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Abstract 

Micro aerial vehicles (MAV) are small remotely piloted or autonomous aircraft. 

Wingspans of MAVs can be as small as six inches to allow MAV’s to avoid detection 

during reconnaissance missions. Improving the aerodynamic efficiency of MAV’s by 

increasing the lift to drag ratio could lead to increased MAV range and endurance or 

future decreases in aircraft size. In this project, biologically inspired flight is used as a 

framework to improve MAV performance since MAV’s operate in a similar flight regime 

to birds. A novel wind tunnel apparatus was constructed that allows the planform shape 

of a MAV wing to be easily altered.  The scale-model wing mimics a bird wing by using 

variable feather lengths to vary the wing planform shape. Genetic algorithms that use 

natural selection as an optimization process were applied to establish successive 

populations of candidate wing shapes. These wing shapes were tested in the wind tunnel 

where wings with higher fitness values were allowed to ‘breed’ and create a next 

generation of wings. After numerous generations were tested an acceptably strong 

solution was found that yielded a lift to drag ratio of 3.28. This planform was a non 

conventional planform that further emphasized the ability of a genetic algorithm to find a 

novel solution to a complex problem. Performance of the best planform was compared to 

previously published data for conventional MAV planform shapes. Results of this 

comparison show that while the highest lift to drag ratio found from the genetic algorithm 

is lower than published data, inabilities of the test wing to accurately represent a flat plate 

Zimmerman planform and limitations of the test setup can account for these 

discrepancies. 
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Chapter 1: Introduction 

1.1 Genetic Algorithms 

1.1.1 Introduction 
 In recent years genetic algorithms have emerged as exciting new optimization 

tools. Genetic algorithms use evolutionary theory to solve engineering design problems. 

In this research, genetic algorithms will be used to optimize the planform shape of a 

micro aerial vehicle wing. Before continuing, an explanation of the genetic algorithm and 

its application are presented. 

1.1.2 Evolution 
 Natural evolution is the process by which a biological organism changes over 

time. Usually these changes adapt the organism to its surroundings. Charles Darwin, 

considered the father of evolutionary theory, stated "In the struggle for survival, the fittest 

win out at the expense of their rivals because they succeed in adapting themselves best to 

their environment.”1 These advantageous traits come about through random mutations in 

subsequent generations. Similarly, disadvantageous traits may also arise. Those with the 

advantageous traits are more likely to survive and pass these traits on to future 

generations. Those with the disadvantageous traits will find it more difficult to survive 

and are less likely to pass their traits on to future generations. Over time, the species 

evolves as more and more advantageous traits are passed on1. 

1.1.3 History of Genetic Algorithms 
 Although evolutionary theory was developed in the mid nineteenth century it 

provided little practical application in engineering for about one hundred years. In the late 

1950's biologists first attempted to mimic natural evolution using computer simulation. In 
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the mid 1960's John H. Holland proposed using evolutionary theory to solve various 

types of optimization problems2. Over the next decade Holland would work on this 

technique, which he called “genetic algorithms”, before he would publish Reference 3 in 

1975. In Reference 3 a number of different methods using evolutionary based computer 

programming to find optimal solutions to complex problems are explored. In short, a 

genetic algorithm takes an initial population of random possible solutions and determines 

which of these possible solutions are the strongest of the population using a fitness 

function. These individuals are “bred” and produce offspring that are again evaluated to 

distinguish strong from weak solutions. In each successive generation, new parents are 

selected and offspring are produced. This process continues until the process converges 

on an acceptably strong solution4. The steps of the genetic algorithm are depicted in 

Figure 1. 

The genetic algorithm, when used properly, virtually guarantees finding the global 

maximum or minimum. Ironically, an automated genetic algorithm optimization program 

could take mere minutes to perform whereas natural evolution’s process has been 

stretched out over thousands or millions of years. Rao5, accurately describes genetic 

algorithms as “evolution at warp speed”. In an article written bearing this same title, Rao 

describes the difficult task of maintaining appropriate inventory for a large car company. 

Due to the varying demands of the public and certain constraints of the manufacturing 

plant, genetic algorithms were incorporated to bring order and efficiency to a scheduling 

process that was before based on experienced intuition.  

A more detailed discussion of how genetic algorithms function follows next. 
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Figure 1. Genetic Algorithm Flowchart 

1.1.4 The Chromosome and the Fitness Function 
 The basic genetic algorithm uses a string of numbers that is analogous to a 

biological chromosome. Each of the positions in the chromosome is termed a gene. In the 

basic model of genetic algorithms these genes are binary, either a one or a zero, 

representing a characteristic that is either present or not. However, the genes are not 
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always binary. There could also be many possible values for a particular gene, each 

called an allele4. 

1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0
Figure 2. Sample Binary Chromosome 

 The sixteen genes in the sample binary chromosome in Figure 2 represent a 

unique individual. Each individual is different, and when asked to perform a task they do 

so with varying results. For the purposes of this research this task will be the lift to drag 

ratio of a MAV wing. However for other design problem the task may be different. For 

most engineering applications the task is increasing efficiency to reduce overall costs. 

This could mean maximizing fuel efficiency, minimizing the amount of materials used, 

minimizing labor and operating costs, maximizing a vehicle range, minimizing noise 

production or one of many things. Regardless of the task, there are potential solutions. 

The effectiveness of each solution may vary. The measure of how well a potential 

solution accomplishes its intended task is termed the fitness function4. This function can 

be explicit, written in terms variables (genes). Often if this is the case, the genetic 

algorithm is run computationally relatively quickly. The function can also be laboratory 

based. In this case the physics are not well understood enough to devise a representative 

equation in order to maximize it. The fitness function is therefore experimentally 

measured and then entered back into the genetic algorithm. In the present work the lift to 

drag ratio of an MAV wing with a specified planform shape serves as the fitness function. 

 In mathematical terms let the vector  represent any chromosome i  with   

number of 

iX h

jx  genes, where j  simply denotes any specific gene in the chromosome.  

     [ ]1 2, ,...,iX x x x= h     (1) 
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Then, the fitness value of the chromosome is simply the evaluation of that chromosome 

in the fitness function . f

     ( )Fitness
iX f= iX     (2) 

 If you were to evaluate every possible solution in order to find the optimal 

solution you would have 216 (over 65,000) possible solutions for the 16 bit chromosome 

shown in Figure 2. The number of possible solutions is called the solution space or the 

search space2. Some more complex problems could have hundreds, or potentially 

thousands of bits. One can see that evaluating every solution in the search space may 

prove to be prohibitively exhaustive, in both time and money spent. The advantage of the 

genetic algorithms is that it only requires the evaluation of a small fraction of the entire 

solution space to find optimal solution4. 

1.1.5 The Initial Population 
 To initiate a genetic algorithm an initial population of individuals, much smaller 

than the size of the solutions space, is randomly created. The size of the initial population 

depends on the size of the solution space. Larger solution spaces require larger initial 

populations. If the initial population is too large, the additional time necessary to evaluate 

the extra individuals in each population may be inefficient. However, if the initial 

population is too small, the global optimum may be overlooked, providing a major 

setback to the optimization process4.  

To illustrate, a plot of Rastrigin’s function is shown in Figure 3 as a sample 

solution space. One can see the presence of many local maxima and minima. Because of 

this, Rastrigin’s function is widely used as a benchmark solution space when testing 

optimization programs due to the presence of many local maxima and minima6. However, 
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this function has one global minimum, which occurs at the (0, 0) position. If one seeks to 

identify the global minimum using a genetic algorithm the size of the initial population 

must be carefully specified.  If the initial population is too small, the individuals may be 

dispersed in such a way that there are no individuals near the global minimum. Therefore, 

as the genetic algorithm progresses it is possible that a local minimum is converged upon 

rather than the global minimum. 

  ( ) ( )( )yxyxyxR ππ 2cos2cos1020),( 22 +−++=   (3) 

 

 

Figure 3. Rastrigin’s Function6 

One method of avoiding this risk is to create an initial population that is 

significantly larger than future generations. This ensures that a large enough sample has 

been taken to confidently survey the solution space for the global optimum4. The global 

optimum cannot be guaranteed, but in general it is better to take a larger than necessary 
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sample and take longer to find the better solution than to take too small a sample and 

prematurely converge on a local optimum instead of the global optimum. 

There are no strict guidelines as to how large your initial population should be, or 

the size of the subsequent generations, but a general guideline says the following 

generations should have at least as many individuals as there are genes in a binary 

chromosome2. So, for the example in Figure 2, the population would have a minimum of 

sixteen individuals. The initial population may have two or three times that. In a later 

section, the selection of initial and subsequent generation size for the micro aerial vehicle 

planform optimization will be discussed. 

1.1.6 Parent Selection 
 Once the initial population is created, its individuals are evaluated using the 

fitness function. 

     ( )Fitness
iX f= iX     (4) 

Next it is necessary to discard part of the population to allow for vacant 

chromosome locations in the next generation. The individuals that are not discarded 

become the parents of the next generation. Typically, from one quarter to half of the 

population are selected as parents, such that glg 50.025.0 ≤≤ , where  is the number of 

parents and  is the number of individuals in the population. In the initial population 

however, the fraction of parents to available individuals may be smaller. These parents 

may or may not be duplicated to appear in the next generation. Although not strictly 

representative of biological reproduction, the logic behind copying the parents into the 

next generation is simply the reluctance to dispose of a good solution, especially if the 

l

g
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children produced do not show any improvement over their parents4. This technique will 

be used in the current work. 

There are various methods of selecting the parents of the next generation. The 

first and most simple of the parent selection processes is elitism, which takes the l  

strongest individuals to use as the parents. This technique converges comparatively 

quickly, but may be slightly less likely to find a global optimum in certain circumstances. 

The reason for this is that sometimes an individual may have a portion of genes that are 

very beneficial, but overall the solution yields a low fitness value. Not selecting such an 

individual as a parent would eliminate the chance that these beneficial genes combining 

with other potentially beneficial genes to produce an otherwise overlooked strong 

solution4. 

There are several methods that attempt to remedy this. The roulette method 

assigns selection probabilities in proportion to the fitness level of an individual much like 

on an assumed roulette wheel. Individuals with higher fitness values get proportionally 

larger slices while individuals with lower fitness scores get proportionally smaller slices4. 

It is then possible, although less likely, for a weaker individual to be selected as a parent. 

Table 1 contains ten individuals with artificially created fitness values. The selection 

probability is given by: 

    
∑
=

= n

i
i

i
i

Xf

Xf
XP

1

)(

)(
)(      (5) 

 These selection probabilities are used to construct a sample roulette wheel found 

in Figure 4. Clearly the first chromosome has the highest chance (18%) of being selected 

whereas the tenth chromosome has the least chance (2%). Due to its more random nature 
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and ease of application the roulette method was chosen as the parent selection method in 

this work. 

Table 1. Roulette Wheel Example Population 
Chromosome 1 2 3 4 5 6 7 8 9 10 sum
Fitness Value 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 11
Selection 
Probability 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.05 0.04 0.02 1

 

 
Figure 4. Sample Roulette Wheel 

Stochastic uniform sampling is similar to the roulette method in that stronger 

individuals have a higher chance of being selected than weaker individuals. To establish 

this method individuals are spread along a line in order from most fit to least fit as shown 
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in Figure 5. The stronger individuals have proportionally bigger line segments. A random 

number is generated that falls in the first individual’s segment. Then, the total length of 

the line, which can be normalized to one as it is in this example, is divided by the desired 

number of parents l  to find the incremental length (1/ l ) between pointers that are 

established. If one of these pointers falls in an individual’s line segment it is selected as a 

parent4. A representation of this procedure is also shown below in Figure 5 in which 

parents 1, 2, 3, 4, 6, and 8, are chosen. 

 
Figure 5. Stochastic Uniform Sampling Schematic6

 This method guarantees the individual with the highest fitness function is 

selected. Due to the less random nature, stochastic uniform sampling was not used in the 

current work. 

 A less common method is a tournament style selection process in which 

subgroups are randomly constructed. These subgroups then compete amongst themselves 

to determine which individual from each subgroup is selected as a parent. The individual 

with the highest fitness value wins the tournament for each subgroup and is therefore 

selected as a parent for the next generation4. Due to the additional complexity of the 

subgrouping this method was not selected. 

1.1.7 Pairing 
 Once the parents have been selected, it is necessary to couple the parents before 

any offspring can be produced. There are several methods to accomplish this pairing. The 
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first method is sequential pairing, where the first and second parents mate, the third and 

fourth mate and so forth4. Although this is the simplest technique to implement, its 

predictive structure may bias the results depending on the parent selection method 

chosen. 

 Another method is random pairing, where the parents of each pair are chosen at 

random4. Although this method may prevent the bias that may be present in the 

sequential pairing method, it also brings the possibility that a selected parent will not be 

paired and will therefore not mate. This parent’s information will not necessarily be lost 

because it will remain present in the next population, as will all the individuals that are 

selected as parents. However, there is no guarantee that the individual will be selected as 

a parent in subsequent generations. 

 In this work sequential pairing is used. A potential bias is avoided by having the 

parents listed in random order. Listing the parents in random order allows one to 

sequentially pair the parents and still have a random pairing. Randomly pairing a list of 

randomly paired numbers would be redundant, so it is not done. Additionally, every 

individual that was selected as a parent mates using this method. This prevents each 

individual from having to pass two selection processes in order to mate and also keeps a 

more diversified population. 

1.1.8 Mating 
 Once the parents are paired they must mate in order to form the next generation of 

chromosomes. In this mating process, genes are swapped between the parents in order to 

form new individuals. There are several different mating methods, the most basic of 

which is the single point crossover shown in Figure 6. This technique divides two 
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chromosomes at the same randomly chosen gene location k . Then genes 1x - kx  are 

selected from the first parent while genes 1kx + -  are taken from the second parent. 

Combining these two sets of genes yields the child chromosome

nx

4. Another child, using 

the remaining two sections of genes, may also be formed. 

Chromosome 1: 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0

Chromosome 2: 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1
k

                          Child: 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 
Figure 6. Single Point Crossover 

 Mathematically, let ijX  represent the gene j  of individual i . If and  

represent the first and second chromosomes in 

jX1 jX 2

Figure 6 respectively then the single point 

crossover of two individuals at gene  can be represented as: k

     jj XX 13 =  if  kj ≤  

     jj XX 23 =  if   kj >

Where represents the child created from the two parents jX 3

 Multipoint crossover is an extension of the simpler single point crossover. In this 

technique there can be any number of crossover points ( , … )1k 2k mk 4. This multipoint 

crossover can give more variation to future generations. An example of double point 

crossover where  is shown in 2=m Figure 7. 
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Chromosome 1: 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0

Chromosome 2: 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1

                          Child: 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 
Figure 7. Double Point Crossover 

 This double point crossover process can be depicted mathematically according to 

the following: 

    jj XX 23 =  if  1kj ≤  or if   3kj >

          jj XX 13 =  if  32 kjk ≤<  

 Unfortunately, this simple crossover method is not always optimum. One can see 

that in single point crossover the genes on the right side of the parent chromosomes and 

the genes on the left side of the parent chromosomes are usually separated. This results in 

a child where the left side of the chromosome and the right side are almost always from 

different parents. In double point crossover they are almost always from the same parent. 

