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Abstract 

Malaria is a life-threatening disease that is prevalent in tropical areas, leaving more than 

half of the world’s population at-risk. Although Artemisinin Combination Therapy (ACT) is 

recognized by the WHO as an effective malaria treatment, the low yields and difficulty 

associated with purifying artemisinin, a sesquiterpene lactone with antimalarial properties found 

only in the plant Artemisia annua L., make the cost for malaria therapy too burdensome for 

people in the affected developing nations. This project expanded upon prior research by 

exploring the symbiotic effects of mycorrhizae, a root fungus, on A. annua in hopes of increasing 

the artemisinin and flavonoid content in the plant to lower the costs of anti-malarial treatments. 

To accomplish this, a high producing A. annua cultivar, SAM from the Weathers lab, was grown 

in two types of soil, one seeded with spores of the mycorrhizal fungus, Glomus intraradices, to 

determine whether a further increase in biomass, flavonoids, and artemisinin could occur. Plants 

grown in Pro-Mix HP Mycorrhizae soil only experienced an increase in root biomass when 

grown from cuttings and stem biomass when grown from tissue culture. Interestingly, compared 

to plants grown from rooted cuttings, plants derived from tissue culture and grown in the 

different test soils produced substantially less artemisinin. Overall, the SAM cultivar did not 

show a significant increase in flavonoid or artemisinin content, nor did it appear to be colonized 

by mycorrhizae, while the Glandless cultivar in the Weathers lab was colonized. Ultimately, this 

research is beneficial in providing insight into the ability of the arbuscular mycorrhizae G. 

intraradices to colonize cultivars at WPI. The differences in biomass, flavonoid, and artemisinin 

between plants grown from cuttings and tissue culture suggest that there is perhaps a signal or 

specific mechanism that results in mycorrhizal colonization in the SAM cultivar of A. annua that 

should be further studied. 
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1. Introduction 

Malaria is a life-threatening disease that primarily affects sub-Saharan Africa, Asia, and 

Latin America, leaving half of the world’s population at-risk. The disease is caused by several 

different species of Plasmodium parasites that are passed to humans bitten by infected Anopheles 

mosquitoes. Transmission occurs most frequently at nighttime, when the mosquito lifespan is 

longer, and often under specific climate conditions. Other factors that favor transmission are a 

mosquito preference for biting humans instead of animals and low immunity rates among the 

human population (WHO, 2014).  

            Malaria is an acute febrile illness, meaning that it is categorized by sudden onset and 

fever. Symptoms, including chills, vomiting, and headache, typically appear about 10 days after 

the infectious bite. The most deadly forms of malaria, P. falciparum and P. knowlesi, can 

become severe if not treated within the first 24 hours. This may lead to anemia, respiratory 

issues, and malarial infection of multiple organs in adults and children. The worst type of malaria 

is cerebral malaria. However, in areas where malaria is endemic, asymptomatic infections also 

often occur due to partial immunity in the population. For other types of malaria, such as P. vivax 

and P. ovale, dormant liver forms of the parasite, known as hypnozoites, may cause reinfection 

(WHO, 2014). It is not known how activation of the hypnozoites occurs. In order to prevent this 

relapse, patients infected with these two forms of infection should be treated with a 14-day 

course of primaquine phosphate (CDC, 2013). 

            Although spreading awareness, adoption of prevention methods, and medical 

advancements have reduced global mortality rates by 42% since 2000, malaria remains a major 

health concern in many parts of the world. In 2012, there were approximately 207 million cases 

of malaria and 627,000 deaths. Figure 1 shows the global malaria epidemic for 2012. Some areas 

in South America, Africa, and Southeast Asia reported over 10 million cases of malaria in 2012. 

Currently in Africa, death rates are the highest among children with one death every minute. In 

areas where malaria is a concern, other susceptible individuals include low-immunity 

international travelers from non-endemic areas, pregnant women, and people with the 

autoimmune condition HIV/AIDS (WHO, 2014). 

Despite the fact that malaria is now a preventable disease, 97 countries reported ongoing 

malaria transmission in 2013 (WHO, 2014). Although a malaria vaccine is not yet available, 

clinical trials have been run, and several other prophylactic and therapeutic methods exist. 
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Insecticide-treated bed nets are a moderately successful prevention method due to their low cost; 

however, only 54% of African households reported owning a net in 2013 (The Henry J. Kaiser 

Family Foundation, 2014). Of the people who do own bed nets, many use them for other 

purposes, such as fishing (Minakawa et al., 2008). 

 

Figure 1: Estimated cases of malaria on a global scale for 2012 

            Throughout many parts of the world indoor residual spraying is used to prevent malaria, 

but resistance to insecticides has become an emerging problem. For pregnant women who are 

especially at-risk for malaria, Intermittent Preventive Treatment in Pregnancy is used as a 

prevention method. The treatment is a complete course of antimalarial medicine given to 

pregnant women during routine visits before the birth of their child. Intermittent Preventive 

Treatment in Pregnancy is used to reduce the risk of malaria in mothers, anemia in mothers and 

fetuses, parasitaemia of the placenta, low birth weight, and death of the fetus. Although only 

38% of African women who attended clinics post-birth received the second dose of the treatment 

in 2012, it provided this group with increased protection (WHO, 2013). 

            Although malaria is now a curable disease, over the years drug resistance has built up 

against older antimalarial medications such as quinine, chloroquine and sulfadoxine-
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pyrimethamine. Because nearly all malaria cases occur in developing nations, economic 

feasibility must be considered when developing new malaria treatments (WHO, 2014).  

Artemisia annua (Figure 2), produces a potent antimalarial drug, artemisinin (Figure 3); 

however, resistance is also emerging when the drug is used as a monotherapy or even now as a 

two-drug combination therapy. The efficacy of artemisinin-based therapies in treating falciparum 

malaria specifically has declined on the Thai-Cambodian border (Dondorp et al., 2012). The 

World Health Organization has developed the Global Plan for Artemisinin Resistance 

Containment to stop the spread of resistant parasites and continue to eliminate the disease 

(WHO, 2011). Still, artemisinin-based combination therapy (ACT) is the best available treatment 

today according to many researchers, especially for severe cases of malaria (WHO, 2014). 

However, ACT and the cost of artemisinin is often burdensome for people living in developing 

nations as a consequence of low yields and the cost of other anti-malarial drugs used in 

combination with artemisinin (Barbacka et al., 2011). The current prevalence of malaria 

indicates that awareness efforts, financial support, research, education, prevention methods, 

disease control, and treatment options are not adequate for the most at-risk or affected 

populations (WHO, 2014). 

