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Abstract

In this work, we develop an end-to-end neural network-based computer vision
system to automatically identify where each person within a 2-D image of a school
classroom is looking (“gaze following”), as well as who she/he is looking at. Auto-
matic gaze following could help facilitate data-mining of large datasets of classroom
observation videos that are collected routinely in schools around the world in order
to understand social interactions between teachers and students. Our network is
based on the architecture by Recasens, et al. (2015) but is extended to (1) pre-
dict not only where, but who the person is looking at; and (2) predict whether
each person is looking at a target inside or outside the image. Since our focus is
on classroom observation videos, we collect gaze dataset (48,907 gaze annotations
over 2,263 classroom images) for students and teachers in classrooms. Results of
our experiments indicate that the proposed neural network can estimate the gaze
target - either the spatial location or the face of a person - with substantially higher
accuracy compared to several baselines.
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Chapter 1

Introduction

When a person suddenly looks outside the room, others in the group suddenly follow
the gaze of that person to assess what is drawing that person’s attention. What
a person is looking at can be a good indicator of what is on that person’s mind.
Therefore, gaze of a person can tell more than just where they are looking at. Gaze
of a person can be useful for inferring the attention, thoughts and intentions of
a person [3, 54]. Gaze of a person is regarded “as a perceptual/psychological act
through which other people can glean information about the gazer’s perceptions,
desires, emotions, and intentions” [11].

Advances in novel machine learning techniques, abundance of data and comput-
ing power have given machines the capacity to become more integrated in society
(e.g. autonomous transportation, health care, security, and education). However,
this means that machines need to have better understanding of humans’ intentions.
For example, a self-driving car has to be aware of the attention and intentions of
a pedestrian, so that it can perform more informed path planning and driving be-
havior adjustments. If a self-driving car has a computer vision system which can
infer the intentions and the object of attention of a pedestrian from his or her gaze
direction, better adjustments can be made compared to systems which are not aware
of a pedestrian’s attention.

Not only will machines which can follow people’s gaze direction help build future
vehicles, but they can also help build smart technologies that can be integrated
in other environments. In a classroom context, disengaged students (e.g. gazing
outside) or students in need of help (e.g. not knowing what to do and repeatedly
looking at others’ work) can be identified by recognizing where they are looking at.
Since a single classroom may have multiple students, teachers can easily overlook
students who need help. Recognizing gazes of students and teachers can be useful
in identifying where the students and teachers have their attention in the classroom.
To better assess how teachers attempt to guide their students’ attention, knowing
where the teachers are paying attention by tracking where and what they are looking
at during the class time can be useful information. Smart classroom observation
systems can be built to record classroom sessions and track gazes of both students
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and teachers to identify disengaged or distressed students and help teachers to better
recognize whether they are paying attention to the right thing or the right student
in the classroom.

In this work, we explore a machine learning-based approach to automatic recogni-
tion of where a person in the image is looking. In particular, we build an end-to-end
deep neural network that takes 2-D static images of multiple people as inputs and
infers (x, y) coordinates of where each person is looking at in the image as outputs.
This computational problem is known as gaze following [20]. Gaze following from
2D images is particularly challenging since 1) no additional information of the scene,
such as depth information, is available and a person can be looking at any of the
different planes of depth in the image, 2) people in the image can be looking at
objects either inside the image or outside the image, 3) the eyes of some people
may be blurred or partially invisible. Nonetheless, requiring only 2-D images is
attractive because of the ubiquity and greater convenience of using commodity 2-D
cameras. Our automated system is based on the architecture by [56], who tackled
a similar problem for general images from the web. However, our approach differs
from theirs in several ways, including the prediction outputs, training algorithm,
dataset collection, and application focus.

Figure 1.1 depicts a scenario captured in a classroom observation video. Here,
the green arrows are human labeled gaze annotations. In this scenario, a teacher
(person #5) is looking at child #3 but not at the disengaged student (child #1),
child #1 is looking at something outside the frame and not paying attention to
the teacher but other students (child #2, #3 and #4) are paying attention to the
teacher’s hand. One of the main purposes of this work is to be able to build a
computer vision system which can identify the gazes of students and teachers from
such classroom observation videos. Gazes of each individual as well as identification
of who is looking at whom can be a useful information for identifying attentions of
students and teachers which can be an instrumental feature for automated classroom
observation systems.

Limitations: Since we are using 2-D static images, one of the biggest limitation
is the unavailability of depth information from the image. Therefore, gaze being
annotated or predicted by the model can actually be translated to different depths
in the real world.

1.1 Contributions of Thesis

There are three main contributions of this work.

1. We build a deep learning-based architecture, based on related work by [56],
for automatic eye-gaze following from 2-D images of classroom observation
videos. Not only do we focus on each individual’s gaze location, we also focus
on whom each individual is looking at.
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Figure 1.1: Eye gaze targets labeled by a human labeler for each person in the image.
Labelers also indicate targets that are located outside the field-of-view (indicated
by “OUT”). Can we build a computer vision system that can estimate where each
person is looking? In this image, the man is looking at child #3. Can we identify
automatically who each person is looking at? Image from https://goo.gl/xUdYbC.

2. We extend the model of [56] to support gaze targets that can be outside the
camera’s field-of-view. Especially due to the lack of depth information, this is
a highly challenging problem, both for human labelers and the machine.

3. Since our application focus is on students and teachers in classrooms, we collect
and annotate a new gaze dataset which is tailored to our application focus.

1.2 Outline of Thesis

The outlines of the thesis is as follows: in Chapter 2 we review the background
work on classroom observations and student-teacher interactions in classrooms. On
a more technical side, the background work on deep learning and convolutional
neural networks is reviewed since we use CNNs as our building block to build the
end-to-end deep learning system for eye-gaze following in classrooms. Then, we
present related work on various approaches of following eye gazes in images and
video as well as saliency modeling. In Chapter 3, we present data collection process
to obtain the eye gaze datasets to train our deep neural networks. In Chapter 4, we
present the deep learning model which we built to perform the task of predicting
eye gazes of individuals in 2D static images. In Chapter 5 we present how the same
network is used to predict which faces the individuals of interest are looking at. We
show quantitative and qualitative results of our deep neural network in chapter 6.
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Finally, in chapter 7, we conclude and propose future directions which can be taken
from this thesis work. The work done in this thesis is intended to serve as a building
block for automated classroom assessment systems which can give valuable feedback
to teachers.
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Chapter 2

Background and Related Work

To understand the approach we took to solve the problem of following gazes of stu-
dents and teachers from classroom observation videos, it is helpful to know what
gaze following is and a brief background on classroom observation videos. We also
present background on teacher-student interactions in classrooms and prior work
on how states of students, teachers and classrooms are modeled. Knowing the
important elements of effective teacher-student interactions can provide crucial in-
sights when building effective computer assisted systems which can provide valuable
feedback to teachers [36, 33]. On a more computational side, a quick review of Con-
volutional Neural Networks (CNNs) and main concepts behind CNNs are presented
as CNNs are the main components in building our end-to-end deep learning system
for gaze following. Then we present computational approaches previously used to
tackle the problem of gaze following using computer vision and more recently, using
deep learning. Finally, we present previous work on saliency modeling which has
close relations to the concept of gaze following.

2.1 Classroom Observation

A classroom observation is a form of observation by a trained observer to rate
the quality of teaching while it is taking place in a classroom or some form of
learning environment. As the demand of higher quality of teaching in educational
institutions increases, classroom observations have become a common practice to
ensure a teachers effectiveness and proficiency in delivering their lessons [6, 47,
60]. Classroom observations are becoming more crucial in teacher performance
evaluation, teacher professional development programs and education research as a
way to capture not only the quality of the program but also the quality of teacher and
his/her methods of teaching [31]. Based on evaluations from classroom observations,
schools may use standardize protocols to rate performance of teachers. Researchers
also use information from classroom observations to assess features of classrooms
that are related to development of student learning and student outcomes [46].
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2.1.1 Live Observation and Classroom Observation Videos

Two common ways of conducting classroom observation are: 1) A trained observer
performing live observation in the classroom; 2) A video recorded in the classroom
during the class session [14]. Live observation has the main advantage of the observer
being able to take into account of everything that is happening in the classroom, and
not just limited to what is captured within the video frame (e.g. video frame might
be fixated to a certain point in the classroom and might miss a crying child who is
off the frame). Recorded classroom observation videos are obtained by setting up
a video camera to capture the classroom. The video can be recorded either by a
teacher him/herself or by a person who records the dynamics of the whole classroom.
Recorded classroom observation videos can be obtained more cheaply and does not
require a live observer in the classroom. Not only that, classroom observation videos
can be assessed by multiple observers asynchronously and therefore, may potentially
increase inter-coder reliability.

