
WORCESTER POLYTECHNIC INSTITUTE

MAJOR QUALIFYING PROJECT

SecBI: Cyber Threat Intelligence

Author:
Isamu NAKAGAWA

Supervisor:
Dr. Micha HOFRI

A Major Qualifying Project submitted to the Faculty of the
Worcester Polytechnic Institute in partial fulfillment of
the requirements for the degree of Bachelor of Science

March 23, 2017

http://www.wpi.edu

ii

iii

Worcester Polytechnic Institute

Abstract
Computer Science

Bachelor of Science

SecBI: Cyber Threat Intelligence

by Isamu NAKAGAWA

The cyber security company SecBI analyzes the network traffic of clients to un-
derstand the full scope of cyber threats. Threat intelligence data is knowledge used
to help recognize threats. The SecBI infrastructure currently uses threat intelligence
from a single source and their solution is not readily expandable to use other sources.
This limits the potential to discover and apprehend cyber threats.

I developed a threat intelligence system to collect data from multiple sources
that is expandable to use other threat intelligence sources. Additionally, my system
allows intelligence discovered by SecBI to be shared with a trusted community.

http://www.wpi.edu
http://cs.wpi.edu

iv

v

Acknowledgements
I would like to thank the following for their help and guidance during this

project.

• Professor Micha Hofri, Computer Science, WPI, for his assistance and guid-
ance throughout the entire project.

• Professor Isa Bar-On, Mechanical Engineering, WPI, for making this project
possible and for working with Worcester Polytechnic Institute to establish an
MQP in Israel.

The SecBI executive team for allowing me to work on this MQP project at SecBI.

• Gilad Peleg, SecBI

• Yaron Mashav, SecBI

• Alex Vaystikh, SecBI

• Doron Davidson, SecBI

The other members of SecBI for help and guidance throughout the project.

• Adi Leshem, SecBI

• Ariel Nemtzov, SecBI

• Igor Osetinsky, SecBI

• Liv Aleen Remez, PhD, SecBI

• Chen Dorot, SecBI

vi

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Cyber Security . 1

1.1.1 Definition . 1
1.1.2 History . 2

1.2 SecBI . 2
1.2.1 Threat Intelligence . 3

1.3 Project Overview . 4

2 Background 7
2.1 Need for Threat Intelligence . 7
2.2 SecBI Threat Intelligence . 8
2.3 Threat Intelligence Standardization . 8

2.3.1 Communication Standardization 9
2.3.2 Framework and Platform Standardization 9

2.4 Threat Intelligence Frameworks and Platforms 10
2.5 Threat Intelligence Prioritization . 11

2.5.1 Malware Information Sharing Platform 11

3 Implementation 13
3.1 Comparing Threat Intelligence . 13
3.2 Software Design . 15

3.2.1 Overview . 15
3.2.2 Strategy Design Pattern . 15
3.2.3 Interface Segregation Principle 17
3.2.4 Factory Pattern . 17

3.3 Software Features . 18
3.3.1 Modular System . 18
3.3.2 Pluggable System . 19
3.3.3 Prioritization System . 19

3.4 Threat Intelligence Features . 19
3.4.1 Collecting Information . 20
3.4.2 Publishing Information . 20
3.4.3 MISP Implementation . 21

4 Results and Discussion 23
4.1 Threat Intelligence Comparison . 23

4.1.1 Threat Intelligence Candidates 23
4.1.2 Collective Intelligence Framework: CIF 23

viii

4.1.3 Malware Information Sharing Platform and Threat Sharing:
MISP . 25

4.1.4 Collaborative Research Into Threats: CRITs 25
4.1.5 Conclusion . 26

4.2 System Performance . 26
4.2.1 Unit Testing Results . 26

4.3 Threat Intelligence Challenges . 27

5 Conclusion 29
5.1 Future Goals . 29
5.2 Summary . 30

A Documentation 31
A.1 Threat Intelligence API Documentation 31

A.1.1 Overview . 31
A.1.2 Setup . 31
A.1.3 Collecting Threat Intelligence . 32
A.1.4 Publishing Threat Intelligence 32
A.1.5 MISP JSON Format . 33
A.1.6 Threat Intelligence Interface . 34

B Diagrams 37
B.1 On Comparing Threat Intelligence Feeds 37

Bibliography 39

1

Chapter 1

Introduction

1.1 Cyber Security

The defensive side of security can only deploy a finite number of defense strategies,
however the offense has infinite options of attack. Celeste Matarazzo, a data science
expert from Lawrence Livermore National Laboratory explained, "It’s about more
than racial or gender diversity – it’s about diversity of thought. Both cybercrime and
cybersecurity are only limited by imagination, and we as a nation can’t be secure
without a diverse set of problem solvers to counter the cyber threat" (Matarazzo,
2014). Cyber security must constantly adapt to counter the latest threats.

1.1.1 Definition

Cyber security consists of, "measures taken to protect a computer or computer sys-
tem (as on the Internet) against unauthorized access or attack," according to the Mer-
riam Webster dictionary (Merriam-Webster Online, 2009). However, the meaning of
this modern phrase is still evolving and it is arguably vague as to what is included
in the definition. Other related terms such as privacy and surveillance are often mis-
takenly confused with cyber security, although cyber security can help to prevent
privacy and surveillance violations (Fischer, 2016).

A cyber attack may be viewed by examining three factors: the identification of
the attacker, the vulnerability the attack is exploiting, and the outcome of the at-
tack. Cyber attacks have the potential to cause great harm to national security, the
economy, and the safety of citizens (Fischer, 2016).

Cyber security is a subcategory of information security, relating to security specif-
ically in the cyber realm. It is important to understand the goals of information se-
curity, which is defined in federal law (44 U.S.C. §3552(b)(3)).

protecting information and information systems from unauthorized ac-
cess, use, disclosure, disruption, modification, or destruction in order to
provide-

(A) integrity, which means guarding against improper information mod-
ification or destruction, and includes ensuring information nonrepudia-
tion and authenticity;

(B) confidentiality, which means preserving authorized restrictions on
access and disclosure, including means for protecting personal privacy
and proprietary information; and

(C) availability, which means ensuring timely and reliable access to and
use of information (FIPS PUBS, 2004).

2 Chapter 1. Introduction

1.1.2 History

As modern society becomes increasingly dependent upon computers, cyber security
has become a major field in computer science. Computers are ubiquitous in mod-
ern times. Cyber security is becoming increasingly integral to almost every facet of
business operations (Fischer, 2016). According to the professional services network,
PwC’s research, the number of security incidents across all industries rose by 38%
in 2015. This study has been performed for 12 years and this is the largest annual
increase to date (Coopers, 2015).

Both private and government institutions have continued to increase their in-
vestment in cyber security. Today, federal agencies spend more than 10% of their
annual ICT budgets on cybersecurity (Fischer, 2016).

Cyber security has only recently become a major field of research. In the early
2000s analysts took cyber security less seriously. In 2002, James Lewis of the Cen-
ter of Strategic and International Studies (CSIS) wrote that cyber warfare would not
cause significant harm and declared cyber weapons were, “weapons of mass annoy-
ance.” (Shakarian, 2013). Furthermore, Marcus Ranum, a security expert, argued in
2004 that cyber war would not be economically effective. At the time, these theories
were more believable because acts of cyber warfare had minimal impact (Shakarian,
2013).

In recent years cyber attacks have become increasingly common and impactful.
Some examples of the increase include the 2006 hijacking of Israel IP addresses by
the armed group Hezbollah. In 2007 the U.S. Department of Energy demonstrated
how a real power generator could be destroyed through cyber attacks alone. In 2008
Russia used cyber attacks against Georgia’s media companies to prevent them from
communicating internationally. The same year an Iraqi militant group was able to
steal drone video feeds for military intelligence purposes. In 2009 researchers found
exiled Tibetan leaders’ computers had been compromised and monitored (likely by
the Chinese government) for over two years. In 2010 a computer worm known as
Stuxnet was able to destroy uranium enrichment facilities owned by Iran. In 2010
the cyber group Anonymous used denial of service attacks to disrupt government
computers in Middle Eastern countries (Shakarian, 2013).

Today, malicious users are gaining access to more advanced cyber attacks. Orga-
nized criminals are now able to rent or buy ready-made cyber attacks from under-
ground markets (Dell SecureWorks, 2014). An example of this was when the threat
intelligence firm Crowdstrike found twelve malicious groups in China using the
same exploit codes within 24 to 72 hours of each other (CrowdStrike, 2016). These
attacks are causing large profit losses, totaling approximately a millions dollars per
attack according to research by Kaspersky Labs (Kaspersky Lab, 2015). To adopt to
the advanced threats in the cyber world companies such as SecBI are implementing
modern solutions such as Threat Intelligence, as explained in the following sections
(Jasper, 2017).

1.2 SecBI

SecBI is a cyber security company that uses big data algorithms to find patterns in a
client’s network and seek out anomalies that may indicate a security breach. Specifi-
cally, SecBI searches the logs of a client’s network traffic and is able to provide a com-
plete picture of the inner-workings of an attack. This is special because sometimes
security analysts only see an isolated security incident, but miss the larger context.
Detailed forensic information and notifications are displayed to the client’s security

1.2. SecBI 3

team using a web interface. On the SebBI website, the company claims to perform,
"Advanced Threat Detection", "Accelerate Incident Detection and Response", and
"Understand the Full Scope of Evolving Threats".

The logs may be millions of entries or more, so to interpret the data SecBI uses
clustering algorithms, using multiple computers working together to find solutions.
The system breaks the problem into smaller pieces that can be solved individually
to completely solve the larger problem. SecBI has a team of data scientists who seek
new ways to optimize the proprietary algorithm and expand its functionality.

It is important to note the distinction between an intrusion detection system (IDS)
and an intrusion prevention system (IPS). An IPS will actively monitor the network
and try to prevent security breaches, while an IDS will passively monitor the net-
work and alert the administrators if an intrusion or malware is found. An IDS does
not directly handle the flow of network traffic. Both systems together will make
a stronger defense. Each situation will determine which of these systems in more
beneficial. The SecBI system is an IDS because it passively monitors the network.

