Hop 4.

Figure 5.6: ML-100K: Scatter plots of PMI scores and attentive scores generated by SDM
with h hops (h={1, 2, 3, 4} from left to right). The red lines are the linear trend lines. The
Pearson correlation between two scores increases when h increased.

P (j) and P (k) are the probabilities of the item j and k appears in D, respectively (e.g.

P (j) = #(j)
|D| , P (k) = #(k)

|D|). Intuitively, a PMI score between two items shows how likely

the two items are co-purchased/co-preferred. The higher the PMI score between j and k

is, the more likely the user will purchase j if k was purchased before.

We denote SDM-h is the SDM model with h hops. Now, given a target item j and the

user’s context items k, SDM-h will assign attentive scores for all (j, k) pairs. We also get

PMI scores (from Eq. (5.23)) of (j, k) pairs. Next, we plot a scatter plot of PMI scores

and attentive scores for all (j, k) pairs to see the relationship between the two scores. Our

results for ML-100k dataset is shown in Figure 5.6.

In Figure 5.6, the Pearson correlation between PMI scores and attentive scores are

0.059, 0.097, 0.143, and 0.146 for SDM-1, SDM-2, SDM-3 SDM-4, respectively. It

indicates that as we increase the number of hops in SDM model, PMI scores and attentive

scores are more positively correlated. In another word, as we increase number of hops, our

metric-based attention with multi-hop design will assign higher weights for co-purchased

items, which is what we desire.

Furthermore, scatter plots in Figure 5.6(a) presents that there is a high density of points

with small attentive scores. This indicates that attention in SDM-1 is distributed to several

items (which is somewhat close to equally focusing on context items). However, when

we increase the number of hops h, the density spreads up to the top, indicating that the

114

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(a) ML-100K.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

0.8

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(b) ML-1M.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(c) Netflix.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(d) Epinions.

8 16 32 64 128
embedding size

0.0

0.1

0.2

0.3

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(e) IJCAI-15

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(f) TaFeng.

Figure 5.7: Comparison of varying the number of hops regarding different embeddings sizes
in the six datasets.

model tends to give a higher attention to some context items, which can be more relevant

than others. This observation is consistent with “learning to attend” in [127, 128].

Did the metric-based attention with multi-hop design improve recommendation

results? We answer this research question by showing the results of SDM model when

varying number of hops h from {1, 2, 3, 4} with different embedding sizes and visualize

attention scores of SDM-h with a random observation as follows:

Varying number of hops with different embedding sizes: The performance of

SDM-h regarding HIT@10 with h from {1, 2, 3, 4} and embedding size from {8, 16,

32, 64, 128} is presented in Figure 5.7. We see that more hops tend to give additional

improvement in all 6 datasets, except in Tafeng dataset where SDM with more hops over-

fitted. In ML-100k and ML-1M, the optimal number of hops are 3 or 4. In Netflix, SDM

with 3 hops performed well. In Epinions and IJCAI-15, SDM-4 tends to achieve better

results. Overall, the selection of the number of hops depends on the dataset complexity,

115

5.2 RECOMMENDING PRODUCTS WITH A NEURAL SIGNED DISTANCE
BASED APPROACH

set of consumed items

Attention Scores

predicting item

action romance action romance action action

Personalized
Weights

Multi-hop
Memory

Figure 5.8: Multi-hop Attention visualization.

and it varies from datasets to datasets.

Attention Visualization: Lastly, to visualize how the personalized metric-based at-

tention with multi-hop design works, we chose one user from ML-100K data. The learned

weights at each hop of SDM is shown in Figure 5.8. The target item in this example is

an action movie called Fire Down Below (1997). The first two hops of SDM assigned

high weights to two romance movies, and the lowest score to the action movie Money

Talks (1997). The 3rd-hop and 4th-hop attention refined the weights of movies to better

reflect the correlations and similarities w.r.t the target movie. At last, Money Talks (1997)

was assigned with the highest weight 0.386, and the total weights of two romance movies

decreased to less than 0.2. This result shows the effectiveness of our multi-hop SDM

model.

116

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Input

rin ain bin cin

Real-valued representation

Output

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

rout aout bout cout

Dot Product

rin

ain

bin

cin

aout

rw

aw

-bw

cw

rin

ain

bin

cin

bout

rw

aw

bw

-cw

rin

ain

bin

cin

cout

rw

-aw

bw

cw

Quaternion representation

rin ain bin cin

r i j k

rw aw bw cw

-aw rw -cw bw

-bw cw rw -aw

-cw -bw aw rw

Dot Product

rout aout bout cout

r i j k

rin

ain

bin

cin

rout
rw

-aw

-bw

-cw

rin

ain

bin

cin

rout
w11
w21

w31

w41

rin

ain

bin

cin

aoutw12

w22

w32

w42

rin

ain

bin

cin

cout
w14

w24

w34

w44

rin

ain

bin

cin

bout
w13

w23

w33

w43

weight

Real-valued transformation Quaternion transformation

Figure 5.9: Comparison between real-valued transformation (Left) and Quaternion transfor-
mation (Right). We replace Hamilton product in Quaternion space with an equivalent dot
product in real space for an easy reference.

5.3 Recommending Products with a Quaternion Repre-

sentation Based Approach

In this section, we propose a Quaternion-based neural recommender system that models

both long-term and short-term user preferences. Unlike the prior works [48, 49] which

rely on Euclidean space, our proposed recommender system models both user’s long-term

and short-term preferences in a hypercomplex system (i.e., Quaternion Space) to further

improve the recommendation quality.

Concretely, we utilize Quaternion representations for all users, items and neural trans-

formations in our proposed models. There are numerous benefits of the Quaternion uti-

lization over the traditional real-valued representations in Euclidean space: (1) Quater-

nion numbers/vectors consist of a real component and three imaginary components (i.e.

i, j, k), encouraging a richer extent of expressiveness; (2) instead of using dot prod-

uct in Euclidean space, Quaternion numbers/vectors operate on Hamilton product, which

matches across multiple (inter-latent) Quaternion components and strengthens their inter-

latent interactions, leading to a higher expressive model; (3) the weight sharing nature of

117

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Hamilton product leads to a model with a smaller number of parameters.

To illustrate these benefits of the Quaternion utilization, we show a comparison of a

transformation process with Quaternion representations vs. real-valued representations

in Figure 5.9. In Euclidean space, different output dimensions are produced by multi-

plying the same input with different weights. Given a real-valued 4-dimensional vector

[rin, ain, bin, cin], it takes a total of 16 parameters (i.e. 16 degrees of freedom) to trans-

form into [rout, aout, bout, cout]. For Quaternion transformation, the input vector now is

represented with 4 components, where rin is the value of the real component, ain, bin,

cin are the corresponding values of the three imaginary parts i, j, k. Due to the weight

sharing nature of Hamilton product (refer to the Equa (5.26) in Section 5.3.2), different

output dimensions take different combinations of the same input with only 4 weighting

parameters {rw, aw, bw, cw}. The Quaternions provide a better inter-dependencies inter-

action coding and reduce 75% of the number of parameters compared with real-valued

representations in Euclidean space (e.g., 4 unique parameters vs. 16 parameters).

To our best of knowledge, we are the first work that fully utilizes Quaternion space

in modeling both user’s long-term and short term interests. Furthermore, to increase

our model’s robustness, we propose a Quaternion-based Adversarial attack on Bayesian

Personalized Ranking (QABPR) loss. As far as we know, we are the first, applying ad-

versarial attack on Quaternion representations in the recommendation domain.

We first describe the problem definition and the preliminary on Quaternion representa-

tions. Then, we detail our Quaternion based recommenders and present the experimental

settings and experimental results.

5.3.1 Problem Definition

Denote U={u1, u2, ..., um} as a set of all users where m = |U | is the total number of

users, and P={p1, p2, ..., pn} as a set of all items where n = |P | is the total number of

118

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

items. Bold versions of those variables, which we will introduce in the following sections,

indicate their respective latent representations/embeddings. Each user ui ∈ U consumes

items in P , denoted by a chronological list T (ui). We denote L(ui) as the chronological

list of long-term consumed items of ui, and S(ui) as the chronological list of short-term

consumed items of ui (i.e. s most recently consumed items in chronological order of the

user ui), Lui ∪Sui = T (ui). Note that bold versions of i, j,k are used to indicate the three

imaginary parts of a Quaternion, while their subscript versions are used as indices.

In this work, we propose and build Quaternion-based recommender systems by us-

ing both long-term and short-term user interests, denoted as P (pj|L(ui), S(ui)). Under

an assumption that L(ui) and S(ui) are independent given the target item pj , we model

P (pj|L(ui), S(ui)) by modeling the user’s long-term interest P (pj|L(ui)) and short-term

interest P (pj|S(ui)) separately by using two different Quaternion-based neural networks.

Then, we automatically fuse the two models to build a more effective recommender sys-

tem.

5.3.2 Preliminary

In this section, we cover important background on Quaternion Algebra and Quaternion

Operators that we use to design our models.

Quaternion number: In mathematics, Quaternions are a hypercomplex number system.

A Quaternion number X in a Quaternion space H is formed by a real component (r) and

three imaginary components as follows:

X = r + ai+ bj + ck, (5.24)

where ijk = i2 = j2 = k2 = −1. The non-commutative multiplication rules of quater-

nion numbers are: ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. In

119

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Equa (5.24), r, a, b, c are real numbers ∈ R. Note that we can extend r, a, b, c to real-

valued vectors to obtain Quaternion embeddings, which we use to represent users/items’

latent features and conduct neural transformations. Operations on Quaternion embed-

dings are similar to Quaternion numbers.

