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Abstract 
 The Piper is a first-person interactive cinema experience based on the legend of the Pied 

Piper. Set in medieval Germany, the player assumes the role of a child being lured away from the 

village of Hamelin under the vengeful spell of the Piper’s music. Our team consisted of two 

programmers, two artists, and a music/audio producer. This report discusses the design goals of 

The Piper, the methods by which it was developed, technical and aesthetic challenges that the 

project faced, and the team’s reflections on the development process and final product.   
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1. Introduction 

 The Piper is an interactive storytelling experience, meant to retell the climax of the 

classic fairy tale of the Pied Piper. The player takes on the role of a child who has succumbed to 

the Piper’s hypnotic spell. Together with a crowd of other children, the player’s character is 

swept through the village of Hamelin and into the nearby forest, finally being led through a 

mysterious tunnel to an ambiguous ending. We planned on including at least one alternate 

ending, where the player escapes or stops the Piper’s plan, but we eventually settled on a 

simplified experience that remains faithful to the spirit of the original source. 

2. Background 
One of the notable qualities of the Pied Piper legend is the number and variety of 

interpretations in existence. It is apparently based on a historical event which, according to early 

documents, occurred on June 26, 1284 in the village of Hamelin, Germany. (History Channel)  

The original tale was tantalizingly vague, and has been embellished with fantastic details by 

generations of storytellers. We studied several of versions of the legend to get an idea of where 

we wanted to take our game. Initially we stuck closely to Robert Browning’s 1842 poem, but 

ultimately decided to take the story in our own direction. (Browning) 

2.1. Story summary 
The town of Hamelin finds itself inundated by rats. They’ve taken over the city and are 

creating havoc, leaving the townsfolk desperate to be rid of them. One day, a strange man in pied 

(multi-colored) clothing appears, offering to eliminate the rats for a fee. The townsfolk eagerly 

agree, and the Piper sets off, playing a magical melody that lures all of the rats out of the village 

and into a nearby river, drowning them. 

When The Piper returns to collect his pay, the townsfolk refuse to uphold their 

agreement. The vengeful Piper plays another melody, leading the townsfolk’s children away 

from the village, never to be seen again. 

Interpretations of the children’s fate differ widely. The oldest versions speak of them 

being “lost” or “swallowed” upon a mountain, possibly alluding to a landslide or cave collapse. 
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Others tell of them being drowned, like the rats. We decided to keep the ending of our version 

more ambiguous. 

2.2. Experience goal 
 The experience goal of The Piper underwent several changes throughout development. 

The first draft of the goal was “To breathe new life into an old tale, immersing the player in a 

whimsical world which slowly devolves into a sinister, panic-inducing nightmare.” This concept 

of contrasting between the magical, trance-like world of the Piper’s spell and a more disturbing 

reality was largely inspired by the short film Don’t Hug Me I’m Scared (2011). This film initially 

presents itself as an early childhood educational program before descending into a morbid, 

surreal video collage. 

 As work proceeded, this concept was gradually scaled back, replacing the original’s 

“sinister, panic-inducing nightmare” with a more ambiguous ending. In addition to being smaller 

in scope, this ending is also more consistent with the original legend, which never explicitly 

describes the children’s fate. 

3. Technical implementation 
 We chose to develop The Piper on Epic’s Unreal Engine 4 (UE4). The question of 

whether to use UE4 or its chief competitor, Unity, arose early in the development process. 

Unreal Engine 4 was chosen for its superior lighting and graphics potential, blueprint 

programming system, and because our team was already familiar with it. 

3.1. Piper movement 
The Piper travels along a spline.  In order to allow the Piper to stop and conduct other 

actions, special volumes exist that delay the Piper when he enters them.  These delays end when 

either a set amount of time expires or a Boolean is flipped.  The delay volumes are used at 

several set piece locations, like when the Piper raises the bridge. 

Certain out-of-view movements of the Piper are achieved using separate Piper objects; 

for instance, the Piper beckoning to the player at the beginning is an entirely separate object, 

which is destroyed when it leaves the player’s doorway. The actual Piper is kept waiting behind 
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a well in the courtyard in front of the player’s house. A similar trick was also used in an early 

version of the game, where the cave led to a cliff. The Piper on the cliff was also a separate 

object. 

The Piper is programmed to stop and wait if the player falls too far behind. To prevent 

the Piper from constantly moving and stopping if the player straddles this threshold, two radii are 

used. When the player exits the outer radius, the Piper stops, and does not resume until the player 

enters the inner radius. This ensures that, once the Piper begins moving, he will have a 

reasonable distance to travel before he may be required to stop again. 

 

 
 

3.2. Child Movement 
 Child movement underwent two distinct iterations. The first was created by hand and 

allowed for greater control over the finer aspects of the children’s movement, but proved 

difficult to optimize. It was eventually replaced with a crowd system built into Unreal Engine, 

known as Reciprocal Velocity Obstacle, or RVO. Below, the original, custom-built system is 

presented as originally implemented, followed by the built-in RVO-based one. 

  

Fig. 1:  Original flocking in action 
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3.3. Original flocking method 
 In order to accomplish this effect an AI technique called flocking was introduced.  At its 

most basic level, the technique works through the usage three simple steering behaviors: 

separation, alignment, and cohesion.  Cohesion is the behavior that causes flockers to move 

toward the average position of their local flockmates.  Alignment is the behavior that causes 

flockers to steer towards their local flockmates’ heading.  Separation is the behavior that causes 

flockers to avoid each other. (Reynolds)  Combined, these behaviors form the basis of a general 

flocking technique.  

In contrast to most flocking simulations, the children in this project move along a spline.  

This has some implications on the way their flocking can be conducted.  Since the children’s 

cohesion to the spline is the most crucial attribute of their movement, cohesive forces between 

children are out prioritized and therefore unnecessary.  There is also no need for an alignment 

parameter since a child’s alignment should match the direction of its velocity vector.  The only 

behavior really needed is separation.  Therefore, the children are programmed to flock away 

from each other by first calculating vectors of separating forces.  These vectors are then applied 

in two different ways.  The first way is by pushing children that are too close to each other away 

from one another.  The second way involves offsetting their spline path using the forces 

calculated in flocking.  The final behavior is a result of these two sub-behaviors combined.  This 

resultant behavior is demonstrated in Fig. 1, where all of the children maintain a distance of 

roughly several yards from each other.   

  

In terms of performance, flocking can be a computationally expensive task.  The 

technique requires each child to do checks against all their nearby children to determine how to 

apply forces.  As such, the algorithm employs a number of adjustable parameters in order to 

improve performance.  For instance, the maximum number of children that the flocking 

algorithm will consider and the rate at which the flocking algorithm updates can be modified.   

By changing these parameters the algorithm’s performance can be improved, but usually at the 

expense of accuracy.  The correct balance between performance and accuracy is necessary to 

generate a convincing crowd of children. 
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3.4. Improved flocking method 
 The final implementation of child flocking uses Unreal Engine’s built-in RVO system. 

This system, which has significantly fewer exposed parameters, is activated within each child’s 

Character Movement Component and applies to certain navigational actions provided by that 

component. With RVO activated, children are simply instructed to pursue a target, using a Move 

To Actor command, and RVO ensures that they avoid each other in a crowd-like fashion.  

 Initially, children were instructed to simply follow the Piper. However, this led to 

unnatural corner-cutting behavior when the Piper was out of sight. Additionally, while children 

crowded around a stationary Piper realistically, they tended to form a single-file line when 

pursuing him from a distance. Both of these issues were addressed using a “fuzzy point” system. 

Rather than simply follow the Piper, each child follows an array of navigation points throughout 

the city. This alone solves the first issue; with points placed at either end of each straightaway in 

the game, children never need to cut a corner. The single-file issue was fixed by giving each 

point a radius; each child picks a random point in that radius, leading to slight scattering that is 

far more crowd-like than a single-file line. 

