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Abstract

The combinatorial objects known as association schemes arise in group theory, ex-
tremal graph theory, coding theory, the design of experiments, and even quantum infor-
mation theory. One may think of a d-class association scheme as a (d + 1)-dimensional
matrix algebra over R closed under entrywise products. In this context, an imprimitive
scheme is one which admits a subalgebra of block matrices, also closed under the entry-
wise product. Such systems of imprimitivity provide us with quotient schemes, smaller
association schemes which are often easier to understand, providing useful information
about the structure of the larger scheme.

One important property of any association scheme is that we may find a basis of
d + 1 idempotent matrices for our algebra. A cometric scheme is one whose idempotent
basis may be ordered E0, E1, . . . , Ed so that there exists polynomials f0, f1, . . . , fd with
fi ◦ (E1) = Ei and deg(fi) = i for each i. Imprimitive cometric schemes relate closely
to t-distance sets, sets of unit vectors with only t distinct angles, such as equiangular
lines and mutually unbiased bases. Throughout this thesis we are primarily interested
in three distinct goals: building new examples of cometric association schemes, drawing
connections between cometric association schemes and other objects either combinatorial
or geometric, and finding new realizability conditions on feasible parameter sets — using
these conditions to rule out open parameter sets when possible.

After introducing association schemes with relevant terminology and definitions, this
thesis focuses on a few recent results regarding cometric schemes with small d. We begin
by examining the matrix algebra of any such scheme, first looking for low rank positive
semidefinite matrices with few distinct entries and later establishing new conditions on
realizable parameter sets. We then focus on certain imprimitive examples of both 3-
and 4-class cometric association schemes, generating new examples of the former while
building realizability conditions for both. In each case, we examine the related t-distance
sets, giving conditions which work towards equivalence; in the case of 3-class Q-antipodal
schemes, an equivalence is established. We conclude by partially extending a result of
Brouwer and Koolen concerning the connectivity of graphs arising from metric association
schemes.
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Chapter 1

Introduction

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty”
– Bertrand Russell, 1907

Much of the motivation for the theory of association schemes arises from coding theory;
for the purpose of illustration, we will use this application as an entry point into our
discussion of association schemes. A binary code of length n may simply be viewed as a
subset of Zn2 . First consider the parity check code on two bits: P = {000, 011, 101, 110} .
This code has the additional property that it forms a subspace of Z3

2, not just a subset;
any code with this property is called a linear code. Given a linear code, C, we may
represent the code using a generator matrix – a matrix whose rows form a basis for C;
we say the dimension of C is the number of rows in the generator matrix. For instance,

the parity check code on two bits may be described as P = rowspan
[

1 1 0
0 1 1

]
and thus

has dimension 2. We may equivalently define this code via P = null
[

1 1 1
]
. The

dual code of a linear code C, denoted C⊥, consists of the subspace formed by swapping

the two previous matrices. Returning to our example, we find P⊥ = null
[

1 1 0
0 1 1

]
=

rowspan
[

1 1 1
]
. Given a code C of length n, we may form graphs Γ1, . . . ,Γn on C

where two codewords are adjacent in Γi if and only if they differ in exactly i positions.
Using P as our code, we find Γ1 and Γ3 are both empty while Γ2 ' K4, the complete
graph on four vertices. Using the dual code P⊥ instead, we find that Γ1 and Γ2 are both
empty while Γ3 ' K2. The interaction of these two codes and their corresponding graphs
will be discussed later as subobjects of one association scheme called the 3-cube.

We now move to a family of codes known as the Reed Muller codes, denotedR(t,m) for
t ≥ 0 and m ≥ 1. For fixed t and m, R(t,m) is a linear code of length 2m with dimension∑t
i=0

(
m
i

)
. While there are many ways to represent the codewords of this family, we will

use a construction relying on binary polynomials. Let Pt ⊂ Z2[x1, . . . , xm] be the space of
binary polynomials of degree t or less on m variables. We begin by imposing an ordering
on the elements of Zm2 , say p1, . . . , p2m . Then, for each f ∈ Pt, we build the corresponding
codeword, cf , by evaluating f at each point of Zm2 in order; that is, the ith element of cf is
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given by f(ei). As Pt is a vector space, we may create codewords for each polynomial in
some basis of Pt and use the resultant codewords as the rows of our generator matrix; that
is, if {f1, . . . , f`} is a basis for Pt then cf1 , . . . , cf`

is a basis for the binary code. Since we
have indexed each entry of each codeword by some element of Zm2 , we find that this code
has length 2m. Further, consider the basis of Pt given by the set of monomials. This basis
has ∑t

i=0

(
m
i

)
polynomials, giving us the dimension of our code. For example, R(1, 4) may

be generated using the following generator matrix M , where the rows of M are indexed
by the basis 1, x1, x2, x3, and x4, while the columns are indexed by the elements of Z4

2
ordered lexicographically. Then the element in row p and columns x of M is p(x).

M =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 .

Here, the coordinates are indexed by 0000, 0001, 0010, 0011, etc. This example, with
t = 1, contains 32 distinct codewords, though the size of the code increases rapidly with
t. In fact, R(2, 4) contains 2048 distinct codewords. Unfortunately, it is not only the
number of codewords we typically care about. Another main parameter we are interested
in is the minimum distance — the smallest number of entries in which unequal codewords
may differ. It is in this parameter that we pay for the extra codewords in the higher order
Reed Muller code; the minimum distance of R(1, 4) is 8, while R(2, 4) has a minimum
distance of only half that. Given the large minimum distance of R(1, 4) and the large
size of R(2, 4), the question arises: what is the largest subcode of R(2, 4) such that the
minimum distance is six? One may show that any generator matrix cannot have more than
seven rows and thus we will not find any linear subcode with more than 128 codewords.
However, we may do better than this if we do not require linearity. Thus, we will instead
define a code explicitly by providing a polynomial for each and every codeword. First,
consider the eight quadratic polynomials

p1 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

p2 = x1x2 + x2x3 + x3x4,

p3 = x1x2 + x2x4 + x4x3,

p4 = x1x3 + x3x2 + x2x4,

p5 = x1x3 + x3x4 + x4x2,

p6 = x1x4 + x4x2 + x2x3,

p7 = x1x4 + x4x3 + x3x2,

p8 = 0.

Each of these determines a coset ofR(1, 4) insideR(2, 4) by adding the resultant codeword
to each of the words in R(1, 4); for example, the coset corresponding to p8 is R(1, 4) itself.
The union of these cosets gives us a code with 256 distinct words with minimum distance

2



six. This code is known as the (extended) Nordstrom-Robinson code, the first in an
infinite family of non-linear codes which may be defined similarly by taking cosets of the
first order Reed Muller codes inside the respective second order Reed-Muller code.

It turns out this code has an interesting history behind it. The code, originally given in
[78], was found by a high-school student after attending an introductory talk at his school.
John Robinson, a professor at the University of Iowa at the time, gave the talk in the mid
1960’s in which he discussed both linear and non-linear binary codes. After introducing
the best possible linear code of length 15 and minimum distance 5 (the double-error-
correcting BCH code), Robinson pointed out that the upper bound on non-linear codes
with the same length and minimum distance was a factor of 2 greater — yet no such code
was known. Alan Nordstrom responded to the challenge and, through trial and error, was
able to produce what is now known as the Nordstrom-Robinson code. This code attracted
attention quickly and within a few years it was discovered that the extended version (as
described above) may be generalized to two infinite families of non-linear codes, first the
Preparata codes in 1968 [80] and four years later the Kerdock codes [59].

Perhaps one of the most intriguing questions arising from these families at the time
was the notion that they were formally dual — despite the notion of “duality” being a
property of linear codes. Recall that we define the dual of a linear code as the null-
space of the generator matrix — that is, the dual code consists of all codewords which
are orthogonal to every codeword of the original code. Using the MacWilliams identity
[66], this notion was generalized to a statement about the parameters of codes. For a
binary code C of length n, MacWilliams defined the weight distribution as the sequence
of numbers At = |{c ∈ C | w(c) = t}| where w(c) counts the number of non-zero entries
of codeword c. Then the weight enumerator polynomial is given by

W (C;x, y) =
n∑
t=0

Atx
tyn−t.

MacWilliams showed that any pair of dual codes C and C⊥ must satisfy the identity

W (C⊥;x, y) = 1
|C|

W (C; y − x, y + x). (1.1)

Thus MacWilliams defined the notion of formal duality; we say two codes are formally
dual if they satisfy Equation (1.1). For linear codes, this allows us to show certain linear
codes do not exist — that is, given At, if any coefficient of 1

|C|W (C; y − x, y + x) is not
a non-negative integer, we have a quick proof that C⊥ does not exist based solely on its
purported weight enumerator. The converse however is not true; in fact, we may find a
non-linear code C for which no formally dual code exists, while the right hand side of
Equation (1.1) has only non-negative integer coefficients. Therefore it is important to
emphasize that the notion of formal duality is a statement of the parameters of a code,
not the code itself. In fact, a linear code may have many codes formally dual to it, despite
always having a unique dual. As an example in the non-linear case, the weight enumerator
of the Nordstrom-Robinson code is

y16 + 112x6y10 + 30x8y8 + 112x10y6 + x16.
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One may check that the RHS of Equation (1.1) results in the same polynomial; we there-
fore say that the Nordstrom-Robinson code is formally self-dual. More generally, one
finds that the Kerdock and Preparata codes are formally dual codes. However, since this
duality is based solely on the parameters, it does not provide a way to construct one
family from the other. It was not until two decades later in 1994 that Hammons, Kumar,
Calderbank, Sloane, and Sole [51] showed that certain codes with these parameters are
the images of submodules of Zn4 under the Gray map — that is, they are linear when
viewed as codes of length 8 with an alphabet of size 4. This was illuminated further
by Calderbank, Cameron, Kantor, and Seidel [23] who gave a geometric path from the
binary Kerdock codes to Z4-Kerdock codes. Thus, while there cannot exist linear binary
codes with these parameters, one may two construct Z4-submodules of Zn4 corresponding
to each parameter set which are dual in the traditional sense.

Outside the question of duality, the Kerdock codes have many other, quite fascinating,
connections. In the early 1970s, Cameron [24] introduced a type of multipartite graph
called a linked system of symmetric designs (“LSSDs”, refer to Chapter 4 for more detail).
Around that time, Goethals communicated to Cameron that one may build examples of
such objects using the Kerdock codes; these examples where shown to be optimal with
respect to the number of fibers [77]. This family of LSSDs became known as the Cameron-
Seidel association scheme (see Section 4.4.2), remaining the archetypal example of LSSDs
even to this day. A second (though not completely independent) use of Kerdock codes is
in the construction of real mutually unbiased bases. Here, we look for orthonormal bases
in Rm where vectors from distinct bases have an inner product of ± 1√

m
. With connections

to quantum cryptography and Euclidean geometry, mutually unbiased bases have been
an area of interest for quite some time now. It was shown using quadratic forms [26] that
the Kerdock sets not only gave examples of real MUBs, but that these examples were
optimal with respect to the number of bases [23] — this is the only known infinite family
of real MUBs achieving this upper bound.

A similar problem is that of finding lines in Rm in which any pair of lines intersect in a
fixed angle; such sets of lines are called “equiangular lines”. Gerzon showed that the upper
bound on the number of lines in Rm is given by m(m+1)

2 [64], yet the known constructions
all scaled linearly with the dimension. It was not until nearly 30 years later that de Caen
[21] used the Cameron-Seidel scheme to build 2

9 (d+ 1)2 real equiangular lines whenever
d = 3 (22t−1)− 1 for some positive integer t, resulting in the first known infinite family of
size quadratic in the dimension.

We therefore find the Kerdock codes, the first example of which was discovered by
a high school student, have deep connections to many other areas of study including
design theory, quantum cryptography, and equiangular lines; objects such as these clearly
warrant further study. Central to many of these connections is the fact that the Cameron-
Seidel scheme — the graphs given the distinct distances in any Kerdock code — forms
a 3-class association scheme. A symmetric d-class association scheme (see Chapter 2 for
a more thorough definition) may be thought of as a edge-coloring of the complete graph
using d colors such that: given any colors c1, c2, and c3, the number of c1, c2, c3 triangles
containing a fixed c1-edge depend only on the colors chosen, not on the edge. We also
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include the “0-color” as the graph of loops where we define a “triangle” containing a loop
as a loop paired with any incident edge. Using the Kerdock codes as an example, we
color the edges by distance between codewords and this tells us that any pair of words
at distance i have a constant number of words distance j from one and k from the other,
independent of the pair chosen.

Within the study of association schemes, we will often find rich connections to other
areas of mathematics. In this thesis we will examine a type of association schemes known
as “cometric” (see Section 2.6 for the definition); this class includes many of the objects
mentioned already. Within the field of association schemes, we find many parameters
which describe the structure of an association scheme (see Chapter 2) analogous to the
weight distribution of a binary code. Using these parameters, we arrive at a notion of
formal duality of association schemes; two association schemes are formally dual if the
first and second eigenmatrices of one are swapped for the other. Just as formal duality
for general codes arose from explicit duality of linear codes, formal duality in association
schemes arises from character duality of abelian groups. Given an abelian group G, the
dual group G∗ is given by taking the set of characters of G where for χ, ψ ∈ G∗ and x ∈ G,
(χ∗ψ)(x) = χ(x)∗ψ(x). If there exists an abelian group acting sharply transitively on the
points of an association scheme, then the dual scheme is well-defined. However, without
this added structure, there is no clear way to build the “dual” of a general association
scheme. Despite this, we may define duality formally, at the parameter level, and find
concrete examples of formally dual pairs of association schemes without a clear way of
constructing one from the other. We finish this introduction with a brief history of
association schemes followed by an outline of this thesis.

First introduced by Bose and Nair [12] in 1939 with connections to certain block
designs, the algebraic structure known as an “association scheme” was formally defined
later in 1952 by Bose and Shimamoto [13] as a set of relations on a point set satisfying
certain strong regularity properties (see Chapter 2). It was not until seven years later
that Bose and Mesner [11] described the equivalence between association schemes and
Schur-closed matrix algebras — commutative vector spaces of matrices closed under two
distinct matrix products. Around the same time Wielandt was expanding on the theory
of Schur ([102],[83]) to understand the commuting algebra, or centralizer ring, of permu-
tation groups. These two concepts were generalized together by Higman in 1967 [52] who
discussed so-called “coherent configurations”. Shortly thereafter Biggs introduced a gen-
eralization of distance-transitive graphs known as “distance regular graphs” [8], showing
that the adjacency matrix of any such graph generates the matrix algebra of an associa-
tion scheme with very particular “polynomial” properties. Over the next few years, Biggs
continued to develop the notion of distance-regular graphs and their relationship with
association schemes, culminating in parts of his book Algebraic Graph Theory [9]. Ar-
guably one of the most influential works on this topic is the thesis of Delsarte in 1973 [38],
developed seemingly independently of Biggs. In this thesis, he lays out the definitions and
parameters central to association schemes, discusses subsets of associations schemes, and
defines both P -polynomial (metric) and Q-polynomial (cometric) association schemes; the
former are equivalent to Biggs’ notion of distance regular graphs while the latter remained
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largely unexplored until decades later. These cometric examples will be the main focus of
this thesis. Delsarte devoted particular attention to the Johnson and Hamming schemes,
defining more clearly the notion of duality within these two schemes and bringing to the
forefront the connections between association schemes and coding theory.