Component-wise Quaternion Operators: Let f define an algebraic operator in real

space R. The component-wise Quaternion operator f on two Quaternions X, Y ∈ H is

defined as:

f(X, Y) = f(rX , rY) + f(aX , aY)i+ f(bX , bY)j + f(cX , cY)k (5.25)

For instance, if f is an addition operator (i.e. f(a, b) = a + b), then f(X, Y) returns a

component-wise Quaternion addition between X and Y . If f is a dot product operator

(i.e. f(a, b) = aT b), then f(X, Y) returns a component-wise Quaternion dot product

between X and Y . A similar description is applied when f is either subtraction, scalar

multiplication, product, softmax, or concatenate operator, .etc.

Hamilton Product: The Hamilton product (denoted by the ⊗ symbol) of two Quater-

nions X ∈ H and Y ∈ H is defined as:

X ⊗ Y =(rXrY − aXaY − bXbY − cXcY) +

(rXaY + aXrY + bXcY − cXbY)i +

(rxbY − aXcY + bXrY + cXaY)j +

(rXcY + aXbY − bXaY + cXrY)k

(5.26)

Activation function on Quaternions: Similar to [134, 135], we use a split activation

function because of its stability and simplicity. Split activation function β on a Quaternion

X is defined as:

β(X) = α(r) + α(a)i+ α(b)j + α(c)k (5.27)

120

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Input

Target
user u

Target
item p

Long-
term
items

Short-
term
items

Quaternion Embedding Lookup

r i j k

.

Users preferences encoding

Quaternion-
based self
attention

Quaternion-
based Self-

Attentive
LSTM

∑
r i j k

r i j k

short term user encoding
u(short)

∑

≀

1-

.

.

+

r i j k

long term user encoding
u(long)

long term user preference

Target
item p

r i j k

short term user preference

Quaternion-based
Gating layer

h

Prediction

user-item
preference

score
oij

+ Quaternion component-wise addition Quaternion component-wise summation on all quaternion embeddings∑

γ

1-γ

Figure 5.10: Our proposed architecture for modeling both long and short-term user interests
using Quaternion representations.

, where α is any standard activation function for real values.

Concatenate four components of a Quaternion: concatenates all four Quaternion com-

ponents into one real-valued vector:

[X] = [rX , aX , bX , cX] (5.28)

5.3.3 Method

Figure 5.10 shows an overview of our proposals. First, our QUaternion-based self-Attentive

Long term user Encoding (QUALE) learns a user’s long-term interest by using long-

term consumed items and the target item. Second, our QUaternion-based self-Attentive

Short term user Encoding (QUASE) encodes the user’s short-term intent by using short-

term consumed items and the target item. Then our QUaternion-based self-Attentive

Long Short term user Encoding (QUALSE) fuses both of the user preferences by using a

Quaternion-based gating layer. We describe each component as follows:

QUaternion-based self-Attentive Long term user encoding (our QUALE model:)

The most widely used technique for modeling the user long-term interests is the

Asymmetric-SVD (ASVD) [35] model. Its basic idea is to encode each user and item

121

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

by latent representations where the user representation is encoded by summing latent rep-

resentations of the user’s interacted items. To an extent, we propose a QUaternion-based

self-Attentive Long term user Encoding (QUALE). QUALE represents each user and each

item as Quaternion embeddings. Then, we encode each user by attentively summing

Quaternion embeddings of her interacted items as follows:

u
(long)
i =

|L(ui)|∑
k=1

αk × p(long)
k (5.29)

where u(long)
i ,p

(long)
k ∈ H. The summation “

∑
” and the multiplication “×” are Quater-

nion component-wise operators, which are calculated by using Equa (5.25). We use

our proposed Quaternion personalized self-attention mechanism to assign attentive scores

αk ∈ H for different long-term items pk.

Our QUALE model has four layers: Input, Quaternion Embedding, Encoding, and

Output layers. We detail each layer as follows:

Input: QUALE requires a target user ui, a target item pj , and the user’s list of l

long-term items L(ui) with |L(ui)| = l. l could be simply set to the maximum number

of long-term items among all the users in a dataset. However, we observed that only

several users in our datasets consumed an extremely large number of items compared to

the majority of users. Hence, we set l to the upper bound of the boxplot approach (i.e.

Q3 + 1.5IQR, where Q3 is the third quartile, and IQR is the Interquartile range of the

sequence length distribution of all users). If a user has consumed less than l items, we

pad the list with zeroes until its length reaches l.

Quaternion Embedding layer: It holds two Quaternion embedding matrices: a user

context Quaternion embedding matrix U(long) ∈ Hm×d, and an item Quaternion embed-

ding matrix P(long) ∈ Hn×d. Here, m and n are the respective number of users and items

in the system. d is the Quaternion embedding size, and is measured by the total size

122

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

of real-valued vectors of four Quaternion components (d = |r| + |a| + |b| + |c|, and

|r| = |a| = |b| = |c| = d/4). By passing the target user ui, the target item pj , and

long-term items pk in the Input layer through the two respective Quaternion embedding

matrices, we obtain the corresponding user context Quaternion embedding q(long)
i , target

item Quaternion embedding p(long)
j and long-term item Quaternion embeddings p(long)

k .

Encoding layer: Its main goal is to compute attentive scores for l Quaternion item

embeddings in Equa (5.29). To do so, we propose a Quaternion personalized self-attention

mechanism as follows:

We first compute the Hamilton product between each long-term item Quaternion em-

bedding p(long)
k (k = 1, l) and the Quaternion context embedding q(long)

i of the target user

ui. Next, we use Equa (5.25) to multiply the results with the scaling factor 1/
√
d to elimi-

nate the scaling effects. Then, we apply Component-wise Softmax (Equa (5.25)) to obtain

Quaternion attention scores as follows:



α1

α2

. . .

αl


= ComponentSoftmax





p
(long)
1 ⊗ q(long)

i /
√
d

p
(long)
2 ⊗ q(long)

i /
√
d

. . .

p
(long)
l ⊗ q(long)

i /
√
d




(5.30)

.

To obtain the attentive long-term user encoding u(long)
i of the user ui, we first per-

form the component-wise product between the attention scores [α1, α2, ..., αl] obtained in

Equa (5.30) with its corresponding item Quaternion embeddings [p
(long)
1 , p

(long)
2 , ..., p

(long)
l].

Then we sum them up to obtain u(long)
i as follows:

u
(long)
i =

l∑
k=1

αk × p(long)
k (5.31)

Our proposed Quaternion personalized self-attention mechanism vs. the existing

123

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

self-attention mechanism: Our proposed Quaternion personalized self-attention mech-

anism is different from the self-attention mechanism that has been widely used in the

NLP tasks in two aspects. First, unlike the prior work [136], which uses a single global

context to assign attentive scores for different dialogue states, our attention mechanism

provides personalized contexts for different users. In the recommendation domain, the

long-term/general user interests are supposed to be changed slowly, but user interests are

various across users. In other words, a user’s long-term context is quite static, but differ-

ent from another user. Hence, using personalized contexts for different users is better than

using a single global context, which is not personalized. Second, our attention mechanism

adopts Hamilton product and works for Quaternion embeddings as input, instead of the

real-valued embeddings like traditional self-attention mechanisms.

Output: We produce a long-term preference score o(long)
ij between the target user

ui and the target item pj by computing the Component-wise dot product between the

user long-term Quaternion encoding u(long)
i obtained in Equa (5.31) and the target item

Quaternion embedding p(long)
j . This results in a Quaternion score . To obtain a real-valued

scalar preference score used in the parameter estimation phase, we compute the average

of the scalar values of four Quaternion components by following [137]:

o
(long)
ij = Average(ComponentDot(u(long)

i ,p
(long)
j)) (5.32)

QUaternion-based self-Attentive Short term user Encoding (our QUASE model):

RNN-based models have gained a lot of attention because of their capability to cap-

ture item-to-item relationships [44, 48, 138]. However, due to its limitation in modeling a

long sequence, we only exploit the RNN architecture to encode a user’s short-term inter-

est. Recently, [134] has introduced a Quaternion LSTM (QLSTM) model and has shown

its efficiency and effectiveness over a traditional real-valued LSTM model. However,

124

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

QLSTM used only the last hidden state as a latent summary of the input, which is subop-

timal. To an extent, we propose a Quaternion-based self-Attentive LSTM model to learn

a user’s short-term interest. We name our proposal as a QUaternion-based self-Attentive

Short term user Encoding (QUASE). QUASE has 4 layers: Input, Quaternion Embedding,

Encoding, and Output layers. We describe each layer as follows:

Input: A target item pj , and the chronological list of s short-term consumed items

S(ui) of the target user ui with |S(ui)| = s, where s represents the maximum number of

short-term items among all the users in a dataset. If a user has consumed less than s items,

we pad the list with zeroes until its length reaches s.

Quaternion Embedding layer: It holds an item Quaternion Embedding matrix P(short)

∈ Hn×d. By passing the target item pj , and s short-term items in the S(ui) of the target

user ui through P short, we obtain their corresponding Quaternion embeddings p(short)
j ,

and {p(short)
1 ,p

(short)
2 , ...,p

(short)
s }.