3.5. Player movement 
Restricting the player’s movement to the game’s linear path was an important task. In 

keeping with the more whimsical imagery of the original game concept, we initially envisioned 

using fanciful characters such as clowns, jack-in-the-boxes, or cartoon rabbits to corral the player 

and block off exits. Additionally, to keep with the game’s intended disturbing effects towards the 

climax, we planned to have later instances of these characters become startlingly aggressive. 

This idea was eventually abandoned due to scoping issues. We considered keeping the exits and 

blocking them off with more simplistic soft walls (see below), but ultimately closed them off 

with hard barriers. 

An artificial barrier known as a soft wall was designed to more subtly direct the player. 

Soft walls are invisible fields, with a distinct front and back. When the player is in such a field, it 

exerts a force upon them, proportional in strength to their depth through the field from front to 

back. The created effect is a soft push, gently dragging the player backward as they attempt to 

bypass the field. Although the final game does not use soft walls in the alleyways originally 

intended for the pop-up characters, soft walls are used in a few situations. One such wall blocks 
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off the alleyway from which the children emerge, to prevent the player from witnessing the 

spawning process. They are also used in a staggered fashion in the forest to ensure the player 

does not backtrack. 

In addition to physical barriers, there are some less forceful ways in which the player is 

encouraged to proceed. Once the player has exited the city, an effect is activated which changes 

the player’s screen to grayscale when they are looking away from the Piper. The technical details 

of this effect are explained below, under Shaders. 

 

\  

Fig. 2: The final spatial hallway setup. Zone R is inactive in the left hall, and zone L is inactive 

in the right. The purple area represents the intersection of both zones. The player enters one of 

the halls from the point labelled P. 

3.6. Spatial hallways 
 Midway through the town, there is a pair of alleyways sitting opposite each other. 

Entering one of these alleys leads seamlessly to the other. These are referred to as spatial 

hallways, or spatial halls for short. Although this effect was originally intended to fit in with the 

more whimsical style originally envisioned, we kept the implementation in the final game. To 

ensure that the transition could be seamless, each hallway is an instance of the same class; their 

appearances are completely identical, and a public Boolean value is used to differentiate right 

from left in the Blueprint logic. 
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 Achieving the seamless transition between the two halls was extremely difficult, and 

required several iterations. The first prototype simply teleported the player to a target point in the 

opposite hallway, which resulted in a noticeable jerk in the player’s movement. To achieve 

seamlessness, the hallways need to account for the player’s offset within the sender hallway, and 

recreate that offset within the receiver. 

 An immediate issue with this requirement is that, by definition, the player will be sent to 

an area of the other hallway which is within that hallway’s teleport zone. Simply disabling the 

receiving teleport zone is not an option, as a player could, with good timing, start backing up the 

moment they teleport, allowing them to escape the back of the hallway. To combat this, we 

introduced a “nudge” mechanic which gently, almost imperceptibly, pushes the player forward 

after they are teleported. By disabling the receiving zone, teleporting the player there, kicking 

them past the zone, and then reactivating it, we can ensure that the player cannot escape nor enter 

an infinite loop. 

 A very small nudge strength is desirable, as the effect should not be noticeable by the 

player. In order for a small nudge to be sufficient, the zone must be small so that the player is 

pushed completely past its boundaries. Additionally, as the player’s collision capsule is relatively 

thick, we added a tiny collision box to the player’s center which is used for detecting teleport 

zones. With these zones being so small, the nudge required to push the player to safety is subtle 

enough to be nearly undetectable. 

 However, there is an additional problem created by shrinking the zones. It became 

possible for the player’s zone to never overlap the hallway’s. Due to the zones’ tiny sizes, it was 

possible for the player to be on side of the teleporter one frame, and on the other side the next 

frame. To fix this issue, we used a system of overlapping zones. The hallway class has two 

relatively large zones, but only one is active in each instance, determined by the Boolean value 

which signifies whether a hallway is on the left or right. The intersection of these zones is of the 

same size and placement as the original, small, single zone. Since the active zone in each 

hallway extends back beyond the overlap, the player has plenty of room to ensure they intersect 

the active teleporter, but after the nudge they are no longer in the receiver’s active zone. 
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3.7. Player look detection 
We found that players were not always witnessing the Piper’s climactic opening of the 

city gates. To improve the chances of this happening, we implemented a system to determine if 

the player has the gate in their sight. By detecting the rotation of the player’s camera and 

comparing it to the direction from the player to the gate, the game detects whether they will 

witness the opening sequence. To ensure that the player does not accidentally activate the 

sequence from afar, there is a minimum distance from the gate that the player must be within 

before the game will recognize that they are looking at it. Additionally, since the player should 

never pass the Piper, there is a smaller “panic” radius around the gate which automatically opens 

the gate if the player enters. This ensures that a conniving player cannot trick the game by 

walking backwards to the gate. 

 We originally intended to also implement a look-detection system for the bridge raising 

sequence, but this was not implemented due to time constraints. We prioritized the gate because, 

being set in an open area, there was a higher chance that the player would not be looking at it. 

3.8. Cinematics 
The game is bookended by brief cinematic sequences, which underwent multiple 

iterations. The opening sequence was originally meant to involve the player lying in bed, being 

read the story of the Pied Piper, falling asleep, then waking up in the dream world wherein the 

game takes place. This dream concept was eventually scrapped for scope reasons; at the time of 

its abandonment, the sequence simply consisted of a delay and a fade in and out of black, 

representing sleep. The player’s movement was disabled until after the fade. The fades were 

generated using Unreal Engine’s matinee feature. 

 The dream concept was replaced by a simple storytelling approach; a disembodied voice 

tells the player a basic summary of the Pied Piper leading up to the game’s events, and then fades 

into a bedroom. This sequence is conveyed using still images projected onto planes in 3D space; 

the player is placed in a black box which fades away at the sequence’s conclusion. 
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 The ending of the game was originally meant to feature the player being jolted awake, 

back in their bedroom, hearing the story’s conclusion. With the dream intro being abandoned, we 

opted instead for a fade out, followed by the introduction’s disembodied voice delivering the 

story’s ambiguous conclusion. Like the original intro prototype, this fade is generated by the 

matinee tool within UE4. 

 

 
  

3.9. Shaders 

As mentioned under Player Movement above, we used color and grayscale to entice the 

player to follow the game’s intended path. Two different shader techniques were investigated in 

order to determine how to best accomplish this effect.  The first involves calculating the player’s 

angle to the Piper and applying a screen space desaturation shader whenever the player is 

looking away from the Piper.  This has the effect shown in Fig .3.  It has the limitation that it can 

only be cast over the entire screen, and cannot be applied on a per-texture basis.  However, the 

technique is easy to implement in Unreal and is not very expensive computationally. 

  

Fig. 3: Screen space shader in effect. When the player faces in the direction opposite to the Piper, 

the image goes from color to black and white. 
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Fig. 4. Node-based material shader technique. 
 

The second technique uses node-based shaders attached to the material components of 

objects. (M-H)  As seen in Fig. 4, this technique has the advantage of being able to apply the 

desaturation effect both to objects individually and at different locations on their texture; 

however, it has the disadvantage of being computationally more expensive than the former 

solution.  It also requires more work to integrate it into all of the materials using the effect.  

 3.10. Menu system 
Two menus are present in the game. The first is the main menu, which is displayed when 

the player boots the game. The other is the pause menu, which can be accessed by pressing P or, 

on a controller, Start. These menus were both created using Unreal Engine’s UMG Widget tools. 

 The main menu features three buttons. The play button cuts off player input, displays a 

loading prompt, and loads the main level. The quality button cycles through the Low, Medium, 

High, and Epic settings provided by Unreal Engine, running console commands in the 

background to change various settings. The quality button is explained in more detail in the next 

section. Lastly, the exit button quits the game. 

