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Abstract 

Orbital flight of CubeSats in extremely Low Earth Orbit, defined here as an altitude between 150 – 

250 km, has the potential to enable a wide range of missions in support of atmospheric measurements, 

national security, and natural resource monitoring. In this work, a mission study is presented to demonstrate 

the feasibility of using commercially available sensor and electric thruster technology to extend the orbital 

lifetime of a 3U CubeSat flying at an altitude of 210 km. The CubeSat consists of a 3U configuration and 

assumes the use of commercially available sensors, GPS, and electric power systems. The thruster is a de-

rated version of a commercially available electrospray thruster operating at 2 W, 0.175 mN thrust, and an 

Isp of 500 s. The mission consists of two phases. In Phase I the CubeSat is deployed from the International 

Space Station orbit (414 km) and uses the thruster to de-orbit to the target altitude of 210 km. Phase II then 

begins during which the propulsion system is used to extend the mission lifetime until propellant is fully 

expended. A control algorithm based on maintaining a target orbital energy is presented in which simulated 

GPS updates are corrupted with measurement noise to simulate state data which would be available to the 

spacecraft computer. An Extended Kalman Filter is used to generate estimates of the orbital dynamic state 

between the 1 Hz GPS updates, allowing thruster control commands at a frequency of 10 Hz. For Phase I, 

operating at full thrust, the spacecraft requires 25.21 days to descend from 414 to 210 km, corresponding 

to a ΔV = 96.25 m/s and a propellant consumption of 77.8 g. Phase II, the primary mission phase, lasts for 

57.83 days, corresponding to a ΔV = 119.15 m/s during which the remaining 94.2 g of propellant are 

consumed.  
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Nomenclature 

a   =  semi-major axis, km 

da   =  acceleration due to atmospheric drag, km/s2 

nsa   =  acceleration due to aspherical geopotential, km/s2 

Ta   =  control acceleration vector, km/s2 

C   =  controller gain 

dC   =  drag coefficient 

tE   =  target energy per unit mass, km2/s2 

eE  =  estimated energy per unit mass,  km2/s2 

SAE   =  energy generated by solar arrays, J 

F   =  Jacobian of non-linear model 

g   =  mean anomaly of the sun, degrees 

G   =  state matrix of process noise 

kH   =  Jacobian of measurement model 

i   =  orbital inclination, deg 

kK   =  Kalman gain 

 L   =  mean longitude of the sun, degrees 

( )m t   =  spacecraft mass, kg 

,0pm   =  initial propellant mass, kg 

( )m t   =  mass flow rate, mg/s 

n   =  number of days since J.2000.0 

EPP   =  power available for electric propulsion system, W 

S/ CP   =  power available for spacecraft bus and payload, W 

kP   =  covariance matrix of residual noise 

Q   =  covariance of process noise 

ER   =  equatorial radius of Earth, km 

tr   =  target position vector, km 

er   =  estimated position vector, km 

ar  =  actual position vector, km 

ˆ
cR   =  unit CubeSat position vector 

sR    =  distance to the sun, AU 



x 

 

ˆ
sR   =  unit earth-sun vector 

S   =  reference area, 0.01 m2 

dT   =  time spent in sunlight during one orbital period, s 

eT   =  time spent in eclipse during one orbital period, s 

TT   =  commanded thrust in the along-track direction, mN 

W   =  work done by atmospheric drag, J 

tv  =  target velocity of the spacecraft, km/s 

ev  =  estimated velocity of the spacecraft, km/s 

av  =  actual velocity of the spacecraft, km/s 

relv   =  velocity of the spacecraft relative to the atmosphere, km/s 

ax  =  actual state, 6x1 

ex   =  estimated state, 6x1 

dX   =  power transfer efficiency: solar array to loads 

eX   =   power transfer efficiency: solar array to batteries 

ky   =  GPS state measurement, 6x1 

E   =  energy per unit mass error,  km2/s2 

V   =  change in velocity, m/s 

t  =  integration time step, 0.1 sec. 

  = declination (latitude), radians 

r   =  error between estimated and actual position, m 

r  =  error between estimated and actual velocity, cm/s 

   =  eccentricity 

s   =  obliquity of the ecliptic of the sun, degrees 

,kGPSε   =  GPS uncertainty vector, 6x1 

Tε  =  thrust acceleration uncertainty, m/s2 

   =  true anomaly, deg 

   =  atmospheric density, kg/m3 

   =  ecliptic longitude of the sun, degrees 

   =  argument of the perigee, deg  

  =  angular velocity of Earth, rad/s 
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1. Introduction 

RBITAL flight at low altitudes of 150 – 250 km, defined for this work as extremely Low Earth Orbit 

(eLEO), has the potential to enable a wide range of missions with applications related to national 

security as well as real-time monitoring of atmospheric phenomena  and natural resources. Due to their 

relatively low cost to build and launch, the use of nanosatellites (mass < 10 kg) for this type of mission 

further lowers the barrier to access to space for governmental, academic, and private industry participants.  

 

In recent years, CubeSats have emerged as a potential alternative to traditional satellite platforms for 

commercial resource monitoring and telecommunication. For example, the San Francisco-based company 

Planet Labs has launched dozens of CubeSats for the purpose of imaging the Earth’s surface, and makes 

this data accessible to businesses involved in energy production, natural resource mapping, etc1. Planet 

Labs’ satellites capture images with a resolution of 3 to 5 m, from 52° inclination, 400 km, near-circular 

orbits. However, the resolution of the images obtained is not sufficient for certain applications. For example, 

the construction industry uses remote sensing for monitoring of resources used in the design of 

infrastructure, and accurate maps of the terrain are needed, including Digital Terrain Modeling (DTM). 

Resolution needs to be on the order of 0.2 m2, which cannot be accomplished with Planet Labs’ current 

combination of instrument and altitude. This problem can be solved by decreasing the orbital altitude of the 

spacecraft. Conversely, for a given resolution, the size and mass of the imaging equipment can be reduced 

by decreasing the orbital altitude. An analysis conducted by Thales Alenia Space reveals that for a 

resolution of 1 m, a spacecraft with an orbital perigee of 160 km would allow “a four times reduction in the 

required aperture diameter and focal length, when compared to an optical imaging satellite at 650 km of 

altitude” [1], furthermore, the transmission power for the downlink would be reduced by a factor of 10.  

 

                                                      
1 Data available online at http://www.planetlabs.com/impact [accessed 15 April 2015] 
2 Data available online at http://www.daedalus-se.com/cubesats-suitable-remote-sensing/ [accessed 21 March 

2015] 

O 
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Moreover, CubeSat flight in eLEO is relevant to the support of science missions of interest to NASA 

and other organizations. CubeSats orbiting in eLEO could provide in-situ observations of the lower 

thermosphere using miniaturized payloads, such as the miniature spectrometers currently under 

development by the Heliophysics Science Division at NASA's Goddard Space Flight Center NASA’s 

Goddard Spaceflight Center (GSFC). The transition region between 150 km and 300 km encompasses a 

zone where much of the energy from the solar wind couples to the Earth’s upper atmosphere, and yet 

remains greatly unexplored. Sounding rockets provide only brief glimpses of the physics, and ground radars 

do not measure all of the parameters, especially at smaller scale sizes. 

 

Orbital flight in the transition region has mainly been exploited for geodesy and oceanography research 

purposes, with flight at lower altitudes enabling higher accuracy in mapping of the geoid. Within the last 

decade, three missions have performed detailed gravimetric measurements.  The German CHAllenging 

Micro-satellite Payload for geophysical research and application (CHAMP) satellite [2] was launched in 

2000 to a mean altitude of   450 km, decaying to 296 km at the time of its reentry in 2010. In 2002, the 

pair of satellites comprising the Gravity Recover and Climate Experiment (GRACE) was launched to an 

altitude of 485 km where they remain active as of 2015. Finally, the European Space Agency (ESA) 

launched the Gravity and Steady-State Ocean Circulation Explorer (GOCE) spacecraft [3] in 2009 to an 

altitude of   280 km. Most of the mission science was collected at an altitude of 255 km, which was 

followed by a series of planned descents as part of a low-orbit operations campaign. The final, low–orbit 

operations were performed at 224 km, where science collection continued prior to mission end and re-entry 

in 2013 [4]. All three of these spacecraft employed some variant of the Space Three-axis Accelerometer for 

Research (STAR) instrument to measure non-gravitational acceleration [5]. The STAR gravitational 

reference sensor (GRS) uses a freely floating proof mass which is shielded inside the spacecraft from non-

conservative forces such as atmospheric drag, magnetic disturbances, solar radiation, etc. The position of 

the proof mass is actively monitored within an electrostatic cage, allowing very precise measurement of the 

external disturbances. Of these three missions, only GOCE was designed to operate in a so-called “drag-
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free” mode, in which an ion propulsion system uses GRS data to adjust thrust level and continuously 

compensate for drag, solar radiation pressure, and any non-gravitational acceleration along the in-track 

direction [6]. Drag-free operation has been investigated as a possible follow-on option for the GRACE 

mission as well [7]. To achieve drag-free flight within the mass, power, and volume restrictions of a 

CubeSat is extremely challenging. Conklin et al. [8] investigated the feasibility of a drag-free, 3U CubeSat, 

equipped with a 1U GRS and a cold gas micro-propulsion system to maintain the spacecraft position with 

respect to the proof mass. In that study, the mission lifetime as a function of altitude was evaluated using a 

cold-gas thruster built by VACCO Space Products, with a maximum thrust of 55 mN, Isp of 65 sec, and a 

total impulse capability of 24 N-sec. The proposed mission scenario assumed an average altitude of 400 km 

with a lifetime of approximately 70 days. As a point of comparison with the present work, the lifetime at 

an altitude of 210 km was approximately 4 days [8]. 

 

Long-duration flight in the lower thermosphere is extremely challenging, mainly due to substantial 

aerothermodynamic loads. At these altitudes, atmospheric drag results in severely shortened lifetime 

followed by de-orbiting. Thus, the use of on-board propulsion, even for a non-drag-free spacecraft, is 

essential. The severe constraints in mass, power and volume associated with a CubeSat make use of any 

propulsion system extremely challenging. In this work we demonstrate the feasibility of using relatively 

mature technology (TRL > 4, i.e.  “component or breadboard demonstrated in a laboratory environment”) 

to enable extended CubeSat mission life in the lower thermosphere. For the purposes of this study, the 

mission requirement is defined as maintaining a (mean) “target altitude” for as long as possible. 

 

The propulsion controller is designed based on the principle of conservation of mechanical energy. 

The forces acting on the CubeSat are conservative, with the exception of the atmospheric drag force. The 

energy of the target orbit, which would be selected to support specific science, commercial, or defense-

related objectives, is specified at the beginning of the simulation. The instantaneous orbital energy is 

calculated based on GPS data in order to calculate an energy ‘error’ which is used to generate the thrust for 
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orbit maintenance. GPS state measurements are inherently noisy. Hence, an Extended Kalman Filter was 

implemented to reduce the uncertainty in the energy estimates. 

 

For the range of altitude corresponding to eLEO, where the propulsion system is continuously used to 

counteract drag forces, the thruster will need throttling capability. Previous authors have reviewed 

propulsion options available for CubeSats [9], [10]. For the purpose of this study, a baseline thruster was 

selected that could be accommodated within 1U of a 3U CubeSat and that could provide sufficient thrust 

(0.1 – 1.0 mN) at low power (< 5W) to counteract the effect of drag at the altitude of interest. The actuator 

baseline for this work will produce thrust in the along-track direction, and consists of a single Busek 

Electrospray Thruster System (BET-1)3.  

