
Project Number: MXC-1065

Phantasm: A Game Engine

A Major Qualifying Project Report

Submitted to the faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for

the Degree of Bachelor of Science

by

Andrew Zafft

Date:

Friday, August 22, 2008

 Professor Michael Ciaraldi,
 Advisor

(This page is intentionally left blank)

 i

Abstract

 A game engine containing OpenGL
1
, the Win32 API, C++ and common RPG

themes was developed. Research into graphics and physics models was performed and

then implemented. Fully customizable graphics, storyline development, and internal

objects were created using a model-view-controller architecture.

1
 OpenGL® is a registered trademark of Silicon Graphics Inc

 ii

Acknowledgements

I would to thank Professor Mike Ciaraldi for his time and guidance on this

project. Without his efforts this project would not have been as successful as it was.

 iii

Table of Contents

Abstract .. i

Acknowledgements... ii

Table of Contents... iii

Chapter 1 Introduction... 1

1.1 Project Description.. 1

1.2 Goals and Plan of Action .. 2

Chapter 2 Research.. 4

2.1 Games in General.. 5

2.2 Programming Video Games.. 6

2.3 Role Playing Games.. 7

2.4 Game Engine Structure & Elements ... 8

2.5 Rendering.. 9

2.6 Animation ... 11

2.7 OpenGL Programming Language... 13

2.7.1 Rendering Pipeline.. 15

2.7.2 Selection.. 16

2.8 Physics Modeling.. 17

2.9 Artificial Intelligence .. 18

2.10 Win32 API Programming Concepts ... 19

2.11 Model-View-Controller Architecture ... 23

Chapter 3 Methodology... 24

Chapter 4 System Design .. 25

4.1 Basic Elements.. 26

4.2 Organizational Structure ... 29

4.3 User Interface.. 30

4.4 OpenGL Graphics ... 32

4.5 Physics Modeling.. 34

4.6 Artificial Intelligence .. 35

4.7 Game Elements ... 36

4.8 Random Map Generation.. 37

Chapter 5 Manual .. 39

5.1 User Interface & Commands .. 39

5.2 Creatures ... 41

5.2.1 Basic Attributes... 41

5.2.2 Advancement & Experience ... 41

5.3 Items.. 41

5.4 Skills ... 42

5.5 XML File Usage ... 42

5.5.1 Configuration Files ... 43

5.5.2 Object Files ... 44

5.5.3 Common Base Objects.. 47

5.5.4 Adding New Object Files.. 51

Chapter 6 Future Plans .. 53

 iv

Appendix A UML.. 54

A.1 Class Models... 54

Appendix B Use Case Scenarios ... 60

B.1 User Interface Use Cases .. 60

B.2 In-Game Use Cases... 64

B.3 Developer Use Cases .. 76

Appendix C Class Descriptions... 79

C.1 Model .. 79

C.2 View.. 83

C.3 Controller .. 90

Appendix D Files... 92

 1

Chapter 1 Introduction

Games have existed for as long as human beings have lived. The act of entertaining

oneself through exercises that serve primarily for self enjoyment is a purely human trait.

Through the years, human beings have raised entertainment to an art form. Video games

are the latest evolution of the concept. The power of the computer has allowed

entertainment and gaming to be taken to a whole new level. We have new technologies

that can expand and develop the gaming experience.

Game engines are the core of video games. These pieces of code display the virtual

world to the computer screen, capture the frantic mouse clicks and keyboard commands

from the user and manage the computer artificial intelligence, all to create an enjoyable

experience. Advances in game engines create advances in video games, leading to better

and better gaming experiences. In fact, it could be argued that since entertainment is

exclusively a human trait, advances in entertainment are actually advances to the human

race as a whole. The goal of this project was to expand my own personal understanding

of game engines and maybe even advance game engine development.

1.1 Project Description

 I have created a fully functioning role playing game engine. Its features include

allowing future users to easily design and import custom graphics, objects and storyline

development into the game. The game engine was developed with C/C++ code and

interacts with the OS through the Win32 API. The 3-D graphical portion of the game

was written using the OpenGL libraries. The game engine was developed and tested on

Windows based systems, specifically in the Windows 2000 and Windows XP

 2

environments. The game engine can load game data from several different customizable

configuration files that are easy to expand and develop.

 The game engine is designed for use as a single player game. Character

development is in the same spirit as the Diablo™
2
 series. The player's character

advances in power as they interact in evermore difficult environments. A system to

develop character growth has been partially created, and future version will need to finish

and polish these aspects of the game engine.

 The engine presents the game from an overhead camera using 3-D models. The

camera can rotate fully around the Z axis, and can both zoom in and zoom out on the Z

axis. The main interface for the game is the mouse, but there is some minor keyboard

interaction. The game engine loads game data from several configuration files, and has

the ability to load pre-generated and randomly generated data. Saving and loading of

game progress was to be implemented so that users can quickly and easily enter and exit

the game, however this feature is currently not available. The engine can handle a

relatively simple series of conditional events as dictated by the configuration files (such

as action-response scenarios to be used for storyline generation). A basic physics model

was implemented. When joined together, these pieces form the basis of an RPG game

engine.

1.2 Goals and Plan of Action

 The responsibilities for the engine include: loading graphic files (written for

OpenGL), capturing user input, displaying information to the screen, loading pre-

generated and randomly generated maps, implementation of a minimal computer artificial

2
 Diablo® is a registered trademark of Blizzard Entertainment

 3

intelligence, development of a physics model, and maintaining the flow of the game

during play.

 The first step was to research existing game technologies. Using this information,

a basic framework of the game engine was developed conceptually. Basic character

attributes were planned out. Following this, there was some education into the

programming skills that were required for this project. Win32 API was researched.

OpenGL was learned. Finally the actual programming framework began. The windows

framework was coded first, followed by the display system. Afterwards loading of XML

configuration files was added. Following this, the user input was added. Next, topics in

game flow were added and continuously tested as development proceeded. Then

collision detection was implemented. Next random map generation was added. In game

goals were implemented into the game framework. Finally, simple artificial intelligence

was added. At the completion of the project, there existed a simple game engine that met

all the criteria stated in the project description.

 4

Chapter 2 Research

 The first question one might ask is “What exactly is a game engine?”

Unfortunately, there is not one clear and concise answer. Within the industry, there are

many inconsistencies for what constitutes a “game engine.” For some video games, the

game engine comprises the entire game. In other games, the game engine solely

performs the graphics rendering. And in still more, there is no game engine defined. The

game engine is in itself, purely a concept. Games can function without a game engine

explicitly defined. In fact, most likely due in part to wide variety of game genres, some

games are better off without a game engine. But the lack of consistency does in itself,

reveal some information. First and foremost this is a relatively new field. Even more so,

this is a new field that is built on a changing foundation. Operating systems, graphics,

and game theory are all in various stages of childhood, and have a lot of development

left. Additionally, the ultimate goal of the game engine varies from instance to instance.

Some are designed to be used and reused, with finely defined elements. Others are one

shot deals, thrown together and then thrown away. For the purposes of this project, and

to follow proper software engineering design, a reusable game engine was developed.

The game engine is the core software component of the video game. It provides the

system that starts, loads, and runs the game. It abstracts the underlying system

technologies and work to simplify the overhead needed for game story development and

customization. It acts as middleware for the video hardware, operating system and input

devices. It provides the structure for the game and takes care of all the various odds and

ends. To achieve this, there must be a solid study of the role of this game engine.

Interaction between game engine elements can pose significant problems if designs are

 5

changed during the course of the project. The complexity of these elements relies heavily

on abstract programming and extensive preplanning. Therefore, much thought was

devoted to the design phase. To assist in the design, the following sections will examine

key topics in additional detail: games in general, writing and working with actual video

games, role playing game considerations, graphics and rendering, animation, OpenGL

specifics, game physics, scripting, artificial intelligence, Win-32 API concepts and the

Model-View-Controller Architecture.

2.1 Games in General

 Games have been used to hone skills, provide an outlet for energy or as a way to

pass the time. While there are many possible goals for games, the primary goal of most

games is entertainment. To do this, there must be a way of hooking the user and keeping

them interested. Rules and storylines are two ways of achieving this.

Rules provide a twofold service: first they develop a framework for the game, and

second they allow us to build expectations. The framework brings order to chaos and

assists us in following along with a game. The framework makes it easier for us to

understand the game. Building expectations also allows the user to get more involved

with the game. But building expectations goes beyond basic involvement. If the user’s

expectations are in line with the expectations the game is expressing, then achievements

and rewards in the game can be conveyed as achievements and rewards felt by the user.

In this concept, the game becomes an extension of the player. This concept is examined

in further detail in the Role Playing Games section. Conversely, rules that do not make

sense to the logic of the game, or are too complicated to keep track of, detract from a

 6

user’s expectations. This is important to games because if someone does not like what

they expect from a game, they most likely will not continue to play the game.

The storyline is another way of keeping a player’s interest, although a storyline in a

video game is certainly not necessary. In fact, before computers, most games did not

possess a storyline. Now however, games are often expected to include storylines. And

the expectation has worked for hooking users. The storyline acts the same in video

games as it does in novels, and makes the player/reader feel and grow with the characters

in the story. All of these elements make up game elements that are good to incorporate

into a game engine.

2.2 Programming Video Games

Computers have revolutionized games. Games can create abstract representations

of the world we live in. System modeling and artificial intelligence represent huge,

largely untapped, resources for our culture. Equations in physics which could never be

calculated by hand in a person's lifetime can be completed within minutes. With proper

development, the benefits of these advancements to science could be remarkable. These

represent just a fraction of the capabilities of computers.

For now, however, the advancements come with a price. More power means more

design considerations and longer implementation times. Luckily, there are quite a few

tools out there that were used to assist with this task. Four have been selected to assist

with this project: Microsoft Visual Studios 6.0, XML data organization formats, CVS

implemented through WinCVS, and DOxygen.

Microsoft Visual Studios 6.0 provides the all important integrated design

environment (IDE). The IDE provides a quick and easy platform to navigate the 100+

 7

files needed for this project. Color coordination of code and help files available at the

flick of the F1 key eases the strain of writing in a multi-system environment.

Additionally, there really is no comparison for a debugger when trying to root out the

cause of a programming failure.

XML data organization continues in the same mold. Importing and exporting of

data files could exist without it however the complexity and confusion that would be left

in its place would become a serious time sink as the size of the project increased. XML

allows the creation of clear and easy to understand tags that ensure future users can more

easily grasp the design and layout of the configuration files.

CVS implemented on both the development machine and on WPI’s Sourceforge

helped turn catastrophic crashes into minor inconveniences. When developing in a large

systems environment, there really is no excuse for going without a versioning system.

Finally, DOxygen is a documentation building program that helps keep track of

what everything is and what everything is supposed to do. This helps all those future

users and readers understand what is going on, and for me to keep track of how this

project interacts internally. DOxygen provides extra benefit to the programmer during

development as they can review what a function does and compare it to what it was

intended to do. This can help close up loop holes in my own thinking due to any concept

changes that occur over time.

2.3 Role Playing Games

 Role playing games (or RPGs) are a specific genre of games. An RPG seeks to

transform the player into an alternate personality within the game. The concept has

existed for as long as people have been playing games, and can be considered to be in the

 8

same vein as theatre or acting. In an RPG, the player adopts an ego (or role) and acts

accordingly to how this role should act. The player goes through the game developing

this role. Often times, the player actions influence and build the story. An RPG’s core

element, the telling of a story, is a common element in the history of all cultures across

all corners of the world, and therefore can ring deeply with all races. This is opposite

from other forms of entertainment, where the player is a “passive observer,” and does not

interact with or influence the story.
3

2.4 Game Engine Structure & Elements

A game engine typically includes “a rendering engine (‘renderer’) for 2D or 3D

graphics, a physics engine or collision detection (and collision response), sound,

scripting, animation, artificial intelligence, networking, and memory management.”
4

However, game engines are typically designed by dozens of programmers over several

years. As there is only one programmer for this project, a game engine capable of

rendering, animation, the physics engine, scripting, and artificial intelligence was created.

Together these constitute a basic game engine. These topics will be examined in more

detail in the following sections.

A game engine is only half of the picture however. The game engine controls how

the game is processed, but it does not contain details on what the game is about. As this

game engine is designed for an RPG, the game is really about the storyline and storyline

development. This development is controlled through triggers and quests. A trigger is a

conditional event that creates some result when the conditional part is met. A quest is a

3
 Role-playing game. Wikipedia. 26 Mar. 2008 <http://en.wikipedia.org/wiki/Role-playing_game>

4
 Game Engine. Wikipedia. 26 Mar. 2008 <http://en.wikipedia.org/wiki/Game_engine>

 9

collection of triggers used for major storyline development. The details for quests and

triggers are initialized from configuration files that are loaded during start up. These

concepts will also be examined in more detail in the system design section.