The two decades that followed brought with them many new results concerning polyno-
mial association schemes, especially those that are P -polynomial. Authors such as Biggs,
Damerell, Gardiner, Meredith, and Smith (see [16] for a list of their relevant publica-
tions) continued to develop our understanding of distance-regular and distance-transitive
graphs. Meanwhile authors such as Terwilliger [94] and Neumaier [76] focused on specific
families, developing parameter characterizations of Johnson and Hamming schemes — the
major examples of metric association schemes. Terwilliger then went on to work towards
classifying association schemes which are both P - and Q-polynomial in papers such as
[95] and [96]. Much of what is known has been compiled into books, first by Bannai and
Ito in [5], then by Brouwer, Cohen, and Neumaier in [16], and most recently by Bailey in
[2].

Despite the great attention devoted to P -polynomial schemes, it seems not much
progress was made in understanding their Q-polynomial analogues until Dickie’s thesis
[41] in 1995 and two papers of Suzuki ([91],[90]) three years later. In the latter two
papers, Suzuki showed, apart from cycles, any Q-polynomial association scheme may
have at most two Q-polynomial orderings and any imprimitive Q-polynomial association
scheme must be either Q-bipartite or Q-antipodal (except possibly for two sporadic cases
which were later ruled out). These results were analogues of results for distance regular
graphs dating as much as three decades prior, yet the method for proving these results
was quite different. These papers triggered a resurgence of interest in cometric association
schemes as the following two decades brought many new results. Some results included
finding equivalences between certain classes of cometric association schemes and other
geometric structures; for instance [34] discusses 3-class Q-antipodal schemes while [63]
focuses on 4-class schemes which are both Q-antipodal and Q-bipartite. New examples
were found, including families discovered by Penttila and Williford [79], another family
found by Moorhouse and Williford [73], and many new sporadic examples found by Gavin
King [60]. While far from an exhaustive list, this author would be remiss without also
mentioning papers of Suda ([88],[89]), van Dam, Martin and Muzychuk [36], Martin and
Williford [71], and Martin, Muzychuk and Williford [69].

In this thesis, we begin by defining association schemes and their associated Bose-
Mesner algebras. The remainder of Chapter 2 consists of the various definitions which
occur within this field such as the parameters, feasibility conditions, substructures, and
polynomial structures — some of which are mentioned above. We then focus on the
matrix algebra in Chapter 3, where we examine the cone of positive semidefinite matrices.
Here, we introduce methods to build other line systems, such as equiangular lines, as
well as develop a new feasibility condition on association schemes using a theorem of
Schönberg — we explicitly calculate many of these new conditions for cometric schemes,
in particular. In Chapter 4, we recall the definition of linked systems of symmetric designs
(LSSDs) defined by Cameron [24] and explore constructions of these as well as connections
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to other objects. We review past results on such objects including the Cameron-Seidel
scheme mentioned previously, results of Noda on the maximum size of any such object,
and their equivalence with 3-class Q-antipodal association schemes, a result of van Dam.
We then introduce a new geometric object called a “set of linked simplices” and we
show that these are equivalent to LSSDs. Using this new equivalence, we investigate
when we may build real mutually unbiased bases from these association schemes as well
as construct new examples using parameters distinct from those of the Cameron-Seidel
scheme. Chapter 5 focuses on 4-class Q-bipartite association schemes, beginning with a
motivational discussion indicating how these association schemes naturally occur. While
we do not develop an equivalence in this chapter between the association schemes and
so-called “orthogonal projective double covers”, we make substantial progress towards
that goal. In the final chapter, Chapter 6, we investigate the connectivity of relations
in association schemes in general. With the goal of understanding the “nearest-neighbor
graph” of a cometric association scheme, we show that any connected graph (in the
absence of twin vertices — vertices with the same neighborhood) within an association
scheme remains connected after deleting the entire neighborhood of a vertex (including
the vertex itself). We use this result to show that any graph within an association scheme
with connectivity equal to 2 must be a cycle. In the appendix, we finish be surveying the
known infinite families of symmetric designs in order to determine which families could
yield the parameter sets of LSSDs with more than two fibers.
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Chapter 2

Association schemes

Association schemes arise in group theory, graph theory, design theory, coding the-
ory and more. For example, let X be a finite group with conjugacy classes C[g] =
{hgh−1 : h ∈ X} (g ∈ X). We may form relations on the pairs of group elements via
Rg = {(a, b) | ab−1 ∈ C[g]}; in this way, each conjugacy class results in a single relation in-
dependent of the representative group element chosen. We may then merge the relations
Rg ∪ Rg−1 to arrive at symmetric relations. The group, along with the relations, then
form a d-class association scheme where d is the number of non-trivial relations formed
(relations other than Re for identity element e). While we may easily construct such an
association scheme from a group, we find that there are many more association schemes
which do not require the group structure on the point set. In fact, for any finite set X,
the orbits on X ×X of any permutation group G acting generously transitively (for any
two points in X, there exists a group element swapping these elements) also gives an as-
sociation scheme. Some of the most well-studied association schemes are distance-regular
graphs, including Moore graphs, distance-transitive graphs, strongly regular graphs, gen-
eralized polygons, etc. For an introduction to the extensive literature on the subject, the
reader may consult [38, 5, 16, 46], the survey [70], or the more recent book of Bailey [2]
which focuses on connections to the statistical design of experiments.

Definition. Let X be a finite set of vertices. A symmetric d-class association scheme
(see [16]) on X is a pair (X,R) where R = {R0, R1, . . . , Rd} is a set of d+ 1 relations on
X satisfying the following properties:

(i) R0 is the identity relation;

(ii) {R0, R1, . . . , Rd} forms a partition of X ×X;

(iii) (x, y) ∈ Ri implies (y, x) ∈ Ri;

(iv) for 0 ≤ i, j, k ≤ d there exist constants pki,j such that for any vertices x, y ∈ X with
(x, y) ∈ Rk, the number of vertices z for which (x, z) ∈ Ri and (z, y) ∈ Rj is pki,j,
depending only on i, j, and k.
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The constants pki,j are known as the intersection numbers of our association scheme
and we allow ourselves to suppress the comma whenever i and j are given by single digits,
thus p7

5,2 and p7
52 are synonymous throughout this thesis. Properties (iii) and (iv) together

imply that pkij = pkji for all i, j, k; we call such an association scheme commutative. There
is a broader definition for a commutative association scheme where we replace (iii) with
the condition that for every i, there exists some i′ such that Ri′ = RT

i ; that is (x, y) ∈ Ri if
and only if (y, x) ∈ Ri′ . In this case however, we add the property pkij = pkji. Throughout
this thesis, all association schemes will be symmetric, though we will add remarks at times
when the theorems apply directly to the non-symmetric case as well.

For each 0 ≤ i ≤ d we define the (undirected) graph Γi = Γ(X,Ri) on X with
Γ1, . . . ,Γd all simple. Note, throughout this thesis we will use the notation Γ(V,E) to
denote a graph with vertex set V and edge set E ⊂ V × V . For each a ∈ X we define
the ith neighborhood of a Ri(a) = {b ∈ X | (a, b) ∈ Ri}; i.e. Ri(a) is the neighborhood of
a in the graph Γi. Then for any a ∈ X, the set X is partitioned into the subconstituents
{Ri(a) | 0 ≤ i ≤ d} with respect to a.

Example 2.1. The following association scheme is known as the 3-cube with vertex set
X = {0, . . . , 7} and relations corresponding to the graphs Γ0, . . . ,Γ3 given below.

0 1

2 3
4 5

6 7

Γ0

0 1

2 3
4 5

6 7

Γ1

0 1

2 3
4 5

6 7

Γ2

0 1

2 3
4 5

6 7

Γ3

Figure 2.1: The four graphs of the 3-cube. The four subconstituents of the vertex 0 are
colored white, red, blue, and green respectively.

The following matrices give the intersection numbers of this association scheme where
the ith matrix contains pkij with rows indexed by k and columns indexed by j:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 3 0 0
1 0 2 0
0 2 0 1
0 0 3 0

 ,


0 0 3 0
0 2 0 1
1 0 2 0
0 3 0 0

 ,


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Since pkij = pkji, many of the columns listed above are redundant, thus we may instead
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give a more brief list of the intersection numbers as follows:

k pk0,0 pk0,1 pk0,2 pk0,3 pk1,1 pk1,2 pk1,3 pk2,2 pk2,3 pk3,3
0 1 0 0 0 3 0 0 3 0 1
1 0 1 0 0 0 2 0 0 1 0
2 0 0 1 0 2 0 1 2 0 0
3 0 0 0 1 0 3 0 0 0 0

We often find this brief description useful and will further reduce our description of the
parameters when there is no loss of clarity.

We note with this example that for each i, Γi may be formed by taking the distance
i graph of Γ1. This will not hold in general — that is, we will typically not find such a
graph encoding our relations using distance. When it does however, we say the association
scheme is metric (see Section 2.6) and Γ1 is a distance-regular graph (drg). Due to the
encoding of the relations in such a drg, metric schemes and their paired drgs are referred
to synonymously; for instance, this association scheme was refereed to as the “3-cube”.

For any 0 ≤ i ≤ d and any vertex x ∈ X,

p0
ii = |{y : (y, x) ∈ Ri}| = |Ri(x)| .

Thus we define ki := p0
ii as the valency of the ith relation. Many other restrictions on our

intersection numbers follow immediately from our definition, for instance p0
12 = 0; we will

summarize these in a lemma at the end of the next section.

2.1 Bose-Mesner algebra
Often it becomes useful to order the vertices in X and represent each Ri as a 01-matrix
Ai where the (x, y) entry of Ai is 1 if and only if (x, y) ∈ Ri; thus Ai is the adjacency
matrix of Γi. Let |X| = n and denote the n × n identity as In and the n × n matrix of
ones as Jn; we suppress the subscript n when it is clear from the context. The defining
properties of a symmetric association scheme are then encoded as:

(i) A0 = I;

(ii) ∑iAi = J ;

(iii) for all 0 ≤ i ≤ d, ATi = Ai;

(iv) for all 0 ≤ i, j ≤ d, AiAj = ∑
pkijAk,

where each Ai has only zeros and ones as entries. The fourth condition tells us that
A = span {A0, A1, . . . Ad} forms a matrix algebra under standard matrix multiplication
— we will refer to the matrices {Ai} as our basis of 01-matrices. We call this algebra
the Bose-Mesner algebra and note that the remaining conditions ensure it is a (d + 1)-
dimensional algebra of symmetric matrices containing the identity. Further, as our basis
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matrices are 01-matrices with pairwise disjoint support, this algebra is also closed under
Schur (entrywise) products and contains the Schur identity, J . We find that, conversely,
any such an algebra determines an association scheme; that is, any (d + 1)-dimensional
vector space of symmetric matrices closed under both standard and Schur matrix products
containing the identities for both operations corresponds to the Bose-Mesner algebra of
some symmetric association scheme. Throughout, we will use this algebraic definition
interchangeably with the combinatorial definition. As our algebra contains only symmetric
matrices, it is necessarily commutative (more generally the assumption pkij = pkji made
for commutative association schemes is sufficient to guarantee the Bose-Mesner algebra
is commutative). Therefore, we may simultaneously diagonalize the matrices A0, . . . , Ad
resulting in the maximal common orthogonal eigenspaces V0, . . . , Vd′ with corresponding
projection matrices E0, . . . , Ed′ . Since, for every i, there exist eigenvalues θij such that
Ai = ∑d′

j=0 θijEj we find that A ⊆ span {E0, E1, . . . , Ed′} thus d ≤ d′. Further since the
eigenspaces Vj are maximal for each 0 ≤ j ≤ d and pairwise orthogonal,

Ej = 1
cj

d∏
i=0

 ∏
θik 6=θij

(Ai − θikI)


for some normalization constant cj. Thus each Ej ∈ A giving span {E0, E1, . . . , Ed′} ⊆ A
and therefore d = d′ — we will refer to the matrices {Ej} as our basis of idempotents. This
shows that A contains a basis of d+ 1 idempotents E0, . . . , Ed which together diagonalize
every matrix in A and act as projection matrices onto the common eigenspaces. Since
the rank 1 matrix J ∈ A, we find that 1

|X|J must belong to this basis; by convention we
assume E0 = 1

|X|J . For each 0 ≤ j ≤ d we define mj = rank Ej and note that m0 = 1
and ∑d

j=0mj = |X|.
While A = span {A0, A1, . . . Ad} = span {E0, E1, . . . , Ed}, we often find that we may

generate A with a single matrix if we allow ourselves to take products and not just linear
combinations. For example, the Bose-Mesner algebra of the 3-cube (Example 2.1) may be
generated by taking linear combinations of powers of A1, the adjacency matrix of Γ1. For
any matrix M ∈ A, we define 〈M〉∗ as the set of matrices which are linear combinations
of the powers of M ; the set 〈M〉∗ is called the subalgebra of A generated by M .

Lemma 2.1. Let A be the Bose-Mesner algebra of a symmetric association scheme. For
any A ∈ A, the dimension of 〈A〉∗ equals the number of distinct eigenvalues.

Proof. Let A ∈ A be given with n distinct eigenvalues. Then there exists α1, . . . , αn so
that A = ∑n

i=1 αiEi for some orthogonal projection matrices E1, . . . , En — implying the
dimension of 〈A〉∗ is no larger than n. However, since I = A0, we may build each Ej via

Ej = 1
cj

∏
i 6=j

(A− αiI)

showing that the dimension of 〈A〉∗ is at least n.
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Corollary 2.2. For a Bose-Mesner algebra A and matrix A ∈ A, A = 〈A〉∗ if and only
if A has d+ 1 distinct eigenvalues.

Similarly, we define the Schur subalgebra of M , denoted 〈M〉◦, as the set of matrices
which are linear combinations of all Schur powers of M . We immediately see analogous
results.

Lemma 2.3. Let A be the Bose-Mesner algebra of a symmetric association scheme. For
any E ∈ A, the dimension of 〈E〉◦ equals the number of distinct entries in E.

Corollary 2.4. For a Bose-Mesner algebra A and matrix E ∈ A, A = 〈E〉◦ if and only
if E has d+ 1 distinct entries.