 

This thesis is organized as follows. In Chapter 2, the orbital dynamics of a CubeSat mission are 

modeled. The orbital dynamics include two-body gravity effects and perturbations such as J2-J6 non-

spherical geopotential effects. The controller system design is presented in Chapter 3. The spacecraft 

design, including a description of the power and propulsion systems, is presented in Chapter 4. A 3U 

CubeSat platform and commercially available subsystems, such as sun sensors, GPS receiver, 

magnetorquers, etc. are considered. The results are presented in Chapter 5 to demonstrate the effectiveness 

of the proposed controller and actuator in maintaining the target altitude in eLEO. Finally, Chapter 6 

presents conclusions and recommendations for continued work. 

 

1.1. The CubeSat state-of-the-art 

A CubeSat is a miniaturized satellite developed in 1999 by Bob Twiggs, from Stanford University, 

and Jordi Puig-Suari, from the California Polytechnic State University (CalPoly), San Luis Obispo, with 

the goal of allowing college students to design, build and operate affordable spacecraft with similar 

                                                      
3 Data available online at http://www.busek.com/index_htm_files/70008500G.pdf [accessed 20 April 2015] 

 

http://www.busek.com/index_htm_files/70008500G.pdf
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capabilities to the first satellite, Sputnik4. A CubeSat unit (1U) has a volume of 1 liter, 10x10x10 cm 

dimensions, and a mass of less than 1.33 kg. The CubeSat standard permits larger 2U (10x10x20 cm) and 

3U (10x10x30 cm) sizes, which are scalable along one axis. 6U and 12U CubeSats have been designed but 

have not flown to space yet. While CubeSats were originally devised for increasing the access to space to 

academia, they have been embraced by other communities and agencies, including NASA and the Air 

Force, because of their affordability and flexibility compared to traditional spacecraft.  

 

Approximately 330 CubeSats have flown to date5. Nanosatellites (i.e. having a mass < 10 kg) have 

been used for a wide range of scientific and commercial uses all over the world. CubeSats such as the RAX-

2 [11] mission, developed by the University of Michigan to study plasma irregularities in the ionosphere, 

and CANX-2, which carried an atmospheric spectrometer to measure greenhouse gases [12], are examples 

of the current interest in using CubeSats for serious scientific investigations. Furthermore, CubeSats have 

emerged as a framework for successful commercial applications. As mentioned before, San Francisco-

based company Planet Labs has launched dozens of ‘doves’, i.e. 3U CubeSats for imaging the Earth’s 

surface; and a company called Spire Inc. uses CubeSats for relaying Automatic Identification System (AIS) 

data of ships in high seas and weather monitoring6. So far, missions using nanosatellites have been limited 

to operation in LEO, although there have been studies and proposals to fly CubeSats in lunar and 

interplanetary space [13], [14]. Furthermore, the first lunar nanosatellite, a 6U CubeSat developed by 

Morehead State University called IceCube, is slated to fly in the first Space Launch System (SLS) flight 

(EM-1). IceCube will be deployed in lunar trajectory by the SLS and is designed to look for water ice and 

other lunar volatiles7.  

 

                                                      
4 Obtained from interview to Jordi Puig-Suari, available online at http://spacenews.com/jordi-puig-suari-co-

founder-tyvak-nano-satellite-systems-llc/  
5 Data available online at http://sites.google.com/a/slu.edu/swartwout/home/cubesat-database [accessed 21 

April 2015] 
6 Data available online at http://www.spire.com/products/. [accessed 22 May 2015 
7 Data available online at https://shar.es/12a824. [accesed 22 May 2015] 
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1.2. Orbital flight in eLEO 

A spacecraft orbiting the earth in eLEO would fly through the lower thermosphere, a layer of the 

atmosphere that is above the mesosphere and below the exosphere8. Along with the earth’s oblateness, 

atmospheric drag has the largest influence in orbital flight at low altitudes. Atmospheric drag forces are not 

conservative, they continuously reduce the orbital energy of the spacecraft. Without the use of propulsion, 

atmospheric drag acting on a spacecraft results in orbital decay, followed by reentry and disintegration 

above the Kármán line (100 km of altitude). Direct Simulation Monte Carlo (DSMC) drag analysis by 

Marchetti et al [7] show that  the local neutral particle mean free paths range from 20 – 30 m at an altitude 

of 160 km to 200 – 270 m at an altitude of 225 km. For a characteristic length of 1.942 m these mean free 

paths correspond to Knudsen numbers ranging from a value on the order of 10, for the 160 km case, to the 

order of hundreds for higher altitudes. Hence, because of the high Knudsen numbers associated with flight 

in eLEO, the continuum assumption is invalid and the freestream flow is considered to be in the free 

molecular flow regime.  

 

The aforementioned commercial and atmospheric science applications of orbital flight at low altitude 

are the objective of future missions. Flight in eLEO has mainly been exploited for geodesy and 

oceanography research purposes. Spacecraft equipped with gravitational reference sensors (GRS) can 

accurately measure the gravitational field of the earth by measuring the changes in orbital elements due to 

gravitational perturbations. The force of gravity is non-uniform due to the earth’s rotation, ocean 

circulation, and non-uniform mass distribution within the earth’s interior. The gravitational field is stronger 

at low altitudes, and operation in eLEO allows more accurate gravitational mapping at the cost of increased 

drag. Spacecraft designed for geodesy missions in eLEO can be designed to be drag-free in order to avoid 

the necessity of correcting for uncertainties of atmospheric drag and solar pressure [15]. “Drag-free” refers 

                                                      
8 The mesosphere extends from 50 km above the Earth’s surface to 85 km. The exosphere is the outermost layer 

of the atmosphere, it extends from 600 km to 10,000 km above the Earth. Data available online at 

http://www.srh.noaa.gov/jetstream/atmos/layers.htm [accesed 20 May 2015] 

http://en.wikipedia.org/wiki/Theodore_von_K%C3%A1rm%C3%A1n
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to the continuous cancelation of external disturbances on the spacecraft. In one form of gravitational 

sensors, in which acceleration is carefully measured, freely floating proof masses inside the spacecraft are 

shielded from non-conservative forces such as atmospheric drag, magnetic disturbances, solar radiation 

pressure, etc. 

 

The spacecraft’s controller activates the propulsion system to keep it centered on the proof masses, 

subjected only to gravitational forces [7]. The motion of the proof masses is used to find the anomalies and 

variations of the Earth’s gravitational field. The European Space Agency (ESA) launched the Gravity and 

Steady-State Ocean Circulation Explorer (GOCE) spacecraft in 2009, with the goal of conducting the most 

advanced gravimetric mission to date. GOCE was equipped with an Electrostatic Gravity Gradiometer 

(EGG), designed by the French Aerospace Lab (ONERA) to measure the three components of the gravity 

gradient tensor. The EGG principle of operation is described by Drinkwater et al [6]:  

 “ EGG is a three-axis gradiometer consisting of 3 pairs of three-axis servo-controlled capacitive 

 accelerometers on an ultra-stable carbon-carbon structure, a six degree of freedom servo-

 controlled electrostatic suspension provides control of the proof mass in terms of translation and 

 rotation. A pair of identical accelerometers, mounted on the ultra-stable structure 50 cm apart, 

 form a “gradiometer arm”. The difference between accelerations measured by each of the two 

 accelerometers, in the direction joining them, is the basic gradiometric datum.”  

 

GOCE effectively demonstrated drag-free control, advanced drag compensation was achieved with 

ion-propulsion technology [6]. Figure 1 shows an artists’s rendition of GOCE. 
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1.3. Present Study 

In this investigation, the dynamics of a 3U CubeSat are modeled. Spacecraft dynamics include the 

two-body gravitational effects and a sixth-order approximation of the gravitational perturbations due to the 

non-spherical geopotential of Earth. The airflow around spacecraft in the lower thermosphere is modeled 

as near-free molecular flow due to the large Knudsen numbers at high altitudes. It is assumed that the 

atmospheric drag force is proportional to the square of the velocity of the spacecraft. Low orbit maintenance 

(LOM) is conducted continuously using low-thrust, electrospray colloid propulsion.  

 

The propulsion controller is designed based on the principle of conservation of mechanical energy. 

The forces acting on the CubeSat are conservative, with the exception of the atmospheric drag force, which 

 

Figure 1: GOCE Spacecraft, Source: ESA [16]    
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performs work on the spacecraft and reduces its orbital energy. An ‘error’ in energy is defined; between a 

constant, target energy and the estimated energy of the spacecraft, obtained from sensor measurements. The 

control law generates a signal that is proportional to the energy error in order to counteract the drag forces. 

The controller accounts for the maximum and minimum thrust available, assuming that a constant power 

of 2 W is available for the propulsion system at all times, as explained in section 4.2. The analysis of the 

results focus on the controller performance, change in the orbital elements due to perturbations and the 

effect of the input parameters on the duration of the orbital life extension. 
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2. Dynamics Modeling 

2.1. Reference Frames 

Two coordinate frames are used in this study: the geocentric-equatorial frame (GCI) and the satellite-

centered rotating frame (NTW). The equations of motion and the state errors are calculated in the inertial 

GCI frame. The origin of the NTW frame is located at the center of mass of the CubeSat. The along-track, 

or T axis, is collinear with the spacecraft velocity vector. The cross-track, or W axis, is orthogonal to the 

orbital plane and parallel to the angular momentum vector (  h r V ). The N axis completes the 

orthonormal set, and is perpendicular to both T and W axes (  N W T ). The thrust acceleration is 

calculated in the NTW frame, since the thruster is mounted on the spacecraft. However, the thrust 

acceleration is transformed from the NTW to the GCI frame in order to solve the orbital equations of motion. 

Figure 2 shows the GCI and NTW frames. 

 

2.2. Orbital Dynamics 

The representation of the full dynamic state of the spacecraft requires careful attention. As part of this 

study, two different equations of motion are propagated and three distinct state vectors, the Target, Actual, 

and Estimated, are used. These are described below. 

 

Target state: In this work the objective is to maintain a specified mean altitude. The target state 

represents an idealized orbit, where the CubeSat’s motion is governed solely by the earth’s gravitational 

field. The target state characterizes an orbit that has the desired mean altitude, selected on the basis of 

mission objectives. The “target energy,” which is constant for this idealized orbit and is only subject to 

conservative forces, is calculated based on the target state information. It is worth noting that this state is 

propagated in the simulation just as a reference state, to quantify the degree to which a real CubeSat orbit 

in the lower thermosphere, using the actuator and controller system described, satisfies the requirement to 

maintain the desired altitude. Note that this is different from a so-called “drag-free” mission scenario. In a 
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drag-free mission, the thrusters would continuously cancel drag forces. A true drag-free spacecraft requires 

full control to counteract drag forces along all three axes. Because of limitations in power, volume and 

mass, a 3U, drag-free CubeSat as described by Conklin et al. [8]  presents significant challenges and requires 

a specialized gravitational reference sensor (GRS) to provide control input to the propulsion system. The 

equation of motion for the target state is given by Eq. (1),  

 ,3

( )
( ) ( )

( )

t
t ns t

t

t
t t

t
   

r
r a

r
  (1) 

where ( )t tr  is a 3 1  vector representing the acceleration in the GCI frame. The perturbations due to the 

non-spherical geopotential are represented with the term , ( )ns t ta . The non-spherical acceleration terms are 

obtained from a simplified model for the zonal harmonics (J2-J6) acceleration terms by Vallado [17].  