To develop more effective and economically feasible alternative malaria treatments, the 

Weathers lab has been studying the plant Artemisia annua and its derivatives, such as 

artemisinin. In 2014, Weathers and colleagues used a mouse malaria model to demonstrate that 

dried whole plant material was a more effective and less expensive antimalarial therapy 

(Weathers et al., 2014). Even more recently, the Weathers lab demonstrated that the whole plant 

material can even be used to treat mice with pure artemisinin-resistant forms of malaria, and that 

whole plant material is more resilient against the evolution of artemisinin drug resistance 

(Elfawal et al., 2015).  Our project will enhance this research for a more efficient anti-malarial 

treatment by investigating the potential of symbiotic effects of the mycorrhizal fungus, Glomus 

intraradices, in hopes of further increasing the production of artemisinin and flavonoids by the 

plant Artemisia annua. 
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2. Background 

2.1 Artemisia annua 

Artemisia annua L. (A. annua), from the family Asteraceae, is a fragrant annual 

wormwood that originates from China (Figure 2; Abdin et al., 2003). This shrub can achieve 

heights ≥ 2 m (Dhinga et al., 2004). 

 

                Figure 2: Artemisia annua (CDC, 2012) 

Many of this plant's secondary metabolites are known to be medicinally active and are 

playing important roles in treatment of diseases, such as malaria and cancer (de Ridder et al., 

2008; Firestone and Sundar, 2009). These secondary metabolites are synthesized in and isolated 

from different parts of the plant. The isolated secondary metabolites from A. annua consist of 

monoterpenoids, sesquiterpenoids, triterpenoids, flavonoids, coumarins, steroids, phenolics, 

purines, lipids and aliphatic compounds (Bhakuni et al., 2001). Of interest to this project are 

flavonoids and the sesquiterpene lactone, artemisinin, a potent anti-malarial drug (Figure 3; 

Collaboration research group for Qinghaosu, 1979).  

Flavonoids, which are classified as polyphenols, are located in many tissues of plants, 

including the glandular trichomes of A. annua (Ferreira, 2010; Kuman and Pandey, 2013). These 

phytochemicals are made especially under stressful conditions when they are produced in a 

defense response (Ferreira, 2010). As many as nine flavonoids that are produced by A. annua 

have exhibited therapeutic applications for malaria (Weathers and Towler, 2014). As an 

example, the flavonoid quercetin, produced by A. annua, is shown in Figure 3. Part of the role of 

flavonoids as antioxidants involves their ability to chelate metals such as iron (Mira et al., 2002). 

One of the proposed mechanisms of artemisinin requires the oxidation of iron; therefore, it is 
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believed that by chelating iron, flavonoids could increase availability of iron and thus the 

efficacy of artemisinin as a treatment for malaria (Ferreira, 2010). 

  

Figure 3: Chemical structure of sesquiterpene artemisinin (left) and quercetin flavonoid 

(right) 

Trichomes are appendages located on the aerial surface of plants including the leaves, 

floral buds, and flowers (Oloffson et al., 2011). They vary in shape, size, and other 

characteristics, including whether they are glandular or nonglandular (Nguyen et al., 2011). 

Glandular trichomes (Figure 4) play a role in chemical defense by producing phenolics, 

alkaloids, terpenes, and other noxious compounds that are triggered for release when herbivore 

or insect damage occurs (Cheng et al., 2007). Dicotyledonous angiosperms commonly possess 

glandular trichomes. For example, the genera Nicotiana, Cleome, Primula, Petunia, and 

Artemisia all possess glandular trichomes that secrete defensive compounds (Oloffson et al., 

2011). 

 

Figure 4: Glandular trichomes in cultivar #15 (obtained from: Sibo Wang) 
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Specifically, the glandular secretory trichomes are located mainly on the leaves and 

flowers, of A. annua (Ferreira and Janick, 1996). Artemisinin is made and stored in the glandular 

trichomes of A. annua, so these structures are important for artemisinin biosynthesis (Duke et al., 

1994; Ferreira and Janick, 1996). The pathway showing the biosynthesis of artemisinin and its 

main derivatives is shown in Figure 5.  

IPP/DMAPP isoprene units are produced in the cytosol and plastid and condensed in the 

cytosol forming farnesyl diphosphate (FPP). FPP is cyclized via amorphadiene synthases (ADS) 

to amorphadiene, and this is the first committed step in artemisinin biosynthesis. A cytochrome P 

450/reductase (CYP) complex then converts amorphadiene to artemisinic alcohol that is then 

converted to artemisinic aldehyde again by CYP. From there the pathway branches, and one 

route forms artemisinic acid through the enzymatic activity of CYP and aldehyde dehydrogenase 

1 (ALDH1), which then results in arteannuin B through a nonenzymatic photo-oxidative 

reaction. The other route involves conversion of artemisinic aldehyde to dihydroartemisinic 

aldehyde by the enzyme double bond reductase 2 (DBR2). At this step the pathway branches 

again, with one route leading to the synthesis of dihydroartemisinic alcohol by the enzyme 

dihydroartemisinic aldehyde reductase 1 (RED1). In the second route, aldehyde dehydrogenase 1 

(ALDH1) converts dihydroartemisinic aldehyde to dihydroartemisinic acid. From 

dihydroartemisinic acid, either artemisinin or deoxyartemisinin is synthesized (Nguyen et al., 

2011). Artemisinin is also the result of a nonenzymatic photo-oxidative reaction. 

 

Figure 5: Biosynthetic pathway of artemisinin (adapted from Nguyen et al., 2011) 

 Several studies showed that artemisinin concentration increases with an increasing 

number of trichomes, with younger leaves developing more trichomes, and thus more artemisinin 

(Ferreira and Janick, 1996; Kapoor et al., 2007; Arsenault et al., 2010; Graham et al., 2010). 
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In many plant species, it is common for sesquiterpene content to be higher in younger 

plants than older plants (Rapparini et al., 2007). Artemisinin levels seem to be highest right 

before full flowering when the floral bud is formed, but the best cultivars only have a yield of 

~1.4% (Ferreira and Janick, 1996; Elfawal et al., 2015). Currently, the large production costs and 

low artemisinin yields have hindered the process of plant Artemisinin Combination Therapy 

(pACT) becoming a commercialized treatment for malaria (Weathers et al., 2014). Over the past 

several years, the Weathers team demonstrated that whole plant material is less expensive and 

more effective at treating malaria in mice, especially those with artemisinin-resistant forms of the 

disease (Elfawal et al., 2015). It is also of interest to this project to explore a feasible, effective, 

and inexpensive way in which production of artemisinin and other secondary metabolites can be 

increased in A. annua. 