2.5 Rendering

 Graphics are a major topic in video games. While games can be created with

limited to no graphics, it is commonly accepted today that games contain graphics.

Rendering is the act of taking a scene and turning it into the graphics that are displayed

on a computer screen. Once gamers were content to have some game genres exist with

mediocre images. But, because of the increase in computer-generated imagery (CGI) in

Hollywood, gamers are now demanding stunning, state of the art graphics for all types of

video games. Much money in research and development has been invested into building

better and faster graphics. Often times, teams of scores, or even a hundred, programmers

devote multiple years of their lives towards developing the final effects that gamers

witness. Unfortunately the scope, time and man-power requirements of this project were

in insufficient supply to meet the needs of a complete video game. Therefore, only the

basics are addressed and only a thin framework has been built.

 The graphics that are displayed on the computer screen come from a few different

sources. First, computer graphics these days follow a model similar to the filming of a

movie; there is a scene and a camera. The scene is the world and the camera represents

the eye of the viewer. During rendering, objects in the scene are rotated, translated and

scaled according to their relative positions to the eye of the camera. Finally, the image is

turned into pixels (or rasterized) and drawn to the screen’s frame buffer. Often, objects

are made up from many smaller geometric shapes (usually triangles). The general idea is

 10

that if you can approximate reality by creating complex shapes from many smaller

geometric primitives. If the shapes are small enough, and if there are enough shapes,

then you can create an approximation to almost any object in the physical world,

including complex objects like spheres. Once all the objects are drawn to the scene, then

the scene is rotated, transposed, and clipped to match the display field of the camera. On

top of this, four techniques are commonly used: double buffering, light shading,

quadratics and blending. Specifics of how OpenGL renders the model will be covered in

the OpenGL section.

 Double buffering is the act of having two screen buffers on which the renderer

can draw. The general idea is that while one buffer is being displayed, the other buffer is

being populated. When the rendering of one buffer is complete, the buffers are swapped

and the old drawing buffer becomes the display buffer, and vice versa. The benefit of

this method is that you never display an incomplete screen. This is a standard function

that has been built into the OpenGL programming language, and was fully utilized by this

project.

 Another technique common to rendering is the effects of light on objects. Light

can be used in a scene to increase the reality of the scene. Light is used in three forms:

light source reflecting off an object, the effect of shadows of other objects thrown onto an

object, and the dimming of some sides of an object because of a limited source of light.

Through a series of complex equations using polygon normal vectors, shadows and the

brightness of objects displayed in the scene are manipulated to create realistic looking

effects. Unfortunately, the calculation of these equations can be very expensive in terms

of CPU processing time. Therefore, it was decided by the designer of this document that

 11

there is going to be no use of light and shadows on objects. Any addition of these

materials will be left to future designers.

 Another technique that is used is for drawing complex shapes. This technique

uses quadratic equations. The problem with creating rounded shapes is that they can take

a very large number of triangles to achieve. To assist in graphics development, OpenGL

has included a utility kit (glu.h) that allows quick and easy creation of rounded shapes

through quadratic equations. There are many types of shapes that can benefit from

quadratics, however the only ones implemented in this project are sphere, cylinders, and

disks.

 The final technique to be used during rendering is blending. Blending is the act of

making an object appears partially translucent. This can create a dazzling affect (in this

writer’s opinion). While this technique can be expensive in terms of computer processing

power, it is of the view of the designer of this document that the expense is well worth

the effort.

2.6 Animation

Animation is all about making objects appear to move. The motion, however, is

actually a trick of the animator. Scenes are built using still images only, and then

displayed in rapid succession. The images are displayed so quickly that the brain joins

the images together. Therefore, animation is actually the act of taking still images and

making them appear to move. Animation from still-frames is the core of how all

animation occurs, and so it has been around much longer than computers and has a large

amount of research available on its practical use. Animation speed is measured in the

number of frames displayed per second. Older, analog TVs typically display at 30 frames

 12

per second, with newer services displaying at higher rates.
5
 An average computer

monitor, for example, displays at 60 frames per second (computers also measure frames

per second in hertz). Therefore, for a computer game to successfully imitate actual

motion, the renderer must create a minimum of 30 frames per second, although a more

standard 60 frames per second should be sought after. However, this only governs how

often the scene should be drawn, and not what is drawn in the scene. This dilemma is

more of a conceptual problem, and so there are a few different ways of achieving the

same thing. Almost all concepts lead back to three generalized methods: Frame-by-

Frame animation, Key-Frame animation and Parameterized systems.

 Frame-by-Frame animation is a technique where an individual picture is used for

every frame in the animation, similar to a flip book. As with the flip book, each picture is

played in rapid succession and the brain blends the images together creating fluid motion.

The major drawback to this form is that it requires a large amount of graphics work to

create the motion, has a large space requirement to store the pictures, and is a rigid model

that cannot react to unexpected changes.
6

 Key-Frame animation is very similar to the Frame-by-Frame technique. Frames

are created, similar to the Frame-by-Frame method. However, instead of creating every

single frame, only specific, key frames are created. The game then “morphs” the two

consecutive frames together by varying degrees to achieve the illusion of animation.

Key-frame animation reduces the time required during development and the disk space

5
 Analog television. Wikipedia, 16 Aug, 2008. <http://en.wikipedia.org/wiki/Analog_television>

6
 Animation. Brooklyn College of the City University of New York. 20 Mar. 2008

<http://acc6.its.brooklyn.cuny.edu/~lscarlat/GUI/animation.htm>

 13

required over frame-by-frame animation however rigidity still exists in the animation

model.
7

 A Parameterized system uses “object motion characteristics that are defined via

kinematics or dynamics. Object motion can be derived from key frames using inverse

kinematics or dynamics through linear interpolation or curved paths.”
8
 This creates

simple, lifelike animations that are flexible and can accurately represent reality. The

major drawback is that there must be an intuitive physics model to back up the motions.

 In this project a generalized key-frame approach was used. To achieve this,

objects are broken down into sub-parts that are fixed and atomic. The key-frames include

locations of where and when these pieces should be drawn for each of the different

animation sequences. Animation between key-frames is achieved by “morphing” or

comparing the object’s current location of each sub-part with the next key-frame location.

This was intended to reduce the rigidity that exists in the key-frames system, as the

starting point of each atomic piece is not be from a fixed location. Unfortunately, there

was not enough time to implement more than a skeletal framework for animation in this

project.

2.7 OpenGL Programming Language

OpenGL (or Open Graphics Library) is “a standard specification defining a cross-

language cross-platform API for writing applications that produce 2D and 3D computer

graphics.”
9
 OpenGL seeks to be a powerful and versatile language suitable for learning

7
 Animation. Brooklyn College of the City University of New York. 20 Mar. 2008

<http://acc6.its.brooklyn.cuny.edu/~lscarlat/GUI/animation.htm>
8
 Animation. Brooklyn College of the City University of New York. 20 Mar. 2008

<http://acc6.its.brooklyn.cuny.edu/~lscarlat/GUI/animation.htm>
9
 OpenGL. Wikipedia. 13 Aug. 2008 <http://en.wikipedia.org/wiki/OpenGL>

 14

and commercial development. OpenGL operates through the drawing of various

primitives including but not limited to: points, lines, triangles, rectangles (also called

quads), bitmaps, and quadratics. OpenGL is a state system, in the sense that there are

many states which you can put the system into, and these states affect the outcome of the

drawing. OpenGL functions with a very specialized drawing pipeline, or rasterization,

that will be discussed in the next section.

OpenGL is a very complex language, and elements of its functionality can be

discussed at great length and in great detail. However, this is not a paper on using

OpenGL, and so if more information is desired, it is suggested that you visit the OpenGL

homepage.
10

 There are a few elements that do deserve some discussion, as they become

integral parts of the game engine. First, is the idea of a camera. This concept was first

looked at in the Rendering section. OpenGL fully utilizes this feature. Data structure

elements are included that meet this design pattern. The camera exists specifically as a

class in the game engine. The camera encapsulates several different things, two of which

are very important. First is the viewing area in the game, which is the field of view along

the x, y and z axes. Second is the OpenGL window size on the desktop, otherwise known

as the viewport. The viewport is important because in this game engine, the OpenGL

window is actually divided into two separate viewports (one for the openglwindow and

one for the variablewindow). The viewport is important because it controls how much

each object is stretched or shrunk in the x and y directions so that the field of view match

the viewport. The other two elements that are important in OpenGL are the Rendering

Pipeline and Selection. Each of these will be discussed in a separate subsection.
11

10
 http://www.opengl.org/

11
 OpenGL. Wikipedia. 13 Aug. 2008 <http://en.wikipedia.org/wiki/OpenGL>

 15

2.7.1 Rendering Pipeline

The rendering pipeline is the mechanism of moving from a three-dimensional

model to a filled framebuffer. A brief description of the process of the graphics pipeline

was taken directly from Wikipedia.com:

1. Evaluation, if necessary, of the polynomial functions which define certain inputs, like

NURBS surfaces, quadratics, approximating curves and the surface geometry.

2. Vertex operations, transforming and lighting them depending on their material. Also

clipping non visible parts of the scene in order to produce the viewing volume.

3. Rasterisation or conversion of the previous information into pixels. The polygons are

represented by the appropriate colour by means of interpolation algorithms.

4. Per-fragment operations, like updating values depending on incoming and previously

stored depth values, or colour combinations, among others.

5. Lastly, fragments are inserted into the Frame buffer.
12

A similar graphic representation of the process is the following:

12
 OpenGL. Wikipedia. 13 Aug. 2008 <http://en.wikipedia.org/wiki/OpenGL>

 16

Figure 2.7-1 OpenGL Pipeline
13

2.7.2 Selection

Selection is a very important part of the OpenGL language. Selection is all about

determining what a user clicked on in an OpenGL scene. This can pose a very tricky

problem. After all, the user is seeing a two-dimensional representation of a three-

dimensional model. Luckily, OpenGL was designed with a solution to this problem. The

answer lies in the drawing function.

When a player clicks on the OpenGL screen, the program receives the mouse click

message with the coordinates of the click, in windows coordinates. After some

coordinate manipulation, and the setting of certain flags, OpenGL can determine what

was clicked on. The power comes from three sources. First, OpenGL takes advantage of

the fact that it is a state system. The only way to determine what was clicked on is to

rebuild the entire scene. However, the goal of this redraw is not to write to the frame

buffer. Therefore, expensive texture mapping and blending functions are not needed.

13
 OpenGL Pipeline. 13 Aug. 2008. <http://www.songho.ca/opengl/files/gl_pipeline.gif>

 17

This setting is achieved through telling OpenGL that all primitive drawing is done in

SELECT mode, and does not affect the framebuffer. Second, OpenGL is really only

interested in a limited portion of the window. Therefore, OpenGL creates a very small

viewport which is a 3 pixel box around the very tip of the mouse cursor. Third, OpenGL

uses a stack, call the names stack, that contains integer identifiers. During the drawing

sequence, all primitives that lie outside the reduced viewport are ignored. If an object has

any primitives drawn within the drawing area, then the integer identifier, or name, is

pushed onto the names stack. At the close of the redraw, all names currently on the stack

are returned to the caller after the drawing mode is changed from SELECT mode. As a

side note, the game engine designed in this project takes advantage of this setup. Every

object in the game has a unique identifier associated with it. When OpenGL pushes the

integer name onto the stack, the program is actually pushing the game engine’s unique

identifier. In this way, the game knows exactly what object the player clicked on in the

game. This list is provided to the control manager to determine what the proper action

should be.
14

2.8 Physics Modeling

A physics engine is “a computer program that simulates Newtonian physics

models, using variables such as mass, velocity, friction and wind resistance.”
15

 As with

most video game concepts, implementation varies. Physics model development can be a

large time consuming task, a simple collision detection test, or not implemented at all.

The focus of this project’s physical model is on collision detection and collision response.

14
 Selection and Feedback. SGI. 12 Aug. 2008. <http://www.glprogramming.com/red/chapter13.html>

15
 Physics Engine. Wikipedia. 25 Mar. 2008 <http://en.wikipedia.org/wiki/Physics_engine>

 18

 In collision detection, the physics engine attempts to identify any object

movement that causes two objects to occupy the same region of space. “Typically most

3D objects…[are] represented by two separate meshes or shapes. One of these meshes is

highly complex…which the player sees….[The] second highly simplified invisible mesh

is used to represent the object to the physics engine.”
16

 The use of two different models

is simple: determining collisions between two models, each with hundreds of shapes, is

very time consuming. Therefore, to maintain game speed, a generalized approximation is

used. This approximation is sometimes refered to as a bounding box.

 The second focus of a physics model is collision response. Collision response is

used after a collision detection has occurred. The goal of collision response is to create

an approximate reaction that mimics real world results. Physics engines often times use

values such as weight and mutability to determine what consitutes a proper response.

The most common response, however, is to back the moving object up just a little bit, so

that two objects do not become locked together.