 

 

 

Figure 2: Reference frames 
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Actual State: The “actual” state represents the ‘real’ state of the spacecraft (i.e. the plant state). The 

state information available to the spacecraft computer will include measurement uncertainties, and so the 

actual state would be equivalent to the measured state only if the measurements were continuously available 

and subject to no uncertainty. The actual state is used in this simulation for the purpose of providing the 

basis for the GPS data available to the controller. In the simulation, the actual state data is corrupted with 

sensor noise, following a procedure that will be described. The actual state is also used to assess the quality 

of the solution, since the difference between the actual state and the target state represents how closely the 

control and actuator system are able to maintain the desired mean altitude. The actual state equation of 

motion is given by Eq. (2). 

 
,a ,a ,a3

( )
( ) ( ) ( ) ( )

( )

a
a ns d T

a

t
t t t t

t
    

r
r a a a

r
  (2) 

The non-spherical acceleration term ,a ( )ns ta also includes the J2-J6 perturbations, and the actual thrust 

acceleration , ( )T a ta differs from the estimated thrust acceleration due to the addition of uncertainty in the 

thruster response, as will be described in section section 4.2. 

 

Estimated State: As will be described in detail in section 3.2, the estimated state represents the state as 

calculated by the on-board computer (OBC) using an Extended Kalman Filter. This state incorporates the 

GPS state updates, which are corrupted by noise and uncertainty, and are only available to the OBC at 

discrete times 
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2.3. Atmospheric Drag 

In this simulation, the drag acceleration is assumed to be proportional to the local atmospheric density 

and to the square of the spacecraft velocity. The drag acceleration term shown in Eq.(2) is defined as: 

 
2( ) ( )1

( ) ( )
2 ( ) ( )

d rel
d rel

rel

C S t t
t t

m t t

 
   

 

V
a V

V
  (3) 

where ( )rel tV  is the velocity vector of the spacecraft with respect to the atmosphere, assuming that the 

atmosphere co-rotates with the Earth.
dC is the drag coefficient. The instantaneous spacecraft mass ( )m t , is 

time dependent as propellant mass is consumed. The parameter S , or drag area, is equivalent to the cross 

sectional area of the spacecraft.  
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3. Propulsion Controller Design 

As noted in the Introduction, the mission investigated for this work does not assume the spacecraft is 

flying drag-free. This work assumes a thruster and sensor, in this case a GPS system, which is commercially 

available. For this reason, an indirect measurement of the drag acceleration must be performed, as outlined 

in section 3.1. 

 

3.1. Energy – based Controller 

The goal of the controller is to perform continuous orbital maintenance by counteracting the effect of 

atmospheric drag on the CubeSat. As described in the introduction, the objective is to maintain an orbit 

which has a mean altitude equal to that of the target orbit for as long as possible. Thrust is only applied in 

the T direction as shown in Figure 9, which is collinear with the velocity vector. While there are drag forces 

in the cross-track and normal directions, these forces are at least one order of magnitude lower than the drag 

force in the along-track direction, and hence do not pose a problem from an orbital lifetime standpoint, 

provided the vehicle can maintain the correct orientation, i.e. possess weathercock stability. This will be 

discussed in section 4.4. 

The controller design is based on the following principle: the gravitational (two-body and non-

spherical) forces acting on the CubeSat are conservative, while the atmospheric drag force is not. Therefore, 

any decrease in orbital energy must be a consequence of atmospheric drag. The general form of the specific 

orbital energy, in terms of the non-spherical geopotential zonal harmonics, is given by Eq. (4): 
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





  
     
   
   (4) 

In this equation, 
lJ is the zonal coefficient, lP  represents the associated Legendre polynomial of degree l , 

e  is the declination (latitude) of the spacecraft, 
er  and 

ev  are the magnitudes of the estimated position and 

velocity, respectively [18]. The orbital energy is calculated periodically based on GPS derived state data. 

Any difference, or loss, in the estimated energy of the CubeSat must arise from the effects of atmospheric 
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drag. The energy ‘error’ is calculated between the target state energy (which will be a constant) and the 

estimated energy, as  

 
t eE E E     (5) 

The atmospheric drag performs work on the CubeSat and over a sufficiently short period of time the 

atmospheric drag work can be estimated as: 

 ,TFD eW t V   (6) 

where ,FD T  is the drag force on the CubeSat in the along-track direction. Dividing Eq. (6) by the mass of 

the CubeSat results in the specific work done on the CubeSat over a time interval t    

 
,d e e

W
E a V t

m
      (7) 

Eq. (5) and Eq. (7) are equivalent expressions. Solving for the estimated drag acceleration , ( )d ea t , Eq. 

(8) is obtained as  

 
,d e

e

E
a

V t





  (8) 

Eq. (8) shows how the drag acceleration is estimated using GPS data, assuming access to the full state of 

the spacecraft. The energy error is used as feedback to the controller to estimate the acceleration needed to 

maintain the orbital energy. The control acceleration vector (in the NTW frame) can then be written as 

      , , , ,, 0, , 0

T
T

T e T e T e T eN T W
e

E

V t

 
        

a a a a   (9) 

where the thrust in the N and W directions is zero, because the thruster is assumed to remain aligned with 

the velocity (T) direction. In any real system, the GPS position and velocity measurements will have noise 

and uncertainty associated with them. The noise considerably affects the estimation accuracy of the drag 

acceleration, and thus the calculation of the thrust command.  In addition, GPS noise, combined with the 

finite time period between thrust command updates can lead to ‘chattering’ in the control signal and drive 

the commanded thrust from maximum to zero (and vice versa) over very short timescales, which is 
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problematic from the propulsion system performance standpoint. Consequently, Eq. (9) was modified to 

reduce the magnitude of the changes in thrust which occur from one time step to the next. The modification 

consists of assuming the commanded thrust is proportional to, rather than equal to, the estimated 

acceleration as given in Eq. (9). In this formulation, the commanded thrust acceleration takes the form 

 max
, ,

( )
0, 0

T

e T e

t

T

m t

E
u C

E

 
 
 
 


  a   (10) 

where the energy error, E , has been non-dimensionalized. 
maxT  is the maximum available thrust, and C   

is a controller gain determined iteratively while tuning the controller. In addition to using a proportionality 

constant to reduce chatter, the effect of noise on the controller is further minimized with the implementation 

of an Extended Kalman Filter.  

 

3.2. Continuous-Discrete Extended Kalman Filter 

The extended Kalman filter (EKF) is used in a large class of orbit and attitude determination estimation 

problems [19]. For this work, a continuous-discrete filter is used because the equations of motion are 

propagated continuously in time, but the measurements are obtained at discrete times. The equation of 

motion of the actual spacecraft, defined in Eq.(2), is represented in state space as: 

 
a

a
a

 
 
 


r

x
v

,                        ( , , )a a af u wx x   (11) 

where w  is the process noise of the model and is a zero-mean , Gaussian function with covariance Q  , i.e. 

0w N( ,Q) . The GPS measurements, which provide the full state of the spacecraft, are modeled by Eq.(12) 

 ,k ,kk a GPS y x ε ,                  ,k (0, )GPS kN Rε   (12) 

In this equation, ,xa k is the actual state at the thk  update, and ,kεGPS is the measurement noise, which depends 

on the type of GPS receiver considered for the mission.  
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The estimated state calculated by the on-board computer is represented by 

                                                  
e

e

e

 
  
 

r
x

v
,                  ( ,u )e e efx x                                         (13) 

The equation of motion for the spacecraft estimate state is propagated continuously. However, since 

GPS measurement updates take place at discrete times, there is no correction process between 

measurements. The equation of motion for the spacecraft estimate state, given in Eq.(14), is similar to the 

equation of motion for the spacecraft actual state. 
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  (14) 

The covariance of the residual noise, 
kP , is used to find the Kalman gain, and is obtained by 

continuously solving the matrix differential Riccati equation: 

 
T TP F P P F G Q G         (15) 

where F  is the state matrix that is obtained from the linearization of the non-linear model, evaluated at the 

estimated state. G  is the state matrix of the process noise due to the uncertainty in the estimation of the 

acceleration of the spacecraft. G  is the 6 6  matrix shown in Eq.(16) 
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After evaluating F  and G , the Kalman gain is calculated: 

 
1[H ]T T

k k k k k k kK P H P H R      (17) 

where kP
 is the a priori covariance matrix and 

kH  is the Jacobian of the measurement model. Since the 

full state is observed, 6 6k xH I . After the Kalman gain is calculated, the estimate of the state is corrected: 

 ,k ,k ,k[ ]e e k k eK    x x y x   (18) 

Finally, the a posteriori covariance matrix is calculated before the next measurement update. 

 6 6[ ]Pk x k k kP I K H     (19) 
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4. Reference Case 

4.1. Atmospheric Drag Model 

The drag coefficient, 
dC , is assumed to be equal to 2.2 following Marchetti et al. [7]  and  [20].  The 

parameter S , is equivalent to the cross sectional area of a 1U (i.e. 0.01 m2) CubeSat with its long axis 

oriented along the velocity vector. The local atmospheric density, (t) , is provided by the MSISE-90 [21] 

model. The species included in the model are: O, O2, N, N2, Ar, He and H. The data was chosen at the peak 

of a solar cycle, in order to simulate a ‘worst-case’ scenario.  

 

4.2. Power System 

It is assumed that the CubeSat will be equipped with four body mounted solar panels. While it would 

be advantageous to have deployable solar panels for additional power, it is anticipated that at the altitudes 

of interest, the aerodynamic moments would destabilize the attitude of the spacecraft without the use of 

additional attitude control actuators. State-of-the-art solar panels have triple junction Gallium Arsenide 

cells, with an efficiency of 28.3%. Commercial-off-the-shelf (COTS) panels manufactured by Clyde Space 

Limited for a 3U length have up to eight cells, with a beginning-of-life (BOL) power of 8.33 W9. A picture 

of a side solar panel can be seen in Figure 3. 

 

 

 

 

                                                      
9 Data available online at http://www.clyde-space.com/cubesat_shop/solar_panels/3u_solar_panels [accessed 

14 April 2015. 
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4.2.1.    Sun Vector Calculation 

The power generated by the solar cells depend on several factors: direction of the sun vector, 

orientation of the CubeSat with respect to the sun vector, fraction of orbital time spent in daylight and 

eclipse, etc. The following formulas, obtained from the Astronomical Almanac for the year 2011 [23], were 

used to compute the coordinates of the sun, as shown in Eq.(26), in the GCI frame (and hence the earth-sun 

vector) to a precision of 0.01o, and the time elapsed as a function of the Julian Date to a precision of 0.1 

minutes between 1950 and 2050. The earth orbits around the sun, but to find the sun vector in the GCI 

frame it is convenient to suppose that sun rotates around the earth. The only necessary input is the Julian 

Date ( JD ), the continuous count of days since noon Universal Time on January 1, 4713 BC [23]. The 

parameter n is the number of days since J2000.0 (i.e. noon in Greenwich time, on January 1st, 2000). 