As a simple example, it is clear that the subalgebra generated by any idempotent
basis matrix (with two distinct eigenvalues) contains only multiples of that idempotent
and the identity matrix. Similarly, the Schur subalgebra generated by any 01-matrix
contains only multiples of that 01-matrix and any constant matrix (cJ for some constant
c). These specific subalgebras are typically not useful, thus we will typically only consider
subalgebras of 01-matrices and Schur subalgebras of idempotent matrices. For a more
interesting example, consider again the 3-cube in Example 2.1. Let Ai be the adjacency
matrix of Γi and note that 〈A1〉∗ = A while 〈A2〉∗ = 〈A0, A2〉; that is, A1 generates the
entire Bose-Mesner algebra while A2 generates a proper subset of A. While not listed in
the example, we find that this association scheme contains a single minimal idempotent
whose Schur subalgebra equals A — all other minimal idempotents generate a proper
subset of A. Throughout this thesis we will consider cases where the (Schur) subalgebra
of a single matrix is the entire Bose-Mesner algebra (for instance, polynomial schemes)
as well as others where the (Schur) subalgebra of some matrix is a proper subset of the
Bose-Mesner algebra (for instance, imprimitive schemes) — both situations may give rise
to useful structure.

We take a moment here to remark on the notion of duality in our matrix algebra. We
have already mentioned that A is closed under two distinct products: standard matrix
multiplication and Schur multiplication. While it is clear these are distinct products,
they are indistinguishable at the formal level. Consider an abstract inner product space
which admits a set of orthogonal basis vectors {bi} under the product ?. For any pair of
vectors v = ∑

i vibi and w = ∑
iwibi, we may define the product with respect to basis {bi} as

v?w = ∑
i(viwi)bi. In this light, the two products used in association schemes become very

similar. Returning to our Bose-Mesner algebra, let F, F ′ ∈ A with F = ∑
i fiEi = ∑

i giAi
and F ′ = ∑

i f
′
iEi = ∑

i g
′
iAi. We then find

FF ′ =
∑
i,j

fif
′
jEiEj =

∑
i

fif
′
iEi; F ◦ F ′ =

∑
i,j

gig
′
iAi ◦ Aj =

∑
i

gig
′
iAi.

Thus our two products may be described as the product with respect to the basis {Ei}
(standard matrix multiplication) and the product with respect to the basis {Ai} (entrywise
multiplication). We consider these two products dual operations on our algebra and their
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basis matrices dual bases. Throughout this thesis, we will often investigate this duality and
point out when there are differences and/or gaps in our understanding of the landscape.

While the algebraic structure of either basis with respect to its corresponding product
is trivial, the manner in which matrix products and entrywise products interact is more
interesting. Our first tool for understanding this interaction is the change of basis matrix
from one set of idempotents to the other. For any Bose-Mesner algebra, the first and
second eigenmatrices are given by P and Q respectively so that

Ai =
∑
j

PjiEj, Ej = 1
|X|

∑
i

QijAi. (2.1)

The name of these matrices arises from the fact that column i of P consists of the eigenval-
ues of Ai while column j of Q gives the “dual eigenvalues” of |X|Ej — eigenvalues with re-
spect to the Schur product. Let ∆m = diag(m0,m1, . . . ,md) and ∆k = diag(k0, k1, . . . , kd)
and the following two relations hold for our eigenmatrices:

Lemma 2.5 ([16], First and second orthogonality relations). The eigenmatrices of an
association scheme satisfy

PQ = |X|I, ∆mP = QT∆k. (2.2)

These relations generalize the orthogonality relations of a group.
A second consideration for our dual bases is to compare the structure constants for each

product with respect to each basis. While we used the existence of structure constants
pkij to show that A is closed under matrix multiplication, closure under Schur products
is seen from the fact that the Ai are pairwise orthogonal idempotents. This implies the
existence of structure constants for our second basis. Thus, for 0 ≤ i, j, k ≤ d there exist
constants qkij so that

Ei ◦ Ej = 1
|X|

∑
k

qkijEk. (2.3)

We call these constants the Krein parameters of the association scheme. We note here
that, while there are many distinct parameters of any association scheme, there are many
relations which reduce our parameter space. For instance, any strongly regular graph
(2-class association scheme) contains two 3 × 3 matrices P and Q along with 27 inter-
section numbers and 27 Krein parameters, resulting in 72 total parameters — yet the
parameters of a connected strongly regular graph may be uniquely determined by exactly
three parameters. In fact, just within the intersection numbers of the form p0

ij, only d+ 1
of the (d+ 1)2 intersection numbers are non-zero. With this in mind, we list out the basic
properties of the adjacency matrices and orthogonal idempotents as well as the relations
on the parameters which help reduce our parameter space. While we will use the lemmas
that follow throughout the thesis, we emphasize here the duality at play between the two
bases as well as their structure constants. See Lemmas 2.1.1, 2.2.1, 2.3.1, and Theorem
2.3.2 in the book of Brouwer, Cohen, and Neumaier [16] for proofs of Lemma 2.7.
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Lemma 2.6. The adjacency matrices A0, . . . , Ad and minimal idempotents E0, . . . , Ed
satisfy:

(i) A0 = I,

(ii) Ai ◦ Aj = δijAi,

(iii)
∑
i

Ai = J ,

(iv) AiAj =
∑
k

pkijAk,

(v) AiEj = PjiEj,

(i′) E0 = J ,

(ii′) EiEj = δijEj,

(iii′)
∑
j

Ej = I,

(iv′) |X|Ei ◦ Ej =
∑
k

qkijEk,

(v′) |X|Ai ◦ Ej = QijAi.

Lemma 2.7 ([16]). The parameters p`ij, q`ij, ki = p0
ii, mj = q0

jj, and the eigenmatrices P
and Q satisfy:

(i) p`0j = δj`,

(ii) p0
ij = δijki,

(iii) p`ij = p`ji,

(iv) p`ijk` = pji`kj,

(v)
∑
j

p`ij = ki,

(vi)
∑
`

p`ijp
m
`h =

∑
`

pmi`p
`
jh,

(vii) PijPih =
∑
`

p`jhPi`,

(viii) PjiQhj =
∑
`

phi`Q`j,

(ix)
∑
j

Pji =
∑
h

phhi,

(x) Pj0 = 1,

(xi) P0i = ki,

(xii)
∑
j

mjPjiPjh = |X|kiδih,

(xiii) p`ij = 1
|X|k`

d∑
h=0

mhPhiPhjPh`,

(i′) q`0j = δj`,

(ii′) q0
ij = δijmj,

(iii′) q`ij = q`ji,

(iv′) q`ijm` = qji`mj,

(v′)
∑
j

q`ij = mi,

(vi′)
∑
`

q`ijq
m
`h =

∑
`

qmi` q
`
jh,

(vii′) QijQih =
∑
`

q`jhQi`,

(viii′) PijQjh =
∑
`

qih`P`j,

(ix′)
∑
j

Qji =
∑
h

qhhi,

(x′) Qi0 = 1,

(xi′) Q0j = mj,

(xii′)
∑
i

kiQijQih = |X|mjδjh,

(xiii′) q`ij = 1
|X|m`

d∑
h=0

khQhiQhjQh`.
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We note that using this lemma, we find that any of the sets
{
pkij
}
i,j,k

,
{
qkij
}
i,j,k

, {Pij}i,j,
or {Qij}i,j may be used to determine all the others. We define the collection of all four
of these sets to be the parameter set of an association scheme, noting immediately that
it suffices to give any one of the four.

2.2 Parameter arrays
For a matrix A, we denote the entry in row i and column j as [A]ij. We define the arrays
of intersection numbers L0, . . . , Ld as (d+ 1)×(d+ 1) matrices with [Li]kj = pkij. We then
define the vector space L = span {L0, . . . , Ld} and note that Lemma 2.7 (vi) gives us

[LiLj]mk =
∑
`

pmi`p
`
jk =

∑
`

p`ijp
m
`k =

∑
`

p`ij [L`]mk

for 0 ≤ m, k ≤ d. Therefore we find that this vector space forms a matrix algebra under
matrix multiplication with

LiLj =
∑
`

p`ijL`. (2.4)

Likewise, we define the arrays of Krein parameters as L∗0, . . . , L∗d with [L∗i ]kj = qkij. These
span a dual matrix algebra L∗ = span {L∗0, . . . , L∗d} as Lemma 2.7 (vi ′) gives

L∗iL
∗
j =

∑
`

q`ijL
∗
` . (2.5)

We now define algebra isomorphisms φ : A → L and φ∗ : A → L∗ via linear extension of
the mappings

φ(Ai) = Li, φ∗(Ei) = 1
|X|

L∗i . (2.6)

The first isomorphism preserves standard matrix multiplication while the second respects
the Schur product in the sense that φ∗(M ◦N) = φ∗(M)φ∗(N). This provides us with the
following lemma.

Lemma 2.8. Let P and Q be the eigenmatrices of an association scheme with arrays
of intersection numbers L0, . . . , Ld and arrays of Krein parameters L∗0, . . . , L∗d. For each
0 ≤ i, j ≤ d, column j of Q is an eigenvector of Li with eigenvalue Pji. Likewise column
i of P is an eigenvector of L∗j with eigenvalue Qij.

Proof. Let A0, . . . , Ad be the 01-basis matrices and E0, . . . , Ed be the basis idempotents
of our association scheme. Using Lemma 2.6, we recall that Ai = ∑

k PkiEk and EiEk =
δikEi, thus AiEj = PjiEj. Applying φ to both sides of the equality Ej = 1

|X|
∑
j QjiAi

results in φ(|X|Ej) = ∑
iQijLi giving

Li

(∑
i

QijLi

)
= φ(Ai)φ(|X|Ej) = φ(|X|AiEj) = Pji

(∑
i

QijLi

)
.
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Similarly, we have Ej = 1
|X|
∑
kQkjAk and Ak ◦ Ai = δikAi, thus Ej ◦ Ai = Qji

|X|Ai. Now
applying φ∗ to both sides of Ai = ∑

j PjiEj results in φ∗(|X|Ai) = ∑
j PjiL

∗
i giving

L∗j

 1
|X|

∑
j

PjiL
∗
j

 = φ∗(|X|Ej)φ∗(Aj) = φ∗(|X|Ej ◦ Ai) = Qji

 1
|X|

∑
j

PjiL
∗
j

 .
In each case, we note that [Li]j0 =

[
L∗j
]
i0

= δij and thus column “zero” of each matrix
product gives our result.

Corollary 2.9. Let Li (L∗j) be an array of intersection numbers (Krein parameters) of
a d-class association scheme. If Li (L∗j) has d + 1 distinct eigenvalues then it uniquely
determines all remaining parameters of the scheme.

Proof. We will prove this for an array of intersection numbers, noting that the proof for an
array of Krein parameters follows analogously. Let Li be an array of intersection numbers
with d + 1 distinct eigenvalues. First, ki = p0

ii = [Li]0i. We then use Lemma 2.7 (iv) to
solve for the valencies k0, . . . , kd. Now, since Li has d + 1 distinct eigenvalues, we find
d + 1 distinct eigenvectors v0, . . . , vd — normalize these so that (vi)0 = 1 and define the
matrix M so that the ith column of M is vi. From Lemma , we know that the columns of
Q are exactly mivi where mi is the multiplicity of the given eigenvalue, thus Q = M∆m.
Thus, we must determine these multiplicities to finish our proof. However, Lemma 2.5
tells us that

|X|∆m = QT∆kQ = ∆mM
T∆kM∆m

Noting that all matrices given are invertible since each ki and mi are strictly positive, this
gives mi = |X|

/
vTi ∆kvi .

When relation R1 is distinguished or projection matrix E1 is distinguished, we refer
to L1 as the intersection matrix and L∗1 as the Krein matrix ; these two matrices will
become particularly important for polynomial schemes (see Section 2.6), for which they
are tridiagonal. We end this section by noting that the matrices given in Example 2.1 are
exactly the arrays of intersection numbers for that association scheme. A final note before
moving on is that the parameters of an association scheme need not define the scheme
uniquely. In fact, there exist non-isomorphic 2-class association schemes with exactly the
same parameter set; consider the 4× 4 rook graph and the Shrikhande graph.

2.3 Formal duality of association schemes
In this section, we give an explicit example of the duality previously alluded to. Consider
first the strongly regular graph K3,3. This association scheme is a 2-class bipartite scheme
with nontrivial relations given by adjacency in K3,3 and non-adjacency in K3,3 respectively.
Thus the three graphs for this scheme are
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0 2 4

1 3 5

Γ0

0 2 4

1 3 5

Γ1

0 2 4

1 3 5

Γ2

Figure 2.2: The association scheme of K3,3. The subconstituents of vertex 0 are colored
white, red, and blue respectively.

The intersection numbers, Krein parameters, and eigenmatrices are

L0 =

 1 0 0
0 1 0
0 0 1

 , L1 =

 0 3 0
1 0 2
0 3 0

 , L2 =

 0 0 2
0 2 0
1 0 1

 ;

L∗0 =

 1 0 0
0 1 0
0 0 1

 , L∗1 =

 0 4 0
1 2 1
0 4 0

 , L∗2 =

 0 0 1
0 1 0
1 0 0

 ;

P =

 1 3 2
1 0 −1
1 −3 2

 , Q =

 1 4 1
1 0 −1
1 −2 1

 .
Now consider the 2-class association scheme determined by the octahedron. The three
graphs for this scheme are

1

0 3

2

45

Γ0

1

0 3

2

45

Γ1

1

0 3

2

45

Γ2

Figure 2.3: The association scheme of the octahedron. The subconstituents of vertex 0
are colored white, red, and blue respectively.

The intersection numbers, Krein parameters, and eigenmatrices of this association
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scheme are

L0 =

 1 0 0
0 1 0
0 0 1

 , L1 =

 0 4 0
1 2 1
0 4 0

 , L2 =

 0 0 1
0 1 0
1 0 0

 ;

L∗0 =

 1 0 0
0 1 0
0 0 1

 , L∗1 =

 0 3 0
1 0 2
0 3 0

 , L∗2 =

 0 0 2
0 2 0
1 0 1

 ;

P =

 1 4 1
1 0 −1
1 −2 1

 , Q =

 1 3 2
1 0 −1
1 −3 2

 .
One may observe that the intersection numbers and the Krein parameters of the two
schemes are interchanged, as are the first and second eigenmatrices. This specific example
is due to a duality arising from the context of translation schemes and regular group
actions. Given a point set X and a group G, we say G acts regularly on X if, for any
pair of points x, y ∈ X, there exists a unique g mapping x to y; clearly this may only
occur if |X| = |G|. We then say an association scheme is a translation schemes if there is
an abelian group acting regularly on the vertices such that for each g ∈ G and any pair
of vertices x, y ∈ X, (g(x), g(y)) ∈ Ri if and only if (x, y) ∈ Ri. When this occurs, we
may fix a vertex x ∈ X and identify the remaining vertices with non-identity elements
of G corresponding to which element of G maps x to each vertex; thus we may identify
X with G and consider our association scheme to be on the group G. The dual group
G∗ is defined as the set of characters (homomorphisms mapping G→ C∗) equipped with
entrywise products as the group action. We then define the dual association scheme
(G∗,R∗) where (χ, χ′) ∈ R∗i if and only if Ei

(
χ
/
χ′
)

=
(
χ
/
χ′
)

where this division is
done entrywise. Finally, we find that the new association scheme is also a translation
scheme using the group G∗. In the case of the two association schemes given above, the
desired group is G ' Z6 and we find each scheme results as the dual of the other; in
general we expect the dual operation to be an involution if the dual association scheme
exists. The pair of schemes listed is a specific case of the more general duality between
rKs and sKr; that is, the complement of r copies of Ks and the complement of s copies
of Kr respectively. In this more general setting, we find that the cyclic group Zrs acts
regularly on each set of vertices.