2.9 Artificial Intelligence

Artificial intelligence (AI) is an integral part of video games. AI represents the sole

opponent of the player, in single player games. In this case, AI is divided into two

groups: action determination and pathfinding. Action determination is the selection of

the proper action for a computer controlled character, and pathfinding is used to

determine the route between two points.

Action determination is a complex affair. The hope of action determination is to

create an action/reaction that is similar to what a human would perform. Incorrect and

16
 Physics Engine. Wikipedia. 25 Mar. 2008 <http://en.wikipedia.org/wiki/Physics_engine>

 19

improper action determination has ruined many video games. To combat this, weighty

and complex data structures are often added to a game, with the hope of better

approximations and better responses. Because of this, action determination is heavily

dependent on the specifics of the system that is being developed. Additionally, because

of the massive scope of this project, there was no extensive research into the development

of action determination. There is only a very simplistic, “move to attack range and kill,”

mentality for the AI.

Pathfinding is the other major role of the AI. Pathfinding has the goal of moving

an object from point A to point B. In the simplest situation, this is merely a straight line.

However, many objects exist in most games, and these objects can block or slow

movement. It is the responsibility of the pathfinding system to determine a best path for

an object. Furthermore, this has to be determined within a reasonable amount of time.

Oftentimes, pathfinding is equated to a sorting problem, and is solved with various search

algorithms. This game engine uses a straight line pathfinding algorithm.
17

2.10 Win32 API Programming Concepts

While Win32 programming does not directly have anything to do with game

engines in general, this program was developed in the Windows environment. Therefore,

some understanding of the Win32 application programming interface (API) is required.

Additionally, as the game engine is developed under the Model-View-Controller

architecture (discussed in the next section), the View has a direct responsibility for the

Win32 API.

17
 Pathfinding. Wikipedia. 12 Aug, 2008. <http://en.wikipedia.org/wiki/Pathfinding>

 20

There are many concepts and many different elements that are available in the

Win32 API, and a whole MQP could be devoted to this subject. However, for the

purposes of this project only six elements are important: windows classes, window

handles, windows message procedure, the WinMain function and message loop, the

graphic device index, and the menu. Each of these will be discussed, but not in any great

detail.

Windows classes are a special data structure in the Win32 API. The windows class

is used to define common characteristics of groups of windows that you will be creating

in the future. All windows must have an associated windows class. The windows class

defines, amongst other things, the message procedure that handles all messages being

sent to the window. The windows class also defines which messages can be sent to the

window. Therefore, this is a very important class, because if it is improperly created, it is

possible for the window to not accept mouse and keyboard messages (making for a very

dull gaming experience indeed!). Before a windows class can be used, it has to be

registered with the windows operating system. The windows class has no physical

appearance on the desktop however it does help define new windows that are created. It

should be noted that the Win32 API was designed for use in C. Almost all classes are

actually defined as structures.

Windows handles are, as one might expect, pointers to windows that have been

created. These are the actual representations of the windows that we see and click on

every day. A windows handle is associated with a windows class when it is created.

Additionally, windows handles requires x and y positions (from the top left of the screen)

and lengths and widths for the window. Common Win32 API programming standards

 21

require that there is one parent window that all other windows are drawn on top of. The

basic Win32 API is a bare framework for windows programming. Elements such as

scroll bars and buttons need to be explicitly programmed in order to properly function,

and it takes some time getting used to the level of micromanagement needed.

The windows message procedure is the one stop shop for all windows interactions.

The message procedure receives all messages (as long as they are allowed in the windows

class) sent by the Windows operating system to the windows you have created. Painting,

mouse & keyboard processing, and even system standby and screen saver mode are all

funneled through the message procedure. Luckily, there are predefined responses built

into the system, so one need only override the procedures where the default response is

insufficient.

Where the windows message procedure is the heart of the Win32 API, the

WinMain function and message loop are the heart of the game engine. Standard C and

C++ programs start in the main function. The WinMain function is the equivalent

starting point for a Win32 program. Because Windows runs as a shared resource system,

the WinMain function begins with some additional parameters that the standard main

function does not possess. For the most part these parameters are for backwards

compatibility, and all should be circumvented with newer, better methods. The

commonly accepted role of the WinMain function is to initialize the program, and enter

into the message loop. This is not required, but has become a de facto standard. The

message loop is where the game engine action resides. The message loop is actually the

initial point of contact for all windows messages to the application, however the first step

of the loop is to send all messages to their proper windows message handler. If desired,

 22

one could circumvent the standard message processing procedure at this point, but this

can result in erratic program behavior. It is within this message loop that we have our

controlling code for the game engine. For this design, this controlling code is responsible

for calling each of the different phases that will be discussed in more detail in the system

design chapter.

The graphic device index (or GDI) is a special element of the Win32 API. This

object is used to draw everything that is visible on the screen. This object is very

complex, and will be only lightly addressed. The importance of the GDI is two-fold.

First, the GDI is written to directly by OpenGL when framebuffers are displayed.

Secondly, scrollbars and the system log have to explicitly draw themselves through the

GDI in order to be visible on the screen. Specific windows functions are used to draw the

desired graphics to the GDI. The exact manner in which these functions accomplish this

result are not entirely known by this writer, and for the purpose of this project not entirely

important.

The menu is the final element examined. Windows are not required to have a menu

bar, however it is very common for a window to possess one on their parent window.

Options selected from the menu are sent as messages to the windows message function,

and processed according to how the default response has been overridden (and the default

responses do have to be overridden in this case, as the default response is to ignore the

command).

All six of these elements are used by the game engine. To assist in their use, Visual

Studios has included a default file called resource.h. The purpose of this file is to help

navigate the various elements that are required to design and build windows.

 23

2.11 Model-View-Controller Architecture

The model-view-controller (MVC) architecture is a common design pattern when

programming. The MVC architecture is most useful when you have a complex or

detailed system that does not have a linear presentation or when you would like the

freedom to present the same dataset in different ways. The MVC architecture is made up

of three separate elements (as the name suggests): the model, the view, and the controller.

The model is the system you are representing. The view is how you are displaying the

model. There can exist multiple views for any given dataset. The controller mediates

between the view, the model and the user. Because of this, the MVC architecture is

uniquely suited for a game engine. The game data structures become the model. The

windows become the view, and the in-game logic becomes the controller. In this project

multiple views are utilized. Additionally, because of the separation of the different

elements of the architecture, it is theoretically possible for the major subsystems to be

individually redesigned without having to redesign the whole architecture, and therefore

the MVC architecture can be reused again and again. However, the goal of this project is

not to create a template to be reused time and time again, and therefore there is not an

extensive amount of time spent ensuring the easy retooling of the major subsystems.

While one of the major goals of object oriented programming is to allow the user to

benefit in the future from reusable code, the primary goal of this project is to create a

solid game engine. Therefore, there was a focus in this project on clear and concise

design over portability.
18

18
 Model-view-controller. Wikipedia. 12 Aug, 2008. <http://en.wikipedia.org/wiki/Model-view-controller>

 24

Chapter 3 Methodology

There was a very simple methodology for this project. Current video games were

examined, examples of game engines were read about, and then basic designs were

created. Additionally, program concepts in Win-32 and OpenGL had to be tested, as the

designer of this project knew little to nothing about 3-D graphics and operating system

interaction. Therefore, testing of various tasks in Win32 and OpenGL was performed.

Following this, a basic game engine framework was created, keeping in line with a

modified Model-View-Controller architecture. Basic objects were developed, and

storage devices for these objects were implemented. Next, the whole game engine was

reviewed from a customizable perspective, and XML reading and writing was added.

Finally, finishing touches were put on for the user interface.

 25

Chapter 4 System Design

 The game was created with the Model-View-Controller architecture. As per the

description, the Model houses all elements of the world, the View contains all aspects of

displaying the Model to the screen and the Controller is responsible for mediating

between the Model, the View and the Player, as well as maintaining the flow of the game.

 The game engine gets its initialization data from 3 customizable xml files. The

configuration files are each responsible for a specific set of data. The GraphicConfig.xml

file is responsible for storing the file path and name of all the required GraphicTemplates

that are used to display all objects in the game. The ObjectTemplate.xml file is

responsible for storing the file path and name of all the CreatureTemplates,

BackgroundTemplates, and ItemTemplates that are required for the game. Finally, the

StartupConfig.xml file is responsible for holding any other required start up information.

For future development of the game engine, the configuration files can easily be modified

and appended to as needed.

 The game is broken down into a continuous series of turns. Each turn consists of

several steps. The game continues in this loop until the signal to close the game has been

given. The flow of the turns is as follows: First, all current actions are examined and

processed as necessary. After this, the game engine evaluates the events. Once event

processing is complete, the game enters an AI phase. During this phase the game engine

determines any applicable actions that should be added to the action list. Next, the scene

is drawn to the screen buffer and the buffers swapped. Finally any clean up is performed

and the turn ends. This list can be summarized as below:

 26

Process of a Turn

Turn Begins

Action Phase

Event Phase

AI Phase

Display Phase

End of Turn

Decrement action timers,

process any continuous actions

or actions that are complete

Process all events until none

are left in the queue

Review all Creatures that

currently have no actions and

create actions as needed

Fill the CameraDisplayList and

provide it to the OpenGL

Window for displaying.

Reduce the timers on all

StatusEffectors and spawn any new

StatusEffectors from inactive

StatusEffectorTemplates

4.1 Basic Elements

 To achieve the Model-View-Controller architecture, many elements, encapsulated

by classes, have been designed. First and foremost is the concept of a thing. A thing is

any object in the game that can be interacted, displayed, or targeted. Things are

subdivided into 3 groups: items, creatures, and backgrounds. Items represent all usable,

and possibly consumable, objects that cannot perform any independent action. Creatures

represent any thing that can perform independent action. Backgrounds represent all

things that make up the scenery and do not provide interaction beyond boundary

detection.

 27

 The game is divided into areas called maps. All items, creatures and

backgrounds for a game level are housed within the map collection. The map is the heart

of the model, and contains the memory storage for every thing. Maps have their

collection of backgrounds subdivided into subgroups called sections. Sections are of two

types: rooms and corridors. The separate distinctions of the section is used primarily

during the random map generation phase, and during random creature and item

generation, and will be discussed later.

 To continue the focus on randomization, all things have a template associated

with them. You can think of the template as a mold. The template holds all the

information needed to create a new thing. Each template’s role is to spawn new things

upon request, with some amount of randomization. One example of this spawning is

during the random map generation phase. Every background created during the map

generation phase is from a corresponding backgroundtemplate. This concept is examined

in more detail in the random map generation section. Additionally, any things explicitly

listed in the StartupConfig.xml are created from the specified thingtemplate.

 The graphical display of all things is through a series of atomic subdivisions

called BodyParts. The role of each bodypart is to encapsulate all the information that is

specific to that subpart of the thing. Each bodypart holds one GraphicTemplate. The

graphictemplate contains all the information needed for the bodypart to be written to the

OpenGL buffer. These concepts are examined in more detail in the Graphics section.

 Interaction in the game is done through Actions. Actions are used to encapsulate

any activity that a creature can perform. Actions are broken down into two general types:

continuous actions that produce a continuous update (such as moving), and discrete

 28

actions where the outcome occurs only after a set amount of time. Furthermore, actions

are implemented through a series of subclasses. Each subclass is responsible for a

different type of action. There are currently seven action types: move, pick up item, drop

item, equip item, unequip item, use item, and attack. One of targets of the future

planning section is to expand this list.

 A generalized class known as events is used to assist in the many tasks required

by the game engine. As with actions, events are created through an inheritance hierarchy.

Events are used for a large number of situations, primarily to make sure that all checks

and balances that need to happen do happen. At their most basic level, events are used to

pass messages to the consolewindow. Additionally, events are used to determine the

effects of a collision and produce any wrap up information when a creature is killed, just

to name a few different scenarios. Once again, future development will be responsible

for expanding this section.

 Objects, called triggers, are used to create events on behalf of the system.

Triggers are meant to develop the flow of the storyline in the game. Each trigger is made

up of a goal, an activation boolean, a unique name, and a series of events that are sent to

the EventQueue when the goal is met. When a trigger is in the ‘on’ state, the trigger

actively checks for completion of its goal. If a trigger is set to the ‘off’ state, then the

trigger ignores all system messages. Goals are dependant on the type of trigger, and can

be anything as simple as immediate completion of the goal to waiting for the deathevent

of a specific creature. Triggers are turned ‘off’ and ‘on’ through eventactivations.

Eventactivations are the one event that triggers always hear, regardless of their ‘off’ or

 29

‘on’ state. The trigger’s listening is accomplished through evaluating current events, and

therefore triggers are evaluated during the Event Phase.

Triggers are organized into groups called Quests. The player's gaming experience

revolves around these larger goals and they are used to control the major elements of the

storyline within the game. Quests share an activation boolean similar to triggers. Quests

are activated and deactivated through eventsactivations, just like triggers. When a quest

is activated, all triggers currently stored in the quest are sent to the global

triggermanager. An example of a quest would be to rescue the princess from the mighty

dragon.

