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Abstract

This project investigates the utilization of machine learning techniques for analyzing

neuroimaging (MRI) data to differentiate patients diagnosed with Focal Cortical Dysplasia Type

II (FCD Type II). FCD Type II presents challenges in accurate diagnosis, prompting the

exploration of alternative approaches. The study involves preprocessing MRI data, extracting

relevant features, and training various machine learning models for classification. Performance

evaluation metrics are employed to assess the models' efficacy in distinguishing patients with

FCD Type II from healthy individuals or those with other neurological conditions. The research

aims to contribute to improved diagnosis and management of FCD Type II through the

integration of machine learning analysis into neuroimaging practices.
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Chapter 1. Introduction

With the unprecedented growth of artificial intelligence (AI), its integration into almost

every field is undeniable. The field of medicine is no different, and one promising avenue in

which to apply the use of AI is in evaluating and diagnosing many different disorders. One such

disorder is focal cortical dysplasia (FCD).

FCD is a neurological disorder characterized by various abnormal developments in the

brain’s cerebral cortex (Kabat & Król, 2012). FCD is typically split into three subcategories:

focal cortical dysplasia Type I, Type II, and Type III respectively. FCD can have a variety of

symptoms, including cognitive deficits, and motor impairments, but the main symptom of FCD

is epilepsy and epilepsy-related seizures. Due to the severity of these symptoms, it is imperative

that FCD be diagnosed early.

Traditional methods for diagnosing FCD rely on experts to inspect MRI brain scans

against brain scans of cognitively normal individuals. However, this method is both time

consuming and subjective, leading to FCD being underdiagnosed. AI, specifically machine

learning, offers a potential solution to these issues.

The goal of our research is to develop a machine learning pipeline that could successfully

classify magnetic resonance imaging (MRI) brain scans of individuals with FCD Type II when

compared to cognitively normal individuals. This report documents our research, findings, and

analysis of our investigation. Finally, we discuss the impact that research like this could have on

the medical community as a whole.
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Chapter 2. Background

2.1 Epilepsy

Epilepsy is a neurological disorder characterized by recurrent and unprovoked seizures,

which are sudden and abnormal bursts of electrical activity in the brain. These seizures can

manifest in various ways, ranging from momentary lapses of awareness to convulsions and loss

of consciousness. Epilepsy affects people of all ages, and its causes are diverse, including genetic

factors, brain injuries, infections, and structural abnormalities in the brain. The prevalence of

epilepsy is significant globally, with millions of people living with the condition. It has a

profound impact on individuals' quality of life, affecting not only their physical health but also

their social and psychological well-being. (World Health Organization [WHO], 2024). The

unpredictability of seizures can lead to limitations in daily activities, restrictions on driving and

employment, and increased stigma associated with the condition.

One of the challenges in managing epilepsy is the considerable heterogeneity in its causes

and manifestations. The identification and classification of various epilepsy syndromes have

evolved over time, aiding in both diagnosis and treatment planning. Advancements in medical

imaging techniques, particularly that of MRI, have played a crucial role in revealing structural

abnormalities in the brain that may be associated with epileptic seizures (Garner et al., 2022).

2.2 Focal Cortical Dysplasia

Focal cortical dysplasia (FCD) is a common structural abnormality linked to epilepsy. It

involves malformations in the development of the cerebral cortex, leading to localized areas of

abnormal neuronal organization (Kim & Choi, 2019). FCDs are often challenging to detect
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through conventional MRI analysis, necessitating advanced tools such as machine learning

algorithms to enhance diagnostic accuracy.

In recent years, there has been a growing emphasis on personalized medicine in epilepsy

care, tailoring treatment plans based on an individual's specific characteristics and the underlying

causes of their seizures. Advances in neuroimaging, genetics, and computational techniques offer

new opportunities to unravel the complexities of epilepsy, leading to more targeted interventions

and improved outcomes for those living with this challenging neurological disorder. The

intersection of machine learning (ML) and magnetic resonance imaging (MRI) has emerged as a

promising frontier in the understanding and management of epilepsy, particularly in the context

of FCD. As discussed earlier, FCDs often present a diagnostic challenge, frequently eluding

detection through conventional MRI analysis. This limitation has prompted the exploration of

advanced technologies like ML to enhance the accuracy and efficiency of FCD detection.

2.3 Focal Cortical Dysplasia Type II: In Depth

As previously mentioned, FCD can be classified into various neuropathological subtypes.