 A different approach to mating solves this sectionalizing bias that occurs with 

point crossovers. This technique randomly selects which parent will provide each of the 

genes by creating a random number associated for each gene. If the number is above a 

certain threshold then one parent is selected to provide the information for that particular 

gene. If not, the other parent is selected

N

4. If random numbers between 0 to 1 are chosen, 

the obvious threshold is 1
2N = . 

In Table 2 random numbers have been generated for each position to determine 

which parent will contribute each gene. 

 
1k 2k 
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Table 2. Random Parent Selection for Each Gene 

  Gene 
Random 
Number 

Parent 
Chosen 

1 0.5733 2 
2 0.7710 2 
3 0.6426 2 
4 0.7719 2 
5 0.1687 1 
6 0.2563 1 
7 0.7987 2 
8 0.8203 2 
9 0.2665 1 
10 0.3790 1 
11 0.6755 2 
12 0.4759 1 
13 0.4677 1 
14 0.5871 2 
15 0.7414 2 
16 0.0466 1 

 

Chromosome 1: 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0

Chromosome 2: 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1

                          Child: 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 
Figure 8. Resulting Child from Mating of Random Parent Selection for Each Gene 

 Figure 8 shows the resultant child from the random mating method. This method 

of mating is more representative of biological reproduction and provides an opportunity 

for additional variation in the subsequent generations of chromosomes and was therefore 

the chosen method of mating in this work. 

1.1.9 Mutation 
 Another mating technique is to have a child born with a characteristic unlike 

either of its parents through mutation. The same crossover detailed in Figure 6 is shown 
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in Figure 9, however this time a mutation in the gene 7x  is shown is red. With crossover 

alone, this child would not have been possible. However, with mutation, a key 

component in natural evolution, a unique child is born that could potentially provide an 

otherwise overlooked viable solution. 

Chromosome 1: 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0

Chromosome 2: 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0

   Child with mutation: 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 
Figure 9. Mutated Child from Single Point Crossover  

 Mutation occurs at random. One method of determining the mutation is to specify 

the number of mutations per generation and use a random number generator to determine 

which gene of which child gets mutated. Another method is to give each gene the same 

chance of mutation. This means that the number of mutations per generation varies, 

whereas the first method keeps the same number of mutations per generation4. Because of 

its more random nature, the second method is generally preferred and will be the method 

of choice in this work. 

 As the solution begins to converge, the population begins to look more and more 

uniform. Because the final goal is to find an optimal solution, the existence of mutation at 

this point can often prevent the final convergence on a uniform optimal solution. 

Therefore, in practice it is sometimes common to set the mutation rate to zero for the last 

few generations4. 
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1.1.10 Termination 
The genetic algorithm is complete when the population converges on a 

maximized solution. A converging population means that the individuals  are all 

beginning to show the similar genes  and are achieving similar fitness values . It 

is possible, but generally not likely, that multiple distinct global optimums could occur. 

In this case the fitness values would be very similar but the individual’s genes are 

different. Therefore in the final generation the individuals conform to one of multiple 

optimal solutions. 

iX

jx ( iXf )

Caution is necessary however, because prematurely terminating a genetic 

algorithm could result in a poor convergence on the global optimum or perhaps 

convergence on a local optimum instead. This could significantly reduce the benefits 

obtained from the genetic algorithm. 

Conversely, letting the algorithm run too long may result in costly computational 

or experimental time. In general the final goal of a genetic algorithm is to save money 

during the optimization process. If the money one invests into a genetic algorithm 

optimization is more than the money spent using a more conventional optimization 

method, then the investment is a poor one. In this regard, convergence becomes 

extremely important. Unnecessary populations lead to wasted time and resources. 

1.1.11 Alternative Optimization Techniques 
 There are many optimization techniques that have been used in engineering. As 

mentioned above, the exhaustive search method evaluates every possible solution in an 

attempt to find the optimal solution. A slight modification is the progressive exhaustive 

search, where a coarser search grid is made to more quickly find where the optimal 
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solution might be found. This region of the solution space is then evaluated with a finer 

grid. This procedure can be used multiple times until the optimal solution is found4. 

Although this method may be more efficient than the original exhaustive search, the 

progressive exhaustive search does carry a risk of overlooking the global optimum 

whereas a purely exhaustive solution would guarantee that the optimal solution over a 

discretized search space is found. 

If the solution space can be represented mathematically, more sophisticated 

optimization techniques can be implemented. Most of these are derived from fundamental 

calculus. In the simplest of these methods, peaks are found by evaluating the roots of the 

derivative of the fitness function. Those roots indicate the presence of a local minimum 

or maximum. However, no insight is gained as to which of the roots are a global 

minimum or maximum. An evaluation of all the roots must be conducted. 

Consequentially, a complex solution space is a large burden for the calculus based 

methods. In addition, to evaluate the derivatives, a continuous fitness function is 

necessary. This prohibits the use of discrete and experimentally obtained data as a fitness 

function as was necessary in the present work where lift to drag ratios from micro aerial 

vehicle wings are used as a fitness function. 

Lagrange multipliers have also been introduced to incorporate constraints on the 

solution space before finding the roots. With simple derivative based methods the roots 

have to be evaluated to make sure they satisfied the appropriate criteria. Lagrange 

multipliers eliminate this problem by incorporating the constraints and the search space 

into one function, so that the roots obtained already meet the appropriate criteria and no 

extraneous work is needed to eliminate unrealistic solutions4. 
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 Hill climbing is a simple technique in which the solution space is analogous to a 

hill, in which a blind hiker is trying to find the peak of the hill. The hiker, starting in a 

randomly chosen spot on the hill, takes one step in a random direction. If there is a gain 

in altitude then another step is taken. If there is a drop in altitude, then the hiker returns to 

the previous point and takes a step in a different direction. If every direction results in a 

drop in altitude, the summit has been reached4. The hiker could use a similar procedure to 

find the lowest point of a terrain. Although simple, the technique does not always work if 

multiple local maxima and minima are present. A simple solution to this problem may 

include introducing more hikers to improve the chances of finding the global minimum or 

maximum. 

 Simulated annealing mimics the annealing process in metallurgy, in which the 

metal is methodically heated and cooled in order to maximize the crystallinity of the 

structure and minimize the defects, thus increasing the strength of the metal. By heating 

the metal and gradually cooling it, the particles have a chance to naturally orient 

themselves in a lower energy state4. In the optimization analogy, nearby solutions of a 

search space are explored for lower costs. Initially larger jumps in the solution space are 

evaluated. As time progresses these jumps decrease in size. This method is similar to the 

hill climbing/descending method with the difference being that simulated annealing 

allows the possibility of climbing in the uphill direction to avoid converging on local 

minima and maxima. Other optimization techniques include neural networks, particle 

swarm optimization, and colony optimization4. 
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1.1.12 Previous Applications of the Genetic Algorithm 
 Although still a relatively young field, genetic algorithms have proven their worth 

in many different fields, as discussed in this section. Their speed and adaptability have 

made them an ideal tool for complex design problems. 

 Genetic algorithms are currently used in many branches of engineering, including 

the aerospace industry. Many studies have combined computational fluid dynamics and 

genetic algorithms in order to optimize wing shapes and airfoils. Zhang7 used genetic 

algorithms and CFD software to optimize the airfoil of the wing at certain points along 

the wingspan. Quagliarella8 and Hacioglu9 also used genetic algorithms and CFD to 

optimize a transonic airfoil. Similar to airfoils, helicopter blades may also be optimized 

using genetic algorithms. Jones10 used genetic algorithms to develop rotorcraft airfoils 

that could potentially address aerodynamic and acoustic concerns. 

 Applications of genetic algorithms in the aerospace industry also include design 

of aircraft configurations. Marta11 used aircraft parameters such as the fuselage length 

and diameter, cruise altitude, take-off weight, wingspan, wing chord, angle of attack, 

wing location, tail location, and a number of other aircraft characteristics as genes in a 

chromosome. The range of the aircraft was used as the fitness function. The genetic 

algorithm was run for search space criteria to mimic that of a small regional jet. Similar 

studies were done by Liu12, whose genetic algorithm was tailored towards optimizing an 

existing F-16, and Blasi13, whose fitness function was the direct operating cost. 

 Genetic algorithms are also used in the electronics and telecommunications 

industry. Cox14 used genetic algorithms to reduce costs by optimizing the layout of 

telephone networks. Noren15 used genetic algorithms to design electronic circuits. 

Altshuler16 used genetic algorithms to design a wire antenna. 
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Application is by no means limited engineering fields. Lucasias17 used genetic 

algorithms to determine the structure of a sample of DNA using spectrometric data. 

Levin18 used genetic algorithms to identify protein signal sequences in important cellular 

functions. There has also been much effort put into protein structure prediction, and 

genetic algorithms have proved to be promising in that field. Accurately predicting the 

structure of a protein would help make new medicines. Brinkman19 used genetic 

algorithms to predict the secondary and tertiary structures of a protein molecule given the 

primary structure. Deerman20 and Gates21 used different genetic algorithms in order to 

predict the primary structure of a protein given the atomic sequence of the molecule. 

 Bauer22 and Chen23 both showed how the investment industry could use genetic 

algorithms to trade stocks and bonds more profitably, devise stronger portfolio 

management solutions, and solve other complex financial problems for themselves and 

their clients. 

Genetic algorithms are also being used in code breaking, game theory, software 

development, lean manufacturing, and a wealth of other diverse fields. As the use of 

genetic algorithms becomes increasingly popular the potential of genetic algorithms will 

be seen in a number of new fields. 

1.2 Micro Aerial Vehicles 
 Micro aerial vehicles (MAV’s) are small remotely piloted or autonomous aircraft. 

There are several types of MAV’s which include fixed-wing aircraft, helicopters, and 

ornithopters (flapping wing aircraft). This thesis will pertain to fixed wing MAV’s only. 

The initial development of MAV’s was for use in a reconnaissance based mission. 

Therefore, small size was critical in the MAV’s stealth characteristics. Current MAV’s 
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can have a wingspan of less than six inches. Also, their aspect ratio is lower than most 

conventional aircraft. The aspect ratio is defined as: 

 /AR b c=   for rectangular wings     (6) 

 2 /AR b S=   for non rectangular wings    (7) 

Equations 6 and 7 show the aspect ratio for each type of wing, where AR is an 

abbreviation for the aspect ratio, b represents the wingspan, c is the chord length, and  

is the planform area. The planform is the vertical orthographic projection of the wing. For 

a rectangular wing the aspect ratio is the wingspan divided by the chord length. For 

nonrectangular wings the aspect ratio is the squared wingspan divided by the planform 

area. 

S

 In nature, one can see that the wing planforms of many birds are not the same as 

the simple shapes of most fabricated wings. Figure 10 shows a number of different 

species of birds wings: the White-tailed Ptarmigan (upper left), the Sage Grouse (upper 

right), the California Quail (lower right), and the Wild Turkey (lower right). The scale 

marker placed underneath each wing (the upper marker denoting inches and the lower 

marker denoting centimeters) clearly shows the large difference in wing size. One can see 

that each wing contains a small notch in its trailing edge. Evolutionary theory would lead 

one to believe that over a long period of time those notches have given the bird an 

advantageous trait that has enabled the bird to survive and therefore pass this trait on to 

future generations. Through experimentation in a water tunnel, Drovetski24 observed that 

the trailing edge notches increase the maximum lift to drag ratio. It is entirely possible 

that in finding the optimal shape for a MAV wing, a similar notched wing could be 

found. 
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a) b) 

c) d) 

Figure 10. Trailing Edge Notches on Wings of Various Birds24

 Next we will review other organisms in nature where interesting physical features 

appear on bird wings or fins of aquatic animals. Each of these features could be candidate 

features that may evolve from genetic algorithms applied to MAV planforms. 

Humpback whales have protuberances on the leading edge of their pectoral 

flippers. Levshin25 demonstrates that these protuberances are in fact beneficial to the 

whale. Conventional airfoils would stall abruptly at a large angle of attack, drastically 

losing lift. These protuberances prevent this violent stall and the loss of lift is much more 

gradual. 

 Bushnell26 also looks at naturally occurring methods of drag reduction. He too 

notes the protuberances on the humpback whale. In addition, he discusses serrated 

trailing edges on sharks, whales, and some birds, as well as the serrated head of a 
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hammerhead shark shown in Figure 11. Although the physics of the drag reduction is not 

well understood Bushnell speculates it is a reduction in drag due to lift, as opposed to 

pressure or viscous drag forces. 

 

Figure 11. Serrations on a Hammerhead Shark 

Serrations on the leading and trailing edges of aircraft wings have also shown 

advantages. Vijgen27 showed a reduction of drag at low angles of attack. In addition, 

serrations in wings have also been shown to reduce the noise created by the wing. 

Scwind28 observed that an owl’s flight is unusually quiet and hypothesized the wing’s 

leading edge serrations are responsible for this. With tests conducted in a wind tunnel it 

was shown that indeed the presence of fine serrations on the leading edge of a wing can 

reduce the noise of wing. Dassen29 showed that serrated trailing edges are effective in 

reducing noise as well. Burnett30 described how this technology is being used to reduce 

the engine noise on commercial airliners by using a serrated engine exhaust nozzle. 

Additionally, slightly serrated turbine fan blades helped reduce the amount of engine 

noise created. 
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Gurney flaps are short flat plates that are attached to the trailing edge of a wing, 

perpendicular to the chordline. These flaps are shown to increase the lift substantially 

while creating a small additional drag. Li31 and Vijgen27 both demonstrate that using 

serrated gurney flaps can increase the lift coefficient substantially with less of a drag 

penalty. 

MAV flight is a relatively new field of study in aerodynamics. To date, there has 

been little effort into optimizing the MAV planform. In order to decrease the wingspan 

while maintaining a high planform area, many MAVs have adopted a near circular 

planform. The arbitrariness of these basic planforms leaves room for improvement. 

 Over millions of years, evolution has changed bird wings into more efficient and 

more capable instruments of flight. It is my hope that upon completion of this study, the 

MAV will also evolve, providing a strong planform on which further research can be 

based. In addition, I hope to show that genetic algorithms are a viable technique to use in 

wind tunnel experiments. Lastly, it will be interesting to see how my optimum solution 

compares with existing MAV wings and also existing characteristics of bird wings. 

1.3 Project Objectives 
• While there has been an increasing effort in studies involving genetic algorithms 

to optimize airfoil shapes and wing planforms there has been little effort in 

optimizing the planform of a MAV. It is the goal of this research that through the 

use of genetic algorithms, a more efficient planform can be found for this type of 

aircraft. 