 2451545.0n JD    (20) 

the parameter n  is used to calculate the mean longitude of the sun, L , corrected for the aberration of light  

 280.460 0.9856474o oL n     (21) 

the mean anomaly, g , is also obtained as function of n  

 357.528 0.9856003o og n     (22) 

The mean longitude and the mean anomaly are used to calculate the ecliptic longitude,  .  

 

Figure 3: 3U Side Solar Panel. © 2015 Clyde Space Ltd. [22] 
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 1.915 sin 0.020 sin2o oL g g      (23) 

the obliquity of the ecliptic, 
s , represents the angular distance of the sun along the ecliptic from the 

vernal equinox, given by 

 23.439 0.0000004o o

s n     (24) 

 the distance from the earth to the sun, 
sR , in astronomical units (AU), can then be calculated 

 1.00014 0.01671cos 0.00014cos2sR g g     (25) 

finally, the components of the earth-sun vector in the GCI frame, in AU, are given by: 
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  (26) 

The next step is to determine whether the spacecraft is in sunlight or eclipse. This requires knowing 

the angle between the sun and spacecraft position vectors (in the GCI frame). Since the CubeSat position 

vector in the GCI frame is known, it is possible to determine the direction of the spacecraft with respect to 

the sun vector. The dot product of the two unit position vectors is the cosine of the angle between them.  

           ˆ ˆ coss c  R R                                                             (27)

where ˆ
sR  is the unit earth-sun vector (i.e. the vector ), and ˆ

cR  is the unit CubeSat position vector (i.e. the 

solution of Eq.(3) divided by its magnitude). Figure 4 shows a drawing of the sun vector and spacecraft 

position vector in the GCI frame. If the dot product shown in Eq. (27) is positive (i.e.   is less than 90o) 

the CubeSat will be in daylight. On the other hand, if the dot product is negative there are two possibilities, 

the CubeSat could be in eclipse or in daylight. Using the dot product, it is possible to decompose the 

spacecraft position vector, 
cR , into a component along the direction of the sun vector and a component 

perpendicular to it.  

 , ,c c s c  R R R   (28) 

Solving Eq. (28) for the perpendicular component: 

 , ,sc c c  R R R   (29) 



21 

 

Assuming a cylindrical shadow model, the spacecraft will be in eclipse if the following two conditions 

are fulfilled: 

 The angle between the earth-sun vector and the spacecraft position vector is obtuse: o90   

 

 The CubeSat position vector component that is perpendicular to the earth sun-vector is 

smaller than Earth’s radius: 
,

RE
c 

R  

The representation of the sun and spacecraft position vectors can be seen in Figure 4. 

4.2.2. Solar Power Calculation 

The solar power generated by the cells when the CubeSat is in daylight depends on the incident angle 

on the cells.  The first step is to convert the earth-sun vector from the GCI frame to the NTW frame, via the 

transformation matrix NTWS , as shown in Eq.(30). 
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where the components of  NTWS are defined as 

 

Figure 4: Daylight/eclipse definition 
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 When the angle between the sun vector and a vector normal to the surface of a solar panel is 0o, the 

power generated by the cells is maximized. On the other hand, if the angle is equal or larger than 90o, there 

is no power generation since there are no incident solar rays on the solar panel. Therefore, the amount of 

power generated at a given moment depends on the cosine of the aforementioned angle. Assuming that the 

attitude of the CubeSat is fixed in the NTW frame, the angles between the spacecraft solar panels and the 

sun vector are defined, as seen in Figure 5. 

 

 

 

Figure 5: Solar incident angles definition 
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Hence the solar power equation can be written as: 

  0 cos cosP I P        (31) 

where I  is defined as the illumination factor, equal to 0 when the CubeSat is in eclipse and 1 when the 

CubeSat is in daylight.
0P  is the maximum power generated by one 3U solar panel (i.e. 

0 8.33P W  ).  The 

absolute value of the cosines is considered because when the angle is negative the opposite side is being 

illuminated.  

 

4.2.3. Power Availability and Distribution 

The power allocated to the electric propulsion system at all times (
EPP ) was conservatively assumed 

to be 2 W. This is assumed to be constant throughout the mission and well within the capability of 

commercially available batteries with regard to power production during eclipse. Given the drag at 210 km, 

failure to provide thrust would result in a loss of altitude of approximately 3 km over the first 24 hr period, 

and atmospheric reentry in 8.3 days. Therefore, orbit maintenance needs to occur continuously. For this 

reason, the power to the thrusters 
EPP  and OBC is prioritized before allotting power to the payload, battery 

charging, and other subsystems. The power available to all systems on the spacecraft other than the thruster 

is denoted as 
/S CP . While a detailed power budget for a specific science mission was beyond the scope of 

this study, previously flown CubeSats can provide an estimate of what might be required for common bus 

functions. For example, on the Can-X2 mission, the average spacecraft power (excluding payload) will be 

approximately 
/S CP  ~ 1.25 W [12]. In this work, it is assumed that the power available to the spacecraft,

/S CP , which includes power for the OBC and power to charge the batteries (if in sunlight), will vary 

depending on the solar power available at any particular time. Any power in excess of the propulsion and 

OBC is used to charge the batteries to insure the thrusters and OBC can continue to operate in eclipse. 
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During illumination, the solar panels need to generate enough power to maintain science and bus 

operations 
/S CP  during daylight and charge the batteries to maintain thruster and OBC operation during 

eclipse. The average power available for the spacecraft bus and payload during one orbital period is 

calculated using Eq. (32), derived from a general expression by Wertz and Larson [24], as explained in 

detail in Appendix A. 

 /C
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  (32) 

where 
SAE is the energy generated by the solar arrays (in Joules). 

dT  and 
eT  are the times spent in daylight 

and eclipse during one orbit, respectively. 
eX  is the power transfer efficiency from the solar arrays through 

the batteries to the loads, and 
dX  is the power transfer efficiency from the arrays the loads. The efficiency 

depends on the type of power regulation: direct energy transfer or power tracking. Direct energy transfer is 

simple, but requires very large solar arrays; thus is deemed unsuitable for this type of mission. Maximum 

power point tracking (MPPT), as described by Clark and Lopez [25], is optimal for CubeSats since array 

power is maximized. MPPT regulation results in path inefficiencies of 5-10 %. In this study it is assumed 

that 
eX  and 

dX  are equal to 0.9.  

 

Over the course of the primary mission (Phase II), the average, non-propulsive power available per 

orbit, 
/S CP , was found to range from a minimum value of approximately 0.50 W to a maximum value of 

4.25 W. Over the course of the primary mission, 87 orbits (9.31% of the time spent in eLEO) have an 

average bus power, 
/S CP , of less than 1.0 W. These cycles of low solar power generation happen twice 

during the mission, the first cycle lasts for 46 orbits and the second one lasts for 41 orbital periods, with 

approximately 467 orbits of high solar power generation between them. As already stated, these variations 

are a result of both variations in the orbital elements resulting from perturbations due to the non-spherical 

earth, as well as the changing orientation of the spacecraft-sun vector. These results show that in the worst 

case, there will only be 0.50 W, in addition to the 2.0 W assumed for the thruster, available for operation 
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of the OBC. A typical CubeSat OBC, such as the Innovative Solutions in Space (ISIS) OBC has a nominal 

power consumption of 400 mW10. During these low power periods, the spacecraft operation will likely be 

limited to orbit maintenance and minimal housekeeping functions. A representation of the power generation 

and distribution during two illustrative orbital periods is shown in Figure 6. It can be seen that 2.0 W of 

power are allocated to the propulsion system, in daylight and eclipse. If the solar power generated increases, 

as happens during the 2nd orbit, the average power available for the spacecraft bus increases as well. The 

area under the power generation curve (
SAP ) will be equal to the area under the average power consumption 

curves (
/S CP  and 

EPP ), with some additional area (not shown) representing losses.  

 

 

                                                      
10 Data available online at http://www.isispace.nl/brochures/ISIS_ISIS%20OBC_Brochure_v.15.6.pdf 

[accessed 30 June 2015] 

 

Figure 6: Power generation and distribution 

 

 



26 

 

4.3. Propulsion System 

For the range of altitude corresponding to eLEO, where the propulsion system is continuously used to 

counteract (though not to cancel) drag forces, the thruster will need throttling capability. Previous authors 

have reviewed propulsion options available for CubeSats [9], [10]. For the purpose of this study, a baseline 

thruster was selected that could be accommodated within 1U of a 3U CubeSat and that could provide 

sufficient thrust (0.1 – 1.0 mN) at low power (< 5 W) to counteract the effect of drag at the altitude of 

interest. The actuator baseline for this work will produce thrust in the along-track direction, and consists of 

a single Busek Electrospray Thruster System (BET-1)11.  

 

The mission described in this study imposes several requirements on the propulsion system, such as a 

high thrust-to-power ratio, high Isp (to minimize propellant consumption), low system mass and compact 

dimensions to fit inside a CubeSat. Furthermore, it is desirable the thruster have the capability to modulate 

thrust level continuously over a range of 0.060 to 0.175 mN. As defined in Chapter 4.6, the orbit is slightly 

eccentric, thus the atmospheric density fluctuations caused by the spacecraft’s periodic dipping into the 

lower atmosphere determines the throttling range of the thruster. These constraints limit the thruster choices 

to specific electric propulsion technologies.  A brief summary and analysis on the available technologies is 

presented in this section. 

 

Pulsed Plasma Thrusters (PPTs): 

Pulsed plasma thrusters offer the advantages of solid propellant storage (Teflon), modularity and 

proven operation [9]. PPTs have been used in space since the 1960s. In fact, PPTs were the first application 

of electric propulsion in space, they were used in the Russian Zond 2 spacecraft in 1964 for attitude control 

[26].  Miniaturized PPTs, such as the micro-PPT developed by the Air Force Research Laboratory (AFRL) 

in 2002, can provide thrust levels of between 2 and 30 µN at power levels of between 1 and 20 W. The 

                                                      
11 Data available online at http://www.busek.com/index_htm_files/70008500G.pdf [accessed 20 April 2015] 

http://www.busek.com/index_htm_files/70008500G.pdf
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thruster has a mass of 0.5 kg and demonstrated 500,000 firings [26]. Based upon the developments made 

by AFRL, Busek has been developing micro-PPTs for CubeSats. Busek’s first generation micro PPTs, the 

Micro Propulsion Attitude Control System (MPACS), successfully operated on the FalconSat-3 mission in 

2007 [27]. The successor thruster, Busek’ BmP-220 micro-pulsed plasma thruster, is currently available 

COTS for CubeSats and microsatellites. The BmP-200 has the following specifications12: 

 

System power 1.5 W (at 1 Hz pulsing frequency) 

7.5 W (1t 7 Hz pulsing frequency) 

System mass 0.5 kg 

System volume 330 cm3 

Impulse bit 0.02 mN-s 

Isp 536 s 

Total Impulse 220 N-s (40g propellant) 

Table 1: BmP-220 micro-pulsed plasma thruster specifications 

While there has been great progress in the development of micro-PPTs, they have low efficiencies, 

and their operation is inherently in a pulsed mode, which is not the best option for missions where 

continuous throtability is required. Because of their ability to provide very small Ibits, PPTs are more suitable 

for precision pointing and attitude control than for orbital maintenance maneuvers. 

 

Miniature Ion Engines: 

Ion engines present several advantages for CubeSat propulsion, such as high efficiency, high Isp, and 

the ability to modulate thrust amplitude in smooth way, as opposed to chemical and PPT alternatives. 