2.2 Mycorrhizae 

Plant roots interact with various rhizospheric microorganisms in soil, including 

mycorrhizal fungi, which are able to inhabit the root cortical cells and induce a symbiotic 

relationship with the plant (Bagyaraj, 1991; Harrison, 2005; Rapparini et al., 2007). This 

symbiotic relationship constitutes a progression of complex feedbacks that are controlled by the 

physiology and nutrition of the plant and the fungus (Rapparini et al., 2007). When a plant 

becomes infected with mycorrhizae, it is able to acquire phosphorus, nitrogen, and other 

nutrients more efficiently from the soil (Read, 1999). The fungus also benefits from the 

interaction, as it obtains photosynthetically-derived carbon compounds from the infected plant 

(Harley and Smith, 1983). Without the carbon supply from the host plant, most mycorrhizae 

would not be able to form or function (Jakobsen, 1999). Often the symbiotic relationship is so 

well balanced that no tissue damage occurs, and plant growth, along with other characteristics, is 

enhanced. In recent years, interest in this symbiosis has increased dramatically due to the 

benefits that mycorrhizae have on the growth and resilience of the host plant. Several different 

types of the fungus exist: ecto, arbutoid, monotropoid, ericoid, orchidaceous, and vesicular-

arbuscular (Table 1). This project focuses on vesicular-arbuscular mycorrhizae, also known as 

arbuscular mycorrhizae, which colonize the majority of plants that are important in agriculture, 

horticulture, and tropical forests (Bagyaraj, 1991). 
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Table 1: Different types of mycorrhizae, category, and defining structures (adapted from 

Read, 1999) 

Type Category Defining Structures 

Ectomycorrhiza Sheathing External mycelial network 

Arbutoid Sheathing Hartig net, intracellular penetration 

Monotropoid Sheathing Fungal pegs 

Ericoid Endo Hyphal complexes in hair roots 

Orchidaceous Endo Pelotons 

Vesicular-Arbuscular Endo Arbuscules, vesicles, hyphal coils 

 

Arbuscular mycorrhizae (AM) contain arbuscules within cortical cells, vesicles within or 

between cortical cells, and hyphal coils (Read, 1999; Harley and Smith, 1983). Although it is not 

usually possible to detect AM infection without microscopic observation, some plant roots turn 

yellow upon infection (Harley and Smith, 1983). Over 120 species of AM exist and are known to 

establish symbiotic relationships with over 1,000 genera of plants including >80% of 

angiosperms (Harley and Smith, 1983; Harley and Harley, 1987; Newman and Reddell, 1987; 

Smith and Read, 1997). This broad host range is not yet fully understood, but it suggests that AM 

do not have very specific nutritional requirements. However, it is known that AM fungi are 

completely dependent on the host plant for a source of carbon so growth is significantly 

diminished in the absence of a host plant. When not in contact with a plant, AM fungi are present 

in soil as dormant spores (Harrison, 2005). Once the spore germinates, the hyphal germ tube 

grows through the soil searching for a host root, contacts a plant root, and establishes an 

appressorium, or hyphal organ with an infection appendage, on the surface of the root through 

which the fungi is able to enter the plant. Despite the fact that AM can colonize 90% of vascular 

plants, the degree to which they affect plant species within a single family or even different 

cultivars of the same species may vary greatly (Harley and Smith, 1983). AM most commonly 

infect the root cortical cells, and a typical root system is pictured in Figure 6. 
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Figure 6: Typical root system in plants (adapted from 

http://diggingdazza.files.wordpress.com/2011/04/rootstructure.gif) 

By 1987, all species of AM described were classified into the Endogonaceae family, and 

classified into six different genera that form a mycorrhizal association: Glomus, Sclerocystis, 

Entrophospora, Acaulospora, Scutellospora, and Gigaspora. The most common genus of AM 

fungi, Glomus, has over 50 species, which form irregularly-shaped spores that vary greatly in 

size. The spores are produced near the plant roots in the soil, at the surface of the soil, or even in 

the roots themselves (Bagyaraj, 1991). 

 

Figure 7: Arbuscular mycorrhizae infection of clover plant vesicles, stained with Trypan 

blue - left (Ingham, n.d.), Glomus intraradices - right 

(https://biomesfirst09.wikispaces.com/file/view/glomus_intraradices.jpg/104191029/240x18

0/glomus_intraradices.jpg). 
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2.3 Mycorrhizal effects on secondary metabolites in plants 

 Araim et al. (2009) studied the effect of AM colonization by Glomus intraradices on 

Echinacea purpurea L. After 13 weeks of growth, the plants that had been infected with AM 

reached almost 100% root colonization determined by the presence of one fungal structure in 

each root stained with aniline blue dye. The colonized plants had greater root and shoot mass as 

well as length. In addition, some minerals and proteins increased in AM-colonized roots. 

Secondary metabolites produced by E. purpurea, specifically phenolics, also increased as a result 

of the AM treatment (Araim et al., 2009). 

The effect of G. intraradices on the primary and secondary metabolites produced by 

Medicago truncatula was examined throughout 8 weeks of mycorrhizal association (Schliemann 

et al., 2007). The roots with AM infection had higher levels of primary metabolites, amino acids 

and fatty acids after about 4 weeks of AM colonization. Meanwhile for secondary metabolites, 

the mycorrhizal-infected roots only exhibited increased levels of isoflavonoids at the late stages 

(8 weeks) of root mycorrhizal infection.  

The effect of AM infection by G. intraradices on the flavonoid production of Trifolum 

repens (white clover) was identified using methods such as nuclear magnetic resonance (NMR) 

spectroscopy (Ponce et al., 2004). Several previously known flavones, two newly reported 

flavones in the roots, and two newly reported flavones in the shoots were isolated from AM-

inoculated and non-inoculated plants. The flavonoids quercetin, acacetin, and rhamnetin were 

detected only in the roots of clover plants infected with AM. That study indicated that AM 

colonization of roots played a role in the production of secondary metabolites, specifically 

flavonoids, in the shoots and roots of white clover plants (Ponce et al., 2004). Their research 

supported the hypothesis of this project: AM colonization of plant roots, and in our case roots of 

A. annua, would increase production of the plant's secondary metabolites. 

2.4 Mycorrhizal effects on artemisinin in A. annua 

Several studies have been performed to observe the effects of AM mainly on the 

production of artemisinin in A. annua. Those studies showed that A. annua was infected by 

Glomus species of AM and that the infection increased the concentration of artemisinin along 

with other terpenes (Rapparini et al., 2007). However, to our knowledge there are no published 

findings about the effect of AM on flavonoid concentration in A. annua. 
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In a study by Rapparini et al. (2007), A. annua plant roots were colonized by AM fungi 

and associated bacteria in order to examine the effects on volatile organic compound emissions 

and content of the plant. Plant roots were infected with two different inocula: one containing a 

single Glomus AM species isolated from a peach orchard and the second containing a mixture of 

Glomus species (G. mosseae, G. intraradices, and G. viscosum) plus associated soil bacteria. 

These AM-infected plants were also compared to non-mycorrhizal plants ± additional 

phosphorus, which stimulates plant growth. Compared to the single species infection, plants 

infected with several different species of AM and bacteria showed significant increases in shoot 

length, leaf number, leaf biomass, stem dry weight, and root dry weight. The emission of two 

monoterpenes, limonene and artemisia ketone, also generally increased after mycorrhizal 

infection. 