• Additionally, while it is true that most studies using genetic algorithms are purely 

computational, there are some that obtain their data through experimental means, 
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as is the case in this paper. One objective of the paper is to not only help solidify 

the use of genetic algorithms in general, but specifically those with 

experimentally obtained data. I plan to show experimentally obtaining data for the 

use of genetic algorithms is a viable and efficient means of optimization. To this 

end a novel wind tunnel apparatus, the feather-wing concept, that can be used to 

easily adapt an MAV planform shape will be developed 

• In nature some flying animals have trailing edge notches, serrated wings, and 

various other wing features. Evolution has taught us that these features serve a 

purpose even though their precise function may not be well understood. Similarly 

I hope to show that a less conventional wing planform may indeed be beneficial 

when creating a micro aerial vehicle. The genetic algorithm may yield one of 

these features, or a less conventional wing that has not been previously considered 

as a viable design solution. Finding a more efficient, less conventional wing 

would further justify the use of genetic algorithms in aerodynamics and 

potentially lead to exciting advancements in micro aerial flight. 
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Chapter 2: Methods

2.1 Test Setup 

2.1.1 Wind Tunnel 
 A closed circuit wind tunnel located in Higgins Laboratories at WPI was used to 

experimentally obtain the lift and drag for the test wings. This wind tunnel can achieve a 

maximum airspeed of approximately 55 m/s with a freestream turbulence level of 0.73% 

at lower speeds and 0.5% at maximum airspeed32. The test section has a length of 2.4 

meters, width of 0.61 meters, and a height of 0.61 meters. The contraction ratio is 6:1. 

2.1.2 Test Wing 
 The test wing used in the genetic algorithm study needed to satisfy the following 

criteria: 

• The wing would need the ability to change its planform shape 

• The wing would need a wide variation in attainable planform shapes 

• The wing planform would need to be easily altered 

• The test wing would need to be small to reduce the wind tunnel blockage 

• The range in Reynolds number due to the change in chordlength would need to be 

kept to a minimum 

• The setup would need to utilize the side access hole in the wind tunnel 

 In order to change the planform of the wing a feather-like concept shown in 

Figure 12 was adopted in which tabs could be pulled to shorten or lengthen each feather 

to create a different planform. This setup closely represents a bird wing where the 

number and configuration of a bird’s feathers determines its wing planform. Because the 
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feathers needed to be lengthened and shortened it was necessary to only use half a 

planform (one wing). This way the wing was placed through the side porthole of the wind 

tunnel as shown in Figure 13. The tabs that altered the feather lengths were then readily 

accessible from outside the tunnel as shown in Figure 14. The boundary layer thickness 

resulting from the boundary layer development on the side wall of the wind tunnel was 

estimated to be approximately 1.3 centimeters. 

 

Figure 12. Feather Wing Concept 

The wing had seven test feathers and a half wingspan of approximately 13 

centimeters. The feathers were compressed between a lexan housing in order to keep the 

feathers close together and guide their retraction. The width of these feathers decreased 

toward the lexan housing to prevent crowding when the feathers retracted. 
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Figure 13. Test Wing Setup through Side Porthole 
 

 
Figure 14. Top View of Test Setup 
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Because each feather varied in length they also varied in how far they could be 

retracted. Longer feathers generally could retract more and therefore had more alleles for 

that particular gene. Table 3 shows the breakdown of approximately how far each feather 

could retract and how many alleles this resulted in for each feather. Each length was 

divided by 6mm to find the approximate number of alleles, with one additional allele 

being the feather in its fully retracted position. The markers shown on the feathers in 

Figure 12 are used to properly position the feathers. For example Figure 12 represents the 

individual (7 7 5 5 4 3 2). The genes correspond to the spaces visible between the visible 

feather markers. This breakdown of alleles led to a solution space of approximately 

140,000 (the product of the number of alleles listed in Table 3). 

Table 3. Breakdown of Alleles for Each Feather 
Feather 
# 

Retraction Length 
(mm) 

Resulting 
Alleles 

Gene 
Values 

1 67 8 0-7 
2 67 8 0-7 
3 52 6 0-5 
4 49 6 0-5 
5 37 5 0-4 
6 31 4 0-3 
7 18 3 0-2 

 

The leading edge of the wing was rounded to reduce the drag on the lexan 

housing. The seven feathers and the trailing edge of the housing were also streamlined in 

order to reduce the drag and reduce the effect of ‘stepping’ experienced by the flow over 

one feather to the next. 

The root chordlength of the wing was approximately 11.5 centimeters. With the 

feathers extended, individual (7 7 5 5 4 3 2) in Figure 15, the area of the wing was 

157cm2 with a mean chordlength of 13 cm. The aspect ratio was 2.22. With a test 

velocity of 18m/s this corresponded to a Reynolds number of 182,000. 
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Figure 15. Test Wing with Feathers Fully Extended for Zimmerman Representation 

        

Figure 16. Test Wing in with Feathers Fully Retracted 
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 With the feathers fully retracted, representing individual (0 0 0 0 0 0) shown in 

Figure 16, the area of the wing was 105cm2 with a mean chordlength of 11.5 cm. The 

aspect ratio was 3.33. With a test velocity of 18m/s this corresponded to a Reynolds 

number of 161,000. 

2.1.3 Force Balance 
In order to measure the lift and drag experienced by the wing, a force balance 

system recently developed by a group of WPI students as part of their Major Qualifying 

Project was used33. Modifications were made to the force balance setup in order to 

accommodate the needs of the test wing. The original design had a sting passing through 

the test section bottom wall into the wind tunnel. This allowed the test wing to be located 

in the middle of the wind tunnel flow. Because only a half span wing is used in the 

current work, the sting arm of the previous force balance was removed and the wing was 

attached directly to the base fixture using flexible sheet metal shims. Due to a much 

lower drag anticipated on the wing, it was necessary to use only two shims of a more 

flexible aluminum. This would make the wing more sensitive to drag forces incurred. A 

photograph of the wing in the test fixture is shown in Figure 17. 

Using an iron saw horse placed on cinder blocks, the fixture was raised to the 

appropriate height in order to fit the half wing through the preexisting access hole in the 

side of the wind tunnel (Figure 18).  A Plexiglas insert was milled in order for the wing to 

protrude into the wind tunnel while minimizing the amount of air escaping through the 

hole in the side of the tunnel. This was further corrected by placing a transparency sheet 

over the remaining gaps. 

 31



 

Aluminum Shims 

Figure 17. Wing Test Fixture 

It was important however that neither the Plexiglas insert nor the transparency 

touched the test fixture. Because the two objects were attached firmly to the wind tunnel 

the friction caused by their contact with the test fixture would introduce inaccuracies in 

the lift and drag measurements.  
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Figure 18. Test Setup on Raised Iron Horse 

The test apparatus rested on two separate Acculab VI-2400 digital scales, each 

with an accuracy of grams, in order to calculate the lift on the wing. Once a wing 

was ready to be tested, the scales were zeroed. When the tunnel was at the desired 

airspeed of 18 m/s the scales would each read a negative value. The absolute value of the 

sum was the lift on the wing. The angle of attack of the wing could be altered by raising 

1.0±
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the height of one of the digital scales. The angle of attack during the genetic algorithm 

testing procedure was 4.6 degrees. 

As previously stated, the test wing was attached to the base fixture using flexible 

metal shims. This essentially connected the wing to a spring mass system in the direction 

of the wing’s chordline, such that when the wing experienced a drag force the shims 

would deflect. An Indikon AP1297-2 eddy current proximity probe shown in Figure 19 

translated this displacement into a voltage. The difference in displacement between a 

steel target on the fixture and the probe shown in Figure 20 created a small difference in 

the magnetic flux density field. The probe generated an output voltage that was linearly 

proportional to the displacement. This output voltage was amplified and measured using 

a standard Hewlett Packard 3478A multimeter. 

 

Figure 19. Indikon AP1297-2 Eddy Current Proximity Probe 

To find this constant of proportionality a fishing line was attached to the test wing 

and also to the top of the wind tunnel. By suspending a known mass from the string and 

measuring the angles the string made with the horizon, an equivalent drag force on the 

wing was calculated. A schematic of the calibration setup is shown in Figure 21. 
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Small Gap 

Proximity Probe 

Steel Target 

Figure 20. Proximity Probe in Test Setup 

 

α

1θ  2θ  

Figure 21. Drag Calibration Schematic 
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Because the wing is connected to a spring mass in which force and distance are 

also directly proportional, the relationship between the voltage read from the proximity 

probe and the drag experienced by the wing was therefore directly proportional. The drag 

for various masses was plotted with the resultant voltage read from the multimeter. A 

linear regression was used in order to determine the drag as a function of the voltage. 

Drag calibrations were performed before each generation to ensure that the voltages read 

yielded accurate drag forces. A sample drag calibration plot is shown in Figure 22 where 

a linear relationship between measured drag force and the output voltage is confirmed. 

Initial Population Drag Calibration 1 (Prior to testing)
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Figure 22. Sample Drag Calibration Curve 

 It is important to realize that the wing deflects in the direction of the chordline of 

the wing, and not the direction of the flow. The difference between these two is the angle 

of attack α of the wing. Figure 23 shows a vector diagram of the test wing. The drag 

force is parallel to the flow and the lift is perpendicular to the drag. The axial force is 

parallel to the chordlength and the normal force is perpendicular to the axial force. 
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Lift Force 

Normal Force 

Drag Force 

α  Axial Force 

Figure 23. Vector Diagram of Wing 

The proximity probe is in the axial force direction. Therefore, while the drag experienced 

moves the target away from the probe, the lift moves the target slightly towards the 

probe. When calculating the drag it is necessary to compensate for this apparent loss of 

drag through: 

( ) sin(f iD V V s L )α= − +        (8) 

In this equation, V  is the voltage read at zero flow, andi fV is the voltage read at the 

testing speed. The difference is multiplied by the drag slope  with a range of values 

from 25-27 grams per volt. 

s

2.1.4 Matlab Genetic Algorithm 
 MatLab was used in order to create a program that could incorporate the fitness 

values taken from the wind tunnel and perform the parent selection, pairing, and mating 

processes to ultimately output the next generation of wing planforms to be tested. MatLab 
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provides a Genetic Algorithm and Direct Search Toolbox that is commercially available, 

however the software was not able to suit the needs of this project. The MatLab software 

was developed for continuous functions, rather than experimentally obtained results. 

Because of this an entire new program was created with help from a few open source files 

from the existing MatLab toolbox. Based on the individuals and their fitness values read 

from the experimentally obtained data on a spreadsheet, the program would give the 

appropriate next generation to be tested. The MatLab code and a more in depth 

discussion of how the program functions are presented in Appendix A. 

2.1.5 Test Procedure 
 A MatLab script was written to make an initial population of 72 individuals. As a 

rule of thumb, the initial population should be at least twice as large as the subsequent 

generations. These generations should be at least as large as the number of chromosomes 

if the system was binary. Since it was not, it was easy to convert to binary by taking log 

base two of the solution space. This gave a number of approximately 17 individuals for 

the future generations; however a slightly larger population size of 24 was chosen for 

generations . The initial population was three times larger than that. In our 

experiments  generations were used (Section 3). As a result, with a population of 

72 individuals for  and 24 individuals for 

1n >

12n =

1n = 2 12n≤ ≤ , a total of 336 wing planform 

shapes were studied. Time constraints limited the study to a single run 1  of the 

genetic algorithm process. Although it was time consuming to test every one of these 336 

soluitons, it helped guarantee a representative portion of the solution space had been 

sampled. 

12n≤ ≤

 38



 The initial population was tested in the wind tunnel. Measuring the lift and drag 

of the wing started with correct placement of the wing feathers. Once this was 

accomplished a plastic spacer was used in order to ensure the wing was protruding into 

the wind tunnel the same amount for each wing. Then, the spring mass was put into a 

small harmonic motion and monitored to ensure there was no interference with the 

transparency sheet. Had there been interference the motion would have ceased in a short 

time. Once it was verified that there was no interference the scales were zeroed. The 

baseline voltage was taken after the spring mass system stopped moving. The wind tunnel 

was turned up to an airspeed of 18m/s. The lift was read using the scales, and the voltage 

was taken. As mentioned before, the lift was simply the absolute value of the sum of the 

scales. The drag was calculated using Equation 8. 

The fitness function for each individual was the lift to drag ratio minus a constant 

number. The lift to drag ratio is an aerodynamic parameter that indicates how efficiently 

a wing produces lift. The constant subtracted from the lift to drag ratio was just slightly 

lower than the lowest lift to drag value experienced in the current population of wings. 

This accentuated the difference between the better performing and worse performing 

wings when it came to parent selection. 

Once the fitness values were calculated in the spreadsheet, another MatLab script 

took the population and their fitness functions and exported the new generation of 

chromosomes to the same spreadsheet. The method of parent selection was the roulette 

wheel. Half of the population was selected as parents. The parents that were selected 

were randomly paired (the result of sequentially pairing a random list of parents). Once 

the pairs were determined the mating process was also random producing two children 
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per pair in order to maintain the same population size. Mutation was also present at a rate 

of 20%. 

Figure 24 shows an example of the mating process that took place between two 

parents selected from the initial population. One can clearly see which parent contributed 

which gene to the children. The mutations are shown in red. 

Chromosome 72: 2 5 3 4 0 1 2

Chromosome 33: 3 3 4 3 3 2 1

        Child 1: 3 5 3 3 3 1 2

        Child 2: 0 3 3 5 3 1 2
Figure 24. Resulting Children from Selected Parents in Initial Population 

 The next generation was tested in the wind tunnel to find the fitness values. These 

were then inserted back into the MatLab program to find the next generation of 

chromosomes. This process was repeated until the proper convergence criteria had been 

met. These convergence criteria will be discussed in the results section. 

2.1.6 Error Analysis  
 The error was categorized into instrumentation error and repeatability error. The 

instrumentation error was the error incorporated with reading the scales for the lift force 

and the multimeter for the drag force. The voltage taken from the digital multimeter was 

not constant and therefore introduced a small level of inaccuracy. The voltage usually 

varied within mv. With a drag slop of approximately 26.93 from 5± Figure 22 this 

corresponded to an error in the drag measurement of 135.0± grams. The error in the lift 
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measurements was also small. The resolution of the scales was 0.1 grams. The lift was 

usually quite stable, within  gram.  1.0±

 There was also the repeatability error from generation to generation. This 

repeatability error was found to be larger than the instrumentation error and was due to 

the inability to recreate the exact same conditions for identical wings. Drag calibrations 

were taken often in order to have an accurate drag slope; however these calibration 

curves were also subject to error. While there was little error in the voltages read from the 

hanging of the calibration weights, small errors in the angle measurements could lead to 

small errors in the drag calibration curves and therefore the drag numbers from 

generations to generation could vary. 

 There was also error in the inability to recreate the exact same wing shape using 

the feathers. Although the feather increments were clearly marked it is possible the 

feather placement when making an individual created slight error. Also, despite the 

spacer used, it is possible that the lateral distance the wing protrudes into the wind tunnel 

varied ever so slightly. Error bars that incorporate these sources of error will be presented 

in the Results section. 
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Chapter 3: Results 

3.1 General Results 
In this section the general results of the genetic algorithm will be discussed. In 

Section 3.2 the dynamics of the wing evolution resulting in the best planform solutions 

will be discussed. In Section 3.3 the test wing Zimmerman representation will be 

compared to published Zimmerman data. Local chordlength distributions along the 

wingspan will be presented and analyzed. Lastly in Section 3.4 a discussion of the wing 

aspect ratio, the Reynolds number variation, and other possible effects on the test wing 

will be discussed. 

