
GameWave: An Interactive, Educational Sound Exhibit

Project Number: FB02

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Art

in Liberal Arts and Engineering

Music and Technology Concentration

by

Rhiannon Chiacchiaro

Date: August 22, 2011

Approved:

 Prof. Frederick Bianchi, Project Advisor

Date

2

Abstract

Sound art is an increasingly relevant and creative branch of art, exploring various social,

economic, and academic ideas in real time. Sound artists look to the latest technology to record,

replay, and remix sounds around them or to create completely novel noises. GameWave is a

museum installation which uses a game-like interface to turn music into a creative learning

experience. Participants create their own music from well-known video game tunes via a classic

handheld controller. As they alter the song, they have immediate visual and auditory feedback of

the changes to the sounds. The waveform of the song displays itself while the changing music

plays from the speakers. Overall, GameWave is a fun introduction to sound waves which

encourages participants to create unique music in real time.

3

Acknowledgments

Thanks go out to the following people and organizations for their contributions to this project:

Professor Frederick Bianchi, for his guidance in the project and for providing the speaker system

and museum contacts necessary to get GameWave on its feet.

Alexander Goldowsky and the EcoTarium of Worcester for their cooperation and willingness to

help get GameWave out into the public sphere.

Halsey Burgund and Nina Simon for their advice and for being easily citable references.

The Willisson family for their unofficial sponsorship of the program, multiple hardware

donations, and overwhelming moral and technical support.

Rebecca Baron, Matthew Brenner, Solomon Ross, and Wendy Rowe for their professional and

thorough last minute editing.

4

Table of Contents

Abstract ... 2

Acknowledgments... 3

Table of Contents .. 4

Executive Summary .. 5

Introduction ... 6

Historical Background of Sound Art and Digital Music .. 8

The GameWave Project .. 15

Overview ... 15

Main Demographic and Installation .. 18

Methodology ... 20

Hardware ... 21

Software ... 26

Results ... 33

Overall Results .. 33

Obstacles and Solutions ... 34

Possible Future Projects... 36

Conclusion ... 38

Appendix A: Glossary of Terms ... 39

Appendix B: Program Code .. 41

Appendix C: Index of Figures and Tables .. 47

References ... 48

5

Executive Summary

The use of sound in the art world has been growing in importance and relevance for over

100 years. Sound art employs noises, music, and ambient sounds for artistic or educational

exhibitions. Harmonics, sound interplay, and multimedia are all important aspects of sound art,

and have been since Erik Satie performed his first “Furniture Music” piece in 1902 Paris. Since

then, sound as an art form has exploded into many different genres and has become a creative

and effective tool for communicating social, technological, and academic concepts.

GameWave is an interactive sound art exhibit which teaches participants about the

dynamic nature of sound waves through music. Through the use of a handheld controller,

participants can cycle through a song, altering tempo, instrumentation, and pitch. A large speaker

setup plays the music, while a display screen shows how the sound waves are affected by these

changes. GameWave combines musical creativity with basic physics to teach participants about

sound through their own unique adaptations of well-known video game tunes.

The GameWave system was coded in Python, using a special library called Pygame. This

library was created specifically for the purposes of game design and features an extensive

Musical Instrument Digital Interface (MIDI) and music mixer function database. The songs used

in GameWave are free MIDI versions of theme songs from classic NES video games: Super

Mario Bros., Tetris, and The Legend of Zelda. Songs may be added to or removed from this list

thanks to a song loader and playlist queue.

Due to the various logistics involved in setting up a museum installation, this project will

be an ongoing collaboration with the EcoTarium of Worcester, and should be on display some

time during Fall 2011. The actual time period for exhibition will be determined at a later date.

6

Introduction

Artists have long used creative media as a tool for communicating social and academic

ideas in a language that is easily understandable and translatable. As artistic technology has

progressed through carvings to sculptures and paintings to digital media, artists have been able to

refine and enhance their works to varying effect. From sophistication to the avant-garde, from

tragic snapshots to comedic interactions, the contents of the world’s museums, galleries, and

even streets have evolved into a fascinating display of emotional and educational expression.

One of the more recent and increasingly prevalent artistic genres is sound art. An

expansive branch of creative design, sound art features works defined by recorded and remixed

music, ambient sounds, purposeful cacophonies, and audio/visual relationships. From the earliest

experiments with synthesizers, Theremins, and tape loops up through today’s advanced music

mixing and recording software, sound artists have been breaking technological barriers to find

new methods of creative communication. Applications of these methods have been used to

explore social issues, such as race and poverty, as well as new methods of learning.

At the Museum of Science in Boston, sound art’s societal implications have been seen in

the exhibit entitled Voices Without Faces; Voices Without Races,
1
 a very simple yet poignant

installation by Halsey Burgund. In a large, square room, three projectors display a looping video

of a drive through Eastern Massachusetts, including Boston and its suburbs. As the drive

continues, voiceovers are played of people who were asked to comment on race and its effect on

their lives. These people’s faces are never shown and they are left otherwise anonymous, but

their words and voices combine with the varying backdrops of the Greater Boston Area to

present a full picture of race’s societal impact.

1
 http://halseyburgund.com/work/vwf/

7

The above example demonstrates only a small portion of sound art’s ability to inspire and

educate. The GameWave project seeks to expand these possibilities by allowing users to create

their own sound art and instantly receive both educational and artistic results. Through the use of

interactive multimedia, participants will be able to first hear and see a song’s normal pitch,

speed, and instrumentation. As they manipulate any or all of these musical aspects, they can

watch as the sound waves transform in response. Once the users begin to grasp the concepts of

sound manipulation, they can then continue to change the song to create either a sound or a

waveform that they like. By experimenting in this manner, users are able to both learn about the

dynamic nature of sound and have the satisfaction of creating their own, unique music.

8

Historical Background of Sound Art and Digital Music

 Sound has been an integral part of the art world since the turn of the 20th century. While

music has existed as its own genre since cavemen danced to skin drums, it wasn’t until the early

1900’s that people really began to explore alternative sound and noise as a legitimate basis for

art. The earliest forms of sound art came in the form of ambient music. In 1902, Erik Satie

performed a piece that he called “Furniture Music” at the opening of a Parisian gallery.
2
 He

gathered together a small orchestra and played in a corner of the gallery, begging participants to

pay no attention to him and simply continue looking about. This performance ended up being

somewhat a failure for Satie, as gallery patrons continued to stop and listen even though they

were continuously told to pretend the band was not there. Though his performance was

unsuccessful, it paved the way for the extremely widespread use of background music. Today,

almost every store, restaurant, and shopping center has some sort of ambient music playing.

Satie’s “Furniture Music” was by no means his only work. An eccentric Impressionist

trained in classical music, Satie explored variations in music composition that appear at first

glance to simply be ways to upset conductors and players.
3
 For example, various works of his

contained instructions such as “Work it out yourself” or “Light as an egg” and at times had no

actual bar lines or recognizable form. This extreme version of avant-garde music is similar to

works such as “The Faerie’s Aire and Death Waltz” by John Stump, a piece arranged “on

accident” with instructions such as “Release the penguins.” One of Satie’s most famous pieces,

“Vexations”, was comprised of a single sheet of music which was repeated 840 times.
4

2 http://newmusicbox.org/article.nmbx?id=2417
3
 http://www.jazclass.aust.com/satie.htm

4
 http://www.wfmu.org/~kennyg/popular/articles/satie.html

file:///C:/Users/rhichi/Desktop/Schoolwork/MQP/Final%20Report%20Drafts/http
file:///C:/Users/rhichi/Desktop/Schoolwork/MQP/Final%20Report%20Drafts/http
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm
http://www.jazclass.aust.com/satie.htm

9

Figure 1: Erik Satie’s “Vexations”, with a note advising the performer to meditate and prepare for the piece.5

Though most musicians were daunted by the task of playing such a piece, it was none other than

the famous John Cage who finally put together an ensemble of pianists to play in two hour shifts

until, over 18 hours later, the piece was finished.