Kapoor et al. (2007) investigated the effects of AM fungal inoculation ± phosphorus 

fertilization on artemisinin concentration and glandular trichome density in A. annua L. plants. 

The AM fungal inocula consisted of either Glomus macrocarpum (GM) or Glomus fasiculatum 

(GF). There were six treatments: control (no mycorrhizae), GM ± P-fertilizer, GF ± P, and soil + 

P. Overall, plants inoculated with G. fasiculatum performed better than those inoculated with G. 

macrocarpum or plants provided only with phosphorus fertilization. Phosphorus addition 

increased the fresh and dry weight of the shoots, but decreased the percent AM colonization in 

the roots and did not affect the glandular trichome density. Plants colonized by G. fasiculatum 

had the highest artemisinin concentration and were unaffected by phosphorus fertilization. 

Chaudhary et al. (2008) studied the effect of two different species of arbuscular 

mycorrhizal fungi (AMF), G. macrocarpum (GM) and G. fasiculatum (GF), on A. annua. 

Seedlings that were 35 days old were transplanted into soil with indigenous AMF spores and 

chopped, AM-colonized sorghum roots of each respective fungus. The plants were harvested 

after being grown for 12 weeks under natural field conditions. In addition to an increase in dry 

weight and nutrient content in the shoots, the concentration of artemisinin in the leaves increased 

as a result of infection by both fungal species. However, A. annua colonized with GM produced 

more artemisinin than plants infected with GF when compared to the controls. The experiment 

also used three different accessions or cultivars of A. annua and found that they varied in 

response to the two different Glomus species. This supported other studies (Graham and 
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Eissenstat, 1994; Sylvia et al., 2003), which observed that the effect of mycorrhizal colonization 

varied significantly between plant species and varieties. 

In a study by Mandal et al. (2014) the mechanism behind the increase in secondary 

metabolites in AM colonized A. annua plants was explored. Using seedlings that were 30 days 

old of a high artemisinin yielding (1.3%) variety of A. annua, plants were grown in autoclaved 

soil with a soil-based culture containing roots of trap plants colonized by Rhizophagus 

intraradices (newer name for G. intraradices) as well as spores for 33 days (Yadav et al., 2013). 

When compared to the control, Mandal found that dry weight artemisinin concentrations were 

greater in the plants colonized by the fungus. The study suggested that this increase in 

artemisinin was due to an increase in glandular trichome density and increased jasmonic acid 

levels that controlled transcription patterns (Mandal et al., 2014). Jasmonic acid along with its 

methyl ester, methyl jasmonate, are naturally occurring phytohormones and growth regulators 

that are particularly responsive during stress from biotic and abiotic factors (Creelman and 

Mullet, 1995). Other studies show that jasmonic acid, besides increasing the production of 

secondary metabolites, is able to help establish the symbiotic relationship between an AM fungus 

and a plant (Hause et al., 2002; Vierheilig & Piche, 2002; Meixner et al., 2005; Stumpe et al., 

2005; Landgraf et al., 2012). Mandal and colleagues showed that leaves of mycorrhizal plants, 

which had elevated jasmonic acid levels, and leaves of non-mycorrhizal plants, that were 

supplied with various methyl jasmonic acid concentrations, had similar concentrations of 

artemisinin, trichome densities, and transcriptional activation of genes for artemisinin synthesis 

(Mandal et al., 2014). This study also determined that arbuscular mycorrhizae increased 

isoprenoids by stimulation of the methyl erythritol phosphate (MEP) pathway. 

In addition to those published studies, a preliminary experiment in the Weathers lab used 

cuttings of a high-producing cultivar (SAM) and a lower-producing cultivar (#15) of A. annua 

that were planted in two different soil types - one that contained spores of G. intraradices and 

one that, to our knowledge, did not. Upon inspection of the roots, plants grown in soil allegedly 

containing spores of G. intraradices did not appear to be colonized by the fungus, while plants 

grown in soil supposedly without G. intraradices present did show characteristics of AM 

colonization. Therefore, it appeared that the plants grown in soil without fungal spores might 

already be infected with AM. It was unclear why these results were observed, and the research 

carried out through this project duplicated this experiment and studied other differences in plant 
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characteristics besides root colonization by AM. Overall, this project aimed to further the 

research that had already been carried out involving the colonization of A. annua by AM, 

specifically G. intraradices, in hopes of increasing the concentration of artemisinin and other 

secondary metabolites, flavonoids in particular.  
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3. Hypotheses and Objectives 

The goal of this project was to determine whether high producing Artemisia annua 

cultivars, such as SAM in the Weathers lab, could experience a further increase in artemisinin 

and flavonoid production when inoculated with AM. It was hypothesized that: 

 Plants grown in Pro-Mix HP Mycorrhizae soil would have greater biomass, flavonoid, 

and artemisinin content than plants grown in MetroMix 360 standard potting soil. 

 Plants grown in autoclaved soil would not experience mycorrhizal infection. 

These hypotheses were tested through the completion of the following objectives on all 

experimental groups: 

 To measure the differences in biomass between plants grown in Pro-Mix HP Mycorrhizae 

soil and plants grown in MetroMix 360 standard potting soil and their autoclaved 

controls. 

 To extract and measure total flavonoids from plant material. 

 To extract and measure artemisinin content from plant material. 

 To determine extent of root colonization by mycorrhizae. 
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4. Materials and Methods 

4.1 Propagation of Artemisia annua by cuttings 

The Artemisia annua L. cultivar used was SAM, which produces about 1.4% AN 

(Weathers & Towler, 2012; Weathers & Towler, 2014). The cultivar was isolated at Worcester 

Polytechnic Institute in the Weathers laboratory. Initially, propagation was performed by 

planting nodal cuttings of SAM in four soil types: MetroMix 360 (Sungro Horticulture Canada 

Ltd.) potting mix (see Appendix A for composition); autoclaved MetroMix 360; Pro-Mix HP 

Mycorrhizae (Premier Tech Horticulture) growing medium, which contains spores of Glomus 

intraradices (see Appendix B for composition); and autoclaved Pro-Mix HP Mycorrhizae. Table 

2 summarizes the different experimental groups of plants grown from cuttings or tissue culture, 

along with their abbreviations. There were 4-8 (n) replicates in each experimental group. 