Encoding layer: In this layer, we adapt the recently introduced Quaternion-based

LSTM to model the item-item sequential transition. Denote p(short)t is the Quaternion

embedding of the tth short-term item pt ∈ S(ui) (t = 1, s). Let ft, it, ot, ct, and ht be the

forget gate, input gate, output gate, cell state, and the hidden state of a Quaternion LSTM

cell at time step t, respectively. We compute these variables as follows:

ft = σ(Wf ⊗ p(short)
t +Rf ⊗ ht−1 + gf)

it = σ(Wi ⊗ p(short)
t +Ri ⊗ ht−1 + gi)

ot = σ(Wo ⊗ p(short)
t +Ro ⊗ ht−1 + go)

ct = ft × ct−1 + it × tanh(Wc ⊗ p(short)
t +Rc ⊗ ht−1 + gc)

ht = ot × tanh(ct)

(5.33)

, where Wf , Rf ,Wi, Ri,Wo, Ro,Wc, Rc are Quaternion weight matrices. gf , gi, go, gc are

125

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Quaternion bias vectors. ft, it, ot, ct, ht are Quaternion vectors. The “×” sign denotes a

component-wise product operator, which is calculated using Equa (5.25). sigmoid σ and

tanh are split activation functions and are computed using the Equa (5.27).

Using Equa (5.33), given s short-term consumed items p1, p2, ..., ps, we obtain their

respective output Quaternion hidden states h1,h2, ...,hs. Then, we propose a Quater-

nion self-attention mechanism to combine all s output Quaternion hidden states before

using it to predict the next item. Different from the long-term user preferences where

they are supposed to be static or changed very slowly, the short-term user interests are

dynamic and changed quickly. Hence, using a static user context for each user to make

personalized attention like what we did for the QUALE model is not ideal. Instead, we de-

fine a Quaternion global context vector to capture the sequential transition patterns from

item to item among all the users. Denote q as a Quaternion global context vector, the

Quaternion-based self-attention score of each hidden state ht is measured by:



α
(short)
1

α
(short)
2

. . .

α
(short)
s


= ComponentSoftmax





h1 ⊗ q/
√
d

h2 ⊗ q/
√
d

. . .

ht ⊗ q/
√
d




(5.34)

, where α(short)
1 , α

(short)
2 , ..., α

(short)
s are Quaternion numbers. To achieve the final short-

term user Quaternion encoding, we perform a component-wise product between the Quater-

nion hidden states and their respective Quaternion attention scores, followed by a Hamil-

ton product with a Quaternion weight matrix W and the split activation function tanh:

u
(short)
i = tanh

(
W ⊗

(s∑
t=1

α
(short)
t × ht

))
(5.35)

Note that we also designed a Quaternion self-Attentive GRU , but its performance was

slightly worse than the Quaternion self-Attentive LSTM (see Table 5.6 in Section 5.3.4).

126

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Thus, we only described the Quaternion self-Attentive LSTM due to space limitation.

Output: Similar to Equa (5.32), we produce the user ui short-term preference score

o
(short)
ij over the target item pj as follows:

o
(short)
ij = Average

(
ComponentDot(u

(short)
i ,p

(short)
j)

)
(5.36)

QUaternion-based self-Attentive Long Short term user Encoding (QUALSE): a Fu-

sion of QUASE and QUALE models In this part, we aim to combine both user’s long-

term and short-term preferences modeling parts into one model, namely QUALSE, fusing

QUALE and QUASE models. Inspired by the gated mechanism in LSTM [139] to balance

the contribution of the current input and the previous hidden state, we propose a person-

alized Quaternion gated mechanism to fuse the long-term and short-term user interests

learned in QUALE and QUASE models. Our personalized gating proposal is different to

the traditional gating mechanism in two folds. First, gating weights in our proposal are

in Quaternion space and the transformations are computed using the Hamilton product.

Second, as users’ behaviors differ from a user to another user, we additionally input the

target user embeddings ui to let the gating layer assign personalized scores for different

users. The long-term and short-term interest fusion is computed as follows:

γ
(long)
ij =σ

(
W (1)
g ⊗ [u

(long)
i ,u

(short)
i] +W (2)

g ⊗ ui +W (3)
g ⊗ pj

)
oij =W (1)

o

[
γ

(long)
ij × (u

(long)
i × p(long)

j)
]

+

W (2)
o

[
(1− γ(long)

ij)× (u
(short)
i × p(short)

j)
] (5.37)

, where W (1)
g ,W

(2)
g , and W (3)

g are Quaternion weight matrices, u(long)
i and u(short)

i are the

user’s long-term Quaternion encoding and short-term Quaternion encoding obtained in

Equa (5.31) and (5.35), respectively. [· , ·] is the component-wise concatenate (Equa (5.25))

of two input Quaternion vectors. To compute the long-term gate γ(long)
ij , ui and pj are in-

127

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

troduced as an additional user context Quaternion embedding and a target item context

Quaternion embedding to let the model know which long-term or short-term interests

are more relevant. To measure the final output oij , since γ(long)
ij is a Quaternion vector

while o(long)
ij and o(short)

ij are scalar values, we reconstruct the user’s long-term interest by

computing u(long)
i × p(long)

j and the short-term interest by measuring u(short)
i × p(short)

j ,

which are also Quaternion vectors. Finally, to combine multiple dimensional features

from the weighted long-term and short-term interest Quaternion vectors, we concatenate

all their components, denoted by [·] (Equa (5.28)), and use two real-valued weight vec-

tors W (1)
o and W (2)

o to produce a fused preference score as a scalar real number. Note

that in QUALSE, QUASE and QUALE hold separated item memory to increase the their

flexibility.

Parameter Estimation:

Training with Bayesian Personalized Ranking (BPR) loss: Given a Quaternion

matrix E ∈ H(m+n)×d as the Quaternion embeddings of all users and items in the system,

and Θ as other parameters of the model, we aim to minimize the following BPR loss

function:

LBPR(D|E,Θ)

= argmin
E,Θ

(
−

∑
(i,j+,j−)

logσ(oij+ − oij−) + λΘ‖Θ‖2 + λE‖E‖2

) (5.38)

, where (i, j+, j−) is a triplet of a target user, a target item, and a negative item that

is randomly sampled from the items set P . D denotes all the training instances. oij+

and oij− are the respective positive and negative preference scores, that are computed by

Equa (5.32), (5.36), (5.37), corresponding to QUALE, QUASE and QUALSE models. λΘ

and λE are regularization hyper-parameters.

Training with Quaternion Adversarial attacks: Previous works have shown that

neural networks are vulnerable to adversarial noise [97, 107]. Therefore, to increase

128

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

the robustness of our models, we propose a Quaternion Adversarial attack on BPR loss,

namely QABPR. QABPR inherits from traditional adversarial attacks for computer vi-

sions [107] and recommendation systems [97] but differs from them: QABPR applies

for Quaternion space, while the formers apply for real-valued space. To our best of

knowledge, ours is the first work using adversarial training on Quaternion space in the

recommendation domain.

In QABPR, we first define learnable Quaternion perturbation noise δ on user and item

Quaternion embeddings. Then, we perform the Quaternion component-wise addition

(Equa (5.25)) to obtain crafted Quaternion embeddings. The learnable Quaternion noise

δ is optimized such that the model mis-ranks between positive items and negative items

(i.e. negative items have higher preference scores than positive items). Particularly, a max

player learns δ by maximizing the following cost function under the L2 attack:

Ladv(D|E∗ + δ,Θ∗)

= argmax
δ,‖δ‖2≤ε

(
−

∑
(i,j+,j−)

logσ(oij+ − oij−) + λδ‖δ‖2

) (5.39)

where ε is a noise magnitude hyper-parameter. E∗ and Θ∗ are optimal values of E and

Θ that are pre-learned in Equa (5.38) and are fixed in Equa (5.39). E∗ + δ is the crafted

Quaternion embeddings. λΘ‖Θ‖2 and λE‖E‖2 in Equa (5.38) are ignored in Equa (5.39)

as they become constant terms. λδ‖δ‖2 is the noise regularization term.

Solving Equa (5.39) is expensive. Hence, we adopt the Fast Gradient Method [107]

to approximate δ as follows:

δ = ε
5δLadv(D|E∗ + δ,Θ∗)

‖5δLadv(D|E∗ + δ,Θ∗)‖2

(5.40)

Then, a min player aims to minimize the following cost functions that incorporate

129

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

both non-adversarial and adversarial examples:

LQABPR(D|E,E + δ∗,Θ)

= argmin
E,Θ

(
LBPR(D|E,Θ) + λadvLBPR(D|E + δ∗,Θ)

) (5.41)

where δ∗ is the adversarial noise that is already learned in Equa (5.40), and is fixed in

Equa (5.41). λadv is a hyper-parameter to balance the effect of the partial adversarial loss.

Training QABPR now becomes playing a minimax game, where the min and max players

play alternatively. We stop the game after a fixed number of epochs (i.e. 30 epochs) and

report results based on the best validation performance.

Note that we name our QUALE, QUASE, and QUALSE trained with QABPR loss as

AQUALE, AQUASE, and AQUALSE with “A” denotes “adversarial”, respectively.

5.3.4 Experimental Settings

In this section, we design experiments to answer the following research questions:

• RQ1: How do our proposals work compared to the baselines?

• RQ2: How do a user’s long-term, short-term preference encoding models and the

fused model perform?

• RQ3: Is using Quaternion representation helpful and why?

• RQ4: Are the gating fusion mechanism and the Quaternion BPR adversarial training

helpful?

Datasets: We evaluate all models on six public benchmark datasets collected from

two real world systems as follows:

• Amazon datasets [88]: As top-level product categories on Amazon are treated as

independent datasets [47], we use 5 different Amazon category datasets to vary the

sparsity, variability, and data size: Apps for Android, Cellphone Accessories, Pet Sup-

130

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Table 5.5: Datasets’ statistics with # of long-term items l.