SecBI uses cyber security metrics to

1. Confirm that the client’s security controls comply with a policy, process, or
procedure

2. Pinpoint the client’s security strengths and weaknesses and provide analytical
feedback

3. Analyze trends in the client’s security, inside and outside the organization

Through helping clients monitor security performance, the SecBI system will help
to identify changes and recommend ways to improve the organization’s security
(Voeller, 2014).

While the central system SecBI uses is the distributed big data algorithm to find
irregularities, other systems also contribute to the success of the system as a whole.
These are sometimes described as enrichments, which are fed into the distributed
algorithm to improve the results. One of these enrichments is threat intelligence.

1.2.1 Threat Intelligence

Data is categorized as intelligence if it is processed in a logical and analytical man-
ner. In the book, How to Define and Build an Effective Cyber Threat Intelligence Capa-
bility, Dalziel explains that intelligence must meet three requirements, listed below
(Dalziel, 2015).

1. Relevant: The information must relate to, or at least potentially re-
late to, your enterprise, industry, networks, and/or objectives.

2. Actionable: It must be specific enough to prompt some response,
change, or decision, or to inform and explicit decision not to act.

3. Valuable: Even if relevant and actionable, if the data (and the action)
do not contribute to any useful business outcome, there is no value.

Threat intelligence systems provide a framework or platform to share the lat-
est known security flaws with a community. Threat intelligence may come in the
form of known malicious internet addresses, the location of a sighting of a threat, or
the identification of a file that contains malware. Additionally, it may describe the
context of the threat. It is a collection of clues to provide insight on a threat. This in-
formation helps assess, qualify, prioritize and remediate the threats a system faces.

4 Chapter 1. Introduction

Today, information is the key to the defense against fast-moving emerging threats
(Hacker5, 2012).

There is a strong need for urgent sharing of information about cyber attacks.
When actual attacks were observed during 2014 by the cyber security company Risk
Analytics, "75 percent of attacks spread from Victim 0 to Victim 1 within one day,
while over 40 percent hit the second organization in less than an hour" (The MITRE
Corporation, 2015). The faster and more broadly the many types of cyber threat in-
telligence are shared, the greater the chance other organizations have to stop similar
attacks (Jasper, 2017).

Overall, threat intelligence frameworks provide these benefits to an organization:

• Eliminate duplicate work

– Many organizations find the same analytical work.

• Faster detection

– Distributed detection across companies.

• Interoperability

– Share malware information in a standardized format.

• Support automation

– Import and export features through a computer interface that is performed
without human interaction.

(MISP, 2017)

1.3 Project Overview

My project was to both research various threat intelligence frameworks in order to
find the options best suited for SecBI and develop a threat intelligence system for
SecBI that collects and shares information from threat intelligence feeds. I worked
with SecBI to determine their needs from a threat intelligence framework and re-
searched and experimented with over ten threat intelligence options. After agreeing
with SecBI on an appropriate option, I implemented a system that would connect the
current SecBI infrastructure with the new threat intelligence framework. The system
I created allows for easy access of collected data through an application program in-
terface (API). Furthermore, it allows for future expansions of new threat intelligence
frameworks and complies with current SecBI architecture.

The new threat intelligence system is developed in a robust way so new features
may easily be added. The cyber security software is quickly evolving and it is im-
portant to develop with the future in mind. The project was developed with the
following design goals:

• Modular and Encapsulated

– Dynamic settings without code modification

• Pluggable

– Exchange threat intelligence sources as needed while maintaining the same
infrastructure

1.3. Project Overview 5

• Prioritization

– Analyze and make intelligent decisions about which threat intelligence
source to use

Currently, SecBI uses a limited amount of threat intelligence from a single source.
SecBI queries a simple threat intelligence aggregation platform database to obtain a
blacklist of known threat domains and Internet Protocol addresses (IP). This enrich-
ment feature feeds into the algorithms used by SecBI to monitor network traffic.
The new threat intelligence system that I proposed replaces the current intelligence
platform and supports more intelligence sources to collect and store information. Li-
censing is a major factor to SecBI, as the current threat intelligence platform source
can not be used in production (without proper licensing license). These factors make
an update to the threat intelligence enrichment of SecBI an appealing project.

In addition to collecting data from multiple threat intelligence sources, the new
system will also have the ability to share SecBI threat intelligence data with a trusted
community. This service initially will be a standalone system to SecBI, but poten-
tially utilize the threat intelligence sharing services should SecBI partner with other
companies. The system will ideally run on a central SecBI server to keep a more
complete record of threat intelligence data. However another option is to install it
locally for various clients of SecBI. The choice is made by the customer clients, as it
is their data.

6 Chapter 1. Introduction

7

Chapter 2

Background

2.1 Need for Threat Intelligence

There is a strong need for threat intelligence feeds today because of the large growth
of cyber attacks and the increase of sensitive information stored digitally (Lingen-
held, 2017). The malware population increased exponentially during the last decade
and reached a historical highpoint in 2011. Twenty six million newly created unique
malware samples were created (Panda Security, 2012) (Gerhards-Padilla, 2012). Fur-
thermore, according to a Techproresearch survey, 84% of IT professionals became
more concerned about security and privacy between the years 2014 and 2015 (Tech
Pro Research, 2015).

Organizations view cyber threat intelligence as a challenge by itself within the
field of cyber security, because no organization has enough information to have an
adequate scope of relevant information to access the large expanding threat land-
scape.

The way to overcome this limitation of knowledge is through the sharing of rel-
evant cyber threat information among trusted partners and communities. By infor-
mation sharing, each partner has the potential to achieve a more complete under-
standing of the threat landscape. Furthermore, less duplicate work is performed if
companies are able to utilize existing solutions (The MITRE Corporation, 2012).

A threat intelligence feed will allow companies to share their unique point of
view of cyber defense with each other to create a more complete defense model - a
trusted network of threat intelligence data. Data collected from analysis of threats
is organized and indexed to create a threat intelligence datastore. This datastore
is shared between multiple organizations so existing solutions can be utilized to
solve new problems for a faster and more efficient response. Additionally, the threat
intelligence system will allow developers to write programs to automatically collect
information from the trusted centralized datastore through the threat intelligence
system’s API. This means the latest cyber defense knowledge would be collected
and utilized immediately by machines, instead of requiring human intervention.

Overall threat intelligence works in a cycle, as shown in figure 2.1. A user will
observe the behavior of malware, collect information about the malware, analyze the
collected information, share the information with a trusted community, and finally
adapt to the communities’ findings. It should be noted that it is important to form a
trusted community to share information. Otherwise the community is prone to false
information by illegitimate sources. Also, shared information should be stripped of
identifiable information to maintain anonymity. An organization will be much more
likely to share information that does not have the potential to harm themselves by
providing information on their internal secrets.

8 Chapter 2. Background

FIGURE 2.1: Threat Intelligence Cycle, Clockwise, (Whalen, 2015)

2.2 SecBI Threat Intelligence

Currently, SecBI uses threat intelligence specifically to obtain black lists for known
malicious IP addresses. This is important because an infected computer will likely
need to communicate to a malicious controller somewhere in the world so it can
receive remote instructions. By blacklisting the malicious IPs on the network, the
infected computer will not be able to speak with the malicious controller and be
rendered ineffective. However, there are tricks to get around blacklists.

A domain name generation algorithm (DGA) is used to calculate the names of new
domains on the infected machine. Only the malicious user knows the algorithm so
the malicious user will predict the new address and setup a control server listening
at the address, and therefore bypass blacklists. This DGA technique strengthens the
addressing of a malicious computer and allows a controller to dynamically provide
command and control servers (Gerhards-Padilla, 2012).

An example of a blacklist threat intelligence entry is shown below. The first line
describes the columns, and the second line is the actual entry. In this example, xzy is
the malicious domain. Notice other metadata included in the listing.

f i e l d s i n d i c a t o r i n d i c a t o r _ t y p e meta . source meta . do_notice
xzy . com I n t e l : :DOMAIN from http :// mirror1 . malwaredomains . com/ via i n t e l . cyber . i n t e l l i g e n c e . domain F

In the effort to stop malicious activity, it is important to stay up to date with the
latest blacklists, so newly infected computers can be stopped as soon as possible.
For this reason, SecBI collects blacklist information from threat intelligence sources
and uses this as enticement data to detect computers trying to connect to known
malicious servers.

2.3 Threat Intelligence Standardization

Threat intelligence is a new field, and there is no universal standardization in shar-
ing threat intelligence. Threat-sharing organizations face the challenge of creating
the ability to standardize cyber threat information, but not lose the human judgment

2.3. Threat Intelligence Standardization 9

and control involved in sharing. Organizations often have a need to exchange infor-
mation in a way that is both human readable as well as machine automated. Some
questions to consider are: What and how much content should be shared? What
file format should threat intelligence be shared in? What are the accepted categories
to organize threat intelligence? Through what protocol should the information be
shared? (The MITRE Corporation, 2012).

In recent years the industry has seen some standardizations arise and sometimes
the process becomes a cycle of creating more standardizations to standardize the
existing standardizations.

The Financial Services-Information Sharing and Analysis Center (FS-ISAC) founded
in 1999, is a group of 7,000 organizations, including many banks, who are helping
to shape cyber security standardization. Chief security officer Jason Witty at U.S
Bank says, "Generally speaking, there’s a willingness to share [cyberthreat informa-
tion among financial institutions]" (Crosman, 2016). In the article, "A Glimmer of
Hope for Cyberthreat Data Sharing", Crosman argues that there is hope for cyber
security standardization in the future, explaining the recent addition of large corpo-
rations to join FS-ISAC. The list includes Goldman Sachs, Bank of New York Mellon,
Citigroup, Morgan Stanley, State Street and Wells Fargo (Crosman, 2016).