Figure 25 shows the average L/D for each generation, the average L/D of the 

parents of that generation, and the high and low L/D values of the generation. Total error 

bars are presented on the parent L/D averages because these individuals appeared in 

several previous generations before. Therefore when taking lift and drag numbers, there 

is already data from the previous generation so that a standard deviation of the 

repeatability error, Rσ , can be calculated. The instrumentation error Iσ  is calculated by 

taking the high and low values of the digital scales and the multimeter. The sum of the 

standard deviations of these two errors, RITotal σσσ += , is used to calculate the error bars 

seen in Figure 25. 

Total
high

L L
D D

σ= +     (9) 

Total
low

L L
D D

σ= −     (10)   

The total number of generations to study was not determined before testing began. 

Because of the complex nature of the genetic algorithm and time limitations for the 
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number of possible generations run, it was decided to start the genetic algorithm and 

observe how the genetic algorithm progressed before convergence criteria were set. In the 

end, the algorithm was terminated at the 12th generation when 9 out of 12 of the parents 

were identical to the strongest known wing shown later in Figure 30. The other three 

wings were slight variations of this wing. Due to the overall conformity of the generation 

and the fact that the total error bars on the average parent L/D values encompassed both 

the high L/D value and the average L/D values (see Figure 25, 12n = ) it was determined 

that further testing with a higher n  generations was not likely to yield a stronger solution. 

While there is no guarantee that the best wing planform found is indeed the optimal 

configuration, it is, with several other similar wings, a very strong solution. In this regard, 

the time available was also a factor in the termination of the genetic algorithm. If more 

time were available more generations could have been tested to increase the level of 

confidence that the best solution had been found.  

 One can see clearly that maximum, minimum, and average L/D values all increase 

in Figure 25 with increasing generation number , indicating that the genetic algorithm 

was functioning correctly.  

n

• Average L/D value increased by 12.6% 

• Average parent L/D value increased by 10.7% 

• Maximum L/D value increased by 3.7% 

• Minimum L/D value increased by 16.6% 
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Progression of L/D for Successive Generations
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Figure 25. L/D Trends in Successive Generations 

The increase in the maximum L/D value is comparatively small. This is due to a 

fairly efficient wing (L/D=3.23, individual (7 7 3 3 2 0 0)) that was created in the initial 

population, . Even small increases in L/D however can lead to considerable 

increases in performance in range and endurance. The range 

1n =

R  and the endurance E  of 

an aircraft are given by equations 11 and 12. 

 

ln i

f

WL VR
D c W

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟     (11) 

1 ln i

f

WLE
D c W

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟     (12) 
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In these equations V is the cruising velocity,  is the wing chordlength,  is the initial 

takeoff weight of the aircraft, and 

c iW

fW  is the final weight of the aircraft once its fuel has 

been expended. One can see that both the range and endurance equations are directly 

proportional to L/D. Therefore an increase in L/D of 10%, seen from the full Zimmerman 

representation to the best wing produced from the genetic algorithm, corresponds to an 

increase in range and endurance of 10%. This is a significant improvement for MAV 

design. 

It is important to note however, that not every generation had a higher average 

L/D than the generation before it. Generations 7 and 9 both saw small decreases in the 

average L/D values. This meant that in these generations the parents on average bred in 

such a way that the children created had lower L/D values. A similar argument can be 

said about the average L/D values for the parents selected in generation 9. In this 

generation, on average, weaker parents were chosen. This apparent anomaly is expected 

to occur because the algorithm is ultimately based on random chance. 

Figure 26 adds photos of individual planform shapes to the results of Figure 25. 

Wings with the highest L/D values for the first, ninth, eleventh, and twelfth generations 

and lowest L/D values for the first, fifth, ninth, and twelfth generations are shown. 

The shapes of Figure 26 a-d are very similar and will be discussed later, but one 

can attribute these small changes to mutations that occurred in the mating process. The 

lowest L/D planforms shown in Figure 26 e-h have a more dramatic variation in planform 

shape showing crossover effects that were at work. One could also note large trailing 

edge serrations (discussed as a possible candidate feature in Section 1) are present for 

example in Figure 26 g) and h).   
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The lowest L/D wings may be useful for MAV design if the possibility of 

‘morphing’ wing shapes during MAV flight at different flight conditions is considered. 

Consider a descent/landing condition where one wants to descend as quickly as possible. 

To accomplish this one would want to lower L/D to minimum values.  The wings in 

Figure 26 e-h may be suited for this application, where one could ‘morph’ the wing 

planform shape from the high L/D shapes to the low L/D shapes in flight at the start of 

the descent. 

 

a) c) d) b) 

e) g) h) f) 

Figure 26. L/D Trends with Certain High and Low Individuals Shown 
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3.2 Wing Evolution 
The first generation of 72 individuals was a very diverse population 

encompassing a large portion of the solution space. Figure 27 shows a sampling of eight 

individuals from this generation. One can see the large variation in the planform shapes. 

For example Figure 27 a) shows a large notch in the planform at the third gene. Figure 27 

b) shows a large span near the wing leading edge and then monotonically increasing 

feather lengths. Figure 27 c) and d) show large thin notches as well as smaller thicker 

notches. Figure 27 e) and f) might be characterized has having large amplitude serrations. 

Figure 27 g) shows a wing with a small but wide trailing notch. Figure 27 h) shows a 

very large trailing edge gap near the leading edge in addition to a small notch near the 

trailing edge. 

 

a) b) c) d) 

e) f) g) h) 

Figure 27. Selected Individuals from First Generation 
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As previously stated, the first generation yielded a comparatively strong 

individual. This individual, whose seven genes are (7 7 3 2 2 0 0), is pictured in Figure 

28. 

4th gene 
4 2x =  

 

Figure 28. Individual 7 7 3 2 2 0 0 

This individual was chosen as a parent for generation 2. In successive generations 

3-6 this individual became selected as a parent more and more often at 2, 3, 4, and 6 

times for generation 3, 4, 5 and 6 respectively. For reference, data for each generation is 
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available in Appendix B.  In the seventh generation ( 7n = ) a slightly stronger wing was 

created as a child. This occurred when the strong wing from Figure 28 bred with an 

identical individual. Without mutation the child from these identical parents would have 

been identical to the parents. A slight mutation of the 4th gene yielded an individual with 

genes (7 7 3 3 2 0 0) shown in Figure 29 that had a slight advantage in the lift to drag 

ratio. 

 

4th gene 
4 3x =  

Figure 29. Individual 7 7 3 3 2 0 0 
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In the 8th generation, the individual in Figure 28 again bred with an identical 

individual to create an even stronger individual (7 7 3 2 1 0 0) through a random mutation 

of the 5th gene (see Figure 30). All three of these wings are very similar in shape and only 

slightly different in performance.  

5th gene 
5 1x =  

 

Figure 30. Individual 7 7 3 2 1 0 0 

 Generations 9-12 experienced a similar dynamic found in generations 3-6, where 

the best performing wing was selected more and more frequently as a parent. In 
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generations 9, 10, 11 and 12 individual (7 7 3 2 1 0 0) was selected 3, 6, 9, and 9 times 

respectively. 

3.3 Comparison to Zimmerman Shaped Wings 
In order to validate our experimental L/D data, we must present results comparing 

one of our wing shapes to existing literature. A Zimmerman planform has been used as a 

MAV wing shape fairly extensively. Torres and Mueller investigate the characteristics of 

low aspect ratio wings at low Reynolds numbers34. One of the wings investigated was a 

Zimmerman planform with an aspect ratio of 2 and a root chord of 8 inches. The wing 

was tested at a Reynolds number of 70,000 and 100,000. In this section, we will present 

results from our work, where our feather wing test model is set up in order to closely 

approximate a Zimmerman planform. L/D and other characteristics are then compared to 

the published data.  

The test wing in its full Zimmerman representation is shown in Figure 31 (all its 

feathers fully extended). The Zimmerman model uses two half ellipses pieced together at 

the quarter chord point to form a continuous planform shown as the shaded region in 

Figure 32. L/D data was collected from the Zimmerman test wing and compared to 

published data on the Zimmerman planform34. 

Figure 33 shows that the published L/D values for the Zimmerman planform are 

significantly higher than the Zimmerman representation achieved with the test wing over 

a wide range of angles of attack. There are a few key differences between the wings in 

the two studies that might account for the lower L/D values. 
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Figure 31. Test Wing Zimmerman Representation 

 

Figure 32. Zimmerman Planform 
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Figure 33. Published L/D Values for Zimmerman Representation and Published Zimmerman Data 
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Figure 34. Local Chordlength versus Normalized Span Distance 

 To illustrate the difference in planform areas, Figure 34 shows the chordlength 

versus the spanwise distance for the test wing Zimmerman representation and the 
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published Zimmerman wing. The chordlength is the distance from the leading edge to the 

trailing edge of the wing. The spanwise distance is perpendicular to the chordlength and 

is measured from the root of the wing. For comparison, the chordlength and the spanwise 

distance are normalized with the root chordlength and the half span value respectively. 

Because of the different root chordlengths of the test wing and the published Zimmerman 

data, the published Zimmerman wing was normalized in order to give the published 

Zimmerman and the Zimmerman representation the same planform area. From Figure 34 

one can see the discrepancy between the published Zimmerman and the Zimmerman 

representation near the root of the wing. This area is critical in lift production. A plot of 

the lift coefficients in Figure 35 shows that the published data for the Zimmerman is 

significantly higher than that of the test wing representation for all angles of attack. 
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Figure 35. Published Lift Coefficients for Zimmerman Planform and Test Wing Representation 
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 Although the wing was created with the Zimmerman planform in mind, certain 

design challenges prohibited the full planform from being realized. Geometric limitations 

made it extremely difficult to add a variable length feather in the design to create this 

added wing root area. This is because this feather would have needed to have been 

essentially aligned with the flow direction and therefore would have made it difficult to 

pass this feather outside the test section so it could be adjusted, etc. Future design work 

might incorporate a fixed feather that eliminates this area difference. Figure 36 shows the 

test wing with the additional area shown. Had it been possible to construct a wing to 

accomplish this difference, lift values might have been significantly increased. 

 

Additional Fixed 
Wing Area 

Figure 36. Test Wing with Additional Area 
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 However, differences in wing area and root wing chordlength cannot completely 

account for the L/D discrepancy. Additionally, the test wing was not an exact flat plate as 

was the case in the published data. This was due to the overlapping lexan feathers that fit 

into the feather’s housing. This configuration also increased the thickness to chord ratio 

of the wing in excess of 3.6% as opposed to the published 1.96% in Torres and Mueller34, 

an 84% increase. A thicker wing will yield a higher drag coefficient and consequently a 

lower L/D value. Even streamlining the feathers so that no blunt edges or steps from 

feather to feather were present, there was no way to avoid these increases in drag. To 

confirm the drag increase a comparison of drag coefficients of the test wing’s 

Zimmerman representation with published Zimmerman data is shown in Figure 37. 
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Figure 37. Published Drag Coefficients for Zimmerman Planform and Test Wing Representation 
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One can see the slight increase in the drag coefficient at low angles of attack. This 

slight difference is actually comparatively large when L/D is calculated. At 4 degrees 

there is a measured 32% increase in the drag coefficient for the Zimmerman 

representation. This angle of attack is very close to the test angle of attack of 4.6 degrees. 

In addition Figure 37 shows that at larger angles of attack, the published Zimmerman 

wing has a higher drag coefficient. One can imagine that the small area missing from the 

test wing representation may have decreased the amount of drag experienced by the test 

wing. 

 The published data in Torres and Mueller34 was taken at a Reynolds number of 

100,000 whereas this study occurred at Reynolds numbers ranging from approximately 

160,000 to 180,000. A difference in Reynolds number could create slightly different L/D 

values for the same wing. Published data on the Zimmerman planform shows that in 

general there is a small increase in L/D when decreasing the Reynolds number from 

100,000 to 70,000. Perhaps lowering the Reynolds number from the current range to 

approximately 100,000 would increase the L/D values of the test wings. 

 Because the test wing is a half wing there is also the possibility of some 

interaction between the wing tip vortices and the wall. The wing tip vortices are created 

at the wing tip due to the difference in pressure on the upper and lower surfaces of the 

wing. If these wing tip vortices were large enough, there might be a slight difference in 

the L/D values had the wing been a full wing placed in the center of the wind tunnel in 

order to eliminate this potential effect. However, other wind tunnel investigations have 

also used half-span MAV wings near test section walls. 
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3.4 Comparison of Best Wing to Zimmerman Representation 
 Next we will compare the best wing to the Zimmerman representation as an 

appropriate reference point. One can clearly see the improved performance over a wide 

range of angles of attack achieved by the best solution (Figure 30). Comparing the drag 

coefficients in Figure 39 one can see the two are extremely similar. In Figure 40 one sees 

that the best solution has a higher lift coefficient, accounting for the slight increase in 

L/D. 

 Also present in Figure 38 is L/D data for a recent MAV developed at the 

University of Florida35. Similar to the published data on the Zimmerman planform, data 

from the University of Florida shows significantly higher L/D values over large ranges of 

angles of attack. However, this planform is cambered to provide additional lift and uses 

wingtip endplates to diminish the effects of induced drag. Furthermore, the missing root 

wing area shown in Figure 36 and thickness effects increase the discrepancy in L/D. 

 In future work the test wing might be modified to incorporate camber. Once an 

optimal wing is found it should be constructed as a true cambered plate as opposed to the 

feather approach used in the work. These cambered plates could be full-span wings 

placed in the center of the wind tunnel attached to a separate force balance (Blanchard, et 

al.25) to eliminate any potential interaction from the wall. L/D data from these wings 

could then be compared fairly to the data presented from the University of Florida. 
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Figure 38. L/D versus Angle of Attack for the Best Solution and the Zimmerman Representation 
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Figure 39. Drag Coefficient versus Angle of Attack for the Best Solution and the Zimmerman 
Representation 
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Figure 40. Lift Coefficient versus Angle of Attack for the Best Solution and the Zimmerman 
Representation 

 Figure 40 also shows two lines representing the lift coefficients of two different 

aspect ratio wings according to flat plate finite wing theory. Flat plate finite wing theory 

predicts both lift coefficients over all ranges of angles of attack that are higher than those 

measured with the test wing. Because flat plate theory uses an elliptically shaped wing, 

which yields the maximum amount of lift, it is not surprising that the best solution and 

Zimmerman representation yield lower lift coefficient values. 

 Additionally, the large discrepancy between the theoretical lift coefficients and 

the test lift coefficients brings into question the validity of the theoretical lift coefficient 

equations at low Reynolds numbers. As discussed earlier, low Reynolds numbers can 

have an impact on the lift and drag coefficients. It is possible that although the theory 
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claims to encompass all Reynolds numbers, perhaps it is actually invalid at the low 

Reynolds numbers experienced in this work. 