 The pause menu features two buttons. The resume button unpauses the game and hides 

the menu. The exit button returns to the main menu. Quality settings cannot be adjusted in the 

pause menu. 
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 These menus proved problematic for virtual reality. By default, when rendered in screen 

space, they do not correctly duplicate to both eyes, leading to the menu being split between the 

player’s eyes. This renders the menu unreadable. The suggested solution to this problem is to 

attach the widget to a 3D object which is spawned in the world (Creating 3D Widgets, 2016). 

This approach worked for the main menu, but resulted in significant difficulties for the pause 

menu. We found it was not possible under the current implementation of 3D widgets (currently 

an experimental feature) to spawn a widget which would run while the game was paused. 

Because of this setback, we instead used a static menu with button prompts when in virtual 

reality. 

3.11. Quality Settings 
To support a variety of players and machines, the main menu allows the player to change 

the game’s video quality settings. These are edited via console commands. There are a handful of 

individual settings, such as anti-aliasing and shadow quality (Scalability Reference, n.d.). While 

the scalability command affects all of these at once, it is only enabled in-engine and has no effect 

in a packaged executable. Instead, individual commands for each setting must be used. 

3.12. Metrics 
Player metrics are both a valuable tool in the debugging process and a good way to 

determine faults that undermine the project’s experience goal.  In order to gather data on a 

player’s run through, the application records various statistics and outputs them to a log file.  

These statistics can then be viewed by opening the log file in a text editor.  The statistics 

recorded in this log file are listed below: 

  

● Playtime 

● Time matching Piper direction 

● Time looking at Piper 

● Time standing still 

● Number of popups triggered 

● Number of hallway teleports 

● Average frames per second 
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The log file also records a history of data collected in real-time.  This real-time data includes the 

time and positions of the player when certain events occur, like the player stopping or triggering 

pop-ups.  This real-time data in combination with the recorded statistics provides a fine 

granularity of data to identify bugs and assess how closely the player’s experience matches the 

projects experience goal. 

 

4. Applications and tools 
Below are the different applications that we used to create The Piper. 

 

Tech   

Microsoft Visual Studio 2013 Compiling engine, C++ 

Art   

Adobe Photoshop Texture creation, general image editing 

Autodesk Maya Geometry creation, UVing, texturing, 

rigging, animation  

Pixologic ZBrush High-poly sculpting 

Marvelous Designer Clothing for characters 

SpeedTree Tree asset creation 

Substance Painter Texture map creation 

Topogun  Retopologizing high-poly assets  

World Machine Mountain creation 

Quixel Suite 2.0 Texture map creation 

xNormal Texture map baking 

Audio   
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Adobe Audition Sound effect editing and touching up 

Cubase Music arrangement and composition 

Audiokinetic Wwise Real-time adaptive music engine 

 

4.1. Team communication 
Most communication within the team was achieved via the application Slack. Separate 

channels were established for specific topics such as art and audio, but most communication 

occurred in the private, general-topic #students channel. On rare occasions, other 

communications mediums were used as backups, such as email, SMS, and Facebook Messenger. 

A Trello board was established for task management early on, but quickly fell into disuse. 

  

4.2. Source control 
 Our source control solution for The Piper was Perforce. Used by many game and film 

industry companies and integrated into Unreal Engine 4, it was a superior versioning service than 

our previous method, Git, which will be discussed in more depth in the conclusion of this report. 

 

4.3. Wwise integration 

The project needed a flexible solution for adapting music dynamically, and in time with 

the tempo. To resolve this concern, Wwise was integrated into Unreal. Wwise is an interactive 

sound engine for games, but i’s most sought feature for this project was its flexibility with 

interactive music. Although Unreal Engine also has functions that handle audio, these do not 

allow for the same level of control as software dedicated to integrating audio like Wwise. 

The expense of using Wwise is the time it takes to integrate it into the engine. The 

software requires building a custom version of Unreal Engine from the source code found on 

their github page. This is a considerable time sink, but it only lasts as long as the custom engine’s 

build time. Once the build is complete, all the functionality of Wwise is accessible from within 

Unreal. 
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4.4. Virtual reality integration 
Virtual Reality (VR) integration was a goal that we had set out for at the beginning of the 

project, as the genre of an interactive cinema and immersion inducing qualities of a head 

mounted display (HMD) go hand in hand. We were originally given an OSVR (Open Source 

Virtual Reality) Hacker Dev Kit, which is produced by Sensics and endorsed by Razer. 

Difficulties with successful integration arose (see section 4.4). We ultimately ended up going 

with the Oculus Rift DK2 HMD, as integration was nearly seamless. Following Unreal’s Online 

Documentation 

(https://docs.unrealengine.com/latest/INT/Platforms/Oculus/QuickStart/index.html) allowed for 

us to get the Oculus Rift up and running within a few hours.   

4.5. Maya tools 
 A few tools were created in Maya using Python scripting to support the artist to create 

more assets much faster. Among these tools were a more efficient export tool. The exporter 

handles the process of moving an object to the origin of the world, freezing its values, exporting,  

then moving the object back to its original position. Having all these processes be automated has 

saved time and effort of the artists getting assets into the engine. Another tool was a mesh 

populator which would be used to add objects across a surface of another mesh, such as leaves 

and/or branches on the base model of a tree. This would have made tree creation faster. 

4.6. Miscellaneous tools 
We compiled the Unreal Engine 4 editor and our game with additional plugins such as 

Substance and SpeedTree Importer. SpeedTree Importer made it easier to import vegetation 

assets (such as trees) into the engine. The Substance plugin allows Unity to read Substance’s 

proprietary .sbar file type, providing the capability for dynamic, randomized, and scalable 

textures and materials. 
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Fig. 5. Screenshot from The Secret of Monkey Island. 

5. Art implementation 
 

The style and aesthetic for The Piper took a while to develop, but we eventually settled 

on a unique mix of cartoon-like proportions with realistic texturing to provide the player with a 

sense of familiarity and fun. The art direction developed organically as assets were created, 

leaving us freedom to explore new creative avenues. 

We were heavily influenced by the art of The Secret of Monkey Island (Lucasfilm Games, 

1990). This classic adventure game’s quirky angles and proportions seemed to fit our creative 

direction, but our modular level design process and organic approach to styling prevented us 

from fully achieving the same look. Nevertheless, traces of Monkey Island’s inspiration can still 

be seen in the angular features of our characters and environments. 
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5.1. Historical art references 
Note: This section of the report was provided by Caitlin Malone, a WPI IMGD graduate 

student, who specializes in medieval history. She assisted the team in ensuring that the assets 

created for The Piper were era-appropriate. 

 

For this MQP, we researched the historical town of Hamelin, Germany and general 

concepts of 14th century medieval life. This time period was chosen as it corresponded with the 

original mention of the Pied Piper story, which was found in the church in Hamelin’s market. We 

chose the time period of the legend, rather than the time that the legend supposedly took place, 

because it was a concrete date to work with and it fit with the “fairytale” inspiration for the 

game. 

            Specifically, we researched the church at Hamelin, the original story and its depiction in 

the town, the Pied Piper costume used by modern-day performers there, and whether or not 

Hamelin was a walled city at the time of the legend. We also researched the Black Forest in 

Germany for art inspiration for the woods outside the town. More generally, information and 

reference images were provided for period towns, houses and streets, with miscellaneous debris; 

gates, town walls, and fortifications; and clothing for the NPC children that follow the Piper. 

We relied as much as possible on primary sources, particularly for features such as the 

town and medieval fortifications. Although authenticity was desired, artistic design was more 

important. For this reason we pulled from pictures not only of the town of Hamelin and the 

existing structures there, but also from other towns in Germany, and occasionally from towns in 

Austria, France and Great Britain. Although designs of houses many differ, the general use of 

plaster and timber was similar in all regions for the time period. 

For fortifications, due to the wide variety of designs used in the time period, we restricted 

my search to Germany and surrounding areas like Austria. Other information, such as details of 

clothing and items in the streets, were pulled from medieval history secondary sources or 

pictures painted during analogous times. The Pied Piper costume was designed based on the 

costumes worn by performers in Hamelin and was used with little modification due to its fit with 

the “fairytale” design. 