As the 20th century continued, a group of artists calling themselves Futurists began to

take the stage.
6
 An Italian group, the Futurists (or i Futuristi) were led by F.T. Marinetti, an

Italian poet who used his concept of parole in liberta (“words in freedom”) to give his poetry an

5
 http://www.satie-archives.com/web/jpg/vexscor2.jpg

6
 http://newmusicbox.org/article.nmbx?id=2417

http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417
http://newmusicbox.org/article.nmbx?id=2417

10

extra tonal quality. His 1926 work “Bombardamento di Adrianapoli” mimicked the sounds of

battle with its expressive use of onomatopoeia.
7
 Multiple books, articles, and manifestos were

written by Marinetti and other Futurists, including Luigi Russolo’s The Art of Noises.
8
 In it, he

delves into the exploration of ambient sounds and their inherent musical potential. Russolo

categorizes six distinct families of noises that were used extensively by the Futurist movement.

Table 1 below lists each of the six families. These six families have remained the basis upon

which many sound artists base their work.

1 2 3 4 5 6

Rumbles

Roars

Explosions

Crashes

Splashes

Booms

Whistles

Hisses

Snorts

Whispers

Murmurs

Mumbles

Grumbles

Gurgles

Screeches

Creaks

Rumbles

Buzzes

Crackles

Scrapes

Noises obtained by

percussion on

metal, wood, skin,

stone, terracotta,

etc.

Voices of animals and

men

Shouts

Screams

Groans

Shrieks

Howls

Laughs

Wheezes

Sobs

Table 1: Russolo’s six families of noises.9

Sound art remained part of the modern art movement for decades, spilling over into the

Impressionist and Dadaist movements. In this forum, artists could expand their creative,

sometimes eccentric ideas into a completely new medium. Whereas visual art allowed an artist to

show an emotion or idea, sound allowed them to actually tell a story through words and noises. It

was during the early to mid-1900’s that this experimentation led sound artists to really interlace

their work with science and technology. In 1948, French radio broadcaster Pierre Schaeffer

7
 http://youtu.be/Tn0dkz9Polg

8
 http://www.unknown.nu/futurism/noises.html

9
 Ibid.

http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html
http://www.unknown.nu/futurism/noises.html

11

invented what we know today as electronic music. Named musique concrete, Schaeffer created a

type of music that took sounds from nature and used tapes and speaker setups to remix the

original recordings.
10

 From the very first electronic music studio, he took samplings of a variety

of sounds, filtering them through tape loops, microphones, and speakers to create music that

often gave off a futuristic vibe. In fact, musique concrete was the basis for much of the early

science fiction movie and television music, including the theme song for the BBC show Doctor

Who. The song was written by Ron Grainer and recorded by Delia Derbyshire, who used tone

generators and tape loops (created by physically cutting and reconnecting ends of magnetic tape

into different sized loops) to give the song its signature melody.
11

 The enormous popularity of

the song fueled the sound art movement and opened new doors to musical experimentation.

 The next few decades saw amazing strides regarding technology and the rise of digital

music. In the late 1970’s and throughout the 1980’s, new wave and synth-pop music began to

reshape the traditional face of rock and popular music.
12

 Bands such as Devo, The Eurythmics,

and Soft Cell began to incorporate keyboards and synthesizers into their songs, bringing a more

futuristic and electronic sound to their music. Eventually, some synth-pop groups decided to

forgo other instruments altogether, relying solely on multiple keyboard synthesizers to emulate

everything from percussion to melody and even orchestral harmony. With this new marriage of

technology and music, artists began to look even further into what was possible through simple

computer manipulation. This revolution made way for the introduction of entirely new genres

such as techno, house, and club music. Songs in these genres often employ completely digital

sounds, though they may also include recordings of voices or clips from other audio sources.

10

 http://www.musespace.com/writings/essays/musique.html
11

 http://markayres.rwsprojects.co.uk/DWTheme.htm
12

 A History of Rock Music 1951-2000

http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://www.musespace.com/writings/essays/musique.html
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm
http://markayres.rwsprojects.co.uk/DWTheme.htm

12

Figure 2: Devo advertising the Mobile Synthesizer, also called the Keytar.13

With these new musical formats, composers and artists became one and the same. Many

DJs today, such as the world-famous Dutch artist Tiësto, are also well known for their own

songs, which they can conceive, record, and play for worldwide audiences without any external

assistance. In fact, much of techno’s diversity and popularity stems from the fact that it has

become possible and sometimes exceedingly simple to create music from one’s own home. Even

most lower-end laptops are capable of handling simple music creation and editing software, and

keyboard synthesizers have become more compact and available at affordable prices. Of course,

a professional setup is much more advanced, but many artists can still fit their entire studio into

one or two rooms of their home, as opposed to requiring giant recording studios or churches with

full pipe organs.

13

 http://4.bp.blogspot.com/_2JJnXrU37vY/TM2jgjdmdbI/AAAAAAAAARE/YHB8Sh-s-

j0/s1600/DevoMoogLiberationMobileSynthesizer1982.jpg

13

Figure 3: At-home studios like this one have become increasingly common alternatives to full recording booths.14

 Along with the newly developed hardware, digital music and experimental sound art have

led to the creation of music software that can be boiled down to simple programming. Whereas

traditional instrumental or vocal music is based on vibrations in the instrument or voice box,

music formats such as MIDI (Musical Instrument Digital Interface) can be distilled down to

basic data streams and hexadecimal codes. In fact, MIDI programming allows composers, if they

so wish, to create entire songs from scratch without needing a synthesizer at all. Free programs

such as Anvil Studio even have a built in GUI so that a click of the mouse is all that is needed to

create tones that sound like they come from one of 128 possible instruments. Additionally, music

editing programs such as Audacity allow the user to alter songs in other formats, such as MP3,

through a wide array of musical effects. Between these two types of programs - music synthesis

14

 http://homerecordingstudiomicrophone.files.wordpress.com/2011/02/ed-victor-home-recording-studio.jpg

14

and editing - digital sound artists have been given the freedom to delve more deeply into

complex methods of conveying an artistic idea and creating dynamic, relevant works that would

not have been possible with just human beings and instruments.

 Today’s sound artists are able to run ongoing installations for weeks, months, or even

years non-stop. The environments available to them are nigh limitless, with sound art exhibits

being run indoors or outside, rain or shine, with or without interaction from passersby. Even

searching online for sound art exhibits in most cities will produce lists of installations that have

been placed in the area from a wide variety of artists and groups. The Greater Boston Area alone

boasts sound art festivals, museum features, and educational workshops on sound art and digital

music design.
15

Without a doubt, sound has become an increasingly vital part of the art world, and has

only become more popular as technology advances and people are able to explore their creative

sides without needing years of instrumental or vocal lessons. Smartphones, computers, MP3

players, and even custom-developed devices are capable of interacting with music and creating

interactive experiences for the listener. Thanks to digital sound and music, the normally

cacophonous noises of nature and society are being coalesced and shaped in new ways, allowing

artists to hold a mirror up to the face of humanity and explore who and what we truly are.