Dataset # of users # of items # of actions (density %) l

Toys Games 36k 55k 251k (0.013%) 1,112
Cellphone Accessories 47k 45k 262k (0.012%) 109
Pet Supplies 25k 23k 160k (0.027%) 176
Video Games 24k 20k 196k (0.040%) 856
Apps for Android 79k 18k 555k (0.038%) 478
Yelp 22k 21k 481k (0.104%) 930

plies, Toys and Games, and Video Games.

• Yelp dataset: This is a user rating dataset on businesses. We use the dataset obtained

from [74].

For data preprocessing, we adopted a popular k-core preprocessing step [88] (with

k=5), filtering out users and items with less than 5 interactions. All observed ratings

are considered as positive interactions and the remaining as negative interactions. The

maximum number of short-term items is set to s = 5 in all datasets as it covers the short-

term peak (see Figure 5.1). Table 5.5 summarizes the statistics of all datasets, as well as

their number of long-term items l.
State-of-the-art Baselines: We compared our proposed models with 11 strong state-

of-the-art recommendation models as follows:

• AASVD: It is an attentive version of the well-known Asymmetric SVD model (ASVD)

[35], where real-valued self-attention is applied to measure attentive contribution of

previously consumed items by a user.

• QCF [137]: It is a state-of-the-art recommender that represents users/items by Quater-

nion embeddings.

• NeuMF++ [26]: It models non-linear user-item interactions by using a MLP and a

Generalized MF (GMF) component. We pretrained MLP and GMF to obtain NeuMF’s

best performance.

131

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

• NAIS [37]: It is an extension of ASVD where contribution of consumed items to the

target item is attentively assigned. We adopt NAISprod version as it led to its best

results.

• FPMC [40]: It is a state-of-the-art sequential recommender. It uses the first-order

Markov to model the transition between the next item and the previously consumed

items.

• AGRU: It is an extension of the well-known GRU4Rec [43], where we use an atten-

tion mechanism to combine different hidden states. We experiment with two attention

mechanisms: real-valued self-attention, and real-valued prod attention proposed by

[37]. Then we report its best performance.

• ALSTM: It is a LSTM based model. Similar to AGRU, we experiment with the real-

valued self-attention and the prod attention [37], and then report its best results.

• Caser [42]: It embedded a sequence of recently consumed items into an “image”

in time and latent spaces, and uses convolution neural network to learn sequential

patterns as local features of an image using different horizontal and vertical filters.

• SASRec [47]: It is a strong sequential recommender model. It uses the self-attention

mechanism with a multi-head design to identify relevant items for next predictive

items.

• Sli-Rec [49]: It uses a time-aware controller to control the state transition. Then it uses

an attention-based framework to fuse a user’s long-term and short-term preferences.

• ALSTM+AASVD: It is our implementation that resembles the same architecture as

our proposed Quaternion fusion approach, except that it uses Euclidean space instead

of Quaternion space. The purpose of implementing and using it as a baseline is to

present the effectiveness of our framework and Quaternion representations over the

real-valued representations.

132

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

First four baselines (AASVD, QCF, NeuMF++, and NAIS) are classified as user’s

long-term interest encoding models. Next four baselines (FPMC, AGRU, ALSTM, and

Caser) are user’s short-term interest encoding models, and SASRec, SLi-Rec, and AL-

STM+AASVD encode both user’s long-term and short-term intents. Note that we per-

formed an experiment with DIEN [48] (i.e. a long short-term modeling baseline) based on

the authors’ public source code, which produced surprisingly low results, so we omit its

detailed results. We also experimented with ASVD, LSTM, GRU and Quaternion LSTM

but do not report their results due to space limitation and their worse results. Similarly,

we omit BPR [111] and FISM [36] results due to their less impressive performance.

Experimental Protocol: We adopt a well-known and practical 70/10/20 splitting pro-

portions to divide each dataset into train/validation (or development)/test sets [31, 110].

All user-item interactions are sorted in ascending order in terms of the interaction time.

Then, the first 70% of all interactions are used for training, the next 10% of all interac-

tions are used for development, and the rest is used for testing. We follow [33, 140] to

sample 1,000 unobserved items that the target user has not interacted before, and rank all

her positive items with these 1,000 unobserved items for testing models.

Evaluation metrics: We evaluate the performances of all models by using two well-

known metrics: Hit Ratio (HIT@N), and Normalized Discounted Cumulative Gain (NDCG@N).

HIT@N measures whether all the test items are in the recommended list or not, while

NDCG@N takes into account the position of the test items, and assigns higher scores if

test items are at top-rank positions.

Hyper-parameters Settings: All models are trained with Adam optimizer [130]. A

learning rate is chosen from {0.001, 0.0005}, and regularization hyperparameters are

chosen from {0, 0.1, 0.001, 0.0001}. An embedding size d is chosen from {32, 48, 64,

96, 128}. Note that for Quaternion embeddings, each component value is a vector of

size d
4
. The number of epochs is 30. The batch size is 256. The number of MLP layers

133

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

Table 5.6: HIT@100 and NDCG@100 of all models. Best performances are in bold,
best baseline’s results are underlined. The last two lines show the relative improvement of
QUALSE and AQUALSE compared to the best baseline’s results.

Methods
Toys Games Cellphone Acc. Pet Supplies Video Games Apps for Android Yelp

HIT NDCG HIT NDCG HIT NDCG HIT NDCG HIT NDCG HIT NDCG

(a) AASVD 0.4343 0.1809 0.5640 0.2443 0.5523 0.2307 0.5503 0.2229 0.7149 0.3182 0.7212 0.3580
(b) QCF 0.3869 0.1560 0.5514 0.2328 0.5319 0.2194 0.5217 0.1956 0.6638 0.2864 0.6774 0.3119
(c) NeuMF++ 0.3969 0.1553 0.5467 0.2291 0.5255 0.2174 0.4944 0.1934 0.6635 0.2791 0.6810 0.3208
(d) NAIS 0.4331 0.1796 0.5648 0.2427 0.5569 0.2302 0.5587 0.2303 0.7076 0.3138 0.7277 0.3573
(e) FPMC 0.3370 0.1335 0.4805 0.1970 0.4405 0.1812 0.5065 0.1980 0.6659 0.2847 0.6704 0.3204
(f) AGRU 0.3747 0.1400 0.5211 0.2030 0.4690 0.1798 0.5337 0.1958 0.6969 0.2960 0.4722 0.1995
(g) ALSTM 0.3886 0.1419 0.5159 0.2052 0.4630 0.1685 0.5156 0.1928 0.7043 0.2883 0.5644 0.2519
(h) Caser 0.3889 0.1507 0.5747 0.2289 0.4786 0.1859 0.5502 0.1967 0.7098 0.3124 0.6718 0.3201
(i) SASRec 0.4009 0.1545 0.5579 0.2239 0.5238 0.2124 0.5472 0.2107 0.6706 0.2781 0.7193 0.3381
(j) SLi-Rec 0.4267 0.1823 0.5661 0.2387 0.5502 0.2311 0.5438 0.2276 0.7062 0.3117 0.7201 0.3516
(k) ALSTM+AASVD 0.4394 0.1864 0.5701 0.2475 0.5542 0.2326 0.5502 0.2328 0.7173 0.3207 0.7222 0.3594

Our proposals
QUALE 0.4696 0.1997 0.6042 0.2685 0.5826 0.2483 0.5981 0.2503 0.7281 0.3248 0.7391 0.3723
QUASE (GRU) 0.4080 0.1632 0.5612 0.5807 0.2438 0.5413 0.2246 0.2207 0.7198 0.3223 0.6917 0.3324
QUASE (LSTM) 0.4095 0.1664 0.5844 0.2475 0.5453 0.2263 0.5591 0.2261 0.7300 0.3300 0.6929 0.3311
QUALSE 0.4760 0.2043 0.6127 0.2777 0.5913 0.2539 0.6018 0.2551 0.7373 0.3364 0.7442 0.3781

AQUALE 0.4831 0.2055 0.6105 0.2748 0.5902 0.2553 0.6045 0.2593 0.7346 0.3306 0.7440 0.3786
AQUASE (LSTM) 0.4495 0.1847 0.6056 0.2572 0.5520 0.2329 0.5762 0.2351 0.7285 0.3292 0.7048 0.3450
AQUALSE 0.4921 0.2098 0.6204 0.2842 0.6011 0.2612 0.6137 0.2605 0.7477 0.3440 0.7448 0.3814

Imprv. of QUALSE +8.33% +9.60% +6.61% +12.20% +6.18% +9.16% +7.71% +9.58% +2.79% +4.90% +2.27% +5.20%
Imprv. of AQUALSE +11.99% +12.55% +7.95% +14.83% +7.94% +12.30% +9.84% +11.90% +4.24% +7.27% +2.35% +6.12%

in NeuMF++ is tuned from {1, 2, 3}. The number of negative samples per one positive

instance is 4 for training models. The settings of Caser, NAIS, SASRec are followed by

their reported default settings. In training with QABPR loss, the regularization λadv is set

to 1. The noise magnitude ε is chosen from {0.5, 1, 2}. The adversarial noise is added

only in training process, and is initialized as zero. All hyper-parameters are tuned by

using the validation set.