These subtypes are based on the types of malformation present in the cerebral cortex (Kim &

Choi, 2019). Our dataset was on those with Focal Cortical Dysplasia Type II. In order to create

an accurate machine learning model, it is important to first understand the unique properties of

FCD Type II, so as to know what properties the model should consider important.

Focal Cortical Dysplasia Type II is a particularly severe form of cortical developmental

malformations that significantly disrupts the normal neuronal organization. This disorder is

categorized into two specific subtypes: FCD Type IIa and FCD Type IIb. Both subtypes are

marked by the presence of dysmorphic neurons, which are neurons with abnormal size, shape,

6



and orientation, disrupting the normal laminar pattern of the cortex. The distinguishing factor

between FCD Type IIa and FCD Type IIb is the presence of balloon cells in FCD Type IIb,

which are abnormal, large cells with an eosinophilic, glassy appearance (Blumcke et al., 2017).

The disruption caused by these abnormal cells in FCD Type II leads to significant

alterations in the cortical lamination. This malformed cortical organization is crucial for

understanding the clinical manifestations often associated with FCD Type II, particularly severe

forms of epilepsy that are frequently resistant to pharmaceutical treatments. The presence of

balloon cells, especially, is associated with more severe epileptic symptoms and often

necessitates surgical intervention for management (Represa, 2019).

The pathological features of FCD Type II, such as dysmorphic neurons and balloon cells,

disrupt the normal six-layered structure of the cortex, leading to the clinical challenges observed

in affected individuals. These features are pivotal not only in diagnosis but also in determining

the prognosis and potential treatment options for patients with this condition. Surgical outcomes,

for instance, are heavily influenced by the precise localization and extent of the cortical

dysplasia, which are typically assessed through comprehensive neuroimaging studies (Abbasi et

al., 2019).

2.4 MRI Images

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology that produces

detailed anatomical images of the human body, particularly useful in the visualization of soft

tissues. This technology utilizes powerful magnets and radio waves to align the nuclear

magnetization of hydrogen atoms in water within the body, and then uses radiofrequency fields

to alter the alignment of this magnetization. The subsequent return to equilibrium emits a radio
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signal, which is captured by the scanner to create cross-sectional images of the body (Smith &

Nichols, 2018).

Recent advances have further enhanced MRI technology, particularly through the use of

high-field MRI scanners, such as 3 Tesla (3T) machines. These high-field scanners improve

image clarity and detail, thereby facilitating more accurate diagnosis and better planning for

potential surgical interventions in patients with FCD Type II. Additionally, the advent of

functional MRI (fMRI) allows clinicians to observe brain activity in real time by detecting

changes in blood flow associated with neuronal activity, thus adding a functional dimension to

the morphological images (Li et al., 2021).

Despite its widespread use and benefits, MRI technology does come with limitations. The

quality of MRI images can be degraded by motion, and certain patient populations, including

those with specific types of medical implants, pacemakers, or claustrophobia, may face

challenges with MRI scans. Furthermore, the high cost of MRI technology and the need for

specialized facilities and trained personnel limit its accessibility in some settings (Smith &

Nichols, 2018; Douglas et al., 2016).

MRI stands as a cornerstone of modern medical imaging, particularly in the diagnosis and

management of FCD Type II. Its detailed visualization capabilities and ongoing advancements

continue to make it a crucial tool in the neurological sciences, improving the safety and efficacy

of medical diagnostics.
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2.4 Machine Learning Algorithms in Medical Imaging

Machine learning algorithms, particularly those based on deep learning architectures like

convolutional neural networks (CNNs), have shown remarkable capabilities in learning complex

patterns from medical imaging data (Liu et al., 2022). In the case of epilepsy, leveraging ML on

MRI datasets allows for the automated identification of the subtle structural abnormalities

indicative of FCD. This not only addresses the limitations of human visual inspection but also

paves the way for a more nuanced understanding of the intricacies associated with epileptic

disorders. The utilization of ML in epilepsy imaging is driven by the need for robust and reliable

tools to assist clinicians in early and accurate diagnosis. The integration of ML algorithms with

MRI data offers the potential to uncover subtle abnormalities that might be overlooked in

traditional analyses, contributing to a more comprehensive evaluation of the structural changes in

the brain associated with epilepsy.