One of the major difficulties to effectively identify the climate of a classroom and
interactions among students and teachers from classroom observation videos is the
difficulty to manually code them. Classroom observations usually contain multiple
students and teachers interacting simultaneously in different parts of the classroom.
Human coders may find it hard to identify every teacher-student interaction, atten-
tions of teachers and engagement of each student. A single human coder can miss
subtle but important events in the classroom. Having multiple coders increases
cost and evaluations can vary among coders. Therefore, having a computer-assisted
classroom observation coding system would partially alleviate some of the problems
encountered in coding classroom observations.

2.2 Teacher-student interactions in classrooms

Classrooms are dynamic social settings, whether they contain a single teacher and a
few students or multiple teachers with many students, and each classroom can have
its own unique teacher-student interactions. The nature and quality of teacher-
student interactions have great impact on students’ attention, engagement and is
predictive of students’ development and outcome. Knowing crucial elements in
teacher-student interactions via standard observation methods can provide teachers
with personalized feedback about their interactions. Such feedback is shown to pro-
mote better teacher-student interactions and increases student’s engagement [52].
Studies have also shown that there is a relationship between emotional and instruc-
tional support provided by teachers and student’s cognitive, social and emotional
skills [36, 46]. Researchers often conduct classroom observation sessions to discover
how teacher-student interactions impact student’s outcomes. One particular exam-
ple is the Gates Foundation Measures of Effective Teacher (MET) project [33] where
tens of thousands of hours of classroom observation videos are recorded with the
aim of discovering most effective methods to teach students.
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One important element of effective teacher-student interaction, which is related
to this work, is the eye-gaze of teachers and students. Knowing where teachers
are looking at in the classroom is a good indicative feature to identify where they
are paying attention. Identifying whether teachers pay attention to disengaged stu-
dents, students in need of help or students who are being bullied by other students
(teacher sensitivity) are important factors to consider when providing crucial feed-
back to teachers. Knowing eye gazes of students can provide information of students’
attention and intentions [11].

2.3 Modeling states of students, teachers and class-

rooms

There has been much prior work done in modeling states of students engaged in a
learning task using various Intelligent Tutoring Systems. Various computer vision
techniques are employed to analyze facial features to identify affective states and
engagement levels of students [26, 10]. Some studies [34] examine whether making
use of multi-modal data (computer vision for facial expression recognition and array
of other sensors) can be beneficial in picking up non-verbal cues which are indicative
of learner’s frustration. Researchers also started to use muti-modal data combined
with machine learning to capture the dynamics of the entire classroom. Speech
recognition technologies have been widely used to capture various aspect of class-
rooms, such as classifying classroom activities [67] and modeling teachers during
their lectures [19]. Both speech recognition and computer vision are also deployed
for automated analysis of teacher-student interactions in live classrooms. [18].

In this work, we build a computer-vision system using deep neural networks for
automated eye gaze following that estimates, for each person in the classroom, where
she/he is looking. Such a system can be used to data-mine classroom observation
video datasets. It could also facilitate “smart classrooms”, which track gazes of both
students and teachers, identify disengaged or distressed students, and help teachers
to better recognize whether they are paying attention to the right thing or the right
student in the classroom.

2.4 Deep Learning

Machine learning algorithms are data-driven in nature and the success of machine
learning methods depends on learning good representations of data which is used to
train machine learning algorithms. Deep learning, a subfield of machine learning, is
primarily focused on learning good representations of training data by hierarchical
structures (Figure 2.1). Given hundreds of thousands of images as training data,
multiple layers of non-linear functions transform the input data into lower-level,
concrete representations (e.g. edges, corners, colors, etc.) in earlier transformations

7



and into higher-level, more abstract concepts (e.g. shape of a face, shape of a wheel,
etc.) in later transformations. The parameter of transformations are learned rather
than designed. This contrasts with hand-engineered filters (e.g. Sobel filter for
edge detection) or hand-engineered feature descriptors (e.g. SIFT [44], HOG [15])
used in traditional approaches in the domain of computer vision. In deep learning,
the error between the true label and the predicted output from the algorithm is
back propagated through the deep network and each parameter is corrected by a
small step which would make the error smaller. This approach gave birth to one
of the most effective machine learning architectures called artificial neural networks
[58]. High-level pipelines for object recognition in images using traditional computer
vision approaches and using deep neural networks are shown in Figure 2.2.

Input pixels

1st hidden layer
(edges, color)

2nd hidden layer
(corners, contours)

3rd hidden layer
(object parts)

Output
(object classification)

TreeBird Car

Input Image

Figure 2.1: Illustration of how deep neural networks learn hierarchical structures.
Image reproduced from [25]. Kingfisher image taken from [68]. Filters taken from
[64].

Each layer of artificial neural networks contains multiple neurons or nodes that
calculate the weighted linear combination of the outputs of the previous layer, which
are then fed into a non-linear activation functions such as Rectified Linear Unit
(ReLU) f(x) = max(0, x) [49] or Sigmoid f(x) = 1

1+e−x to produce a single scalar
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output. The parameters of the network are the weights between each neurons and
the neurons in the layer below. Neural networks with multiple layers are called
deep neural networks and deep learning is a class of machine learning algorithms
that use deep neural networks to learn the representations of training data to make
predictions on the unseen data. Deep neural networks have become more powerful
due to the availability of more computational power, availability of more training
data, and advent of novel deep neural network architectures.

Input Image

Hand Engineered Features 
(SIFT, HOG, etc)

Support Vector 
Machines (SVM)

“Car”, “Airplane”, 
“Ship”, ...

Input Image

Deep Neural Network
“Car”, “Airplane”, 

“Ship”, ...

Figure 2.2: Top: Traditional computer vision approach used for classifying objects.
Interest points are detected with hand-engineered feature descriptors (e.g. SIFT,
HOG) and classifiers such as Support Vector Machines (SVM) are used to learn
and classify objects based on extracted features. Bottom: Deep neural network
approach used for classifying objects. Deep neural networks learn representations
of objects in images from multitude of training data in a completely end-to-end
fashion. This eliminates the need of hand-engineered features.

2.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [41] are a class of feed-forward deep
neural networks which are primarily used for computer vision related tasks such as
object classification, object recognition and image segmentation. In fully connected
feed-forward neural networks, the input data is vectorized before fed into the network
and every node in every layer is connected to every other node in preceding layer.
One of the biggest drawbacks of regular feed-forward neural networks is that it does
not scale well to images of various sizes and the spatial structures of images are
not preserved. With CNNs, the network is forced to use the spatial structure of an
image and the fundamental principle behind CNNs take advantage of the spatial
structure in images by reducing the number of free parameters in the network as
much as possible without overly reducing its computational power. By reducing the
number of free parameters, probability of correct generalization increases because
having less free parameters not only reduces the entropy of the network [12, 17, 65]
but also reduces the Vapnik-Chervonenkis (VC) dimensionality [4].
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Due to the fast pace of research and development of CNN architectures, many
different kinds of CNN architectures have emerged but a typical CNN consists of a
convolution layer, pooling layer and fully connected layer as fundamental building
blocks. One of the earliest and well-known handwritten character recognition CNN
‘LeNet-5’ [40] is depicted in Figure 2.3.

Figure 2.3: Convolutional Neural Network ‘LeNet-5’ used to recognize handwritten
digits. Image taken from [40].