5.3.5 Experimental Results

RQ1: Performance comparison Table 5.6 shows that our proposed fused models QUALSE

and AQUALSE outperformed all the compared baselines. On average, QUALSE improved

Hit@100 by 5.65% and NDCG@100 by 8.44% compared to the best baseline’s perfor-

mances. AQUALSE gains additional improvement over QUALSE, enhancing Hit@100

by 7.39% and NDCG@100 by 10.83% on average compared to the best baseline. The

improvement of our proposals over the baselines is significant under the Directional

134

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

N
D

C
G

 @
 to

p-
N

0.08

0.128

0.175

0.223

0.27

10 20 50 100

AASVD NAIS Caser SLi-Rec ALSTM+ASVD QUALSE AQUALSE

Video-Games data

@ top-N

N
D

C
G

 @
 to

p-
N

0.08

0.128

0.175

0.223

0.27

10 20 50 100

AASVD NAIS Caser SLi-Rec ALSTM+ASVD QUALSE AQUALSE

Video-Games data

@ top-N

(a) NDCG@topN in Video Games

H
IT

 @
 1

00

0.64

0.675

0.71

0.745

0.78

32 48 64 96 128

AASVD NAIS Caser SLi-Rec ALSTM+ASVD QUALSE AQUALSE

Yelp data
very embeddings

HIT

embedding-size

(b) HIT@100 in Yelp.

Figure 5.11: Performance of our models and the top-5 baselines when varying a top-N rec-
ommendation list (left) and an embedding size (right).

Wilcoxon signed-rank test (p-value < 0.015). We also observed similar results on all

six datasets when we measure Hit@1 and NDCG@1. In particular, our QUALSE im-

proved Hit@1 by 6.87% and NDCG@1 by 8.71% on average compared with the best

baseline. AQUALSE improved Hit@1 by 8.43% and NDCG@1 by 10.27% on average

compared with the best baseline, confirming its consistent effectiveness.

Varying top-N recommendation list and embedding size: To further provide de-

tailed effectiveness of our proposals, we compare QUALSE and AQUALSE models with

the top-5 baselines when varying the embedding size from {32, 48, 64, 96, 128} and the

top-N recommendation list from {10, 20, 50, 100}.

Figure 5.11(a) shows that even with small top-N values (e.g., @10), our models con-

sistently outperformed all the compared baselines in the Video Games dataset, improving

the ranking performance by a large margin of 9.25%∼12.30% on average. Specifically, at

top-N=10 in Video Games dataset, QUALSE and AQUALSE improves NDCG@10 over

the best baseline by 9.9% and 12.97%, respectively.

Figure 5.11(b) shows the HIT@100 performance of our QUALSE and AQUALSE

models, and the top-5 baselines in the Yelp dataset when varying the embedding size.

135

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

0 200 400
Time Interval(days)0.0

00
0

0.0
02

5
0.0

05
0

0.0
07

5
0.0

10
0

Pr
ob

ab
ili

ty
 d

en
si

ty

(a) Pet Supplies dataset.

0 200 400
Time Interval(days)0.0

00

0.0
08

0.0
16

0.0
24

Pr
ob

ab
ili

ty
 d

en
si

ty

(b) Yelp dataset.

Figure 5.12: Density distribution of item-item similarity scores in train/vad/test sets of Pet
Supplies and Yelp datasets.

We observe that our proposals outperformed all the baselines. Interestingly, while non-

adversarial models are more sensitive to the change of the embedding size, our adversarial

AQUALSE model is relatively smoother when varying the embedding size. The result

makes sense because the adversarial learning reduces the noise effect. Because of the

space limitation, we only show detailed results of the Video Games and Yelp datasets.

RQ2: Effect of the long-term and short-term encoding components? Using re-

ported results in Table 5.6, we first compare long-term encoding models (i.e. (a)-(d),

and QUALE, AQUALE) with short-term encoding models (i.e. (e)-(h), and QUASE,

AQUASE). In general, long-term encoding models work better than short-term encod-

ing models. For instance, NAIS (i.e. best long-term encoding baseline) improves 8.5%

on average on six datasets compared with Caser (i.e. best short-term encoding baseline).

Similarly, our long-term encoding QUALE model works better than our short-term en-

coding QUASE model, enhancing 9.2% on average over six datasets. To investigate this

phenomenon, we plot the density distribution of item-item similarity scores in test sets of

two datasets Pet-Supplies and Yelp in Figure 5.12. We observe higher peaks on long-term

item-item relationships in the curves, explaining why long-term encoding models work

136

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

better than short-term encoding models.

Next, we compare the fused models with models that encode either long-term or

short-term users preferences. Table 5.6 shows that models, which consider both user’s

long-term and short-term preferences, work better than other models, which encode ei-

ther user’s long-term or short-term interests. Both (j) and (k) baselines generally work

better than (a)–(h) baselines. Specifically, our QUALSE and AQUALSE models improve

7.9%∼10.0% on average over six datasets compared to the best baseline from (a)–(h).

These observations show the effectiveness of modeling both user’s long-term and short-

term interests. Among models, which consider both user long-term and short-term in-

terests, SASRec performed the worst compared to baselines (i)–(k) and our QUALSE

and AQUALSE. This is due to the fact that SASRec models user’s long-term and short-

term interests implicitly and concurrently by using the Transformer multi-head attention

mechanism. But, SLi-Rec, ALSTM+AASVD, and our proposals model the two prefer-

ences explicitly and separately, and then combine them later on, increasing flexibility.

Note that, although SLi-Rec employed a time-aware attentional LSTM to better model

the user’s short-term preferences, our ALSTM+AASVD implementation works slightly

better than SLi-Rec due to its two distinct properties: (i) the personalized self-attention

in AASVD, where each user is parameterized by her own context vector, and (ii) the

personalized gating fusion.

RQ3: Is using Quaternion representation helpful? In Table 5.6, we compare dif-

ferent model pairs: AASVD vs. QUALE, ALSTM vs. QUASE (LSTM), AGRU vs. QUASE

(GRU), and ALSTM+AASVD vs. QUALSE. Two methods under the same pair have simi-

lar architecture (again, ALSTM+AASVD was implemented by us, following our QUALSE

architecture to show effectiveness of Quaternion representation). But, the first method

of each pair uses real-valued representations and the second method of each pair uses

Quaternion representations. Table 5.6 shows that QUALE works better than AASVD.

137

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

In six datasets, on average, QUALE improves Hit@100 by 5.60% and NDCG@100 by

7.71% compared to AASVD. Similarly, we observe the same patterns from the other three

model pairs. Moreover, when comparing our long-term encoding QUALE and AQUALE

models with other long-term encoding baselines (a)-(e), our models outperformed the

baselines, improving HIT@100 by 5.16% and 6.55%, and enhancing NDCG@100 by

7.11% and 9.83%, respectively. Similarly, our short-term encoding QUASE and AQUASE

using LSTM also work better than other short-term encoding baselines (f)-(h), improving

HIT@100 by 4.75% and 8.09%, and enhancing NDCG@100 by 10.57% and 15.33%, re-

spectively. All of these results confirm the effectiveness of modeling user’s interests by

using Quaternion representations over Euclidean representations.

Why Quaternion representations help improve the performance? Since attention

mechanism is the key success in deep neural networks [113], we analyze how our mod-

els assign attention weights compared to their respective real-valued models. We first

measure the item-item Pointwise Mutual Information (PMI) scores (i.e. PMI(j, t) =

log P (j,t)
P (j)×P (t)

) using the training set. The PMI score between two items (j, t) gives us the

co-occurrence information between item j and item t, or how likely the target item j

will be preferred by the target user when the item t is already in her consumed item list.

We perform softmax on all item-item PMI scores. Then, we compare with the generated

attention scores from our proposed models and ones from their respective real-valued

baseline models. Figure 5.13 shows the scatter plots and Pearson correlation compari-

son using the Apps for Android dataset. We see that QUALE, QUASE tend to correlate

more positively with the PMI scores than their respective real-valued models AASVD, AL-

STM. In another word, our Quaternion-based models assign higher scores for co-occurred

item pairs. We reason coming from two aspects of Quaternion representations. First,

Hamilton product in Quaternion space encourages strong inter-latent interactions across

Quaternion components. Second, since our proposed self-attention mechanism produces

138

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

0.0 0.2 0.4
PMI score

0.2

0.4
At

te
nt

iv
e

sc
or

e

0.0 0.5 1.0
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(a) QUALE (left) vs AASVD (right).

0.0 0.5 1.0
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

0.0 0.5 1.0
PMI score

0.0

0.2

0.4

0.6

0.8

At
te

nt
iv

e
sc

or
e

(b) QUASE (left) vs ALSTM (right).

Figure 5.13: Comparison of attention scores between (QUALE vs AASVD) and (QUASE
vs ALSTM) in the Apps for Android dataset. Pearson correlation ρ between attention scores
and PMI scores are: ρQUALE = 0.232 > ρAASV D = 0.216, and ρQUASE = 0.148 >
ρALSTM = 0.1.

scores in Quaternion space, the output attention scores have four values w.r.t four Quater-

nion components. This can be thought as similar to the multi-head attention mechanism

[113] (but not exactly same because of the weight shared in Quaternion transformation),

where the proposed attention mechanism learns to attend different aspects from the four

Quaternion components. All of these explain why we got better results compared to the

respective real-valued models.

RQ4: Effect of the personalized gated fusion and the QABPR loss? Table 5.6

shows that in real-valued representations, ALSTM+ASVD works better than AASVD and

ALSTM in all six datasets. Similarly, in Quaternion representations, the fused QUALSE

model generally works better than its two degenerated QUALE and QUASE models. In

the six datasets, both QUALSE and AQUALSE perform better than their degenerated (ad-

139

5.3 RECOMMENDING PRODUCTS WITH A QUATERNION
REPRESENTATION BASED APPROACH

versarial) versions, improving 2% on average w.r.t both HIT@100 and NDCG@100. The

results confirm the effectiveness of fusing long-term and short-term user preferences in

both of QUALSE and AQUALSE.

We further compare our gating fusion with a weight fixing method, where we vary a

contribution score c ∈ [0, 1] for the user’s short-term preference encoding part and 1 − c

for the long-term part. We see that the gating fusion improves 4.82% on average over six

datasets compared to the weight fixing method, again confirming the effectiveness of our

personalized gating fusion method.