Finally, there is one last base class known as StatusEffectors. Statuseffectors are

used to create a change in the status of a thing. These changes can be immediate, such as

healing or hurting, or continuous, such as a boost in speed. Statuseffectors are created

from StatusEffectorTemplates. As with other templates in the game engine, the primary

role of the template is to spawn new effects with some degree of randomization.

Together all these classes make up the base classes required for the game engine to

function.

4.2 Organizational Structure

 The game engine is organized with the Model-View-Controller programming

framework. The MVC framework is encapsulated by the following classes:

controlmanager, modelmanager, and viewmanager. The controlmanager is responsible

for the initial setup and interpretation of commands given by the player. The

controlmanager houses all the actions and events. The controlmanager is in charge of

loading the three configuration files. The controlmanager holds the random number

 30

generator, and the unique identifier generator (idgenerator). The controlmanager

dictates the flow of the game.

The modelmanager houses the map, which includes all things in the game. The

modelmanager holds the triggers and quests for the game. The modelmanager contains

the connections between the different maps in the game. The modelmanager holds all the

different thingtemplates, and can spawn different things on request.

The viewmanager is responsible for building the user interface and passing the user

commands to the controlmanager. The viewmanager holds the graphictemplates, the

system camera and all necessary elements required to build the Win32 windows. The

viewmanager also maintains the systems log. The viewmanager is responsible, through

the consolewindow, for outputting the system log to the screen. The viewmanager

controls the variablewindow display, and maintains the different possible screens that can

be displayed. These will be examined in more detail in the User Interface section.

The modelmanager, viewmanager and controlmanager are defined in a shared

global library and can easily interact with each other. Each class utilizes proper data

member privatization to limit improper use.

4.3 User Interface

 The goal of the user interface is to provide game data in a pleasant and easy to

understand way. To accomplish this, some standards from general windows

programming are observed. First, the application window has a menu bar and the

familiar ‘X’ button in the top right of the window to close and exit out of the application.

Secondly, the application exists on top of one master backgroundwindow, which

encompasses the entire viewing area. On top of this backgroundwindow are 3 smaller

 31

windows, each which perform a specific functionality: the openglwindow, the

consolewindow and the variablewindow. Please see the picture below:

 The openglwindow is the main display for the game, and is where the game play

resides. Within this window is displayed the Player's window into the game engine

world, and the user is able to use their mouse to click on various elements and perform

various actions in the game.

 The consolewindow acts as a textual output to the Player. System notices,

information notes and any sort of text data that is sent to the Player is displayed here.

The consolewindow maintains the system log, and is responsible for controlling the

scrolling of the log. The consolewindow also holds information on the current system

font.

OpenGL Window Variable Window
Console Window

 32

 The variablewindow is a multipurpose tool for the Player. The window allows the

Player to view different facts about their creature, what quests they have to accomplish,

and what items their creature is carrying. This is accomplished through a class called

Screen. Screen is an inherited class that encapsulates the different views for the

variablewindow.

 To keep with Windows standards, there is a menu available. The menu is the

point where Player's can start new games, save existing games, or load old games. The

menu displays in the standard, acceptable Windows style. The menu also displays the

current game's version number.

 The game accepts several types of interactions from the player. The player can

click the mouse, press a key, or select an option from the menu. If the player clicks the

mouse, the game determines where and what, in game coordinates, the player clicked on.

The coordinates are calculated in two forms: the exact position of the click and any thing

that is under the mouse cursor when the mouse button is clicked. The game attempts to

use some intelligence when interpreting mouse clicks. Basically, this means that what

the player has clicked on determines what action is created. For example, if the player

clicks on an item, then the game interprets this as a pickupitem action. If the player clicks

on a creature, the system interprets this as an attackcreature action. Together, all of

these elements make up an intuitive and easy to use user interface.

4.4 OpenGL Graphics

 To build a proper model of the world, a few base graphic elements have been

created. A Vertex houses a three dimensional point. Shapes have been created to

encapsulate the different OpenGL graphics that can be drawn. Shapes are further divided

 33

into discreteshapes and quadratic subclasses. Discreteshapes are triangles and quads.

Quadratic shapes are quadraticcylinders, quadraticspheres and quadraticdisks.

 The OpenGL display of all things is through the graphictemplate. All

graphictemplates are independently stored within the viewmanager as a central reference

point. Graphictemplates have been segregated out for separate storage, so that overall

program memory usage is reduced. Video games were studied in the Research chapter

and it was discovered that the memory requirements for the information on displaying a

thing far outstripped the memory requirements for the in-game representation of the

thing. Therefore, independent storage of graphictemplates has been added to mitigate the

effects of these 3-dimensional graphics. Graphictemplates are referenced by use of a

unique name in the object configuration files. Furthermore, to simplify animation and

reuse of data, things have been divided into bodyparts. A bodypart represents a

subsection of a thing. Each bodypart has one graphictemplate it uses to display itself.

Each bodypart is atomic, in the sense that it moves as a whole, and cannot be subdivided.

Animation is performed by moving and rotating the connecting points between connected

bodyparts.

 Animation in the game is done with the Key-Frame animation style, and

controlled by the animationmanager. Furthermore, Animation is divided into several

different groups, identified by a type of action the creature is currently performing.

When drawing a thing to the openglwindow, the thing's current action (if any) dictates

which animation is used. Each animation is subdivided into several steps, called

animationsteps. An animationstep is a single pose for the thing. When multiple

animationsteps are run concurrently, the effect is something similar to a pencil and paper

 34

flip book. To reduce the amount of graphics programming needed, the animationsteps do

not define every shape at every moment in time. Instead, the animationstep tells the

system where every bodypart should begin painting and the desired rotation. The thing

keeps track of where each of its bodyparts reside. During a drawing period, the next

animationsteps in the animation is compared to the thing's record of its bodyparts. If the

bodyparts are out of line, then the thing's adjusts its bodyparts to more closely match the

animationsteps. If the animationsteps destination bodypart location(s) are reached, then

the animationstep is incremented to the next animationstep and the process continues.

Unfortunately, there was insufficient time to properly develop animation into the game

engine, and this section is left for future development.

 During each round, the openglwindow displays all things within the viewable

range. This is accomplished through the class cameradisplaylist. The

cameradisplaylist’s only role is to collect a copy of all objects to be displayed. The

cameradisplaylist holds all bodyparts, and their relative position from the center of the

camera. During the Display Phase, the model is translated and the bodypart are drawn.

To assist in the drawing processes, all bodyparts that use the same graphictemplate are

stored in adjacent nodes. Additionally, because blending has special requirements, all

bodyparts that contain blending are drawn last. The final result is a scene displayed in

OpenGL.

4.5 Physics Modeling

 A basic physics model has been created in the game engine. Collision detection

and collision response are its primary roles. There is no specific, separate physics engine

 35

within the game engine per se, as most of the elements of the physics engine are

accomplished in the Action Phase and the Event Phase.

 Collision detection features are implemented through a bounding object format.

This bounding object is a single, invisible structure that completely covers the thing.

This structure is called the CollisionModel. To create some variability, three types of

bounding objects have been created: a sphere, a flat plane, and a box. A collisionmodel

encapsulates each of these three bounding methods. The collisionmodel is associated

directly with the thing. The primary responsibility of collisionmodel is to compare itself

to other collisionmodels and determine whether or not a collision has taken place. This

comparison takes place during the Action Phase. If a collision does occur, a flag is raised

and the details of the collision are added to the eventqueue.

 Collision response is implemented in a round-a-bout fashion. Collision response

is evaluated through collisionevents during the Events Phase. Each flagged collision

examines factors (such as weigh and mutability) and determines a response that best

models commonly accepted physics principals. The collision response is only a skeletal

section of the code, and unfortunately will have to left for future development. Together,

these elements make up the physics model.

4.6 Artificial Intelligence

Artificial intelligence consists of two separate areas: pathfinding and action

determination of computer controlled creatures. Pathfinding is accomplished through

search algorithms, and benefits largely from the fact that the game is navigable in mostly

two dimensions. The other side of AI is performed during the AI phase. There is a very

simple AI. Creatures will store the current action they are performing. The AI will look

 36

for any creatures with no current action and determine the appropriate action. Initially,

all creatures will be hostile to the player. The addition of neutral and friendly creatures

will be in the future planning section. Also, there was unfortunately not enough time to

program even a basic AI model, and so any AI development will be left for future

development.

4.7 Game Elements

 The game engine has a very robust development system. There is an intuitive

skill system. Most actions are associated with a skill. Each creature has a pool of skills.

When an action is executed, the skill level of the creature is evaluated against a randomly

generated number to determine success or failure, or possibly additional benefits or

failures based on the degree of the creature’s skill. The consequences are determined and

applied during the Event Phase. Unfortunately, only a skeletal skill system was

developed. The goal of future planning will be to expand this list. More details on skills

will be given in Chapter 5.

 One of the major elements of the game is attacking. Attacking is accomplished

through the attackaction. Attackactions consist of the creature doing the attack, the

target of the attack, and the type of attack. Types of available attacks are stored on the

creature, and represents attacks that are available from two separate sources. First if the

creature has any innate attacks (such as claws or teeth) the attack is defined in the

creaturetemplate. Secondly, if the attack originates from an item being used, or wielded,

by the creature, then the attack is defined by the itemtemplate. Each attack has a few

aspects defined. First, there is a skill associated with the attack. Second, there is an

attack speed, which gauges how quickly an attack occurs. Third, there is a group of

 37

statuseffectorstemplates. During an attackaction, if the attacking creature successfully

strikes the target, the statuseffectortemplate spawns statuseffectors onto the target. This

is the general method of how damage is transferred to the target. Furthermore, all

available attacks for a creature are stored in a class called AttackMaster. During the AI

phase, the controlmanager is responsible for selecting which attack is appropriate.

4.8 Random Map Generation

 Having the entire game predefined, while possible, would result in a very dry and

dull experience. Therefore, some thought has been put into adding an element of

randomness. Maps can be randomly generated. The algorithm to generate them is fairly

simple. The developer tells the controlmanager how many rooms they would like in a

map. The controlmanager builds the map one room at a time. For each room, the

controlmanager randomly selects a base room to build off. The controlmanager

randomly chooses a direction and a distance, and attempts to create a temporary room. If

the space is unoccupied the controlmanager creates a corridor connecting the new room

with the base room. If the corridor cannot be created without crossing over an existing

section, the controlmanager randomly selects another base room and repeats. The

controlmanager continues until the desired number of rooms is reached, the maximum

number of rooms is reached, or the controlmanager cannot successfully place another

room after 20 iterations. It should be noted that a map can develop infinitely in any

direction. There are no maximum or minimum boundaries covering the entire world

during map generation.

 To assist in the random generation, a few extra elements are needed. First are the

backgroundtemplates. Backgroundtemplates exist only to generate new backgrounds.

 38

Each backgroundtemplate has a designation: floor, wall, corner, wall ending, and door.

This designation is found in the objectemplate file. As the map is being generated, the

controlmanager requests a type of backgroundtemplate. The map selects from its list of

available backgroundtemplates, and provides the controlmanager with a newly created

background. In a similar sense to the backgroundtemplate are two more classes,

CreatureTemplates and ItemTemplates. Each of template classes is used to randomly

creating a creature or an item. The templates work by defining base values plus a range

of values for each attribute that are required by the thing. To generate a new creature or

item, the template randomly selects values within the predefined range and adds them to

the base, and voila, a randomly generated thing is created. Together, these three template

types are used to randomly generate maps and things specified in the startupconfig file.

 39

Chapter 5 Manual

5.1 User Interface & Commands

Control of the game is through two sources, mouse and keyboard. They are broken

down into basic view commands, mouse commands, and more detailed keyboard

commands.

Basic View:

Left/Right/Up /Down Arrow - these controls move the openglwindow viewing area

Control-Left/Right Arrow - these controls rotate the openglwindow's view around the

Z-axis

Control-Up/Arrow Down – these controls zoom in & zoom out of the openglwindow's

view along the Z axis.

Mouse Commands:

Mouse - Left Click - this selects a 'valid' thing in the game. 'Valid' things are non-

background objects. This also sets the variablewindow to the thingselectionscreen.

Mouse - Right Click – empty background- as long as you right click on any

background in the map, this creates a MoveAction for your small crate, and the

MoveAction is added to the ActionQueue. The Action is then processed as the game turns

continue...until you get to your destination or there is a collision detected.

Mouse - Right Click – on an item - This creates a PickUpItemAction command. Your

character moves to the spot of the item, and the item is moved from the map into your

inventorymanager.

 40

Mouse - Right Click – on an creature - This creates an AttackAction command. Your

character moves to within attack range of the target creature and issue an attack.

Screen Control:

The window on the right of the screen is a variablewindow. There are 3 different

types of views available: MainPlayerScreen, ThingSelectionScreen, and InventoryScreen.