Convolution layers: As the name suggests, convolution layers perform linear
operation called convolution. The operation of convolution in CNNs has differences
with the definition of convolution in other fields. Convolution makes it possible
to build CNNs which can accept images of different sizes. The input of a CNN is
usually a 3-D tensor of an RGB image (width× height× colorchannel) or just 2-D
tensor of a greyscale image (width×height) and the kernel is usually a 2-D tensor of
learnable weights. Usually, kernels of convolution layers are much smaller than the
dimension of the original image. The convolution operation can be mathematically
defined as:

s[i, j] = (I ×K)[i, j] =
∑
m

∑
n

I[m,n]K[i−m, j − n]

where I is the input image with dimension m × n, K is the kernel and s is the
output at location i and j. Each convolution layer of a CNN usually have multiple
kernels. Output of convolution operation is fed into a non-linearity function (e.g.
ReLU) before it is fed into a pooling layer.

One important aspect of CNNs is that the convolution layers share parameters.
In a regular feed-forward neural network, each elements of the weight matrix is used
exactly once when output layer is being computed. When convolution is applied
to images, convolution create 2-D feature maps that show where certain features
appear in the input image. For example, if the feature map filters vertical edges
in images, the same filter can be applied to the whole image since the image may
contain multiple vertical edges all over the image. This form of sharing the same
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kernel for the whole input data is known as parameter sharing (or weight sharing)
and this makes convolution layers translation equivariant for input data.

Pooling layers: Pooling layers reduce the dimension of input data by replacing
the neighborhoods of output units with average or max value of all the neighborhood
cell values. The operation of taking the average value when pooling is known as
‘average pooling’ and the operation of taking the max value when pooling is known
as ‘max pooling’. One important detail of the pooling layer is the stride of the
sliding window and parameter specified for stride determines whether the sliding
windows overlap with one another or not. For example, if the input of a pooling
layer is the size of 16× 16 and the pooling window is the size of 2× 2 with stride of
2, the pooling window slides the across the input in the fashion of a sliding window
and summarizes every 4 cells covered by the window by taking the average or max
values. Since the stride is 2, the sliding window moves to next region without having
any overlaps with the previous region. In this fashion, either max pooling or average
pooling will produce an output of 8×8. However, [38] shows that overlapping regions
reduce overfitting. For the example described above, pooling with overlaps can be
achieved by setting the stride to 1. By doing so, pooling operation will reduce the
original input of 16× 16 to output of 15× 15.

Pooling helps to make the representations invariant to small translations [25].
Invariance to translation means that the values of most of the pooled outputs would
not change just by translating a small amount in the input. Invariance to translation
is a useful property if the location of certain features should appear exactly at
particular locations in the object.

Even though the concept behind pooling layers is to lower the dimension of input
data, new concepts such as global average pooling [42] and global max pooling are
used for different purposes. Global average pooling takes the average of each feature
map, and the resulting vector is fed directly into the softmax layer. Global average
pooling essentially replaces the traditional fully connected layers after convolution
layers in CNNs and acts a structural regularizer which prevents overfitting globally
[42].

Pooling
Non-linearity 
(e.g. ReLU)

Convolution
Input
Data

Output 
Data

Convolution Block

Figure 2.4: Components of a typical convolution block.
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2.4.2 Deep CNN Architectures

In this section, background of some of the most influential deep CNN architectures
are presented. Deeper and more sophisticated deep CNN architectures are being de-
veloped at a rapid rate by building upon more sophisticated concepts and harnessing
the availability of more powerful hardware tailored to deep learning.

AlexNet: AlexNet [38] is one of the first architectures which popularized CNNs
in computer vision. AlexNet trained on ImageNet dataset achieved a winning top-5
test error rate of 15.3% in ILSVRC-2012 competition. Compared to LeNet-5 [40],
AlexNet is a deeper architecture containing 5 convolutional layers, 3 max pooling
and 3 fully-connected layers and has 60 million parameters. The architecture of
AlexNet is depicted in Figure 2.5. AlexNet popularized several elements found in
typical CNNs such as ReLU, overlapping pooling, dropout and augmenting training
data. However, normalization method used in original AlexNet, Local Response
Normalization, is less common in recent CNNs.
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Figure 2.5: AlexNet architecture.

VGGNet: VGGNet architecture (2014) [61] uses only 3×3 convolution filters for
all the convolution layers. The reason behind using smaller convolution filters is that
stacking smaller convolution layers can emulate the effect of larger convolution layers
while increasing the depth of the network. For example, without having any spatial
pooling layers in between each convolution layers, stacking two 3 × 3 convolution
layers effectively emulates a 5× 5 convolution layer and 7× 7 convolution layer can
be obtained by stacking three 3× 3 convolution layers.

VGGNet has two variants: VGG16 and VGG19 (consisting of 16 and 19 convolu-
tion layers respectively). VGGNet is appealing due to its uniform architecture while
being able to achieve state-of-the-art results in image recognition tasks. In VGGNet,
spatial pooling is carried out by five max pooling layers. The difference between
typical convolution blocks (as depicted in Figure 2.4) and convolution blocks in VG-
GNet is that pooling layers do not immediately follow every convolution layers. At
every pooling layer, max pooling is performed over a 2 × 2 window, with stride 2.
One main drawback of VGGNet is that there are 138 and 144 million parameters for
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VGG16 and VGG19 respectively. An architecture of this size is prone to overfitting
if the training data size is small. Depiction of a VGG16 is shown in Figure 2.6.

In this work, VGG16 is used as the base CNN architecture but combined with
concepts from other architectures such as Global Average Pooling [42] to dramati-
cally reduce fully connected layers and thus reducing the risk of overfitting and time
required to train.
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Figure 2.6: Depiction of VGG16 architecture. n in each Conv (3 × 3) - n refers to
the number of filters in that convolution layer. FC-n refers to fully connected layer
with n nodes in that layer.

Inception: The most straightforward way to improve the performance of deep
neural networks is to increase their size, both depth (number of hidden layers) and
width (the number of neurons in each layer). This approach works well when there
are tens of millions training data but downside of having a deep neural network
with more parameters is that it is more likely to overfit when the training data
size is small. Not only that, deeper and wider networks take more computational
resources to train as well. With the intention of being able to build deeper networks
without blowing up the number of parameters or incurring heavy computational
cost, Inception [63] architecture introduces building blocks called ‘Inception Mod-
ules’ (Figure 2.7). Inception architecture consists of inception modules which are
stacked upon each other with occasional max pooling layer in between the inception
modules to reduce the resolution of input data. Inception architecture introduces
inception modules only in deeper levels while keeping traditional convolutional lay-
ers in earlier levels. In order to keep computational requirements manageable, 1× 1
convolution layers are introduced in inception modules. Their purpose is to reduce
input dimension by reducing the number of filters from incoming data (e.g. reducing
128 filters to 64 filters before being fed to 3×3 and 5×5 convolution layers in Figure
2.7). GoogLeNet which is based on Inception architecture contains 22 weight layers
but has 12 times less number of parameters compared to AlexNet [38].

2.4.3 Transfer Learning

CNN architectures such as AlexNet [38], VGGNet [61], Inception [63] and ResNet
[27] are trained on large datasets such as ImageNet [59] which contains over 15
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1x1 Conv 3x3 Max pooling

5x5 Conv

Concatenation

Previous Layer

1x1 Conv

3x3 Conv 1x1 Conv

1x1 Conv

Figure 2.7: Inception module with dimension reductions. 1× 1 convolutions reduce
the computational bottleneck by reducing the dimension of input data. This allows
deeper and wider network architecture without having much impact on computa-
tional cost. Image reproduced from [63].

million labeled high-resolution images belonging to roughly 22,000 categories. CNN
architectures which contains tens or even hundreds of millions of parameters to be
tuned are difficult to train since those networks can overfit easily if the training
dataset is not large enough.