 A standard lift coefficient versus drag coefficient curve is shown in Figure 41. 

One can see the parasitic drag, the portion of drag created at no lift, which is 

approximately .0233 for the best solution. In addition a plot of L/D of 3.28 for the best 

wing shows that from approximately 4-10 degrees, L/D remains nearly constant. 
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Figure 41. Lift Coefficient versus Drag Coefficient for the Best Solution and the Zimmerman 

Representation 
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Cd Versus Cl2
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Figure 42. Cl2 versus Cd for Best Wing and Zimmerman Representation 

 Figure 42 shows the lift coefficient squared versus the drag coefficient. This plot 

is useful in determining the Oswald efficiency factor. The slope, taken as 

from a linear regression of the best solution, can be used in the following 

relation between the slope and the Oswald efficiency factor: 

6897.00 =K

ARe
K

π0
0

1
=      (13) 

In this equation is the Oswald efficiency factor. With and aspect ratio of 2.6 the 

Oswald efficiency factor is 0.177. This value is comparatively lower than standard values 

of between 0.5 and 1.0. Due to the lower lift coefficients achieved by the test wing in 

0e

Figure 40 one would expect the slope of the curve in Figure 42 to increase. From 

equation 13 as the slope  increases the Oswald efficiency factor  decreases possibly 

accounting for the lower than expected value of . In Torres and Mueller an aspect ratio 

0K 0e

0e
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of 2 yields an Oswald efficiency number of 0.43, a reasonable value for MAV wings34.  If 

the lift coefficients in Figure 40 were larger as theory predicted, perhaps the Oswald 

efficiency factor would more closely resemble the published value. 
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Figure 43. Local Chordlength versus Normalized Span Distance for Best Wing Planform 

 Figure 43 shows the local chordlength versus the normalized span for the best 

wing planform found from the genetic algorithm as compared to the Zimmerman 

representation. One can see the large difference in wing shape. While the best wing shape 

closely follows the shape of the Zimmerman near the wing tip and the wing root, it 

diverges in the middle. There is also an interesting region from 85.0
2/

7.0 <<
b

z  where 

the chordlength remains constant. Although not as pronounced, there is a smaller constant 

region from 6.0
2/

45.0 <<
b

z . A possible result of this study may be that wings with 
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constant chordlength regions near the wingtip yield higher L/D values, but this requires 

further study. 

3.5 Discussion 
 Next we will conclude the results section with a general discussion of issues 

encountered that may have had an effect on the wing performance. In this section 

possible changes in measured L/D values due to changes in aspect ratio and Reynolds 

number will be estimated through calculations based on simple aerodynamic theory and 

previously published work. Numerical values for important aerodynamic parameters, 

such as parasitic drag coefficient, will be extracted from the measured data in the present 

study when necessary. Additionally, the effect of small gaps in the feather lengths will be 

investigated. 

The aspect ratio of the wing changed with every individual tested. It is possible 

that this made a large enough impact such that the differences in L/D values attained 

from the changing planform shapes were merely a result of the changing aspect ratio. 

From Figure 40 flat plate theory tells us that there should be an increase of approximately 

7% when increasing the aspect ratio from 2.22 to 2.6 for all angles of attack. However, 

the difference in the lift coefficient between the best wing (AR=2.6) and the Zimmerman 

representation (AR=2.22) at 4 degrees is 21%, three times higher than the theoretical 

change due to the aspect ratio. This may imply the changes in lift coefficient values are 

not solely due to aspect ratio effects. 

 The aspect ratio also has an effect on the induced drag. The induced drag is given 

by equation 14. 

2

0
Di

ClC
e ARπ

=      (14) 
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The total drag, which is a combination of the induced drag and the parasitic drag 0DC  

(the drag experienced when there is no lift) is given be equation 15. The value for 0DC  

was 0.0233 for the best wing (see Figure 41). 

2

0
0

D D
ClC C

e ARπ
= +     (15) 

Due to the dependence of these drag equations on the lift coefficient the aspect ratio had a 

varying effect on the calculated drag coefficients at different angles of attack. For angles 

of attack of 0-10 degrees this change remained less than 4%. 

 At and angle of attack of 4 degrees with a 7% calculated increase in lift 

coefficient and a 2% calculated increase in drag coefficient, there is a calculated 5% 

increase in L/D, approximately half of the difference obtained in the wind tunnel 

experiment between the Zimmerman representation and the best wing solution and 40% 

of the 12.6% increase in the average L/D values over the 12 generations in Figure 25. 

These estimates suggest that changes in L/D during the genetic algorithm study are 

largely due to planform shape variations and not due to variations in aspect ratio. 

 As previously mentioned in Section 3.3 there is a difference in Reynolds number 

between the best solution (Re=182,000) and the Zimmerman representation 

(Re=161,000) due to the change in the chordlength. This difference (11.5%) is much 

smaller than the difference in Reynolds number studied in Torres and Mueller34, where a 

30% decrease in Reynolds number was studied. Specifically, at 4 and 5 degrees there was 

an increase in L/D of 3% and a decrease 2% respectively in Torres and Mueller34. 

Because of the small magnitude of these changes and the comparatively smaller variation 
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of Reynolds number studied in this work, one would not expect to find a significant effect 

from the change in Reynolds number in this work. 

 

 Visible Gaps 

Figure 44. Visible Feather Gaps 

 Upon close observation of the test wing one can see that when looking in the 

direction of the flow there is a small vertical gap between some of the feathers shown in 

Figure 44, through which air could possibly flow. References 36 and 37 have studied 

these effects as they pertain to drag reduction in birds; however these studies incorporate 

much larger feather gap distances. There is a possible question of whether or not the 

small gaps seen in Figure 44 have an effect on the lift to drag ratio experienced. In order 
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to investigate this, small pieces of tape were used to close the gaps in between the 

feathers. The wing was tested five times in the wind tunnel under these conditions and 

compared to five tests without the tape. 

 From Table 4 there is a small increase in the average lift to drag of approximately 

1.4%. One can see that both the lift and the drag are reduced once the tape is added. 

Overall however, the drag decreases enough to increase the lift to drag ratio. The amount 

of the increase is small and a within total standard deviation error bars as shown in Figure 

45. 

 
Table 4. Best Solution with and without Tape 

  
Without 

Tape With Tape 
Average L/D 3.281 3.314
Average Lift 47.980 45.960
Average Drag 14.684 13.939
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Figure 45. Comparion of  Best Wing with and without Tape Covering Feather Gaps 
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Chapter 4: Conclusions 
 The main results of the study are summarized as follows: 

• A wind tunnel study using genetic algorithms was conducted to optimize wing 

planforms shapes for MAV’s. 

• A novel ‘feather wing’ concept was conceived, fabricated and implemented. This 

feather wing used variable feather lengths to vary wing planform shapes on a half-

span MAV wing. 

• A single run of a developed genetic algorithm involving 12 generations and 

comprising of over 300 wing shape solutions that were experimentally tested in 

the wind tunnel was conducted. The genetic algorithm used the roulette wheel 

method, a modified random pairing method, random crossover, and a random 

mutation of 20% as a means of parent selection, pairing, mating, and child 

mutation rate. 

• The genetic algorithm yielded a best wing with a peak L/D value of 3.28 at 4.6 

degrees angle of attack. Typical L/D values for MAV’s range from 4.0-7.0. The 

best individual resulted from minor mutations of a very strong individual present 

in the initial population. However, restrictions in the test wing fabrication made it 

difficult to fairly compare the best wing planform with previously published data. 

Specifically an area near the trailing edge root of the wing was not present. This 

region is responsible for a sizeable amount of lift. Additionally, the test wing was 

unable to represent a true flat plate due to the feather concept adopted. 

• The genetic algorithm proved to be a strong optimization tool for experimentally 

obtained results. The increase in the average L/D values in successive generations 
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and the plateau reached showed that the wing was improving until the best 

planform was overwhelmingly dominant throughout the population. 

• Due to the large number of wings tested, had a computational fluid dynamics 

approach been used, the setup and test time would have been much longer. Once 

testing began the progression of the genetic algorithm was relatively quick and the 

experimentally obtained results proved to be efficient, further justifying the use of 

experimentally obtained results while using a genetic algorithm. 

• Important aerodynamic parameters of the wing were also calculated for the basis 

of comparison. The parasitic drag coefficient  was 0.0233. The Oswald 

efficiency factor  was 0.177.  

0C

0e

• The best solution, although not a trailing edge notch, was an unprecedented shape 

that is currently not in use, containing a constant chordlength region near the wing 

tip. This underlines one of the strong points in the use of genetic algorithms in 

that it is not confined to any predisposed shape that design engineers may be 

accustomed to. 

• Low L/D planform were also found. These planforms had large trailing edge gaps 

and large amplitude serrations. These planforms could be used in morphing wing 

technology. With micro-servos these morphing wings could employ a feather-

wing concept to change planforms in flight. 

• Due to the discrepancy between the published Zimmerman data and the test wing 

representation of the Zimmerman planform, further research is recommended in 

comparing the results found in the research to published data. One might make a 

true flat plate representation of a few of the strongest solutions found in this 
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research and tediously match the conditions in published work. This would 

eliminate the discrepancies and allow us to determine if indeed a stronger micro 

aerial vehicle planform has been achieved. 

• More future work might include additional runs of the genetic algorithm with 

different random initial populations to determine if the best wing is indeed the 

global optimum and if any other interesting solutions appear. 

• Studies of a multivariable fitness function should also be made. Here other 

aerodynamic performance parameters such as lift coefficient, quarter chord 

moment, etc could be combined with L/D to establish a more complex fitness 

function. 

• Additionally, CFD studies may be conducted in the future to study the flow 

physics of the best wing solutions. Perhaps insight on how the constant chord 

region found near the wingtip affects flow dynamics leading to higher L/D values 

can be found. 
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Appendices 

Appendix A: MatLab Program Description 
 A Matlab script was created in order to carry out the genetic algorithm. In 

addition, a small Matlab script was used to create the initial population. The code for 

each program as well as an explanation is presented in the following section. 

 
InitialPopulationProgram.m 
 

popsize=72; 
POP=rand(popsize,7); 
A=[8, 8, 6, 6, 5, 4, 3]; 
for i=1:7 
    POP(:,i)=A(i)*POP(:,i); 
end 
InitPopulation=floor(POP); 
xlswrite('InitialPopulation.xls', InitPopulation) 
 
 

This is a short program that makes the initial population. The variable “popsize” 

is the number of individuals in the population. The second line makes a two dimensional 

array with “popsize” number of rows and seven columns, one for each gene of an 

individual. The vector A is the total number of increments for each feather that was 

previously shown in Table 3. The population is comprised of random numbers. By 

default a random number generator returns a value between zero and one. By multiplying 

the random number by the appropriate value of vector A, and using the floor function to 

truncate the value, the correct integer values were obtained for each gene position. 

Finally, the initial population is exported to an Excel spreadsheet with a portion of the 

sheet shown in Table 5. On this spreadsheet it is necessary to assign a fitness value in the 

last column. This is the lift to drag ratio minus a constant. Once these values are added to 

the spreadsheet, a different program will create the next generation of individuals. 
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Table 5. Blank Initial Population Spreadsheet 
 Position Number Fitness 
Chromosome 
# (1) (2) (3) (4) (5) (6) (7) Function

1                 
2                 
3                 
4                 
5                 
6                 
7                 
8                 
9                 

10                 
11                 
12                 
13                 
14                 
15                 
16                 
17                 
18                 
19                 
20                 
21                 
22                 
23                 
24                 
25                 
26                 
27                 
28                 
29                 
30                 
31                 
32                 
33                 
34                 
35                 
36                 
37                 
38                 
39                 
40                 
41                 
42                 
43                 
44                 
45                 
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46                 
47                 
48                 
49                 
50                 
51                 
52                 
53                 
54                 
55                 
56                 
57                 
58                 
59                 
60                 
61                 
62                 
63                 
64                 
65                 
66                 
67                 
68                 
69                 
70                 
71                 
72                 

 

GeneticAlgorithm.m 
 
close all 
clear all 
PopNum=24; 
nParents=PopNum/2; 
A=[8, 8, 6, 6, 5, 4, 3]; 
numgen=input('Enter the generation worksheet number for you current 
population\n') 
expectation = xlsread('Populations.xls', numgen, 'I2:I25');%reads 
fitness values 
parents = selectionroulette(expectation,nParents) 
 
OldPop=xlsread('Populations.xls', numgen, 'B2:H25') 
NewPop=zeros(PopNum,7); 
for i = 1:nParents                                   
    n=parents(i);                                       
NewPop(i,:)=OldPop(n,:);                         
end 
  
for k = 1:nParents/2                                 
for i = 1:2                                          
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    for j = 1:7 
        r=rand; 
        if(r < .5)                                           
            NewPop(nParents+2*(k-1)+i,j) = NewPop(2*(k-1)+1,j); 
        else 
            NewPop(nParents+2*(k-1)+i,j) = NewPop(2*(k-1)+2,j); 
        end 
        r=rand;                                            
        if(r<.2) 
            r=floor(rand*A(j)); 
            NewPop(nParents+2*(k-1)+i,j) =r; 
        end 
         
    end 
end 
end 
numnewgen=numgen+1 
xlswrite('Populations.xls', NewPop, numnewgen, 'B2:H25'); 
 
 This is the main program. First the program asks what generation number you are 

currently working with. In the spreadsheet each sheet in the workbook is a different 

generation. The first sheet is the first generation and so on. The program then reads the 

fitness values and sets them to the array “expectation”. The parents are then selected 

using a roulette wheel program taken from Matlab’s preexisting Genetic Algorithm and 

Direct Search Toolbox called “selectionroulette.m”. An explanation of that code is shown 

later. The roulette wheel program returns the numbers of the chromosomes selected as 

parents. Using a “for loop” the program then takes the existing population and copies the 

parents into the next generation, occupying half the vacancies. The next loop takes each 

pair of parents and through a random number generator determines which parent 

contributes each gene. After this for loop is another for loop to account for the chance of 

mutation in every gene. Lastly the parents and their new offspring are exported to the 

next sheet in the spreadsheet as the next generation. 

 It is important to note that the random number generator is a deterministic 

program. Unfortunately, this means that the random numbers generated aren’t entirely 

random. When starting Matlab to create the next population if I were to only run the 
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genetic algorithm once, it would give me the same parents and children every time. In 

order to accommodate for this two dice were rolled to determine how many times to run 

the genetic algorithm before the next generation given was the generation used. 

 The selection roulette program mentioned previously is short but very clever.  

Selectionroulette.m 
 
function parents = selectionroulette(expectation,nParents) 
 
wheel = cumsum(expectation)/sum(expectation); 
parents = zeros(1,nParents); 
for i = 1:nParents 
    r = rand; 
    for j = 1:length(wheel) 
        if(r < wheel(j)) 
            parents(i) = j; 
            break; 
        end 
    end 
end 
 
The program first takes the fitness values and calculates the cumulative sums. A 

cumulative sum takes a series of numbers and adds all the numbers before it in the series 

to get the cumulative sum. A simple example is shown in Table 6. 