Table 2: Experimental groups 

SAM Cultivar 

Abbreviation 

MetroMix 

360 Soil 

Pro-Mix HP 

Mycorrhizae Soil 

Auto-

claved 
Cutting 

Tissue 

Culture 

S (n=8) + - - + - 

SA (n=7) + - + + - 

SM (n=8) -  + - + - 

SMA (n=5) - + + + - 

ST (n=8) + - - - + 

SAT (n=4) + - + - + 

SMT (n=7) - + - - + 

SMAT (n=5) - + + - + 

 

Before planting, cuttings were treated with Hormodin 2 root-inducing hormone 

containing 0.3% indole-3-butyric acid from OHP, Inc. (Mainland, PA). Cuttings were grown in 

glass-filtered natural sunlight under a vegetative photoperiod (>13 hour light) at a temperature 

maximum of 25.1 °C and minimum of 15.6 °C and a humidity maximum of 76% and minimum 

of 26% until they achieved ~20 cm height with at least 16 fully expanded leaves. Plants were 

watered at least every other day and were fertilized once per week. The harvested plants were 

then used for data analysis of biomass, secondary metabolite concentrations, and root 

colonization. 
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4.2 Artemisia annua tissue culture 

Nodal cuttings from in vitro cultivated SAM A. annua plants were sub-cultured into 50 

mL of medium containing 20 g/L sucrose (PhytoTechnology Laboratories Lot #11B0391133A), 

2.215 g/L Murashige and Skoog medium salts at full strength (PhytoTechnology Laboratories 

Lot #12E0519061B), and 5 g/L Agargellan (PhytoTechnology Laboratories Lot #11C0133030A) 

in magenta boxes (see Appendix C). After 6 weeks of growth, rooted plantlets were transplanted 

into pots containing all four types of soil and were grown under the same conditions as the plants 

grown from cuttings. See Table 2 for a summary of the four experimental groups of plants grown 

from tissue culture, along with their abbreviations. 

When transplanting, the plants were grouped into three different developmental stages 

and divided evenly amongst soil types. During initial growth in soil, plants were placed in a clear 

plastic bag to minimize evaporation. Plants were harvested when they achieved the height and 

leaf number previously described. After harvesting, the amounts of artemisinin, flavonoids, and 

biomass were extracted and measured, and the root colonization was examined. 

4.3 Leaf harvest, and extraction and analysis of metabolites 

 To compare data across plants, leaves were numbered as depicted in Figure 8. The 

numbering began at the top of the plant after the shoot apical meristem (ShAM) and the first 

fully expanded leaf counted as leaf 1. Leaves were grouped in order to ensure enough plant 

material, and different developmental stages were measured. Each plant had four groups with 

two leaves in each group, except for the ShAM (i.e., ShAM, leaves 5 and 6, leaves 11 and 12, 

and leaves 15 and 16). The four groups were used for analysis of artemisinin and total 

flavonoids. 

 To quantitatively determine the differences in the concentrations of various metabolites 

among plants of both cultivars grown in each of the four soil conditions, gas chromatography-

mass spectrometry was used with a method adapted from Weathers & Towler (2012). 

Metabolites were extracted from selected plant material by adding 4 mL MeCl2 to weighed, dried 

leaf material in glass test tubes and sonicated in a water bath for 30 minutes. The leaf material 

was removed and the resulting solvent was dried under nitrogen gas. If preparation of the 

samples for analysis was not performed on the same day as the extraction, the samples were 

stored in the freezer at -20 °F. To prepare the dried extracts for analysis of metabolites, the 

samples were resuspended in 200 µL MeCl2. A 20 µL aliquot of each sample was transferred 
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to GC/MS sample vials and dried using compressed air. The samples were injected into the 

GC/MS, with He carrier gas at 1 mL/min. The temperatures of the ion source, inlet, transfer line, 

and oven were dependent upon the various compounds that were being measured, and are noted 

in Weathers and Towler (2014). Artemisinin was identified by comparing retention times and 

signature ion peaks in the plant extracts with purchased standards. 

  

Figure 8: Artemisia annua with numbered leaves – left, ShAM - right 

Flavonoid analysis was performed using a spectrophotometer using quercetin as a 

standard and following the method of Arvouet-Grand et al. (1994). First, 200 µg of quercetin 

was solubilized in 400 µL of MeOH. Aliquots of 40, 30, 30, 10, and 4 µL were transferred into 

separate test tubes. The plant samples were prepared by transferring a 20 µL aliquot of the 

sample resuspended in 200 µL MeCl2 into a new test tube. Aliquots were dried under nitrogen 

gas and resuspended in 1 mL of 1% AlCl3 in MeOH. Samples were immediately vortexed and a 

marble was placed over the opening of the tube to prevent evaporation. After 30-40 minutes at 
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room temperature, a sample was transferred into a glass cuvette and assayed at 415 nm in a 

spectrophotometer. A blank of 1 mL 1% AlCl3 in MeOH was run first to zero the 

spectrophotometer. The remaining plant extracts were dried under nitrogen gas and stored in the 

freezer at -20 °F.  

4.4 Transplantation of GLS Artemisia annua plant 

 To investigate whether an artemisinin-glandular trichome null mutant cultivar in the 

Weathers lab, glandless (GLS) (Duke et al., 1994), was able to be colonized by G. intraradices, a 

plant was transplanted into Pro-Mix HP Mycorrhizae soil after growing in the standard soil in a 

climate-controlled growth chamber. When transplanted, the GLS plant was of approximately the 

same developmental age as the harvested SAM plants. The GLS plant was grown on the 

windowsill under the same conditions as plants of the SAM cultivar for two weeks. The GLS 

plant was harvested, and its roots were examined for mycorrhizal colonization. 

4.5 Determination of root colonization 

To visualize root colonization by mycorrhizae, the method of Phillips and Hayman 

(1970) modified by Dr. Melissa Towler was used. Fresh root samples were taken from all four 

soil conditions, cleaned in tap water to remove soil particles, and soaked in a 50% EtOH solution 

(prepared with diH2O) for at least one week after soil was removed. For some plants, including 

all SAM plants grown from cuttings in Pro-Mix HP Mycorrhizae soil, the roots were cleared 

with 10% KOH by autoclaving them in this solution for 60 minutes. After cooling and rinsing 

with distilled water, the roots were stained with 0.05% Trypan blue (Lot #MKBP3291V) in a 

1:1:1 mixture of water, glycerol, and 85% lactic acid (w/w) (Lot #109H0006) (Phillips and 

Hayman, 1970) and autoclaved for an additional 60 minutes. In the remainder of the plant 

samples, an altered method was used. The roots were cleared with 10% KOH by autoclaving for 

20 minutes, cooled and rinsed with distilled water, and stained with 0.05% Trypan blue (Lot 

#MKBP3291V) (Phillips and Hayman, 1970) by autoclaving for an additional 10 minutes. For 

both methods, the roots were de-stained with a 1:1:1 mixture of water, glycerol, and 85% lactic 

acid (w/w) (Lot #109H0006). The stained root samples were observed using a compound light 

microscope. A typical root structure can be seen in Figure 6. Mycorrhizal colonization was 

measured by observing root segments for the presence or absence of fungal structures, such as 
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hyphae, vesicles, arbuscules, or spores that would stain blue. The number of roots with those 

structures was recorded. 