[50] showed that internal convolution layers of CNNs, which are pre-trained on
large datasets such as ImageNet for object classification tasks, can extract mid-level
image representations and these image representations can be used in different image
classification tasks. Convolution layers might have learned kernels for edge detec-
tion, corner detection and color blob detection during their learning phase. These
kernels are useful for other object classification or other computer vision related
tasks and reusing these kernels is more effective and efficient rather than relearning
from scratch. Therefore, even in the case when the image statistics of original large
image datasets and smaller image dataset for actual training are different, the repre-
sentation that convolution layers learnt from the larger dataset leads to significantly
improved results for object classification and recognition when transferred to the
convolution layers of a CNN which will be trained on smaller training dataset. The
technique of transferring the weights of convolution layers which are trained on a dif-
ferent dataset to a new dataset is called Transfer Learning and it is an instrumental
technique to train large CNN architectures on relatively small datasets.

Fine-tuning: A strategy when training a CNN with transfer learning is fine-
tuning the convolution layers to accommodate statistics of new datasets. The pro-
cess of performing transfer learning involves: 1) attaching new fully connected layers
and 2) fine-tuning convolution layers.

Fully connected layers from the original CNN are chopped off since weights learnt
in fully connected layers are task specific and those weights are only useful for the
original task but may be irrelevant for the new task. After chopping off the fully
connected layers, new fully connected layers with random weights are attached. The
initial phase of training involves freezing the convolution layers and only training
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the newly attached fully connected layers until the output loss is saturated or the
network starts to overfit. Then the convolution layers are unfrozen and the whole
network is trained with lower learning rate.

In this work, we use transfer learning by transferring the weights of convolution
layers of VGG16 pre-trained on ImageNet. Fully connected layers and softmax layer
from the original VGG16 are chopped off (four rightmost layers in Figure 2.6) and
new fully connected layers initialized with random weights are attached. During
the initial training phase, only fully connected layers are trained while keeping the
convolution layers frozen. After the loss is saturated, convolution layers are unfrozen
and the whole network is trained with lower learning rate.

2.5 Eye gaze following

Due to the richness of information that the human face can provide, researches have
tried to understand the perceptual, cognitive and neurological processes which can
be extracted from human face [24]. One particular important aspect of human faces
is the eye and the direction of eye gaze. The direction of gaze is a good indicative
feature of what the attention of a person is [3, 54] and mutual gaze (eye contact)
provides the main mode of establishing communication between humans [35, 62].
Direction of gaze plays a crucial role in learning and development in children [2, 29],
in daily social interactions [20, 7] and in joint attention among people [66, 7]. [20]
coined the term “gaze following” as the act of a person following the line of sight
of another person. Gaze following is considered to be sociocognitive behavior which
serves numerous functions such as learning, collaboration, coordination, understand-
ing others’ intentions and directing others’ attentions [20].

2.5.1 Eye gaze following with computer vision and deep
learning

Due to the importance of following gaze of others, which humans do naturally when
communicating, collaborating and socializing, researchers in the field of robotics,
computer vision and machine learning have recently started to formulate and tackle
the problem of automatic gaze following within different contexts. Effective estima-
tion of gaze direction involves two main components: (1) head pose and (2) direction
of eye gaze [51]. Therefore, a computer vision model which does full gaze direction
estimation should address both components. Gaze-following is used in [51] to im-
prove models of free-viewing saliency prediction. However, they only estimate the
gaze direction without identifying the object being attended.

In some settings [32, 9, 22], there is only a single person whose gaze is being
followed, e.g., a student who is interacting with a mobile phone or tablet [37] to
play an educational game [71]. [22] presents a method for detecting and recognizing
social interactions from ego-centric cameras by computing lines of sight into locations
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in space to which individuals attend. [23] used videos recorded from ego-centric
cameras to recognize daily activities by combining gaze fixation, visual features and
action labels using probabilistic generative model. Deep learning has been applied
to eye-tracking specifically for mobile devices as well.

In other settings (such as ours), the camera examines an entire scene containing
many people, and the gaze of each person in the scene is followed [48] [45] [57]
[56]. While most of the prior work uses RGB data, [48] approached the problem
of modeling human attention by using convolutional neural networks to estimate
head pose and gaze direction from high resolution RGB-D data. Their approach
uses multi-modal RGB-D data to first classify gaze directions of individuals over 8
classes spanning 360 degrees around their head and fine-tune a regressor based on
the learned deep classifier to provide finer gaze directions. If multi-modal RGB-D
data is unavailable (e.g. low-resolution surveillance video), their method can fall
back on classifying the head pose into 8 equally spaced bins around individuals’
heads. [45] used head pose estimates to identify interactions between people in
movies by detecting whether they are looking at each other or not. But the scope of
their work is limited to people looking at each other in the same scene in contrast to
people looking at other people in different scenes or people looking at objects. More
recently, researchers have considered gaze following not only from static images, but
also how to harness temporal information from an entire video to better estimate
the person’s gaze target [57].

Our work is based on the work by Recasens, et al [56]. In their work, they created
GazeFollow dataset which contains gaze annotations of people doing various actions
in different environments. Using this dataset, they trained convolutional neural
networks to track both gaze direction and gaze location of each person in the image.
But they limit the scope of gaze following by focusing only on people who are looking
at objects or people inside the images.

2.6 Saliency modeling

Gaze following is related to saliency modeling, whereby image features of different
levels of abstraction (low-, mid-, and high-level) are examined to consider the most
likely locations in the image to which an observer would visually attend [32]. [9]
made a connection between these two by stating that an observer looking at an
image containing people may follow the gaze of people rather than actually fixating
on salient objects in that image. Therefore, gaze following can play a complementary
role in solving the problem of saliency model of attention. [16] explored the problem
of predicting a driver’s gaze behaviours and identifying the attention of a driver by
detecting saliency in a complex driving environments. A comprehensive survey by
[8] reviews key concepts, core techniques, datasets and evaluation metrics used in
salient object detection.
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Chapter 3

Data collection

In order to train and evaluate our end-to-end gaze following deep learning system, we
need to have a sufficient amount of annotated data for the task. Since the application
focus of our work is gaze following in school classrooms, we collected our own dataset
of classroom observation sessions. In particular, we used 70 videos publicly available
on YouTube of school classrooms [55]. In contrast to publicly available annotated
data on gaze following (the only such dataset of which we are aware is GazeFollow
[56]), classroom observation videos often contain many people per image frame,
and the kinds of background clutter differ significantly from that of GazeFollow,
which largely consists of images used for more general object detection research such
as: SUN [69], MS COCO [43], Actions 40 [70], PASCAL[21], ImageNet detection
challenge [59] and Places dataset [73]. Since we would like to focus on identifying the
gaze of students and teachers in classrooms, we decided to collect our own dataset
consisting of scenes from school classrooms. The process of collecting the required
datasets for training our neural networks is detailed in the following section.

3.1 Data Collection Process

Steps for data collection process are shown in Figure 3.1. We begin with obtain-
ing 70 classroom observation videos publicly available on YouTube curated by [55].
The classroom observation videos contain pre-school students engaged in interactive
learning settings or traditional classrooms settings. Static frames are extracted from
those videos at a rate of 1 frame approximately every 10 seconds. After extract-
ing frames from videos we used faster R-CNN for face detection [30] to obtain face
bounding boxes (top left (x, y) coordinate, width and height) in extracted frames.
Extracted frames contain 8 faces per image on average. Face bounding boxes are
overlaid on images during the annotation step. During the annotation step (Sec-
tion 3.2), multiple labelers are asked to draw gazes of individuals identified by face
bounding boxes obtained in previous step. After all the data has been annotated,
the quality of annotations are assessed by performing inter-labeler reliability tests
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Figure 3.1: Data collection process

(Section 3.3) and visualizing multiple annotations on original images. Low quality
gaze annotations are culled out from the original annotations. Finally, gaze dataset
which is ready to be consumed by the deep neural networks is created. 70% of the
dataset is used as training set, 15% as validation set and the remaining 15% as test
set. Each data split contains different classroom environments as well as different
individuals.