  

16 
 



 

 

5.2. Environment 
 The environment of The Piper is made up of two distinct settings; the urban landscape of 

Hamelin, and the forest just outside of the city walls. 

5.2.1. Modular meshes 
Caitlin Malone provided research which showed what type of buildings were typically 

built during this era (see section 5.1 above). We decided to make the buildings resemble the 

Tudor style of house, made out of plaster walls, wooden beams, and red tiled roofs. Jetties 

(overhangs) are also present on our building design, though more exaggerated than they would 

be in real life.  

 

Fig. 6. Church “hero” object. 
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To create the city, we constructed each piece of the buildings with a modular design in 

mind. Using the power of 2s and sticking to a grid system was imperative to ensure that each 

piece could seamlessly fit with every other piece. “Grids may fluctuate wildly between engines 

and projects, but whatever system you decide on, stick to it religiously, and always use even 

divisions of that grid when working on smaller components.” (Perry) Unreal Engine 4 uses a 

metric based grid system. As such, we built each building section in Maya sticking to meters. 

While building the walls was straightforward, with a one meter, two meter, and four meter piece, 

figuring out how to build modular roofs felt like it would be complicated. We decided to go the 

simple route. Two roof sizes were constructed, and simply scaled to fit each building if need be. 

This did not prove to be a problem with UV stretching, as the roof did not have to be scaled to 

such an extreme. The player would also never get close enough to the texture to see the 

stretching. By creating the roof at a power of 2 and applying a grid scale, we ensured that the 

roof fit each building perfectly. 

 

Fig. 7: Modular Pieces used to construct the city 

18 
 



 

 
  

These pieces were then imported with the naming convention SM_Wall_x(size). Doing 

so allowed for the level designer to see what dimensions each piece was from the content 

browser. After dragging the piece into the world, grid snapping allowed for us to build each 

building in a timely manner, and ensured that there were no gaps between pieces as the vertices 

of each neighboring piece would meet at the same point in world space.  

 

5.2.2. Unique meshes  
Having purely modular grid-snapping pieces was not enough to create the city without 

apparent repetition. Other meshes had to be created in order to make the city feel as though it 

were not just a game set. Clutter, merchant tents, cemetery assets, clotheslines, and more were 

created to fill the world that the player explores. The hero object, the church in the center of the 

city, serves as the main point of attraction for players as they walk towards the city gate. All of 

these assets were modeled in Maya or ZBrush, and textured in Photoshop/nDo2. 

 

Fig. 8. Example of a fully constructed building, in engine. 
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Fig. 9. Tileable textures used throughout the city. 

5.2.3. Tileable textures 
 Tileable textures were used to quickly texture meshes. Not only are tileable textures 

necessary for certain modular pieces, but it allows for UVing certain assets, such as the burlap 

sacks that were used as clutter, quick and easy. Certain textures, such as the wood, metal, and 

stone wall textures, were sculpted in ZBrush and baked onto a plane xNormal. Details for the 

wood and metal textures were sculpted onto a plane, while the stone wall textures required 

physical stone bricks to be modeled. Julio Nicoletti’s YouTube tutorial Seamless Texture with 

Maya, xNormal, Photoshop, nDo2 served as a valuable resource, and gave us insight on a 

workflow to create texture information. After generating the normal, height, and ambient 

occlusion maps from the high-poly sculpt in both xNormal and nDo2, they were all taken into 

Photoshop and used as RGB layer masks on color-filled layers. Different blend mode filters were 

applied on each layer to create a variety of different effects. This process was one of trial and 

error and full of tweaking, as changing the layer order or blend mode on even one layer can 

dramatically change the look of the texture.  Other textures, such as the plaster texture, were 

created from picture reference Textures.com (formerly CGTextures.com), tweaked in Photoshop, 

and taken into nDo2 to generate the necessary maps.  
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To ensure that the player cannot tell that the textures are tiled, world coordinate texture 

offset was added to each material in UE4 that would make use of such function.  As an object 

with this material is moved around the world, the texture that is on the object moves in UV 

space. For example, a plane placed at the origin with the material would have a different 

appearance as the same plane moved two meters to the left of the origin, as the texture in the UV 

space moved with the object. We dissected the “StylizedRendering” UE4 Project Example to see 

how they made use of this function, and modified it for our needs. The wooden beams, planks, 

and plaster materials share this code.  

 
 
 

Fig. 10. Material setup to create world coordinate texture offset 
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5.2.4. Vegetation 
 In order to give the forest section of the environment a lush appearance, foliage was 

necessary. Simple planes were modeled and UVed to a single texture sheet that contains multiple 

foliage textures (hand painted as well as image reference). These planes were then arranged in 

such a way in Maya to give them the appearance that, when viewed from the side, are not merely 

planes. After importing them into UE4, we were able to make use of the built-in landscape tool 

set to paint on the foliage. The majority of the foliage is grass, with taller plants mixed in. 

 Trees were created in SpeedTree. As this was a new program to us, there was a small 

learning curve to create the trees exactly how we wanted them. Although the program is insanely 

powerful, the basics are easy to grasp. The tutorial SpeedTree Tutorial: Modeler Basics by 

SpeedTree Middleware on YouTube covered exactly what we needed to know. One thing to note 

is SpeedTree’s built in Level of Detail system. Exported trees already contain highly optimized 

low-poly meshes, that even turn to billboards when the player is at a certain range. This type of 

optimization is something that would be insanely time consuming if done manually. 

 

Fig. 11. Forest scene 
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5.2.5. Lighting 
 

The Piper takes place during the night. As such, overcoming the obstacle of having a 

nighttime looking environment that is still bright enough for the player to easily enjoy the visuals 

around them was an obstacle that we had to overcome. The main directional light source is set to 

a low intensity of 4.0, with a color overlay of a gray-ish blue tint. As the moon in the night sky is 

huge, the light that it gives off works with the shadows that it projects on the ground of both the 

buildings, and the characters. Light shaft occlusion is enabled, meaning that beautiful light shafts 

are visible through the exponential height fog as the rays are intersected by the roofs and other 

objects. 

 

 

Lanterns are placed around the level to add extra light. Without them, the city would look 

dead. The light color of the lanterns is a saturated orange, to contrast with the rest of the dark 

blue scene. In addition to the lanterns, the lit windows of the buildings give off slight emissive 

light. Much like the lanterns, the light from the windows adds life to the city. 

  

Fig. 12. Light shafts. 
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 5.3. Characters 
The cast of The Piper includes the Pied Piper himself, 

together with a number of Hamelin children. 

The Pied Piper was designed to include angled features 

signifying a villainous or menacing intent. He is also 

intentionally proportioned to be extremely lanky to have an 

otherworldly or odd appearance to scare the player slightly. 

The children were created to foil the Pied Piper’s 

appearance. With smoother, more rounded features, the children 

are viewed as more innocent and friendly. Their proportions 

were also more akin to Pixar proportions with large heads and 

small features to provide the cartoony look we were attempting 

to achieve. 

5.3.1. Meshes 
 The characters both started out as sculpts within ZBrush following the workflow of a Riot 

Games character modeler provided in a Zbrush Summit talk (Pixologic Zbrush). The process 

began with blocking out major shapes of the body to solidify the proportions of the character. 

Additional details were added on using dynamesh and various other brushes to obtained the 

desired look. A high-poly mesh of the character’s body was created with proper facial and body 

anatomy. 

 Once the bodies were finalized, they had to be decimated, reducing the polygon count, in 

order for each piece to be made into one mesh instead of separate subtools. This singular mesh 

was brought in to a clothing program known as Marvelous Designer where clothing was 

simulated as real-world fabric on top of the body to achieve a believable look with weight and 

proper folds. Most of this work was performed with prior knowledge of the program, but 

additional tutorials were used to gain a better understanding of the functionality of some features 

(“Getting Started with Marvelous”). The clothing was exported back into ZBrush because it is 

the only 3D software which could handle the large polygon count created by Marvelous. 