In general, the automorphism group of an association scheme could be trivial. In this
case, no group acts transitively on the vertices, and a dual scheme as described above
is not defined. However, just as with non-linear codes in coding theory, we abstract
the notion of duality to a formal definition on the parameters. We say two association
schemes are formally dual if the first and second eigenmatrices of one are the second
and first eigenmatrices, respectively, of the other. This necessarily swaps the intersection
numbers and Krein parameters so that, for example, pkij of a scheme will equal qkij of it’s
dual. In many cases, no formally dual scheme may exist; consider any association scheme
for which the Krein parameters are not integral. However, there are non-trivial examples
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of formally dual pairs of association schemes, for instance consider the two infinite families
generated by de Caen and van Dam [22]. This notion of formal duality still plays a major
role in our understanding of the field of association schemes as a whole, motivating many
of the questions we will focus on in this thesis.

We finish this discussion with one final note: any definition based solely on the param-
eters of an association scheme gives rise to an analogous “dual” definition. For instance,
we find that K3,3 is bipartite, meaning pkij = 0 whenever i+ j + k /∈ 2Z. The dual graph,
the octahedron, must then have qkij = 0 whenever i+j+k /∈ 2Z; we call this dual-bipartite
or Q-bipartite (see Section 2.6). Similarly, we find that both K3,3 and the octahedron
are antipodal graphs: pddi = 0 whenever i /∈ {0, d}. Both graphs are then dual-antipodal
or Q-antipodal (see Section 2.6): qddi = 0 whenever i /∈ {0, d}. While there has been
much research into bipartite and antipodal graphs, in this thesis we are interested in
the implications of these dual properties, seeking when such objects may exist and what
combinatorial or geometric structure the properties impose.

2.4 Feasibility and realizability
One main point of interest is whether or not an association scheme exists, given a (pos-
sibly partial) parameter set. While existence often cannot be proven without explicitly
constructing the scheme, we often may rule out the existence of a scheme due to the val-
ues its intersection numbers or Krein parameters must take. In this section we examine
three main conditions which we will use throughout this thesis in addition to what we
already stated in Lemma 2.7. We begin with an immediate restriction on the intersection
numbers:

Lemma 2.10 ([16]). The intersection numbers of an association scheme must be non-
negative integers.

This condition is easy to verify since, by definition, each pkij is the cardinality of a set.
While this property is immediate, it can be a powerful tool to eliminate examples with
very little information about the association scheme. Next consider the Krein parameters
of our association scheme.

Lemma 2.11 ([84],Krein conditions). The Krein parameters of an association scheme
must be non-negative real numbers.

Proof. Given a matrix M , let σ(M) be the set of eigenvalues of M . From Equation
(2.3), we find that σ(Ei ◦ Ej) =

{
q0
ij

/
|X| , . . . , q

d
ij

/
|X|

}
. However Ei ◦ Ej ∈ A and

therefore it must be symmetric, implying all of its eigenvalues are real. Further, note
that σ(E) = {0, 1} for any projection matrix E. We also note that σ(A ⊗ B) =
{αβ, α ∈ σ(A), β ∈ σ(B)} for any pair of matrices A and B. Thus, σ(Ei ⊗ Ej) = {0, 1}.
Finally, since Ei ◦Ej is a principal submatrix of Ei ⊗Ej, the eigenvalues of Ei ◦Ej must
be contained in the interval 0 ≤ λ ≤ 1.
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The final feasibility condition we will list here is known as the absolute bound.

Lemma 2.12 ([75],Absolute bound). The multiplicities mi (0 ≤ i ≤ d) of a d-class
association scheme satisfy:

∑
qk

ij 6=0
mk ≤

mimj if i 6= j(
mi+1

2

)
if i = j.

Proof. The sum on the left is the rank of Ei ◦ Ej, a principal submatrix of the rank
mimj matrix Ei ⊗ Ej. Further, if i = j, Ei ◦ Ej is the entrywise square of Ei. Assuming
col(Ei) = span(v1, . . . , vmi

), the columns of Ei ◦ Ei must be linear combinations of the
vectors vj ◦ vk for 1 ≤ j ≤ k ≤ d, a total of

(
mi+1

2

)
vectors.

There are many other feasibility conditions we may list here including some arising
from design theory and others as simple as the handshaking lemma. In this thesis however,
we consider the conditions already stated to be a baseline. Thus, we do not claim that any
parameter set fulfilling these conditions is guaranteed to correspond to the parameters of
some association scheme, rather we instead simply ignore parameter sets which do not
fulfill these basic parameter restrictions. We therefore define two separate terms which
will be used throughout this thesis, feasible parameter sets and realizable parameter sets.

Definition. A feasible parameter set is a set of Krein parameters, intersection numbers,
and eigenmatrices such that:

FC1: The Krein parameters satisfy Lemmas 2.11 and 2.7 (i ′) – (xiii ′),

FC2: The intersection numbers satisfy Lemmas 2.10 and 2.7 (i) – (xiii),

FC3: The integers mj = q0
jj satisfy Lemma 2.12.

Definition. A feasible parameter set is realizable if there exists an association scheme
(X,R) with the given parameter set.

2.5 Imprimitivity
In group theory, one is often interested in learning about the subgroups of any given
group. That is, given a finite group G, are there subsets of the vertices S ⊂ G for which
the subset is closed under the group product. When such a subset occurs, we say S is
a subgroup of G, denoted S ≤ G. In some cases, namely when our subgroup N ≤ G is
normal, we may define another subgroup called the quotient group: G/N. In this context,
we often think of G being built out of the normal subgroup N and the quotient group
G/N, even though we cannot necessarily recover G from these two ingredients. This line
of investigation arises naturally in association schemes through the notion of subschemes.
Within any Bose-Mesner algebra A, we often find smaller subspaces B ⊂ A which are
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closed under both entrywise products and standard matrix products. While these smaller
algebras are typically not Bose-Mesner algebras (they need not include both identities I
and J), we may find a mapping from B to a vector space on smaller matrices which does
result in a new Bose-Mesner algebra. Given an association scheme (X,R), a subscheme
(X ′, {R′i}) is a subset of the points X ′ ⊂ X paired with the non-empty relations {R′i}
where R′i = Ri ∩ (X ′ × X ′) which itself forms an association scheme. The subalgebra
mapping in this case corresponds to taking the principal submatrix of each matrix in A
obtained by restricting to the rows and columns corresponding to the points X ′. Just as
in the group case, where every group G contains two trivial subgroups {eG} and G itself,
every Bose-Mesner algebra A contains trivial subspaces closed under both products such
as 〈I〉 and A; these will be ignored for all that follows.

In this section we will examine the analogue of a non-simple group, called an imprim-
itive scheme which admits not only a non-trivial subscheme, but a quotient scheme as
well. Analogous to a non-simple group, we often think of the imprimitive scheme as being
built out of these two smaller schemes. However, knowing both the quotient scheme and
the subscheme is not sufficient to entirely determine the original scheme. This is, in part,
due to the many different types of products which may be used to piece smaller schemes
together. For instance, Song [87] indicates the many distinct association schemes on 12
points using the standard direct and wreath products. Additionally, Cameron and Bailey
[3] introduce a third product, called the “crested product”, which is distinct, in general,
from the other two.

An association scheme (X,R) is imprimitive if there exists a non-trivial union of
relations ∪i∈IRi which forms an equivalence relation onX×X; here, the only trivial unions
are I = {0} and I = {0, . . . , d}. Given an imprimitive association scheme, we call the set
of equivalence classes a system of imprimitivity — noting that a system of imprimitivity
is determined uniquely by the index set I. An equivalent definition for imprimitivity is as
follows: an association scheme is imprimitive if there exists a non-trivial relation whose
graph is disconnected. To see the equivalence of these two definitions, assume that Ri is
disconnected for i 6= 0. Then I =

{
j : pjii

}
yields a system of imprimitivity.

In some cases, we may have multiple systems of imprimitivity in our association
scheme. Consider Example 2.1 and note that I1 = {0, 2} and I2 = {0, 3} both yield
systems of imprimitivity yet I1 results in two equivalence classes while I2 gives four.
Thus we must be careful to distinguish between distinct systems of imprimitivity for any
given association scheme. In each case, we find that the size of any equivalence class is
equal to the sum of the valencies ki (i ∈ I); hence all equivalence classes have the same
size for a given system of imprimitivity. In the example of the 3-cube, the size of each
equivalence class for I1 is v0 + v2 = 4; likewise the size of each equivalence class for I2
is v0 + v3 = 2. For all that follows we denote the size of any given equivalence class
by r and then the number of equivalence classes by w noting that |X| = wr. We now
define the subscheme and quotient scheme of an imprimitive scheme. Note that there is
no distinction made between a general subscheme and one which corresponds to a single
fiber of a system of imprimitivity. To avoid confusion, we will henceforth only refer to
subschemes which arise from systems of imprimitivity throughout this text.
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Definition. Let (X,R) be an imprimitive association scheme with system of imprimitiv-
ity X1, . . . , Xw with index set I.

(i) The (jth) subscheme of (X,R) is
(
Xj, {R′i}i∈I

)
where R′i = Ri ∩ (Xj ×Xj).

(ii) The quotient scheme of (X,R) is the association scheme
(
{X1, . . . , Xw} ,

{
R̃i

})
where (Xi, Xj) ∈ R̃k if and only if there exists x ∈ Xi, y ∈ Xj with (x, y) ∈ Rk.

Note that the subscheme and quotient scheme depend explicitly on the system of im-
primitivity chosen. Thus, in cases where multiple systems of imprimitivity exist, we must
be careful to distinguish which we are using. Thus, if multiple systems of imprimitivity
occur, say with index sets I1 and I2, we will say “the quotient scheme (or subscheme)
corresponding to I1”. Before moving to examples, we will provide a derivation of each
using their Bose-Mesner algebras. We do this to illuminate the duality at play, referring
the reader to numerous other sources for a combinatorial derivation ([16],[81],[25],[69]).

We begin with the subscheme. Let (X,R) be given with the system of imprimitivity
X1, . . . , Xw with index set I = {0, i1, . . . , is} and fiber size r. Then {Ai}i∈I forms a basis
for a second matrix algebra B ⊂ A which is also closed under both matrix and Schur
multiplication. We may order the vertices by equivalence classes so that every matrix in
B is block diagonal with w blocks of size r × r. Further,[∑

i∈I
Ai

]
x,y

=

1 if there exists a 0 ≤ k ≤ w with x, y ∈ Xk,

0 otherwise.

Each of these matrices will therefore be block diagonal matrices as the (x, y) entry of each
matrix will be 0 for x ∈ Xi and y ∈ Xj (i 6= j). However, this tells us that for i, j ∈ I,

AiAj =


φ1(Ai)φ1(Aj) 0 . . . 0

0 φ2(Ai)φ2(Aj) . . . 0
... ... . . . ...
0 0 . . . φw(Ai)φw(Aj)


where φ` maps any matrix A to the `th r × r diagonal block. Thus we have w vector
spaces which are all isomorphic to B, in particular, each vector space is closed under
matrix multiplication and entrywise products. In addition however, each of these vector
spaces contain both I and J since φ`(A0) = I and φ`(

∑
i∈I Ai) = J for any choice of

1 ≤ ` ≤ w. Thus each of these vector spaces is a subscheme of A.

Lemma 2.13. Let A be the Bose-Mesner algebra of an imprimitive scheme with system of
imprimitivity with w fibers of size r and index set I. Then (under an appropriate ordering
of the vertices) ∑i∈I Ai = Iw ⊗ Jr and the Bose-Mesner algebra of the subscheme, A′, is
isomorphic to the vector space of matrices 〈Ai〉i∈I.

Before moving to the quotient scheme, we investigate the subscheme further. As
before, we note that B is commutative, and thus we may simultaneously diagonalize all
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matrices in B giving the basis of minimal idempotents {E ′0′ , E ′1′ , . . . , E ′s′} (here, we use
j′ to denote an index of the subscheme noting that, in general, E ′j′ will not necessarily
be related to Ej). Since every maximal common eigenspace of B must be the direct sum
of maximal eigenspaces in A′, the dimension of any maximal common eigenspace in B
must be a multiple of w. Then, since we have shown the rank w matrix Iw ⊗ Jr ∈ B, we
know that 1

r
Iw ⊗ Jr must be one minimal idempotent as it is has the minimum possible

non-zero rank of any idempotent matrix in B; without loss of generality we assume this is
E ′0′ . Now, since each maximal common eigenspace of A must be common eigenspaces of
B, we must have that for each 0 ≤ i ≤ d, there exists a unique j′ ∈ {0′, . . . , s′} such that
E ′jEi = Ei — that is, the maximal common eigenspaces of B partition those of A. We
therefore define for each j′ ∈ {0′, . . . , s′} the set

{
i : E ′j′Ei = Ei

}
giving E ′j′ = ∑

i∈j′ Ei;
for ease of notation, we identify an index j′ with both an index of the subscheme and the
corresponding set of indices of idempotents from the original scheme contributing to Ej′ .
This is to emphasize that the idempotents of A′ come from a partition of the idempotents
of A — we will see a similar notation for quotient schemes where relations of the quotient
scheme arise from a partition of the relations of A.

Since matrix multiplication is preserved by our mapping, we find that for i, j, k ∈ I,
p′kij = pkij and thus the intersection numbers match our original scheme for indices within
I. While Schur products are also preserved by ψ`, recall that the idempotents of B were
not the same as the idempotents of A, thus we do not expect our Krein parameters to be
preserved. Instead we must determine the parameters q′k′i′j′ so that

E ′i′ ◦ E ′j′ = 1
|X`|

s′∑
k′=0′

q′k
′

i′j′E
′
k′ .

First, note that such constants must exist since B is closed under entrywise multiplication.
Now, recalling that E ′i = ∑

a∈îEa, we may multiply each side of the above equation by
Eh for some 0 ≤ h ≤ d and find

1
|X|

∑
a∈î,b∈ĵ

qhabEh =
(
E ′i′ ◦ E ′j′

)
Eh = 1

|X`|
q′k
′

i′j′Eh

where h ∈ k′. Thus we find
q′k
′

i′j′ = 1
w

∑
a∈i′,b∈j′

qhab (2.7)

for any h ∈ k′.
We note that, while there exist algebra isomorphisms between any pair of subschemes,

the w distinct subschemes need not be combinatorially isomorphic; that is, while ψi ◦ψ−1
j

maps A′j → A′i, there need not be a bijection between Xj → Xi for which (γ(x), γ(y)) ∈
R′i if and only if (x, y) ∈ R′i (see [55] for further discussion on the distinction between
“isomorphic” and “combinatorially isomorphic”). We summarize this construction as
follows.