Threat intelligence software solutions are created as frameworks or platforms
that organizations may implement into their infrastructure. The threat intelligence
software is integrated into production by communicating through an API. To clarify
the definitions, a software framework is defined as:

A concrete or conceptual platform where common code with generic
functionality can be selectively specialized or overridden by developers
or users. Frameworks take the form of libraries, where a well-defined ap-
plication program interface (API) is reusable anywhere within the soft-
ware under development (Techopedia, 2017)

And a platform is defined as:

A group of technologies that are used as a base upon which other appli-
cations, processes or technologies are developed (Techopedia, 2017).

2.3.1 Communication Standardization

Currently, one of the most widely used standardizations in communication between
threat intelligence sources is the Trusted Automated Exchange of Indicator Information
(TAXII), Cyber Observable Expression (CybOX) and Structured Threat Information Ex-
pression (STIX). In summary, STIX is a language that can use CybOX words, and the
communication is possible with TAXII. STIX characterizes what is being told, while
TAXII defines how the STIX language is shared (Impe, 2015). The FS-ISAC is im-
plementing STIX and TAXII as standard formats and this will likely cause others to
follow their lead (Crosman, 2016).

Most threat intelligence systems have the option to use STIX and TAXII commu-
nication standardizations. Since they are currently one of the leading open source
standards, SecBI has favored implementing them.

2.3.2 Framework and Platform Standardization

Similar to threat intelligence communication standards, there is no industry stan-
dard for threat intelligence frameworks, each has advantages and disadvantages.

10 Chapter 2. Background

Different companies may have different needs and requirements and value differ-
ent aspects of a threat intelligence framework. There are many threat intelligence
options available on the market. Some frameworks are proprietary and sold as a
service and require a subscription fee. Others are open source and are community
driven. Furthermore, some frameworks are run in the cloud and data is kept in a
centralized database. Other frameworks are run locally as a separate instance for
each organization.

In the next section 2.4 I explain what I think the properties of a successful threat
intelligence framework are, based on my research. They will serve as a metric and
ranking system in selecting the best threat intelligence framework for SecBI.

2.4 Threat Intelligence Frameworks and Platforms

The process to select a threat intelligence framework requires researching and ex-
perimenting with the many threat intelligence options available. Once I compiled a
list of the options, the section could be narrowed down until only the best options
remain. The most popular and latest threat intelligence frameworks that I found are
shown below.

• FaceBook Threat Exchange

• Microsoft Interflow

• MISP: Malware Information Sharing Platform (MISP, 2017)

• CRITs: Collaborative Research Into Threats (MITRE Corporation, 2017)

• Soltra: Cyber Threat Intelligence Data

• CIF: Collective Intelligence Framework (Collective Intelligence Framework,
2017)

• Blueliv: Targeted cyber threat intelligence and analysis

• AlienVault: Unified Security Management Threat Intelligence

• IBM X-Force Exchange

In order to compare threat intelligence frameworks, it is important to create some
metrics and rankings. Not all metrics have the same weight, as some are more im-
portant than others (determined by the organizational needs). Below is a list of threat
intelligence measures and the potential usefulness. This list was inspired by the ta-
ble shown in Appendix B.

1. Can the intelligence database be downloaded so the system can run and make
API calls offline?

2. Size of the database (number of entries)?

3. Good quality entries in the database?

4. Updated frequency?

5. Frequency of false positives?

6. Popularity (Do potential partners use it?)

2.5. Threat Intelligence Prioritization 11

FIGURE 2.2: MISP Framework (NCI Agency, 2016)

7. Exclusivity (Are the database entries unique?)

8. Open source and free?

9. Threat Intelligence format (STIX/TAXI)?

10. Licensing, is modification of software acceptable?

Given this information, the implementation describes what steps were taken to
decide upon the best threat intelligence options for SecBI.

2.5 Threat Intelligence Prioritization

There are some considerations to be made before using threat intelligence. One of
the greatest difficulties in sharing threat intelligence is selecting the relevant infor-
mation. Some information may be outdated, or unimportant information may dilute
what is actually important. Once obtaining the information, an organization still has
to be able to look at the information with enough context and intelligence such that
they can take planned actions based upon it (hacker5).

2.5.1 Malware Information Sharing Platform

For reasons explained in the results chapter 4, Malware Information Sharing Plat-
form (MISP) was selected as the best candidate and is used in the implementation.
The overview of the MISP framework is shown in figure 2.2.

“Malware Information Sharing Platform is a combination of a commu-
nity of members, a knowledge base on malware, and a web-based plat-
form.” (NCI Agency, 2016)

12 Chapter 2. Background

UI Users

Database

MISP
Community

API Users API

JSON Export

XML Export

CSV Export

BRO Export

STIX Export

FIGURE 2.3: MISP Diagram (circl, 2017)

MISP is a framework to share malware characteristics with a trusted commu-
nity. It provides the benefits expected by a threat intelligence framework such as
described in the introduction. figure 2.3 shows how MISP allows both automated
systems and manual users to access the framework. The label circle labeled MISP
represents the trusted community that other users and automated systems may ac-
cess. Once information is uploaded, it may be exported in many formats such as
CSV or JSON as shown in the figure.

MISP has gained a lot of traction over the years since the project’s start in 2011.
Today over 1,000 organizations use the MISP framework worldwide. Communities
form when organizations agree to share threat intelligence with each other and con-
nect their databases. There are several large communities within the MISP frame-
work, up to 500 organizations connected (MISP, 2017).

Some key characteristics of MISP is the ability to share a wide variety of malware
characteristics in an organized and standard way, integration with the NATO Inci-
dent Response Technical Centre, increased detection speed of incidents, and discov-
ery of malware that is unknown by anti-virus systems (through the sharing within
a MISP community). MISP is now led by a team of volunteers and is free and open
source.

A central theme to MISP is trusted communities. MISP has the option to work
stand-alone without a community as a database of threat intelligence - but the user
would miss out on the advantages of the support of a community. Communities in
MISP may be public or privately organized. Some communities may require specific
rules to join. Communities may team up or work in an isolated island mode. Each
organization decides on the type of community they would like to join depending
on their needs. One of the key properties of MISP is that it is built on trust as shown
in figure 2.2 - so a trusted community is essential. A user in the community has the
potential to perform malicious actions toward others in the community by sharing
false information. SecBI has currently not joined a MISP community. For SecBI, the
choice is heavily influenced by the decision of their client - some organizations do
not want to share data.

13

Chapter 3

Implementation

3.1 Comparing Threat Intelligence

The implementation is done in several sections. Before I developed actual code, I
determined the threat intelligence sources that the threat intelligence system would
support at first. However, the software is designed so that, as SecBI grows, more
threat intelligence sources may be added without modifying the existing threat in-
telligence framework code. This section describes the process I used to compare
threat intelligence sources as the first step. Ultimately, the MISP framework was
selected, for reasons described in the results.

In the larger picture, the measures of threat intelligence are:

• How much will this threat intelligence system reduce the time needed to detect a prob-
lem?

• How many more problems will this threat intelligence system allow me to detect that I
would otherwise miss?

To break down the problem I worked with SecBI and assessed their current in-
frastructure to determine what specifically was important to the vision of the com-
pany. After gathering this information I created table 3.1 which shows various threat
intelligence measures compared with the usefulness of the measure based on the
current needs of SecBI. It is important to note that not all of these measures are equal
in weight. Furthermore, there is a complexity field, as some measures are difficult
to determine. These factors should be considered in to a decision regarding threat
intelligence.

In table 3.1 the most important measure was the license of the software. As men-
tioned in the introduction, this is because SecBI is currently using a simple threat
intelligence aggregation platform as their sole threat intelligence enrichment source
and they need to expand their search without paying for a license. The second most
important measure is the ability to download the database of threat intelligence
sources locally without querying a remote server. This is because lookups happen
very frequently while the distributed big data algorithm is running and remote calls
will slow it down too much. At the same importance level, the framework should
be open source and free. SecBI would like the option to modify the software to their
needs if necessary and they want to avoid paying a subscription if possible.

On the next level of importance, SecBI wants high quality sources in their threat
intelligence selection (meaning less false positives) and they want to comply with the
current leading communication standardization format. This is to make the system
future proof.

14 Chapter 3. Implementation

TABLE 3.1: SecBI Threat Intelligence Comparison

Measure Usefulness (1-10) Complexity
Can the intelligence
database be downloaded
so the system can run
and make API calls
offline?

9 SecBI needs this feature Easy, do research

Size the database (num-
ber of entries)?

5 Unknown, depends on
community joined

Good quality entries in
the database?

8 Important Unknown, depends on
community joined

Updated frequency? 4 SecBI currently uses its
own data sources

Frequency of false posi-
tives?

8 Goes with good quality

Popularity (Do potential
partners use it?)

5 May be important in
the future

Ideally the threat intel-
ligence should be plug-
gable/replaceable

Exclusivity (Are the
database entries unique?)

3 Currently not a priority

Open source and free? 9 No budget for paid ser-
vice

SecBI is looking for free
services

Threat Intelligence for-
mat (STIX/TAXII)?

8 Want to use an industry
standard data format

SecBI wants to ensure
maximum compatibility
with partners

License 10 Must comply with
SecBI internal production
agreements

Must have proper license
to be deployed by SecBI

3.2. Software Design 15

3.2 Software Design

3.2.1 Overview

The general overview of the software is shown in figure 3.1. The SecBI infrastructure
connects with the system at the top of the diagram, through the Java API or option-
ally a REST API. The SecBI infrastructure only communicates at the high level with
the Threat Intelligence Controller. The controller will interpret the commands and use
the various Threat Intelligence Services currently plugged into it. In this way, decisions
about which services to use and how to use them are abstracted by the controller.

The Threat Intelligence Controller handles the logic of the system, including the
prioritization of which Threat Intelligence Service to use when the SecBI infrastructure
requests threat intelligence information. Currently, SecBI exclusively uses threat in-
telligence to collect information about known malware IP addresses in the form of
blacklists. SecBI infrastructure may find new malware IP addresses but the current
SecBI system does not share the information. The system I created has the ability
to share. Threat intelligence information is requested for a specific domain, and the
controller will determine which service to use in order to handle the request based
on the priority. Furthermore, the controller can be instructed to get threat intelli-
gence information of a given domain from all available services instead of only one.