15

 Google Search: sound artist

15

The GameWave Project

Overview

The GameWave project was first conceived as an attempt to create an interactive sound

design involving a specific speaker setup. Originally envisioned as a type of sound wall, the idea

eventually shaped itself into something of an educational simulation. The premise is simple:

well-known, classic video game songs will be played through a unique speaker setup. The

museum participants can interact with the song via a controller, and see how the sound is

changing on a fundamental level via a monitor displaying the real-time waveform.

GameWave requires four main hardware components:

● A computer to store the music and run the program

● A monitor to display the changing sound wave

● A handheld device to alter the music

● A speaker setup to play the music

The specific details of each piece are explained in the Hardware section of the Methodology.

Additionally, the program itself is coded using the Pygame library for the Python programming

language. More details on the program itself can be found in the Software Section of the

Methodology, and the entire code is available in Appendix B.

Because GameWave works with MIDI files, there were many qualities that could be

altered in the track. After considering which pieces of a song would be the most educational,

noticeable, and engaging to play with, it was decided that the exhibit would focus mainly on

pitch, tempo, and instrumentation. Pitch and tempo are the two most basic qualities of music,

even beyond rhythm or melody. Every note that is played is nothing more than a specific pitch

played for a certain duration, which is dictated by the size of the note, the time signature, and the

16

tempo of the song as a whole. Instrumentation was also selected because of the drastic ways that

it can affect the overall sound quality of a song. There is a distinct difference between hearing a

note played on a flute and hearing that same note played on a guitar or pipe organ.

Instrumentation also adds to the entertainment factor, as it allows for some humorously out of

place sounds to play. For additional customization, the controller can pause the current song and

can scroll through the playlist. An idle mode has also been implemented, meaning that after five

songs have been played with no user interaction, the music will stop until someone else picks up

the controller and presses the start button. This additional functionality is mainly for

environmental courtesy, so that the songs are not continuously playing when nobody is around

the exhibit. As an additional setup feature, the UI is designed so that the program runs

automatically when the computer is turned on at the beginning of the day, with a backup icon in

case the auto-loader fails.

GameWave goes above and beyond the idea of a simple sound installation. Instead of

trying to make an observation about culture or explore a new musical technology, GameWave

was created to be an interactive learning experience about the nature of sounds. Blending art,

education, and human interaction in this way is extremely important, as it helps further

understanding about the way we are able to absorb, process, and retain information.

Educational games and simulations are some of the most effective teaching tools that we

have, partly due to the high amount of stimuli surrounding them. In her book, The Participatory

Museum, interactivity expert and WPI alumna Nina Simon writes, “Interactive exhibits, when

successfully executed, promote learning experiences that are unique and specific to the two-way

17

nature of their design.”
16

 It is important to recognize this “two-way nature” because of the

manner in which it stimulates learning.

In recent years, there has been an emphasis on the fact that people learn in different ways,

be it visually (by seeing), aurally (by hearing), or kinesthetically (by doing). GameWave, along

with many other successful learning exhibits, is able to teach effectively by engaging all three of

these types of learning. By having a physical controller in their hands, users decide which sound

qualities they are changing at any given time. This gives them a better grasp of the situation

because they can more easily map a specific button to a corresponding change in sound and from

there deduce how to recreate that change. From an auditory standpoint, the instant feedback from

the speaker system allows the user to hear what is happening as they experiment with the

different buttons, instead of just being told what theoretically could happen to pitch, volume, etc.

if certain sound qualities were changed. Finally, the sound wave output allows users to

physically see why the sounds are changing the way they do. By being able to see the different

sizes and shapes of the waves, they can more easily identify how musical qualities like tempo

and pitch correlate and better understand the real world effects of scientific terms such as

frequency and wavelength. Through this combination of learning and playing, GameWave

provides a dynamic, unique experience for every user, and makes exploring the physics of sound

easy and entertaining.

16

 http://www.participatorymuseum.org/chapter1/

file:///C:/Users/rhichi/Desktop/Schoolwork/MQP/Final%20Report%20Drafts/http
file:///C:/Users/rhichi/Desktop/Schoolwork/MQP/Final%20Report%20Drafts/http

18

Main Demographic and Installation

GameWave is an effective educational and entertainment tool for users of a broad age

range. Though it was primarily designed for pre-teens and early adolescents, the interface is

simple enough that younger children can enjoy the process of making their own music, even if

they don’t understand the science behind it. Older participants can also get enjoyment out of it

thanks to the nostalgia of using a Nintendo controller and being able to play with classic

Nintendo Entertainment System (NES) songs. Due to the fact that the exhibit can work simply by

experimenting with buttons, as opposed to requiring a specific series of steps to function,

learning can begin almost immediately after picking up the controller. Between the simplistic

interface and the controller button map that will be provided, users of any age will be able to

quickly pick up on the various functions of each button. Even young children who don’t

understand the musical terms will be able to learn the definitions simply by seeing, for example,

that the buttons labeled “Tempo” make the song go faster or slower, a change which is instantly

recognizable to the ears.

Because of the target age range and the hands-on approach that GameWave uses, the

project will be installed at the EcoTarium, Worcester’s local science and nature museum.
17

 The

EcoTarium is an indoor and outdoor museum with live animals as well as interactive exhibits.

Exploring a broad range of subjects, from air currents and weather patterns to minerals and

microorganisms, the museum is a local fixture and is extremely popular with the younger

demographic. In addition to having the benefit of being close by, the EcoTarium also prides itself

on its interactivity. Multiple temporary and permanent exhibits inside the building contain hands-

on games, demonstrations, or experiments. Visitors are encouraged to touch many of the pieces

17

 http://www.ecotarium.org

19

on display, and some exhibits even allow patrons to be part of the creative process by letting

them, for example, make their own bubbles or paper helicopters. This philosophy of learning by

doing syncs up perfectly with the point of GameWave, and thus is the perfect location to

implement the installation.

20

Methodology

In order to create an installation worthy of display in a museum, the first step was to

create a well-defined set of guidelines and requirements for the project. After experimenting with

MIDI applications, exploring the most vital qualities of sound and digital music, and determining

the best methods for simultaneously teaching and entertaining, the following set of goals was

devised.

The GameWave system must be able to:

● Entertain and educate in a brief period of time without being overwhelming

● Receive input from a handheld video game controller

● Update a MIDI file of a classic video game song in real time based on said input

● Alter the following qualities of the song:

○ Pitch

○ Tempo

○ Instrumentation

● Display a visual representation of the current song alterations

● Have an interface that can be learned within a few seconds of being introduced

● Be turned on daily by museum operators with minimal required setup

● Make sense as a cohesive, artistic piece

 Throughout the course of this project, all of the objective expectations were met, though

some of the more subjective goals, such as entertainment, can only be tested once the project has

been in the museum for a while. In addition, extra features, such as pause, song select, and idle

mode were also successfully implemented.

21

Hardware

 As was discussed earlier, the GameWave setup requires four main hardware components

to run. The following details the specific piece that was used as well as how it was obtained and

prepared for use in the GameWave installation.

Main Computer

The main computer for the project had a few vital requirements. First, it would need

enough memory to be able to hold an instance of the Ubuntu operating system, the Python

program, any MIDI synthesizers that might have to be added in the software, multiple Python

library documents, and the MIDI and configuration files for the song. Together, these programs

and files require at least 256 MB. For the music aspect, there must be a sound card that is at least

capable of playing MIDI songs and, if it didn’t come with a MIDI synthesizer (as some older

computers do), the CPU must be capable of processing MIDI via a program such as TiMidity.