MainPlayerScreen - display details about your creature. If you lose sight of this

screen, you can always pull it up again by pressing 'M' or 'm'. Also, if you right click

anywhere on the variablewindow, this screen is displayed.

ThingSelectionScreen - displays details about any 'valid' thing you have left clicked

in the regular game.

InventoryScreen - displays all items in the inventorymanager of your creature.

You can get to this screen at any time by pressing the 'i' or 'I' button. You can arrow up

& down your inventorymanager if you have more than one page of items. Also, if you

single left click on an item, the item becomes selected. If you double left click on an

item, the variablewindow displays the item in the thingselectionscreen. Finally, if you

left click on an item and drag it into the openglwindow, the item is dropped at the feet of

the player’s creature. Also, if you highlight an item in your inventory, you can perform

two additional options. If you press the ‘e’ or ‘E’ key, then a command to equip the item

is issued. If you press ‘u’ or ‘U’ key, then you issue a command to unequip the item.

 41

5.2 Creatures

5.2.1 Basic Attributes

Attributes represent the basic characteristics of a creature. Currently, only two

attributes exist: hit points and speed. Hit points represent the amount of life a creature

has. When hit points reach zero, the game throws a death event and the creature dies.

Speed is a general value used to influence how fast a creature can perform an action.

These attributes are needed to be expanded in future versions of this game, as this

represents only an extremely basic framework.

5.2.2 Advancement & Experience

Unfortunately, due to time constraints, advancement and experience could not be

addressed. It was the hope of this writer that a system similar to the Dungeons &

Dragons®19 system could have been developed, with experience points and levels of

power. This unfortunately, has to be left to the future plans section.

5.3 Items

Items represent all things incapable of independent action. Furthermore, items are

subdivided into two major subclasses. These are UsableItem and EquippableItem.

Usableitems are all items that can be used to create the UseItemAction. When used, these

items create some sort of effect. Equippableitems are any item that can be worn or

wielded. These are further broken down into WeaponsItem and ArmorItem. When

equipped, these items provide some sort of additional benefit to the wearing creature.

19
 Dungeons & Dragons® is a registered trademark of Wizards of the Coast Inc, a subsidiary of Hasbro

International.

 42

All items are capable of having statuseffectors on them. These statuseffectors can

be activated in 3 different scenarios: activate on pickup, activate on wear, and activate on

use. It is up to the creator of the item to make sure that the benefits of these items are

reasonable, and do not destroy the game play of the game.

5.4 Skills

Skills are used for a variety of different actions. The skills are based on a hundred-

point system, with zero being the worst and one-hundred being the best. Each action has

a skill linked to it. As the action progresses, the benefits of the action are determined by

the skill of the initiating creature. A base skill framework has been created, and needs to

be extended in the future plans section.

5.5 XML File Usage

There are two general types of files: configuration files and object files.

Configuration files have very little data in them and primarily serve as a collection point

for the name and path of object files to be loaded. Object files contain the actual data for

the GraphicTemplate’s and ThingTemplate’s. One quick note, order is important. The

game engine makes heavy use of inheritance, and so children classes first load parent

values from the XML before loading their class specific values. While some levels can

have their values in any order, other levels require a specific order. It is best to follow the

framework of the existing file structure and include every element that I’ve included in

my XML files. When in doubt, just follow an existing model.

 43

5.5.1 Configuration Files

GraphicConfig.xml – Responsible for loading all Graphic Templates. The

GraphicConfig file uses the standard element name for the base, <ConfigFile>, and

consists of 1 or more GraphicTemplate.xml files to be loaded. This is all that is required

for the GraphicConfig.xml file. To add a new GraphicTemplate to the game engine,

simply add in the new <GraphicTemplate> and <FileName> elements. Please see

Section 5.5.4 for more details on adding new GraphicTemplates.

ObjectConfig.xml – This file is responsible for linking all CreatureTemplate,

ItemTemplate, and BackgroundTemplate files. This file uses the standard base element

name, <ConfigFile>. The file consists of a 1 or more <Template> elements. Each of the

<Template> elements has 2 subelements. The first is <Type> which consists of 3

possible values: ItemTemplate, CreatureTemplate or BackgroundTemplate. This value

must correspond with the ObjectTemplate type. The second part of the <Template>

element is the <FileLocation> which contains the location of the ObjectTemplate.xml file

to be loaded. Please see Section 5.5.4 for more details on adding new ObjectTemplates.

StartupConfig.xml - This file contains all the other variables that are needed for the

game engine to initializing. As with the other two configuration files, this file uses the

base element <ConfigFile>. This configuration has two roles. First, it defines some

system values that are used by the game engine. These are <DisplayOpeningScene> and

<RandomlyGenerateMap>. Please leave these at the default values. Secondly, this file

defines some nonrandom elements for the map, which are stored under the <Map>

element.

 44

<Object> - This is a Thing created from a specified ThingTemplate. The <Object> has 3

sub-elements: <Type>, <ObjectTemplate>, and <Location>. <Type> can be

Player (for the Player’s Character), Creature, Item or Background. This type

should match the type specified in the ObjectTemplate referenced.

<ObjectTemplate> is the unique name of the ThingTemplate to be used to create

the Thing. This name is defined in the ObjectTemplate.xml file. Finally, there is

the element <Location>. <Location> has 4 sub-elements, the x, the y, the z and a

rotation around the z axis. The rotation is in degrees, with 0 causing the thing to

face the default graphic template direction.

5.5.2 Object Files

Graphic Template – This file defines a specific GraphicTemplate. The document uses

the standard base element for non-configuration files, namely <Object>. The document

has a few different option permutations. The following elements exist for a

GraphicTemplate xml document

<Class> - Always GraphicTemplate

<Type> - Either Background, Item or Creature. Redundant and not fully used.

<Name> - The name referenced by the ObjectTemplate file using this GraphicTemplate.

<Graphic> - The name and path of any bitmap used for texturing

<Blending> - Optional. A boolean. True if any shape uses an alpha value. Alpha values

are used to calculate the transparency of an object. A 1.0 means completely

opaque.

<ScaleFactor> - Optional. Used to reduce the size of the GraphicTemplate and

CollisionModel of a Thing. This has an x, y, and z component

 45

<HasQuadratic> - Optional. Required if any shapes in the BodyPart are quadratics.

<BodyPart> - The definition of the GraphicTemplate shapes. This consists of a few

different values. First there is a <NumberOfShapes>, which is the number of

shapes used to make up the GraphicTemplate. Then, there is each shape that is

used. See <Shape> below.

Base Template - There are certain common characteristics of all ItemTemplates,

CreatureTemplates and BackgroundTemplates. While all these characteristics are

combined in the Template file, the top portion of the template file pertains to these base

characteristics. The required elements are <Type>, <Name>, <NumberOfBodyParts>,

<BodyPart>, <CollisionModel>, <CanBlockMovement>

<Type> - The type of ObjectTemplate. This must be in the ItemTemplate,

BackgroundTemplate, or CreatureTemplate families.

<Name> - This is the unique name of the Template. This name is referenced by the

StartupConfig file to select a specific template to create a Thing from.

<NumberOfBodyParts> - This is the number of BodyParts associated with the Thing.

This must be at a positive number at least greater than or equal to 1.

<BodyPart> This designates the beginning of a BodyPart description. The number of

BodyParts and the count of <BodyPart> must be the same.

<GraphicTemplateName> - A sub-element of BodyPart. This is the unique name of the

GraphicTemplate used to draw the BodyPart.

<CollisionModel> - This is used to declare the CollisionModel used by the

ObjectTemplate. See CollisionModel definition below.

 46

<CanBlockMovement> - A boolean determining if Thing’s spawned from the

ThingTemplate can block another Thing from moving into the space.

Item Template - This has the base Template elements, plus:

<ClassDisplayName> - This is the name of the type of Item.

ItemUsableTemplate - This has the Item Template elements, plus:

<StatusEffectorTemplate> - see StatusEffectorTemplate below

<ClassDisplayName> - the name of the class of items. Duplicate to ItemTemplate.

ItemWeaponTemplate - This has the Item Template elements, plus:

<AttackManager> - The object holding the description of attacks.

<NumberOfAttacks> - A positive integer containing the number of attacks

<Attack> - see Attack below

<SkillUsed> - the unique name of the skill associated with using this weapon

Creature Template - This has the Base Template’s elements, plus:

<ClassDisplayName> - The name of the class of Creature (such as race or the like)

<HasInventory> - A boolean value for if the spawned Creature can have an inventory

<HitPoints> - a <Base> and <Variable> value representing the minimum and maximum

hit point values of spawned creatures

<SkillManager>

<NumberOfSkills> - the total number of skills that the creature has.

Background Template - This has the Base Template’s elements, plus

<RMGClass> - This is used during Random Map Generation. Available choices: Corner,

Door, Floor, Wall, and Edge.

 47

5.5.3 Common Base Objects

Shape – this is a subpart of GraphicTemplate. There are a number of different

permutations depending on the <Type> of shape. The different types are QuadTexture,

TriangleTexture, Quad, Triangle, QuadraticDisk, QuadraticSphere, and

QuadraticCylinder. Additionally, any of these shapes can have an optional <Alpha>

value after the <Type>.

<Type> Quad - has only the 4 vertex coordinates.

<Type> QuadTexture – has 4 vertex coordinates and 4 texture coordinate pairs.

<Type> Triangle - has only the 3 vertex coordinates.

<Type> TriangleTexture - has 3 vertex coordinates and 3 texture coordinate pairs.

<Type> QuadraticDisk - has a Translation coordinate, an InnerRadius, an Outter Radius,

SegmentA and SegmentB which define the number of shapes used to approximate

the quadratic.

<Type> QuadraticSphere - has a Translation coordinate, a Radius, SegmentA and

SegmentB which define the number of shapes used to approximate the quadratic.

<Type> QuadraticDisk - has a Translation coordinate, a BottomRadius, a Top Radius, a

Height, SegmentA and SegmentB which define the number of shapes used to

approximate the quadratic.

CollisionModel – broken down into at least 2 parts.

<ModelName> - One of 3 different models: sphere, flat and box.

<width> - Used for all three. This represents the width/radius of the model.

<height> - Used by flat and box, ignored for sphere This is the height of the model.

<length> - Used only by box, ignored for flat and sphere This is the length of the model

 48

Attack – A combination of StatusEffectorTemplates that occur on a successful Attack

<NumberOfStatusEffectors> - a positive integer containing the total number of

StatusEffectorTemplates associated with this Attack

<StatusEffectorTemplate> - see below. There is one StatusEffectorTemplate for each

number of StatusEffectors.

<AttackRange> - the maximum distance, in game space, that the creature must be from

its target to be able to attack. 1.0 is equivalent to the width of a background.

<AttackTime> - the time it takes to process an attack before the result occurs. This

amount is divided by the speed of the creature to determine the total number of

game turns that must elapse before the attack is evaluated

StatusEffectorTemplate – A common storage device for creating

StatusEffectorTemplates.

<Type> - The type of StatusEffectorTemplate (SET) that is being created. Currently only

HealingStatusEffectorTemplate

<Base> - An integer base value of the effect

<RandomAmt> - An integer random value of each effect

<DelayBefore> - An integer in turns before the effect becomes active after adding

<RandomDelayBefore> - A random addition integer in turns before the effect becomes

active after adding.

<IntervalBetween> - An integer in turns between each effect

<IntervalBetweenRandom> - A random integer in turns between each effect

<LengthOfEffect> - The number of iterations of the effects

<LengthRandom> - A random integer in iterations of the effects

 49

<ActivateOnPickup> - Whether or not this effect activates on the owner when picked up

<ActivateOnUse> - Whether or not this effect actives on the owner when used

<ActivateOnEquip> - Whether or not this effect actives on the owner on equipping

<OneUse> - Whether or not this SET expires immediately after activating

<SENotifyOnSET> - Whether or not the spawned StatusEffector should notify its SET

when it finishes

Skill – a Skill used by the Creature

<Name> - the unique name of the skill that is referenced by the ItemWeapon

<Value> - the adeptness of the skill, on a scale of 0 to 100.

Quest – a storage device for Triggers.

<Title> - A descriptive identifier for the Quest

<UniqueName> - the unique name of the Quest. This is referenced by the

EventActivation.

<ActivateOnLoad> - True if this Quest is immediately activated and all triggers are sent

to the global Trigger Manager

<NumberOfTriggers> - The total number of triggers associated with this quest

Trigger – a conditional object for storyline development

<Type> - The type of Trigger. Can be Trigger or TriggerDeath

<UniqueName> - The unique name of the Trigger that is referenced by the

eventactivation.

<ActivateOnLoad> - True if the trigger is active immediately after being sent to the

global trigger manager by the quest.

 50

<NumberOfEvents> - the number of events that are sent after the trigger is completed.

Currently a maximum of 3.