The Threat Intelligence Controller is initialized based on a universal settings file in
the SecBI infrastructure. The SecBI infrastructure can customize how the controller
behaves, what services it prioritizes, and where it saves and looks for information.

Services are either local or remote, based on whether they gather information
from a local file store or if they get information from a remote server. The remote
services are an extension of the local services meaning they have the same base
functionality, but remote services have the additional ability to publish newly found
threat intelligence back to the remote server and import a remote database to the
local machine. The controller will decide which service to use. Generally, it is best
practice to query information from local services but export and share information
with remote services. The SecBI infrastructure has full control over this behavior
through the configuration file.

The shared and common functions between services are located in the Threat In-
telligence Utilities class to the right in figure 3.1. By following this pattern, code is not
repeated and services can simply use this class to perform tasks such as manipulat-
ing the file system, parsing a formatted file, and searching for a specific domain. A
common file format that SecBI uses as blacklists are comma-separated values (CSV)
and bro files. To parse these a CSV Parser class is used as shown in figure 3.1.

Documentation and usage examples are shown in Appendix A.

3.2.2 Strategy Design Pattern

Figure 3.1 depicts how the threat intelligence system implements the strategy soft-
ware design pattern. The strategy pattern is used to:

• Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently
from the clients that use it (Sourcemaking, 2017).

• Capture the abstraction in an interface, bury implementation details
in derived classes (Sourcemaking, 2017).

In the threat intelligence system I created, the services are interchangeable. They all
implement the same Handler interface and extend the same Abstract Handler class.

16 Chapter 3. Implementation

SecBI Local
Service

FIGURE 3.1: Threat Intelligence System Diagram

3.2. Software Design 17

The Handler name is used to describe the abstraction and format that a Service will
implement. This allows the controller to call the following methods from each ser-
vice and expect a standard result even though the actual logic used to get the result
is different and specific to each threat intelligence service.

void init()
String getHostMalwareData(String domain)

The init method will initialize the service with the configuration passed into the
constructor. The getHostMalwareData method will search the specific data of the
service for the given domain name.

The Remote Handler interface includes the methods from the Handler above, but
also includes the following methods.

String getEvent(String domain)
void exportEvents()

The getEvent method is used to retrieve an event string containing malware data
for a given domain name. This is similar to getHostMalwareData, however it is a re-
mote action and the concept of an event is unique to remote services. An event may
contain several pieces of information instead of just one like getHostMalwareData.

The strategy design allows for a variable amount of services to be attached to
the controller and still maintain uniform functionality across them. The controller
understands that each service has these abilities but the details of how they work
are abstracted by the services themselves.

3.2.3 Interface Segregation Principle

The Interface Segregation Principle is used in the system and is defined as follows:

The Interface Segregation Principle states that clients should not be forced
to implement interfaces they don’t use. Instead of one large interface
many small interfaces are preferred based on groups of methods, each
one serving one submodule (oodesign, 2017b).

This principle is applied to better organize the software design. Instead of having
methods in the interfaces that are not actually used by the class implementing them,
there are several interfaces that serve a specific purpose. This means that a class does
not have to implement unwanted methods and unsupported operation exceptions
can be avoided.

There is both a remote and local handler interface to separate functionality be-
tween local and remote communications. Each handler interface serves a specific
enough function that there is no overlap. Specific interfaces are selected for each
service class. Additionally, some threat intelligence services have special features
unique to their functionality. For example, the MISP service uses the concept of
identifying events with an identification number, the number is also used to lookup
MISP events. It would be poor design to require all services to implement this MISP
specific functionality, so by using the Interface Segregation Principle the service is
created in a separate interface.

3.2.4 Factory Pattern

The factory pattern is a common way to design object oriented software. It is defined
as follows:

18 Chapter 3. Implementation

• Creates objects without exposing the instantiation logic to the client
(oodesign, 2017a).

• Refers to the newly created object through a common interface (ood-
esign, 2017a).

The advantage of using the factory pattern is that new objects can be added with-
out changing the code in the framework (oodesign, 2017a). In the threat intelligence
system, the Threat Intelligence Controller needs to create Threat Intelligence Services for
itself on initialization. The Threat Intelligence Controller does not initialize the services
itself, but uses a Threat Intelligence Factory class instead. This separates to the logic
of initialization, making organization clearer and making the service more easily
maintainable in the future.

Without the Threat Intelligence Factory, the Threat Intelligence Controller will have to
do all the initializing by itself. This creates a problem when a new Threat Intelligence
Service is added to the system. The controller would have to be modified to handle
the initialization of the new service. It is important to keep the controller as an
abstraction service to maintain organization. Instead when a new service is added
the Threat Intelligence Factory is updated to handle the additional service, but the
Threat Intelligence Controller maintains the same code.

3.3 Software Features

The software I created is an abstraction between the many threat intelligence sources
and the SecBI infrastructure. To implement the system I started by learning how
SecBI queries information and what the common high level commands used to com-
municate with threat intelligence sources are. I discussed with the team how the
current system could be improved and what new commands would be useful to the
system. After gaining an understanding of the problem and current SecBi infrastruc-
ture, I made diagrams similar to figure 3.1 with the proposed solution.

The next stage was to develop the actual program. The threat intelligence frame-
work I developed aimed to have three specific software goals, which are described
in detail in the next sections:

• Modular

• Pluggable

• Prioritization

SecBI did not have a robust way of collecting threat intelligence prior to my project.
The original threat intelligence solution was to poll a free database from a sim-
ple threat intelligence aggregation platform. The system I created has support for
queries to the original platform and is also expandable to work with other threat
intelligence sources. When a new threat intelligence source is added a new Threat
Intelligence Service is created to interface with it. This provides standardization as to
which features of the threat intelligence source are expected to be available.

3.3.1 Modular System

The system was designed to be modular, with dynamic settings without code mod-
ification. The Strategy Design Pattern and the Factory Pattern allow this to happen.
Settings are all configured from the SecBI Configuration object, loaded from the file

3.4. Threat Intelligence Features 19

system. When the controller is initialized configuration properties are set according
to the key-value pair settings of the configuration. Furthermore, the controller passes
this configuration object to the factory class which will create services according to
the configuration setup. Services also are given a copy of the configuration during
initialization.

The SecBI Configuration is based on a property file stored in the file system and
is shared between the infrastructure of SecBI. Instead of modifying code to change
settings, a user will simply have to modify this file and the new settings will be used.
I created some support for handling user error, so even if the user inputs incorrect
formatting to the configuration file, the system will still accept it to a degree.

3.3.2 Pluggable System

The system was designed so that components may be swapped out - so threat intel-
ligence sources may be exchanged as needed while maintaining the same infrastruc-
ture. This design was implemented through the use of the Factory Pattern. When
the controller is initialized there is no predetermined amount of threat intelligence
sources that will be attached. A dynamic mapping of threat intelligence sources is
created and the configuration file determines which services are created and added
to the mapping. In this way, the infrastructure of the system is preserved while new
threat intelligence sources are exchanged as needed.

3.3.3 Prioritization System

Threat intelligence prioritization is an important component of a successful system.
As described in the background, threat intelligence can become useless and poten-
tially harmful if misleading or incorrect information is provided. For this reason
having more threat intelligence is not always better - it may only dilute what is ac-
tually useful. It is important to sort threat intelligence by priority.

To implement the priority system, I built the configuration system such that the
various threat intelligence sources should be listed in order of priority in the config-
uration file. When the Threat Intelligence Controller is initialized it will read the threat
intelligence sources in order and maintain a list. When the controller is instructed
to perform a task, such as getHostMalwareData(domain) it will first try the service
with the highest priority. If that service fails to find the data, the controller will try
the next best priority. Finally, if all service options are exhausted a null value will be
returned.

3.4 Threat Intelligence Features

The threat intelligence system currently has three services, although more can be
added without changing the framework as described in the software description.
The services are:

• MISP Remote

• MISP Local

• Intelligence-Source Local

While all three services can be used to collect threat intelligence information, only
the remote service can be used to publish information. This section will describe the
abilities of each service in detail.

20 Chapter 3. Implementation

3.4.1 Collecting Information

The local services collect information directly from a local file stored in memory,
while the remote series use a network connection to query a server.

Before a local service is able to operate, the local data file must be generated. This
means that the exportEvents() method is usually run prior to local service setup. The
controller will use a remote service to download the latest threat intelligence data to
a local file. When a local service is initialized it will find the local file based on the
path supplied in the configuration file.

The file that was downloaded using exportEvents() is read by the program. Before
being processed by the system, the modified timestamp of the file is used to deter-
mine if it is actually new information. The local handlers may be reinitialized with
new data at set time intervals to ensure they are up to date. But this does not nec-
essarily mean the local data has changed. So the timestamp prevents unnecessary
updates. Using the CSV Reader class it is parsed into strings of data taking advantage
of prior knowledge of the file format. All of the local file contents will be added to
a hash map in memory for quick lookups in key-value format. Using this method,
when getHostMalwareData(domain) is called, a fast lookup is made on the table.

Remote services do not have a local file to read from. Most threat intelligence
sources are stored online, either in a self hosted server or on a company cloud ser-
vice. For a remote service to retrieve information a GET request must be made to the
server. For achieve this, the AsyncHttpClient is used (AsyncHttpClient, 2017).

Taking advantage of the Java 8 CompletableFuture class, a request is built and the
address of the server is added to the request. Furthermore, some security headers are
attached, including a secret API key. The key is loaded from a store on the file sys-
tem and the path to this store is provided in the configuration file. The AsyncHttp-
Client makes a CompletableFuture promise to push information to the server. The
promise is free to complete after the function ends, preventing slowdowns when
larger amounts of data are transferred. When the non-blocking request is complete,
the data will be returned to the controller from the remote service.