In this context, Focal Cortical Dysplasia Type II presents a significant challenge for

diagnosis due to its subtle and often diffuse characteristics. FCD Type II is characterized by

specific histopathological features, including dysmorphic neurons and, in more severe cases,

balloon cells, which are crucial for its classification (Balestrini et al., 2023). These features

disrupt the normal cortical layering and are associated with severe forms of epilepsy that are

often resistant to medication. Machine learning models, particularly CNNs, have been effectively

trained to detect these abnormalities by analyzing layers of MRI data to identify patterns not

readily visible to the human eye.

Recent advancements in ML have focused on enhancing the sensitivity and specificity of

these models to differentiate between FCD Type II and other types of cortical dysplasias. By

training on large datasets of annotated MRI scans, these models learn to recognize the unique
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signatures of dysmorphic neurons and balloon cells. This capability is crucial for neurologists

and neurosurgeons, as accurate identification of FCD Type II can significantly influence

treatment decisions, including the need for surgical intervention. The use of ML in medical

imaging extends beyond diagnosis to include predictive analytics, potentially forecasting patient

outcomes based on the identified imaging features. This aspect of machine learning is

particularly valuable in planning treatment strategies and in personalized medicine, where

tailored interventions can be designed based on predicted disease progression and response to

treatment (Lee et al., 2019).

The integration of machine learning algorithms with medical imaging, particularly in the

diagnosis and management of epilepsy due to FCD Type II, represents a transformative

advancement in medical technology. These tools not only enhance diagnostic accuracy but also

offer new insights into the disease mechanisms, supporting clinicians in providing more targeted

and effective treatments.
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Chapter 3. Methodology

3.1 Neuroimaging Data

The use of data with known output parameters (labeled data) is required by machine

learning algorithms to train a model for a specific purpose. The OpenNeuro dataset, which

includes MRI data from individuals diagnosed with epilepsy due to Focal Cortical Dysplasia

Type II as well as healthy controls, was utilized as a resource for training and validating machine

learning models (OpenNeuro Dataset ds004199, 2023). The inclusion of T1 and FLAIR

weighted images, along with manually labeled lesion masks and clinical features, provides a rich

and diverse set of information from which the algorithms can learn. This dataset is aimed at

catalyzing advancements in computer-aided FCD detection, enabling the validation of existing

algorithms and the development of novel approaches that can enhance diagnostic accuracy. By

harnessing the power of machine learning in conjunction with MRI, the goal to improve FCD

detection is possible.

3.2 Preprocessing and Feature Extraction

Quantitative values must be translated from MRI images for use in training ML

algorithms. This process, known as preprocessing, involves the identification and computation of

relevant measurements from each image. FastSurfer has been chosen as the tool for

preprocessing due to its exceptional performance in brain MRI analysis. It is recognized as a

sophisticated neuroimaging pipeline optimized for the analysis of structural human brain MRIs

(Henschel et al., 2020). Various convolutional neural networks are integrated by it to process

different MRI orientations, thereby enhancing its segmentation accuracy. By incorporating deep
11



learning models, tasks traditionally requiring extensive manual labor and computational

resources are automated. Its efficiency and precision provide significant improvements over

conventional methods, delivering outputs that meet the standards of similar applications, such as

FreeSurfer, but in a reduced timeframe.

High-quality T1-weighted MRI images, preferably obtained with a 3T scanner, are

required by FastSurfer. The input images must meet specific dimension and quality standards

akin to those required by FreeSurfer, with isotropic voxel sizes ideally between 1mm and 0.7mm.

By utilizing the `run_fastsurfer.sh` script, FastSurfer is executed with various flags to define the

MRI data, processing options, and output settings. Segmentation and surface reconstruction are

also performed, with adjustments based on image acquisition parameters like 3T imaging.

FastSurfer's segmentation employs the FastSurferCNN, a deep neural network that processes

MRI data through multiple pathways, capturing a comprehensive representation of brain

structures. This method produces highly reliable segmentation outcomes validated against

standard datasets.

3.3 Output Files from FastSurfer

After segmentation, various quantitative data points such as volumetric measurements

and cortical thickness are extracted by FastSurfer. These metrics are essential for the project and

aid in the development of a machine learning model to identify patients with Focal Cortical

Dysplasia Type II. Several output files are generated by FastSurfer, each providing valuable

neuroanatomical insights crucial for subsequent analysis. The aseg+DKT file, which contains

summary statistics for volume estimates per anatomical structure, encompasses both cortical and

subcortical segmentation statistics. Similarly, summary statistics for surface area and thickness
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estimates per anatomical structure of cortical parcellation statistics are presented in the

aparc.DKTatlas.mapped file, with mapping from ASEGDKT segmentation to the surface (Reuter

et al., 2010).