4.6 Statistical analysis 

All experimental conditions had at least 4 replicates, and all values were represented as 

the mean ± standard deviation. Statistical significance was determined using a two sample t test 

assuming unequal variances with a p value of ≤ 0.05. 
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5. Results 

5.1 Effect of mycorrhizae on biomass – total leaf, stem, root, and overall mass 

 The SAM cultivar grown in Pro-Mix HP Mycorrhizae soil from cuttings had a significant 

increase in average biomass for root mass when compared to SAM grown in standard soil 

(Figure 9a). When grown in autoclaved soil, there was a significant decrease in stem, root, and 

total biomass compared to plants grown from cuttings in the respective unautoclaved soils. There 

was no significant difference between any of the experimental groups when comparing total leaf 

mass. Interestingly, these trends were not observed when the SAM cultivar was grown from 

tissue culture (Figure 9b). The stem biomass for SAM grown from tissue culture in Pro-Mix HP 

Mycorrhizae soil was significantly greater than SAM in standard soil. No other significant 

differences were observed between the experimental groups for plants originating from tissue 

culture. The tissue culture results suggested that autoclaving the two soil types did not affect the 

biomass of those plants. 

5.2 Effect of mycorrhizae on growth – height, leaf number, inter-nodal length 

 The SAM cultivar grown in autoclaved soils from cuttings achieved significantly less 

height compared to plants grown in unautoclaved soils (Table 3). No significant differences were 

observed between the experimental groups for plants grown from cuttings in terms of number of 

leaves. All plants were harvested at approximately the same developmental stage with 19-27 

mature leaves. The SAM cultivar grown in Pro-Mix HP Mycorrhizae soil from cuttings had 

significantly greater inter-nodal length when compared to SAM grown in standard soil and 

autoclaved soil (Table 3 top). Plants grown in unautoclaved soils had a significantly greater 

inter-nodal length than those grown in autoclaved soils. This trend was not observed in the SAM 

cultivar grown from tissue culture, as differences between all experimental groups were not 

significant (Table 3 bottom). Although plants grown from cuttings and tissue culture were grown 

for 4-6 weeks under the same conditions and then harvested with approximately the same 

number of leaves, the heights and inter-nodal lengths of plants grown from cuttings were about 

50% greater than plants grown from tissue culture. 
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Figure 9: Change in biomass of A. annua SAM cultivar after growth in two soils ± 

autoclaving: (a) Plants grown from cuttings and (b) plants grown from tissue culture. At harvest, 

plants had 19-27 leaves. Leaf mass represents the sum of the masses of all leaves on the plant. 

Total mass represents the sum of total leaf, stem, and root mass. Three pair-wise comparisons 

were made. a,b compares Pro-Mix HP Mycorrhizae ±autoclaving (SM v. SMA, SMT v. SMAT); 

l,m compares non-autoclaved Pro-Mix HP Mycorrhizae with MetroMix 360 (SM v. S, SMT v. 

ST); y,z compares MetroMix 360 ±autoclaving (S v. SA, ST v. SAT). Bars showing different 

letters indicate significant differences between treatments according to the Student's t test 

assuming unequal variances (p≤0.05). 
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Table 3: Average growth of A. annua SAM cultivar after growth in two soils ± autoclaving. 

Experimental 

Group 
Height (cm) 

Number of 

Leaves 

Inter-nodal 

Length (cm) 

SM 28.94 ± 0.43 al 22.88 ± 0.15 al 1.26 al 

SMA 20.88 ± 1.91 b 22.20 ± 0.97 a 0.93 b 

S 25.79 ± 0.19 ly 24.38 ± 0.32 ly 1.06 my 

SA 18.56 ± 0.64 z 21.43 ± 0.07 y 0.87 z 

Experimental 

Group 
Height (cm) 

Number of 

Leaves 

Inter-nodal 

Length (cm) 

SMT 11.71 ± 0.41 al 24.14 ± 0.60 al 0.48 al 

SMAT 11.04 ± 0.42 a 24.60 ± 0.68 a 0.45 a 

ST 10.34 ± 0.48 ly 23.00 ± 0.27 ly 0.45 ly 

SAT 9.60 ± 0.17 y 22.5 ± 0.43 y 0.42 y 

Top: plants grown from cuttings; Bottom: plants grown from tissue culture. At harvest, plants 

had 19-27 leaves. Inter-nodal length was calculated by dividing the stem height by the leaf 

number. Three pair-wise comparisons were made. a,b compares Pro-Mix HP Mycorrhizae 

±autoclaving (SM v. SMA, SMT v. SMAT); l,m compares non-autoclaved Pro-Mix HP 

Mycorrhizae with MetroMix 360 (SM v. S, SMT v. ST); y,z compares MetroMix 360 

±autoclaving (S v. SA, ST v. SAT). Bars showing different letters indicate significant differences 

between treatments according to the Student's t test assuming unequal variances (p≤0.05). 

 

5.3 Effect of mycorrhizae on flavonoids 

 SAM grown in autoclaved standard soil from cuttings had significantly less total 

flavonoids than SAM grown in unautoclaved standard soil, but only in leaves 15 and 16 (Figure 

10a). No other statistically significant differences were observed among any experimental groups 

for plants grown from cuttings. Total flavonoid content was greatest in the ShAM for all four 

experimental groups from cuttings. Similarly, there were no statistically significant differences in 

total flavonoid content among all four experimental groups grown from tissue culture (Figure 

10b). The ShAM produced the greatest total flavonoid content for all four experimental groups 

grown from tissue culture. 
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Figure 10: Change in total flavonoid concentration in A. annua SAM cultivar after growth 

in two soils ± autoclaving. (a) Plants grown from cuttings (b) Plants grown from tissue culture. 

At harvest, plants had 19-27 leaves. ShAM, shoot apical meristem; L, leaf number. Three pair-

wise comparisons were made. a,b compares Pro-Mix HP Mycorrhizae ±autoclaving (SM v. 

SMA, SMT v. SMAT); l,m compares non-autoclaved Pro-Mix HP Mycorrhizae with MetroMix 

360 (SM v. S, SMT v. ST); y,z compares MetroMix 360 ±autoclaving (S v. SA, ST v. SAT). 