3.4.2 Publishing Information

To publish information a remote service must be used to post data to the server.
Similar to Collecting Information a POST or PUT request is built with the secret API
key. Essentially, when a new piece of threat intelligence is discovered it is packaged
by the service and uploaded to the remote server for future use. Optionally, the
intelligence may be shared with others within the organization’s trusted community.
Currently the only publishing service integrated in the threat intelligence system is
MISP (MISP, 2017).

To construct the data to be published, the JSON format is used. The JSONObject
from org.json is used to construct a Java object representation of JSON data (JSON-
Java, 2017). Using the put method from the JSON object, various attributes are at-
tached to the object. An example of JSON construction for a MISP attribute is shown
below.

JSONObject attribute = new JSONObject();
attribute.put("type", type);
attribute.put("category", category);
attribute.put("to_ids", toIds);
attribute.put("distribution", distribution);

3.4. Threat Intelligence Features 21

attribute.put("comment", comment);
attribute.put("value", value);

3.4.3 MISP Implementation

SecBI is currently experimenting with MISP (not used in production) and an instance
is run on a local machine. I set this up using a Docker instance of MISP (Docker,
2017). This is a simple way to run MISP without a dedicated machine. The SecBI
threat intelligence system could communicate with the MISP instance through the
network. It is important to understand how MISP operates to understand how it is
implemented in the SecBI infrastructure. MISP is based on an Apache server with
a RESTful interface. The threat intelligence remote services makes HTTP calls to
collect and publish data.

MISP uses the concept of events and attributes. According to the MISP Request
for Comments (RFC) the defenition of an event is:

An event is a simple meta structure scheme where attributes and meta-
data are embedded to compose a coherent set of indicators. An event
can be composed from an incident, a security analysis report or a spe-
cific threat actor analysis. The meaning of an event only depends of the
information embedded in the event (Iklody, 2016).

An event has a timestamp and a threat level ranking to give context about the
event, however most information about an event comes from attributes. Attributes,
which make up the information of an event, describe detailed information about a
specific event.

Attributes are used to describe the indicators and contextual data of an
event. The main information contained in an attribute is made up of a
category-type-value triplet, where the category and type give meaning
and context to the value. Through the various category-type combina-
tions a wide range of information can be conveyed (Iklody, 2016)

For SecBI, the attribute category that is used to store malicious addresses is called,
Network Activity. The type is Domain, because it represents a domain address. The
value of the attribute is the actual malicious address. Using this format, MISP can
take the many attributes of events and compile a list of the results in various formats.
This is what happens when exportEvents() is invoked by the controller.

22 Chapter 3. Implementation

23

Chapter 4

Results and Discussion

4.1 Threat Intelligence Comparison

To compare the threat intelligence candidates, I created a diagram shown in 4.1.
After visualizing the threat intelligence options I was able to better explain the cur-
rent options of threat intelligence to SecBI. It was easier to see the advantages and
missing features in each framework. As described in the implementation, using the
table 3.1, where I created a system of ranking threat intelligence, the features that
SecBI valued in a threat intelligence framework were recognizable in the diagram.
The combination of the table, diagram, and background information helped to make
more distinctions between frameworks.

4.1.1 Threat Intelligence Candidates

Based on my research and discussions with SecBI I decided that CRITs, MISP, and
CIF are the best threat intelligence framework choices for SecBI. They all are free and
open source programs and can be run in a private standalone instance on SecBI’s or
the clients of SecBI’s machines. Furthermore, they all either have the MIT or GNU v3
licenses, allowing for complete freedom to market and modify the software. They
all have some type of optional social collaboration tool built in. Another important
feature valued by SecBI is the ability to export data from the remote instance to a lo-
cal machine for fast data lookup. The algorithms of SecBI need to get feedback from
a framework quickly, and the network delay would make the system inefficient. All
of three candidates have this ability, however SecBI currently uses the bro file for-
mat, and not all options have bro support. However, file format is not a major factor
in choosing a framework because it is reasonable for SecBI to develop support for
another format for a worthy threat intelligence framework.

4.1.2 Collective Intelligence Framework: CIF

CIF is a strong candidate because it is fast to setup and simple to use, so it can re-
place the currently implemented threat intelligence platform faster than other solu-
tions (Collective Intelligence Framework, 2017). It can output using the bro format,
which is the same format SecBi is using today. It stores data in Elasticsearch and
integrates with Kibana which can be used for visualization. SecBI has experimented
with Kibana visualizations previously, so integration with other SecBI services will
work well.

Here is an example of the bro output used by CIF, the same format SecBI cur-
rently uses.

cif --otype ipv4 --feed --confidence 85 --format bro
--limit 5

24 Chapter 4. Results and Discussion

FIGURE 4.1: Threat Intelligence Comparison Chart

4.1. Threat Intelligence Comparison 25

#fields indicator indicator_type meta.desc meta.
cif_confidence meta.source

92.50.31.66 Intel::ADDR exploit 95 spamhaus.org
210.4.72.138 Intel::ADDR exploit 95 spamhaus.org
61.150.89.67 Intel::ADDR spam 95 spamhaus.org
68.180.32.194 Intel::ADDR exploit 95 spamhaus.org
221.206.72.203 Intel::ADDR spam 95 spamhaus.org

The downsides to CIF is the smaller open source community (compared with
the other candidates): 12 contributors and 1000 commits. Additionally, the repos-
itory is quiet - updates are relatively infrequent. It seems to have less emphasis on
community sharing compared to MISP. There are not as many public groups or com-
munities to join. Finally, CIF recommends a 8 core 16GB server or better in order to
run and does not have an official docker build (it likely can run in a VM for testing).
SecBI is a small startup and may not want to invest in a machine with this hardware
at this time.

4.1.3 Malware Information Sharing Platform and Threat Sharing: MISP

MISP is a strong candidate because it is seemingly well adopted and gaining a lot of
traction lately, over 1000 corporations use it today (MISP, 2017). It outputs several
files types (CSV, JSON, STIX) but does not have native bro output support. MISP has
a large community of 45 contributors and 4000+ commits. A central aspect of MISP
is the access to communities and it seems to be simple to connect to a community to
share threat information. MISP is very well documented with a 155 page e-book and
an additional RFC (Iklody, 2016). MISP has a modern Angular web user interface
and RESTful API and uses the LAMP stack. MySQL is used as the datastore. MISP
has two official docker builds.

The negatives of MISP is that it lacks native bro support, although there is an
old repository project that will actually export MISP to bro. MISP seems to require
slightly more overhead to setup and integrate into the SecBI infrastructure, but the
large community and support makes this easier.

4.1.4 Collaborative Research Into Threats: CRITs

CRITs has the second largest community out of the three, at 35 contributors and
2000 commits (MITRE Corporation, 2017). It exports data to CSV, JSON, and STIX
but not bro. Internally CRITs uses MongoDB and has native support to cluster the
database for large scale operations. CRITs has a web UI with data visualizations and
API to manage threat entries. Furthermore, MITRE heavily supports CRITs making
it stable for long term use. A docker image for CRITs if maintained (but not official).
The community is active, but not as large as MISP. The code is well documented.

CRITs is geared more toward collaborative research into malware and threats
and is less of a threat intelligence platform replacement. It is a very good solution
to store information derived from threat reports. For this reason I think it would
be a good addition for data enrichment in the future, but it is not as suitable as a
framework to track malicious domains in the way that the currently implemented
threat intelligence platform is being used today. CRITs offers a global collaborative
network, but compared with MISP it is smaller.

26 Chapter 4. Results and Discussion

4.1.5 Conclusion

I think MISP is currently the best option because it has the largest community in
both software development and threat intelligence sharing collaboration. Also, it
has a well developed REST API that can be used for automating tasks which will be
essential when dealing with large qualities of threat intelligence information. Since
the community is large, many side projects are available to extend the MISP frame-
work such as a python library, bro integration, and The Hive project (Hive, 2017).
For testing MISP can easily be run in a docker image without the need for expen-
sive machines. Finally, MISP has the most documentation out of the selection and is
growing in scale.

4.2 System Performance

After developing a working threat intelligence system I ran integration experiments.
The new threat intelligence control I developed performed as expected. To test the
system, I first created a new instance of the controller, and initialized it with the
global SecBI configuration file. Before looking up malware entries, data must be
imported from the SecBI MISP server instance I configured beforehand. The next
step was to instruct the controller to use a remote MISP service to download the
latest MISP database to the local machine. This stage worked as designed.

Once the data was on the local machine, I was able to instruct the controller to
use a local MISP service to lookup threat intelligence data, in the same manner as the
previously implemented threat intelligence platform. Finally, although SecBI does
not use this feature, I was able to push new threat intelligence to the MISP server
using the remote MISP service. I confirmed this worked by using the MISP web user
interface to confirm data was successfully uploaded to the MISP server. All of these
stages were broken into small individual unit tests, as described in the next section.

4.2.1 Unit Testing Results

In addition to the integration experiments, I developed unit tests for the classes
shown in figure 3.1. Unit tests will help ensure the system works as intended and if
updates are made, the tests may be run again to maintain a standard of performance.
SecBI uses automated testing and this will integrate well with their current system.
The following tests were created.

• TIControllerServiceTest

• TIHandlerTest

• MispLocalHandlerTest

• MispRemoteHandlerTest

When a test is run I created a testing platform where a temporary file system is
loaded into memory where fake threat intelligence data is stored for testing and later
removed automatically by the testing framework. I utilized existing custom SecBI
testing tools which allowed for temporary SecBI configuration files to be loaded into
the test system.

Overall, I measured a testing coverage of 70% of the system’s code. The tests
were designed with the goal of trying unusual cases, such as when a null value
domain is requested from the services, or if the services try to read from an empty
or nonexistent file.

4.3. Threat Intelligence Challenges 27

4.3 Threat Intelligence Challenges

Threat intelligence faces various known challenges and after implementing an actual
solution myself I gained better insight into the problems. Some challenges of threat
intelligence are listed below taken from the research by Scott Jasper (Jasper, 2017).