Additionally, both a microphone and speaker port were necessary as well as a VGA connection

to ensure that both the audio and visual outputs would function properly.

Figure 4: The GameWave computer tower.

22

 The computer that GameWave uses is a Dell Inspiron 570. It has 4GB of DDR3 RAM

and an AMD Athlon II X2 processor with a clock speed of 2.9 GHz. The SATA hard drive is

500GB and there is 7.1-channel audio support. There are VGA and HDMI connections, as well

as multiple USB ports and a microphone and speaker jack. This computer tower is brand new

and was purchased for the project by the Willisson family. In order to prepare it for GameWave,

a new OS was installed, as well as various programs for program writing, debugging, and

playing MIDI (see Methodology: Software).

Monitor

 There were only two main considerations when looking at the choice of monitor in terms

of functionality. First, it needed to be capable of displaying enough color to show the sound

wave in a vibrant and clear image. Secondly, it needed at least a VGA connection. As these

requirements are basically standard in most working monitors today, finding a monitor was

simple.

Figure 5: The GameWave monitor.

23

The monitor used in GameWave is a Daewoo C729BBK CRT monitor. It has a VGA

connection and is capable of more than high enough resolution for the purposes of the project.

This monitor was also donated, courtesy of the Willisson family. Nothing special needed to be

done to make it work, and the monitor itself already came with a VGA cable to attach to the

computer.

Controller

For the GameWave controller, there were a few possible models that would have been

feasible to use. The basic requirements for it included a design that didn’t have too many

confusing buttons and joysticks, but still had at least five buttons (two for pitch and tempo each

and at least one for instrumentation changes). Anything beyond that just allowed for additional

functionality. Additionally, the controller had to specifically be for a computer, preferably with a

USB connector.

Figure 6: The GameWave controller.

24

The controller that GameWave uses is a Retrolink NES controller with USB connection.

It is a very basic controller, with one directional pad, start and select buttons, and two action

buttons. The NES design is a perfect choice for multiple reasons. First, it goes along with the

classic NES game music that the project plays, making it thematically appropriate and adding to

the nostalgia factor for older users. Secondly, it is extremely simplistic in design, meaning that

no extraneous buttons will be left over. Finally, it was extremely inexpensive and easy to find

online. This is an important quality, because in a setting like a children-friendly museum, there is

always the risk of pieces breaking and needing to be replaced. Additionally, this specific

controller works as a Plug-and-Play device, meaning there was no extra software that needed to

be purchased or installed to make it work. In order to use it in the program, all that was needed

was a basic set of button mapping functions (see Methodology: Software for the button mapping

used in the project).

Speakers

The speaker system was the basis for the entire GameWave project. As such, the project

itself was built around the speakers that we already had. Since there was a choice of available

speaker setups for the project, the decision came down to a few factors. There had to be at least

two full speakers to allow for some amount of sound immersion, and just for sake of having an

appropriate volume for a crowded museum full of children. Also, it needed to be able to be

connected directly into a computer audio jack. The final consideration was aesthetics. This was

not so much a problem with the computer and monitor since they will ideally be placed inside an

exhibit booth of some sort. However, the idea of a sound wall was one of the foundations of the

project, so having visible speakers was important.

25

The final speaker setup is actually a left over design from a previous project completed

by a group of WPI students. The piece is made of two frames built from wood and copper tubing,

through which ten tweeter and two woofers each are strung. The back is also fitted with a strip

light, giving the setup a bluish glow when lit. This minimalistic and artistic design fits in

perfectly with the GameWave design, as the slightly angled piping is actually somewhat

reminiscent of the original Donkey Kong game, which can help add to the enjoyment for older

participants. These speakers were provided by Professor Bianchi and the WPI music department

and only minor repairs had to be done (such as reaffixing some speaker heads to the pipes)

before it was ready to be plugged in to the final system.

Figure 7: The GameWave speakers (1 of 2 shown).

26

Software

Python and Pygame

 In order to successfully code the GameWave program, the language used had to

meet a group of requirements for ease, compatibility, and versatility. One of the most important

aspects of the language was that it needed to employ syntax that a non-programmer could be

comfortable using, because the project did not have a heavily experienced coder working on it.

Additionally, the language had to include libraries or add-ons that would provide audio and

visual support and could work with MIDI files. It was also necessary for there to be some sort of

joystick configuration library or an easily customizable method of taking input from a USB

controller. Finally, the finished program had to be something universally available and

executable on modern hardware.

Taking all of these stipulations into account, the option that immediately jumped out was

Python. An open-source programming language, Python has a very basic syntax structure, as

well as a wide array of user and developer-created libraries for a variety of applications. One

such library is Pygame,
18

 which allows users to create well-developed and highly customizable

computer games. Though the graphics capabilities are somewhat low-level, they are more than

sufficient for the requirements of GameWave. Additionally, Pygame comes complete with

joystick compatibility, and can program all aspects of any modern controller, including joysticks,

direction hats, buttons, and triggers. The aspect that really settled the decision, however, was the

extensive MIDI library. Pygame contains functions that allow the programmer to write out actual

MIDI messages and send them to a file that is being streamed in real time. Thanks to this

combination of input and output capabilities, as well as the large internet database of relevant,

18

 http://www.pygame.org/

http://www.pygame.org/
http://www.pygame.org/
http://www.pygame.org/
http://www.pygame.org/
http://www.pygame.org/
http://www.pygame.org/
http://www.pygame.org/
http://www.pygame.org/

27

well-documented programs and functions, Pygame became the clear choice for the GameWave

project.
19

GameWave uses three Pygame libraries: pygame, pygame.midi, and pygame.font.

Pygame is the basic library, which holds all of the joystick, display, and standard audio output

functions. The MIDI library is a special addition which allows the MIDI data to be written

directly into the song file as it streams. The font library is a small peripheral library which holds

a set of text fonts. This library was used to get a font for the idle screen, which displays “Press

START to continue” along with a button map whenever the music isn’t playing. Additionally,

the program uses the MidiInFile, midi_events, os, and pyaudio libraries. MidiInFile and

midi_events are both pieces of an online add-on written by a Python user
20

 to help parse MIDI

files and create useful Python variables from them. The os library is a Python standard, which

was used to help create an operating system-specific directory which would detect and organize

the MIDI files that were loaded into the playlist. Finally, pyaudio is another Python library which

creates Python bindings for PortAudio, an audio library that the project runs in the background.

 The main program process is broken down into four pieces: the playlist class, the

controller alteration functions, the screen display, and the idle mode function. The playlist was

created by making a class which stores relevant information about each song. By creating

corresponding configuration files for each MIDI file, the class is able to read the main MIDI

channels used for the song melody, the original instrument of that channel, and a multiplier

which determined the tempo of each song. The class itself is comprised of three separate

functions. The first is an initialization function which opens and reads the configuration files to

get the pertinent data from them. While this is happening, the MIDI files themselves are placed

19

 Note: The following paragraphs describe the overall structure of the program. The full source code is available in

Appendix B.
20

 http://www.mxm.dk/products/public/pythonmidi

28

into the playlist via the load function. Finally, the play function takes the song and prepares to

play it at the appropriate tempo. The program starts out with the music on pause, and the play

function is called whenever the program is unpaused or taken out of idle mode. The proper

construction of the playlist and play functions also requires certain subfunctions in the main body

of the program, which process and queue the MIDI data note by note. This is necessary because

it allows for real time modifications and only allows the most recently updated notes to play.

 The rest of the main body of the program is mostly dedicated to the controller functions

that cause the alterations within the songs. Each button on the NES controller has a specific

action assigned to it (see Figure 8 below).