Bars showing different letters indicate significant differences between treatments according to 

the Student's t test assuming unequal variances (p≤0.05). 

al

al al al

a

a

a
a

ly

ly
ly

ly

y

y

y z

0

500

1000

1500

2000

2500

3000

ShAM L 5,6 L 11,12 L 15,16

µ
g/

g 
FW

SM n=8

SMA n=5

S n=8

SA n=7

a

al

al

al al

a

a

a a

ly

ly

ly
ly

y

y

y y

0

500

1000

1500

2000

2500

3000

ShAM L 5,6 L 11,12 L 15,16

µ
g/

g 
FW

SMT n=7

SMAT n=5

ST n=8

SAT n=4

b



   
 

 30  
 

5.4 Effect of mycorrhizae on artemisinin 

 No statistically significant differences were observed in the amount of artemisinin present 

in plants grown from cuttings (Figure 11a). No trends were observed when comparing 

experimental groups across different leaf sample points. Interestingly, artemisinin content in the 

ShAM and leaves 5 and 6 of all plants grown from tissue culture was much less than that 

observed for the developmentally identically tissues in plants grown from cuttings. In leaves 11 

and 12, SAM grown in autoclaved Pro-Mix HP Mycorrhizae soil from tissue culture had a 

statistically significant increase in artemisinin content compared to SAM grown in unautoclaved 

Pro-Mix HP Mycorrhizae soil (Figure 11b). In contrast, leaves 15 and 16 of SAM grown in Pro-

Mix HP Mycorrhizae soil from tissue culture experienced a statistically significant decrease in 

artemisinin content compared to SAM grown in standard soil. No other statistically significant 

differences were observed between experimental groups of plants grown from tissue culture. 

5.5 Root Colonization  

 No mycorrhizal fungal structures were observed in the roots of plants from any of the 

experimental SAM groups; there was no Trypan blue staining. A representative root sample for 

each experimental group is shown in Figure 12. The artemisinin-glandular trichome null mutant 

cultivar, glandless (GLS), was transplanted as a plant that was similar in developmental age to 

the SAM plants that were harvested and grown in Pro-Mix HP Mycorrhizae soil for 2 weeks. 

Roots of GLS had blue-stained mycorrhizal fungal structures (Figure 13). 
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Figure 11: Change in artemisinin concentration in A. annua SAM cultivar after growth in 

two soils ± autoclaving. (a) Plants grown from cuttings (b) Plants grown from tissue culture. At 

harvest, plants had 19-27 leaves. ShAM, shoot apical meristem; L, leaf number. Three pair-wise 

comparisons were made. a,b compares Pro-Mix HP Mycorrhizae ±autoclaving (SM v. SMA, 

SMT v. SMAT); l,m compares non-autoclaved Pro-Mix HP Mycorrhizae with MetroMix 360 

(SM v. S, SMT v. ST); y,z compares MetroMix 360 ±autoclaving (S v. SA, ST v. SAT). Bars 

showing different letters indicate significant differences between treatments according to the 

Student's t test assuming unequal variances (p≤0.05). 
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Figure 12: Segments of SAM roots stained with Trypan blue at 100x magnification under a 

compound light microscope. Roots from SAM cultivar from cuttings or tissue culture grown in 

the two soil types ± autoclaving. SM, cuttings in Pro-Mix HP Mycorrhizae; SMT, rooted tissue 

culture in Pro-Mix HP Mycorrhizae; S, cuttings in standard soil (Metro Mix 360); ST, rooted 

tissue culture in standard soil; SA, cuttings in autoclaved standard soil; SAT, rooted tissue 

culture in autoclaved standard soil; SMA, cuttings in autoclaved Pro-Mix HP Mycorrhizae; 

SMAT, rooted tissue culture in autoclaved Pro-Mix HP Mycorrhizae. 
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Figure 13: Segments of GLS roots stained with Trypan blue at 400x magnification under a 

compound light microscope. Roots from GLS cultivar from plant transplanted and grown in 

Pro-Mix HP Mycorrhizae soil for 2 weeks. Fungal structures including vesicles and arbuscules 

are observed in the root cortical tissue. 
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6. Discussion 

 Our project analyzed artemisinin concentration and biomass for the SAM cultivar of A. 

annua when grown in Pro-Mix HP Mycorrhizae soil and in the standard soil used by the 

Weathers lab. Plant propagation by cuttings resulted in a significantly greater root biomass when 

grown in Pro-Mix HP Mycorrhizae soil than in the standard soil (Figure 9a). Mycorrhizal 

colonization increases lateral branching of roots which may explain the increased root biomass 

(Hanlon and Coenen, 2011). However, this was not observed in plants propagated by tissue 

culture as only stem biomass was significantly greater (Figure 9b). This observation supported 

prior research that showed an increase in A. annua stem biomass of plants colonized by two 

species of mycorrhizal fungus but no increase in root or leaf biomass (Rapparini et al., 2007).  

In general, the presence of mycorrhizae in the soil did not affect the amount of 

artemisinin produced by the plants (Figure 11). Although studies showed that A. annua increased 

in artemisinin after mycorrhizal colonization, different cultivars varied in their response 

(Chaudhary et al., 2008). These findings suggested that the SAM cultivar in the Weathers lab 

may not experience a significant response to exposure to mycorrhizae. Since artemisinin is 

produced in the glandular trichomes of the leaves, glandular trichomes should be observed in 

future experiments and compared amongst the experimental groups described here since these 

findings suggest that the Pro-Mix HP Mycorrhizae soil would not affect the density of glandular 

trichomes. This may explain why no significant change in leaf biomass or artemisinin content 

occurred. 

There may be other explanations for the contrast in our results with others who have 

studied mycorrhizal infection of A. annua. For example, all of the previous studies used seeds 

rather than cuttings or tissue cultured plantlets for plant propagation (Chaudhary et al., 2008; 

Mandal et al., 2014; Kapoor et al., 2007; Rapparini et al., 2007). The SAM cultivar is clonally 

maintained so seeds were not available. Furthermore, the mycorrhizal inoculum used in this 

experiment varied from those previously used. As mentioned in the Methodology section of this 

report, our project used a commercially available soil with mycorrhizal spores. The four prior 

studies added isolated spores to soil in addition to using chopped AM-colonized sorghum roots 

(Chaudhary et al., 2008; Mandal et al., 2014; Kapoor et al., 2007; Rapparini et al., 2007). Upon 

replication of this study, it is recommended that this method of adding isolated spores or chopped 

AM-colonized roots to the soil be used. An alternative method would be to use two different 
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types of the same brand of soil, one with an inoculum of fungal spores added and one without, to 

ensure that the only variable between the experimental groups is the presence of the 

commercially added mycorrhizal spores, not nutrient composition. To better follow the prior 

studies, chopped, colonized GLS roots could also be added to the soil to promote mycorrhizal 

colonization of plants of the SAM cultivar. 

To determine root colonization, this project used the procedure of Phillip and Hayman 

(1970). The previous research obtained a range of 50-80% root colonization as a percentage of 

examined root length (Chaudhary et al., 2008; Mandal et al., 2014; Kapoor et al., 2007). In this 

project, root colonization did not appear to be observed in any experimental group. However, the 

literature did not provide the duration that the samples should be autoclaved, which resulted in an 

investigation of an appropriate length of time to obtain clear images of the roots. To validate the 

efficacy of the adapted staining procedure and the Pro-Mix HP Mycorrhizae soil, the roots of 

another cultivar in the Weathers Lab, Glandless, were stained and observed (Figure 13). This 

process demonstrated that the Pro-Mix HP Mycorrhizae soil, with G. intraradices spores, can 

indeed infect the GLS cultivar and that the resulting mycorrhizal structures can be viewed 

through the use of the staining procedure. Therefore, the adapted staining procedure described 

here should be used in future studies. Additionally, mycorrhizal colonization of the GLS cultivar 

should be explored in future work in order to observe the effects of AM fungi on biomass, 

flavonoids, and artemisinin like this project accomplished for the SAM cultivar. 