Table 6. Cumulative Summation Example 
series cumsum  series cumsum  series cumsum  series cumsum  series cumsum

1 1  1 1  1 1  1 1  1 1 
2    2 3  2 3  2 3  2 3 
3    3    3 6  3 6  3 6 
4    4    4    4 10  4 10 
5    5    5    5    5 15 

 
The cumulative sum is then normalized by dividing by the sum of the fitness values. 

Table 7 shows the series after is has been normalized. Additionally, a pie chart shown in 

Figure 46 represents the roulette wheel created from this example. 
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Table 7. Normalized Cumulative Summation 
Individual Fitness Value cumsum

1 1 0.067 
2 2 0.2 
3 3 0.4 
4 4 0.667 
5 5 1 

 

Roulette Wheel for Given Example

1

2

3

4

5

 
Figure 46. Cumulative Sum Roulette Wheel 

 
A random number is chosen to determine which parent is selected. If the random number 

falls between the appropriate cumulative sums, that parent is selected. For instance from 

Table 7, if the random number was between 0.000 and 0.067 then the first parent is 

selected. If the number is between 0.667 and 1.000 then the fifth parents is chosen. One 

can see that with the series given, the fifth parent does indeed have the best chance of 

being chosen, followed by the fourth, etc. 
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Appendix B: Wing Generation Data 
Generation 1 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 7 6 0 5 3 3 2 0.17 2.771 12.772 12.344 14.689 11.8 28.9 40.7
2 1 4 1 3 2 2 2 0.39 2.986 12.815 12.379 15.303 14.4 31.3 45.7
3 4 2 3 5 0 2 2 0.17 2.773 12.788 12.372 14.280 11.6 28.0 39.6
4 3 5 3 0 3 0 1 0.35 2.954 12.797 12.375 14.761 13.3 30.3 43.6
5 7 4 2 0 1 1 0 0.36 2.960 12.766 12.379 13.546 12.2 27.9 40.1
6 6 3 3 4 0 1 1 0.16 2.756 12.771 12.375 13.570 10.7 26.7 37.4
7 3 5 2 2 2 0 2 0.45 3.053 12.808 12.378 15.199 14.9 31.5 46.4
8 0 4 0 5 4 3 2 0.22 2.820 12.825 12.385 15.177 12.8 30.0 42.8
9 6 6 0 4 3 3 0 0.28 2.881 12.799 12.37 14.892 13.3 29.6 42.9

10 3 7 1 4 4 1 2 0.23 2.830 12.812 12.374 15.124 12.3 30.5 42.8
11 4 4 0 2 4 3 1 0.18 2.784 12.796 12.381 14.261 12.7 27.0 39.7
12 6 7 2 0 0 0 2 0.50 3.101 12.774 12.381 13.963 13.6 29.7 43.3
13 7 1 4 0 1 3 2 0.11 2.709 12.775 12.381 13.436 9.9 26.5 36.4
14 5 7 0 1 2 3 0 0.42 3.022 12.795 12.379 14.657 13.7 30.6 44.3
15 1 2 0 2 1 1 1 0.41 3.012 12.803 12.403 14.078 13.0 29.4 42.4
16 3 2 3 5 2 2 0 0.24 2.844 12.799 12.375 14.662 12.5 29.2 41.7
17 7 7 3 2 0 3 2 0.35 2.949 12.786 12.365 14.718 13.1 30.3 43.4
18 7 5 0 4 2 2 1 0.27 2.870 12.777 12.375 13.939 11.8 28.2 40.0
19 3 1 0 2 3 0 0 0.26 2.859 12.806 12.403 13.957 11.4 28.5 39.9
20 7 0 1 2 4 1 2 0.05 2.646 12.775 12.379 13.417 8.9 26.6 35.5
21 0 7 3 2 3 0 2 0.27 2.866 12.819 12.379 15.250 12.9 30.8 43.7
22 2 1 0 2 3 1 0 0.33 2.925 12.803 12.407 13.810 11.8 28.6 40.4
23 6 2 2 5 2 1 0 0.14 2.745 12.784 12.388 13.554 10.3 26.9 37.2
24 0 5 3 0 3 1 2 0.31 2.907 12.824 12.397 14.863 13.1 30.1 43.2
25 1 2 4 1 4 2 0 0.49 3.085 12.777 12.395 13.549 12.3 29.5 41.8
26 1 3 4 0 0 0 2 0.39 2.991 12.803 12.407 13.907 12.6 29.0 41.6
27 1 0 0 4 4 1 2 0.18 2.781 12.826 12.399 14.670 11.5 29.3 40.8
28 4 7 2 3 4 2 2 0.39 2.990 12.815 12.374 15.485 14.1 32.2 46.3
29 2 4 2 5 3 0 0 0.33 2.927 12.821 12.389 15.068 13.2 30.9 44.1
30 1 3 2 3 1 2 1 0.39 2.989 12.824 12.4 14.887 14.3 30.2 44.5
31 0 4 0 2 4 0 0 0.34 2.942 12.801 12.403 13.904 11.6 29.3 40.9
32 5 2 4 1 2 2 2 0.23 2.827 12.804 12.391 14.256 12.1 28.2 40.3
33 3 3 4 3 3 2 1 0.34 2.942 12.816 12.387 14.988 13.6 30.5 44.1
34 7 1 4 4 2 1 0 0.30 2.902 12.798 12.388 14.264 12.6 28.8 41.4
35 3 4 2 2 4 2 1 0.28 2.881 12.818 12.387 14.961 12.6 30.5 43.1
36 3 6 3 0 0 3 2 0.33 2.929 12.805 12.392 14.409 12.7 29.5 42.2
37 6 4 0 2 2 1 1 0.40 3.004 12.787 12.396 13.749 12.8 28.5 41.3
38 4 5 2 4 1 1 0 0.48 3.083 12.811 12.392 14.857 14.6 31.2 45.8
39 1 1 4 4 4 1 0 0.27 2.866 12.848 12.398 15.597 13.4 31.3 44.7
40 5 3 5 5 1 1 0 0.33 2.933 12.803 12.383 14.660 13.6 29.4 43.0
41 6 6 1 5 3 1 1 0.33 2.927 12.814 12.383 15.033 13.4 30.6 44.0
42 0 5 1 2 0 1 0 0.52 3.125 12.817 12.41 14.497 14.7 30.6 45.3
43 5 3 5 3 1 2 1 0.21 2.811 12.799 12.386 14.232 11.5 28.5 40.0
44 3 4 1 4 2 2 0 0.51 3.108 12.803 12.394 14.542 14.6 30.6 45.2
45 6 6 4 1 2 1 2 0.38 2.980 12.801 12.383 14.662 13.5 30.2 43.7
46 4 0 5 5 2 0 1 0.15 2.751 12.832 12.399 14.830 11.7 29.1 40.8
47 5 4 1 3 3 1 2 0.31 2.907 12.818 12.399 14.585 12.7 29.7 42.4
48 3 0 1 3 0 1 0 0.24 2.836 12.815 12.417 13.752 11.4 27.6 39.0
49 2 3 0 1 4 0 1 0.18 2.782 12.819 12.41 14.053 10.6 28.5 39.1
50 1 2 0 3 3 2 2 0.30 2.897 12.831 12.411 14.603 12.7 29.6 42.3
51 1 6 3 5 3 2 0 0.30 2.895 12.846 12.391 15.818 14.0 31.8 45.8
52 5 0 1 2 4 1 2 0.09 2.686 12.802 12.408 13.404 9.1 26.9 36.0
53 2 6 5 3 3 1 0 0.29 2.891 12.805 12.39 14.422 12.4 29.3 41.7
54 4 7 1 2 1 2 0 0.60 3.204 12.818 12.407 14.764 15.7 31.6 47.3
55 1 7 1 3 1 3 0 0.60 3.196 12.807 12.406 14.393 15.2 30.8 46.0
56 5 6 5 4 3 3 2 0.29 2.890 12.837 12.381 15.845 14.1 31.7 45.8
57 3 3 2 2 2 1 0 0.56 3.156 12.809 12.41 14.259 14.8 30.2 45.0
58 6 3 2 2 0 3 0 0.32 2.915 12.787 12.403 13.378 11.7 27.3 39.0
59 6 1 1 3 0 1 2 0.15 2.746 12.799 12.415 13.145 10.0 26.1 36.1
60 4 5 2 5 1 3 0 0.31 2.911 12.831 12.399 15.044 13.1 30.7 43.8
61 3 2 2 2 2 3 1 0.28 2.875 12.819 12.413 14.085 12.0 28.5 40.5
62 7 7 3 2 2 0 0 0.63 3.231 12.813 12.393 15.133 16.7 32.2 48.9
63 6 5 0 3 4 1 2 0.23 2.833 12.825 12.403 14.577 12.3 29.0 41.3
64 5 3 0 3 2 2 2 0.23 2.831 12.817 12.412 13.987 11.6 28.0 39.6
65 6 5 2 4 1 2 2 0.35 2.954 12.819 12.4 14.657 13.3 30.0 43.3
66 5 2 5 3 2 2 1 0.22 2.824 12.829 12.401 14.769 12.6 29.1 41.7
67 2 3 5 4 2 1 0 0.37 2.970 12.847 12.402 15.592 14.8 31.5 46.3
68 2 7 1 2 0 1 0 0.49 3.087 12.832 12.411 14.935 15.1 31.0 46.1
69 2 5 0 1 4 0 0 0.34 2.937 12.811 12.416 13.792 11.6 28.9 40.5
70 4 1 5 4 4 1 0 0.18 2.781 12.848 12.399 15.426 12.5 30.4 42.9
71 5 6 1 5 2 1 2 0.34 2.938 12.818 12.396 14.737 13.0 30.3 43.3
72 2 5 3 4 0 1 2 0.40 2.999 12.832 12.407 14.937 14.1 30.7 44.8

Position Number
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Generation 2 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 3 5 2 2 2 0 2 0.31 3.111 12.828 12.408 14.849 15.0 31.2 46.2
2 0 5 3 0 3 1 2 0.13 2.926 12.835 12.413 14.629 12.9 29.9 42.8
3 2 5 3 4 0 1 2 0.17 2.974 12.822 12.407 14.459 13.0 30.0 43.0
4 3 3 4 3 3 2 1 0.18 2.978 12.855 12.410 15.512 15.1 31.1 46.2
5 3 3 2 2 2 1 0 0.39 3.187 12.811 12.414 14.150 14.9 30.2 45.1
6 6 5 0 3 4 1 2 0.02 2.817 12.813 12.405 13.985 11.0 28.4 39.4
7 0 4 0 5 4 3 2 0.02 2.818 12.859 12.416 15.186 12.8 30.0 42.8
8 1 1 4 4 4 1 0 0.11 2.914 12.855 12.417 15.166 13.4 30.8 44.2
9 7 7 3 2 2 0 0 0.42 3.215 12.816 12.401 14.836 15.7 32.0 47.7

10 4 5 2 4 1 1 0 0.32 3.124 12.828 12.412 14.726 15.1 30.9 46.0
11 6 6 4 1 2 1 2 0.22 3.018 12.814 12.407 14.247 13.2 29.8 43.0
12 7 5 0 4 2 2 1 0.09 2.894 12.803 12.404 13.786 12.0 27.9 39.9
13 5 5 2 4 2 0 2 0.25 3.053 12.822 12.408 14.545 14.0 30.4 44.4
14 0 5 2 0 3 0 2 0.15 2.953 12.839 12.425 14.393 12.8 29.7 42.5
15 3 5 3 3 3 1 2 0.27 3.068 12.836 12.408 15.061 14.7 31.5 46.2
16 0 3 3 5 3 2 1 0.08 2.879 12.848 12.414 14.971 12.8 30.3 43.1
17 3 3 2 3 2 1 1 0.24 3.042 12.832 12.418 14.529 14.1 30.1 44.2
18 3 3 0 2 4 1 0 0.04 2.844 12.821 12.422 13.714 10.8 28.2 39.0
19 1 5 4 4 4 3 0 0.18 2.977 12.853 12.399 15.823 14.8 32.3 47.1
20 1 4 0 4 4 3 2 0.10 2.899 12.852 12.411 15.245 13.7 30.5 44.2
21 7 5 3 4 2 0 0 0.23 3.028 12.809 12.400 14.332 13.6 29.8 43.4
22 4 5 3 4 2 0 2 0.23 3.029 12.826 12.404 14.789 14.0 30.8 44.8
23 7 3 0 1 2 2 1 0.06 2.858 12.783 12.412 12.771 10.6 25.9 36.5
24 7 5 0 5 2 1 1 0.13 2.928 12.805 12.407 13.800 12.1 28.3 40.4

Position Number

 

Generation 3 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 0 5 3 0 3 1 2 0.16 2.961 12.832 12.419 14.085 12.5 29.2 41.7
2 4 5 2 4 1 1 0 0.37 3.168 12.812 12.410 14.016 14.0 30.4 44.4
3 7 5 3 4 2 0 0 0.26 3.059 12.808 12.402 13.991 13.4 29.4 42.8
4 7 7 3 2 2 0 0 0.46 3.257 12.828 12.398 15.137 16.8 32.5 49.3
5 3 3 2 2 2 1 0 0.35 3.150 12.826 12.420 14.128 14.6 29.9 44.5
6 7 7 3 2 2 0 0 0.45 3.249 12.829 12.401 15.053 16.5 32.4 48.9
7 3 3 2 3 2 1 1 0.28 3.082 12.821 12.420 13.853 13.4 29.3 42.7
8 3 5 3 3 3 1 2 0.27 3.068 12.839 12.410 14.798 14.3 31.1 45.4
9 4 5 3 4 2 0 2 0.27 3.071 12.826 12.408 14.424 11.8 32.5 44.3

10 1 4 0 4 4 3 2 0.11 2.907 12.842 12.412 14.583 12.7 29.7 42.4
11 4 5 2 4 1 1 0 0.30 3.099 12.825 12.411 14.328 14.1 30.3 44.4
12 0 5 2 0 3 0 2 0.15 2.950 12.836 12.422 14.103 12.4 29.2 41.6
13 0 5 2 4 2 1 2 0.21 3.013 12.836 12.418 14.336 12.4 30.8 43.2
14 0 5 3 0 3 1 2 0.18 2.976 12.838 12.419 14.313 12.9 29.7 42.6
15 3 5 3 4 2 0 0 0.40 3.197 12.817 12.410 14.234 14.5 31.0 45.5
16 7 1 3 4 2 0 0 0.05 2.846 12.801 12.410 13.176 10.5 27.0 37.5
17 3 3 3 2 2 0 0 0.29 3.093 12.824 12.422 13.903 13.5 29.5 43.0
18 3 3 3 3 0 1 0 0.27 3.071 12.808 12.421 13.353 12.7 28.3 41.0
19 3 3 2 3 3 2 1 0.20 2.997 12.836 12.416 14.380 13.4 29.7 43.1
20 3 3 3 3 3 1 1 0.18 2.976 12.835 12.415 14.347 13.1 29.6 42.7
21 4 4 3 4 4 3 2 0.16 2.964 12.847 12.400 15.250 14.2 31.0 45.2
22 1 5 0 4 1 3 1 0.16 2.959 12.832 12.417 14.152 12.6 29.3 41.9
23 0 5 4 4 3 0 2 0.16 2.959 12.862 12.409 15.446 14.2 31.5 45.7
24 4 0 3 0 2 1 0 0.24 3.040 12.804 12.431 12.828 11.9 27.1 39.0