Additionally, the BA_exvivo.stats and BA_exvivo.thresh.stats files are produced by

FastSurfer, entailing statistical analyses performed at high resolution, particularly for Broadmann

ex vivo studies (Desikan et al., 2006; Fischl et al., 2002). These files offer detailed insights, with

the BA_exvivo.thresh.stats applying a threshold to the analysis. Moreover, a table of curvature

statistics, which provides information on surface curvature characteristics, is contained in the

curv.stats file. The w-g.pct.stats file presents the Gray to White Matter signal intensity ratio with

a surface overlay, aiding in the visualization of structural differences. Lastly, insights into white

matter structures are provided in the wmparc.DKTatlas.mapped.stats file, which offers a table of

white matter segmentation statistics (Reuter et al., 2010).

3.4 Organizing Output Data into Tabular Form

FastSurfer produces output in several files for each subject. These need to be collated into

a single tabular representation which can be used for ML model training. ChatGPT was used to

assist in this process, through a process known as prompt engineering. This method involves

crafting and refining specific instructions, or prompts, which guide the creation of a Python

script capable of executing the desired task. The target scenario involves multiple subjects, each

with their own `.stats` file containing valuable measurements.

The prompt engineering process was initiated with a precise identification of the required

statistics—names such as 'NVertices', 'Area_mm2', and 'Mean', among others. For each subject,

the path to their respective file was dynamically generated using a for-loop, accounting for the
13



range of subject numbers. Within the Python script, each of these paths was programmed to be

visited in turn, thus opening the door to the rich data within. The script was formulated to read

through the contents of each file, ensuring the careful extraction of numerical treasures line by

line. Special attention was paid to the format and spacing within the files, as these aspects can

vary as widely as the data they contain. Regular expressions, a stalwart tool in text parsing, were

utilized to ensure that even amidst inconsistent white space or text, the statistics were accurately

captured.

As the script traversed the list of files, it gathered the statistics into a comprehensive

dictionary for each subject. This dictionary held keys corresponding to the data points of interest,

each prefixed with 'left' to signify their anatomical origin. With the data collated, the script then

proceeded to transfer it into a CSV file—a tabular expanse prepared to receive the influx of

information. Each row was dedicated to a subject, with their name enshrined in the first column,

followed by the columns of statistics, standing in orderly fashion like columns in a Grecian

temple (Appendix A).

3.5 Data Cleaning

Prior to conducting any analysis, a thorough data cleaning process was performed on the

raw neuroimaging data to ensure the integrity and reliability of subsequent analyses. This process

comprised two main steps: the elimination of subjects with missing '.stats' files from the

FastSurfer output and the handling of missing values within the remaining dataset. Initially, two

subjects were identified as having missing '.stats' files, resulting in their exclusion from the

dataset to maintain data consistency. Subsequently, the remaining dataset was scrutinized for any

instances of missing values.
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In cases where missing values were detected, they were imputed conservatively with a

value of 0. This method assumes that missing values signify absence rather than unknown or

unrecorded data, ensuring the inclusion of all available information in subsequent analyses while

minimizing potential biases. By adhering to these rigorous data cleaning procedures, the aim was

to enhance the robustness and reliability of the analyses, thereby facilitating meaningful insights

from the neuroimaging data (Appendix B).

3.6 Python and Jupyter Notebook

For the development of machine learning models in this study, the Python programming

language was selected as the primary coding platform due to its versatility, extensive libraries,

and robust ecosystem for machine learning and data analysis tasks. Python is endowed with a

wide range of libraries such as scikit-learn, TensorFlow, and Keras, which provide efficient

implementations of various machine learning algorithms and neural network architectures,

enabling streamlined development and experimentation (Abadi et al., 2016). Additionally,

collaborative coding efforts are facilitated and rapid prototyping of machine learning pipelines is

aided by Python's simplicity and readability (Igual et al., 2017).

In conjunction with Python, Jupyter Notebook was chosen as the integrated development

environment (IDE) for coding and experimentation. An interactive computing environment is

provided by Jupyter Notebook, allowing for the creation of executable documents containing

code, visualizations, and explanatory text, fostering reproducible research practices and

enhancing the documentation of model development workflows (Kluyver et al., 2016). The

combination of Python and Jupyter Notebook offers a user-friendly interface for iteratively
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exploring data, building machine learning models, and visualizing results, thereby facilitating a

seamless and efficient development process.