Fig. 13. Sculpt of the Pied Piper 
from ZBrush. 
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 Back in Zbrush, the clothing was sculpted to add a similar style to 

the character. For instance, the Pied Piper has many angled features, so 

the clothing was sculpted to reflect those angles. The children’s clothes 

were left the same after importing because the folds were more rounded, 

matching the children’s features. 

 The meshes were, again, decimated to reduce polygon count and 

exported to a program designed to optimize topology of a mesh known as 

TopoGun. This intuitive program allows for polygons to be drawn on top 

of a high-poly reference mesh, creating an incredibly optimized low-poly, 

game ready mesh fairly quickly. Proper topology flow was researched on 

a game development wiki and was used to ensure proper deformation in 

animation and easier rigging (“Topology”). The detailed information of 

the high-poly model was then transferred to the  newly created low-poly model with textures 

through a process called baking. XNormal was used for 

this process.  

 The low-poly model was then brought into Maya  

where baked texture maps were checked and the mesh was 

prepared for future creative steps. Additional props such as 

the Pied Piper’s backpack and flute were also created and 

arranged during this stage. 

5.3.2. Rigging 
 The rigs of the Pied Piper and children were 

created with the assistance of Epic’s Animation and 

Rigging Toolset (ART) which comes with Unreal Engine 

4. It is a plugin for Maya which contains a easy to use 

rigging solution and amazing animation tools (Maya 

Animation Rigging Toolset, 2016). The bones of the soon 

to be rig are placed in their appropriate locations and 

rotations with a mannequin rig. Once in place, the tool 

smooth binds the mesh to the bones, leaving the skin 

Fig. 14. Child sculpt 
from ZBrush. 

Fig. 15. Finalized Pied Piper character in 
engine, ready for animations. 
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weighting process to be painted by the artist. The painting skin weight process took very long, 

especially for asymmetrical meshes like the Pied Piper. After completion of the weighting 

process, the rig controls are generated and the character is done. Some additional setting needed 

to be experimented with to achieve proper dynamic bone movement and such. 

 We chose to include Nvidia PhysX APEX cloth simulation in our game to make the 

clothing even more believable and add dynamics. This was easily achievable with plugins and 

tutorials such as the one provided by Tales of Nalstone (Basic Unreal Engine 4 Apex Cloth). 

 Blendshapes were also used for facial animations instead of a bone based facial rig.  

These were created in Zbrush, applied in a specific way within Maya to be usable in engine. 

 

 

5.3.3. Animation 
 The animations were created in Maya using the Epic ART system used for rigging. THis 

toolset was chosen for its use of transform spaces over constraints, as Unreal Engine does not use 

constraints. This was particularly useful for animating the Pied Piper’s instrument holding and 

playing. The flute was placed into the head’s space and the hands were each placed into the 

flute’s space effectively allowing the head to control both arms with no breakage and minimal 

Fig. 16. The Pied Piper mid-animation. 
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effort on the animator’s part. The toolset also has a built-in bone picker and other efficiency 

improvements, making animating progress much faster. 

 Each character had several animations controlled in the engine by conditional animation 

blueprints. Depending on game events, the character animation would gradually blend into the 

pose of animation it would be playing next. The most common usage was switching between 

idling and walking without limb popping or looking awkward. 

 Animating was done at 30 frames-per-second with a standard keyframing workflow. 

5.3.4. Texturing 
 Texturing for the characters was done in Substance Painter which allowed artists to paint 

a material directly onto the mesh and combined procedural texturing methods with hand painted 

ones. The tool was easy to use and had excessive tutorials (Allegorithmic). 

  

6. Music and audio 
Music is the driving force of The Piper experience, both for the children in-game and the 

player. The overall idea is that the piper lures children with pleasant and inviting music, so it was 

absolutely critical to get this right. 

The village melody is the first thing the player hears upon waking up. It presents a joyful, 

hopeful tune that catches the ear. As the Piper lures the player out of the city, the music slowly 

builds in intensity until its climactic point at the city gates, where it explodes into a full fanfare. 

As the group of children approach the river just outside the city, the music quickly takes a turn 

for the worst, morphing into a dissonant cacophony. It rises the closer the children get to the 

rapids, and just before it can claim them, the melody swiftly returns to its original major key as 

the bridge materializes out of thin air. 

Once the Piper guides the children into the forest, a new melody begins. This is 

something more mysterious and even mischievous, reflecting both the children’s thoughts of 

sneaking out in the middle of the night, as well as the Piper’s unknown malicious intent. 
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At the end of a forest lies a long rock tunnel. As the children enter, the forest theme 

begins to reverberate until the music fizzles out into a washed, ambient drone. It slowly builds in 

intensity as they’re drawn further into the cave, and eventually cuts off into nothing as the player 

loses control. This is the last music heard before the narrator wraps up the story over complete 

silence. 

The entire game was composed in such a way that we could switch music on the fly at 

any point while keeping the score sounding natural. The village is the most complex 

implementation of this idea (see Fig. 17). It starts off with the A section, with the lone piper 

playing his flute, poking his head into the player’s room. The string section and light percussion 

slowly introduce themselves as he leaves. This flows straight into the B section, which brings in 

the brass section along with a new chord progression. After this it leads into C, a reprise of the 

original A section theme, albeit with more instrumentation.  

Up until this point, the music has been completely linear, and will always play in this 

fashion regardless of the game’s state. However, this is where the interactivity is brought in. If 

Fig. 17. Piper village music. 

28 
 



 

the player reaches an in-game trigger near the end of the village by the end of section C, the 

music automatically transitions into the E section as the gate opens. If not, Wwise will loop a 

special D section over again until that condition is satisfied. Though this D section is essentially 

one long loop, it’s broken up into eight individual 2-bar chunks. This approach may seem 

clunky, but it allows us to smoothly switch back to the gate theme (E) within a two bar interval. 

No matter which of these subsections is playing, each will transition musically into E without 

any pops, cracks, or other artifacts.. After the E sections finishes, a similar concept happens in 

the F section; we have six 2-bar loops that repeat until the player nears the bridge. Once they get 

close enough, we wait until the end of the current 2-bar chunk of music to transition into the 

bridge theme (G). Two linear sub-sections play before launching into a final loop, in which the 

flute plays a very soft pattern that transitions naturally into the forest theme once it is triggered. 

This adaptive music setup is far from perfect, but it’s still functional and mostly elegant. 

It ensures that players will never be met with total silence, whether they decide to spend thirty 

seconds in the village square or thirty minutes. 

6.1. Sound Effects 
Since the music is the primary focus, 

the sound effects are less emphasized. There 

are a few notable exceptions to this, but for 

the most part we kept most other sounds low 

key. 

The entire experience plays back the player’s 

footsteps on several surfaces, including 

cobblestone, dirt, wood, and leaves. They’re 

mixed lightly as to not overpower other 

important effects, and as such only stick out 

during quieter periods in the soundtrack. 

The village features a light wind blowing throughout, to serve as an ambient bed. The 

city gates are the most notable sound in this first segment. A long creaking rings out as the gates 

open, revealing the outside of the city and a bright yellow moon.   

Fig. 18. Sound cues for the forest. 

29 
 



 

The river is the main exception to the “low key” rule, as the rapids need to sound as 

intimidating as they look. This is achieved using two separate audio components in Unreal, 

superimposed on each other. The first emits a field recording of a river from further away. It 

gives a general sense of a large body of water. As the player gets closer, a second loop fades in. 

This one is recorded much closer to the water so individual splashes, drops, and other elements 

of the river can be picked out. Rather than performing a simple fade with just one of these 

sounds, the combination of both helps sell the effect to a much greater detail. 