Several miniaturized ion engines have been proposed for formation flying and space telescope missions, 

nonetheless, these engines could be used for CubeSat applications. Mueller identifies three viable thruster 

alternatives: the Miniature Xenon Ion Thruster (MiXI), developed at JPL and UCLA; the µNRIT-2.5, 

developed at the University of Michigan; and the MRIT, developed at Pennsylvania State University. 

 

 

                                                      
12 Data available online at http://busek.com/technologies__ppt.htm [accessed 14 June 2015] 
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 MiXI µNRIT-2.5 MRIT 

Thrust (mN) 0.01 – 1.5 0.05 – 0.6 0.001 – 0.06 

Isp (sec) 2500 – 3200 2861 5480 

Power (W) 13 – 50 13 – 34  

Electrical Efficiency (%) >40 4 – 47 15 

Mass Utilization (%) >70 15 – 52  

Diameter (cm) 3 2.5 2 

Mass (g) 200 210  

Propellant Xenon Xenon Argon 

Table 2: Miniature Ion Engine Performance 

The MRIT and µNRIT provide thrust levels that are too low for the mission requirements, atmospheric 

drag in the low thermosphere is estimated to be in the order of mN, while these engines provide thrust on 

the µN. While the MiXI thruster does provide the necessary thrust magnitude, its thrust to power ratio is 

too low. The MiXI operates at a minimum power of 13 W [13]. A CubeSat with body mounted solar panels 

will generate an average power that is < 6 W per orbit, considerably less than the required power for micro-

ion engine technology.  

 

Miniature Hall Thrusters: 

Mueller additionally identifies candidate Hall thruster technologies for microsatellites. Hall thrusters 

have faced considerable challenges in their miniaturization, thruster size reduction causes severe efficiency 

losses (see MIT thruster specifications below). 

 BHT-200 SPT-30 MIT PPPL CHT 2.6 PPPL CHT 3.0 

Thrust (mN) 4 – 17  5.6 – 13 1.8 2.5 – 12 3 – 6 

Isp (sec) 1200 – 1600 576 – 1370 865  1100 – 1650 

Power (W) 100 – 300 99 – 258 126 50 – 300 90 – 185 

Efficiency (%) 20 – 45 16 – 34 6 15 – 32 20 – 27 

Mass (g) <1 ~1    

Dia (cm) 2.1 3 0.4 2.6 3 

Propellant Xenon Xenon Xenon Xenon Xenon 

Table 3: Miniature Hall Thruster Performance 

As can be seen in Table 3, the necessary power to operate miniature Hall thrusters is prohibitive, 

even more than ion engines.  

Significant challenges arise in the process of miniaturizing the discharge chamber of ion and Hall 

thrusters, which leads to efficiency losses and higher power requirements. These technologies remain 
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suitable only for larger spacecraft, and have not been considered as viable options for this study. 

Fortunately, there are electric propulsion technologies that do not required plasma discharges to operate, 

such as electrospray colloid thrusters.  

 

Electrospray Colloid Thrusters: 

Colloid thrusters use ionic liquids as propellant. Charged droplets are generated by applying a strong 

electrostatic field and extracted to generate thrust, as shown in Figure 7. Electrospray thrusters represent a 

practical propulsion alternative for orbital maintenance in this niche of altitude and spacecraft power, mass, 

and volume. These thrusters are compact and lend themselves to scaling and miniaturization. Colloid 

thruster technology advanced significantly during the last decade, through the development of the thrusters 

for NASA’s ST-7 [28] and Laser Interferometry Space Antenna (LISA) flight programs [29]. NASA and 

ESA selected a thruster developed by Busek and JPL for these missions.  The technology leveraged from 

the ST-7 design is now available for use in nanosatellites [30]. The ‘Busek Electrospray Thruster’ (BTE – 

1) has a system volume of 0.5 U and a system mass of < 1.15 kg. The thruster power consumption is < 5 

W, and can deliver a maximum thrust of 1.0 mN13. Figure 8 shows a picture of BET – 1 and its miniature 

precision valve. 

                                                      
13 Data available online at http://www.busek.com/index_htm_files/70008500G.pdf [accessed 20 April 2015] 

 

 
Figure 7: Schematic of electrospray thruster [30] 
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Additionally, electrospray propulsion is an attractive propulsion technology because its operation 

covers a wide range of specific impulse, from a few hundred to more than a thousand seconds, allowing 

substantial maneuverability of a CubeSat equipped with it [9]. In low Isp mode, the system would operate 

in high thrust-to-power for rapid maneuvering, and in high Isp mode low thrust-to-power operation allows 

large ΔV maneuvers. Because of the wide range of operating modes, high Isp, compact dimensions, low 

system mass, low power requirement, and the use of non-toxic, non-volatile propellant, the BET-1 was 

selected for this study. 

 

The BET – 1 specifications for two representative operating conditions are shown in Table 4: 

 

  Table 4: BET – 1 specifications 

The 1st operating point is an assumed, de-rated, operating point. The 2nd, high power operating mode 

was obtained from the data sheet available in Busek’s website14. For the mission under study, the BET-1 

would be operated in the low-power mode (i.e. the 1st operating point in table 4), at the expense of decreased 

Isp. The thrust uncertainty is assumed to be ± 0.2% of the commanded thrust, based on the thrust resolution 

reported by Spence et al for the ST7 thrusters [28] . The following expression for the along-track thrust 

acceleration uncertainty was used 

                                                      
14 Data available online at http://www.busek.com/index_htm_files/70008500G.pdf [accessed 20 April 2015] 

Power [W] Thrust [mN] Isp [s] 

2.0 0.175 500 

15.0 1.000 800 

 

 

Figure 8: BET - 1 and miniature precision valve. © 2015 Busek Co. Inc. [37] 
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( )(0.002)

[rand( 1,1)]
( )

T
T

T

m t
     (33) 

where ( )m t  is the instantanenous spacecraft mass, 
TT  is the commanded thrust and [rand(-1,1)] is a 

uniformly distributed random number between -1 and +1, bounding the uncertainty range within the ± 0.2% 

limit. Propellant reservoirs are available in either 50 mL and 100 mL. For this study, the larger 100 mL 

reservoir was selected with a corresponding propellant mass of 172.02 grams. 

 

4.4. Attitude Control  

Active attitude control is required for detumbling the spacecraft after deployment from the ISS. Active 

attitude control can be achieved with magnetorquers, which are common COTS attitude actuators available 

for CubeSats. Full, three-axis control can be achieved with three magnetorquers, placed orthogonal to each 

other. CubeSat magnetorquers provide high magnetic moments (0.2 Am2) for low power (200 mW)15. 

Another active option would be a reaction wheel assembly as assumed in the drag-free spacecraft 

investigated by Conklin et al [8]. 

 

Because the attitude control is not the focus of this work, the CubeSat in the simulation is assumed to 

be designed for passive attitude stability during the main mission (Phase II). Passive attitude control, or 

weathercock stability, is achieved by ensuring that the center of pressure of the spacecraft is behind its 

center of mass. NASA successfully demonstrated the feasibility of an additional type of passive 

aerostabilization in LEO, when the PAMS spacecraft was deployed from the Space Shuttle Endeavour in 

1996. The PAMS satellite used magnetic hysteresis material for angular rate damping, and its dimensions 

were similar to those of a CubeSat. PAMS was designed for aerodynamic stability in altitudes from 250 to 

325 km [31]. 

                                                      
15 Data available online at http://www.cubesatshop.com/index.php?option=com_virtuemart&Itemid=69 

[accessed 14 May 2015]. 
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A CAD model of the CubeSat, showing the solar panels and the propulsion system, can be seen in 

Figure 9: 

 

 

4.5. GPS Receiver 

The measurement noise, ,kεGPS , and therefore the performance of the EKF and the energy-controller 

depend on the type of GPS receiver considered for the mission. Single-frequency (L1) receivers for space 

applications usually have a 2-σ uncertainty in position of 20 m and 0.25 m/s in velocity16. The GPS receiver 

assumed in the simulations for this study is the SGR-05U single-frequency receiver manufactured by Surrey 

Satellite Technology LLC, with a mass of 40 g and a nominal power consumption of 0.8 W. The SGR-05 

has a maximum position and velocity update frequency of 1 Hz (i.e. once per second). It is worth noting 

that dual-frequency receivers provide a better performance, since the effects of the ionosphere on the signal 

                                                      
16 Data available online at http://www.sst-us.com/shop/satellite-subsystems/gps/sgr-05u-space-gps-receiver 

[accessed 20 May 2015] 

 

Figure 9: CubeSat bus 
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are minimized. While dual-frequency receivers have been used in space for several years, they were not 

small enough to be used in nanosatellites until recent progress achieved at the University of Texas. The 

FOTON receiver was developed at the University of Texas, fits within a 0.5U CubeSat form factor and is 

anticipated to have a 2-σ uncertainty in position of 2.94 m and 0.58 m/s in velocity [32]. However, due to 

its power requirement of 4.5 W, it was eliminated from consideration in the simulations.  

 

4.6. Deployment and Reference Orbit 

CubeSats have always flown to space as secondary payloads. The characteristics of orbital insertion 

depend on the requirements imposed by the primary customer. Therefore, it is unrealistic to expect that the 

CubeSat would be deployed directly into eLEO, since most spacecraft are placed in higher orbits in order 

to maximize lifetime. For the mission evaluated in this simulation, the International Space Station (ISS) is 

assumed to serve as the point of deployment. The space station is equipped with NanoRacks platforms, 

experimental external research facilities that support CubeSat operations by providing power and data 

capabilities, in addition to deployment [33]. Each platform provides room for up to 16 CubeSats. Several 

Planet Labs’ CubeSats have been deployed from the NanoRacks platforms. The space station is resupplied 

frequently; hence there are several opportunities to deliver CubeSats to the ISS every year. The ISS is in a 

near-circular orbit, at a mean altitude of 414 km and an inclination of 51.64o. An eLEO orbit with the same 

inclination as the ISS presents the opportunity of conducting in-situ atmospheric measurements at a wide 

range of latitudes.  

 

It is assumed that the 3U CubeSat has a wet mass of 4 kg, and a 100 mL propellant reservoir as 

described earlier. The simulation consists of two phases. In Phase I the CubeSat is deployed from the ISS, 

and the on-board propulsion system is used to decrease the altitude of the spacecraft until the target altitude 

is reached. As noted earlier, the “target” corresponds to a mean altitude, not a specific orbital trajectory. 

Because the CubeSat is originating in a near-circular, 51.64o inclination orbit, the target altitude will also 

correspond to a near-circular orbit with this same inclination at the end of Phase I. Once the target altitude 
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is attained, orbital maintenance (Phase II) starts and continues until all the propellant is consumed. The 

target altitude for Phase II is selected based on the maximum thrust of the propulsion system which has 

been assumed. If the altitude is too low the drag force will be larger than the thrust for extended periods of 

time, and the CubeSat could re-enter the Earth’s atmosphere prematurely. Therefore, the target altitude will 

correspond to an orbit where the drag force magnitude at perigee is close to the maximum thrust available. 

For the BET-1 thruster chosen for this simulation and the atmospheric model data, it is estimated that the 

maximum thrust would be approximately equal to the drag at a perigee of 205 km. To be conservative, and 

to minimize the possibility of saturating the controller, the selected target orbit perigee was 210 km. 

 

 The orbital elements of the target orbit at the beginning of Phase II are shown in Table 5.  