Figure 8: The proper button mapping for the Retrolink NES Controller.

In order to properly map the buttons to their corresponding actions, each button press was

assigned an event. First, the button numbers were determined by using jstest, a built-in Linux

function that produces a simple readout of which button, joystick, or directional hat is being

29

activated for a plugged in controller. Once each input had been identified, Pygame events were

written for each case. GameWave requires two types of events: button events and axis events.

The buttons used in GameWave are A, B, Start, and Select, while an axis is assigned to the left

and right (x-axis) and up and down (y-axis) directional buttons. Axis events are also used on the

joysticks of more advanced controllers, with the direction pad usually being configured as a

directional hat, or joyhat. From there, it was a simple matter of finding the MIDI program

codes
21

 and sending the appropriate MIDI messages to the speakers via the midi_out.write_short

command. For the select button to scroll through the songs, the play function was called as if the

previous song had just finished.

 Once the audio portion was completed, the visual display was drawn and the sound wave

synthesized with Pygame’s screen and oscilloscope functions. Pygame’s audio oscilloscope

displays sound captured from a computer microphone as a real-time sound wave.

The problem with using an actual microphone to pick up the music is that the oscilloscope would

also grab any ambient sound, causing a wave distortion. In order to properly connect the audio

21

 http://www.srm.com/qtma/davidsmidispec.html

Figure 9: Oscilloscope output of a captured sound wave.

http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html
http://www.srm.com/qtma/davidsmidispec.html

30

and visual ports without causing interference, a cable splitter connected the speaker output to

both the speakers and the microphone jack. The pyaudio library allowed for proper

communication between the speakers and microphone, ensuring that the data streamed correctly.

After that, the programming for the sound wave was straightforward, using the pygame.draw.line

function to create a wave based on the data going into the microphone port.

The final piece of programming necessary was the addition of an idle mode. Since it can

be a distraction to patrons to have the music continuously playing when nobody is using the

exhibit, the program is set to pause itself after five songs have gone by with no user input. This

was implemented via a small counter that increments every time the play function calls for a new

song. Touching any button on the controller resets the count to zero. After the counter reaches

five, the notes stop and a small text box appears, displaying the phrase “Press START to

continue” above the aforementioned button map in the center of the screen. Once the start button

is pressed, the idle screen disappears and functionality resumes as normal from the spot that the

music left off. Because the message was simple to create and can help users who may be

confused, the condition was set so that it would also appear at startup and whenever the pause

button was pressed. This final piece of programming, though not stated as one of the primary

goals, adds to the project’s usability and lends it an extra sense of gameplay.

MIDI Software

 Because the hardware does not contain built-in MIDI synthesis hardware, a separate

program was needed to act as the intermediary between the Python program and the speakers.

Fortunately, the Ubuntu operating system has a software repository which contains TiMidity,
22

 a

fully configured MIDI synthesizer that works by connecting to Advanced Linux Sound

22

 http://lau.linuxaudio.org/TiMidity-howto.html

http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html
http://lau.linuxaudio.org/TiMidity-howto.html

31

Architecture and PortMIDI, the two audio outputs to which the GameWave program connects.

Once TiMidity was installed, the audio output was fully connected and played without error.

 In addition to using TiMidity, a free MIDI composition program called Anvil Studio
23

became the platform for testing the MIDI files. In order to determine the channels, instruments,

and tempos of the songs for the purpose of creating configuration files, the songs were opened in

Anvil Studio and examined track by track. Anvil Studio was also useful any time there was a

playback bug and the audio needed to be tested using a different application.

Operating System

 From the beginning of the project, it was obvious that Linux was the best choice in terms

of an operating system. Besides the fact that it is open-source, meaning it would add no cost to

the project, Linux contains a vast repository of software programs and add-ons for various

applications. Also, viruses and malware are very rare on Linux, making it a generally safe OS to

run. Additionally, most distributions come with relatively few preloaded programs, ensuring

more space on the hard drive and a faster processing speed. Finally, Linux has a very open-ended

interface, and the built-in Secure Shell client allows the final computer to communicate easily

with the other computer upon which the program was being written.

 There are many distributions for Linux, each with their own benefits, but the system

chosen for GameWave was Ubuntu 10.04.3 Long Term Support (LTS).
24

 This version is the

most recent LTS edition to be released (Ubuntu releases a new upgrade every six months or so,

and a new LTS version every two years), meaning the software repositories and security

upgrades will effectively remain active for as long as the installation is on display. Ubuntu is one

of the more well-known Linux distributions, and is among the more user-friendly versions.

23

 http://www.anvilstudio.com/
24

 http://www.ubuntu.com/download/ubuntu/download

http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.anvilstudio.com/
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download
http://www.ubuntu.com/download/ubuntu/download

32

Additionally, the Ubuntu software repository is expansive, and contained everything the project

required for the MIDI output, audio/visual connections, and controller testing. From a hardware

standpoint, it was trivial to hook up the visual and audio components since Ubuntu does not have

hidden utilities for devices such as speakers and microphones like some larger operating systems

do. The final argument for Ubuntu is that there are setup utilities inside the OS that will allow

GameWave to launch automatically when the computer is started up, eliminating the need for a

museum attendant to manually set the program up every morning.

Installation was also very straightforward; the OS was simply written onto a CD and then

installed via the CD onto the project computer. After running through initial setup and

downloading the necessary software, all of which took under an hour, the computer was

completely set up and ready to run the program.

33

Results

Overall Results

In general, the outcome of the GameWave project was remarkably positive. The

combination of art and technology led to a more stimulating and thus educational experience,

and the promise of actually displaying the final product provided impetus for a higher quality

piece. By using pre-existing resources combined in new ways, GameWave helped to expand

knowledge in programming, digital music, and educational theory.

Apart from personal accomplishments, GameWave also demonstrated that it was in fact

possible to create a working product capable of being presented to the public within a small time

frame and on a very low budget. Though early planning for the project began in the spring, the

complete design and creation of the actual piece, including all of the coding, took place

throughout the course of about seven weeks. Thanks to donations and previously owned

materials, the final cost of the project only came out to be around $400, not including any

additional materials that may be required to set up the actual exhibit.

This project also demonstrated a new way of using the Pygame library. Even though the

point of GameWave was to create a simulation as opposed to a full-fledged game, the audio and

visual components of Pygame were used to great effect and the hookup of the speaker and

microphone jacks presented an alternate use for Python’s oscilloscope software. The controller

functions also demonstrated an alternate purpose, since normally the joystick and buttons are

used to control a visual aspect of a game, usually a character on a screen. In GameWave, the

buttons are responsible for controlling sound, and the sound wave visuals were just a display of

the results.

34

Obstacles and Solutions

 Despite the positive outcome of the project, there were some problems that presented

themselves along the way. These issues dealt mainly with hardware, software, and project

organization. Fortunately, each problem was able to be dealt with in a satisfactory manner.

Hardware

 The biggest hardware issue had to do with the budget. WPI did not provide any money

for the project, so most of the pieces had to be obtained independently. The hardware had to be

both affordable on a college budget and hardy enough to withstand the constant flow of children

that would be passing by it (or at least inexpensive enough to be replaced without too much

concern). Additionally, the main computer requires a certain amount of processing power and

audio capabilities in order to properly run the program.