Is Quaternion Adversarial training on BPR loss helpful? We compare our proposed

models training with BPR loss (i.e. QUALE, QUASE (LSTM), and QUALSE models)

and our proposed models training with QABPR loss (i.e. AQUALE, AQUASE (LSTM),

and AQUALSE). First, we observe that AQUASE boosted QUASE performance by a large

margin: improving HIT@100 by 3.2% and NDCG@100 by 4.29% on average in the six

datasets. AQUALE and AQUALSE also improve QUALE and QUALSE by 1.92% and

1.91% on average of both HIT@100 and NDCG@100 over six datasets, respectively.

These results show the effectiveness of the adversarial attack on Quaternion representa-

tions with our QABPR loss.

140

6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we observe two groups of users – consumers and product owners in

online systems such as e-commerce systems (e.g., Amazon, eBay) and streaming service

systems (e.g., Netflix, Youtube, Spotify). We have developed algorithms and techniques

to model heterogeneous user behaviors. In particular, this dissertation has made three

unique contributions as follows:

First, we characterize the product deliver behavior of product owners. We proposed

a clustering approach to group rewards by their latent difficulty levels. Based on the

analysis and study, we extracted various features toward building predictive models for a

reward delivery status (i.e., on-time or late) and delivery duration.

Second, we study the heterogeneous consumer behaviors via their global interests. In

this direction, we proposed to exploit different co-occurrence information: co-disliked

item-item co-occurrences, co-liked item-item co-occurrences, and consumer-consumer

co-occurrences, which were extracted from the consumer-item interaction matrix. We

proposed a joint model combining WMF, co-liked embedding, co-disliked embedding

141

6.1 CONCLUSION

and consumer embedding, following the recent success of word embedding techniques.

Through comprehensive experiments, we successfully demonstrated that our model out-

performed all baselines. We also analyzed how our model worked on different types of

consumers in terms of their interaction activity levels. We observed that our model sig-

nificantly improved the state-of-the-art compared models for the cold-start users group.

Moreover, due to the fact that matrix factorization based methods have intrinsic linear

nature, which is limited in modeling complex consumer-item relationships, we further

proposed three novel recommendation approaches based on Mahalanobis distance and

performed experiments on the automatic playlist continuation problem in the streaming

platforms. Our MDR model used Mahalanobis distance to account for both consumers’

preferences and playlists’ themes over songs. Our MASS model measured attentive sim-

ilarities between a candidate song and member songs in a target playlist through our

proposed memory metric-based attention mechanism. Our MASR model combined the

capabilities of MDR and MASR. We also adopted and customized Adversarial Personal-

ized Ranking (APR) loss with proposed flexible noise magnitude to further enhance the

robustness of our three models. Through extensive experiments against several state-of-

the-art baselines, we showed that our proposals were not only effective but also efficient

compared to the baseline models.

Third, we explore the consumers’ behavior via their long-term and short-term pref-

erence footprints. In this direction, we have considered two independent signed distance

models for measuring consumer-item and item-item similarities, respectively, via deep

neural networks. The proposed SDP learns a non-linear metric in a consumer-item la-

tent space, while SDM learns a personalized item-item distance with soft attention. Then

the two networks are combined for a compounded signed distance approximator called

SDMR. Extensive experiments have been performed on six real-world datasets in gen-

eral recommendation and shopping basket-based recommendation task. We presented

142

6.2 FUTURE WORK

that our proposed SDMR outperformed ten baselines in all two recommendation tasks.

Furthermore, as Quaternion space has shown its superior benefits/performance over the

traditional Euclidean space in NLP and computer vision, we put a step further and fully

utilized Quaternion space and proposed three novel Quaternion-based recommendation

models: (i) a QUALE model learned the consumer’s long-term intents, (ii) a QUASE

model learned the consumer’s short-term interests, and (iii) a QUALSE model fused

QUALE and QUASE to learn both consumer’s long-term and short-term preferences. We

also proposed a Quaternion-based Adversarial attack on Bayesian Personalized Ranking

(QABPR) loss to improve the robustness of our proposals. Through extensive experi-

ments on six real-world datasets, we showed that our proposed models achieved the best

results compared to the baseline models.

6.2 Future Work

In this section, we depict some extension of our current work as follows:

Side Information Utilization with Metric Learning: In this dissertation, we mainly

focused on modeling user behaviors using only user-item interaction data. In fact, there

exists additional information that we can utilize to improve the performance of our pro-

posed approaches such as user’s reviews, user’s rating scores, product’s reviews, product’s

images, and product’s description, etc. In short, this auxiliary information can be grouped

into three different formats: texts, images, and video. Even though there existed stud-

ies that took into account item description [53], item visual features [55, 56], and user

reviews [57] for recommendation systems, they still adopted the inner product for mea-

suring user-item similarity scores. Thus, applying metric learning on the learned feature

representations from the side information could further improve the performance of our

proposed models. Moreover, with the great success of recent language models such as

143

6.2 FUTURE WORK

ELMo [141], BERT [142], XLNet [143], GPT [144], modeling consumer behaviors with

additional textual information using the state-of-the-art language models becomes an even

more exciting research direction.

Explainability. Diversity, Freshness and Fairness Awareness: The usual approach

in modeling consumer behaviors in this dissertation was to focus on the relevance of

an item to a target consumer, that is, to what degree the recommending item matched

the consumer taste. However, as depicted in Chapter 5 that the consumer’s interests are

highly dynamic, and the consumers are likely to experience with diverse and fresh items

[145, 146, 147]. Following this observation, we argue here that the consumer’s behaviors

are driven not only by relevance but also by diversity and freshness needs. Also, ex-

plaining why a consumer likes an item is as important as the recommendation accuracy.

Thus, establishing explainable and transparent recommenders is necessary to improve the

models’ persuasiveness and trustworthiness. Moreover, designing fairness-aware recom-

mender systems is another interesting line of research such that recommending products

for customers do not discriminate against individuals or groups. All into consideration,

integrating our proposals with explainability, diversity, freshness and fairness awareness

will be even a more exciting extension for our work presented here.

144

References

[1] Paul Belleflamme, Thomas Lambert, and Armin Schwienbacher. Crowdfunding:

Tapping the right crowd. JBV, 2012. 10

[2] Elizabeth M. Gerber and Julie Hui. Crowdfunding: Motivations and deterrents for

participation. TOCHI, 2013. 10

[3] Venkat Kuppuswamy and Barry L Bayus. Crowdfunding creative ideas: The dy-

namics of project backers in kickstarter. UNC Kenan-Flagler Research Paper,

2015. 10, 15

[4] Ethan Mollick. The dynamics of crowdfunding: An exploratory study. JBV, 2014.

10

[5] Elizabeth M Gerber, Julie S Hui, and Pei-Yi Kuo. Crowdfunding: Why people are

motivated to post and fund projects on crowdfunding platforms. In CSCW, 2012.

10, 15

[6] Thanh Tran, Madhavi R Dontham, Jinwook Chung, and Kyumin Lee. How to

succeed in crowdfunding: a long-term study in kickstarter. CoRR, 2016. 10, 11, 15

[7] Anbang Xu, Xiao Yang, Huaming Rao, Wai-Tat Fu, Shih-Wen Huang, and Brian P

Bailey. Show me the money!: an analysis of project updates during crowdfunding

campaigns. In CHI, 2014. 10, 15

145

REFERENCES

[8] Dieter W Joenssen and Thomas Müllerleile. Limitless crowdfunding? the effect of

scarcity management. In Crowdfunding in Europe, pages 193–199, 2016. 10

[9] Julie S Hui, Michael D Greenberg, and Elizabeth M Gerber. Understanding the

role of community in crowdfunding work. In CSCW, 2014. 10, 15

[10] Chun-Ta Lu, Hong-Han Shuai, and Philip S Yu. Identifying your customers in

social networks. In CIKM, pages 391–400, 2014. 10, 15

[11] Chun-Ta Lu, Sihong Xie, Xiangnan Kong, and Philip S Yu. Inferring the impacts

of social media on crowdfunding. In WSDM, 2014. 10, 15

[12] Dieter William Joenssen, Anne Michaelis, and Thomas Müllerleile. A link to new

product preannouncement: Success factors in crowdfunding. SSRN, 2014. 10

[13] Vincent Etter, Matthias Grossglauser, and Patrick Thiran. Launch hard or go

home!: predicting the success of kickstarter campaigns. In COSN, 2013. 11, 15

[14] Michael D Greenberg, Bryan Pardo, Karthic Hariharan, and Elizabeth Gerber.