Argument of the perigee (ω) 76.15o 

Right ascension of the ascending node (RAAN) 352.6o 

True anomaly (θ) 323.7o 

Inclination (i) 51.63o 

Eccentricity (ε) 0.0022 

Semi-major axis (a) 6603 km 

Table 5: Orbital elements at start of Phase II 
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5. Results 

5.1. Solution Strategy 

The model Eqs. (1,2) have been implemented in a simulation code written in MATLAB (Mathworks 

Inc., Natick MA). While all the simulation performed for this work was completed in MATLAB, it is 

important to identify which elements would be performed on an actual spacecraft using the commercially 

available OBC. The simulation code integrates the two dynamic equations of motion (Eqs. 1 and 2) over 

an interval of one “simulation time step,” hereafter referred to as just the “time step.” The time step chosen 

for this study is 0.1 s.  

 

The estimated spacecraft state (position and velocity) is updated and “corrected” with GPS information 

only when it is available, i.e. every ten time steps (corresponds to 1 second). The applied thrust, propellant 

consumption, instantaneous spacecraft mass, and ballistic coefficient are calculated at every time step. The 

results of the integration are used as the initial conditions for the next integration step. A variable order, 

Adams-Bashforth-Moulton integration scheme is used. This solver is suitable for computationally intensive 

problems, and when stringent tolerances are required17. A flowchart of the MATLAB simulation is shown 

in Figure 10. In this figure, the calculations bounded by the dashed border are used to simulate the corrupted 

GPS data which is available to the spacecraft OBC. The estimated state, as determined by the EKF as well 

as the thruster commands, are generated by the calculations bounded by the solid border. Thus, all the 

computations in the solid boxes will be performed in real-time on the spacecraft by the onboard computer.  

 

 

 

                                                      
17 Data available online at http://www.mathworks.com/help/matlab/ref/ode113.htm [accessed 14 May 2015] 
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A more detailed flowchart of the algorithm and the simulation can be seen in Appendix B. As 

mentioned in Chapter 2, the “target” orbit is propagated in the simulation for comparing it’s evolution with 

the one of the “actual” orbit. The “target” orbit would not be propagated in the OBC, since only the orbital 

energy (
tE ) of the “target” orbit is necessary, and is always constant. The OBC needs to propagate one 

equation of motion, the “estimated” orbit. The “actual” orbit is propagated in the simulation to generate the 

sensors measurements, but in reality the actual (albeit corrupted) state would be obtained directly from the 

GPS receiver.    
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Figure 10: Simulation algorithm 
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5.2. Orbit Evolution 

5.2.1. Phase I: Deorbit maneuver 

As described in section 4.4 the CubeSat is assumed to have a minimal attitude control system for the 

purpose of detumbling after deployment and to point the thruster vector along the positive or negative along 

track direction. For Phase I, the thrust vector is oriented in the negative T direction in order to decrease the 

orbital energy and bring the spacecraft to the starting altitude for Phase II. The mass distribution on the 

CubeSat will be chosen to insure passive stability when in the orbit maintenance mode (Phase II). While 

the longitudinal axis will be rotated 180 degrees for Phase I, the drag through Phase I is minimal until the 

starting altitude for Phase II is approached, and any active stabilization required will be provided by the 

magnetorquers. 

Once the spacecraft has been stabilized and oriented after deployment, a continuous thrust of 0.175 

mN is applied to lower the orbital energy. The orbital transfer lasts approximately 25.21 days, or 391 orbits. 

Figure 11 shows the change in altitude through Phase I, with the band thickness corresponding to the spread 

in altitude between apogee and perigee.  It can be seen that the eccentricity does not vary significantly 

during the maneuver. 

 

Figure 11: Phase I altitude change 
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The ΔV in Phase I is 96.25 m/s, and the propellant mass consumed is 77.80 grams, approximately 

45.23 % of the initial propellant mass. The mass flow rate is 0.036 mg/s.  

 

5.2.2.  Phase II: Primary Mission 

Once the spacecraft has reached the starting altitude for Phase II, the magnetorquers provide rotation 

to orient the thrust vector along the in-track direction. For the remainder of Phase II, the orientation is 

maintained solely through passive stability. To be conservative, it is assumed that at the beginning of Phase 

II the initial GPS signal has the maximum possible error based on the receiver manufacturer data: 20 m and 

25 cm/s errors in position and velocity, respectively. 

 

The primary mission lasts approximately 57.83 days, or 935.42 orbits. For clear visualization, only the 

first and last five orbits of the mission are shown in Figures 12-19. Figures 12 and 13 show the evolution 

of the spacecraft altitude.  

At the beginning of Phase II, the orbital altitudes corresponding to the three states are superposed. At 

the end of the mission there is a significant difference between the controlled and the target orbit perigee 

and apogee.  The target state, subject to conservative gravitational forces only,  has a perigee that increased 

by more than 10 km, and the apogee decreased by 7 km. Surprisingly, the actual orbital altitude (both max 

   

 
Figure 12: Initial Altitude 

 

 

   

 
Figure 13: Final altitude 
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and min) does not change as much as that of the target orbital altitude. The actual orbit’s perigee increases 

by approximately 6 km, and the apogee decreases by 3 km.  

 

The perturbations due to the non-spherical geopotential of Earth cause periodic variations in all the 

Keplerian orbital elements while a secular variation is a linear change in the orbital element. A short-period 

variation is a periodic change in the element with a period that is less than the orbital period. The dominant 

effects are secular variations in the right ascension of the ascending node (RAAN) and periodic variations 

in the inclination (i). Figure 14 shows the aforementioned dominant variations. The target and the actual 

orbit have a similar RAAN at the end of the mission. The nodal precession rate of the orbit is more than 5.5 

degrees per day, which has a considerable effect on the solar power availability throughout the mission. 

The inclination of the actual orbit is 0.02 degrees lower than the inclination of the target orbit. This slight 

reduction in inclination is probably a consequence of atmospheric drag in the N and W directions.  

 

Figure 15 shows the drag forces in the NTW frame. The along-track T drag force varies from 0.057 to 

0.135 mN. The cross-track W track varies from –0.0052 to 0.0055 mN, approximately and order of 

magnitude less than the drag in the T direction. The cross-track drag is caused by the co-rotation of the 

Earth’s atmosphere, and changes sign twice during one orbital period due to the periodic variations in 

latitude.  

 



41 

 

 

5.3. Controller Performance 

As noted in Chapter 4.3, the maximum thrust available 
maxT  is 0.175 mN. However, a minimum thrust 

minT  limit has also been imposed. Due to state errors from GPS measurements, in some instances the 

estimated energy error will erroneously be determined to be positive. In these cases, the controller would 

respond as if the CubeSat is at a higher energy than the target by decreasing the thrust to zero. Toggling the 

thruster on and off can reduce the effective Isp considerably, since operation in this mode may lead to non-

 

 

Figure 14: Orbital elements evolution 

 

 

 

 

 

 

 

 

Figure 15: Drag force profile 
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optimal Taylor cone formation at the emission sites in the electrospray thruster. Therefore, instead of 

turning off the thruster when E  is positive, a minimum thrust 
minT is applied. 

minT  has to be chosen 

carefully, since propellant must be conserved, and if 
minT is too high the orbital energy would continue 

increasing unnecessarily. 

 

 Hence, the minimum thrust was selected to be marginally less than the force necessary to counteract 

the along-track T drag force at the apogee. For the orbital conditions considered, 
minT  is equal to 0.06 mN. 

The energy error ( E ) can be seen in Figure 16. As explained in section 4.6, the state error at the beginning 

of Phase II corresponds to the maximum possible, which translates to an initial estimated energy error of 

 

 
Figure 16: Energy error 

 

 

 
Figure 17: Estimated thrust profile 
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823.2 m2/s2. The Extended Kalman Filter reduces the error in the estimated energy and a steady state in 

reached after approximately half an orbital period. It is worth noting that during the first 45 minutes the 

thrust is set to a minimum as consequence of the estimated energy error. Therefore, the actual energy 

decreases until the EKF reduces the state error and the steady state is reached. 

 

The average error of the actual orbital energy over the course of the full mission (57.83 days, or 935.42 

orbits) is –19.86 m2/s2, and the root-mean-square error is 25.98 m2/s2. Propellant consumed when E   is 

positive is wasted. For most of the mission, the thrusters are attempting compensate for orbital energy 

dissipated by drag (when E , is negative), while minimizing any overshoot (when E , is positive), 

therefore, the energy error has a negative bias. The thrust profile can be seen in Figure 17. The thrust 

amplitude periodically varies between 
minT  and 

maxT . The maximum thruster dynamic response is 

approximately 1.09 µN/s, which should be well within the capability of the BET-1, which can use a 

combination of acceleration voltage and flow rate changes to throttle. The average mass flow rate is 

approximately 0.019 mg/s. The ΔV for Phase II is 119.15 m/s. 

 

The error in the state vector is a measure of the effectiveness of the Extended Kalman Filter. Figure 

18 shows the error of the magnitude of the position and velocity at the beginning of the mission. The error 

in position increases from 20 m to nearly 60 m during the transient before decreasing rapidly to less than 5 

m, as seen in Figure 18.  Figure 19 shows the errors at the end of the mission. The root-mean-square position 

and velocity errors are 1.19 m and 0.39 cm/s, respectively. As mentioned in Chapter 4.5, a single frequency 

GPS receiver has a 2-σ bound uncertainty of 20 m in position and 25 cm/s in velocity. Assuming that the 

noise in the GPS measurements has a Gaussian distribution, the 2-σ bound uncertainty implies that the root-

mean-square measurement error in position and velocity are 12.34 m and 15.41 cm/s, respectively. 
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Therefore, in the steady state, the EKF successfully reduces the position error by 90.36%, and the velocity 

error by 97.47% relative to the maximum expected (RMS) uncertainties from the GPS.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Initial position and velocity error 

 

 

 

 
Figure 19: Final position and velocity error 
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6. Conclusions 

A simulation of nanosatellite flight in extremely Low Earth Orbit was implemented to study the 

feasibility of conducting scientific missions in the lower thermosphere, an area of the atmosphere that 

remains virtually unexplored. The results offered in this paper suggest that a CubeSat mission in the lower 

thermosphere is feasible from the propulsion and control standpoint. Moreover, the mission can be 

accomplished with technology that is currently available, the majority (if not all) the necessary components 

and subsystems are COTS. For the target altitude considered and an initial propellant mass of 172.02 g, the 

primary mission lasts 57.83 days. If the transfer time between the ISS and the target orbit is also used to 

perform science, the spacecraft has a useful orbital lifetime of 83 days. The total ΔV throughout the mission 

is 215.4 m/s. The minimum altitude that can be attained is limited by the power available for the propulsion 

system. Orbital flight below 205 km would require deployable solar arrays.  

 

Future work includes further investigation of the aerodynamic stability of a CubeSat in eLEO. Active 

stability methods, such as torque damping using magnetic B-dot control, and the use of miniaturized pulsed 

plama thrusters (PPTs) for attitude maintenance should also be considered. Innovative ways to use 

deployable solar arrays would enable orbital flight at altitudes between 150 – 200 km, since the electrospray 

propulsion system could generate higher thrust to counteract drag in denser parts of the atmosphere. 