Position Number
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Generation 4 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 3 3 2 3 3 2 1 0.11 3.015 12.842 12.424 14.295 13.5 29.6 43.1
2 3 3 3 2 2 0 0 0.26 3.158 12.807 12.424 13.300 13.3 28.7 42.0
3 0 5 4 4 3 0 2 0.06 2.956 12.855 12.417 14.886 14.0 30.0 44.0
4 0 5 3 0 3 1 2 0.07 2.973 12.834 12.427 13.858 12.4 28.8 41.2
5 3 3 3 2 2 0 0 0.22 3.117 12.812 12.426 13.345 13.1 28.5 41.6
6 7 7 3 2 2 0 0 0.37 3.272 12.815 12.403 14.485 15.9 31.5 47.4
7 4 4 3 4 4 3 2 0.04 2.935 12.836 12.403 14.684 13.1 30.0 43.1
8 7 7 3 2 2 0 0 0.38 3.277 12.826 12.407 14.738 16.6 31.7 48.3
9 4 5 2 4 1 1 0 0.34 3.237 12.806 12.417 13.624 14.4 29.7 44.1

10 3 5 3 4 2 0 0 0.36 3.264 12.819 12.416 14.155 15.4 30.8 46.2
11 0 5 4 4 3 0 2 0.04 2.935 12.853 12.415 14.854 13.1 30.5 43.6
12 7 7 3 2 2 0 0 0.38 3.277 12.820 12.407 14.527 15.9 31.7 47.6
13 3 3 2 2 2 2 1 0.19 3.087 12.832 12.424 14.060 14.3 29.1 43.4
14 3 3 3 2 3 2 1 0.08 2.978 12.838 12.421 14.205 13.0 29.3 42.3
15 0 5 4 4 3 0 1 0.05 2.951 12.861 12.418 15.048 13.6 30.8 44.4
16 0 5 4 2 3 1 2 0.03 2.929 12.831 12.420 13.929 11.8 29.0 40.8
17 1 3 3 3 2 0 0 0.24 3.144 12.827 12.428 13.835 13.8 29.7 43.5
18 3 5 2 2 2 0 0 0.29 3.195 12.848 12.426 14.712 15.6 31.4 47.0
19 4 7 3 1 4 3 0 0.19 3.085 12.839 12.410 14.781 14.4 31.2 45.6
20 3 4 3 2 3 3 2 0.12 3.023 12.852 12.421 14.753 13.6 31.0 44.6
21 4 5 2 4 1 1 0 0.35 3.249 12.806 12.419 13.572 14.3 29.8 44.1
22 3 5 2 4 2 0 0 0.29 3.186 12.812 12.420 13.653 13.8 29.7 43.5
23 0 7 4 2 2 1 0 0.21 3.113 12.841 12.419 14.583 14.8 30.6 45.4
24 0 5 4 2 2 0 2 0.07 2.967 12.846 12.423 14.393 12.8 29.9 42.7

Position Number

 

Generation 5 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 7 7 3 2 2 0 0 0.37 3.273 12.813 12.390 14.637 15.9 32.0 47.9
2 3 3 3 2 2 0 0 0.19 3.086 12.817 12.410 13.804 13.2 29.4 42.6
3 3 3 2 2 2 2 1 0.23 3.127 12.823 12.409 14.102 14.1 30.0 44.1
4 0 7 4 2 2 1 0 0.20 3.103 12.841 12.400 14.984 15.0 31.5 46.5
5 3 3 3 2 2 0 0 0.20 3.101 12.822 12.410 13.995 13.6 29.8 43.4
6 4 5 2 4 1 1 0 0.31 3.212 12.815 12.402 14.197 14.7 30.9 45.6
7 3 3 3 2 2 0 0 0.26 3.156 12.803 12.407 13.531 13.4 29.3 42.7
8 7 7 3 2 2 0 0 0.35 3.254 12.816 12.388 14.781 16.1 32.0 48.1
9 7 7 3 2 2 0 0 0.38 3.276 12.818 12.393 14.712 16.1 32.1 48.2

10 3 5 2 2 2 0 0 0.35 3.250 12.834 12.415 14.463 17.9 29.1 47.0
11 7 7 3 2 2 0 0 0.37 3.269 12.822 12.394 14.805 16.3 32.1 48.4
12 3 5 2 4 2 0 0 0.24 3.137 12.818 12.403 14.152 13.9 30.5 44.4
13 7 3 3 0 2 0 0 0.00 2.889 12.775 12.404 12.323 9.9 25.7 35.6
14 3 3 3 0 0 0 0 0.26 3.156 12.798 12.415 13.087 13.1 28.2 41.3
15 3 3 4 3 2 1 0 0.23 3.134 12.827 12.402 14.487 14.9 30.5 45.4
16 3 3 4 2 2 3 0 0.11 3.013 12.823 12.399 14.269 13.2 29.8 43.0
17 3 7 3 5 2 0 1 0.16 3.059 12.824 12.390 14.677 13.7 31.2 44.9
18 6 5 4 2 2 1 0 0.21 3.106 12.805 12.393 14.003 13.7 29.8 43.5
19 3 7 3 2 2 0 0 0.31 3.212 12.833 12.401 14.851 15.8 31.9 47.7
20 3 7 3 2 2 0 0 0.31 3.213 12.833 12.402 14.817 15.7 31.9 47.6
21 0 3 3 5 2 0 0 0.05 2.954 12.828 12.410 13.980 12.0 29.3 41.3
22 3 5 2 2 2 0 0 0.35 3.253 12.825 12.403 14.571 15.8 31.6 47.4
23 3 5 3 1 2 0 0 0.25 3.148 12.819 12.405 14.135 14.1 30.4 44.5
24 7 5 3 2 2 0 0 0.24 3.136 12.799 12.396 13.742 13.6 29.5 43.1

Position Number
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Generation 6 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 6 5 4 2 2 1 0 0.12 3.123 12.807 12.397 14.090 14.0 30.0 44.0
2 3 3 4 3 2 1 0 0.20 3.201 12.821 12.409 14.277 15.3 30.4 45.7
3 3 5 2 2 2 0 0 0.27 3.269 12.822 12.411 14.348 15.7 31.2 46.9
4 7 7 3 2 2 0 0 0.28 3.284 12.809 12.391 14.616 16.1 31.9 48.0
5 7 7 3 2 2 0 0 0.29 3.290 12.809 12.392 14.591 16.1 31.9 48.0
6 3 3 3 2 2 0 0 0.06 3.060 12.818 12.415 13.757 13.0 29.1 42.1
7 7 7 3 2 2 0 0 0.28 3.284 12.817 12.392 14.861 16.5 32.3 48.8
8 7 7 3 2 2 0 0 0.28 3.285 12.818 12.394 14.827 16.4 32.3 48.7
9 3 7 3 2 2 0 0 0.21 3.206 12.837 12.407 14.909 15.8 32.0 47.8

10 7 7 3 2 2 0 0 0.26 3.258 12.822 12.396 14.855 16.2 32.2 48.4
11 3 5 2 2 2 0 0 0.25 3.250 12.829 12.413 14.493 15.7 31.4 47.1
12 7 7 3 2 2 0 0 0.25 3.253 12.818 12.392 14.847 16.1 32.2 48.3
13 3 3 3 2 2 1 0 0.10 3.100 12.828 12.413 14.226 14.1 30.0 44.1
14 3 3 5 3 2 1 0 0.06 3.065 12.834 12.406 14.617 14.4 30.4 44.8
15 3 5 2 2 2 0 0 0.28 3.278 12.825 12.412 14.431 15.9 31.4 47.3
16 2 7 2 2 2 0 0 0.22 3.225 12.842 12.410 15.009 16.4 32.0 48.4
17 7 3 3 2 1 0 0 0.01 3.009 12.776 12.406 12.562 10.9 26.9 37.8
18 3 3 3 2 0 0 0 0.01 3.007 12.807 12.417 13.238 11.9 27.9 39.8
19 7 7 3 2 2 0 0 0.29 3.285 12.822 12.392 15.038 17.0 32.4 49.4
20 7 7 3 3 2 0 2 0.24 3.239 12.837 12.396 15.345 16.9 32.8 49.7
21 7 4 3 2 2 0 0 0.05 3.045 12.799 12.403 13.496 12.7 28.4 41.1
22 7 7 3 2 2 0 0 0.24 3.244 12.823 12.398 14.797 15.9 32.1 48.0
23 3 7 3 3 2 0 0 0.23 3.227 12.836 12.399 15.186 16.5 32.5 49.0
24 7 5 3 2 0 0 0 0.05 3.052 12.790 12.401 13.268 12.4 28.1 40.5

Position Number

 

Generation 7 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 7 7 3 2 2 0 0 0.27 3.269 12.822 12.394 15.144 16.9 32.6 49.5
2 7 7 3 2 2 0 0 0.27 3.269 12.828 12.401 15.110 16.8 32.6 49.4
3 3 5 2 2 2 0 0 0.25 3.247 12.835 12.418 14.721 16.0 31.8 47.8
4 7 7 3 2 2 0 0 0.24 3.236 12.828 12.402 15.020 16.2 32.4 48.6
5 3 5 2 2 2 0 0 0.24 3.236 12.839 12.421 14.739 15.9 31.8 47.7
6 3 7 3 3 2 0 0 0.22 3.220 12.851 12.408 15.592 17.1 33.1 50.2
7 7 7 3 2 2 0 0 0.23 3.229 12.835 12.407 15.080 16.3 32.4 48.7
8 3 7 3 2 2 0 0 0.16 3.156 12.864 12.429 15.207 15.9 32.1 48.0
9 7 7 3 2 2 0 0 0.26 3.258 12.849 12.420 15.163 16.7 32.7 49.4

10 3 7 3 2 2 0 0 0.18 3.183 12.859 12.427 15.145 16.0 32.2 48.2
11 7 7 3 2 2 0 0 0.24 3.245 12.845 12.418 15.070 16.4 32.5 48.9
12 7 7 3 2 2 0 0 0.25 3.251 12.844 12.419 15.010 16.4 32.4 48.8
13 7 3 3 2 2 0 0 0.00 2.954 12.807 12.432 12.830 11.0 26.9 37.9
14 7 3 3 2 2 0 0 0.00 2.960 12.808 12.432 12.873 11.3 26.8 38.1
15 7 5 3 2 2 0 2 0.05 3.049 12.834 12.426 14.101 13.6 29.4 43.0
16 6 7 2 2 2 0 0 0.27 3.273 12.852 12.424 15.153 16.9 32.7 49.6
17 3 5 1 2 2 0 0 0.20 3.198 12.854 12.440 14.538 15.2 31.3 46.5
18 3 7 0 2 2 0 0 0.12 3.121 12.855 12.440 14.452 14.5 30.6 45.1
19 3 7 0 2 4 0 0 0.00 2.946 12.848 12.435 14.119 11.9 29.7 41.6
20 7 7 3 3 2 0 0 0.27 3.269 12.853 12.419 15.357 17.0 33.2 50.2
21 7 7 3 0 2 0 0 0.17 3.168 12.838 12.425 14.456 14.8 31.0 45.8
22 3 7 3 2 2 3 0 0.10 3.097 12.868 12.420 15.562 15.7 32.5 48.2
23 7 7 3 2 0 0 0 0.18 3.178 12.826 12.421 14.191 14.5 30.6 45.1
24 7 7 3 2 2 0 0 0.24 3.236 12.844 12.419 14.986 16.2 32.3 48.5

Position Number
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Generation 8 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 3 5 1 2 2 0 0 0.21 3.260 12.855 12.442 14.265 15.3 31.2 46.5
2 7 7 3 2 2 0 0 0.25 3.297 12.849 12.424 14.740 16.3 32.3 48.6
3 7 7 3 0 2 0 0 0.17 3.222 12.843 12.428 14.276 14.9 31.1 46.0
4 7 7 3 2 2 0 0 0.23 3.284 12.847 12.424 14.649 16.0 32.1 48.1
5 7 7 3 2 2 0 0 0.23 3.284 12.847 12.424 14.649 16.0 32.1 48.1
6 7 7 3 2 2 0 0 0.22 3.268 12.845 12.421 14.658 15.9 32.0 47.9
7 3 7 3 3 2 0 0 0.16 3.213 12.870 12.429 15.156 16.3 32.4 48.7
8 7 7 3 2 2 0 0 0.21 3.261 12.851 12.424 14.751 16.0 32.1 48.1
9 7 7 3 3 2 0 0 0.25 3.303 12.859 12.422 15.166 17.1 33.0 50.1

10 7 7 3 2 2 0 0 0.22 3.270 12.855 12.427 14.800 16.1 32.3 48.4
11 3 7 3 2 2 0 0 0.15 3.195 12.868 12.431 14.990 15.8 32.1 47.9
12 7 7 3 2 2 0 0 0.22 3.275 12.851 12.422 14.842 16.4 32.2 48.6
13 7 7 3 2 2 0 0 0.23 3.279 12.859 12.429 14.883 16.5 32.3 48.8
14 7 7 5 2 2 0 0 0.18 3.233 12.838 12.423 14.292 14.8 31.4 46.2
15 7 7 3 0 2 0 0 0.19 3.238 12.847 12.433 14.267 15.1 31.1 46.2
16 2 7 3 0 2 0 0 0.07 3.124 12.867 12.442 14.467 14.4 30.8 45.2
17 7 7 3 2 1 0 0 0.26 3.306 12.849 12.423 14.789 16.4 32.5 48.9
18 3 7 3 2 0 0 0 0.13 3.180 12.863 12.437 14.589 15.1 31.3 46.4
19 7 7 3 3 2 0 0 0.27 3.320 12.870 12.429 15.332 17.6 33.3 50.9
20 3 7 3 3 2 0 2 0.14 3.190 12.876 12.427 15.392 16.3 32.8 49.1
21 7 4 3 3 2 0 0 0.04 3.093 12.838 12.432 13.774 13.4 29.2 42.6
22 7 7 3 2 2 0 0 0.22 3.275 12.864 12.428 15.085 16.9 32.5 49.4
23 3 7 3 3 2 0 0 0.18 3.234 12.881 12.433 15.431 16.8 33.1 49.9
24 7 7 3 2 0 0 0 0.12 3.173 12.836 12.428 13.961 14.0 30.3 44.3

Position Number

 