3.7 Scikit-learn

For the implementation of machine learning models in this study, scikit-learn, a powerful

Python library, was selected as the primary toolset. A comprehensive collection of machine

learning algorithms and utilities that facilitate efficient development, training, and evaluation of

models is offered by scikit-learn (Pedregosa et al., 2011). Its user-friendly interface, extensive

documentation, and emphasis on code readability make it an ideal choice for both novice and

experienced practitioners in the field of machine learning (Appendix C). Additionally, seamless

integration with other Python libraries such as NumPy and pandas is facilitated, enabling easy

data manipulation and preprocessing tasks required for model development (Van Der Walt et al.,

2011). Support for various machine learning tasks including classification, regression, clustering,

and dimensionality reduction is provided by the library, thereby offering a versatile platform for

addressing diverse research questions and experimental designs (Pedregosa et al., 2011).

3.8 Choosing Machine Learning Metrics for Classififcation

The selection of appropriate evaluation metrics was pivotal in assessing the performance

of machine learning models for classification of FCD Type II. A comprehensive set of metrics

including accuracy, recall, F1 score, and area under the receiver operating characteristic curve

(AUC-ROC) was utilized to evaluate the efficacy of the classification models in this study.
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Accuracy, which measures the proportion of correctly classified instances over the total

number of instances, provides an overall assessment of model performance but may not be

optimal for imbalanced datasets (Sokolova, 2011).

Recall, also known as sensitivity, quantifies the model's ability to correctly identify

positive instances from the total number of actual positive instances, making it crucial in medical

diagnosis tasks where missing a positive case (false negative) can be consequential.

The F1 score, being the harmonic mean of precision and recall, balances both precision

and recall and is especially useful for imbalanced datasets.

Precision, commonly used in classification tasks, was not chosen for this study due to the

nature of the problem. Since missing a case of Focal Dysplasia Type 2 (FD2) is more concerning

than false positives in the task of distinguishing FD2 patients from a control group using

neuroimaging data, metrics like recall and F1 score, prioritizing the minimization of false

negatives, are more suitable.

Additionally, the AUC-ROC metric evaluates the model's performance across various

threshold settings, indicating its discrimination capability (Powers, 2020). This selection of

metrics aligns with best practices in machine learning evaluation, ensuring a comprehensive

assessment of model performance across different aspects of classification accuracy and

robustness.
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Chapter 4. Results

The outcomes of employing machine learning techniques for the analysis of

neuroimaging data, specifically magnetic resonance imaging (MRI), to discern patients

diagnosed with Focal Dysplasia Type 2 from a control group were recorded. Through a careful

evaluation of various machine learning models and feature selection methods vs test size, we

assess the efficacy of our approach in accurately classifying individuals with FCD Type II.

4.1 Machine Learning Model #1: Naive Bayes

In the assessment of a Naive Bayes classifier's performance, we monitored the classifier

across different test set sizes (Figure 1).

Figure 1: Plot of the performance metrics of Naive Bayes as a function of the test size
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The stability of the classifier's accuracy, with values averaging around 70%, regardless of

the proportion of data used for testing, was observed. This consistency suggests that the classifier

maintains its ability to correctly identify outcomes across various test sizes. However, significant

variability in the recall metric, critical for the identification of true positives, was noted with

larger test sizes. This fluctuation points to a potential sensitivity of the model to the composition

of the test data, which could be critical for applications where the cost of a false negative is high.

Variability was also observed in the F1 score, which generally trended lower than accuracy. The

AUC remained above 0.7 for most test sizes, but the metric exhibited some peaks and dips,

signaling that certain test sizes or data compositions might influence the classifier's

discriminative capabilities. Anomalous results were observed at a test size of approximately 0.8,

where recall spiked and AUC dipped simultaneously. This anomaly may reveal an area where the

model's performance diverges significantly from the norm and warrants further investigation to

understand the underlying factors contributing to this behavior.

The general effectiveness of the Naive Bayes classifier was affirmed by its stable

accuracy across diverse test sizes. However, the notable variability observed in the recall and F1

score metrics highlights areas for potential improvement. While the classifier performs reliably

well in a general context, its ability to balance the precision-recall trade-off could be optimized

for more specific applications, particularly those where the correct identification of all positive

cases is crucial. Moving forward, strategic adjustments such as fine-tuning the decision

threshold, addressing any dataset imbalances, or modifying the model's hyperparameters may

enhance its performance, particularly in the areas indicated by the volatility in the recall and F1

scores.
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4.2 Machine Learning Model #2: Decision Tree

In the evaluation of the Decision Tree model's predictive capabilities, performance

metrics were plotted against various test set sizes to observe trends and stability (Figure 2).