3.2 Details of Annotation Process

Ground-truth gaze annotations from the image frames were collected using at least
3 labelers per image on Amazon Mechanical Turk (AMT). Labelers used an online
annotation tool that we custom-built from scratch using JavaScript and HTML5 for
this work, to annotate two main components of each subject in each scene. The first
component is to identify the gaze target for each person (identified automatically
by the face detector as described in Section 3.1). The gaze is indicated by a line,
starting between the eyes of a person and ending on an object or a person which
the person is attending to (the end of gaze is depicted by filled red circle - Figure
3.2). The second component is the indication of whether the person is looking at
something inside or outside the image. Labelers indicate whether the gazes end
inside the image or extend outside the image by choosing the appropriate option in
the annotation tool depicted by a radio button below the image in Figure 3.2. We
collected three gaze annotations, each for 17, 758 faces in 2, 263 images, resulting in
a total of 48, 907 gaze annotations from 408 unique annotators. Some of the faces
are labeled by more than three labelers. Samples of gaze annotations collected from
AMT can be seen in Figure 3.3.

3.3 Inter-labeler Reliability Tests

In order to assess how well the machine performs compared to humans, we thus
need to measure human annotators’ accuracy in a comparable task. Since we ask
multiple labelers to annotate gaze locations of each face in each image, we have
to assess how well humans agree with each other in labelling the gazes from 2D
static images. Due to the relative difficulty of the annotation task, we observe that
humans have different opinions on annotating where a particular face in an image
is looking at (e.g. Figure 3.4 (b)). Even though there are many approaches which
can be taken to assess inter-labeler reliability, we present two approaches which we
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Figure 3.2: Custom-built annotation tool deployed on Amazon Mechanical Turk.
Labelers use this tool to draw an eye gaze of a person from the eyes of that person
to an object or a person of attention. A labeler draws the gaze of a subject in the
image starting within the bounding box of that subject and ending where the gaze of
that subject ends (depicted by a filled circle). If that subject is looking at something
outside the image, the labeler has to choose “Outside” in the selection box to indicate
that the gaze ends outside the image. Image from https://goo.gl/gWu4P5

use for this work in the following two subsections.

3.3.1 Inter-labeler reliability test on 256× 256 pixel images

We take the original (x, y) coordinates of annotated gaze end points to observe how
well humans are doing in terms of mean Euclidean distance between each other.
Since we each image in the dataset with three labelers, we can treat each human
labeler in turn as a prediction while treating the mean of the remaining 2 as a ground
truth. By doing so, we can quantify how well one labeler performs with respect to
the remaining 2 labelers. A single labeler is able to achieve mean Euclidean distance
of 41.04 on 256× 256 pixel input images. Using the same procedure for calculating
the inter-labeler mean Euclidean distance, we additionally calculated mean absolute
error (MAE), mean absolute angular error and area under the receiver operating
characteristic curve for indication of whether the gazes end inside the image or
end outside the image (AUC for In/Out) (shown in Table 3.1). Mean euclidean
distance serves as a metric for determining how well the labelers agree on where the
gaze should end in the image and mean absolute angular error serves as a metric for
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Table 3.1: Inter-labeler reliability scores calculated on 256×256 pixel images. Gaze
end points are treated as (x, y) coordinates.

MAE (pixels)
Mean Euclidean
Distance (pixels)

Mean Absolute
Angular Error

AUC for
In/Out

25.91 41.04 18.38 0.70

determining how well the labelers agree on the direction of the gaze. Mean Euclidean
distance and mean absolute angular error calculated among multiple labelers serve
as benchmarks for our automatic eye-gaze following deep neural network.

3.3.2 Inter-labeler reliability test on N ×N grid

As we will describe later, one of the two machine learning-based approaches that
we use for automatic eye-gaze following is based on dividing up the 2-D classroom
image 8× 8 grid cells. Grid size of 8× 8 is the largest number of grid cells N such
that the size of each cell (measured diagonally from two opposite cell corners) was
no smaller than the inter-human reliability measured in pixels (41.04 pixels over
256 × 256 pixel image). We calculated Inter-labeler reliability using Fleiss’ Kappa
[39]. Fleiss’ Kappa is one of the ways to assess the reliability of multiple labelers
more than two performing a classification task and is used to calculate the degree
of agreement in classification task (< 0.0: Poor agreement, 1.0: Perfect agreement).

For this reason, the (x, y) coordinates of gaze locations are converted to cells on
quantized N × N grid (Figure 3.4 shows an example of 8 × 8 grid). Two labelers
are regarded to be in agreement when (x, y) coordinates of their gaze annotations
fall in the same cell of the N × N grid. By using this convention, we calculated
inter-labeler reliability using Fleiss’ Kappa. The inter-labeler reliability among three
labelers for gaze annotations which are inside the image is κ = 0.2639 for 8× 8 grid
(Fair agreement [39]). Table 3.2 compares Fleiss’ Kappas with different grid sizes.
Smaller number of cells have higher Fleiss’ Kappa score since gaze annotations from
different labelers are more likely to exist in the same cell. Figure 3.4 shows gaze
drawings of different labelers on 8× 8 grid.
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Table 3.2: Fleiss’ Kappa for gaze locations on quantized N × N grids. Gazes are
treated as cells on 8× 8 grid. The inter-labeler reliability scores are calculated only
for gazes which all labelers unanimously agree that those gazes are inside images
(Labels indicated as “Inside” during annotation process).

Num
Labelers

Frame
Count

N=3 N=4 N=5 N=6 N=7 N=8

1 636 1.0 1.0 1.0 1.0 1.0 1.0
2 2,529 0.44 0.38 0.32 0.29 0.25 0.22
3 9,804 0.46 0.41 0.35 0.32 0.28 0.26
4 134 0.38 0.31 0.29 0.24 0.21 0.18
5 5 0.38 0.38 0.41 0.17 0.18 0.27

Figure 3.3: Gaze annotations collected using multiple labelers on Amazon Mechan-
ical Turk. Static image frames are extracted from YouTube classroom observation
videos [55]. Images (in clockwise direction) taken from: https://goo.gl/pb19gi,
https://goo.gl/rCVudX, https://goo.gl/xUdYbC, https://goo.gl/wbdfZF.
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(a) (b)

Figure 3.4: Gaze annotations from different labelers for a single face plotted on 8×8
grid. All three labelers highly agree (all gazes end in a single cell) on where the gaze
ends for a single face in (a). Each labeler has a different gaze annotation (all gazes
end in different cells) for a single face in (b). Images (left to right) taken from:
https://goo.gl/J2jMXo, https://goo.gl/rCtU1e
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Chapter 4

Building Gaze Following Network

In this chapter, we present implementation details of the deep neural network based
on work done by [56] to predict gaze locations and indication of whether the gazes
end inside or extend outside the image. Even though the approach is based on [56],
we present differences we made in terms of architecture choice and implementation
details to suit our application focus.

4.1 Approach

Using the datasets annotated on AMT, our goal is to build a convolutional neural
network (CNN) which takes in the whole image of the scene and predicts the gaze
target of each person in the image along with the indication of whether that target
is inside or outside the image. We have observed from our annotated datasets that
predicting gaze can be ambiguous. If there are multiple people or several salient
objects in the image, or the eyes of individuals in the image are not clearly visible,
human labelers may disagree when predicting gaze locations. Due to this inherent
uncertainty in the problem, we are exploring various options to design our model to
support multimodal predications.

One of the primary purposes of this thesis work is to build a computer vision sys-
tem which can provide gaze locations of individuals in classrooms to an automated
classroom observation system which consumes this information for some form of
downstream processing. Therefore, we explore both options of treating gaze follow-
ing as a regression task or as a classification task. If the requesting system requires
fine grained information, regression approach would be more useful since our system
will be able to provide exact (x, y) coordinates of the gaze. On the other hand, if
the requesting system only requires heatmap of a person’s attention, classification
approach would be more useful.
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4.1.1 Regression

When treating gaze following as a regression task, the network regresses to (x, y)
coordinates of the gaze target of each person in the image using Euclidean distance
between the predicted and ground-truth as the loss function. The disadvantage of
using regression is that our predictions are constrained to be unimodal. Since each
face in each image was labeled by multiple annotators, we can define the ground-
truth by either (a) computing the mean (x, y) location over all labels per face, or (b)
treating each location as a separate label. In this work, we treat each gaze location
as a separate label when regression approach is taken.