We now consider the dual notion, the quotient scheme, by swapping the roles of our
adjacency matrices and idempotents in the above derivation. As the quotient scheme and
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subscheme arise in the same context, it should not be surprising that they are highly
related. Thus, we will hold on to some of the notation we have already established: using
j′ ∈ {0′, . . . , s′} to denote an index of the subscheme as well as the set

{
i : E ′j′Ei = Ei

}
.

Now, observe that Lemma 2.7 (i ′) applied to any subscheme tells us that q′k′0′0′ = 0 for any
k′ 6= 0′. Thus, our original scheme must have qkab = 0 whenever a, b ∈ 0′ and k /∈ 0′. We
denote J = 0′ and find that the set of matrices {Ej}j∈J is then closed under entrywise
multiplication. Therefore we have a third vector space of matrices C = spanj∈J (Ej)
closed under both matrix and Schur multiplication. This vector space will be isomorphic
to the Bose-Mesner algebra of our quotient scheme just as B was isomorphic to each A′,
however we require more work to show this.

Without loss of generality assume that |J | = t + 1. Since Schur products are triv-
ially commutative, we may guarantee the existence of Schur idempotents (01-matrices)
which span our matrix algebra. Let

{
Ã0̃, . . . , Ãt̃

}
correspond to the set of minimal

Schur idempotents in C; that is, the idempotents contained in C which are not sums
of other Schur idempotents in C. These new idempotents correspond to the maximal
common Schur-eigenspaces of C. However, since C ⊂ A, each schur idempotent must be
a sum of 01-matrices from A. As before, for each index ĩ ∈

{
0̃, . . . , t̃

}
we define the set

ĩ =
{
j : Ãĩ ◦ Aj = Aj

}
giving Ãĩ = ∑

j∈ĩAj. This immediately implies that ÃĩEk = 0 for
any k /∈ J . Then each Ãĩ may be diagonalized using only the {Ej}j∈J giving,

Ãĩ(Iw ⊗ Jr) = Ãĩ

r∑
j∈J

Ej

 = rÃĩ.

Thus, each A′i is a block matrix, constant on each block. This block form tells us
that any Schur idempotent of C must have a multiple of wr2 ones since there must be
at least r2 ones in each of the w rows of blocks. Then Iw ⊗ Jr must be one of our
minimal idempotents since Iw ⊗ Jr ∈ C and it has exactly wr2 ones; without loss of
generality, we assume Ã0̃ = Iw ⊗ Jr. Further, the block form of our 01-matrices tells us
there exists matrices M̃ĩ for ĩ ∈

{
0̃, . . . , t̃

}
such that Ãĩ = Jr ⊗ M̃ĩ and we may define an

algebra homomorphism ψ̃ mapping Ãĩ 7→ M̃ĩ which preserves entrywise multiplication.
We further find that

ψ̃ (AB) = rψ̃(A)ψ̃(B). (2.8)

Then ψ̃(A′0) = I, ψ̃ (∑i∈J A
′
i) = Jw, and Equation (2.8) gives us,

p̃k̃ĩj̃ = 1
r

∑
i∈ĩ,j∈j̃

pkij

for any choice of k ∈ k̃; this smaller algebra satisfies all the conditions of a Bose-Mesner
algebra. Finally, since ψ̃ preserves entrywise products, we find that q̃kij = qkij for i, j, k ∈ J .
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Lemma 2.14. Let A be the Bose-Mesner algebra of an imprimitive scheme with system
of imprimitivity with w fibers of size r and index set I. Then there exists an index set J
such that ∑j∈J Ej = 1

r
(Iw ⊗ Jr) and the Bose-Mesner algebra of the quotient scheme, Ã,

is isomorphic to the vector space of matrices 〈Ej〉j∈J .

From the above two derivations we find that both the subscheme and the quotient
scheme may be obtained by finding a subset of idempotents under one product which
are closed under the second product. When this occurs we find a smaller matrix algebra
which is isomorphic to a Bose-Mesner algebra on fewer vertices. Thus the only algebraic
difference between a subscheme and the quotient scheme is simply which set of idempo-
tents we begin with (or rather, with respect to which product we take idempotents for).
Throughout this thesis we will use ĩ to describe an index of the quotient scheme and i′

an index of the subscheme. Further I and J will continue to denote the subset of indices
for which ∑

i∈I
Ai = Iw ⊗ Jr = r

∑
j∈J

Ej.

In particular, we also allow ourselves to designate a system of imprimitivity via the index
set J , ensuring from context that the meaning of the index set is clear. Finally, we have
a lemma concerning the eigenmatrices of the subscheme and quotient scheme.

Lemma 2.15 ([17],[69]). Let P and Q be the first and second eigenmatrix of an imprimi-
tive association scheme with a system of imprimitivity given by index sets I and J . Let P ′
be the first eigenmatrix of the subscheme and Q̃ be the second eigenmatrix of the quotient
scheme. Then for any i ∈ I and j ∈ J we have

P ′k′i = Pki, Q̃h̃j = Qhj

where k ∈ k′ and h ∈ h̃.

Proof. Recall that each subscheme of A is found by mapping each matrix in 〈Ai〉i∈I to
the principal submatrix corresponding to one of the equivalence classes. However, since
φ : A→ A′ via this mapping preserves matrix products, we see that

P ′k′iφ(E ′k′) = φ(Ai)φ(E ′k′) = φ(AiE ′k′) = Pkiφ(E ′k′)

for any choice of i ∈ I and k ∈ k′. Similarly, the mapping ψ̃ : A→ Ã preserves entrywise
products. Thus choosing any j ∈ J and h ∈ h̃ results in

Qh̃jφ(Ãh̃) = ψ̃(Ej ◦ Ãh̃) = ψ̃(Ej) ◦ ψ̃(Ãh̃) = Q̃hjψ̃(Ãh̃)

We finish this section by providing an illustration of each type of system of imprim-
itivity, returning to the example of the 3-cube. Recall that this association scheme had
two systems of imprimitivity with index sets I1 = {0, 2} and I2 = {0, 3}. We begin with
I1 = {0, 2} and display the components of Γ2 below.

25



0

3
5

6

1

2
4

7Γ2

For each of the two components we find a subscheme isomorphic to K4:

0

1
2

3

Γ′0

0

1
2

3

Γ′1

The quotient scheme is found by collapsing each component to a single point, giving an
association scheme isomorphic to K2:

0 1

Γ0̃

0 1

Γ1̃

Similarly, the system of imprimitivity corresponding to I2 = {0, 3} results in the following
components of Γ3:

0 1

2 3
4 5

6 7

Γ3

Each component here results in a subscheme isomorphic to K2:

0 1

Γ′0

0 1

Γ′1

while, the quotient scheme is isomorphic to K4:

0 1

2 3
Γ0̃

0 1

2 3
Γ1̃
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It is not typical that the two examples — both in the same Bose-Mesner algebra — have
subscheme and quotient scheme swapped. This is an artifact of the self-duality of the
3-cube. These schemes correspond to the dual pair of linear codes rowsp

[
1 1 1

]
and

nullsp
[

1 1 1
]
.

2.6 Polynomial schemes
In this section we define and briefly develop the notion of polynomial association schemes.
We again present two dual concepts, P -polynomial and Q-polynomial, though we will
focus primarily on the Q-polynomial case outside of this section. Let (X,R) be a d-
class association scheme. We say (X,R) is Q-polynomial, or cometric, if there exists an
ordering of the idempotents, say E0, E1, . . . , Ed, such that the Krein parameters satisfy
the following conditions:

1. qkij = 0 whenever k > i+ j, and

2. qkij > 0 whenever k = i+ j.
Additionally, we note that it is sufficient to check only the above conditions with i = 1
(see [16, Prop. 2.7.1]). Thus we may characterize Q-polynomial association schemes as
exactly those for which there exists an eigenspace ordering for which the Krein matrix L∗1
is irreducible tridiagonal. Noting that each row of L∗1 sums to q0

11, the parameters of (X,R)
are then entirely determined by its Krein array ι∗(X,R) =

{
b∗0, . . . , b

∗
d−1; c∗1, . . . , c∗d

}
where

b∗i = qi1,i+1 and c∗i = qi+1
1i . When this occurs, we find that A = 〈E1〉◦; that is, E1 generates

our entire Bose-Mesner algebra using Schur products. Additionally, for each 0 ≤ k ≤ d,
we may define a single-variable polynomial qk(t) of degree k so that Qik = qk (Qi1) for
0 ≤ i ≤ d. This is equivalent to Ek = 1

|X|qk◦(|X|E1); that is qk applied entrywise to |X|E1

results in |X|Ek (again see [16, Prop. 2.7.1]). Then we may define one final polynomial
qd+1(t) with degree d + 1 and no repeated roots such that qd+1 ◦ (|X|E1) = 0. This
immediately implies that E1 has d+ 1 distinct entries and we find it convenient to order
the relations according to these values so that Q01 > Q11 > · · · > Qd1; we call this the
natural ordering of relations with respect to the Q-polynomial ordering E0, E1, . . . , Ed.
As is suggested by this definition, it is possible to find multiple Q-polynomial orderings
for the same association scheme. However, Suzuki [90] showed that, with the exception
of cycles, any Q-polynomial association scheme has at most two Q-polynomial orderings.
We say a Q-polynomial association scheme is Q-bipartite if the Krein parameters satisfy
qkij = 0 whenever i+j+k /∈ 2Z. We find in this case that {Ei}i∈2Z serves as a Schur-closed
subalgebra. In contrast, we say a Q-polynomial scheme is Q-antipodal if qkdd = 0 whenever
k /∈ {0, d} and thus {E0, Ed} is a Schur-closed subalgebra. Each case coincides with a
system of imprimitivity; the following is Suzuki’s theorem concerning these systems.
Theorem 2.16 ([91],[27],[92]). Suppose (X,R) is an imprimitive cometric association
scheme with Q-polynomial ordering E0, . . . , Ed and natural ordering A0, . . . , Ad. Then
one of the following holds:
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(i) (X,R) is Q-bipartite and J = {0, 2, 4, . . . }, I = {0, d};

(ii) (X,R) is Q-antipodal and J = {0, d}, I = {0, 2, 4, . . . }.

The original theorem in [91] allowed for two exceptional cases, one with d = 4 and
another with d = 6. These two cases were later ruled out in [27] and [92] respectively.

We now consider the more familiar dual notion: P -polynomial association schemes.
Again let (X,R) be a d-class association scheme. We say (X,R) is P -polynomial, or
metric, if there exists an ordering of the relations, say A0, A1, . . . , Ad, such that the
intersection numbers satisfy the following conditions:

1. pkij = 0 whenever k > i+ j, and

2. pkij > 0 whenever k = i+ j.

Just as with cometric association schemes, we find that it suffices to check the above
conditions only when i = 1 ([16, Prop. 2.7.1]) and thus an association scheme is P -
polynomial if and only if there exists an ordering of the relations for which the intersection
matrix (L1) is irreducible tridiagonal. In this case we find that A = 〈A1〉∗ and it is
therefore common to consider a P -polynomial scheme synonymous with Γ1 — a distance-
regular graph; that is (x, y) ∈ Ri if and only if the distance between x and y in Γ1 is i. We
find analogous results as we saw in the Q-polynomial case with [16, Theorem 4.2.12] and
[93] giving that any P -polynomial association scheme which is not a cycle has at most
two P -polynomial orderings. Further, we may define P -bipartite (or more commonly
bipartite) and P -antipodal (antipodal) as those schemes for which pkij = 0 if i+ j+ k 6∈ 2Z
and pkdd = 0 whenever k 6∈ {0, d} respectively. For these schemes we again find systems of
imprimitivity. This time, however, I = {0, 2, 4, . . . } and J = {0, d} corresponding to the
bipartition of a bipartite graph, while I = {0, d} and J = {0, 2, 4, . . . } give the antipodal
classes as our system. As before, with the exception of cycles, we find that these systems
of imprimitivity are all that can occur for P -polynomial schemes and note that both can
occur within the same association scheme, for example the 3-cube (more generally the
n-cube) is both bipartite and antipodal. For details, see Theorem 4.2.1 in the book [16]
of Brouwer, et al. where credit is given to Smith [86] and Gardiner [43] where this is
reference “313” in the book [16].

Despite the close connection between P -polynomial and Q-polynomial association
schemes, we note that many of the theorems mentioned here in the P -polynomial case
predate their Q-polynomial analogues by as much as 30 years. Further, there are many
other theorems which are known to be true for metric schemes whose cometric analogues
have yet to be proven. For instance Taylor and Levingston showed in 1978 ([93]) that
the sequence k0, k1, . . . , kd is unimodal, however the Q-analogue — the property that
the sequence m0,m1, . . . ,md is unimodal for any Q-polynomial ordering — remains a
conjecture to this day. Chapter 6 of [16] details many of the known examples of distance-
regular graphs — all tables mentioned here appear in that chapter. Brouwer, et al. list
21 classical parameter sets (Tables 6.1 & 6.2), 15 of which correspond to infinite fami-
lies, three folded classical graphs (Table 6.3), nine near regular polygons including the
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generalized polygons (Tables 6.5 & 6.6), as well as 20 more primitive distance regular
graphs (Tables 6.8 & 6.9). Further they give the known bipartite and antipodal exam-
ples (Tables 6.9 & 6.10 resp.). On the cometric side however, much less is known. Out
of the infinite families of P -polynomial schemes listed in [16], five families are also Q-
polynomial: the Johnson schemes, Hamming schemes, Grassmann schemes, dual polar
spaces, and sesquilinear/quadratic forms. More recently [35], Van Dam and Koolen dis-
covered the twisted Grassmann graphs which are also both metric and cometric. The
remaining known families Q-polynomial association schemes are: linked systems of sym-
metric designs, mutually unbiased bases, bipartite doubles of some polar spaces, duals
of metric translation schemes, two families found by Penttila and Williford [79] — one
4-class Q-bipartite and one 3-class primitive — and one more family found by Moorhouse
and Williford [73]. In addition to these we also know of sporadic examples such as the
22 listed in [69] and new examples found by King [60]. Out of these examples, we note
that only the families which are both metric and cometric allow for unbounded d. In fact,
Bannai and Ito made the following conjecture concerning primitive association schemes.

Conjecture (Bannai & Ito). For d sufficiently large, a primitive association scheme with
d classes is metric if and only if it is cometric.

We note that every primitive 2-class association scheme (connected strongly regular
graph) is vacuously both metric and cometric. Thus, in view of the above conjecture,
it should not be surprising that the most fruitful place to search for new examples of
Q-polynomial schemes which are not also metric is the range 3 ≤ d ≤ 6.
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Chapter 3

Positive semidefinite cone of an
association scheme

We begin this chapter with a simple problem: How many lines may one draw on a piece
of paper which intersect in a single angle? It is clear that we may draw two lines which
intersect with any angle 0 < θ < π

2 . However, if we fix θ = π
3 , we may draw a third line

bisecting the obtuse angle between our pair of lines which results in a angle of π
3 which

both original lines. The same question may be asked in a higher dimension: how many
lines may one construct in R3 so that any pair of lines intersect in the same angle? For
this case, we construct a regular pentagon centered at the origin of the xy-plane and draw
fives lines connecting the origin to each vertex of the pentagon. The resulting five lines
(identified by each vertex) admit two possible angles between them: 2π

5 between adjacent
vertices and π

5 between non-adjacent vertices.