Moreover, deployable arrays can be used as fins for aerodynamic stability. Improved control systems should 

also be investigated to avoid the need of using a minimum thrust level (
minT ).The present study does not 

consider the effect of uncertainty in the atmospheric model. Future work could include the development of 

a control law that uses and adaptive gain to account for such uncertainty, since the atmospheric density is 

not known a priori. 
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Appendix A: Power availability and distribution 

The solar power generated during daylight for one orbital period is defined in SMAD [24], as shown 

in Eq. (A.1).    

 

e e d d

e d
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d

PT P T

X X
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Since the loads are the same throughout one orbital period,
eP  and  

dP  are equal.                    
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Hence, it is possible to rewrite Eq. (A.1) in the following way: 
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In order to obtain the energy generated by the solar arrays, Eq. (A.3) is integrated from zero to 
dT .      
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                          (A.5) 

The energy (in Joules) generated by the solar arrays during one orbital period is 
SAE . 

SAE , 
eT  and 

dT  

are known from the simulation. The only unknown in Eq. (A.5) is the power available for the spacecraft,

/S CP .   
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e d d e
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Appendix B: Controller Design Script User’s Manual  

B.1 Introduction 

The code described in this file propagates the orbit of a spacecraft. For a full description of the problem 

addressed in this simulation, the reader is referred to the M.S thesis by Nicolas Martinez (WPI, 2015). The 

equation of motion includes the two-body gravitational force, J2-J6 non-spherical geopotential 

perturbations, atmospheric drag, and thrust forces. The main code is called “orbital_propagatorV9”, which 

calls several subroutines to propagate the spacecraft motion. This User’s Manual is organized as Follows. 

The main code and the subroutines are described in Section 2. This description of the subroutines is 

referenced to a detailed flowchart which includes the relevant equations used in the simulation.  Section 3 

provides a comprehensive table listing all variables used in the simulation, a list what subroutine(s) the 

variable is used in, and a brief description.  Section 4 provides a complete list of parameters used for the 

reference case presented in the Thesis. The main code and all subroutines were written and solved in 

MATLAB. 

B.2 Description of Main Code and Subroutines 

Orbital_propagatorV9 

The code takes the orbital and spacecraft parameters to generate a 6x1 initial state in an Earth centered 

inertial frame (position and velocity). It is worth noting that three states are propagated in this code: the 

target, estimated, and actual state. Hence, the array that is integrated by the ODE solver has dimensions of 

18x1. 

 Afterwards, the GPS noise is defined as Gaussian white noise. The orbital period, the number of 

periods that will be propagated and the integration time step are defined. All the variables that will be stored 

in arrays must be initialized as zeros, otherwise the running time increases considerably. A while-loop is 

started after the initial conditions have been set. There are two stopping conditions in the while-loop, the 

loop execution terminates when either condition is met. The 1st condition is atmospheric reentry, if the 
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spacecraft reaches an altitude of 120 km the solution is terminated. The 2nd condition is the number of time 

steps, once the last time step is reached the solution is terminated.  

When the while-loop starts, noise is added to the estimated state. The estimated state is passed through 

the Extended Kalman Filter if there is a GPS update (i.e. only every 10 time steps), otherwise there is no 

correction (i.e. naïve observer). The next step is to generate the control signal. Finally, the second order 

differential equations are integrated with the MATLAB ODE solver, ode113. The equations are integrated 

over an interval between tk-1 and tk. Only the last value of the integration is stored and used as the initial 

conditions for the next integration. The thrust acceleration is converted from the NTW to the ECI frame, 

and the propellant mass consumption is calculated. The results are stored in arrays and the spacecraft mass 

is updated before the next loop starts. Plots are created and results are displayed. A flowchart depicting the 

simulation is shown in Figure 1.  

Simulation input: 

 Central body parameters 

 Initial state errors 

 Spacecraft parameters 

 GPS noise covariance 

 Control parameters 

 Thruster parameters  

 End time and time step size 

The input is provided at the beginning of the script. 

 

Simulation output: 

      Plots: 

 Drag forces vs time 

 Altitude vs time 

 Velocity vs time 

 Estimated thrust vs time 

 Actual thrust vs time  

 State errors vs time 

 Orbital element evolution vs time 

 Orbital energy error vs time 

 Solar power vs time 
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      Displayed in the command window: 

 Maximum and minimum drag forces 

 Number of orbital periods that were propagated 

 Days in orbit 

 Total V   

 Total propellant mass consumption 

 Remaining propellant mass in the tank 

 

The flowchart shown in Figure B1 lists the name of the sub-routines in the lower right corners of the 

boxes. If no name appears, the calculations are done in the main script.  
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Calculate thrust in the NTW (S/C) frame; 
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SR: V_prop12 

SR: Kalman_V2 

SR: getcontrolV8 

Figure B1: Simulation flowchart 

INPUT 

Altitude range, step 

size, dates, S/C size, 

bus mass, propellant 
mass, etc. 
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Subroutines in orbital_propagatorV9 

Name Description Called by Routines (it 

calls) 

Input  Output 

oe2rv Finds state 

vector in ECI 

frame from 

Keplerian 

orbital element 

set 

  Keplerian 

orbital element 

set 

State vector 

 

 

quickntw 

Calculates 

transformation 

matrix to 

convert vector 

from ECI to 

NTW frame 

  Vector in ECI 

frame 

Transformation 

matrix 

 

 

Kalman_V2 

Reduces 

uncertainty 

from noisy 

GPS state 

measurements 

 riccatiV2 Estimated state, 

orbital 

parameter (µ), 

Earth’s radius, 

GPS noise 

covariance 

a posteriori 

estimated state 

 

 

riccatiV2 

Solves the 

differential 

matrix Riccati 

equation 

Kalman_V2  State matrix 

(F), initial 

conditions from 

previous time 

step (
kP )  

a posteriori 

covariance 

matrix (
kP ) 

 

sunvector 

Calculates the 

earth-sun 

vector in the 

ECI frame  

  Time step (i), 

estimated 

position, 

Earth’s radius 

Earth-sun 

vector, 

Illumination 

factor (I) 

 

sunpower 

Calculates 

instantaneous 

power (W) 

generated by 

solar arrays 

  Unit earth-sun 

vector, 

illumination 

factor (I) 

Solar power 

 

 

GetcontrolV8 

Calculates 

estimated and 

actual thrust to 

maintain target 

orbital energy 

  

getdragMSIS 

Estimated state, 

target energy 

Estimated 

thrust, actual 

thrust 

 

 

 

 

getdragMSIS 

Finds 

atmospheric 

drag 

acceleration in 

NTW frame 

GetcontrolV8  Position vector, 

velocity vector 

relative to co-

rotating 

atmosphere, air 

density from 

look-up table 

Atmospheric 

drag 

acceleration 

GetsimparamV4 Extract 

atmospheric 

  Look-up table 

‘MSIS90_1.dat’  

Atmospheric 

density data 
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density data 

from look-up 

table 

V_prop12 Defines the 

three equations 

of motion 

(target, 

estimated and 

actual) that are 

subsequently 

integrated with 

ode113. 

Accelerations 

include two-

body, J2-J6 

perturbations, 

atmospheric 

drag and thrust 

  Initial 

conditions 

(18x1 array) 

2nd order, non-

linear, ordinary 

differential 

equation of 

motion 

Coe_from_sv Calculates the 

6 Keplerian 

orbital 

elements from 

the state in the 

ECI frame 

  State vector, 

orbital 

parameter (µ) 

Keplerian 

orbital 

elements 

 

 

B3. Description of Variables used in Main Code    

Variable Subroutine(s) 

in which used 

Units Comment 

 

J2J6 

 

V_prop12 

 If set to 1, J2-J6 perturbations are 

activated.  

 

mu 

Kalman_V2 

Getcontrol_V8 

V_prop12 

 

km3/s2 

 

Earth’s orbital parameter (µ) 

Re Kalman_V2 

Getcontrol_V8 

V_prop12 

oe2rv 

km Earth’s equatorial radius 

W V_prop12 rad/s Angular speed of Earth’s rotation 

g  m/s2 Earth’s gravity 

Cd   Drag coefficient 

Ac  m2 Cross-sectional area 

Mprop0  kg Initial propellant mass 

Mdry  kg Dry mass 

M Getcontrol_V8 kg Wet mass 

BC getdragMSIS kg/m2 Ballistic coefficient 

e0    Initial eccentricity 

a0   Initial semi-major axis 

i0   Initial inclination 
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Om0   Initial RAAN 

om0   Initial argument of perigee 

nu0   Initial true anomaly 

oe   Initial orbital element set (1x6 array) 

P  s Orbital period 

e_r  km Root-mean-square position error 

e_v  km/s Root-mean-square velocity error 

poserr  km Initial position error 

velerr  km/s  Initial velocity error 

 

avg 

  Mean error of Gaussian white noise to 

model GPS uncertainty 

SIGMA_r  km  Standard deviation of position noise 

SIGMA_v  km/s Standard deviation of velocity noise 

Q_e Kalman_V2  Time step delay for GPS state update 

g_e Kalman_V2  Counter for GPS update 

Isp_Busek  s Specific impulse of propulsion system 

R Kalman_V2  Covariance matrix of sensor (GPS) 

noise  

 

no 

  Number of orbital periods that will be 

propagated 

ENDTIME  s Total propagation time 

tstep  s Global time step  

r0  km Initial position vector 

v0  Km/s Initial velocity vector 

x1  km; km/s  Target orbit state vector 

x2  km; km/s Estimated orbit state vector 

x3  km; km/s Actual orbit state vector 

j2,j3,j4,j5,j6 Kalman_V2 

Getcontrol_V8 

V_prop12 

 Constant coefficients of the spherical 

harmonics 

rmag_0  km Magnitude of initial position vector 

vmag_0  Km/s Magnitude of initial velocity vector 

d_0  rad Initial declination (latitude) 

KE_0  J Initial kinetic energy 

PE_0  J Initial potential energy 

E_0 Getcontrol_V8 J Initial (total) mechanical energy 

alt getdragMSIS 

V_prop12 

km Look-up altitude table 

dens getdragMSIS 

V_prop12 

kg/m3 Look-up atmospheric density table 

nsteps   Total number of time steps in 

simulation 

x  km; km/s Initial state vector (18x1) 

y  km; km/s State vector array storage 

i   Current time step 

xc quickntw km; km/s State vector (18x1) initial conditions 

for next integration 

Sntw_e Solarpower 

Getcontrol_V8 

 Transformation matrix (ECI to NTW) 

of estimated state 
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Sntw_a Solarpower 

Getcontrol_V8 

 Transformation matrix (ECI to NTW) 

of actual state 

tl Kalman_V2 s Left integration limit 

tr Kalman_V2 s Right integration limit 

tspan  s Integration interval 

r_noise   km Instantaneous position noise  

v_noise  km/s Instantaneous velocity noise 

Zr Kalman_V2 km GPS position measurement 

Zv Kalman_V2 km/s GPS velocity measurement 

xe  km, km/s  A posteriori  estimated state 

R_E Sunvector 

Getcontrol_V8 

km Estimated position vector at ith step 

V_E Getcontrol_V8 km/s Estimated velocity vector at ith step 

Rs  km Sun vector 

Rs_hat solarpower km Unit sun vector 

I solarpower  Illumination factor, 1 or 0 

SPW  W Instantaneous solar power generated 

Ue V_prop12 km/s2 Estimated thrust acceleration 

Ua V_prop12 km/s2 Actual thrust acceleration 

xt  km, km/s Solution of differential equation solver 

AD V_prop12 km/s2 Estimated drag acceleration 

AD3 V_prop12 km/s2 Actual drag acceleration 

scvel_t  km/s Target velocity 

scvel_e  km/s Estimated velocity 

scvel_a  km/s Actual velocity  

Tt  µN Estimated thrust along T direction 

Tt_a  µN Actual thrust along T direction 

dntw  N Estimated drag force vector in NTW 

frame 

dntw_a  N Actual drag force vector in NTW 

frame 

OE_t   Target orbital element set 

OE_e   Estimated orbital element set 

OE_a   Actual orbital element set 

d_t  rad Target orbit declination (latitude) 