Crowdfunding support tools: predicting success & failure. In CHI, 2013. 11,

15

[15] Jinwook Chung and Kyumin Lee. A long-term study of a crowdfunding platform:

Predicting project success and fundraising amount. In HT, 2015. 11, 15

[16] Yan Li, Vineeth Rakesh, and Chandan K Reddy. Project success prediction in

crowdfunding environments. In WSDM, 2016. 11, 15

[17] Jacob Solomon, Wenjuan Ma, and Rick Wash. Don’t wait!: How timing affects

coordination of crowdfunding donations. In CSCW, 2015. 11

[18] Tanushree Mitra and Eric Gilbert. The language that gets people to give: Phrases

that predict success on kickstarter. In CSCW, 2014. 11

146

REFERENCES

[19] Jisun An, Daniele Quercia, and Jon Crowcroft. Recommending investors for

crowdfunding projects. In WWW, 2014. 11, 15

[20] Vineeth Rakesh, Jaegul Choo, and Chandan K Reddy. Project recommendation

using heterogeneous traits in crowdfunding. In ICWSM, 2015. 11

[21] Vineeth Rakesh, Wang-Chien Lee, and Chandan K Reddy. Probabilistic group

recommendation model for crowdfunding domains. In WSDM, 2016. 11, 15

[22] Yongsung Kim, Aaron Shaw, Haoqi Zhang, and Elizabeth Gerber. Understanding

trust amid delays in crowdfunding. In CSCW, 2017. 11, 27, 29, 32

[23] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In ICDM, pages 263–272, 2008. 11, 34, 38, 39, 50, 86, 89

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, 2009. 11, 34, 86

[25] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-Seng

Chua. Discrete collaborative filtering. In SIGIR, pages 325–334, 2016. 11

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. Neural collaborative filtering. In WWW, pages 173–182, 2017. 12, 46, 49,

76, 77, 78, 86, 89, 90, 91, 94, 106, 108, 131

[27] Lucas Vinh Tran, Tuan-Anh Nguyen Pham, Yi Tay, Yiding Liu, Gao Cong, and

Xiaoli Li. Interact and decide: Medley of sub-attention networks for effective

group recommendation. In SIGIR, pages 255–264, 2019. 12

[28] Thanh Tran, Renee Sweeney, and Kyumin Lee. Adversarial mahalanobis distance-

based attentive song recommender for automatic playlist continuation. In SIGIR,

pages 245–254, 2019. 12

147

REFERENCES

[29] Travis Ebesu, Bin Shen, and Yi Fang. Collaborative memory network for recom-

mendation systems. In SIGIR, 2018. 12, 76, 107

[30] Chen Ma, Yingxue Zhang, Qinglong Wang, and Xue Liu. Point-of-interest recom-

mendation: Exploiting self-attentive autoencoders with neighbor-aware influence.

In CIKM, pages 697–706, 2018. 12

[31] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Varia-

tional autoencoders for collaborative filtering. In WWW, pages 689–698, 2018. 12,

89, 104, 133

[32] Chen Ma, Peng Kang, Bin Wu, Qinglong Wang, and Xue Liu. Gated attentive-

autoencoder for content-aware recommendation. In WSDM, pages 519–527, 2019.

12

[33] Xin Xin, Xiangnan He, Yongfeng Zhang, Yongdong Zhang, and Joemon Jose. Re-

lational collaborative filtering: Modeling multiple item relations for recommenda-

tion. In SIGIR, pages 125–134, 2019. 12, 133

[34] Thanh Tran, Xinyue Liu, Kyumin Lee, and Xiangnan Kong. Signed distance-based

deep memory recommender. In WWW, pages 1841–1852, 2019. 12, 77

[35] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In KDD, pages 426–434, 2008. 12, 86, 88, 108, 121, 131

[36] Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity

models for top-n recommender systems. In KDD, pages 659–667, 2013. 12, 70,

76, 86, 133

[37] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and

148

REFERENCES

Tat-Seng Chua. Nais: Neural attentive item similarity model for recommendation.

IEEE TKDE, 30(12):2354–2366, 2018. 12, 132

[38] Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential

recommendation. In KDD, pages 825–833, 2019. 12

[39] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan

Yuan. Personalized ranking metric embedding for next new poi recommendation.

In IJCAI, volume 15, pages 2069–2075, 2015. 12, 61, 76, 91, 97, 107

[40] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing

personalized markov chains for next-basket recommendation. In WWW, pages

811–820, 2010. 12, 86, 91, 108, 132

[41] Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based recom-

mendation. In RecSys, pages 161–169, 2017. 12, 61, 77, 86, 98, 107

[42] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via con-

volutional sequence embedding. In WSDM, pages 565–573, 2018. 12, 77, 86, 108,

132

[43] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

Session-based recommendations with recurrent neural networks. arXiv, 2015. 12,

86, 91, 108, 132

[44] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

Recurrent recommender networks. In WSDM, pages 495–503, 2017. 12, 124

[45] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural

attentive session-based recommendation. In CIKM, pages 1419–1428, 2017. 12

149

REFERENCES

[46] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. Context-aware

sequential recommendation. In ICDM, pages 1053–1058, 2016. 12

[47] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommenda-

tion. In ICDM, pages 197–206, 2018. 12, 86, 130, 132

[48] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu,

and Kun Gai. Deep interest evolution network for click-through rate prediction. In

AAAI, volume 33, pages 5941–5948, 2019. 12, 117, 124, 133

[49] Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. Adap-

tive user modeling with long and short-term preferences for personalized recom-

mendation. In IJCAI, pages 4213–4219, 2019. 12, 117, 132

[50] Yichao Lu, Ruihai Dong, and Barry Smyth. Convolutional matrix factorization for

recommendation explanation. In IUI, page 34, 2018. 12

[51] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Multi-pointer co-attention networks

for recommendation. arXiv, 2018. 12

[52] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Interpretable convolutional

neural networks with dual local and global attention for review rating prediction.

In RecSys, pages 297–305, 2017. 12

[53] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.

Convolutional matrix factorization for document context-aware recommendation.

In RecSys, pages 233–240, 2016. 12, 89, 143

[54] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-

based music recommendation. In NeurIPS, pages 2643–2651, 2013. 12, 89

150

REFERENCES

[55] Qiang Liu, Shu Wu, and Liang Wang. Deepstyle: Learning user preferences for

visual recommendation. In SIGIR, pages 841–844, 2017. 12, 89, 143

[56] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-

Seng Chua. Attentive collaborative filtering: Multimedia recommendation with

item-and component-level attention. In SIGIR, pages 335–344, 2017. 12, 89, 143

[57] Yichao Lu, Ruihai Dong, and Barry Smyth. Coevolutionary recommendation

model: Mutual learning between ratings and reviews. In WWW, pages 773–782,

2018. 12, 89, 143

[58] Tim Althoff and Jure Leskovec. Donor retention in online crowdfunding commu-

nities: A case study of donorschoose. org. In WWW, 2015. 15

[59] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In EMNLP, pages 1532–1543, 2014. 20

[60] Wikipedia. Smog grade. https://en.wikipedia.org/wiki/SMOG,

1969. 24

[61] James W Pennebaker, Roger J Booth, and Martha E Francis. Linguistic inquiry

and word count: Liwc [computer software]. Austin, TX: liwc. net, 2007. 25

[62] Kyumin Lee, Jalal Mahmud, Jilin Chen, Michelle Zhou, and Jeffrey Nichols. Who

will retweet this?: Automatically identifying and engaging strangers on twitter to

spread information. In IUI, 2014. 25

[63] Kyumin Lee, Prithivi Tamilarasan, and James Caverlee. Crowdturfers, campaigns,

and social media: Tracking and revealing crowdsourced manipulation of social

media. In ICWSM, 2013. 25

151

https://en.wikipedia.org/wiki/SMOG

REFERENCES

[64] Miron B Kursa, Witold R Rudnicki, et al. Feature selection with the boruta pack-

age, 2010. 26

[65] Michael H Kutner, Chris Nachtsheim, and John Neter. Applied linear regression

models. McGraw-Hill/Irwin, 2004. 30

[66] Seyed Reza Shahamiri and Siti Salwah Binti Salim. Real-time frequency-based

noise-robust automatic speech recognition using multi-nets artificial neural net-

works: A multi-views multi-learners approach. Neurocomputing, 2014. 32

[67] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering tech-

niques. Adv. Artificial Intellegence, 2009. 34

[68] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John

Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In

CSCW, pages 175–186, 1994. 34, 49, 104

[69] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor models. In

KDD, pages 19–28, 2009. 34

[70] Chong Wang and David M Blei. Collaborative topic modeling for recommending

scientific articles. In KDD, pages 448–456, 2011. 34

[71] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. Dynamic matrix factor-

ization with priors on unknown values. In KDD, pages 189–198, 2015. 34

[72] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. Fast als-based matrix factor-

ization for explicit and implicit feedback datasets. In RecSys, pages 71–78, 2010.

34, 46

[73] Maksims Volkovs and Guang Wei Yu. Effective latent models for binary feedback

in recommender systems. In SIGIR, pages 313–322, 2015. 34, 46

152

REFERENCES

[74] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix

factorization for online recommendation with implicit feedback. In SIGIR, pages

549–558, 2016. 35, 46, 86, 89, 90, 131

[75] Marcel Blattner, Yi-Cheng Zhang, and Sergei Maslov. Exploring an opinion net-

work for taste prediction: An empirical study. Physica A: Statistical Mechanics

and its Applications, pages 753–758, 2007. 37

[76] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. Factoriza-

tion meets the item embedding: Regularizing matrix factorization with item co-

occurrence. In RecSys, pages 59–66, 2016. 39, 40, 49, 50

[77] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In

NeurIPS, pages 3111–3119, 2013. 39, 50

[78] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factor-

ization. In NeurIPS, pages 2177–2185, 2014. 39

[79] Elie Guàrdia-Sebaoun, Vincent Guigue, and Patrick Gallinari. Latent trajectory

modeling: A light and efficient way to introduce time in recommender systems. In

RecSys, pages 281–284, 2015. 40

[80] Oren Barkan and Noam Koenigstein. Item2vec: neural item embedding for collab-

orative filtering. In MLSP Workshop, pages 1–6, 2016. 40, 50

[81] Yehuda Koren. Collaborative filtering with temporal dynamics. In KDD, pages

447–456, 2009. 43

[82] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Parallel matrix fac-

153

REFERENCES

torization for recommender systems. Knowledge and Information Systems, pages

793–819, 2014. 43, 46

[83] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale

parallel collaborative filtering for the netflix prize. In International Conference on

Algorithmic Applications in Management, pages 337–348, 2008. 43

[84] Harald Steck. Training and testing of recommender systems on data missing not at

random. In KDD, pages 713–722, 2010. 46

[85] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. Optimizing top-n collabora-

tive filtering via dynamic negative item sampling. In SIGIR, pages 785–788, 2013.