Figure 3.1: Five lines resulting from a regular pentagon in R2. The blue angle is π
5 while

the red angle is 2π
5

.

Now shift the pentagon along the z-axis and track the five lines joining the origin
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of R3 to its vertices. By shifting the pentagon far enough, we eventually find that each
pair of lines with adjacent vertices admit a smaller angle than those pairs which are not
adjacent.

Figure 3.2: Lines joining the origin to the points on a regular pentagon after lifting it out
of the plane. In this case, the smaller angle occurs between consecutive lines, rather than
those coming from non-adjacent points.

Thus there exists some height for which the angles are all the same — this occurs when
the cosine of the angle between pairs is 1√

5 . Further, one finds that this configuration allows
for a sixth line to be added, given by the z-axis, which is “equiangular” with each of the
other five lines. More commonly, this configuration of lines is given by connecting the
center of an icosahedron to the six pairs of antipodal points. In both cases listed above,
we find that these configurations are optimal for that dimension — that is, one cannot
find a set of four lines in R2 nor seven lines in R3 for which any pair of lines intersect in
a given angle.

This simple problem generalizes to a classic unsolved problem in discrete geometry
([50],[64],[98]). Given a fixed positive integer n and angle 0 < θ < π

2 , a set of equiangular
lines is a set of lines through the origin of Rn such that the angle between any pair of
distinct lines is θ. We then ask, what is the maximum number of equiangular lines one
may find for each choice of n and θ. Over the past 70 years, researchers in both math and
physics have developed the theory of equiangular lines, finding upper bounds on the num-
ber of equiangular lines in any given dimension using tools such as linear programming
[39], number theory [64], graph spectra [18], and most recently semidefinite programming
[6]. A related question is as follows: How many orthonormal bases may we find in Rn such
that the absolute value of the inner product between vectors in distinct bases is fixed. Such
a set is called a set of real mutually unbiased bases (see [14],[23],[39]). Recently, the com-
plex analogues have attracted interest in quantum computing ([1],[49],[48],[54],[100],[106]),
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though we will restrict ourselves to the questions in real space as the adjacency matrices
of symmetric association schemes are always diagonalizable over the reals.

Both of the problems mentioned above are restricted versions of the more general
question of finding spherical t-distance sets. A spherical t-distance set is a set of unit
vectors such that the inner product between any pair of distinct vectors may take only t
unique values in the interval [−1, 1). For instance, a set of equiangular lines is a spherical
2-distance set; even though we allow only one angle between lines, this results in two
possible inner products between unit vectors. Likewise, a set of mutually unbiased bases
is a spherical 3-distance set. In each case the question of finding equiangular lines or
mutually unbiased bases may be posed as finding large positive semidefinite matrices
with a low rank, constant diagonal, and few distinct entries off the diagonal. To wit,
let G be an n × n positive semidefinite matrix with rank r. Then there exists a r × n
matrix U such that G = UTU ; that is G is the Gram matrix of the columns of U . If
G has a constant diagonal α, then the columns of 1√

α
U are unit vectors with the same

number of distinct inner products between distinct pairs of vectors. The columns of U
therefore give a spherical t-distance set in Rr where t is the number of distinct entries off
the diagonal of G. Now recall that a d-class association scheme results in a Bose-Mesner
algebra with d + 1 basis idempotents. Fix some Bose-Mesner algebra A on n points.
We are interested in positive semidefinite matrices and thus we will focus on the cone of
positive semidefinite matrices within A. In any real vector space V , a cone is a subset
C ⊂ V closed under addition and multiplication by non-negative scalars. It often becomes
useful to define the cone via the extremal vectors; an extremal vector v ∈ C is a vector for
which x+ y = v with x, y ∈ C implies either x = cv or y = cv for some constant c. Given
these points, our cone is simply the non-negative linear combinations of these extremal
vectors. Returning to A, the basis of idempotents are the extremal points. Thus, the cone
of positive semidefinite matrices in A is exactly the set

{∑d
i=0 αiEi

}
for αi ≥ 0.

Noting that every matrix in A has a constant diagonal and at most d entries off the
main diagonal, if A contains a matrix with non-zero diagonal and rank r then there exists
a spherical d-distance set of size n in Rr. Conversely, any restrictions we find on the
existence of such t-distance sets allows us to add feasibility conditions on the parameters
of association schemes. For instance, Delsarte, Goethals, and Seidel [39] bounded the
maximum size of a t-distance set based solely on the dimension of the ambient space and
the inner products allowed between vectors. An example of one of the bounds found is
as follows: Let X be a spherical 4-distance set in Rn with inner products {±α,±β} for
α, β ∈ R. Then as long as α2 + β2 ≤ 6

n+4 we must have

|X| ≤ n(n+ 2)(1− α2)(1− β2)
2− (n+ 2)(α2 + β2) + n(n+ 2)αβ

provided the denominator is positive. Using these same techniques they also confirm the
relative bound: given any 2-distance set X in Rn with inner products ±α ∈ R,

|X| ≤ n(1− α2)
1− nα2 .
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Such an observation allows us to rule out certain parameter sets if the rank of any matrix
in the PSD cone falls too low compared to the number and values of the distinct entries
off the diagonal. In a later paper [40], the same authors proved that a s-distance set is
a spherical t-design if and only if each of the first t Gegenbauer polynomials, summed
over the inner products 〈x, x′〉 (x, x′ ∈ X) are all zero. Further, they showed that if a
t-design has fewer than t+1

2 distinct inner products, then it must correspond to the point
set of an association scheme. Later, Bannai and Bannai [4] showed that whenever the
number of distinct inner products is less than t+3

2 , the t-design still admits an association
scheme as long as the set of vectors are antipodal (x ∈ X if and only if −x ∈ X). This
close relation between “near-tight” t-designs and association schemes hints at the types
of vector systems we should expect to find within Bose-Mesner algebras. For instance,
Suda [88] used these results to characterize when the first idempotent of a Q-polynomial
ordering results in a spherical t-design. A central tool in many of these results is a family
of single-variable polynomials known as the Gegenbauer polynomials. A key result of
Schönberg [82] concerning this family tells us that each Gegenbauer polynomial, when
applied to a Gram matrix entrywise, produces a positive semidefinite matrix.

In this chapter we will further examine the cone of positive semidefinite matrices within
Bose-Mesner algebras. We first display how one may build large spherical t-distance sets
by taking non-negative linear combinations of the idempotents. Using this, we will build
examples of equiangular lines meeting a known upper bound for the number of lines
in given dimensions. We will then introduce the Gegenbauer polynomials as well as
Schönberg’s Theorem. Using this theorem we will derive new constraints on the Krein
parameters of any association scheme. We further examine these restrictions in the case
of Q-polynomial association schemes where we give seven feasibility conditions which are
not implied by the previously mentioned feasibility conditions; we believe these results are
new. These results will be applied directly to the case of 4-class Q-bipartite association
schemes in Chapter 5. The material in this chapter grew out of discussions with W-H.
Yu and contains joint work with W. J. Martin. Below we list the main contributions in
this chapter.

In both Theorem 3.7 and the final line of Theorem 3.15, Qm
k (t) denotes the Gegenbauer

polynomial of degree k in dimension m. The superscript m should help the reader to
distinguish this from entries of the second eigenmatrix Q.
Lemma 3.2. Let A be a Bose-Mesner algebra with second eigenmatrix Q and multiplicities
m0, . . . ,md. Define Q′ to be the submatrix of Q given by deleting row 0. If there exists
a non-negative vector x so that Q′x ∈ {−1, 1}d, then A contains the Gram matrix of |X|
equiangular lines in dimension n = ∑

xj 6=0mj with angle α = (∑xjmj)−1.
Theorem 3.7. Let (X,R) be an association scheme with minimal idempotents E0, . . . , Ed
and matrices of Krein parameters L∗0, . . . , L∗d. Fix some Ei, 0 ≤ i ≤ d, and let mi :=
rank (Ei). Then for any choice of ` > 0, there exist non-negative constants θ`j, 0 ≤ j ≤ d,
such that

Qmi
` ◦

(
|X|
mi

Ei

)
=
∑
j

θ`jEj; Qmi
`

( 1
mi

L∗i

)
= 1
|X|

∑
j

θ`jL
∗
j . (3.4)
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The eigenvalues of Qmi
` ◦

(
|X|
mi
Ei
)

are θ`0, . . . , θ`d where θ`j is non-zero only if Ej is con-
tained in the Schur subalgebra generated by Ei.
Theorem 3.15. Suppose we have a feasible parameter set for an association scheme with
first and second eigenmatrices P and Q. Fix 0 ≤ i ≤ d and set mi := Q0i. For ` > 0
define µ` = `−1

`+mi−3 and λj = Qji/Q0i. Let γ`,j equal λ2
j if (1+µ`)2λ2

j ≥ 4µ` and µ` otherwise.
Then all entries of Qmi

`∗

(
1
mi
L∗i
)

are non-negative whenever
d∑
j=1

(
`∗+1∏
`=2

γx,j

)
P0j

(
1 + λ2

j

)
≤ 1
|X|

.

Theorem 3.18. Suppose we have a feasible parameter set for a cometric association
scheme with Krein array ι∗(X,R) =

{
m, b∗1, . . . , b

∗
d−1; 1, c∗2 . . . , c∗d

}
where m > 2. Define

b∗j−1 = c∗j = a∗j = 0 for j > d. Then the scheme is realizable only if

(i) (a∗1)2 + b∗1c
∗
2 ≥

2m(m−1)
m+2 ,

(ii) (a∗1)2 + 2a∗1a∗2 + c∗2q
2
22 ≥

4m(m−2)
m+4 ,

(iii) 6m(m−1)(m−4)
(m+4)(m+6) + (3a∗1(a∗1+a∗2)+c∗2q2

22)b∗1c∗2+(a∗1)4

m
≥

(7m−18)
(
(a∗1)2

+b∗1c∗2
)

m+6 ,

(iv) ∑3
i=1

(
b∗i c
∗
i+1 + a∗i

∑3
j=i a

∗
j

)
≤ 3(3m−2)

m+6 .

(v) 16m(m−1)
(m+4)(m+8) + (a∗1)4

+(3a∗1(a∗1+a∗2)+c∗2q2
22)b∗1c∗2

(m−2)m ≥
12
(
(a∗1)2

+b∗1c∗2
)

m+8 ,

Additionally, if a∗1 > 0, then

(vi) (a∗1)2 + b∗1c
∗
2

(
2 + a∗2

a∗1

)
≥ 4m(2m−3)

m+6 ,

(vii) (a∗1)2 + 2a∗1a∗2 − (a∗2)2 + 2c∗2q2
22 + b∗2c

∗
3(a∗3−a∗1)−ma∗2

a∗1+a∗2
≥ 6m(m−4)

m+6 .

3.1 Lines with few angles
Let (X,R) be an association scheme with basis relations A0, . . . , Ad, orthogonal idempo-
tents E0, . . . , Ed, and Bose-Mesner algebra A. Since each Ei is an idempotent matrix, it
has spectrum 1mi , 0v−mi and thus is positive semidefinite, denoted Ei � 0. Any G ∈ A
may be uniquely expressed

G =
∑
i

αiEi, (3.1)

and we have spec (G) = {α0, . . . , αd}. Therefore G � 0 if and only if αi ≥ 0 for all
0 ≤ i ≤ d. Thus the positive semidefinite cone of (X,R) is the set of non-negative linear
combinations of the idempotents E0, . . . , Ed. Further, Equation (3.1) gives us that

rank (G) =
∑
αi 6=0

mi. (3.2)
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Finally, for any G in the positive semidefinite cone, we must have G = ∑
i βiAi with

β0 > 0 if G 6= 0 and thus there are at most d distinct values off the main diagonal.
Recall that a set of equiangular lines is a set of vectors for which the angle between any
pair is given by some fixed 0 < θ < π

2 . By abuse of terminology, we say the (common)
“angle” for this set is α = cos(θ) and thus we identify a set of equiangular lines in Rn

with angle 0 < α < 1 with a rank n positive semidefinite matrix for which each entry
on the main diagonal is 1 and every entry off the diagonal is one of ±α; we call such
a matrix the Gram matrix of a set of equiangular lines with angle α. While we have
mentioned equiangular lines and mutually unbiased bases multiple times, we will also find
other t-distance sets useful to consider, fixing certain angles to fit our application. For
instance, in Chapter 4 we examine one type of cometric association scheme which may be
characterized by the 3-distance set in Rr with −1

r
as a possible inner product. We then

show that certain linear combinations of E0, E1, and E3 will also produce equiangular
lines in this way. We show later in the chapter that a certain family of these association
schemes also contains the Gram matrix of real mutually unbiased bases. In the optimal
case, we find that the number of vectors in each set scales as 1

2v
2 for dimension v. In this

section, we restrict ourselves to building equiangular lines and consider 3-class primitive
Q-polynomial association schemes. Before moving to examples, we note the following
bound on the maximum number of equiangular lines in a given dimension known as the
relative bound.

Theorem 3.1 ([98]). For 0 < α < 1, let vα(n) be the maximum number of equiangular
lines with angle α in Rn. If n < α−2 then

vα(n) ≤ n(1− α2)
1− nα2 .

In this section, we refer to a system of equiangular lines as optimal if it achieves the
relative bound for the given dimension and angle; likewise a system of equiangular lines
is near optimal if it is within one line of being optimal. We note that the relative bound
need not give an integer on the right hand side of the inequality. In the case where the
relative bound gives vα(n) ≤ x + η for x ∈ Z and 0 < η < 1, we reduce the bound to
vα(n) ≤ x. In this case, a set of x vectors with inner products ±α would still be considered
optimal, since no larger set could ever be found. We now examine two 3-class primitive
association schemes to illustrate how we may build equiangular lines from these schemes.
The first comes from the halved 7-cube while the second corresponds to the dual polar
space B3(2).

Example 3.1. Consider the 3-class primitive association scheme given by the halved
7-cube [16]. This scheme is both metric and cometric with the following eigenmatrices

P =


1 21 35 7
1 9 −5 −5
1 1 −5 3
1 −3 3 −1

 , Q =


1 7 21 35
1 3 1 −5
1 −1 −3 3
1 −5 9 −5

 .
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Recall that Ej = 1
|X|
∑
iQjiAi and consider

G = 16
7 (E1 + E2)

where the constant 16
7 = |X|

m1+m2
is chosen to make the main diagonal of G equal to 1. We

may then use the entries of Q to replace each idempotent with the corresponding sum of
adjacency matrices giving

G = A0 + 1
7A1 −

1
7A2 + 1

7A3.