 To successfully gather the components, there was a considerable effort put towards

gathering donations and searching out affordable pieces. The speakers, luckily, were already

provided, which was a big help due to the potential cost of a good speaker system. Additionally,

the project received a great deal of help from the Willisson family, who donated a computer and

a monitor to the cause. When it was discovered that the first computer was too old and did not

have enough RAM for the program, they delivered more RAM to install. When the additional

RAM made it clear that the processor was not powerful enough to run TiMidity, they replaced

the system with a newer model. Unfortunately, this tower had a disc error and could not load

Ubuntu, or any OS, properly. After trying to assist in troubleshooting, they then offered $400 to

purchase the Dell Inspiron that is currently being used. Apart from that, the only pieces that

needed to be purchased were the controller and cable splitter. As was mentioned in the hardware

methodology, a USB version of the NES controller is inexpensive and relatively easy to find. It

35

is not the highest quality controller, but only cost around $8, shipping included, and is easily

replaceable if need be. The cable splitter was also an inexpensive purchase, and did not require

any extraordinary effort to obtain.

Software

 As with any programming-based project, GameWave required a bit of troubleshooting.

There were a few bugs in the program and auxiliary software that led to some setbacks

throughout the project. The first hitch was encountered when the MIDI files were unable to play

correctly because Pygame’s MIDI mixer did not allow real-time editing. The problem was fixed

by finding a library that allowed for direct MIDI messages to be written instead of having to pass

commands through the mixer.

The next big setback was trying to create the queue properly. Originally, only the first

song file would play instead of the whole playlist. This was an easy fix, since there was a

playback clock that had not been resetting itself to zero. Resetting the clock and fixing a bug in

the MIDI loader to clear data about the previous song solved the problem.

Another issue was related to Ubuntu settings. At first, it did not want to recognize

Pygame, so the computer was unwilling to play sound. After adjusting the

SDL_AUDIODRIVER settings in Ubuntu, Pygame was able to play the sound correctly.

Finally, the computer had trouble feeding data into the microphone and displaying the

proper real-time sound wave. Specifically, the wave would stop flowing even when the music

was still playing. The solution to this problem was to lower the quality of sound read from the

microphone and ensure that the CPU usage was optimized so the system wouldn’t become

overtaxed and freeze.

36

Other

 Outside of the hardware and software issues, there were some obstacles related to

communication and time restrictions. The first problem arose while trying to get music files for

the project. Originally, collaboration with the Video Game Orchestra was in the works, but due

to logistical issues and slow response time, it eventually fell through. Instead, more basic MIDI

files were pulled from the internet,
25

 which turned out to be a better idea since MIDI is much

easier to alter in Pygame than the MP3 or WAV files that would have likely been provided by

the VGO.

 Additionally, extenuating circumstances took out a major portion of time in the middle of

the summer. Because of this, the program was not finished until August, at which point there was

not enough time to get the installation running at the EcoTarium before the project submission

date. This was an unfortunate but unavoidable turn of events. However, it is not a total loss,

because now the project can continue as an ongoing, long-term collaboration with the museum.

Possible Future Projects

 GameWave is the first in a potential series of projects related to digital sound design,

educational art, and interactive media. There are multiple possible expansions for the GameWave

setup to enhance the educational capabilities of the project, make the program more

customizable, or allow for more in-depth user interaction.

 One possibility is to make the playlist more easily expandable. As it currently stands, in

order to add a song to the playlist, a configuration file must be made in the folder to capture

necessary data. A subprogram that could create that file automatically would help immensely,

25

 http://home.swipnet.se/~w-22134/nmm/mitten.html

http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html
http://home.swipnet.se/~w-22134/nmm/mitten.html

37

especially if there is a large batch of songs to be added to the list. Additionally, there are many

more musical alterations possible for the song itself. Changes in distortion, panning, and volume

would provide extra educational and entertainment value, as would the ability to alter the

harmonies and rhythms in addition to the melody lines. Going along with that, an extra on-screen

interface could be devised so that users could decide which features they would like to alter.

Upon selection, a customized button map would appear, telling them which button affects which

sound quality. This would be a project for an older, more advanced demographic, as it would

require some previous knowledge of the musical terms being altered. As a final thought, it would

be interesting to create some sort of log that would record how the users interact with the

program, which aspects they change, and how it affects the sound wave. If future budgets allow

it, perhaps all users could get a summary printout of how they changed the music with screen

captures of the changing wave. This could possibly go along with a set of achievements related

to making a wave of a certain size, shape, or frequency. This sort of achievement system would

make the exhibit seem even more game-like and give children something to literally take away

with them.

38

Conclusion

 The GameWave project is the start of an exploration into musical education and

interactivity. A combination of art and technology, the piece is meant to entertain users while

giving them multiple forms of educationally valuable feedback related to the properties of sound

in music. The full impact of the exhibit will be made clear in the months following its

completion and installation in the EcoTarium, where it will be made available to the general

public. As a first attempt at educational sound art, its effectiveness is not guaranteed. However,

unofficial tests with friends who are not music-literate have demonstrated that the interface is

indeed intuitive. With the aid of a quick reference guide and the visual and auditory feedback,

they were able to understand the button map and notice changes in the sound wave.

 GameWave was a very effective culmination project in that it combined previous

knowledge, original ideas, creativity, and fast-paced learning in a way that produced a tangible

outcome. The open-ended and personally relevant subject matter enhanced the learning

experience and made for a project that was mentally stimulating and interesting to explore.

GameWave is the sort of project that works well as a finished product, but which can be

enhanced and built upon as technology and learning ideologies evolve. Additionally, the

compilation of music theory, computer programming, interactive media, and community

involvement created a fully comprehensive experience. For these reasons, the GameWave

installation is an outstanding success. In terms of educational value, this project was definitely a

level up.

39

Appendix A: Glossary of Terms

 Sound artists understand that when creating a piece, regardless of how tuneful they wish

to make it, they must take certain musical qualities into account. The following is a brief glossary

to help familiarize the reader with the concepts and terms that were explored with GameWave,

and which may be on the mind of any sound artist or digital musician when creating an

installation. The list is not exhaustive, but includes many of the terms that were discussed

throughout this report.
26

27

28

Acoustics: the scientific study of sound, its nature, and its properties

Amplification: the increase in magnitude of a signal, in this case, a sound wave

Audio Frequency: the rate of change in a standing wave, measured in cycles/sec or Hertz (Hz)

Damping: the minimization of sound wave vibrations, leading to a muffled sound

Digital Music: any form of music that is created mainly through discrete, digital signals and

electronic generation, as opposed to recorded acoustic instruments

Distortion: interference in a digital sound wave that causes it to stray from the intended sound

Duration: the length of time a sound plays, broken into nine time scales in the book Microsound

Harmonics: the sounds which are multiples of, and interact with, a base frequency

Instrumentation: the selection of instruments that are used in a musical piece

Melody: the main line of a song, often the most predominant track

MIDI: Musical Instrument Digital Interface, a digital music standard which uses instruments,

programs, and data streams to create, edit, and play purely digital sounds

26

 The Digital Musician
27

 http://www.cardinalproaudio.com/main/terms.htm
28

 http://www.owenscorning.com/around/sound/glossary.asp

http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.cardinalproaudio.com/main/terms.htm
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp
http://www.owenscorning.com/around/sound/glossary.asp

40

Mixer: a sound device which combines two or more signal inputs into a single output

MP3: MPEG audio layer 3, a file format which is used heavily in the recorded music industry

MPEG: Moving Pictures Experts Group, overseers of visual and audio encoding standards

Noise: can refer either to an unwanted sound in an audio sample, or the small extraneous

distortions that come from the environment or electrical interferences

Pitch: the perceived frequency of a given sound, based mainly on the perception of the listener

Sound: a pressure wave that excites the inner ear and causes an audible result for the listener