Once the player is close enough to the rapids, the bridge forms from a number of 

surrounding rocks. Even though rocks floating in the air wouldn’t physically produce much 

sound, several samples of reversed rock falls and impacts play, giving the illusion of the stones 

fusing together to form the bridge.  

The ambience in the forest is a bit more involved. A Sound Cue was set up to give the 

forest a more dynamic and randomized soundscape of its own, rather than just a single loop. 

Underneath everything lies a wind loop, giving a sense of slight movement in the trees above. A 

randomizer chooses from a set of cricket sounds, and triggers them every few seconds. Similarly, 

another randomizer selects various owl sounds to play at longer intervals. This more complex 

setup gives much more variety and interest than a stagnant loop, and helps the forest seem a little 

more organic. 

6.2. Narration 
Since the player starts out halfway through the story, we needed a way to communicate 

the first half in some way. We considered hinting at it several times during gameplay, but we 

decided to frontload it with a storybook sequence instead. 

Our advisor put us in contact with Helen Lisanti, a BBC-trained voice actress, to perform 

the intro narration for us. She did a fantastic job, and her haunting voiceover sets the tone of our 

game from the very beginning quite effectively. 
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7. Project promotion 
 
7.1. Web site 
 A basic Weebly website was created to serve as a homepage for our project. It contains a 

FAQ, bios of each team member, and a way for visitors to download a build of the game for 

testing. The website is located at www.thepipergame.com. 

7.2. Twitter 
A Twitter account was created in order to keep potential players up to date with 

production of the game. Under the handle @ThePiperGame, we posted in-progress screenshots, 

renders, .gifs and other assets to showcase how the game was shaping up. We were able to tag 

the account in our personal Twitter posts to raise awareness of our game, and show the followers 

on our personal accounts what we were working on. 

8. Conclusion and recommendations 

8.1. Scope 
 The scope of The Piper changed drastically over the game’s development, generally 

decreasing as time went on. We initially hoped to include an alternate ending, where the player 

escapes, defeats, or stops the Piper. The first idea to gain traction involved a deaf child who 

would be immune to the Piper’s spell and could be befriended through a series of puzzles. 

Befriending the deaf child would lead to an alternate ending where the player is rescued by their 

newfound friend. 

 This plan was found to be too complex, and was abandoned. We replaced the idea with a 

less intricate puzzle, where the player must locate a gold coin and deliver it to the Piper. This 

was significantly simpler, but rapidly approaching deadlines forced us to abandon the alternate 

ending altogether. 

 Neither of these ideas was ever implemented to any extent. We agreed to first focus on 

the main game, and only start developing the alternate ending(s) once we considered the rest of 

the experience complete. This proved invaluable, as it let us easily rescope the game when 
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needed. We avoided wasting time partially implementing optional features only to waste more 

time removing them. We recommend to any future teams that they agree upon what constitutes 

the core game, and ensure that it is fully developed before beginning any optional endeavors. 

 There were also some cut features that were not initially considered optional, and were in 

fact partially implemented. The game, which ends in a cave sequence, initially included an 

additional sequence set atop a cliff. The amount of additional art assets required for this sequence 

proved infeasible, and it was agreed that the game would have to end earlier. Fortunately, we 

identified the cave sequence as an easy cut off point. However, this was arguably a stroke of 

luck; the cave sequence was never designed to be a fallback ending for the game. We 

recommend that future teams identify points partway through the game that could be repurposed 

into proper endings with minimal effort in the event that the planned ending proves to be 

impractical to complete. 

8.2. Wwise issues 
Though Wwise was certainly useful due to its powerful music engine, it wasn’t without 

problems. It took the team over a month to fully integrate it into the Unreal Engine, and it 

continued to present a number of obstacles throughout most of development. 

 The primary source of frustration stemmed from how Perforce interacts with Wwise: 

namely, how it doesn’t. Unreal is set up to work with Perforce exceptionally well, but neither 

knows how to handle the inclusion of Wwise. Even though all Wwise-related folders and media 

are stored in the same directory as the Unreal project, they are not visible in-engine. 

Additionally, this means they are ignored by Unreal’s internal integration with Perforce, and 

must be dealt with separately in the P4V client. 

 Over time, a workflow was developed that worked relatively smoothly: the composer 

would manually check out any Wwise-related folders and files (including the separate 

Soundbank Definition File) from P4V before making any changes to the project. Soundbanks 

must be generated through Unreal, rather than through Wwise normally. These are generated 

automatically based on whatever audio objects are attached to the specific event. After all 

changes are made, the project is saved and closed. Updates to source control must be applied 

through P4V, ensuring any music-related changes properly update on the server. This workflow 

was far from perfect, but it was workable.  
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 A plug-in version of Wwise for Unreal was in development at the time of The Piper’s 

development. We were able to successfully integrate Wwise into a Unreal Engine 4.11 project 

with extreme ease due to it being a plug-in. We were able to reap the benefits of the new 

update’s optimized rendering for VR just in time before PAX East. 

8.3. Flute issues 
The original intent with the music involved recording an actual flute performance for 

maximum authenticity. Though this would’ve been great in some respects, it ultimately didn’t 

work out.  

 The biggest downside to “live” recording would be the finality of it. Once a part is 

recorded, it stays exactly the same. Most of the game’s music went through several iterations and 

phases during development, as plans changed for how the game was structured. If something in 

the flute melody needed to be altered, or a note had to cut off earlier in order for another music 

cue to work, it would’ve been difficult — if not impossible — to make the required changes. 

 We eventually decided to use a professional-quality sample library instead: 8dio’s Claire 

Flute VST. It features a very detailed sampled flute, with true legato in between held notes. It 

was certainly worthy of being performed by the Pied Piper.  

 Integrating this new virtual instrument still took a significant amount of work. Up until 

this point, a flute in the Kontakt Factory Library was used as a temporary solution. It was far 

from acceptable, but was the best thing we had access to for much of the project. We didn’t 

expect to simply throw in the new sample library and expect everything to work; the 

performance had to be completely reworked in order for this new flute to sound good. In some 

cases, the melody had to be completely changed to accommodate. All things considered, it saved 

much more time when compared to the original plan to record. Not only that, but the VST 

allowed the melody to be flexible. Though it took a fair effort to fix up timing and performance 

virtually, we ended up with a great sounding result.  

  

33 
 



 

8.4. Design issues 
We had a main priority of making this experience last 3 to 5 minutes. With the time 

constraint in mind, the level design had to accurately reflect upon that. As such, we decided to 

make the streets of Hamelin simple to navigate, yet appear to expand past the player’s capable 

range of interaction. By doing so, the illusion of the in-game city being larger than it actually is, 

similar to that of a movie set, exists. Not only did we want the player to easily navigate to where 

they needed to go to progress the story, but we also wanted the streets and street openings to be 

laid out in a way that shows off the assets we made. 

The initial level design was laid out using UE4’s BSP brushes, which are essentially 

primitive geometry building blocks that are used as placeholders until final art is brought into the 

engine.  After we were happy with the design and the feel, the modular building pieces replaced 

the BSPs with the Tudor style houses. Minor changes to the level design were made here and 

there, but overall, the original city layout design remained the same.    

The design outside of the city, however, changed almost completely from our initial 

conception to the final product. Originally, we intended on the player following the Pied Piper 

and the rest of the other children into a cave, where the walls behind them would crumble. They 

would be transported to a mountaintop, where they would see a Candyland-esque kingdom 

before them, past a rainbow bridge and over the clouds. Upon crossing the bridge, Candyland 

would disappear, and they would all fall to their death (See Fig. 20). This portion of the game 

was almost entirely scrapped due to scope issues. 