Then G is the Gram matrix of 64 lines in dimension m1 + m2 = 28 with angle 1
7 . Using

the relative bound, we find that this system is optimal.
Example 3.2. Consider the 3-class primitive cometric (and metric) association scheme
defined on the dual polar space B3(2). The first and second eigenmatrices are

P =


1 14 56 64
1 5 −2 −8
1 −1 −4 4
1 −7 14 −8

 , Q =


1 35 84 15
1 25/2 −6 −15/2

1 5/4 −6 15/4

1 −35/8 21/4 −15/8

 .
Consider the matrix

G = 15E0 + 24E1 + 24E3 = 9A0 + A1 + A2 − A3.

Similar to before, 1
9G is the Gram matrix of 135 lines in dimension m0+m1+m2 = 51 with

angle ±1
9 . Here, the relative bound tells us that optimal number of lines in dimension 51

with these inner products is bounded above by 136, thus this construction is near optimal.
We now consider the construction in general.

Lemma 3.2. Let A be a Bose-Mesner algebra with second eigenmatrix Q and multiplicities
m0, . . . ,md. Define Q′ to be the submatrix of Q given by deleting row 0. If there exists
a non-negative vector x so that Q′x ∈ {−1, 1}d, then A contains the Gram matrix of |X|
equiangular lines in dimension n = ∑

xj 6=0mj with angle α = (∑xjmj)−1.
Proof. Let y = Q′x. Then we have the d equations

Qi0x0 +Qi1x1 + · · ·+Qidxd = yi

for 1 ≤ i ≤ d where each yi is either 1 or −1. Consider the matrix

G =
∑

xjEj = 1
|X|

d∑
i=0

 d∑
j=0

xjQij

Ai = 1
|X|

 d∑
j=0

xjmj

A0 + 1
|X|

d∑
i=1

yiAi.

Since |yi| = 1 for each 1 ≤ i ≤ d, each off-diagonal entry of G has the same absolute
value. Thus we may scale G by its diagonal entry to obtain the Gram matrix of a set of
equiangular lines with angle (∑xjQ0j)−1. The rank of G is the sum of the ranks of those
Ej with xj 6= 0.
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We finish this section by applying Lemma 3.2 to the table of 3-class primitive Q-
polynomial schemes found at [104].

Optimal constructions
Label |X| n 1/α Label |X| n 1/α
〈64, 7〉 64 28 7 〈120, 14〉 120 35 7
〈64, 9〉 64 36 9 〈120, 17a〉 120 35 7
〈64, 21〉 64 28 7 〈1024, 31〉 1024 496 31
〈120, 9〉 120 35 7 〈1024, 66〉 1024 528 33

Potential optimal constructions
Label |X| n 1/α Label |X| n 1/α
〈280, 27a〉 280 63 9 〈1456, 97〉 1456 195 15
〈324, 19a〉 324 171 19 〈1520, 49〉 1520 589 31
〈344, 42〉 344 43 7 〈1520, 56〉 1520 589 31
〈460, 51〉 460 69 9 〈1596, 55〉 1596 551 29
〈540, 44〉 540 99 11 〈2016, 62a〉 2016 651 31
〈540, 49〉 540 99 11 〈2016, 65〉 2016 651 31
〈936, 51〉 936 221 17 〈2160, 119〉 2160 255 17
〈936, 51a〉 936 221 17 〈2160, 119a〉 2160 255 17
〈1024, 33〉 1024 528 33 〈2160, 119b〉 2160 255 17
〈1200, 55〉 1200 110 11 〈2500, 51〉 2500 1225 49
〈1200, 109a〉 1200 110 11 〈2500, 51a〉 2500 1275 51
〈1344, 79〉 1344 238 17 〈2500, 75〉 2500 1275 51
〈1456, 90a〉 1456 195 15

Near optimal constructions
Label |X| n 1/α Label |X| n 1/α
〈35, 6〉∗ 35 21 7 〈135, 35〉∗ 135 51 9

Potential near optimal constructions
Label |X| n 1/α Label |X| n 1/α
〈279, 30〉 279 63 9 〈923, 70〉 923 143 13
〈319, 28〉 319 88 11 〈1035, 68〉 1035 185 15
〈377, 28〉 377 117 13 〈1349, 70〉 1349 285 19
〈527, 30〉 527 187 17 〈1975, 78〉 1975 475 25
〈527, 30a〉 527 187 17 〈2159, 126〉 2159 255 17
〈729, 56〉 729 337 25 〈2759, 88〉 2759 713 31

Table 3.1: In these tables we give the parameters for sets of equiangular lines which arise
from the given 3-class primitive cometric scheme — if the scheme exists. In both cases, we
split the tables into those schemes known to exist and those whose existence has not yet
been determined. Thus, the sets of equiangular lines in the first and third tables do exist,
while the sets in the second and forth tables are not guaranteed to exist as the parameter
set might not be realizable. Each parameter set is listed in [104] using the label in the far
left column. For each set we list the number of lines |X|, dimension n, and the inverse of
the inner product 1

α
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While it seems surprising that each angle is the inverse of an odd integer, the following
result of Neumann guarantees this holds for any large set of equiangular lines.

Theorem 3.3 ([64]). Let X be a set of v equiangular lines in Rn with angle α. If v > 2n
then 1

α
is an odd integer.

Theorem 3.4. For each near-optimal case listed in Table 3.1 except possibly for 〈729, 56〉,
if the parameter set is realizable, we may extend the set of vectors by one to obtain an
optimal set.

Proof. In each case, G = x0E0 + ∑d
j=1 xjEj for orthogonal idempotents E0, . . . , Ed and

E0 = 1
|X|J . Therefore G1 = x01 and we must have rank(

[
G x01

]
) = rank (G) since

the last column is the sum of all previous columns. Similarly, we may augment our new
matrix with an extra row by adding all previous rows together giving

G′ =
[

G x01

x01 |X|c0

]

again with rank(G′) = rank(G). Finally, we may scale the last row and column each by√
|X|x0 without changing the rank, since this equates to multiplying a single vector in

the set by a scalar. The resulting matrix is

H =
 G

√
x0
|X|1√

x0
|X|1

T 1

 .
If
√

x0
|X| = α, then this is the Gram matrix of a set of |X| + 1 equiangular vectors in the

same dimension. Thus we must check that the coefficient of E0 is |X|α2. We verify that
this holds for every case except 〈729, 56〉.

Note that this exceptional case is the only listed case where the relative bound is not
an integer. That is,

337(1− 1
252 )

1− 337
252

= 4381
6 ≈ 730.167.

Since the bound concerns the maximum cardinality of a set, this results in an upper bound
of 730. However even a set with 730 vectors in dimension 25 would not make this bound
sharp — this is likely why this case fails.

3.2 Gegenbauer polynomials
In all that follows let m be a fixed positive integer and define R := R[x1, . . . , xm]. A
monomial is defined as a (possibly empty) product of variables x1, . . . , xm and given
a monomial t = ∏m

i=1 x
di
i (di ∈ Z+), the degree of t is defined as deg(t) = ∑

i di. A
polynomial f ∈ R may be represented uniquely as a (finite) linear combination of distinct
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monomials f = ∑
i αiti and deg(f) = max {deg(ti)}. For each variable xj, we define

the derivative with respect to xj of a monomial as ∂
∂xj
t = dj

xj
t and extend the definition

linearly for any polynomial in R. For f ∈ R, f is homogeneous if there exists some
constant d ∈ Z+ such that deg(t) = d for every monomial t in f . Further, f is harmonic
if ∆f = ∑

i

(
∂
∂xi
◦ ∂
∂xi

)
(f) = 0. For f ∈ R the principal ideal generated by f is (f) =

{gf : g ∈ R}. We denote the cosets of this ideal by [g]f = {h ∈ R : g − h ∈ (f)} where
we suppress the subscript if it is clear from the context. The quotient ring R

/
(f) is,

of course, the set of equivalence classes {[g]f : g ∈ R} with the obvious operations. Let
Sm−1 ⊂ Rm be the (m − 1)-dimensional sphere; we define the set of polynomials on the
sphere as

Pol(Sm−1) := R

/(
1−

∑
i

x2
i

)
.

Thus, using f = 1−∑i x
2
i , we say a polynomial h ∈ R is harmonic on the sphere if there

exists a harmonic polynomial g ∈ [h]f ; we similarly define homogeneous on the sphere.
Finally, we say a polynomial h ∈ R is zonal if there exists a vector a ∈ Rm and a single-
variable polynomial p(t) ∈ R[t] such that h(x) = p(〈a, x〉) for all x ∈ Sm−1. Note that
since g ∈ (1−∑i x

2
i ) implies g(x) = 0 for all x ∈ Sm−1, this condition is independent of

the representative chosen from the equivalence class.
We now introduce a set of orthogonal polynomials arising from the context of spherical

harmonics. The Gegenbauer polynomials in dimension m are defined using the three-term
recurrence:

Qm
` (t) = (2`+m− 4)tQm

`−1(t)− (`− 1)Qm
`−2(t)

`+m− 3 ` ≥ 2, (3.3)

Qm
0 (t) = 1 Qm

1 (t) = t.

Note that Qm
` (1) = 1 for all k ≥ 0. We will suppress the superscript m if it is clear in

the context. Below we list the first six Gegenbauer polynomials and plot Q1(t) through
Q5(t) along with their roots for m = 10.

Q0(t) = 1, Q1(t) = t, Q2(t) = mt2 − 1
m− 1 , Q3(t) = (m+ 2)t3 − 3t

m− 1 ,

Q4(t) = (m+ 4)(m+ 2)t4 − 6(m+ 2)t2 + 3
m2 − 1 ,

Q5(t) = (m+ 6)(m+ 4)t5 − 10(m+ 4)t3 + 15t
m2 − 1 .

Theorem 3.5. For each m, ` ∈ Z+ and a ∈ Rm, the polynomial Qm
` (〈a, x〉) is zonal and

both homogeneous and harmonic on the sphere.
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Figure 3.3: Gegenbauer polynomials with degree 1 through degree 5 with m = 10.

Figure 3.4: Roots of the five Gegenbauer polynomials with degrees 1 to 5.

Proof. The zonal condition is satisfied by construction. The other two conditions follow
from considering Fm

` (x) ∈ [Qm
` (〈a, x〉)]1−∑x2

i
where

Fm
` (x) = ||x||`Qm

`

(
〈a, x〉
||x||

)
.

Note that since our ideal is generated by 1−∑x2
i , we find ||x||2 ≡ 1.

We note that, up to scaling and rotation of the sphere, Fm
` (x) as defined above is

the unique degree ` polynomial which is zonal and both homogeneous and harmonic on
the sphere. These polynomials have played an important role in understanding spherical
s-distance sets and t-designs ([40],[88]). The main results of [40] come from considering
a finite set X ⊂ Sm and a basis q1, . . . , qM of the harmonic polynomial functions on the
sphere with fixed degree k. We then map X to RM by evaluating each basis polynomial
at every point. Fixing two points, ζ, ξ ∈ X, we then use Theorem 3.5 to show that
M∑
i=1
〈qi(ζ), qi(ξ)〉 = ckQ

m
k (〈ζ, ξ〉) where the constant ck does not depend on the points cho-

sen. It should not be surprising that these polynomials were of interest before their use
in combinatorics [40]. In fact, 35 years earlier, Schönberg characterized positive definite
functions on the sphere using these same polynomials.
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3.3 Schönberg’s theorem
Let m be a fixed positive integer. For any finite set of unit vectors X ⊂ Sm−1, let GX

denote the Gram matrix of X; then GX is positive semidefinite (GX � 0). A function
f : [−1, 1] → R is positive definite on Sm−1 if, for every finite subset X, f applied
entrywise to GX results in a positive semidefinite matrix, i.e. f ◦ (GX) � 0. Here we
present Schönberg’s Theorem [82] as it applies to polynomials.

Theorem 3.6 (Schönberg [82]). Fix m ∈ Z+. A polynomial f : [−1, 1]→ R with degree d
is positive definite on Sm−1 if and only if f(t) = ∑d

`=0 c`Q
m
` (t) for non-negative constants

c`.

In particular, Qm
` (t) is a positive definite function for any choice of m and `. This

leads to the following theorem:

Theorem 3.7. Let (X,R) be an association scheme with minimal idempotents E0, . . . , Ed
and matrices of Krein parameters L∗0, . . . , L∗d. Fix some Ei, 0 ≤ i ≤ d, and let mi :=
rank (Ei). Then for any choice of ` > 0, there exist non-negative constants θ`j, 0 ≤ j ≤ d,
such that

Qmi
` ◦

(
|X|
mi

Ei

)
=
∑
j

θ`jEj; Qmi
`

( 1
mi

L∗i

)
= 1
|X|

∑
j

θ`jL
∗
j . (3.4)

The eigenvalues of Qmi
` ◦

(
|X|
mi
Ei
)

are θ`0, . . . , θ`d where θ`j is non-zero only if Ej is con-
tained in the Schur subalgebra generated by Ei.

Proof. Since A = span {E0, . . . , Ed} is closed under entrywise products, we must have
Qmi
k ◦

(
|X|
mi
Ei
)
∈ A and we may write Qmi

k ◦
(
|X|
mi
Ei
)

= ∑
j θkjEj where each θkj is an

eigenvalue of Qmi
k ◦

(
|X|
mi
Ei
)
. Now recall the algebra isomorphism φ∗ : A → L∗ in (2.6)

mapping entrywise products to standard matrix products for which φ∗ (Ej) = 1
|X|L

∗
j .

Applying φ∗ to both sides of the equation on the left in (3.4) gives the equation on the right
in (3.4). Finally, since Ei is an idempotent matrix with constant main diagonal entries
given by 1

|X|Q0i = mi

|X| , we know that |X|
mi
Ei is the Gram matrix of a set of points in Smi−1.

Therefore, Theorem 3.6 tells us that Qmi
k ◦

(
|X|
mi
Ei
)

must be positive semidefinite.

While Schönberg’s condition Qrank G
` ◦ (G) � 0 is a statement about Gram matrices,

Theorem 3.7 provides us with an equivalent statement about parameters. So we have a
new feasibility condition for parameter sets.

Corollary 3.8. If a parameter set
{
qkij
}
i,j,k

is realizable then, for all ` ≥ 0 and all

0 ≤ i ≤ d, Qmi
`

(
1
mi
L∗i
)
≥ 0.

Proof. This follows directly from Theorem 3.7, noting that the Krein conditions imply
each L∗j is non-negative.
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We note that, Lemma 2.7 (i ′) tells us that qji0 = δi,j for 0 ≤ i ≤ d and thus Equation
(3.4) gives us that the first column of Qmi

`

(
1
mi
L∗i
)

is

1
|X|

∑
j

θ`jej =


θ`0
/
|X|

...
θ`d
/
|X|

 .
Therefore it is sufficient to check that the first column of Qmi

`

(
1
mi
L∗i
)

is non-negative.