Sound Art: a subculture of fine arts that focuses on audio as opposed to visual media

Synthesizer: an instrument, often times with a keyboard interface, which works not by instantly

creating acoustic vibrations, but by sending digital signals to a mixer and speaker setup

Tempo: song timing, defined by how many beats are played per time period (often one minute)

Timbre: a sound’s quality that distinguishes it musically based on harmonics, pitch, and volume

Volume: the perceived loudness of a sound, subjective based on the listener

Wavelength: the physical size of a wave from point to point

41

Appendix B: Program Code

#GameWave: An Interactive Educational Sound Exhibit

#By Rhiannon Chiacchiaro

#Program Code

#Imports and initializes pygame and other necessary libraries

import pygame, pygame.midi, pygame.font

pygame.init()

pygame.midi.init()

pygame.font.init()

from midi.MidiInFile import MidiInFile

import midi_events

import os

import pyaudio

#Creates a class playlist for all of the songs used

class Song:

 filename = None

 channel = None

 default_ins = None

 delay = None

 def __init__(self, filename):

 self.filename = filename

 confname = filename[:-3] + "conf"

 f = open(confname)

 confdata = eval(f.read())

 self.channel = confdata["channel"]

 self.default_ins = confdata["default_ins"]

 self.delay = confdata["delay"]

 f.close()

 self.load()

 def load(self):

 self.events = midi_events.MidiEvents()

 midi_in = MidiInFile (self.events, self.filename)

 midi_in.read()

 self.data = self.events.event_list

 def play(self):

 global midi_data

 global main_channel

 global delay

 global program_time

 global note_index

42

 global idle_count

 midi_data = self.data

 main_channel = self.channel

 delay = self.delay

 program_time = 0

 note_index = {}

 for index_channel in midi_data.keys():

 note_index[index_channel] = 0

 idle_count += 1

songlist = []

Loads songs into the song list for playing

def midi_test(test_file):

 if test_file[-3:] == "mid":

 return True

 return False

def load_songs():

 files = os.listdir("Songfiles")

 midis = filter(midi_test, files)

 for f in midis:

 songlist.append(Song("Songfiles/"+f))

#Turns on the joystick controller.

jstick = pygame.joystick.Joystick(0)

jstick.init()

#Initializes variables

ins_list = [0, 2, 4, 6, 13, 19, 21, 23, 25, 34, 46, 56, 58, 65, 68, 71, 73, 75, 79]

next_ins = -1

stop = True

stop_time = 0.0

on_notes = []

program_time = 0

last_midi_time = 0

off_channel = 0x80

delay = 2.5

pitch_value = 0x40

main_channel = 0

song_number = 0

width = 1024

height = 480

screen = pygame.display.set_mode((width, height))

note_index = {}

43

idle_count = -1

#Loads button map

button_map = pygame.image.load ("controller_map.png")

button_map = pygame.transform.scale(button_map, (width/2.5, height/2))

#Configure and initialize the microphone for oscilloscope data

chunk_size = 1024

audio_format = pyaudio.paInt16

num_of_chans = 1

audio_rate = 44100

audio_config = pyaudio.PyAudio()

mic_in = audio_config.open(format = audio_format, channels = num_of_chans, rate =

audio_rate, input = True, frames_per_buffer = chunk_size)

#Set up font for idle mode

font = pygame.font.SysFont(u'tlwgtypewriter', 30, bold = True)

#Set up MIDI output port

midi_out = pygame.midi.Output(2, 0)

#Loads the songlist into the program

load_songs()

songlist[song_number].play()

#Main functions

quitflag = False

last_midi_time = pygame.midi.time()

status = {}

try:

 while quitflag == False:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 #Quit the program

 quitflag = True

 if event.type == pygame.JOYBUTTONDOWN:

 idle_count = 0

 #Stop/Start

 if event.button == 9:

 if stop == False:

 stop = True

 # Stop all currently playing notes

 for note in on_notes:

 midi_out.write_short(off_channel+note[1],

note[0])

 elif stop == True:

44

 stop = False

 last_midi_time = pygame.midi.time()

 # Scroll through songs

 if event.button == 8:

 for note in on_notes:

 midi_out.write_short(off_channel+note[1],

note[0])

 song_number += 1

 if song_number > len(songlist)-1:

 song_number = 0

 songlist[song_number].play()

 # Change instruments

 if event.button == 2:

 next_ins -= 1

 if next_ins <= 0:

 next_ins = len(ins_list) - 1

 if type(main_channel) == int:

 midi_out.write_short(0xc0+main_channel,

ins_list[next_ins])

 elif type(main_channel) == tuple:

 for ins_channel in main_channel:

 midi_out.write_short(0xc0+ins_channel,

ins_list[next_ins])

 if event.button == 1:

 next_ins += 1

 if next_ins >= len(ins_list):

 next_ins = 0

 if type(main_channel) == int:

 midi_out.write_short(0xc0+main_channel,

ins_list[next_ins])

 elif type(main_channel) == tuple:

 for ins_channel in main_channel:

 midi_out.write_short(0xc0+ins_channel,

ins_list[next_ins])

 if event.type == pygame.JOYAXISMOTION:

 idle_count = 0

 #Change tempo

 if event.value == 1 and event.axis == 3:

 delay -= 0.25

 if delay < 0.25:

 delay = 0.25

 if event.value < 0 and event.axis == 3:

 delay += 0.25

 #Change pitch

 if event.value < 0 and event.axis == 4:

45

 pitch_value += 8

 if pitch_value > 0x7F:

 pitch_value = 0x7F

 if type(main_channel) == int:

 midi_out.write_short(0xe0+main_channel, 0x00,

pitch_value)

 if type(main_channel) == tuple:

 for pitch_chan in main_channel:

 midi_out.write_short(0xe0+pitch_chan,

0x00, pitch_value)

 if event.value == 1 and event.axis == 4:

 pitch_value -= 8

 if pitch_value < 0:

 pitch_value = 0

 if type(main_channel) == int:

 midi_out.write_short(0xe0+main_channel, 0x00,

pitch_value)

 if type(main_channel) == tuple:

 for pitch_chan in main_channel:

 midi_out.write_short(0xe0+pitch_chan,

0x00, pitch_value)

 #Play the next song in the queue automatically

 song_done = True

 for channel_key in midi_data.keys():

 if len(midi_data[channel_key]) > note_index[channel_key]:

 song_done = False

 break

 if song_done == True:

 song_number += 1

 if song_number > len(songlist)-1:

 song_number = 0

 songlist[song_number].play()

 # If program is not paused, process and play MIDI

 if stop == False:

 # Update time

 program_time += (pygame.midi.time() - last_midi_time) / delay

 last_midi_time = pygame.midi.time()

 # Get next MIDI events

 for channel in midi_data.keys():

 if len(midi_data[channel]) == note_index[channel]:

 continue

 if midi_data[channel][note_index[channel]][1] > (program_time):

 continue

46

 current_data = midi_data[channel][note_index[channel]]

 note_index[channel] += 1

 status[current_data[0][0]] = True

 # Process MIDI data

 # Store notes that are currently playing for start/stop function

 if (current_data[0][0] & 0xF0) == 0x90: # Note on command

 if current_data[0][2] > 0:

 on_notes.append ((current_data[0][1], channel))

 else:

 note = on_notes.index ((current_data[0][1],

channel))

 del on_notes[note]

 if (current_data[0][0] & 0xF0) == 0x80: # Note off command

 note = on_notes.index((current_data[0][1], channel))

 del on_notes[note]

 midi_out.write ([current_data])