KE_t  J Target orbit kinetic energy 

PE_t  J Target orbit potential energy 

E_t  J Target orbit mechanical energy 

d_e  rad Estimated orbit declination (latitude) 

KE_e  J Estimated orbit kinetic energy 

PE_e  J Estimated orbit potential energy 

E_e  J Estimated orbit mechanical energy 

d_a  rad Actual orbit declination (latitude) 

KE_a  J Actual orbit kinetic energy 

PE_a  J Actual orbit potential energy 

E_a  J Actual orbit mechanical energy 

m  kg Instantaneous spacecraft mass 

Mprop  g Instantaneous propellant mass 

Mdot  g/s Propellant mass flow rate 
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dvt  m/s ΔV  

j   Orbit counter for solar power 

calculation 

Xe   Efficiency of path from solar array to 

batteries to loads 

Xd   Efficiency of path from solar array to 

loads 

Ts   Fraction of orbital time spent in 

daylight 

E_sa  J Photovoltaic energy generated in one 

orbital period 

Td  s Time spent in daylight in one orbit 

Te  s Time spent in eclipse in one orbit 

P_ep  W Power allocated to electric propulsion 

system 

P_sc  W Power allocated to spacecraft bus and 

payload 

 

B4. Description of variables used only in subroutines 

Variable Subroutine(

s) in which 

used 

Units Comment 

H KalmanV2  Jacobian of measurement model 

q_v KalmanV2 km/s RMS of velocity in model process noise 

q_a KalmanV2 km/s2 RMS of acceleration in model process noise 

Sigma1 KalmanV2 km/s Standard deviation of velocity in model process noise 

Sigma1 KalmanV2 km/s2 Standard deviation of acceleration in model process noise 

Q KalmanV2  Covariance matrix of model process noise 

ax KalmanV2 km/s2 Acceleration in X direction due to central force and J2 

perturbation 

Agx_rx KalmanV2  Partial derivative of two-body & J2 acceleration along X with 

respect to X 

Agx_ry KalmanV2  Partial derivative of two-body & J2 acceleration along X with 

respect to Y 

Agx_rz KalmanV2  Partial derivative of two-body & J2 acceleration along X with 

respect to Z 

Agy_rx KalmanV2  Partial derivative of two-body & J2 acceleration along Y with 

respect to X 

Agy_ry KalmanV2  Partial derivative of two-body & J2 acceleration along Y with 

respect to Y 

Agy_rz KalmanV2  Partial derivative of two-body & J2 acceleration along Y with 

respect to Z 

Agz_rx KalmanV2  Partial derivative of two-body & J2 acceleration along Z with 

respect to X 

Agz_ry KalmanV2  Partial derivative of two-body & J2 acceleration along Z with 

respect to Y 

Agz_rz KalmanV2  Partial derivative of two-body & J2 acceleration along Z with 

respect to Z 

Ax_rx_3 KalmanV2  Partial derivative of J3 acceleration along X with respect to X 
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Ax_ry_3 KalmanV2  Partial derivative of J3 acceleration along X with respect to Y 

Ax_rz_3 KalmanV2  Partial derivative of J3 acceleration along X with respect to Z 

Ay_rx_3 KalmanV2  Partial derivative of J3 acceleration along Y with respect to X 

Ay_ry_3 KalmanV2  Partial derivative of J3 acceleration along Y with respect to Y 

Ay_rz_3 KalmanV2  Partial derivative of J3 acceleration along Y with respect to Z 

Az_rx_3 KalmanV2  Partial derivative of J3 acceleration along Z with respect to X 

Az_ry_3 KalmanV2  Partial derivative of J3 acceleration along Z with respect to Y 

Az_rz_3 KalmanV2  Partial derivative of J3 acceleration along Z with respect to Z 

Pk KalmanV2  Covariance matrix 

K KalmanV2  Kalman gain 

F KalmanV2  State matrix 

t1 KalmanV2  Left integration limit of differential matrix Riccati equation 

t2 KalmanV2  Right integration limit of differential matrix Riccati equation 

e sunvector degrees Obliquity of ecliptic of the sun 

Rs_mag_A

U 

sunvector AU Distance of Sun from Earth 

AU sunvector km 1 AU in km 

Rs_mag sunvector km Distance of Sun from Earth in km 

Rsx sunvector km X coordinate of Sun’s position 

Rsy sunvector km Y coordinate of Sun’s position 

Rsz sunvector km Z coordinate of Sun’s position 

C sunvector  Dot product between S/C position vector and  

alfa sunvector radians Angle between S/C position vector and the negative of the 

sun vector direction 

R_rd sunvector km S/C position component along cylindrical (shadow) radial 

direction 

P0_s solarpower W Nominal power generated by side solar panel  

Rs_ntw solarpower W Unit Earth-Sun vector in NTW frame 

cos_alfa solarpower  Projection of Rs_ntw in the N direction 

cos_gamm

a 

solarpower  Projection of Rs_ntw in the W direction 

Sijk_e GetcontrolV

8 

 Transformation matrix from NTW to ECI frame for estimated 

vectors 

Sijk_a GetcontrolV

8 

 Transformation matrix from NTW to ECI frame for actual 

vectors 

C GetcontrolV

8 

 Controller gain 

Tmax GetcontrolV

8 

N Maximum thrust  

Tmin GetcontrolV

8 

N Minimum thrust  

u_n GetcontrolV

8 

km/s2 Thrust acceleration along N 

u_t GetcontrolV

8 

km/s2 Thrust acceleration along T 

u_w GetcontrolV

8 

km/s2 Thrust acceleration along W 

u_ntw_e GetcontrolV

8 

km/s2 Estimated thrust vector in NTW frame 
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u_ntw_e GetcontrolV

8 

km/s2 Actual thrust vector in NTW frame 

U_e GetcontrolV

8 

km/s2 Estimated thrust vector in ECI frame 

U_a GetcontrolV

8 

km/s2 Actual thrust vector in ECI frame 

r1 V_prop12 km Target orbit position vector 

v1 V_prop12 km/s Target orbit velocity vector 

rmag1 V_prop12 km Target orbit position vector magnitude 

r2 V_prop12 km Estimated orbit position vector 

v2 V_prop12 km/s Estimated orbit velocity vector 

rmag2 V_prop12 km Estimated orbit position vector magnitude 

r3 V_prop12 km Actual orbit position vector 

v3 V_prop12 km/s Actual orbit velocity vector 

rmag3 V_prop12 km Actual orbit position vector magnitude 

G1 V_prop12 km/s2 Two-body acceleration of target orbit 

G2 V_prop12 km/s2 Two-body acceleration of estimate orbit 

G3 V_prop12 km/s2 Two-body acceleration of actual orbit 

aj2_1 V_prop12 km/s2 J2 acceleration vector of target orbit 

aj3_1 V_prop12 km/s2 J3 acceleration vector of target orbit 

aj4_1 V_prop12 km/s2 J4 acceleration vector of target orbit 

aj5_1 V_prop12 km/s2 J5 acceleration vector of target orbit 

aj6_1 V_prop12 km/s2 J6 acceleration vector of target orbit 

aj2_2 V_prop12 km/s2 J2 acceleration vector of estimated orbit 

aj3_2 V_prop12 km/s2 J3 acceleration vector of estimated orbit 

aj4_2 V_prop12 km/s2 J4 acceleration vector of estimated orbit 

aj5_2 V_prop12 km/s2 J5 acceleration vector of estimated orbit 

aj6_2 V_prop12 km/s2 J6 acceleration vector of estimated orbit 

aj2_3 V_prop12 km/s2 J2 acceleration vector of actual orbit 

aj3_3 V_prop12 km/s2 J3 acceleration vector of actual orbit 

aj4_3 V_prop12 km/s2 J4 acceleration vector of actual orbit 

aj5_3 V_prop12 km/s2 J5 acceleration vector of actual orbit 

aj6_3 V_prop12 km/s2 J6 acceleration vector of actual orbit 

a,b,c,d V_prop12  Coefficients of exponential curve fit for atmospheric drag 

acceleration 

v2rela V_prop12 km/s Estimated velocity relative to co-rotating atmosphere 

vmag2 V_prop12 km/s Magnitude of estimated relative velocity 

rho2 V_prop12 kg/m3 Estimated atmospheric density 

AD V_prop12 km/s2 Estimated atmospheric drag acceleration vector 

V3rela V_prop12 km/s Actual velocity relative to co-rotating atmosphere 

vmag3 V_prop12 km/s Magnitude of actual relative velocity 

rho3 V_prop12 kg/m3 Actual atmospheric density 

AD3 V_prop12 km/s2 Actual atmospheric drag acceleration vector 

xdot V_prop12 km/s2 Differential equation (18x1 array) 
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B5. Input Parameters for Baseline (Reference) Case 

The parameters used in the simulation include physical constants (mostly related to the earth) as well 

as parameters used to describe the spacecraft, the initial orbit, the GPS, controller, and thruster. 

5.1. Earth parameters: 

All of the physical constants describing the gravitational body (Earth) are listed below. 

 53.986004415 10    [km3/s2] 

 3

eR 6.3781363 10   [km] 

 5W 7.292115 10   [rad/s] 

 g 9.80665  [m/s2] 

 

5.2.  Spacecraft parameters: 

 
dC 2.2   

 
cA 0.01  [m2] 

 prop,0M 0.09422  [kg] 

 dryM 3.828  [kg] 

 

5.3. Orbital elements: 

 
0e 0.0022   

 
0a 6603.1 [km] 

 
0i 51.6274   [deg] 

 
0Om 352.6165  [deg] 

 
0om 76.1464  [deg] 

 
0nu 323.6898  [deg] 

 

5.4. GPS uncertainty: 

 SGR-05U receiver, Surrey Space Technology 

o 3e_ r 12.35 10   [km] 

o 3e_ v 0.154 10   [km/s] 

 FOTON receiver, University of Texas 

o 3e_ r 1.2 10   [km] 

o 3e_ v 0.07 10   [km/s] 

 3poserr 11.547 10   [km] 

 3velerr 0.14434 10   [km/s] 
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5.5. Controller & EKF parameters: 

 Q_e 10  (i.e. measurement update every 10 time steps) 

 C 40   

 q _ v 0.000 [km/s] (RMS of velocity process noise) 

 3q _a 0.001 10  [km/s2] (RMS of acceleration process noise) 

 

5.6. Thruster parameters: 

 Isp_Busek 500  [s] 

 
maxT 0.175  [mN] 

 
minT 0.060  [mN] 

 

5.7. Solar power parameters: 

 
0P 8.33  [W] 

 
eX 0.9   

 
dX 0.9  

 
EPP 2  [W] 

 

The baseline case for the propagation on one orbital period takes approximately 300 seconds. The 

propagation of the full mission (~ 935 orbital periods) in the sunfire9 Linux cluster can take 7-10 days.  

 

 

 

 

 

 

 