Figure 2: Plot of the performance metrics of Decision Tree as a function of the test size

The accuracy of the Decision Tree model exhibited variability, yet maintained a

generally high performance, peaking at just below 90% and rarely falling below 60%. This

indicates that while the model's predictions are mostly correct, there are instances where the

model's performance can deviate significantly. The fluctuations might be attributed to the

Decision Tree's sensitivity to specific splits in the data or to the variance within the test sets.

Recall showed a similar trend to accuracy, with occasional spikes that suggest certain

configurations of the test data might be particularly well-suited or ill-suited to the model’s

method of classification. This metric is particularly sensitive to how the model identifies true

positives and its performance could be reflective of the Decision Tree's ability to generalize
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from the training data to unseen instances. The F1 score aligned closely with recall, indicating

that the balance between precision and recall is somewhat proportional. The peaks in the F1

score typically correspond with the peaks in recall, reinforcing the model's strength in certain

test set compositions. However, the dips in the F1 score suggest there are areas where the model

might be improved, particularly in its ability to maintain a balance between the precision and

recall across diverse test sizes. The AUC remained fairly stable, with most values around the 0.7

to 0.8 range, demonstrating a consistent discriminative ability for the model between the

classes. The occasional troughs in AUC point to test set sizes where the model may have

difficulty distinguishing between classes as effectively.

Overall, the Decision Tree model demonstrated a robust ability to classify correctly

across varied test sizes. However, the observed variability in performance metrics suggests that

the model may benefit from further tuning. Strategies to address the fluctuating accuracy and

recall might include pruning the tree to prevent overfitting, adjusting the depth of the tree, or

incorporating ensemble methods to stabilize predictions. The relatively steady AUC implies that

the model has a solid foundation for distinguishing classes, but fine-tuning could enhance its

performance, particularly in the areas where the other metrics fluctuate. The results provide

valuable directions for future optimization to increase the model's reliability and predictive

accuracy.
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4.3 Machine Learning Model #3: Logistic Regression

The evaluation of the Logistic Regression model's performance over varying test sizes

was conducted to determine how well the model generalizes to new data and how its

performance metrics are impacted by the size of the test dataset (Figure 3).

Figure 3: Plot of the performance metrics of Logistic Regression as a function of the test size

Accuracy fluctuated across test sizes, with some peaks exceeding 80%. This suggests that

while Logistic Regression can achieve high levels of accuracy, its performance is not uniformly

stable across different test set proportions. The recall metric also demonstrated variability but

showed a tendency to track closely with accuracy. Peaks in recall corresponded to peaks in

accuracy, denoting instances where the model was particularly adept at identifying true positives.

The F1 score mirrored the trends of these metrics, suggesting that as the model's ability to detect

true positives increased, so did its precision in not misclassifying negative instances. However,

the F1 score's oscillations indicate that there are test conditions under which the model's balance
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of precision and recall can be optimized. AUC exhibited less dramatic fluctuations than the other

metrics, maintaining values above 0.6 for most test sizes. This indicates a reasonably consistent

ability of the model to discriminate between the classes across various test sizes.

Despite some inconsistencies, the Logistic Regression model generally exhibited good

performance, with the capability to reach high levels of accuracy and recall in certain conditions.

The relatively steady AUC suggests that the model has a solid foundation for distinguishing

between classes.

4.4 Machine Learning Model #4: Random Forest

In the examination of the Random Forest classifier, its performance was analyzed through

metrics against a range of test sizes to determine the model's predictive performance (Figure 4).

Figure 4: Plot of the performance metrics of Random Forest as a function of the test size
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The classifier’s accuracy displayed commendable consistency, mostly staying within the

70-75% range across the spectrum of test sizes. This suggests a stable performance, indicative of

the model's general aptitude in producing correct predictions. The slight undulations in accuracy

are within an acceptable range, hinting at the model's resilience to changes in the test set size.

Recall, a measure critical for the identification of all positive instances, revealed more

pronounced fluctuations. This could imply that while the Random Forest classifier is generally

reliable, its performance in identifying all relevant cases is more sensitive to the composition of

the test data. The F1 score demonstrated a similar trend to recall, suggesting that the balance

between precision and recall is subject to variation. However, the F1 score remained within a

moderate band, indicative of a generally harmonious balance between the precision and recall of

the model. AUC, indicative of the classifier's ability to differentiate between classes, remained

relatively stable, but with a declining trend as the test size increased. This suggests that while the

Random Forest classifier is generally good at distinguishing between classes, there might be a

slight decrease in this ability as the proportion of the data used for testing grows.