To our knowledge, no published studies about the effects of arbuscular mycorrhizal 

colonization on flavonoid production in A. annua exist, and limited studies discussing the effects 

in other species of plants were found. Ponce et al. (2004) studied the effect of AM colonization 

by G. intraradices on Echinacea purpurea L. and observed an increase in flavonoid production. 

Therefore, this project aimed to explore these effects on total flavonoid concentration in the 

Weathers lab cultivar, SAM. The results, seen in Figure 10, show no significant difference in 

flavonoid content with plants grown in Pro-Mix HP Mycorrhizae soil. However for both plants 

propagated by cuttings and by tissue culture, the shoot apical meristem contained the greatest 

amount of flavonoids, which decreased with leaf age. This result was also observed for the SAM 

cultivar in a recent developmental study by Towler and Weathers (2015) that tracked the 

production of about 20 phytochemicals including artemisinin in A. annua. 



   
 

 36  
 

 Overall, our study suggested that the mycorrhizal fungus, G. intraradices, may not be 

competent at infecting the SAM cultivar of A. annua. It is interesting to note, however, that the 

method of propagation yielded quite different results. As previously mentioned, there was a 

statistically significant increase in root biomass for plants grown in Pro-Mix HP Mycorrhizae 

from cuttings but a statistically significant increase in stem biomass for plants grown in Pro-Mix 

HP Mycorrhizae derived from tissue culture (Figure 9), and there was also a difference in 

flavonoid concentration between the different propagation methods used, with plants derived 

from tissue culture producing less total flavonoids than plants from cuttings (Figure 10). Plants 

derived from tissue culture experienced markedly reduced heights and inter-nodal lengths by 

approximately 50% (Table 3), along with a decrease in artemisinin (Figure 11).  

Other studies showed that phytohormones, such as auxins, cytokinins, and gibberellins, 

may play an important role in initiating mycorrhizal colonization, and those could certainly be 

different in plants propagated by cuttings versus by tissue culture (Hanlon and Coenen, 2011). 

Auxins are primarily responsible for cell elongation during phototropism and gravitropism, and 

many commercially available root hormones contain the naturally-occurring auxin called indole 

acetic acid (IAA). In propagating the plants derived from cuttings, Hormodin 2 root-inducing 

hormone, which contains 0.03% IAA, was added; this is important to note, as it provided a 

possible explanation for the increase in biomass, flavonoids, and artemisinin in plants from 

cuttings compared to plants derived from tissue culture. Cytokinins are another type of growth 

regulator that are important in promoting cell division, particularly in plant roots; the synergistic 

relationship between cytokinins and other phytohormones like auxins are known to effect plant 

development. Gibberellins are plant hormones that have a number of effects on plants, including 

increasing shoot length and delaying aging of leaves (Boundless, 2014).  

Additional research has also indicated that signaling occurs to and from the plant root 

throughout different stages of the symbiosis (Harrison, 2005; Elias and Safir, 1987). Typically, 

before direct physical contact between the mycorrhiza and the plant roots, molecular signaling 

occurs, although the specific signaling events vary depending on the organisms involved. For 

example, during the interaction between rhizobium and legumes, the plant releases flavonoid 

molecules which results in the synthesis and release of Nod factor from the bacterium. The Nod 

factor signal is processed by legume root receptors, which initiates development of nodules and 

physical contact (Harrison, 2005). The plant signal is richest in the root exudates of plants 
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derived of phosphate; therefore, examining root exudate from this cultivar, with and without 

phosphorous, may provide insight into this relationship (Harrison, 2005). Even more recently, 

strigolactones, which are thought to result from the carotenoid biosynthetic pathway and 

phosphate deprivation, have been identified as a possible plant signal that is released during the 

establishment of the initial mycorrhizal symbiosis (Mohanta and Bae, 2015). Strigolactones are 

hormones responsible for stimulating AM spore germination, and they have been identified as a 

component of plant root exudates. In turn, AM fungi produce Myc factors, which are perceived 

by plants and are analogous to the Nod factors from bacteria. Myc factors result in an increase in 

intracellular calcium, cell structural alterations, and changes in root transcriptional programming. 

In addition to Myc factor, AM release lipochitooligosaccharides to initiate symbiosis. With this 

knowledge, it would be advantageous to pursue a study that explores these signals in cultivars in 

the Weathers lab along with the spores of G. intraradices. Although the findings from this 

project suggested that the SAM cultivar is at its highest artemisinin production, the investigation 

of the symbiotic relationship with this plant and arbuscular mycorrhizal fungi should be 

continued by implementing the aforementioned suggestions.  
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7. Conclusions 

 Overall, the high-producing cultivar in the Weathers lab (SAM), propagated through the 

use of nodal cuttings or rooted tissue culture, did not show a significant increase in flavonoid or 

artemisinin content nor did it appear to be colonized by mycorrhizae. On the other hand, a null 

mutant cultivar in the Weathers lab (GLS), which does not produce any artemisinin, was 

colonized. The differences in biomass, flavonoid, and artemisinin between plants grown from 

cuttings and tissue culture, along with the variations in mycorrhizal colonization between the two 

A. annua cultivars in the Weathers lab, suggest that there is perhaps a signal or specific 

mechanism that should be further studied. In conclusion, this research is beneficial in providing 

insight into the ability of the arbuscular mycorrhizae G. intraradices to colonize A. annua 

cultivars at WPI which could ultimately lead to more affordable and efficacious antimalarial 

treatment.  
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Appendix A – Ingredients in Metro Mix 360 
 

Ingredients: 

Formulated Canadian Sphagnum peat moss, coarse perlite, bark ash, starter nutrient charge (with 

Gypsum) and slow release nitrogen and dolomitic limestone. 

 

 

 

Retrieved from: http://sungro.com/products_displayProduct.php?product_id=106&brand_id=17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 46  
 

Appendix B - Pro-Mix HP Mycorrhizae Specification Sheet 
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Appendix C – Plant Tissue Culture Rooting Media 
 

To make 1 L (adapted from Dr. Melissa Towler): 

20 g/L Sucrose (Prod. #S391, Lot #11B0391133A) (PhytoTechnology Laboratories) 

2.215g/L Murashige and Skoog medium (Prod. #M519, Lot #12E0519061B) (PhytoTechnology 

Laboratories) 

5 g/L Agargellan (Prod. #A133, Lot #11C0133030A)  

diH2O  

pH = 5.8 

 