4.1.2 Classification

When treating gaze following as a a classification task, the gaze location is first
quantized into a cell on a N ×N grid, and the network’s job is to choose the correct
cell which contains the gaze end point for each person in the image. As the loss
function we can use cross-entropy loss. Classification naturally supports multimodal
outputs since multiple gaze annotations at different cells can be treated as soft labels
[1]. Figure 4.1 depicts how multiple annotations are converted to soft labels on 8×8
grid. The disadvantage of this approach is that the choice of grid size can affect
precision of predictions (i.e. smaller grid sizes will result in poorer precision). In this
work, we choose 8× 8 as the grid size for classification approach (choice of grid size
8×8 is explained in Section 3.3.2). Exploring different grid sizes to observe the effect
of model’s performance can be pursued as part of the future work. Another issue
with classification approach is that cross-entropy loss does not gradually penalize
spatial classes – misclassification which is off by one grid cell is penalized just as
much as misclassification which is off by several cells on a grid.
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Figure 4.1: Gaze prediction with classification approach. Left: Original image
resized to 256×256 pixels and overlaid with 8×8 grid. Right: Soft labels associated
with gaze end points by three labelers. Image taken from https://goo.gl/rCtU1e
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4.2 Architecture
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Figure 4.2: Deep neural network architecture, based on [56], for automatic eye-gaze
following in school classrooms, consisting of two independent prediction pathways.
Each subnetwork produces an independent prediction of the gaze target for each
person in the image; the predictions are merged by pixel-wise multiplication to
predict both the location of the gaze target and whether the target is inside/outside
the image.

The deep learning architecture is based on the model by [56] and is depicted in
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Figure 4.2. The gaze target for each person in the image is predicted independently
based on two information sources: close-up information of the person’s face (auto-
matically detected by a separate face detection network [30]), and the the whole
image. Each information source is processed by a separate pathway consisting of a
CNN, and the pathways’ predictions about the person’s gaze target are merged at
the end. We call the combined architecture the Merged Model. In contrast to [56],
we use the VGG16 [61] as the backbone of each CNN because we empirically found
that it performed better than AlexNet [38] which is originally used by [56].

Inputs: The inputs of the Merged Model are a cropped, close-up face image (64×
64 pixels); the (r, c) ∈ 8× 8 location of the center of the person’s head in the image
for classification approach or (x, y) coordinate, normalized between 0 and 1, of the
center of the person’s head in the image for regression approach; and the resized
256× 256 pixels image of the whole frame.

Outputs: For regression, the gaze target is represented as a (x, y) coordinate pair.
For classification, the gaze target consists of a soft-label vector indicating which of
the N ×N grid cells contains the gaze target. In addition (for both regression and
classification), the network also contains an “in”/“out” binary prediction of whether
the gaze target is inside or outside the image.

Flow of architecture: The intuition behind the Merged Model is that two CNNs
are trained to solve two subproblems in a fully end-to-end fashion with only the
gaze location and the “in”/“out” label as supervision to the model: (1) The close-
up face CNN (left pathway in Figure 4.2) implicitly estimates the head pose and
the direction of the gaze of the subject in order to produce a heatmap (shown as
Reshape 16×16 in Figure 4.2) of where the person is looking. In the figure, the
heatmap roughly shows a “cone” of possible gaze targets to the upper-left of the
child’s head. (2) The frame-image CNN (right pathway in Figure 4.2) identifies the
salient objects in the image. This network has access to the entire original image but
does not know the location of the subject. In the figure, the salient object heatmap
highlights the teacher in the upper-left of the image. In [72], the authors showed that
objects tend to emerge in the filter kernels of the deep layers of CNNs; therefore,
we take a filter of the learnt representations at the end of the right pathway (shown
as 3 × 3 conv, 1 in Figure 4.2). This produces the heat map of salient objects
in the original image. Heatmaps from both branches are merged by element-wise
multiplication. After the merge, the two fully connected layers, separated by a
dropout layer (P = 0.3), follows before branching off into two outputs. The loss
for Gaze Output uses Euclidean loss for regression approach but uses Cross-entropy
loss for classification approach. The loss for In/Out Output uses Cross-entropy loss
for both regression and classification approach.
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4.2.1 Training procedure

Data partitions: The 70 YouTube videos containing school classrooms were par-
titioned into training (12,430 gazes), validation (2,664 gazes), and testing (2,664
gazes) sets, such that none of the frames from any video was assigned to more than
one set. Training data is augmented by flipping the original images and gazes left to
right. This essentially doubles the training data size. The validation set was used
for early stopping. The accuracy on the test set can be considered a performance
estimate on faces that the network has never seen before.

Optimization: We used the following procedure for both the regression and clas-
sification formulations: We first performed transfer learning by initializing both
CNNs with weights pre-trained on ImageNet [61]. We augmented the classroom
images from our dataset by flipping the original images (frame image pathway) as
well as the individually cropped face images, head locations and gaze locations (face
pathway) left to right. We trained the final Merged Model first by freezing all the
convolutional layers and training only the fully connected layers with RMSProp [28]
(learning rate = 0.01, ρ = 0.9). Then all the previously frozen convolutional layers
were unfrozen and the model was fine tuned with SGD with momentum (learning
rate=0.0001, momentum=0.9). The model was trained until there is no improve-
ment in validation loss.

4.3 Multi-task learning

Since the Merged Model predicts the location of the gaze in the image as well as
“in”/“out”, it is performing multiple tasks, and we can use multi-task learning
(MTL) [13] for training. Merged model is minimizing two losses at the same time
during training (Euclidean distance and cross entropy loss for regression and two
cross entropy losses for classification) while sharing the same hidden layers as shown
in Figure 4.2. Sharing same hidden layers to solve several tasks forces the model
to find representations which capture all of the tasks and thus greatly reducing the
risk of overfitting [5]. We found empirically that MTL helped to reduce overfitting
and improve prediction accuracy, and we thus adopted the approach for training.

4.3.1 Effects of Multi-task learning

Effects of multi-task learning can be seen in Table 4.1. With multi-task learning,
the model has higher training cross entropy losses (both for 8 × 8 output grid for
gazes and In/Out gaze classification) compared to the models which minimizes only
one of two losses. But the model with multi-task learning performs better on test
set. All models have the same architecture, hyperparameters and are trained with
early stopping with respect to the validation loss.
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Table 4.1: Effects of multi-task learning

Only grid
output

Only In/Out
output

Both grid output and
In/Out output

CE Loss CE Loss AUC
CE Loss

(Grid Output)
CE Loss
(In/Out)

AUC
(In/Out)

Training 3.27 0.32 0.63 3.39 0.33 0.60
Validation 3.49 0.47 0.60 3.58 0.44 0.58

Testing 3.59 0.46 0.59 3.58 0.43 0.62
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Chapter 5

Who Are They Looking At?

In school classrooms, both students and teachers often look at other people’s faces ;
the target of a student’s gaze could be the face of the teacher who is teaching the
class, or of another student with whom the student is collaborating (during group-
based instruction) or socializing off-task. Identifying where each student is looking
at can give information on where their attention is and their level of engagement.
Moreover, the teachers themselves can vary the fixation of their gaze on different
students at different points in time. They may notice important events such as
when a student becomes confused or frustrated. They might also sometimes miss
important dynamics between students, such as when one student within a group
dominates the activity or acts inappropriately (e.g., bullying) towards another stu-
dent. Knowing the gazes of students and teachers and identifying whether they
are looking at one another can be a useful indicator of recognizing student-teacher
interaction. We explore whether our deep neural network can pick up such gazes
where people are looking at one another.