The performance of the Random Forest classifier across varying test sizes reflects its

strength as a robust and generally reliable predictive model. However, the observed fluctuations,

particularly in recall and F1 score, point towards the possibility of further fine-tuning to enhance

the model's sensitivity and precision-recall balance. Future directions could include exploring

feature selection, hyperparameter optimization, and ensemble strategies to mitigate the

variability and improve the classifier’s performance, especially for larger test sets where a slight

decline in discriminative power was noted. The goal would be to not only maintain high levels of

accuracy but also to ensure consistent performance across all metrics irrespective of the test size.

24



4.5 Machine Learning Model #5: Support Vector Machine

In evaluating the Support Vector Machine (SVM) classifier, results elucidate the model's

predictive stability and accuracy across different proportions of data allocated for testing (Figure

5).

Figure 5: Plot of the performance metrics of SVM as a function of the test size

The accuracy metric for the SVM remained fairly consistent, with most values residing in

the upper 60% to lower 70% range, suggesting a decent baseline of predictive correctness that is

not heavily influenced by the size of the test data. Despite a few abrupt variations, which likely

stem from anomalies or particularities in the test splits, the model's accuracy indicates a solid

level of stability. Recall displayed some degree of variability, which is not uncommon for SVMs

due to their sensitivity to the choice of kernel and regularization parameters. However, outside of

the pronounced spikes, the recall tended to level off, suggesting that, in general, the SVM

classifier could reliably identify a majority of the positive cases. The F1 score, oscillating in
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tandem with recall, suggests a consistent balance between precision and recall was maintained.

While there are points where the F1 score dips, indicating moments where the model could

neither precisely identify true positives nor avoid false positives, the score mostly trends in a

stable band, implying a satisfactory balance in most cases. AUC, representing the model's ability

to discriminate between classes, shows an overall consistency with a few notable exceptions.

This consistent performance, particularly in the range of 0.6 to 0.7, underscores the SVM's

robustness in distinguishing class labels across varied test sizes.

The Support Vector Machine classifier has proven to be quite effective in terms of

accuracy, demonstrating a commendable level of consistency across various test sizes. However,

the lower recall observed may be a cause for concern in contexts where missing out on positive

cases carries a significant penalty. This could be particularly critical in domains like medical

diagnosis or fraud detection, where failing to identify true positives could have serious

consequences.

4.6 Machine Learning Model #6: XGBoost

Finally, the XGBoost model performance was examined through performance metrics

against a range of test sizes to determine the model's predictive performance (Figure 6).
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Figure 6: Plot of the performance metrics of XGBoost as a function of the test size

The XGBoost model's accuracy was observed to be strong, with most values lying in the

range of 70-85%, indicating a high level of correct predictions across different test set sizes. This

performance attests to the robust nature of XGBoost and its ability to handle a variety of data

partitions without a significant loss in prediction capability. The recall metric, while less

consistent than accuracy, showed the model's proficiency in identifying true positive cases, albeit

with some fluctuation. This variability in recall may reflect the model's sensitivity to the specific

distribution of classes within different test sets, an important consideration in applications where

identifying all positive instances is critical. The F1 score, which balances precision and recall,

also displayed fluctuations but remained within a relatively high range, suggesting that the model

maintained a reasonable balance between identifying relevant instances and limiting false

positives. In cases where the recall dipped, the F1 score also trended downwards, highlighting

areas where model tuning might improve performance. AUC demonstrated the model's

discriminative ability, remaining fairly stable across test sizes. While there were moments where
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AUC peaked or dipped, these were not drastic, and the metric consistently hovered around the

0.7 to 0.8 mark, showcasing the model's overall good classification ability.

The XGBoost model proved to be an effective tool for classification tasks, with its high

accuracy and relatively stable performance across metrics. However, the observed variability,

particularly in recall and F1 score, indicates opportunities for enhancement, potentially through

more granular hyperparameter tuning or by addressing any imbalances in the training data. The

stable AUC suggests that the model is a reliable classifier; further refinements could optimize its

performance, particularly in the recall metric, to ensure that the model not only predicts

accurately but also minimizes the number of missed positive cases, which is of paramount

importance in many practical applications.