<CompleteImmediately> - if set to true, this sends all events to the eventqueue when this

trigger is added to the global trigger manager

TriggerDeath – a conditional storyline event that looks for the death of a specific

creature. It includes all the elements of Trigger

<TargetName> - the unique name of the creature that will satisfy this trigger

Event – an object that performs a wide variety of tasks. This is a base class for

EventActivation and EventGeneration

<Type> - Either Event, EventActivation, EventGeneration

<Message> - A descriptive message that is displayed when the Event is evaluated

EventActivation – a subclass of Event that includes all xml structures as event and the

following xml. This is used to activate and close triggers and quests

<ActivatedName> - the unique name of the trigger or quest

<ActivateTrigger> - notifies the name trigger to activate

<ActivateQuest> - notifies the name quest to activate

<CloseTrigger> - forces a completion of the named trigger

<CloseQuest> - forces a completion of the name quest

EventGeneration – a subclass of event that includes all exml structures as event and the

following xml. This is used to generate new creatures, backgrounds and items

from specified templates.

<TemplateType> - one of the following: CreatureTemplate, ItemTemplate,

BackgroundTemplate

 51

<TemplateName> - the unique name of the template

<NumberGenerated> - the number of things that are created

5.5.4 Adding New Object Files

How to add a new GraphicTemplate?

 Create a new GraphicTemplate.xml file, and fill it out according to the

GraphicTemplate object file above (listed in section 5.5.2). Make sure that the name

used is unique amongst all the other GraphicTemplates. Then, add the file name and path

to the GraphicConfig.xml file.

How to add a new BackgroundTemplate/CreatureTemplate/ItemTemplate?

 There are two different types of template addition. You can use an existing class

and change some of the preset values, or you can extend an existing class and add new

features. If you find an existing class that has all the features and attributes that you

need, then please use the class and follow the instructions below. If, however, you want

to add attributes that do not currently exist, or implement new functionality that is not

currently in the system, then you will have to do some coding. All template classes use

an inheritance hierarchy. So pick a base class for inheritance. Please review my existing

templates for more details on what needs to be completed in the new class.

 Once you have found (or possibly created) the template class you want to use, do

the following: create a new Background/Creature/ItemTemplate file and fill it out

according to the object file above (listed in section 5.5.2). Make sure that the template

name is unique amongst all types of templates (BackgroundTemplates,

CreatureTemplates, and ItemTemplates). Add the file name and path to the

ObjectConfig.xml file. If testing, add the name of the template file to the

 52

StartupConfig.xml file, along with a location, and verify that the Template properly

spawned a Thing.

 53

Chapter 6 Future Plans

A lot has been accomplished in this project. Game engine structure, physics

modeling, graphics, Win32 structures and XML loading were all implemented, just to

name a few features. And while a simple RPG was created, there are still many elements

left to be developed or expanded upon. First, AI was never fully implemented and for

this to become a fully functional game engine AI must be present. Next, saving and

loading of game data should be added. Gone are the days when an RPG would not

support saving. Animation has a basic framework only, and therefore needs to be

implemented and tested. Additionally, player advancement, while not necessary for all

games types, is certainly a staple of every good RPG. Therefore, more time should be

allocated to hammer out an intelligent and unique plan for advancement, and then this

plan should be implemented. Related to this is the development of new skills and

creature attributes. As it stands now, only a minimal set of attributes and skills have been

implemented.

 Some game elements exist in a semi-complete form. Triggers, quests, events, and

actions are currently insufficient for a finished and polished RPG. More thought needs to

be given to the development of triggers, as they drive the game’s story development.

There should be the addition of more screens for the variable window, such as a map

screen and a quest screen. Additionally, there needs to be some sort of connection points

between different maps. Collision models and collision responses need to be fully

implemented. Finally, the game needs to incorporate non-hostile creatures for advanced

story development. Upon completion of all these elements, there should be a fully

functional game engine

 54

Appendix A UML

A.1 Class Models

Figure 2 Application Parent

 55

1

11

1

1 11

1

1

1

ViewManager

Bool Keys[256]

GraphicTemplateLinkedList myGTS

ConsoleOutput myConsoleOutput

BackgroundWindow myBackgroundWindow

OpenGLWindow myOpenGLWindow

VariableWindow myVariableWindow

processKeysPressed()

DrawGLScene()

SetupWindows()

PrintText()

ProcessWindowMessages()

GraphicTemplate

ConsoleOutput

Font myFont

String log[][]

printText()

Initialize()

Background

Window

Initalize()

OpenGL Window

Camera myCamera

PixelFormat pfd

Initialize()

DrawGLScene()

GetCamera()

VariableDisplay

Window

Initialize()

GraphicTemplate

LinkedList

GraphicTemplate headptr

AddNode()

RemoveNode()

1

1

1

0..*

Camera

Float x, y, z

Float xRotation

Float radiusX

Float radiusY

Figure 3 ViewManager Class

 56

Figure 4 ModelManager Class

Figure 5 ControlManager Class

 57

Figure 6 ControlManager Part 2

 58

Figure 7 Actions and Events

 59

Figure 8 Thing Class

 60

Appendix B Use Case Scenarios

Possible Actors: Developer, Player, Computer Controlled Creature

B.1 User Interface Use Cases

Use Case: Start a new game

Actor: Player

Goal: Player desires to start a Level

Precondition: The executable is currently running

Flow of Events: 1) Player clicks on the Menu at the top

 2) The Player selects the New Game option

 3) Player clicks on the desired options and clicks Play

Exit Condition: 4) Player begins playing the level

Use Case: Save an existing game

Actor: Player

Goal: Player desires to save the game.

Precondition: A game has been started

Flow of Events: 1) Player clicks on the Menu at the top

 2) The Player selects the Save Game option

 3) The Player selects the name of the saved data file

 4) The game pauses while data is saved

Exit Condition: 5) The game is saved

 61

Use Case: Load a previously saved game

Actor: Player

Goal Player desires to load a saved game

Precondition: The executable is currently running.

Flow of Events: 1) Player clicks on the Menu at the top

 2) The Player selects the Load Game option

 3) The Player selects which data file to load

 4) The game pauses while data is loaded

Exit Condition: 5) Previous play location is loaded and Player resumes playing

game

Use Case: Quit the game

Actor: Player

Goal: Player desires to quit the game

Precondition: The executable is currently running

Flow of Events: 1) Player clicks on the Menu at the top

 2) The Player selects the Exit Game option

 3) The Player is prompted to save the game before exiting

Exit Condition: 4) The game is closed

Use Case: Rotate the display screen

Actor: Player

Goal: The Player desires to rotate the screen around the Z-axis

 62

Precondition A game has been started

Flow of Events: 1) The Player holds down the control key and presses the left or

right arrow

Exit Condition: 2) The screen has been rotated to the desired position

Use Case: Zoom in or zoom out the display screen

Actor: Player

Goal: The Player desires to zoom the screen in or out

Precondition: A game has been started

Flow of Events: 1) The Player holds down the control key and presses the up or

down arrow

Exit Condition: 2) The screen has been zoomed in to the desired position

Use Case: Examine all Items carried by the Player's Creature

Actor: Player

Goal: Player wishes to examine what Items they are carrying

Precondition: A game has been started

Flow of Events: 1) The Player pressed the “I” or “i” key

 2) The Variable Display window loads the Inventory screen

Exit Condition: 3) Items carried are displayed in the Variable Display window

Use Case: Examine the Player's Creature

Actor: Player

 63

Goal: The Player wishes to examine the stats of their Creature

Precondition: A game has been started

Flow of Events: 1) The Player presses the “C” or “c” key

 2) The Variable Window displays the MainPlayer screen

Exit Condition: 3) The stats of the Player’s Creature are displayed in the

Variable Window

Use Case: Examine the Player's Creature’s Equipment

Actor: Player

Goal: The Player wishes to examine the equipment of their Creature

Precondition: A game has been started

Flow of Events: 4) The Player presses the “E” or “e” key

 5) The Variable Window displays the Equipment screen

Exit Condition: 6) The equipment of the Player’s Creature are displayed in the

Variable Window

Use Case: Examine a Creature or Item in the Map

Actor: Player

Goal: The Player wishes to examine a Creature or Item in the Map

Precondition: A game has been started

Flow of Events: 1) The Player left mouse clicks on the Creature or Item

 2) The Variable Window targets the Creature or Item

 3) The Variable Window displays the Thing screen

 64

Exit Condition: 4) The Thing’s stats are displayed in the Variable Display

window (a more limited view than the MainPlayer Screen)

B.2 In-Game Use Cases

(all have a precondition of a game running)

Use Case: Move the Player’s Creature

Actor: Player

Goal: Player Desires to move his creature

Entry Condition: 1) Player right mouse clicks on the desired destination.

Flow of Events: 2) The system checks to see if the destination is in the game

window.

a) If destination is not on screen, command is ignored.

End use case.

 3) The system checks to see if there is an Item or a Creature at

the location

a) If there is this becomes a “Pick Up an Item” Use Case or

an “Attack a Creature” Use Case. End use case

 4) A MoveAction is requested from the ActionFactory

 5) The Player’s Creature and the target model coordinates are

added to the new Action.

 6) The Action is added to the ActionQueue

 7) …Wait until Action is popped from the Action Queue

 65

 8) Compare Creature coordinates to destination Coordinates.

Determine direction from coordinates and distance moved

from speed.

 9) Apply direction & distance to Creature coordinates and create

a potential move

 10) Check to see if potential move collides with any existing

Things

a) If no collision, apply new coordinates to Creature

b) If collision, Create a CollisionEvent with Action,

Creature, and collision object. Add to Event Queue.

End use case.

 11) Check to see if Creature location is at destination location

a) If not at destination, Action is pushed back onto

ActionQueue

 12) Continue Processing Action Queue…

Exit Condition: 13) Creature reaches destination or a CollisionEvent occurs

Use Case: Pick up an Item

Actor: Player or Computer Controlled Creature

Goal: The Player or Computer Controlled Creature decides to pick up

an Item on the ground in the Map.

 66

Entry Condition: The Player right mouse clicks on an Item on the ground, or

Artificial Intelligence decides a Computer Controlled Creature

wants to pick up the item.

Flow of Events: 1. A Pickup Item Action is requested from the ActionFactory

 2. Pointers to the Creature initiating and the targeted Item are

added to the Action

 3. The Action is added to the Global ActionQueue

 4. …Wait until Action is popped from the ActionQueue

 5. Action is popped off ActionQueue

 6. System checks if the Creature is within pickup range of the

Item (pickup range to be determined later)

a) If not, the Action is processed as a Move Action with the

destination being the Item’s location. Original Action

pushed back onto the ActionQueue, return to Step 4.

 7. System checks if Creature has a larger Carrying Capacity than

the Weight of the Item (weight check)

a) If weight is too great, Action is discarded. Event System

Message created with "Failure to pick up due to weight."

Event added to the EventQueue. Exit Use Case.

 8. Item removed from Map's Thing LinkedList

 9. Item added to Creature's InventoryManager

 10. Event System Message created with “Item successfully picked

up.” Event added to the EventQueue.

 67

Exit Condition: 11. The Item is picked up or a failure message is displayed

Use Case: Drop an Item that is carried

Actor: Player

Goal: The Player wishes to drop and Item carried by their Creature

Flow of Events: 1) The Player selects the Inventory tab from the Variable

Display window

 2) The Player left clicks & drags the desired Item to be dropped

 3) The Player releases the left mouse button somewhere over the

Map

 4) A DropItem Action is requested from the ActionFactory

 5) The DropItem Action is given the Item desired to be dropped

and a location on the Map. The Action is added to the Action

Queue

 6) …Wait until Action is popped from the Action Queue

 7) Verify that the Item is still in the possession of the Creature

 8) The Item is moved from the Player's inventory to the Map

 9) Discard the Action

Exit Condition: 10) The Item appears at the destination location

Use Case: Equip an Item that is carried in the Player's Creature

Inventory

Actor: Player

 68

Goal: The Player wishes to equip an Item that is carried by their

Creature

Precondition: The Variable Window is displaying the Inventory screen

Flow of Events: 1) The Player left clicks the Item they wish to equip

 2) The Player left clicks the Equip button

 3) If the Item has more than one Equip Location, the Player is

prompted to select which location

 4) The system checks to see if the Creature can equip the Item at

the specified location

a) If the Creature cannot equip the Item, then create a

SystemMessage Event communicating failure and add to

the EventQueue. End use case.

 5) The system checks to see if the Creature already has an Item

at the specified location

a) If the Creature already has an Item equipped there, then

create a SystemMessage Event communicating failure and

add to the EventQueue. End use case.

 6) The EquipItem Action is requested from the ActionFactory

 7) The Action is given the Creature, the Item being Equipped,

and the Equipped Location

 8) The Action is added to the ActionQueue

 9) ….Wait until the Action is popped from the ActionQueue

 10) Verify that the Item is still in the Creature's possession.