1. The risk of disclosure of protective or detective capabilities and of sensitive
information (to the organization sharing the information)

2. The classification of information which might be difficult to actually use in a
threat intelligence system and expensive to request.

3. The trust in the use of the information, possibly time consuming to create and
maintain.

4. The ability to consume the information through the infrastructure necessary to
access external sources and to incorporate the information into the process for
actual decisions.

5. The challenge of establishing interoperability for the secure, automated ex-
change of data among organizations, repositories, and tools.

6. The challenge of preserving privacy of both individuals and organizations that
may participate in sharing communities, but want their contributions to re-
main anonymous.

The first challenge is the reason why SecBI does not share threat intelligence by
default. The customer must make the decision to share because of this challenge.
An example situation where this would be problematic is if the organization was
compromised, the threat intelligence it shared may indicate a security breach. The
organization may not want to disclose this information.

The second challenge does not apply to SecBI because currently the company is
only utilizing one type of threat intelligence categorization (malicious addresses).
However this may change in the future. Also, the third challenge is not currently
something SecBI is considering because it is not part of a threat intelligence commu-
nity.

SecBI is consuming the threat intelligence information and using it in actual de-
cisions, but this is easier when dealing with just one type of threat intelligence cate-
gory. Perhaps this will become more problematic as the company grows.

The problem of interoperability for the fifth challenge is partly solved by the
framework I created. Having a robust selection of threat intelligence framework
options allows for more flexibility in sharing and receiving threat intelligence data.
Interoperability is something that the MISP framework aims to solve, along with
standard communication formats such as STIX as described in the background.

The final challenge relates to filtering metadata of shared threat intelligence. This
seems difficult because it builds more trust if threat intelligence can be linked back
to a credible source, when deciding if it should be used. The threat intelligence
data that SecBI shares does contain some metadata and it could be removed. By
doing this SecBI clients may be more interested in sharing threat intelligence data.
However, challenge number one would still exist, as even data without metadata
may be linked back to the source using advanced methods.

There is an active effort to remedy some of these challenges, and the National
Institute of Standards and Technology is making legal and technical initiatives to
assist in this effort (National Institute of Standards and Technology, 2016).

28 Chapter 4. Results and Discussion

29

Chapter 5

Conclusion

5.1 Future Goals

SecBI currently does not share threat intelligence with a community, it consumes
public threat intelligence information. A major reason for this is that clients of SecBI
may or may not want their information shared. This is a well-known problem relat-
ing to threat intelligence - how to make the intelligence anonymous. Even if iden-
tifiable information is stripped, it may be possible to guess where the source came
from using meta data.

Organizations want to remain anonymous for many reasons, for example to
maintain a good reputation. When a company falls victim to a cyber attack, their
credibility may decrease or they may want to investigate in private, so sometimes
they hide it from the public. An example of this was explained in a 2016 Guardian
article, revealing Yahoo’s choice to hide the security breach where, "data from more
than 1bn user accounts was compromised in August 2013, making it the largest such
breach in history" (Thielman, 2016). It is a difficult balance to help other organiza-
tions stay secure while maintaining a secure reputation. The ideal solution would
be to allow for both.

If a partner of SecBI would like to participate in the sharing of threat intelligence,
it is already supported in the new threat intelligence system I created. A future goal
for SecBI is to incorporate the option to share threat intelligence in the SecBI infras-
tructure (separate from the threat intelligence system I created). In order for this to
happen SecBI will have to perform more research about which threat intelligence
community to join and formalize agreements with clients to have their data shared.

Another goal is to share more types of threat intelligence besides only malicious
addresses. There is much more threat intelligence information available, but the
challenge of how to use the information becomes a larger factor with more broad
data. An important goal is to add support for other types of threat intelligence data,
perhaps one at a time, into the SecBI infrastructure.

Threat intelligence prioritization is a difficult problem because it is not always
clear which source or data will actually be useful. To improve the system a stronger
prioritization algorithm could be implemented. Threat prioritization could turn into
another project by itself. The Carnegie Mellon University article, Cyber Threat Prior-
itization, explains some of the process required. One approach discussed is to rank
threats for prioritization following the pattern below (Carnegie Mellon University,
2016).

Threat = Likelihood + Impact + Risk
Likelihood = Capability + Intent
Impact = Operations + Strategic Interests
Risk = People + Cyber Footprint

30 Chapter 5. Conclusion

5.2 Summary

From my research, the future looks promising for threat intelligence. The Ponemon
Institute research indicates that 39% of cyber attacks could be prevented by threat
intelligence sharing (Ponemon Institute, 2016). A cyber defense system is effective
not only because it can detect intrusions, but also because it can perform in a timely
manner. Therefore it is in the best interest of an organization to share threat intel-
ligence so information can be quickly passed to others to stop a newly spreading
security threat.

The threat intelligence system I created for SecBI is a promising start to a feature
that might eventually become a very valuable component to the services SecBI offers.
I was able to successfully research threat intelligence frameworks, design a method
of ranking, and create a working threat intelligence system that is modular, pluggable,
and prioritized. Furthermore, the system is highly customizable and designed to be
seamlessly upgraded, surpassing the original goals of the project. SecBI now has the
basic tool to grow their threat intelligence program and keep up to date with defense
of the future.

31

Appendix A

Documentation

A.1 Threat Intelligence API Documentation

A.1.1 Overview

This threat intelligence module is used to collect and publish threat intelligence in-
formation from multiple sources for data enrichment. You may use multiple threat
intelligence sources as input. It has a modular design so new threat intelligence
sources may be added to the system without changing the framework code.

A.1.2 Setup

1. Setup spark-server-application.properties. This is the configuration the Threat
Intelligence Controller reads from. Priority: In the .properties file, you configure
the priority of threat intelligence, so some sources will be used before others.
The priority is determined by the order of the threat intelligence sources (high-
est priority first). In the example below the Misp-Local handler will attempt to
search for the domain before the other handlers.

t i . p r i o r i t y . l i s t = Misp−Local Misp−Remote I n t e l l i g e n c e −
Source−Other

t i . misp . endpoint = http : / / 1 7 2 . 1 7 . 0 . 1 : 4 4 3
t i . export . path = s r c /main/resources/
t i . s e c r e t . path = s r c /main/java/com/ s e c b i / t i /KEYS . j son
t i . misp . d a t a f i l e = misp−data . csv
t i . i n t e l l i g e n c e −source−other . d a t a f i l e = master−publ ic . bro .

dat

2. Create files to store threat intelligence data from the sources. For example,
MISP requires a .csv file and other threat intelligence sources require a .bro
file. The file names should match with the names entered in the configuration
file.

3. The files should be moved to the export path specified in the configuration file.

4. Create the secret file KEYS.json, in the secret path specified in the configuration
file. Add API keys of sources used in JSON format. An example is shown
below.

{
"MISP_SECRET " : " abcdefg "

}

32 Appendix A. Documentation

5. Setup MISP Install a SSL certificate in the MISP apache server or disable SSL
in apache configuration files. Otherwise the threat intelligence controller will
not accept an invalid SSL certificate.

6. Run MISP in a Docker container or virtual machine

7. Setup other threat intelligence sources (if more have been added) following the
specific guidelines for the source.

8. Import and initialize a Threat Intelligence Controller object in your Java code.
The SecBI configuration must be used to initialize the controller. An example
is shown below.

SecBIConf igurat ion c o n f i g u r a t i o n ;
t r y {

S t r i n g c o n f i g u r a t i o n F i l e = SystemUti ls .
g e t C o n f i g u r a t i o n F i l e L o c a t i o n () ;

c o n f i g u r a t i o n = new S e c B I F i l e C o n f i g u r a t i o n (
c o n f i g u r a t i o n F i l e) ;

} ca tch (Exception e) {
throw new UnhandledException (e) ;

}
T I C o n t r o l l e r S e r v i c e c o n t r o l l e r S e r v i c e = new

T I C o n t r o l l e r S e r v i c e (c o n f i g u r a t i o n) ;

9. Use the controller object to call methods to find threat intelligence for domains,
or import and export threat intelligence events from MISP server. The methods
available are listed in the next section.

A.1.3 Collecting Threat Intelligence

1. To collect threat intelligence data first call exportEvents(), using the Threat Intel-
ligence Controller.

2. Next, either getHostMalwareData(domain) or getHostMalwareDataAllSources(domain)
is called on the Threat Intelligence Controller.

3. Example of the getHostMalwareDataAllSources() output. In this case, all three
sources were able to find data about a domain from their database, so the list
contains three replies (all the same in this case).

[from http :// mirror1 . malwaredomains . com/ f i l e s /domains . t x t ,
attackpage ,

from http :// mirror1 . malwaredomains . com/ f i l e s /domains . t x t ,
attackpage ,

from http :// mirror1 . malwaredomains . com/ f i l e s /domains . t x t ,
a t tackpage]

A.1.4 Publishing Threat Intelligence

1. Currently the MISP framework is the only implemented threat intelligence
source to share information. As explained in the implementation 3 section,
MISP uses the concept of events and attributes.

A.1. Threat Intelligence API Documentation 33

2. An event must be created before attributes, as attributes are stored in events.
Make an event by calling setEvent(description) using the Threat Intelligence Con-
troller. Save the event identification returned. Use the description to give con-
text about the event.

3. As new intelligence is discovered relating to this specific event, use setEventAt-
tribute(eventId, domain, malware) to attach attributes to the event. The domain
is the new address to warn others about, and the malware is the source string.

4. The new data is automatically pushed to the remote MISP server. It can now
be exported using exportEvents().

5. To publish the data to a MISP community (after joining a community), use the
MISP user interface following the instructions of MISP (MISP, 2017).

6. To understand how MISP data is constructed and organized in communication
with the server see section A.1.5 below.

A.1.5 MISP JSON Format

MISP communicates with JSON through the REST API. Below is an example of how
the data format is organized. Notice the attributes are nested as a list inside of the
event.