46

[86] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. One-class collaborative filtering. In ICDM, pages 502–511, 2008.

46

[87] Bing Liu, Wee Sun Lee, Philip S Yu, and Xiaoli Li. Partially supervised classifica-

tion of text documents. In ICML, pages 387–394, 2002. 46

[88] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering. In WWW, pages 507–517,

2016. 49, 76, 104, 130, 131

[89] Mukund Deshpande and George Karypis. Item-based top-n recommendation algo-

rithms. ACM Transactions on Information Systems, 22(1):143–177, 2004. 50

[90] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based col-

laborative filtering recommendation algorithms. In WWW, pages 285–295, 2001.

50, 77, 89, 106

154

REFERENCES

[91] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. Modeling

user exposure in recommendation. In WWW, pages 951–961, 2016. 51

[92] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and

Deborah Estrin. Collaborative metric learning. In WWW, pages 193–201, 2017.

60, 61, 76, 97, 98, 106

[93] Parikshit Ram and Alexander G Gray. Maximum inner-product search using cone

trees. In KDD, pages 931–939, 2012. 60, 98

[94] Shuo Chen, Josh L Moore, Douglas Turnbull, and Thorsten Joachims. Playlist

prediction via metric embedding. In KDD, pages 714–722, 2012. 61

[95] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning

for large margin nearest neighbor classification. In NeurIPS, pages 1473–1480,

2006. 61

[96] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance metric

learning with application to clustering with side-information. In NeurIPS, pages

521–528, 2003. 61

[97] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. Adversarial personal-

ized ranking for recommendation. In SIGIR, pages 355–364, 2018. 61, 73, 74, 78,

80, 82, 128, 129

[98] Yehuda Koren. Collaborative filtering with temporal dynamics. In KDD, pages

447–456, 2009. 64

[99] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with deep

boltzmann machines. In NeurIPS, pages 2222–2230, 2012. 68, 96

155

REFERENCES

[100] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks

for visual and textual question answering. In ICML, pages 2397–2406, 2016. 68,

95

[101] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In ICCV,

pages 2425–2433, 2015. 68

[102] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In AISTATS, pages 315–323, 2011. 69

[103] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender

systems. In 2011 11th IEEE International Conference on Data Mining, pages 497–

506, 2011. 70, 77, 89, 106

[104] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory net-

works. In NeurIPS, pages 2440–2448, 2015. 70, 95, 97, 100

[105] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything:

Dynamic memory networks for natural language processing. In ICML, pages

1378–1387, 2016. 70

[106] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-

des, and Jason Weston. Key-value memory networks for directly reading docu-

ments. arXiv, 2016. 70

[107] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the

physical world. arXiv, 2016. 74, 128, 129

156

REFERENCES

[108] Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and

Paolo Cremonesi. 30music listening and playlists dataset., 2015. 75

[109] B. McFee and G. R. G. Lanckriet. Hypergraph models of playlist dialects. In

ISMIR, 2012. 75

[110] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. Regularizing matrix

factorization with user and item embeddings for recommendation. In CIKM, pages

687–696, 2018. 76, 104, 133

[111] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In UAI,

pages 452–461, 2009. 76, 106, 133

[112] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-

proaches to attention-based neural machine translation. arXiv, 2015. 83, 98

[113] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In

NeurIPS, pages 6000–6010, 2017. 83, 98, 113, 138, 139

[114] Paul Resnick and Hal R Varian. Recommender systems. Communications of the

ACM, 40(3):56–58, 1997. 86

[115] Xinyue Liu, Chara Aggarwal, Yu-Feng Li, Xiaugnan Kong, Xinyuan Sun, and

Saket Sathe. Kernelized matrix factorization for collaborative filtering. In SDM,

pages 378–386, 2016. 89

[116] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative

denoising auto-encoders for top-n recommender systems. In WSDM, pages 153–

162, 2016. 89

157

REFERENCES

[117] Sheng Li, Jaya Kawale, and Yun Fu. Deep collaborative filtering via marginalized

denoising auto-encoder. In CIKM, pages 811–820, 2015. 89

[118] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec:

Autoencoders meet collaborative filtering. In WWW, pages 111–112, 2015. 89

[119] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cre-

monesi. Personalizing session-based recommendations with hierarchical recurrent

neural networks. In RecSys, pages 130–137, 2017. 91

[120] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.

Deep matrix factorization models for recommender systems. In Proceeding of the

26th International Joint Conference on Artificial Intelligence, pages 3203–3209,

2017. 94, 108

[121] Fei Liu and Julien Perez. Gated end-to-end memory networks. In EACL, volume 1,

pages 1–10, 2017. 95, 100

[122] Hanwang Zhang, Yang Yang, Huanbo Luan, Shuicheng Yang, and Tat-Seng Chua.

Start from scratch: Towards automatically identifying, modeling, and naming vi-

sual attributes. In MM, pages 187–196, 2014. 96

[123] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time max-

imum inner product search (mips). In NeurIPS, pages 2321–2329, 2014. 98

[124] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,

Bowen Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding.

arXiv, 2017. 98

[125] Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. Fine-grained attention mech-

anism for neural machine translation. Neurocomputing, 284:171–176, 2018. 98

158

REFERENCES

[126] Paul Hongsuck Seo, Zhe Lin, Scott Cohen, Xiaohui Shen, and Bohyung Han. Hi-

erarchical attention networks. arXiv, 2016. 98

[127] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv, 2014. 98, 115

[128] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In ICML, pages 2048–2057, 2015.

98, 115

[129] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Latent relational metric learning via

memory-based attention for collaborative ranking. In WWW, pages 729–739, 2018.

99, 109

[130] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv, 2014. 103, 109, 133

[131] Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In RecSys,

pages 17–24, 2007. 104

[132] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi

Cheng. Learning hierarchical representation model for nextbasket recommenda-

tion. In ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 403–412, 2015. 108

[133] Ruining He and Julian McAuley. Fusing similarity models with markov chains

for sparse sequential recommendation. In Data Mining (ICDM), 2016 IEEE 16th

International Conference on, pages 191–200, 2016. 108

159

REFERENCES

[134] Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb

Trabelsi, Renato De Mori, and Yoshua Bengio. Quaternion recurrent neural net-

works. In ICLR, 2019. 120, 124

[135] Chase J Gaudet and Anthony S Maida. Deep quaternion networks. In IJCNN,

pages 1–8, 2018. 120

[136] Victor Zhong, Caiming Xiong, and Richard Socher. Global-locally self-attentive

encoder for dialogue state tracking. In ACL, pages 1458–1467, 2018. 124

[137] Shuai Zhang, Lina Yao, Lucas Vinh Tran, Aston Zhang, and Yi Tay. Quaternion

collaborative filtering for recommendation. In IJCAI, pages 4313–4319, 2019. 124,

131

[138] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. Embedding-

based news recommendation for millions of users. In KDD, pages 1933–1942,

2017. 124

[139] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997. 127

[140] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural

graph collaborative filtering. In SIGIR, pages 165–174, 2019. 133

[141] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.

arXiv, 2018. 144

[142] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv,

2018. 144

160

REFERENCES

[143] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language under-

standing. In NeurIPS, pages 5753–5763, 2019. 144

[144] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. arXiv, 2020. 144

[145] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Im-

proving recommendation lists through topic diversification. In WWW, pages 22–32,

2005. 144

[146] Rubi Boim, Tova Milo, and Slava Novgorodov. Diversification and refinement in

collaborative filtering recommender. In CIKM, pages 739–744, 2011. 144

[147] Idan Szpektor, Yoelle Maarek, and Dan Pelleg. When relevance is not enough:

promoting diversity and freshness in personalized question recommendation. In

WWW, pages 1249–1260, 2013. 144

161

	Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Challenges
	1.3 Overview of this Dissertation
	1.4 Dissertation Organization

	2 Related Work
	2.1 Crowdfunding activities
	2.2 Recommendation Systems

	3 Modeling product creator behavior in product delivery activities
	3.1 Introduction
	3.2 Dataset
	3.3 Feature Engineering
	3.3.1 Latent Reward Difficulty Features
	3.3.2 Other Feature Sets

	3.4 Identifying On-time and Late Reward Delivery Projects
	3.4.1 Experimental Setting
	3.4.2 Experiment Results

	3.5 Predicting Rewards Delivery Duration
	3.5.1 Experimental Setting
	3.5.2 Experiment Results

	4 Modeling consumer behaviors with long-term dependencies
	4.1 Introduction
	4.2 Recommending Products with Regularized User and Item Embeddings
	4.2.1 Method
	4.2.2 Experimental Settings
	4.2.3 Experimental Results

	4.3 Recommending Products with a Metric Learning Based Approach
	4.3.1 Problem Definition
	4.3.2 Preliminary
	4.3.3 Method
	4.3.4 Experimental Settings
	4.3.5 Experimental Results

	5 Modeling consumer behaviors with long-term and short-term dependencies
	5.1 Introduction
	5.2 Recommending Products with a Neural Signed Distance Based Approach
	5.2.1 Problem Definition
	5.2.2 Method
	5.2.3 Experimental Settings
	5.2.4 Experimental Results

	5.3 Recommending Products with a Quaternion Representation Based Approach
	5.3.1 Problem Definition
	5.3.2 Preliminary
	5.3.3 Method
	5.3.4 Experimental Settings
	5.3.5 Experimental Results

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