 69

 11) Add the Item to the Creature’s EquipmentManager

 12) Recalculate benefits from Equipment

 13) The Action is discarded

 14) Create a SystemMessage Event communicating success and

add to the EventQueue

Exit Condition: 15) The Item is equipped or a failure message is displayed

Use Case: Unequip an Item that is being equipped by a Creature

Actor: Player

Goal: The Player wishes to unequip an Item that is being equipped by

their Creature

Precondition: The Player is viewing the Equipment screen

Flow of Events: 1) The Player left clicks the Item

 2) The Player selects the Unequip button

 3) A new UnequipItemAction is requested from the

ActionFactory

 4) A new Action is given the Creature and Item to be

unequipped

 5) …Wait until Action is popped from the Action Queue

 6) The Item is moved from the EquipmentManager to the

InventoryManager on the Creature

 7) The benefits from Equipment are recalculated

 70

 8) A SystemMessage Event is created communicating success,

and is added to the EventQueue

 9) The Action is discarded

Exit Condition: 10) The Item is unequipped and a success message is displayed

Use Case: Use an Item carried by the Player's Creature

Actor: Player

Goal: The Player desires to use an Item carried by their Creature

Precondition: The Player is viewing the Inventory screen

Flow of Events: 1) The Player selects the Item in the Variable Display window

 2) The Player presses the Use Item button

 3) If the Item requires a target, the Player left clicks on the target

for the Item

 4) A UseItem Action is requested from the ActionFactory

 5) A new Action is given the Item, Creature and possibly the

target

 6) …Wait until Action is popped from the Action Queue

 7) Verify that the Item is still in the Creature's inventory.

a. If not then create a SystemMessage Event and add to

the Event Queue. End use case

 8) Verify that the Creature is within range of the Target. If not,

then treat as a movement Action and go back to step 6)

 71

 9) Create a UseItem Event and add the Action to the Event. Add

the Event to the EventQueue

 10)Wait for the Event to be popped from the EventQueue

 11) Perform the action requested by the Item (Item.DoAction())

 12) If applicable, remove the Item from the Creature's inventory

 13) Create a SystemMessage Event with the results. Send to the

EventQueue

 14) Discard the Action

Exit Condition: 15) The Item is used or an error message is displayed

Use Case: Open a Door

Actor: Player

Goal: The Player desires to open a door in the game

Flow of Events: 1) The Player right clicks on the closed door in the game

 2) A OpenDoor Action is requested from the ActionFactory

 3) The new Action connected with the Player and the door and

added to the Action Queue

 4) …Wait until Action is popped from the Action Queue

 5) If Creature is out of range of the door, then treat as a

movement Action and go to Step 4)

 6) Check to see if the door is unlocked.

a) If locked, then create a SystemMessage Event

communicating the locked status and add to the

 72

EventQueue. End Use Case.

 7) Change the Door to an Opened State.

 8) The Action is discarded

Exit Condition: 9) The door is open or an error message is displayed

Use Case: Close a Door

Actor: Player

Goal: The Player desires to close a door in the game

Flow of Events: 1) The Player right clicks on the open door in the game

 2) A CloseDoor Action is requested from the ActionFactory

 3) The new Action connected with the Player and the door and

added to the Action Queue

 4) …Wait until Action is popped from the Action Queue

 5) If Creature is out of range of the door, then treat as a

movement Action and go to Step 4)

 6) Change the Door to a closed state.

 7) The Action is discarded

Exit Condition: 8) The door is closed or an error message is displayed

Use Case: Unlock a Door

Actor: Player

Goal: The Player desires to unlock a door in the game

Flow of Events: 1) The Player right clicks on the closed door in the game

 73

 2) An UnlockDoor Action is requested from the ActionFactory

 3) The new Action connected with the Player and the door and

added to the Action Queue

 4) …Wait until Action is popped from the Action Queue

 5) If Creature is out of range of the door, then treat as a

movement Action and go to Step 4)

 6) Check to see if the door is unlocked.

a) If unlocked, treat as an OpenDoor Use Case. End Use

Case.

 7) Check to see if the Creature has the right Item in their

Inventory to unlock the door

a) If they do not, then create a SystemMessage Event

communicating the lack of a proper unlocking Item.

Send Event to EventQueue and End Use Case

 8) Change the Door to an unlocked State.

 9) The Action is discarded

Exit Condition: 10) The door is unlocked or an error message is displayed

Use Case: Lock a Door

Actor: Player

Goal: The Player desires to lock a door in the game

Precondition: The Variable Window is displaying the Inventory screen

Flow of Events: 1) The Player left clicks the Item to be used to Lock the Door

 74

 2) The Player selects the Use Item button

 3) The Player left clicks on the closed door in the game

 4) A LockDoor Action is requested from the ActionFactory

 5) The new Action connected with the Player and the door and

added to the Action Queue

 6) …Wait until Action is popped from the Action Queue

 7) If Creature is out of range of the door, then treat as a

movement Action and go to Step 4)

 8) Check to see if the door is already locked.

b) If locked, create a SystemMessage Event

communicating the already locked status. Add Event

to EventQueue. End Use Case.

 9) Check to see if the Item is the right Item to lock the door

a) If it is not, then create a SystemMessage Event

communicating the lack of a proper locking Item.

Send Event to EventQueue and End Use Case

 10) Change the Door to a Locked State.

 11) The Action is discarded

Exit Condition: 12) The door is locked or an error message is displayed

Use Case: Attack a Creature

Actor: Player

Goal: Player wishes to attack a Creature

 75

Flow of Events: 1) Player right clicks a hostile Creature

 2) An AttackAction is requested from the ActionFactory

 3) The new Action is added the Player's Creature and the target

Creature.

 4) The new Action is added to the ActionQueue

 5) …Wait until Action is popped from the Action Queue

 6) If Player's Creature is too far away from the target Creature to

attack, then treat as a MovementAction and return to Step 5)

 7) Check to see if the Player's Attack is successful

a) If successful, then create a new AttackEvent with

the Action and add to the Event Queue. Keep

Action in ActionQueue

b) If unsuccessful, create a SystemMessage Event

containing the failure. Add Event to ActionQueue.

Return to Step 4). Keep Action in ActionQueue.

 8) ...Wait until AttackEvent is popped from the Event Queue

 9) Determine amount of damage applied to target Creature.

 10) Create a SystemMessage Event containing the success of the

AttackAction and the damage applied. Add Event to

EventQueue.

 76

 11) Determine if damage is enough to kill Creature

a) If not, Go back to Step 5

b) If so, Create a DeathEvent with the Creature and Add to

EventQueue.

 12) …Wait again for Death Event to be selected from the Event

Queue

 13) Create a SystemMessage Event communicating Death of

Creature. Send Event to EventQueue

 14) Determine outcome & gains from Death (experience)

 15) Kill any Actions with the initiator being the dead Creature

 16) Kill any Actions targeting the dead Creature

 17) If the dead Creature is the Player’s Creature, then create

EndGameEvent. Send EndGameEvent to EventQueue.

Exit Condition: 18) Player is informed of target Creature's death

B.3 Developer Use Cases

Use Case: Develop a new Creature

Actor: Developer

Goal: Developer wishes to add a new Creature

Flow of Events: 1) Developer fills out the statistics per the documentation for a

CreatureTemplate

 77

 2) Developer links the CreatureTemplate BodyParts to a Graphic

Template

 3) Developer adds a link in the Object Template file to the newly

created creature template file

 4) Developer adds a link in the Map Configuration file to the

newly created creature template file

Exit Condition: 5) A new Creature has been added to the game

Use Case: Develop a new Item

Actor: Developer

Goal: Developer wishes to add a new Item

Flow of Events: 1) Developer fills out the statistics per the documentation for an

ItemTemplate

 2) Developer links the new ItemTemplate BodyParts to a

Graphic Template

 3) Developer adds a link in the Object Template file to the newly

created item template file

 4) Developer adds a link in the Map Configuration file to the

newly created item template file

Exit Condition: 5) A new Item has been added to the game

Use Case: Develop a new Background

Actor: Developer

 78

Goal: Developer wishes to add a new Background

Flow of Events: 1) Developer fills out the statistics per the documentation for a

BackgroundTemplate

 2) Developer links the BackgroundTemplate BodyParts to a

Graphic Template

 3) Developer adds a link in the Map Configuration file to the

newly created background template file

Exit Condition: 4) A new Background has been added to the game

Use Case: Develop new Graphic Template

Actor: Developer

Goal: Developer wishes to add a new Graphic Template

Flow of Events: 1) Developer translates desired shape of item into a file

containing triangles and quadrangles per documentation

 2) Developer links the newly created Graphic Template to the

Graphic Configuration file.

Exit Condition: 3) A new Graphic Template has been added to the game

 79

Appendix C Class Descriptions

As stated earlier, the game is programmed with the Model-View-Controller

architecture. A ModelManager class encapsulates the model, a ViewManager class

encapsulates the view, and a ControlManager class encapsulates the controller. This is

only a partial list. Please review the documentation that goes along with this document

for a full view of the classes and their functions.

C.1 Model

 The model holds all the data elements of the game. In reality, this covers the

following classes: things, backgrounds, items, creatures, thinglinkedlist, section,

sectionmanager, map, quest, questmanager, trigger, triggermanager, and modelmanager.

Things, Backgrounds, Items, Creatures

 Things, and its subclasses background, item, and creatures, is encapsulated by

classes with their respective names. To ease programming constraints, the three

subclasses inherit from the thing master class. The majority of elements are the same

throughout the parent and its subclasses. Each thing has a link to its graphical display

(the graphic template), and can clone itself. Information is kept on specifics of its

graphical display (the body parts) along with any custom colors the thing possesses.

Each thing has a base movement, a vertex for its location on the map, and its orientation

on the x-y-z axis. Each thing also has a set of boolean values that designate whether it

can create actions or block movement. Additionally, each thing has an identification

 80

number which uniquely identifies it. Also, the thing has a type-identifier which

distinguishes to which subclass it belongs.

 Creatures have some additional implementation notes. Actions that are not to

begin immediately are stored inside the creature's personal actionqueue. This is used

during the artificial intelligence phase of the game.

Thing Linked List

 Groups of things are stored in ThingLinkedLists. As the name suggests, the

storage method for this class are in a linked list. The linked list is responsible for adding

and removing things from its data pool, and providing things on request. The

thinglinkedlist is also responsible for populating the printobjectlinkedlist and

collisionlinkedlist.

Sections

 Sections are a method to subdivide a map. Its initial purpose is during random

map generation, however it is used to help ease collision detection, artificial intelligence,

and work with the model during random creature and item generation. A section

possesses a width, height as well as an x-y coordinate representing the bottom left hand

corner of the section. Sections are separated into rooms and corridors. The delineation

is used primarily during the random map generation process. The value is stored in a

boolean variable. Sections contain a thinglinkedlist with links to every background

within its area.

 81

Section Manager

 The SectionManager stores all sections on a given map. The sectionmanager

stores these sections in a linked list fashion. The sectionmanager is a key player in the

random map generation phase. The sectionmanager contains a counter for the number of

rooms and corridors it currently has in its possession.

Map

 The Map is an important part of the game engine. This contains three

thinglinkedlists, one for each of the thing subclasses. In the case of backgrounds, this

results in a redundant link held by the map and the section. The map is responsible for

ensuring that a complete printobjectlinkedlist and collisionlinkedlist are built for the

controller. The map is the other key player during random map generation. It achieves

this by keeping several backgrounds with its collection. These backgrounds are cloned to

create the floors, walls, doors and other various background elements that exist in a map.

Finally, there is a connection point stored by the map which allows it to be linked to other

maps.

Quest

 The Quest is an import part of developing the storyline for the game. From a

game play perspective, this section is one of the keys to keeping the player interested in

the game. The quests themselves are fairly straight forward. They contains a unique

identifier, a boolean status, a type identifier to identify the manner the quest is completed,

and several backup fields used for different quest types. An example of some of the back

up field is a thing field which designates a specific target for the quest to be completed.

 82

Additionally there may be a string field to help identify the quest. It should be noted that

these quests are specifically for the player's creature.

Quest Manager

 The QuestManager class holds all the current and completed quests that the

player's creature has been assigned. The primary role of this class is to hold new quests

and retrieve the states of quests in its possession.

Trigger

 Trigger represents conditional actions and events that are executed by the system.

Trigger Manager

 The TriggerManager stores all the current triggers for a given map.

Model Manager

 The ModelManager is the housing for the triggermanager, questmanager, and

map for the game. All together, the modelmanager encompasses all the elements for the

model in the MVC architecture. Additionally, the modelmanager maintains a special link

to the player's creature. The modelmanager's main functions are generating new maps,

providing the background templates to build new maps, adding new things, and retrieving

things on request. Additionally, the modelmanager passes along any requests to build

printobjects or collisionlists to the map in its possession. Basically, any request for a

specific thing has to pass through the modelmanager.