 #Implement idle mode after 5 songs without user input

 if idle_count >= 5:

 stop = True

 # Stop all currently playing notes

 for note in on_notes:

 midi_out.write_short(off_channel+note[1], note[0])

 #Draws the graphical frame and creates the oscilloscope waveform

 screen.fill((0,0,0))

 samples = mic_in.read(chunk_size)

 for i in range(0, len(samples) - 2, 2):

 pygame.draw.line (screen, 0x49E9BD,(i / 2, height / 2 + (struct.unpack

("<h", samples[i] + samples[i+1])[0] * height / 2**16)),(i / 2 + 1, height / 2 + (struct.unpack

("<h", samples[i+2] + samples[i+3])[0] * height / 2**16)))

 #Makes the paused music text box

 if stop == True:

 text = font.render("Press START to continue.", False, (0xFF, 0xFF, 0xFF),

(0x00, 0x00, 0x00))

 textrect = text.get_rect()

 textrect.center = (width/2, height/5)

 screen.blit(text, textrect)

 maprect = button_map.get_rect(center = (width/2, height/2))

 screen.blit(button_map, maprect)

 pygame.display.flip()

except:

raise

47

Appendix C: Index of Figures and Tables

Figure 1: Erik Satie’s “Vexations”, with a note advising the performer to meditate and prepare

for the piece... 9

Figure 2: Devo advertising the Mobile Synthesizer, also called the Keytar. 12

Figure 3: At-home studios like this one have become increasingly common alternatives to full

recording booths.. 13

Figure 4: The GameWave computer tower. .. 21

Figure 5: The GameWave monitor. .. 22

Figure 6: The GameWave controller. ... 23

Figure 7: The GameWave speakers (1 of 2 shown). ... 25

Figure 8: The proper button mapping for the Retrolink NES Controller. 28

Figure 9: Oscilloscope output of a captured sound wave. .. 29

Table 1: Russolo's six families of noises…..……………………………………………….…....10

file:///C:/Users/rhichi/Desktop/Schoolwork/MQP/Final%20Report%20Drafts/MQPReport_for_edit_FINAL.docx%23_Toc301863988
file:///C:/Users/rhichi/Desktop/Schoolwork/MQP/Final%20Report%20Drafts/MQPReport_for_edit_FINAL.docx%23_Toc301863990

48

References

"A Brief History of Sound Art." New Music Box. N.p., n.d. Web. 20 May 2011.

<newmusicbox.org/article.nmbx?id=2417>.

"Anvil Studio Catalog." Anvil Studio Catalog. N.p., n.d. Web. 22 Aug. 2011.

<http://www.anvilstudio.com/>.

Ayres, Mark. "A History of the Doctor Who Theme." The Mark Ayres Doctor Who pages!. N.p.,

n.d. Web. 22 Aug. 2011. <http://markayres.rwsprojects.co.uk/DWTheme.htm>.

Burgund, Halsey. "Voices Without Faces; Voices Without Races." Halsey Burgund. N.p., n.d.

Web. 22 Aug. 2011. <http://halseyburgund.com/work/vwf/>.

"Download | Ubuntu." Homepage | Ubuntu. N.p., n.d. Web. 22 Aug. 2011.

<http://www.ubuntu.com/download/ubuntu/download>.

"EcoTarium: A Museum of Science & Nature." EcoTarium: A Museum of Science & Nature.

N.p., n.d. Web. 22 Aug. 2011. <http://www.ecotarium.org>.

GOLDSMITH, KENNETH. "Flabby Preludes for a Dog: An Erik Satie Primer." WFMU-FM

91.1/Jersey City, NJ; 90.1/Hudson Valley, NY . N.p., n.d. Web. 22 Aug.

2011. <http://www.wfmu.org/~kennyg/popular/articles/satie.html>.

Hugill, Andrew. The Digital Musician. New York: Routledge, 2008. Print.

"JAZCLASS : About Erik SATIE - the eccentric Impressionist French composer and musician."

JAZCLASS : Jazz Improvisation Lessons, Blues Lessons, Saxophone Lessons, Keyboard

Lessons, Jazz Theory and Music Notation Lessons by Michael Furstner. N.p., n.d. Web.

22 Aug. 2011. <http://www.jazclass.aust.com/satie.htm>.

"Linux Audio Users Guide -TiMidity Howto ." Linux Audio Users Guide . N.p., n.d. Web. 22

Aug. 2011. <http://lau.linuxaudio.org/TiMidity-howto.html>.

49

"museSpace: writings....essays....musique concrete." Welcome to museSpace!. N.p., n.d. Web. 22

Aug. 2011. <http://www.musespace.com/writings/essays/musique.html>.

"mxm, IT's mad science - Python Midi Package." mxm, IT's mad science - mxm - Den Gale

Videnskabsmands Hule. N.p., n.d. Web. 22 Aug. 2011.

<http://www.mxm.dk/products/public/pythonmidi>.

N/A. Erik Satie's Vexations. N.d Erik Satie Audio and Video Archive. Web. 22 Aug. 2011.

N/A. Devo Advertisement. N.d. 4.bp.blogspot.com. Web. 22 Aug. 2011.

"News - pygame - python game development." News - pygame - python game development. N.p.,

n.d. Web. 22 Aug. 2011. <http://www.pygame.org/>.

"Nintendo Midi Music." Nintendo Midi Music. N.p., n.d. Web. 22 Aug. 2011.

<http://home.swipnet.se/~w-22134/nmm/mitten.html>.

Russolo, Luigi. "The Art of Noises." The Niuean Pop Cultural Archive. N.p., n.d. Web. 22 Aug.

2011. <http://www.unknown.nu/futurism/noises.html>.

Scaruffi, Piero. A History of Rock Music 1951-2000 . New York: IUniverse, 2003. Print.

Shome, Ethe. At-Home Music Studio. N.d. N/A, N/A. Home Recording Studio Microphone.

Web. 22 Aug. 2011.

Simon, Nina. "Chapter 1: Principles of Participation â€“ The Participatory Museum." The

Participatory Museum. N.p., n.d. Web. 22 Aug. 2011.

<http://www.participatorymuseum.org/chapter1/>.

"sound artist - Google Search." Google. N.p., n.d. Web. 22 Aug. 2011.

<http://www.google.com/search?rlz=1C1TSND_enUS413US413&sourceid=chrome&ie

=UTF-

8&q=sound+artist#sclient=psy&hl=en&rlz=1C1TSND_enUS413US413&source=hp&q

50

=sound+art+installation+boston&pbx=1&oq=sound+art+installation+boston&aq=f&aqi

=&aql=&gs_sm=e&gs_upl=1150l64>.

"Sound Quality Glossary Terms." Owens Corning: Making the World More Energy Efficient

with Quality Building Products & Fiberglass Composites. N.p., n.d. Web. 22 Aug. 2011.

<http://www.owenscorning.com/around/sound/glossary.asp>.

"Sound Terms." Cardinal Sound & Communications... Sound Solutions Since 1970 . N.p., n.d.

Web. 22 Aug. 2011. <http://www.cardinalproaudio.com/main/terms.htm>.

Van Brink, David. "David's MIDI Spec." Synthestra Realtime Music | blips and software. N.p.,

n.d. Web. 22 Aug. 2011. <http://www.srm.com/qtma/davidsmidispec.html>.

"Zang Tumb Tumb - Tribute to Marinetti- YouTube." YouTube - Broadcast Yourself. . N.p.,

n.d. Web. 22 Aug. 2011. <http://youtu.be/Tn0dkz9Polg>.

MLA formatting by BibMe.org.