We can use the same neural network depicted in Figure 4.2 to predict who each
person is looking at. This is especially useful in school classrooms, in which both
students and teachers are often looking at other people, not just objects. Specifically,
we use the classification approach to predict which of the 8×8 grid cells each person
is gazing at. The face contained within that cell is then predicted to be target face
of that person’s gaze. We note that, depending on the grid size and the specific
image, multiple faces might appear within the same cell and therefore, our accuracy
calculation is only approximate. A principled approach to handle to this issue would
be to distribute the probability mass output by the neural network among all the
faces within that cell in proportion to the the size of each face. However, in this
work, we simply assume that no grid cell contains more than 1 face.
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5.1 Methodology

First, we computed the subset of all people in all image frames of our original
YouTube dataset in which all annotators agreed that the person is looking at another
face (not just another object somewhere in the image). Note that the labelers can
still differ as to which particular face the person is looking at (Figure 5.1). By doing
so, we obtained, 410 faces where all labelers agree that the person is looking at
another face out of 17, 759 faces in our dataset. On the same data subset, we use
the Merged Model to compute the softmax probabilities across all 8 × 8 grid cells
of where each person was looking. From these probability outputs (for each person
in each image), we remove every cell that does not contain any face (as determined
by the face detector) and normalize the softmax probabilities only on the cells with
faces. Step-by-step process of masking softmax output with face cells on 8×8 grid is
depicted in Figure 5.2. In order to evaluate how well the our network is performing
on determining which face a person is looking at, we took the top 1 face, top 2 faces
and top 3 faces. The method of taking top-k faces is analogous to taking top-1 and
top-5 error rates in evaluating image classifiers [38]. For top-1 face, we choose the
grid cell with the highest probability as the face that the person is most likely to
be gazing at as predicted by the deep neural network. For top-2 and top-3 faces, if
any of the top-2 and top-3 faces predicted by the network is the actual face which
is agreed by the majority of human labelers, the prediction is regarded as a correct
prediction.

As baselines, we can consider that the average number of faces (detected by the
face detector [30]) per image was 6.87 on test set; hence, the baseline guess rate is
1/6.87 ≈ 0.146 for the test set. Moreover, we can estimate human accuracy in a
leave-one-labeler-out fashion: for each unique labeler, in the subset of the dataset
where all labelers agree that a person being annotated is looking at another face, we
compare the face that the current labeler chooses with the face which the majority
of other labelers agree on. In this fashion, we compute the accuracy (% correct) of
the lth labeler w.r.t. the other l − 1 labelers. We then average across all labelers in
our dataset. By doing so, we achieve the human level performance on determining
whom the person is looking at in the classroom given that the person is looking
at a face. Figure 5.1 shows some samples of human annotations where all labelers
agree that the person being labeled is looking at some face. If the annotated gaze
ends in one of the face bounding boxes, that gaze is considered to be looking at a
face. Table 5.1 shows the probability of human labelers agreeing a person looking
at another specific face.

In order to make equal comparison with Merged Model’s predictions, which is
done on 8 × 8 grid, human annotations are quantized to cells on 8 × 8 grid. The
results for identifying whom the person is looking at annotated by humans and as
predicted Merged Model on 8× 8 grid are described in Section 6.4.
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Table 5.1: Probability of humans agreeing that a person being labeled is looking at
a particular face. Face Agreement represents the n% of labelers who label that a
face is looking at another face.

Face Agreement 100% 75% 50%
Human 0.81 0.80 0.69

Figure 5.1: Students and teachers looking at faces of other students and teachers.
Top two figures: annotators disagree on whom the face being annotated is looking
at. Bottom two figures: annotators agree on whom the face being annotated is
looking at. Images (in clockwise direction) taken from: https://goo.gl/mQzXhu,
https://goo.gl/F5jUCs, https://goo.gl/pb19gi, https://goo.gl/rCVudX.
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Figure 5.2: Step-by-step process of masking face cells for Merged Model outputs.
(a) The original image with green box representing the person of interest and yellow
line representing the human gaze annotation. (b) Softmax output of Merged Model
on 8 × 8 grid. (c) Face cells on 8 × 8 grid. (d) Filtered and normalized softmax
outputs which correspond to face cells.
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Chapter 6

Evaluation and Results

In this chapter, we define several accuracy measurements which we use to measure
the performance of our deep convolutional neural network for gaze following. In
order to make a good assessment for any machine learning approach, we need to have
several comparisons which give us an idea of how well our chosen machine learning
approach performs with respect to other approaches. Therefore, we present several
baselines which we use in this thesis work to measure the performance of our Merged
Model. We treat human performance as our benchmark and since we have multiple
human labelers annotating gaze locations in our dataset, we can obtain human level
accuracy (details in Section 3.3.1). Since we approach the problem of gaze following
either as a regression task or as a classification task (as described in Section 4.1),
we report both the quantitative and qualitative results of both approaches. Finally
we present the results of how well our Merged Model can predict whom the person
is looking at given that the person is looking at some other face in the image.

6.1 Accuracy measurement

Accuracy is measured for predicting the gaze target of each person (identified auto-
matically by a face detector [30]) in each extracted frame from each of the YouTube
videos (see Section 3.1). For classification on 8 × 8 grid, we evaluate accuracy in
terms of the cross entropy (CE) loss with respect to the label distribution induced
by the 3 annotators per example. For regression to a (x, y) location, we use mean
absolute error (MAE), mean Euclidean distance and mean angular error (between
predicted gaze and ground-truth gaze) in degrees, where the ground-truth is defined
as the average annotation over all other annotators for that face. In addition (for
both regression and classification), we also used the Area Under the Receiver Oper-
ating Characteristics Curve (AUC) to evaluate the binary classification of whether
the target is inside or outside the field-of-view.
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6.2 Baseline comparison

When assessing accuracy of any neural network, it is important to establish the
relevant baselines for comparison. For classification, we use a uniform distribution
over all 8×8 grid cells – in other words a random guess in the whole image as to where
the person is gazing. Alternatively, we can assume a center prior (motivated by [32]),
consisting of the center 2×2 grid cells over the 8×8 grid. A variation on the center
prior is to place a 2-D Gaussian – whose standard deviation σ is optimized directly
on the test set for best possible accuracy – centered on the middle of the image,
and assign probabilities to the 8× 8 cells based on the Gaussian probability density
function. For regression, we use a center prior corresponding to a random gaze
location within the center 10% region of the image. We also compare to randomly
selected points in the image.

Finally, as a much stronger baseline based on actually examining the image, we
also compare to a Face-to-Gaze model consisting of a CNN that takes a cropped,
close-up face image and location of head in the image as inputs, and predicts the
location of the gaze in the image as well as “in”/“out” – this is the left pathway
of Figure 4.2. Comparing with this baseline helps us understand how much the
saliency pathway improves performance.

6.3 Results: Predicting Gaze Locations

Accuracy results on test images of the Merged Model compared to the baselines are
shown in in Table 6.1 (for regression) and Table 6.2 (for classification). Our Merged
Model achieves mean Euclidean distance of 69.82 (in pixels) on 256×256 pixel image
(for regression) and cross entropy loss of 3.58 on 8 × 8 grid (for classification) for
gaze locations. These numbers are better than for the random gaze, center prior,
or center Gaussian baselines. There is a significance difference in accuracy between
Merged Model and Face-To-Gaze for gaze location predictions as (x, y) coordinates
(t(14659) = −8.92, p = 4.8−19, 2-tailed) as well as for gaze cell prediction on 8 × 8
grid (t(5311) = 7.89, p = 3.7−15, 2-tailed).

For comparison, human labelers exhibited a mean Euclidean distance of only
41.04, which is a bit more than half the error of the Merged Model, indicating that
the machine’s accuracy still has much room for improvement.

One notable fact is that the Face-to-Gaze model’s performance is very similar to
the Merged Model’s performance. This suggests that our Merged Model is predicting
gaze locations mainly by using the head pose and gaze pathway of the subject and
less on the salient objects in the image. One possible explanation is that our dataset
does not contain enough variety of classroom environments for the model to learn
how to identify salient objects in classroom images.