Generation 9 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 7 7 3 3 2 0 0 0.13 3.278 12.874 12.444 15.037 16.8 32.5 49.3
2 7 7 3 2 1 0 0 0.10 3.251 12.861 12.449 14.365 15.5 31.2 46.7
3 3 7 3 3 2 0 0 0.05 3.195 12.898 12.460 15.180 16.4 32.1 48.5
4 7 7 5 2 2 0 0 0.00 3.153 12.863 12.442 14.525 14.6 31.2 45.8
5 7 7 3 2 1 0 0 0.12 3.273 12.869 12.452 14.574 16.1 31.6 47.7
6 7 7 3 2 2 0 0 0.09 3.238 12.873 12.449 14.763 16.0 31.8 47.8
7 3 7 3 3 2 0 2 0.01 3.158 12.899 12.455 15.326 16.2 32.2 48.4
8 7 7 3 2 2 0 0 0.11 3.257 12.872 12.447 14.828 16.2 32.1 48.3
9 7 7 3 2 2 0 0 0.11 3.262 12.874 12.448 14.870 16.2 32.3 48.5

10 7 7 3 2 1 0 0 0.13 3.282 12.868 12.450 14.624 16.3 31.7 48.0
11 3 7 3 3 2 0 0 0.08 3.233 12.899 12.459 15.311 16.8 32.7 49.5
12 7 7 3 2 2 0 0 0.10 3.251 12.873 12.454 14.610 15.9 31.6 47.5
13 3 7 3 2 1 0 0 0.06 3.209 12.887 12.465 14.647 15.6 31.4 47.0
14 7 7 3 2 2 0 0 0.09 3.244 12.878 12.455 14.737 16.0 31.8 47.8
15 3 7 3 3 2 0 1 0.01 3.163 12.899 12.456 15.300 16.1 32.3 48.4
16 3 7 3 2 2 0 0 0.03 3.177 12.894 12.460 15.012 15.7 32.0 47.7
17 1 7 3 3 2 0 0 0.01 3.160 12.907 12.468 15.157 15.9 32.0 47.9
18 7 5 2 2 2 0 0 0.04 3.192 12.867 12.461 14.066 14.8 30.1 44.9
19 3 7 3 1 2 0 0 0.02 3.168 12.888 12.466 14.583 15.0 31.2 46.2
20 3 7 3 2 3 0 2 0.00 3.036 12.894 12.461 14.754 14.0 30.8 44.8
21 7 7 3 2 2 0 0 0.06 3.209 12.872 12.451 14.613 15.4 31.5 46.9
22 7 7 3 2 1 0 0 0.11 3.264 12.875 12.453 14.735 16.2 31.9 48.1
23 3 7 3 2 2 1 0 0.06 3.215 12.898 12.460 15.212 16.4 32.5 48.9
24 3 5 3 2 2 0 0 0.02 3.172 12.885 12.470 14.346 14.7 30.8 45.5

Position Number
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Generation 10 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 7 7 3 2 1 0 0 0.12 3.271 12.882 12.462 14.796 16.5 31.9 48.4
2 3 7 3 3 2 0 0 0.07 3.217 12.922 12.480 15.480 17.1 32.7 49.8
3 7 7 3 3 2 0 0 0.14 3.286 12.901 12.462 15.490 17.7 33.2 50.9
4 7 7 3 2 1 0 0 0.13 3.276 12.887 12.467 14.804 16.4 32.1 48.5
5 7 7 3 2 1 0 0 0.13 3.278 12.892 12.474 14.736 16.5 31.8 48.3
6 7 7 3 2 2 0 0 0.10 3.255 12.890 12.468 14.840 16.4 31.9 48.3
7 3 7 3 2 2 1 0 0.08 3.232 12.912 12.478 15.224 16.8 32.4 49.2
8 7 7 3 2 1 0 0 0.10 3.254 12.886 12.470 14.628 16.1 31.5 47.6
9 7 7 3 2 1 0 0 0.11 3.265 12.885 12.470 14.610 16.1 31.6 47.7

10 7 7 3 3 2 0 0 0.14 3.292 12.901 12.470 15.218 17.3 32.8 50.1
11 7 7 3 2 1 0 0 0.15 3.298 12.892 12.474 14.768 16.7 32.0 48.7
12 7 7 3 2 2 0 0 0.09 3.238 12.891 12.474 14.638 15.7 31.7 47.4
13 7 0 3 3 1 0 0 0.00 2.952 12.873 12.487 13.143 11.6 27.2 38.8
14 7 7 3 3 2 3 1 0.01 3.163 12.908 12.464 15.460 16.2 32.7 48.9
15 7 7 0 3 1 0 0 0.00 3.152 12.875 12.480 13.737 13.8 29.5 43.3
16 7 7 3 3 2 0 0 0.17 3.320 12.895 12.469 15.088 17.3 32.8 50.1
17 7 7 3 2 1 0 0 0.12 3.269 12.888 12.472 14.652 16.2 31.7 47.9
18 7 7 5 0 2 3 0 0.00 2.984 12.876 12.463 14.109 12.6 29.5 42.1
19 7 7 3 2 2 0 0 0.15 3.295 12.888 12.473 14.658 16.4 31.9 48.3
20 7 7 3 2 1 2 0 0.00 3.150 12.889 12.470 14.570 14.8 31.1 45.9
21 4 7 3 2 2 0 0 0.08 3.235 12.902 12.480 14.808 16.0 31.9 47.9
22 3 7 3 2 2 2 0 0.02 3.171 12.918 12.480 15.264 16.2 32.2 48.4
23 7 7 3 1 2 0 0 0.06 3.212 12.888 12.470 14.632 15.5 31.5 47.0
24 7 1 3 2 1 0 0 0.00 2.929 12.866 12.484 12.975 11.2 26.8 38.0

Position Number

 

Generation 11 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 4 7 3 2 2 0 0 0.08 3.280 12.932 12.507 14.785 16.6 31.9 48.5
2 7 7 3 2 1 0 0 0.10 3.300 12.917 12.511 14.153 15.9 30.8 46.7
3 7 7 3 2 1 0 0 0.11 3.312 12.914 12.510 14.101 15.9 30.8 46.7
4 7 7 3 2 1 0 0 0.11 3.311 12.913 12.508 14.134 15.9 30.9 46.8
5 7 7 3 2 2 0 0 0.09 3.292 12.911 12.502 14.246 15.8 31.1 46.9
6 7 7 3 3 2 0 0 0.12 3.321 12.918 12.500 14.603 16.7 31.8 48.5
7 7 7 3 2 1 0 0 0.13 3.326 12.907 12.501 14.191 16.0 31.2 47.2
8 7 7 3 2 1 0 0 0.13 3.327 12.907 12.502 14.157 16.1 31.0 47.1
9 7 7 3 2 1 0 0 0.13 3.332 12.906 12.501 14.165 16.1 31.1 47.2

10 7 7 3 2 1 0 0 0.13 3.325 12.908 12.501 14.225 16.1 31.2 47.3
11 7 7 3 2 1 0 0 0.13 3.330 12.913 12.506 14.232 16.3 31.1 47.4
12 7 7 3 2 1 0 0 0.13 3.331 12.907 12.501 14.199 16.1 31.2 47.3
13 7 7 3 2 2 0 1 0.06 3.256 12.915 12.500 14.402 15.7 31.2 46.9
14 0 7 3 2 1 0 0 0.00 3.149 12.937 12.518 14.384 14.9 30.4 45.3
15 7 7 3 4 1 0 0 0.07 3.273 12.912 12.499 14.358 15.8 31.2 47.0
16 7 7 3 2 1 0 0 0.10 3.304 12.912 12.505 14.194 15.8 31.1 46.9
17 7 7 3 3 2 0 0 0.16 3.358 12.925 12.503 14.799 16.9 32.8 49.7
18 7 7 5 2 2 3 0 0.00 3.071 12.907 12.492 14.134 13.3 30.1 43.4
19 7 7 3 2 1 0 0 0.11 3.314 12.903 12.502 13.999 15.7 30.7 46.4
20 4 7 3 2 1 0 0 0.08 3.284 12.915 12.509 14.130 15.5 30.9 46.4
21 7 7 3 2 1 0 0 0.10 3.303 12.902 12.500 14.018 15.5 30.8 46.3
22 7 7 0 2 0 0 0 0.00 3.190 12.877 12.506 12.789 13.7 27.1 40.8
23 2 7 2 2 1 0 0 0.06 3.257 12.918 12.511 14.125 15.4 30.6 46.0
24 7 7 3 2 1 0 1 0.04 3.243 12.895 12.491 14.001 15.1 30.3 45.4

Position Number

 

 85



Generation 12 

Fitness L/D voltage v0 Drag Lscale Rscale Lift
Chromosome # (1) (2) (3) (4) (5) (6) (7) Function (volts) (volts) (g) (g) (g) (g)

1 7 7 3 2 2 0 0 0.12 3.274 12.906 12.489 14.415 15.6 31.6 47.2
2 4 7 3 2 1 0 0 0.11 3.257 12.926 12.499 14.735 16.0 32.0 48.0
3 7 7 3 2 1 0 0 0.17 3.321 12.916 12.493 14.693 16.6 32.2 48.8
4 7 7 3 2 1 0 0 0.19 3.338 12.916 12.495 14.649 16.7 32.2 48.9
5 7 7 3 2 1 0 1 0.14 3.290 12.927 12.496 14.923 17.0 32.1 49.1
6 7 7 3 2 1 0 0 0.20 3.351 12.918 12.500 14.564 16.7 32.1 48.8
7 7 7 3 2 1 0 0 0.18 3.327 12.923 12.501 14.667 16.8 32.0 48.8
8 7 7 3 2 1 0 0 0.18 3.326 12.923 12.500 14.701 16.8 32.1 48.9
9 7 7 3 2 1 0 0 0.18 3.331 12.924 12.501 14.709 16.8 32.2 49.0

10 7 7 3 2 1 0 0 0.17 3.325 12.925 12.500 14.768 16.9 32.2 49.1
11 7 7 3 2 1 0 0 0.19 3.341 12.925 12.502 14.724 17.0 32.2 49.2
12 7 7 3 2 1 0 0 0.18 3.331 12.925 12.501 14.742 16.9 32.2 49.1
13 7 7 5 2 1 0 0 0.07 3.216 12.909 12.491 14.364 15.0 31.2 46.2
14 4 7 1 2 2 0 0 0.12 3.265 12.931 12.508 14.609 15.9 31.8 47.7
15 2 7 3 2 1 0 0 0.06 3.210 12.940 12.510 14.767 15.8 31.6 47.4
16 7 7 3 5 1 0 0 0.07 3.218 12.917 12.493 14.573 15.3 31.6 46.9
17 7 7 3 2 1 0 0 0.18 3.330 12.911 12.499 14.324 16.1 31.6 47.7
18 7 7 3 2 1 2 0 0.06 3.213 12.921 12.497 14.566 15.3 31.5 46.8
19 7 7 3 3 1 0 0 0.15 3.301 12.928 12.498 14.905 16.9 32.3 49.2
20 7 7 3 2 1 0 0 0.19 3.339 12.914 12.500 14.407 16.3 31.8 48.1
21 7 7 3 2 1 0 0 0.17 3.322 12.916 12.500 14.451 16.2 31.8 48.0
22 7 7 1 2 1 0 2 0.14 3.287 12.924 12.503 14.572 16.6 31.3 47.9
23 7 7 3 2 4 0 2 0.00 3.086 12.923 12.492 14.616 14.0 31.1 45.1
24 7 7 3 2 1 1 1 0.05 3.203 12.920 12.497 14.517 15.2 31.3 46.5

Position Number
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Appendix C: Angle of Attack Data 
Best Wing Angle of Attack Data 

A0A (degrees) L/D voltage v0 Drag Lscale Rscale Lift
0 -1.024716154 13.525 13.273 6.148044 -6.2 -0.1 -6.3
2 1.350818191 13.936 13.668 7.1808331 1.1 8.6 9.7
4 3.27737432 15.755 15.395 12.143868 13.5 26.3 39.8
6 3.445515075 13.552 13.112 17.094686 21.7 37.2 58.9
8 3.461969187 16.48 16.021 24.292533 34.9 49.2 84.1

10 3.282796444 17.264 16.735 33.995407 46.8 64.8 111.6
12 2.990223505 10.508 9.979 40.231106 52 68.3 120.3
14 2.789889206 11.455 10.921 47.815519 56.2 77.2 133.4
16 2.603847479 12.578 12.019 56.800562 62.1 85.8 147.9
24 1.900919707 12.28 11.587 79.435233 52 99 151  

Zimmerman Representation Angle of Attack Data 

A0A (degrees) L/D voltage v0 Drag Lscale Rscale Lift
0 -1.152396441 13.568 13.255 7.636261 -8.8 0 -8.8
2 0.894126301 13.996 13.648 9.1709639 -0.9 9.1 8.2
4 2.957722 15.772 15.376 12.982965 11.8 26.6 38.4
6 3.149131582 13.616 13.089 19.529193 22.4 39.1 61.5
8 3.321977044 16.511 16.007 25.707583 35 50.4 85.4

10 3.191504299 17.316 16.724 36.691162 49.2 67.9 117.1
12 2.988155346 10.557 9.968 44.743323 56.9 76.8 133.7
14 2.810804066 11.516 10.907 55.393402 68.7 87 155.7
16 2.552827605 12.663 12.011 63.106494 72.6 88.5 161.1
24 1.911151517 12.4 11.571 96.800279 64 121 185   
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Appendix D: Drag Calibration Data Summary 
 

Calibration Test # When it occurred during testing Drag Slope R^2 value
1 Initial Population Prior to First Individual 26.693 1.000
2 Initial Population between Individuals 12 and 13 26.423 1.000
3 Initial Population between Individuals 24 and 25 26.524 1.000
4 Initial Population between Individuals 36 and 37 25.717 1.000
5 Initial Population between Individuals 48 and 49 26.616 1.000
6 Initial Population between Individuals 60 and 61 26.509 0.9999
7  Prior to Generation 2 26.532 0.9999
8  Prior to Generation 3 26.007 0.9999
9  Prior to Generation 4 25.930 0.9999

10  Prior to Generation 5 25.521 0.9999
11  Prior to Generation 6 25.758 0.9999
12  Prior to Generation 7 26.058 0.9999
13  Prior to Generation 8 25.511 0.9999
14  Prior to Generation 9 25.776 1.0000
15  Prior to Generation 10 25.978 0.9999
16  Prior to Generation 11 26.034 0.9999
17  Prior to Generation 12 25.885 0.9999
18  Prior to  tape test 25.885 0.9999
19 Prior to 0 degree AOA test 24.397 1.0000
20 Prior to 2 degree AOA test 25.531 1.0000
21 Prior to 4 degree AOA test 26.021 0.9999
22 Prior to 6 degree AOA test 24.859 1.0000
23 Prior to 8 degree AOA test 27.425 1.0000
24 Prior to 10 degree AOA test 27.630 1.0000
25 Prior to 12 degree AOA test 28.770 1.0000
26 Prior to 14 degree AOA test 29.107 1.0000
27 Prior to 16 degree AOA test 28.683 0.9999
28 Prior to 24 degree AOA test 26.000 0.9996  
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