 We decided on ending the experience at the cave. Instead of walking into a dark cave, 

they would enter a brightly lit (although not so bright that it would hurt the player’s eyes), 

otherworldly portal inside of a cave. This would leave the ending open to the player, as to not 

suggest life or death to the children. 
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8.5. Integration and source control 
 Our team management and communication method was Slack, as stated earlier. The 

service works on the internet, on a desktop, or on a cell phone, so we were always able to 

communicate. Slack has additional features when integrated with other services like Google 

Docs, Dropbox, Trello, and GitHub. Most of the integrations were helpful at first but quickly 

came into disuse as we abandoned the services associated with them. Different channels were 

used, but, as stated previously, most communication was done on the #students channel, only 

ever using another channel if we needed professor input. Overall, Slack proved vital to 

development process of The Piper, and we would not have had a reliable communication method 

without it. We highly recommend future teams to use Slack. 

 We set up a Trello board early on in the project. Trello is an online application to help 

manage, assign, and keep track of tasks. It does this through a number of lists on which 

individual task cards can be stored and moved around. By setting up lists and cards for tasks that 

needed to get done, we could have a solid idea of who’s working on what, and how much is left 

to do. Additionally, Slack provides an integration with Trello, and a separate #task-management 

channel was created specifically for this purpose. However, this method of task management 

quickly fell out of use in favor of other methods. The team mainly kept up to date through both 

the usual Slack channel and later a master task list, a single Google Spreadsheet that listed 

everything left to accomplish. While Trello may work exceptionally for other teams, it didn’t 

turn out to be a great fit for us.  

 Our first source control system utilized Git. While the tech team was already familiar 

with Git, we found it unsuitable for this project. Although Git technically supports any file type, 

it is designed with the assumption that it will be primarily used for text files. As such, it freely 

allows multiple users to edit the same file concurrently, knowing that it will usually be possible 

to combine their changes later. Even when the overlapping changes are ambiguous, Git provides 

an interface which allows for these conflicts to be easily seen and dealt with. However, these 

conveniences do not apply to binary files; as The Piper was programmed mostly in Unreal’s 

Blueprint system rather than C++, this proved troublesome. Git’s lax rules on concurrent editing 

led to frequent and unresolvable conflicts with file changes. 
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These issues with Git necessitated a switch to Perforce, a system with a concept of 

“checking out” files so that other users may not simultaneously edit them. Perforce was more 

difficult to set up than Git (see Appendix TODO for a detailed explanation of the process), but 

proved worthwhile. The inability to concurrently edit files was inconsequential; there was very 

rarely a need to do so. The mechanic of locking files for other users to prevent merge conflicts 

was far more useful and greatly expedited production of the game. In addition, Unreal Engine 

natively supports robust integration with Perforce, allowing us to use most of its functions within 

the editor itself. We highly recommend teams using Unreal Engine, especially if their projects 

are primarily Blueprint-based, use Perforce for source control. 

 We were originally given an OSVR (Open Source Virtual Reality) HMD courtesy of 

WPI. While the idea of the headset is fantastic with its low price and sufficient technical 

specifications, getting it to properly integrate into our Unreal Project was a hassle. Currently, 

Epic does not offer a native OSVR plug-in, resulting in us having to compile and add it to our 

engine. We were successfully able to get the HMD working in editor, however when it came to 

making a build of the project, we were given multiple errors. After several weeks of trying to get 

it to properly work, contacting customer support, and trying multiple methods of integration, we 

abandoned OSVR and were able to secure an Oculus Rift HMD from our good friend and WPI 

alumni Ichiro Lambe of Dejobaan Games. Integration of the Oculus Rift was immensely easier, 

as its documentation is clear and easy to follow. It should be noted that with the release of UE 

4.12, OSVR native support will be offered (Sensics, 2016).  

8.6. Team motivation 
 For the majority of the MQP timeline, we worked effectively and consistently on the 

development of The Piper. However, the long development led to the development of a few 

motivation lulls, where progress was slowed. In A-term, we were progressing rapidly with the 

project being so new, exciting, and, as previously mentioned in Scope, vast. We knew there 

would be a lot of work, but we were resilient and optimistic in finishing the game in C-term to 

test the game and polish it. We made great strides that term and had a greybox level that the 

player could walk all the way through. 
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Entering B-Term, our momentum halted. We concentrated on features which were not 

important or got hung up on artistic elements. We made progress, but not as much. Then we lost 

Ben Korza from the team in C-term and ran into difficulties within the team and project which 

set us back. 

 We attempted to keep our motivation for the project up with thinking of new features or 

simply making an effort get tasks done. The Asset Priority List we created definitely helped to 

keep track of how much needed to get done and who needed to do it. 

 Our recommendation is to, again, properly scope, have a team management system such 

as an asset priority list early on, celebrate successes, and stay on top of what needs to get done 

and by whom. 

8.7. Team structure 
 Our team was divided into three groups: a two-man programming (“tech”) group, a two-

man art group, and a single music/audio person. Early in the project, we followed a fairly strict 

and regular meeting schedule, with multiple full-team meetings each week. The art and tech 

teams also regularly held meetings amongst themselves to work on their aspects of the game. As 

the project went on and focus shifted from design to development, the regimented schedule was 

gradually phased out and replaced with a more as-needed meeting system. 

 Halfway through the project, Ben Korza, one of our two programmers, graduated from 

WPI and left the team. Knowing this in advance, the tech team took special care to ensure that 

Will Frick, the other programmer, would be well-versed in Korza’s contributions. This proved 

invaluable when revisions to the game design required changes to existing technology. While 

mid-project changes to team structure should obviously be avoided if possible, we recommend 

that these changes be carefully anticipated by the team. Leaving members should ensure that 

their counterparts are able to understand their work, in case it needs to be changed later on. 

8.8. Engine issues 
 Our project was negatively impacted by a handful of bugs present in Unreal Engine. This 

was exacerbated by the fact that our integration with Wwise required us to freeze our engine at 

version 4.9, leaving future bug fixes unavailable. 
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 As mentioned in Methods, the instability of Unreal’s experimental 3D Widget feature 

presented severe problems for our pause menu in virtual reality. After spending a large amount 

of time attempting to engineer a workaround for the issue, it was decided that the feature would 

have to be abandoned. This is undesirable, naturally, but we feel it was the correct choice, 

especially as it occurred very close to our deadline. 

8.9. Flocking issues 
 Unreal Engine provides built-in support for various technologies, such as flocking 

navigation. It can be tempting to design one’s own interpretation of such technologies, in the 

interest of practice, customization, or simply out of a desire to fully understand how the 

technology works. However, this proved to backfire on the team. Our custom-built 

implementation of child flocking, while significantly more customizable than Unreal’s RVO 

system, proved to be inefficient in terms of computing time and ultimately had to be removed. 

Upon implementing RVO in its place, we regretted not doing so in the first place. This would 

have saved development time and made testing the game significantly easier. We recommend 

that future teams carefully consider existing solutions to problems before engineering their own. 

8.10. Pacing system issues 

 Due to the choreographed nature of the game, the timing of individual events was extremely 

important. While the various triggers used to enforce this timing were reliable and precise, they became 

difficult to keep track of as the game grew. We never established any sort of centralized or standardized 

pacing system. When new additions to the game required intercepting older events, it was sometimes 

extremely difficult to locate where the interception should take place. Most set pieces were activated by 

zones which sensed overlaps with the player or Piper; in some cases, these zones were dedicated to the 

purpose of sending commands to those specific set pieces. In other cases, zones carried multiple purposes; 

for instance, there is a zone near the river that controls the Piper’s movement and animation, as well as 

the bridge’s animation. These inconsistencies impeded the game’s scalability. We recommend that, in 

games which heavily rely on scripted pacing and choreography, the developers implement a standardized 

system for how pacing is controlled, such as a centralized pacing controller object. 
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8.11. Documentation 
 The Unreal Engine 4 documentation is vast and in-depth, providing information on nearly 

every aspect of the engine in great detail. Nearly anything we wanted to do for the game had 

documentation located in the engine notes or was located in EPIC’s forums and answers section. 

There are also many groups of developers who have knowledge of the engine, and the EPIC 

developers are even able to be contacted fairly easily. We made use of the documentation a lot to 

see the best way to perform a task. 