" Event " : {
" id " : " 4 " ,
" orgc_id " : " 1 " ,
" org_id " : " 1 " ,
" date " : "2017−03−01" ,
" t h r e a t _ l e v e l _ i d " : " 2 " ,
" i n f o " : " master−publ ic . bro . dat " ,
" published " : f a l s e ,
" uuid " : "5888 aa1a−4570−4745−b179−09deac110002 " ,
" a t t r i b u t e _ c o u n t " : " 9 " ,
" a n a l y s i s " : " 0 " ,
" timestamp " : "1485787469" ,
" d i s t r i b u t i o n " : " 0 " ,
" proposal_emai l_ lock " : f a l s e ,
" locked " : f a l s e ,
" publish_timestamp " : "1485351451" ,
" sharing_group_id " : " 0 " ,
" d i s a b l e _ c o r r e l a t i o n " : f a l s e ,
" Org " : {

" id " : " 1 " ,
"name " : "ORGNAME" ,
" uuid " : "58873 b8a−cc4c−4e4d−905d−02 f f a c 1 1 0 0 0 2 "

} ,
" Orgc " : {

" id " : " 1 " ,
"name " : "ORGNAME" ,
" uuid " : "58873 b8a−cc4c−4e4d−905d−02 f f a c 1 1 0 0 0 2 "

} ,
" A t t r i b u t e " : [

{
" id " : " 2 0 " ,
" type " : " domain " ,

34 Appendix A. Documentation

" category " : " Network a c t i v i t y " ,
" t o _ i d s " : true ,
" uuid " : "5888 aa1a−d6fc−4802−9d06−099 fac110002 " ,
" event_id " : " 4 " ,
" d i s t r i b u t i o n " : " 5 " ,
" timestamp " : "1485351450" ,
" comment " : " from http :\/\/ mirror1 . malwaredomains .

com\/ f i l e s \/domains . t x t , a t tackpage via i n t e l .
cyber . i n t e l l i g e n c e . domain " ,

" sharing_group_id " : " 0 " ,
" de le ted " : f a l s e ,
" d i s a b l e _ c o r r e l a t i o n " : f a l s e ,
" value " : " s q u i r t v i d z . com " ,
" SharingGroup " : [

] ,
" ShadowAttribute " : [

]
}

] ,
" ShadowAttribute " : [

] ,
" RelatedEvent " : [

] ,
" Galaxy " : [

]
}

A.1.6 Threat Intelligence Interface

The Threat Intelligence Controller is the object the SecBI infrastructure communicates
with. In the background, the controller will use the tools of the threat intelligence
system to accomplish the requested task. Below are the methods exposed for use to
interface with the program.

• void exportEvents()

Export events from endpoints to local files. Call
before attempting to use getHostMalwareData().

• void exportEvents(ThreatIntelligenceType property)

Export events from endpoints to to local files from a
specific threat intelligence source.

• java.lang.String getEvent(int eventId)

Get an event from remote server, given event
identification number.

• java.lang.String getEvent(java.lang.String domain)

A.1. Threat Intelligence API Documentation 35

Get an event from remote server, given attribute domain
name.

• java.lang.String getHostMalwareData(java.lang.String domain)

Get malware data from handler, either remote or local
based on priority.

• List<java.lang.String> getHostMalwareDataAllSources(java.lang.String domain)

Get malware data from all handler available. Return a
list of results.

• void init()

Initialize the controller object.

• int setEvent(java.lang.String description)

Share event with remote server. Returns the event
identification number.

• void setEventAttribute(int eventId, java.lang.String domain, java.lang.String
malware)

Add an attribute to an event on remote server.

36 Appendix A. Documentation

37

Appendix B

Diagrams

B.1 On Comparing Threat Intelligence Feeds

38 Appendix B. Diagrams

TABLE B.1: On Comparing Threat Intelligence Feeds (Chuvakin,
2017)

Proposed measure Ease of getting it Usefulness for the TI user
Number of entries Easy – just count’em Debatable – is more bet-

ter? Or noisier?
Certainty of entry bad-
ness

Moderate– providers
may not know due to
algorithms, blind aggre-
gation, lack of context,
etc

Important, but not suffi-
cient; even proven bad-
ness does not convey rel-
evance to your environ-
ment

Type of entry badness Varied – some feeds only
cover certain types (like
C&C or exfiltration)

Useful

Additional context data,
extended schema fields,
etc

Easy – look at the data to
see what context is pro-
vided

Useful, but as an auxil-
iary

Update frequency Easy – ask the vendor or
check the data

Useful as long as it can
be utilized at the same
speed

Frequency of matches
with your IT environ-
ment

Hard – requires opera-
tional usage of TI data

Yes, this is what makes
the feed relevant and “ac-
tionable”

Frequency of matches in
your environment NOT
connected to an ongoing
investigation

Hard – requires opera-
tional usage and an ac-
tive IR team

The most useful

Frequency of “false posi-
tives”

Hard – requires opera-
tional usage

Useful in combination
with the above

Popularity Medium – need to ask the
provider or peers about
who else uses the data

Somewhat useful, but
requires detailed inter-
views on usage with
peers for maximum
value

Durability – continued
use for detection over
time

Hard – requires opera-
tional usage for a long
time

Yes, this is what makes
the feed not just action-
able, but reliably action-
able

Preprocessing by the
provider

Medium – need to ask the
provider and trust the
answer

Sort of – presumably
feed provider processing
makes it “better”, but
how?

Exclusivity Hard – no trustworthy
way of getting it

Yes, but needs to be
combined with some
relevance metrics – if
the provider TI feed has
unique threats that don’t
matter to you

39

Bibliography

AsyncHttpClient (2017). Async Http Client. URL: https://github.com/AsyncHttpClient/
async-http-client.

Carnegie Mellon University (2016). “Implementation Framework – Cyber Threat Pri-
oritization”. In: URL: http://www.sei.cmu.edu/about/organization/
etc/citp-cyber-threat-prioritization.cfm.

Chuvakin, Anton (2017). Thoughts on On Comparing Threat Intelligence Feeds. URL:
http://blogs.gartner.com/anton- chuvakin/2014/01/07/on-
comparing-threat-intelligence-feeds/.

circl (2017). Malware Information Sharing Platform MISP - A Threat Sharing Platform.
URL: https://www.circl.lu/services/misp-malware-information-
sharing-platform/.

Collective Intelligence Framework (2017). Malware Information Sharing Platform. Open
Source CIF Project. URL: https://github.com/csirtgadgets/massive-
octo-spice/.

Coopers, Pricewaterhouse (2015). The Global State of Information Security R© Survey
2017. Survey. http://www.pwc.com/gx/en/issues/cyber-security/information-
security-survey/assets/gsiss-report-cybersecurity-privacy-possibilities.pdf. Price-
waterhouse Coopers.

Crosman, Penny (2016). “A Glimmer of Hope for Cyberthreat Data Sharing”. In:
American Banker. URL: http://bi.galegroup.com/essentials/article/
GALE%7CA460877707?u=mlin_c_worpoly&sid=summon&password=
AnaxAndron&ugroup=outside.

CrowdStrike (2016). “2015 Global Threat Report”. In: pp. 12–13.
Dalziel, Henry (2015). “How to Define and Build an Effective Cyber Threat Intelli-

gence Capability”. In: Syngress Publishing. URL: http://www.sei.cmu.edu/
about/organization/etc/citp-cyber-threat-prioritization.
cfm.

Dell SecureWorks (2014). “Underground Hacker Markets: White Paper”. In: pp. 1–
14.

Docker (2017). Docker. URL: https://www.docker.com/.
FIPS PUBS (2004). “Standards for Security Categorization of Federal Information

and Information Systems”. In: Information Technology Laboratory R43831. FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION. URL: http:
//csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-
final.pdf.

Fischer, Eric (2016). “Cybersecurity Issues and Challenges: In Brief”. In: Congressional
Research Service R43831. URL: https://fas.org/sgp/crs/misc/R43831.
pdf.

Gerhards-Padilla, Thomas Barabosch1 , Andre Wichmann1 , Felix Leder , Elmar
(2012). “Automatic Extraction of Domain Name Generation Algorithms from
Current Malware”. In: Information Assurance and Cyber Defense. URL: http://
publica.fraunhofer.de/documents/N-237723.html.

https://github.com/AsyncHttpClient/async-http-client
https://github.com/AsyncHttpClient/async-http-client
http://www.sei.cmu.edu/about/organization/etc/citp-cyber-threat-prioritization.cfm
http://www.sei.cmu.edu/about/organization/etc/citp-cyber-threat-prioritization.cfm
http://blogs.gartner.com/anton-chuvakin/2014/01/07/on-comparing-threat-intelligence-feeds/
http://blogs.gartner.com/anton-chuvakin/2014/01/07/on-comparing-threat-intelligence-feeds/
https://www.circl.lu/services/misp-malware-information-sharing-platform/
https://www.circl.lu/services/misp-malware-information-sharing-platform/
https://github.com/csirtgadgets/massive-octo-spice/
https://github.com/csirtgadgets/massive-octo-spice/
http://bi.galegroup.com/essentials/article/GALE%7CA460877707?u=mlin_c_worpoly&sid=summon&password=AnaxAndron&ugroup=outside
http://bi.galegroup.com/essentials/article/GALE%7CA460877707?u=mlin_c_worpoly&sid=summon&password=AnaxAndron&ugroup=outside
http://bi.galegroup.com/essentials/article/GALE%7CA460877707?u=mlin_c_worpoly&sid=summon&password=AnaxAndron&ugroup=outside
http://www.sei.cmu.edu/about/organization/etc/citp-cyber-threat-prioritization.cfm
http://www.sei.cmu.edu/about/organization/etc/citp-cyber-threat-prioritization.cfm
http://www.sei.cmu.edu/about/organization/etc/citp-cyber-threat-prioritization.cfm
https://www.docker.com/
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
https://fas.org/sgp/crs/misc/R43831.pdf
https://fas.org/sgp/crs/misc/R43831.pdf
http://publica.fraunhofer.de/documents/N-237723.html
http://publica.fraunhofer.de/documents/N-237723.html

40 BIBLIOGRAPHY

Hacker5 (2012). “Threat Intelligence.” In: General OneFile. URL: libraries.state.
ma.us%2Flogin%3Fgwurl%3Dhttp%3A%2F%2Fgo.galegroup.com%
2Fps%2Fi.do%3Fp%3DITOF%26sw%3Dw%26u%3Dmlin_c_worpoly%
26v % 3D2 . 1 % 26id % 3DGALE % 257CA295995900 % 26it % 3Dr % 26asid %
3D96d3eb128790cf742f4d99ca0cbafbac.