For classifying whether the gazes end inside or outside the image, the Merged
Model achieved an AUC of 0.62, whereas humans scored 0.70 on the same task. The
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relatively low human accuracy suggests that detecting whether a person is looking
inside or outside the image is quite challenging in the classroom images.

Figure 6.1 shows qualitative results of some of the gaze predictions (represented
by thick yellow arrows) by Merged Model when using regression approach (i.e. pre-
dicting gaze locations as (x, y) coordinates in the image). It can be seen that the
model makes decent predictions on general direction of gazes but sometimes misses
the end-points on salient objects in the scene. In first row of Figure 6.1, three girls
in the middle are looking at the man’s hands but the gaze predictions end before
the hand. This suggests that the Merged Model is not picking up salient objects
that the people in the image might be looking at well enough to be able to extend
gaze predictions to end on salient objects.

Qualitative results for predicting gaze cell on 8× 8 grid is shown in Figure 6.2.
Right column of Figure 6.2 represents softmax output distributions of gaze regions
as predicted by the Merged Model for people in green bounding boxes. These results
suggest that the Merged Model is able to predict the region of gaze by assigning more
probability (yellower cells) to cells which correspond to the location in the image
where the person is more likely to be looking at than those cells which correspond
to locations where the gaze of that person is less likely to end (bluer cells).

6.4 Results: Who Are They Looking At?

The results of whom the person is looking at as predicted by the Merged Model
on test set is shown in Table 6.3. The results indicate that the Merged Model can
predict the face target of people’s eye gazes with substantially higher accuracy than
just randomly guessing among all grid cells in the image containing faces. To put
these results in context: if each classroom image contains 6.87 faces on average
(as reported in Section 5.1), then the probability of 0.79 for k = 3 suggests that
an automated gaze following system can usually determine at least which group of
students a teacher is looking at. Interestingly, the accuracy of the Merged Model
is close to that of human labelers when top 3 predicted faces are considered. Since
Merged Model’s performance is measured on predicted gaze cell on 8× 8 grid, gaze
annotations of humans are converted to a cell on 8× 8 grid to calculate the human
performance on whether all human annotators agree on a specific face.
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Table 6.1: Regression accuracy of the Merged Model for predicting the (x, y) location
(within a 256 × 256 pixel image). Accuracy is compared to human annotators
and three baselines. Random Gaze is random points over the whole image and
Center Region is random points within the center 10% of the image. Face-to-
Gaze convolutional neural network regresses to (x, y) locations of gazes using only
head locations and cropped, close-up face images as inputs.

MAE (pixels)
Mean Euclidean
Distance (pixels)

Mean Absolute
Angular Error

AUC for
In/Out

Random Gaze 79.74 124.15 67.24◦ -
Center Region 52.76 82.11 48.36◦ -

Face-to-Gaze 45.74 71.53 39.91◦ 0.54
Merged Model 44.49 69.82 38.30◦ 0.62

Human 25.91 41.04 18.38◦ 0.70

Table 6.2: Classification results on 8 × 8 grid of the Merged Model compared to
several baselines Center Gaze (Center 4 cells) is a uniform distribution over 4
center cells in the image and Center Gaussian is a centered mean 2D gaussian
distribution with standard deviation which gives the best result on the test set.
Uniform Gaze is a uniform distribution over the whole 8× 8 grid. Face-to-Gaze
convolutional neural network predicts the location of gaze on 8× 8 grid using only
head locations (on 8× 8 grid) and cropped, close-up face images as inputs.

Cross Entropy Loss
(Grid Output)

AUC for In/Out

Center Gaze (Center 4 cells) 15.80 -
Center Gaussian 4.06 -
Uniform Gaze 4.16 -
Face-to-Gaze 3.75 0.54

Merged Model 3.58 0.62

Table 6.3: Probability of the Merged Model correctly identifying which face a person
is looking at on 8× 8 grid.

Top k faces k = 1 k = 2 k = 3
Random Face 0.15 0.30 0.45

Merged Model 0.47 0.65 0.79

Human 0.82
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Figure 6.1: Handpicked qualitative results of gaze predictions by Merged Model
using regression approach on test set. Thin green arrows are ground truth anno-
tations. Since there are multiple gaze annotations for each individual, there are
multiple green arrows for each individual. Thick yellow arrows are predictions by
Merged Model. Images (top to bottom) taken from: https://goo.gl/xUdYbC,
https://goo.gl/FBSA57, https://goo.gl/v931J6, https://goo.gl/pcwQ5P

37

https://goo.gl/xUdYbC
https://goo.gl/FBSA57
https://goo.gl/v931J6
https://goo.gl/pcwQ5P


Figure 6.2: Handpicked qualitative results of gaze prediction by Merged Model using
classification approach on test set. Left Column: Input images resized to 256×256
pixels. Green bounding boxes are person of whose gaze are being predicted and
yellow lines are human labeled gaze annotations. Right Column: Softmax output
distribution on 8× 8 grid predicted by Merged Model for corresponding images and
person of interest (indicated by green bounding box). Softmax output distribution
forms a heatmap of the region of gaze by the person in green bounding box.
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Chapter 7

Conclusion and Future Work

In this thesis work, we have built a deep neural network, based on the approach
by [56] that analyzes 2-D images of classrooms to predict gaze locations of students
and teachers. The results indicate that our network can estimate the gaze target
locations with substantially higher than chance and better than several other base-
lines. But when compared to human level performance, our deep neural network
still has room for improvement. The same architecture can be used to identify who
each person is looking at more accurately than random guessing. We also showed
that multi-task learning, not explored by [56], helps our model regularize better.
Future researchers can explore building gaze predicting networks which incorporate
other tasks as well (e.g. identifying whether the gaze end point is on an object of
interest or not).

Gaze prediction of people in images have been tackled by both traditional com-
puter vision approaches and deep neural networks but most of the prior work has
been done on general computer vision research datasets. In this thesis work, we
take a step towards building gaze prediction system specifically for classrooms by:
1) collecting and annotating gaze dataset of multiple students and teachers from
recorded classroom observation videos; 2) building a deep neural network to predict
eye gazes of students and teachers using both regression and classification approach;
3) Identifying who is looking at whom in classrooms; 4) Identifying whether gazes
end inside the image or extend outside the image.

In the course of this thesis work, one difficulty we encountered is considering
the best way to annotate gaze in images due to the challenge of capturing depth
information from 2-D images. Not only that, the task of crowd-source labelling 2-D
classroom images which have cluttered backgrounds and contain multiple students
and teachers presents as a challenge for annotators as well. This is observed in our
inter-labeler reliability tests in Section 3.3. We hope that future researchers can
make more informed decisions on better ways of collecting gaze data on 2-D images
based on our work.

One of the main intentions of our gaze prediction system is to provide gaze
information of multiple individuals which can be used in downstream processing of
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identifying attentions of teachers and students. We hope that the gaze predicting
deep neural network built in this thesis work can serve as a building block in a more
comprehensive automated classroom assessment system.

7.1 Future Work

There are several venues that can be explored from this thesis work: (1) Collecting
more gaze annotations and improving the inter-labeler reliability. Classroom gaze
dataset collected in this thesis work is somewhat limited in number. Therefore, it
would be worthwhile to collect more data from different classroom settings to train
a better gaze following deep neural network. One crucial next step can be exploring
different ways to help labelers have less uncertainties when it comes to annotating
gaze in 2D images. (2) Estimating gaze jointly rather than separately. Since multiple
people often look at the same person (e.g., the teacher) in school classrooms, it
would be a good next step to investigate whether gaze location accuracy of each
person can be improved by estimating the gaze targets of all classroom participants
jointly rather than separately. (3) Using object detectors to identify various objects
and people in classrooms. This can help annotation process in a way such that
labelers can draw their gazes into the boxes which bound people and objects. By
collecting this meta information, we can have a richer set of data which can facilitate
training gaze following deep neural networks. (4) Finally, given an improved eye
gaze following system, future work can explore how automatic gaze estimates can
be used to predict specific aspects of classroom observation protocols; for instance,
the positive climate dimension of the CLASS is based explicitly (in part) on whether
the teacher looks at his/her students [53].
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