8.12. Testing 
We regret that we had little time for formal testing. We originally planned to run many 

formalized playtest sessions, but this fell through as deadlines approached. While we each did 

receive some informal feedback from friends and family, we never found the time to run true 

playtest sessions. Future teams should be careful to budget their time to accommodate testing. 

8.13. Stretch goals 
If we were to be given an extended timeline, all aspects of our current project would be 

taken and expanded upon. Our current level design would be just the beginning - adding a maze 

portion to the city map would provide a fun experience for the player as he or she would need to 

follow the Pied Piper in order to find their way out of the city. This guidance could be visual, but 

ideally it would be purely audio, as the player would have to navigate down certain hallways that 

they could hear the magical flute coming from.  

 With additional time, we would likely revisit our scrapped ideas for an alternate ending. 

Both the “deaf child” and “coin puzzle” concepts were extensively planned before they were 

abandoned, and either would likely be a profound improvement to the experience. 
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 We also wanted to dedicate additional time to making the city feel more lively. The Pied 

Piper and children interacting with the environment would have contributed significantly to the 

feeling of the game being an actual world the player is put into. Similarly, more detail in the 

environment as well as environmental animation would have been nice to include. Character 

animations could have also been expanded upon, allowing for the player to view a character as 

not just a computer driven entity. 

 We would have also liked the music to act as a more integral part of the experience. As of 

now, it feels like the music is just a bed being played underneath the game, rather than being 

inherently tied into the experience. More interactions in both the dynamic music track itself, and 

more interactions between the soundtrack and the game world, would’ve brought the experience 

together into a more cohesive whole. 
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 8.14. PAX East 2016 
Penny Arcade Expo (PAX) East 2016 took place during the dates of April 22nd through 

April 24th.  We were able to secure a spot in the WPI IMGD booth, and show our project all 

weekend long. All together, we estimate roughly 300-400 people strapped on the Oculus Rift and 

played through our interactive cinema.  

Because PAX is a consumer targeted show, many attendees were unfamiliar with VR. 

When they saw The Piper being presented on the Rift, people would line up just for the sole 

purpose of trying virtual reality. It showed once they took the headset off that a majority of the 

players loved what they saw. Their faces would light up, and they would say something along the 

lines of “that was awesome!” Although we did not have any extensive testing prior to PAX East, 

this event served as a major stress test to see if there were any bugs that we did not catch in the 

weeks prior. We were able to catch a few bugs, but overall, the weekend proved to be a success. 

Fig. 19. PAX Attendee playing The Piper 
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Appendix 1. Perforce 
The team struggled to acquire a Perforce server early on in development. We contacted 

Michael Voorhis of the Computer Science department who graciously agreed to run a server on 

an old computer in his office. He was able to quickly get the server in a working order and able 

for us to use. 

Here are a few findings (in no particular order) that may help future teams when using 

Perforce: 

 

· Integration with Unreal Engine 4 is superb and easy to set up. 

· The Perfoce server must have a typemap, so UE4 and Perforce know how to deal with certain 

files. 

· Having the server physically on WPI’s campus and able to SSH connect to it is ideal. 

· Users must have P4V client open along with UE4 to use source control. 

· Checking in large file may take some time, but it is still being pushed. 

· Do not change your workspace in P4V midproject. 

· Do not use streaming depots for UE4 projects. 

· Sometimes, the .uproject file gets checked out then in and set to read-only. It is necessary to set 

this to writable manually in the file browser. 

· Check in changes often so others may pull and stay updated. 

· Reverting changes is on a per file basis, and is extremely useful. 

· Never check out the whole project 
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Appendix 2: IRB Consent Agreement 
 
Informed Consent Agreement for Participation in a WPI Research Study 
 
Investigator: Brian Moriarty, IMGD Professor of Practice 
 
Contact Information: bmoriarty@wpi.edu, 508 831-5638 
 
Title of Research Study: _______________________________________ 
 
Sponsor: WPI 
 
Introduction: You are being asked to participate in a research study.  Before you agree, 
however, you must be fully informed about the purpose of the study, the procedures to be 
followed, and any benefits, risks or discomfort that you may experience as a result of your 
participation.  This form presents information about the study so that you may make a fully 
informed decision regarding your participation.  
 
Purpose of the study:  The purpose of this study is to obtain feedback on the MQP project in 
order to facilitate design improvements and find/address operational bugs. 
 
Procedures to be followed:  You will be asked to play a brief game lasting less than ten 
minutes. Instrumentation in the game software will anonymously record your activity during 
play. After completing the game, you will be asked to complete a brief, anonymous survey 
describing your subjective experience. 
 
Risks to study participants:  There are no foreseeable risks associated with this research study. 
 
Benefits to research participants and others:  You will have an opportunity to enjoy and 
comment on a new game under active development. Your feedback will help improve the game 
experience for future players. 
 
Record keeping and confidentiality:  Records of your participation in this study will be held 
confidential so far as permitted by law. However, the study investigators and, under certain 
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be 
able to inspect and have access to confidential data that identify you by name. Any publication or 
presentation of the data will not identify you. 
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Compensation or treatment in the event of injury:  There is no foreseeable risk of injury 
associated with this research study. Nevertheless, you do not give up any of your legal rights by 
signing this statement. 
 
 
For more information about this research or about the rights of research participants, or in 
case of research-related injury, contact the Investigator listed at the top of this form. You 
may also contact the IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email: 
kjr@wpi.edu) and the University Compliance Officer (Jon Bartelson, Tel. 508-831-5725, Email: 
jonb@wpi.edu).   
 
Your participation in this research is voluntary.  Your refusal to participate will not result in 
any penalty to you or any loss of benefits to which you may otherwise be entitled.  You may 
decide to stop participating in the research at any time without penalty or loss of other benefits.  
The project investigators retain the right to cancel or postpone the experimental procedures at 
any time they see fit. 
 
By signing below, you acknowledge that you have been informed about and consent to be a 
participant in the study described above.  Make sure that your questions are answered to your 
satisfaction before signing.  You are entitled to retain a copy of this consent agreement. 
 
 
 
___________________________  Date:  ___________________ 
Study Participant Signature 
 
 
 
___________________________                                
Study Participant Name (Please print)    
 
 
 
____________________________________ Date:  ___________________ 
Signature of Person who explained this study 
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Appendix 3. IRB Protocol 
 

· Purpose of study 

o To obtain playtest feedback in order to locate/address operational bugs, and to 

identify opportunities for design improvement. 

· Study protocol 

o Participants are provided a computer on which to play the game. Investigators 

observe participants during play as instrumentation in the game software collects 

activity metrics. Afterward, participants are asked to fill out a short survey to 

characterize their subjective experience. 

o Opening briefing for testers 

§ “Hello, and thank you for volunteering to test our game. Before we begin, 

could you please read and sign this Informed Consent form? [Tester signs 

IC form.] Thank you. During your test session, the game will be recording 

a variety of metrics about your play activity. When your session is 

complete, we will ask you to complete a brief survey about your play 

experience. At no point during your play session, or in the survey after, 

will any sort of personal and/or identifying information about you be 

recorded. Please begin playing when you feel ready.” 

o Metrics to be recorded during play session 

§ Total playing time. 

§ Order/frequency in which in-game locations are visited. 

§ Time spent between/within each location. 

§ Activities performed in each location (avatar/camera movements, 

interactions with virtual characters and objects, idle time). 

o Questions for post-test survey 
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§ What are the rules and objectives of the game? How did you discover 

them? 

§ How difficult does the game seem? 

§ Did it consistently hold your interest? 

§ Did anything about the game seem confusing or obscure? 

§ Did any aspects of the game stand out as particularly effective or 

ineffective? 

§ What would it have been good to know about the game before you started 

playing? 

§ How would you describe the game to someone who has never played it? 

§ Do you have any additional comments or questions that you would care to 

share? 

· Hazardous materials/special diets 

o No hazardous materials or special diets are involved in this study. 
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