Hive (2017). The Hive: Scalable, Open Source and Free Security Incident Response Solu-
tions. URL: https://thehive-project.org/.

Iklody, A. (2016). “misp-rfc”. In:
Impe, Koen Van (2015). How STIX, TAXII and CybOX Can Help With Standardizing

Threat Information. URL: https://securityintelligence.com/how-stix-
taxii-and-cybox-can-help-with-standardizing-threat-information/.

Jasper, Scott E. (2017). “U.S. Cyber Threat Intelligence Sharing Frameworks”. In: In-
ternational Journal of Intelligence and CounterIntelligence 30.1, pp. 53–65. DOI: 10.
1080 / 08850607 . 2016 . 1230701. eprint: http : / / dx . doi . org / 10 .
1080/08850607.2016.1230701. URL: http://dx.doi.org/10.1080/
08850607.2016.1230701.

JSON-Java (2017). JSON-java. URL: https://github.com/stleary/JSON-
java.

Kaspersky Lab (2015). “Cyber Attacks Mean Bill Bills for Business , Worldwide Sur-
vey of 5,500 Companies”. In: p. 1.

Lingenheld, Michael (2017). Malware Information Sharing Platform and Threat Sharing
Framework. URL: http://www.forbes.com/sites/michaellingenheld/
2015/04/27/the-unfortunate-growth-sector-cybersecurity/.

Matarazzo Celeste M , Hansen, Rose (2014). A dynamic introduction to cybersecurity.
Online. Lawrence Livermore Nation Labratory. URL: https://www.llnl.
gov/news/dynamic-introduction-cybersecurity.

Merriam-Webster Online (2009). Merriam-Webster Online Dictionary. URL: http://
www.merriam-webster.com.

MISP (2017). Malware Information Sharing Platform. Open Source MISP Project. URL:
https://github.com/MISP/MISP.

MITRE Corporation (2017). Collaborative Research Into Threats. Open Source CRITS
Project. URL: https://crits.github.io/.

National Institute of Standards and Technology (2016). “Guide to Cyber Threat In-
formation Sharing (Draft)”. In: pp. 8–9.

NCI Agency (2016). Malware Information Sharing Platform. URL: https://www.
ncia.nato.int/Documents/Agency%20publications/Malware%20Information%
20Sharing%20Platform%20(MISP).pdf.

oodesign (2017a). Factory Pattern. URL: http://www.oodesign.com/factory-
pattern.html.

— (2017b). Interface Segregation Principle (ISP). URL: http://www.oodesign.
com/interface-segregation-principle.html.

Panda Security (2012). Pandalabs annual Report- 2011 summary.
Ponemon Institute (2016). “Flipping the Economics of Attacks”. In:
Shakarian Paulo , Shakarian, Jana , Ruef Andrew (2013). “Introduction to Cyber-

Warfare : A Multidisciplinary Approach”. In: ProQuest ebrary. Web.
Sourcemaking (2017). Strategy. URL: https://sourcemaking.com/design_

patterns/strategy.
Tech Pro Research (2015). IT Security and Privacy: Concerns, initiatives and predictions.

URL: http://www.techproresearch.com/downloads/it-security-
and-privacy-concerns-initiatives-and-predictions/.

libraries.state.ma.us%2Flogin%3Fgwurl%3Dhttp%3A%2F%2Fgo.galegroup.com%2Fps%2Fi.do%3Fp%3DITOF%26sw%3Dw%26u%3Dmlin_c_worpoly%26v%3D2.1%26id%3DGALE%257CA295995900%26it%3Dr%26asid%3D96d3eb128790cf742f4d99ca0cbafbac
libraries.state.ma.us%2Flogin%3Fgwurl%3Dhttp%3A%2F%2Fgo.galegroup.com%2Fps%2Fi.do%3Fp%3DITOF%26sw%3Dw%26u%3Dmlin_c_worpoly%26v%3D2.1%26id%3DGALE%257CA295995900%26it%3Dr%26asid%3D96d3eb128790cf742f4d99ca0cbafbac
libraries.state.ma.us%2Flogin%3Fgwurl%3Dhttp%3A%2F%2Fgo.galegroup.com%2Fps%2Fi.do%3Fp%3DITOF%26sw%3Dw%26u%3Dmlin_c_worpoly%26v%3D2.1%26id%3DGALE%257CA295995900%26it%3Dr%26asid%3D96d3eb128790cf742f4d99ca0cbafbac
libraries.state.ma.us%2Flogin%3Fgwurl%3Dhttp%3A%2F%2Fgo.galegroup.com%2Fps%2Fi.do%3Fp%3DITOF%26sw%3Dw%26u%3Dmlin_c_worpoly%26v%3D2.1%26id%3DGALE%257CA295995900%26it%3Dr%26asid%3D96d3eb128790cf742f4d99ca0cbafbac
libraries.state.ma.us%2Flogin%3Fgwurl%3Dhttp%3A%2F%2Fgo.galegroup.com%2Fps%2Fi.do%3Fp%3DITOF%26sw%3Dw%26u%3Dmlin_c_worpoly%26v%3D2.1%26id%3DGALE%257CA295995900%26it%3Dr%26asid%3D96d3eb128790cf742f4d99ca0cbafbac
https://thehive-project.org/
https://securityintelligence.com/how-stix-taxii-and-cybox-can-help-with-standardizing-threat-information/
https://securityintelligence.com/how-stix-taxii-and-cybox-can-help-with-standardizing-threat-information/
https://doi.org/10.1080/08850607.2016.1230701
https://doi.org/10.1080/08850607.2016.1230701
http://dx.doi.org/10.1080/08850607.2016.1230701
http://dx.doi.org/10.1080/08850607.2016.1230701
http://dx.doi.org/10.1080/08850607.2016.1230701
http://dx.doi.org/10.1080/08850607.2016.1230701
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
http://www.forbes.com/sites/michaellingenheld/2015/04/27/the-unfortunate-growth-sector-cybersecurity/
http://www.forbes.com/sites/michaellingenheld/2015/04/27/the-unfortunate-growth-sector-cybersecurity/
https://www.llnl.gov/news/dynamic-introduction-cybersecurity
https://www.llnl.gov/news/dynamic-introduction-cybersecurity
http://www.merriam-webster.com
http://www.merriam-webster.com
https://github.com/MISP/MISP
https://crits.github.io/
https://www.ncia.nato.int/Documents/Agency%20publications/Malware%20Information%20Sharing%20Platform%20(MISP).pdf
https://www.ncia.nato.int/Documents/Agency%20publications/Malware%20Information%20Sharing%20Platform%20(MISP).pdf
https://www.ncia.nato.int/Documents/Agency%20publications/Malware%20Information%20Sharing%20Platform%20(MISP).pdf
http://www.oodesign.com/factory-pattern.html
http://www.oodesign.com/factory-pattern.html
http://www.oodesign.com/interface-segregation-principle.html
http://www.oodesign.com/interface-segregation-principle.html
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
http://www.techproresearch.com/downloads/it-security-and-privacy-concerns-initiatives-and-predictions/
http://www.techproresearch.com/downloads/it-security-and-privacy-concerns-initiatives-and-predictions/

BIBLIOGRAPHY 41

Techopedia (2017). Techopedia. URL: https://www.techopedia.com/definition/
14384/software-framework.

The MITRE Corporation (2012). “Standardizing Cyber Threat Intelligence Informa-
tion with the Structured Threat Information eXpression (STIXTM)”. In:

— (2015). “2015 Data Breach Investigations Report”. In:
Thielman, Sam (2016). Yahoo hack: 1bn accounts compromised by biggest data breach in

history. The Guardian. URL: https://www.theguardian.com/technology/
2016/dec/14/yahoo-hack-security-of-one-billion-accounts-
breached.

Voeller, John G (2014). “Cyber Security (1)”. In: John Wiley Sons, Incorporated.
Whalen, Sean (2015). Open Secrets of the Defense Industry: Building Your Own Intelli-

gence Program From the Ground Up.

https://www.techopedia.com/definition/14384/software-framework
https://www.techopedia.com/definition/14384/software-framework
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached

	Abstract
	Acknowledgements
	Introduction
	Cyber Security
	Definition
	History

	SecBI
	Threat Intelligence

	Project Overview

	Background
	Need for Threat Intelligence
	SecBI Threat Intelligence
	Threat Intelligence Standardization
	Communication Standardization
	Framework and Platform Standardization

	Threat Intelligence Frameworks and Platforms
	Threat Intelligence Prioritization
	Malware Information Sharing Platform

	Implementation
	Comparing Threat Intelligence
	Software Design
	Overview
	Strategy Design Pattern
	Interface Segregation Principle
	Factory Pattern

	Software Features
	Modular System
	Pluggable System
	Prioritization System

	Threat Intelligence Features
	Collecting Information
	Publishing Information
	MISP Implementation

	Results and Discussion
	Threat Intelligence Comparison
	Threat Intelligence Candidates
	Collective Intelligence Framework: CIF
	Malware Information Sharing Platform and Threat Sharing: MISP
	Collaborative Research Into Threats: CRITs
	Conclusion

	System Performance
	Unit Testing Results

	Threat Intelligence Challenges

	Conclusion
	Future Goals
	Summary

	Documentation
	Threat Intelligence API Documentation
	Overview
	Setup
	Collecting Threat Intelligence
	Publishing Threat Intelligence
	MISP JSON Format
	Threat Intelligence Interface

	Diagrams
	On Comparing Threat Intelligence Feeds

	Bibliography