4.7 All Models Evaluation

In the evaluation of several classification models, we analyzed their performance by

considering metrics such as accuracy, recall, F1 score, and Area Under the Curve (AUC) against

varying test sizes (Figure 7)
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.Figure 7: Box plot of the performance metrics of all the models

The Naive Bayes classifier demonstrated commendable accuracy yet experienced

fluctuations in recall and F1 score, indicating inconsistent variability in its performance. The

Decision Trees showed substantial accuracy and AUC, suggesting overall reliability, but were

subject to variability that could be mitigated with model adjustments such as tree pruning.

Logistic Regression presented stable accuracy and AUC, with some variability in recall and F1

score, indicating a need for careful tuning to enhance the balance between precision and recall.
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The Random Forest classifier exhibited consistent accuracy and a relatively stable AUC,

although the variability in recall and F1 score suggested room for fine-tuning, particularly in

hyperparameter optimization to enhance overall reliability. The SVM stood out for its high

accuracy but showed a lower recall, which is a potential concern in areas where missing true

positives is particularly costly; thus, improvement efforts could be directed towards increasing

the model's sensitivity. XGBoost, known for its robust accuracy, maintained a stable AUC but

with fluctuating recall and F1 scores, signifying potential for better precision in identifying

positive cases.

Across the board, the models maintained a commendable level of accuracy, and most

exhibited stable AUC, signifying good class differentiation. However, the notable variability in

recall and F1 scores across various models points to the necessity for strategic enhancements.

These could include implementing adjustments to decision thresholds, addressing class

imbalance, or refining hyperparameters, especially in scenarios with high costs for false

negatives. Such targeted improvements are poised to bolster the efficacy of these classifiers in

more specialized and demanding domains.
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Chapter 5. Conclusion

In conclusion, the choice of a machine learning model should be informed by the

particular performance metric that is most critical for the task at hand. While XGBoost and

Logistic Regression may offer the most reliable performances across most test sizes, models like

SVM might require additional consideration of their trade-offs. Decision Trees and Random

Forest could be less desirable due to their variability, and the Naive Bayes model may need

scrutiny for performance stability. Each model's characteristics should be carefully weighed

against the requirements of the specific problem being addressed. From our analysis, we are not

able to rule any one specific model for testing FDC Type II. Rather, our findings indicate that

future research into this topic is required, specifically testing the full extent of Logistic

Regression’s feasibility in categorizing brainscans.

5.1 Future Work

In future work, the incorporation of both machine learning models and traditional 'eye

test' analysis of MRI images should be prioritized to enhance the detection of Focal Cortical

Dysplasia (FCD) Type II. Employing a dual-approach that combines the interpretative skills of

clinicians with the analytical power of algorithms could provide a more comprehensive and

accurate diagnostic tool. This strategy would leverage the strengths of both human expertise,

which is adept at nuanced pattern recognition, and machine learning models, which excel at

processing large volumes of data for pattern detection.
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Moreover, the accumulation of a larger and more diverse dataset would be highly

beneficial, particularly for employing deep learning techniques that require substantial data to

achieve optimal performance. The additional data would not only provide a richer basis for

training but also improve the models' generalization capabilities to unseen data. It would also

allow for the application of more complex deep learning architectures that might capture

subtleties and complexities associated with FCD Type II.

Despite the allure of deep learning, it's important to acknowledge and further explore the

advantages that machine learning models hold over their deep learning counterparts. Machine

learning can offer greater transparency, require less computational power, and can be more easily

interpreted by clinicians. These benefits are particularly significant in clinical settings, where

explainability is crucial for trust and adoption by healthcare professionals.

Lastly, there is a valuable opportunity to improve MRI feature extraction applications.

Current applications like FastSurfer are designed to balance efficiency with performance;

however, there might be room to enhance the quality of feature extraction without significantly

compromising on time. By focusing on advanced image processing and machine learning

techniques, future applications could extract more nuanced features relevant to FCD Type II,

which might lead to better diagnostic performance. Research into these areas could be pivotal in

advancing the reliability and efficacy of FCD Type II detection tools, ultimately contributing to

better patient outcomes.
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Appendix

Appendix A: An Example of using ChatGPT as Prompt Engineering to

Generate Python Scripts to Format the Stats Files
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Appendix B: Final Dataset after Prompt Engineering Stats Files from

FastSurfer
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Appendix C: Jupyter Notebook Code to Train and Test Machine a SVM

Model
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