 83

C.2 View

 The view holds all the visual elements of the game. In reality, this covers the

following classes: vertex, textcoord, shape, triangle, quad, texturetriangle, texturequad,

bodypart, animation, animationstep, graphictemplate, graphictemplatelinkedlist,

backgroundwindow, openglwindow, consoleoutputwindow, variableoutputwindow,

camera, printobject, printobjectlinkedlist, collisionmodel, collisionlinkedlist, and the

viewmanager.

Vertex

 The Vertex class is the most basic of all the graphics classes. This class

encapsulates a three-dimensional point. The only structural data elements of this class

are three floating point numbers representing the x, y, and z of the vertex. The vertex

coordinates are all relative to the base of the bodypart.

TextCoord

 The TextCoord class is the most basic of all the graphics classes that use textures.

As with the vertex class, this class encapsulates a point. Texture coordinates are on a 2

dimensional bitmap, so the only data elements of this class are an x and y floating point

number.

Shapes

 Shape represents the core of the basic graphic display of every thing in the game.

Shape has 2 inherited classes: discreteshape and quadraticshape.

 84

Discrete Shape, Triangles, Quads, Texture Triangle, Texture Quad

 DiscreteShape, and its subclasses triangle, quad, texturetriangle and texturequad,

make up the basic graphic display of every thing in the game. As with the thing class,

shape is the parent class and the four subclasses inherit from shape. DiscreteShape exists

as an abstract class, and therefore no actual shapes are created. DiscreteShape possesses

four data elements and one function. The first is sides, which is the number of sides for

the shape. By definition, triangles have three sides and quads have four sides. The

second data type is an array of vertices. The array length is the same size as sides. The

third data type is an option data type. It is an array of textcoords, with it having the same

number of elements as size. Finally, there is a boolean data element labeled hasTemplate

whose value determines whether or not the shape has any textcoords. Everything but the

values of the vertices and textcoords are determined by the object class. The

hasTemplate value is only true for the texturetriangle and texturequad. There exists only

one function for shape and all it's subclasses, named draw(). When draw is invoked, the

system uses OpenGL libraries to write the current shape, and if applicable the texture,

into the graphics buffer.

QuadraticShape, QuadraticCylinder, QuadraticDisk, QuadraticSphere

 QuadraticShape, and its subclasses quadraticcylinder, quadraticdisk and

quadraticsphere, encapsulate the basic graphic display for every quadratic shape in the

game. Again, there exists only one function named draw(). When draw is invoked, the

system uses OpenGL libraries to write the current shape, and if applicable the texture,

into the graphics buffer.

 85

Body Part

 BodyPart represents an atomic element of the thing. The bodypart is made up of

one graphictemplate. The bodypart's primary function is the draw function. When this

function is invoked, the current bodypart is moved as per the animationstep and the

graphictemplate is drawn.

Animation Step

 AnimationStep encapsulates one key-frame in a bodypart’s animation.

AnimationStep contains a list of bodyparts and where they should begin their drawing

sequence.

Animation

 Groups of animationsteps are stored in the class animation. This class uses a type

identifier to determine which real life action this animation mimics.

Collision Model

 The CollisionModel is used by the physics model to detect collisions within the

game. The primary role of the collisionmodel class is to detect whether or not it has

collided with another collisionmodel. The collisionmodel is an over simplification of the

space occupied by the thing, and used to limit the number of geometric calculations

required by a system to detect collisions. The collisionmodel is a bounding box and

exists in one of three different forms: plane (2-dimensional), sphere (simple 3-

dimensional) and box (complex 3-dimensional). The collisionmodel maintains which of

the different forms it exists as. Depending on which form, the collisionmodel has a

 86

radius, length, width or height. Additionally, the collisionmodel maintains a simplified

length used to quickly judge whether a collision is a reasonable possibility. This is stored

as the object's longest edge, though in fact it is just a sphere representation of the

collisionmodel that fully encompasses its length, width and height.

Graphic Template

 GraphicTemplate encapsulates all information necessary to display a bodypart in

a three dimensional fashion. The graphictemplate is made up of a series shapes. There is

no limit to the number of shapes existing within the graphictemplate. The

graphictemplate consists of 3 data elements, an array of shapes, the total number of

shapes, and a boolean value storing whether or not it has a texture. GraphicTemplates

have a name that is referenced by the ItemTemplate, CreatureTemplate, and

configuration files. The graphictemplate’s primary function is the draw function. When

invoked, the system parses through each of the shapes stored and invokes their draw

function.

Graphic Template Linked List

 GraphicTemplateLinkedList stores all the graphictemplates on a given map. Its

role is to add, remove, and return requested graphictemplates. Additionally, the

graphictemplatelinkedlist stores the longest of all the collisionmodel edges. Using this

longest edge can feasibly reduce the total number of possible collisions that need to be

tested. As the name states, the graphictemplates are stored in a linked list fashion.

 87

Background Window

 BackgroundWindow encapsulates the main window that the GUI resides upon.

The backgroundwindow represents the base Win32 API element for the game engine. All

future GUI elements are written on top of this object. The backgroundwindow maintains

a connection to the windows element in the system's memory (also known as a window

handle).

Camera

 The Camera is a display tool used by the view. The camera represents the

location of the "eye" that is viewing the OpenGL world. The camera stores a series of 8

floating point numbers. Three floating point numbers represent where the camera sits,

three floating point numbers represent what direction the camera is facing, and two

floating point numbers capture the width and height of the viewing area.

Camera Display Node

 The CameraDisplayNode is a median class that holds objects that need to be

displayed in the openglwindow. In addition to the thing to be displayed, the

cameradisplaynode stores a relative location for the object. This relative location is in

camera coordinates. This simplifies the eventual display of the things. The

cameradisplaynode also contains a boolean value which says whether or not an adjacent

cameradisplaynode contains the same texture as the current cameradisplaynode. This

value is set by the cameradisplaylist.

 88

Camera Display List

 CameraDisplayList contains all the cameradisplaynode that are to be displayed in

a given turn. As the name suggests, the cameradisplaynode are stored in a linked list

fashion. The list is responsible for adding and removing all cameradisplaynode in its

possession. Additionally, before printing, the cameradisplaylist organizes the all

cameradisplaynodes so that things with the same graphictemplate lie in adjacent nodes.

OpenGL Window

 The OpenGLWindow class encapsulates the child window that displays the model.

As with the other children windows, the openglwindow is displayed on top of the

backgroundwindow. The openglwindow also contains a handle to the window

representation in memory. The openglwindow possesses the camera, as well as some

OpenGL specific variables. The primary role of the openglwindow class is to draw the

OpenGL scene to the screen. The function takes a printobjectlinkedlist and parses

through the list displaying each object.

Console Output Window

 The ConsoleOutputWindow class encapsulates the child window that displays the

system log. As with other children windows, the consoleoutputwindow is displayed on

top of the backgroundwindow. This window also contains a handle to the window

representation in memory. The consoleoutputwindow maintains a system log as well as a

specific font. As new messages are sent to it, it parses the data and separates it out into

lines. Finally, it displays these lines to the screen, scrolling the vertical scrollbar as

 89

necessary. The primary function is the print text function, which writes the text to the

log.

Screen

 The screen is a virtual class used by the variabledisplaywindow. The screen

houses all the elements need to display itself. The screen’s primary function is to receive

commands form the user interface, and display various elements as selected by the user.

The screen is broken down into three subclasses, and can be extended in the future as

needed: ThingSelectionScreen, InventoryScreen, and MainPlayerScreen.

Variable Display Window

 The variabledisplaywindow is a subset of the OpenGL window, and is used to

govern what is displayed in the variable display. The Variable display is made up into a

series of different screens. Each screen has a different purpose. The

variabledisplaywindow maintains the current screen, and passes messages from the

ViewManager to the various screens.

Collision Linked List

 The CollisionLinkedList stores all potential collisions between a base thing and all

other things held by the map. These collisions are examined in closer detail, and if any

collisions occur then they are added to the eventqueue.

View Manager

 The ViewManager class encapsulates the View. The viewmanager holds the

graphictemplatelinkedlist, backgroundwindow, consoleoutputwindow, openglwindow,

 90

and variabledisplaywindow classes. Additionally, it contains a 256 array of booleans that

represent each of the possible keys. If there is a true value for the corresponding ASCII

value of a key then that the key is being pressed. These keys are tested periodically

during the game. The viewmanager also acts as a conduit for display text to the log,

adding, removing and retrieving graphictemplates, and as the initial receiving point of

messages from the Windows operating system to the game engine.

C.3 Controller

 The controller maintains the system elements of the game. In reality, this covers

the following classes: idgenerator, creaturetemplate, itemtemplate,

thingtemplatelinkedlist, action, actionqueue, event, eventqueue, and the controllmanager.

ID Generator

 The IDGenerator is a special part of the controller. This class's only

responsibility is to ensure that request identifiers for things are unique. Therefore, the

class only contains a counter representing the last value submitted, and a function for

getting new values.

Thing Templates, Creature Templates, Item Templates,

BackgroundTemplate

 CreatureTemplate, ItemTemplate, and BackgroundTemplate classes are using

during random generation. These classes attempt to represent a truly generalized

creature or item, or background. Their only role is to spawn new things. They work by

having base attributes and a range for each attribute.

 91

Thing Template Linked Lists, Background Template Linked List

 The ThingTemplateLinkedList and it’s subclass, BackgroundTemplateLinkedList

hold all the templates that exist for a given map

Action

 Action is a virtual class to represent all future actions that are currently being done

by a creature. Action is an inherited class, with several subclasses.

Action Queue

 ActionQueue holds all the currently running Actions.

Event

 Event is a virtual class to represent all actions that are happening this second.

Event is an inherited class with several subclasses.

Event Queue

 EventQueue holds all the currently active Events.

Control Manager

 ControlManager is the control portion of the MVC architecture

 92

Appendix D Files

File Name License / Notes

GoldArrow.bmp Provided as a free sample from the Jupiterimages Corporation

(http://www.mediabuilder.com/webl3.html)

RedFluid.bmp This is actually a glass of red juice that I took and then cropped out

the edges of the glass.

SideBorder.bmp Unknown. They were released under a free, not to be used for

commercial license, but the vendor can no longer be found.

Tinystr.h &

Tinystr.cpp

Provided courtesy of Yves Berquin under the GNU license

(www.sourceforge.net/projects/tinyxml).

Tinyxml.h &

tinyxml.cpp

See tinystr.h above

Tinyxmlerror.cpp See tinystr.h above

Tinyxmlparser.cpp See tinystr.h above

Door1GT.bmp Provided courtesy of the Brisbane, Australia Mayors office,

http://joe_kelso.tripod.com/brisbane/kelsolandmanor.htm.

Government office, so property of the public.

Floor1GT.bmp Provided courtesy of kittyispretty69 for free use

http://www.modthesims2.com/showthread.php?t=178728

Wall1GT.bmp Unknown. They were released under a free, not to be used for

commercial license, but the vendor can no longer be found.

Hobgoblin MD2 Hobgoblin Md2 file and bmp provided from DigiBen from

www.gametutorials.com and cannot be used for any commercial

reasons

Hobgoblin1GT.bmp See above note

Crate1GT.bmp Provided courtesy of Jeff Molofee from

http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=07 under a

limited use noncommercial license.

What are the important directories and files?

Directory

Documentaton\ This directory holds all DOxygen html pages

Executable\ For those who do not want to compile the program, this contains

the executable and all the necessary data files

PhantasmEngine\ This is the game code, and includes all data files

PhantasmEngine\Data\ This folder contains the 3 xml configuration files

 93

How do I compile the program?

If you have Visual Studios – load the .dsw file in the PhantasmEngine directory.

This will load all the necessary information into Visual Studios. From here, select the

“Build” menu, and then “Rebuild All”. This will compile all the necessary files. You

can then run the program by pressing the red exclamation point.

If you do not have Visual Studios – I have exported a dependencies file

(PhantasmEngine.dep) and a make file (PhantasmEngine.mak). I have not tested these

files, nor do I know how to use them. Not only this, but I’m not positive that the library

and header files I’ve referenced in my code can be compiled by any compiler other than

Microsoft’s compiler. Good luck to you if you have to go this route.

How do I recreate the DOxygen documentation?

 I have used no special settings or build requirements for DOxygen. Just set up to

output in html (or whatever output format you would like to use), use the default settings,

point it at the code directory and run.

How do I run the program?

 There are two ways of doing this. 1) If you want to play the game engine

immediately, then run the PhantasmEngine.exe in the executable directory. 2) If you are

using Visual Studios, you can load the code and press Control-F5 or click the red

exclamation point. This will automatically run the code. On a side note, the location of

the executable built from Visual Studios can be confusing. Visual Studios will put the

executable in the debug or release directories (depending on your active configuration)

 94

when you compile the file. The game will execute fine when run from the Visual Studios

window. However, to run the code outside of Visual Studios, you have to move the .exe

file up to the base directory. Basically, the Data\ directory has to be the next directory

down from the executable in order for the game engine to function.