3.3.1 Bound on new feasibility conditions
In order to identify where Corollary 3.8 might have impact, we work in this section to show
that, for ` sufficiently large — a bound we give entirely in terms of the Krein parameters
— the condition automatically holds. We will do this by first simplifying Equation (3.4)
into a vector equation using the observation made after Corollary 3.8. From this equation,
we derive a three-term recurrence of non-negative vectors and transform our vector space
via an invertible transformation which changes our transition matrix from 1

m
L∗i to one

which is orthogonally diagonalizable. We then map our vector space to one with twice
the dimension where our three-term recurrence may be represented as a linear recurrence.
Using this linear recurrence we express our initial vector as a sum of steady state vectors
and transient vectors in order to find a bound on how quickly the transient vectors must
decrease in norm. In all that follows suppose we have a feasible parameter set with first
and second eigenmatrix P and Q. For fixed 0 ≤ i ≤ d, let L∗i be the ith matrix of Krein
parameters. Let ` ≥ 0 be an integer and assume mi := qi0i > 2. Let c` be the first column
of the matrix Qmi

`

(
1
mi
L∗i
)
. Using our recurrence relation (3.3) we have,

c` =
(2`+mi − 4) 1

mi
L∗i c`−1 − (`− 1)c`−2

`+m− 3 ` ≥ 2. (3.5)

Since Qm
0

(
1
mi
L∗i
)

= I and Qm
1

(
1
mi
L∗i
)

= 1
mi
Li, we have

c0 = e0 c1 = 1
mi

ei.

One immediate difficulty is that our transition matrix L∗i is not symmetric, and thus does
not have orthogonal eigenvectors. We will need this property shortly, so we make our
first transformation via b` =

√
∆mc` where

√
∆m is the diagonal matrix with ith diagonal

entry √mi. This transformation turns our recurrence relation into

b` = (2`+mi − 4)Mb`−1 − (`− 1)b`−2

`+mi − 3 ` ≥ 2, (3.6)

where M = 1
mi

√
∆mL

∗
i

(√
∆m

)−1
. For this three-term recurrence, our initial vectors are

b0 = e0 b1 = 1
√
mi

ei.
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The new transition matrix M is symmetric and we may easily calculate the eigenvalues
and eigenvectors of M via the following lemma.

Lemma 3.9. Let M = 1
mi

√
∆mL

∗
i

(√
∆m

)−1
. Then the set {p0,p1, . . . ,pd} with

pj =


P0j√
m1P1j

...√
mdPdj


is an orthogonal set of eigenvectors for M with eigenvalues m−1

i Qji (0 ≤ j ≤ d).

Proof. Note that Lemma 2.7 (viii ′) tells us that the columns of P are eigenvectors of L∗i
with eigenvalues Qji (0 ≤ j ≤ d). Conjugating L∗i by

√
∆m results in a matrix with

eigenvectors given by the columns of
√

∆mP with the same eigenvalues. Further, scaling
by 1

mi
leaves the eigenvectors unchanged but scales the eigenvalues by 1

mi
. Finally, recall

our orthogonality relations (Lemma 2.5): ∆mP = QT∆k and PQ = |X|I. Therefore
(√

∆mP
)T (√

∆mP
)

= P T∆mP = P TQT∆k = |X|∆k.

Now that our transition matrix has an orthogonal set of eigenvectors, we double the
dimension of our vector space in order to make our recurrence relation linear. For ` ≥ 1,
let

µ` = `− 1
`+mi − 3; y` =

[
b`

b`−1

]
; T` =

[
(1 + µ`)M −µ`I

I 0

]
. (3.7)

Then we have
y` = T`y`−1; y1 =

[ 1√
mi

ei
e0

]
. (3.8)

Although T` depends on `, we may identify some common properties among the eigen-
values and eigenvectors of T` for all values of ` > 0. The next few lemmas describe the
eigenspaces of T` as well as the action of T` on linear subspaces of our vector space con-
taining our initial vector. Let pj be the jth column of

√
∆mP and define the d+ 1 2-dim

subspaces Bj = span
{[

p
0

]
,

[
0
p

]}
which are clearly pairwise orthogonal.

Lemma 3.10. Let (λ,p) be an eigenpair of M . Let {η+, η−} be the two roots of the

quadratic polynomial x2 − (1 + µ`)λx + µ`. Then
(
η+,

[
η+p
p

])
is an eigenpair of T`.

If η+ 6= η− then
(
η−,

[
η−p
p

])
is also an eigenpair, otherwise

[
p
0

]
is a generalized

eigenvector of order two with eigenvalue η+.
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Proof. Let Mp = λp and let η be given so that η2 − (1 + µ`)λη + µ` = 0. Then

T`

[
ηp
p

]
=
[

(1 + µ`)M(ηp)− µ`p
ηp

]
=
[

((1 + µ`)λη − µ`) p
ηp

]
=
[
η2p
ηp

]
.

If we have two distinct roots (η+ 6= η−) then
[
η+p
p

]
and

[
η−p
p

]
are linearly inde-

pendent eigenvectors. If instead we find that η+ = η− = η, then η = (1+µ`)λ
2 since

x2 − bx+ c = (x− η)2 implies η = b
2 . In this case,

T`

[
p
0

]
=
[

(1 + µ`)Mp
p

]
=
[

(1 + µ`)λp
p

]
=
[
ηp
0

]
+
[
ηp
p

]
.

Thus (T` − ηI)
[

p
0

]
=
[
ηp
p

]
giving us that

[
p
0

]
is a generalized eigenvector of order

two; that is,
[

p
0

]
is in the kernel of (T` − ηI)2 but not (T` − ηI).

Lemma 3.10 gives a complete description of the eigenspaces of our transition matrix T`
since we know M is diagonalizable. Further, since the eigenvectors of M are orthogonal,
the pairwise orthogonal Bj are either full generalized eigenspaces or the sum of two one-
dimensional eigenspaces. In either case, each Bj is T`-invariant for all ` ≥ 0. This alone
is not sufficient to find our bound as we seek to show that the successive actions of T` on
our initial vector maps it close enough to some steady state vector to guarantee all entries
are non-negative. Thus we must both find the steady state vector as well as determine
the action of T` on the projections of our initial vector on each Bj. We note however that
whenever our eigenvalues are real, the singular values of T` may grow quite large. Thus,
instead of bounding the action of T` on each Bj as a whole, we will bound a region of Bj

containing our projections and show that T` acts on that region in a consistent manner.

Lemma 3.11. Let (λ,p) be an eigenpair of M and assume that x2− (1 + µ`)λx+ µ` has

only real roots, |η−| ≤ |η+|. Let v =
[
ap
bp

]
with b 6= 0. There exists a constant β ∈ R

so that T`v =
[
βp
ap

]
. Further,

(
λa
/
b
)
≥ 0 and |η+| ≤ |a

b
| ≤ |λ| imply

(
λβ
/
a
)
≥ 0 and

|η+| ≤ |β
a
| ≤ |λ| giving ||T`v||2 ≤ |λ| · ||v||2.

Proof. We begin by noting that since our operator T` is linear, we may assume without
loss of generality that b = 1 and ||p||2 = 1. This, paired with our constraint that
λ2 ≥ 4µ`

/
(1 + µ`)2 tells us that a and λ must share signs. Since η+ and η− are the two

(not necessarily distinct) roots of the polynomial x2 − (1 + µ`)λx + µk, we know that
(x− η−)(x− η+) = x2 − (1 + µ`)λx + µk and thus η+ + η− = (1 + µ`)λ and η+η− = µ`.
This further implies our two roots η− and η+ also share signs with λ. We first consider
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the case when η− 6= η+. Here, Lemma 3.10 tells us that η+ and η− are eigenvalues of T`
with eigenvectors

v+ =
[
η+p
p

]
; v− =

[
η−p
p

]
.

Noting that v =
(
η−−a
η−−η+

)
v+ +

(
a−η+

η−−η+

)
v−, we may calculate T`v explicitly giving

T`v =
(
η− − a
η− − η+

)
η+v+ +

(
a− η+

η− − η+

)
η−v− =

[
βp
ap

]

where β =
(
η−−a
η−−η+

)
(η+)2 +

(
a−η+

η−−η+

)
(η−)2 = a (η+ + η−) − η−η+. Thus β

a
= η+ +

η−

a
(a− η+) . Since η−, η+, and a all share the same sign and |η+| ≤ |a|, η−

a
(a− η+)

must also share the same sign as η+ providing
∣∣∣η+

∣∣∣ ≤ ∣∣∣∣∣η+ + η−

a

(
a− η+

)∣∣∣∣∣ ≤ ∣∣∣η+ +
(
a− η+

)∣∣∣ = |a| ≤ |λ|.

Similarly, consider the case when η− = η+ = η = (1+µ`)λ
2 . Lemma 3.10 gives the eigenvec-

tor and generalized eigenvector

w =
[
ηp
p

]
; w∗ =

[
p
0

]

and we have v = w+(a− η) w∗. Then T`v = aw+η (a− η) w∗ =
[

(2a− η)ηp
ap

]
. Again

taking β to be the top coefficient, we find that β
a

= η + η
a
(a − η) and as before we find

that η
a
(a− η) and η share the same sign giving

|η| ≤
∣∣∣∣η + η

a
(a− η)

∣∣∣∣ ≤ |η + (a− η)| = |a| ≤ |λ| .

Thus in both cases we find that |η| ≤
∣∣∣β
a

∣∣∣ ≤ |λ|, giving

||T`v||22 = β2 + a2 = β2

a2 a
2 + a2 ≤ λ2a2 + λ2 = λ2||v||22.

Finally, since η+ and η−

a
(a− η+) had the same sign in both cases, we must also have β

a

share the same sign, forcing
(
λβ
/
a
)
≥ 0.

Controlling the action of T` on any subspace Bj corresponding to complex eigenvalues
is much easier.

Lemma 3.12. Let (λ,p) be an eigenpair of M with corresponding T`-invariant subspace
Bj. Assume that (1 + µ`)2λ2 < 4µ` and thus x2 − (1 + µ`)λx + µ` has no real roots. For
any vector v ∈ Bj, we must have ||T`v||2 = √µ` · ||v||2.
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Proof. Let η+ and η− be the two roots of x2−(1+µ`)λx+µ`. Since η+ and η− are not real,
the action of T` on Bj has no real eigenvalues and must act as the product of a rotation
matrix and a scalar on the two dimensional real subspace. Thus, every vector in Bj is
scaled by the norm of the two (conjugate) eigenvalues. Since |η+| = |η−| =

√
η+η− = √µ`,

our result follows.

One can imagine applying these two lemmas iteratively in order to bound the norm
of our vector after many applications of T` — we will do exactly this. However, applying
Lemma 3.11 requires that the vector y` projected onto Bj is contained within the small
subset of vectors described in the lemma; a subset which depends on `. For the purpose
of illustration, fix one such subspace Bj and for each ` > 0 let C` ⊂ Bj be the subset of

vectors
{[

ap
bp

]}
such that

(
λa
/
b
)
≥ 0 and |η+

` | ≤ |ab | ≤ |λ| (we decorate η+ with the

subscript ` here only to emphasize the root depends on our choice of `). We therefore
must show that for any `, T`C` ⊂ C`+1. The two complications that arise are, first, that
C` changes with ` and, second, that Lemma 3.12 gives us no control over where T` maps
vectors in C`. The following lemma resolves both of these issues, first showing that the
roots change in a predictable way, allowing for the conditions at the end of Lemma 3.11 to
be sufficient to guarantee T`C` ⊂ C`+1 whenever η+

`+1 is real and then showing that if we
ever need to apply Lemma 3.12, we will not have to apply Lemma 3.11 to that subspace
again.

Lemma 3.13. Let ` ∈ Z+ and −1 < λ < 1 be given. Assume that x2−(1+µ`+1)λx+µ`+1
has real roots x−`+1 ≤ x+

`+1. Then x2 − (1 + µ`)λx+ µ` also has real roots x−` and x+
` with

x−` < x−`+1 ≤ x+
`+1 < x+

` .

Proof. Fix −1 < λ < 1 and define the multivariate polynomial p(x, µ) = x2−(1+µ)λx+µ
with domain −1 ≤ x, µ ≤ 1. For fixed µ′, p(x, µ′) = 0 has real solutions if and only
if µ′ ≤ 2 − λ ± 2

√
1− λ since µ′ ≤ 1. Fix m > 2, ` ≥ 1 and define µ` = `−1

`+m−3 .
Assume p(x, µ`+1) has real solutions, then p(x, µ`) must also have real solutions since
µ` < µ`+1 ≤ 2−λ±2

√
1− λ. Let x−` ≤ x+

` be the real roots of p(x, µ`). Since the leading
term of p(x, µ`) is positive, p(x, µ`) < 0 only on the interval x ∈

(
x−` , x

+
`

)
. Now consider

that ∂p(x,µ)
∂µ

= 1 − λx > 0 for all values in our domain. Since µ`+1 > µ`, we must have
p(x, µ`+1) > p(x, µ`) and thus the real solutions of p(x, µ`+1) = 0 must lie strictly between
x−` and x+

` .

With this lemma, we know that the largest absolute value of the roots of x2 − (1 +
µ`)λj +µ` decreases as µ` increases so long as the roots are real. Further, this lemma also
implies that if the roots of x2− (1 +µ`)λj +µ` are not real, then x2− (1 +µ`+1)λj +µ`+1
cannot have real roots either. We will use these two facts as well as the proceeding lemmas
to prove our next lemma. We will use this lemma again in a later section, so we will make
it self-contained.

Lemma 3.14. Let P and Q be the first and second eigenmatrices of a feasible parameter
set for an association scheme. Fix 0 ≤ i ≤ d. For 0 ≤ j ≤ d define λj = Qj,i

/
mi

and
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Bj =
{[

apj
bpj

]
| a, b ∈ R

}
where pj is the jth column of

√
∆mP . For ` ≥ 1 let c` be the

first column of Qmi
`

(
1
mi
L∗i
)

and define

µ` = `− 1
`+mi − 3; y` =

[ √
∆mc`√

∆mc`−1

]
; γ`,j =

λ2
j if (1 + µ`)2λ2

j ≥ 4µ`,
µ` if (1 + µ`)2λ2

j < 4µ`.

Then for any 0 ≤ j ≤ d and `∗ > 0,

projBj
(y1) = 1

|X|

[
λjpj
pj

]
;

∣∣∣∣∣∣projBj
(y`∗+1)

∣∣∣∣∣∣2
2
≤ (1 + λ2

j)
kj
|X|

(
`∗∏
`=2

γ`,j

)
.

Proof. We have already seen that y1 =
[ 1√

mi
ei

e0

]
. We may use

{[
pj
0

]
,

[
0
pj

]}
as an

orthogonal basis for Bj, noting that
(√

∆mP
)T (√

∆mP
)

= |X|∆k and thus ||pj||22 =
|X|kj. This gives

projBj
(y1) = 1

|X|kj

[
Pi,jpj
P0,jpj

]
= 1
|X|

[ Pi,j

kj
pj

pj

]
= 1
|X|

[
λjpj
pj

]
.

We split the remaining part of the proof into two sections, first dealing with the integers
` for which x2 − (1 + µ`)λj + µ` has real roots, and then those integers for which no real
roots exist. In both cases we will use induction, though the induction steps are slightly
different between the real and non-real cases. We begin by noting that since each Bj is
T`-invariant, projBj

(y`+1) =
(∏`

x=2 Tx
)

projBj
(y1), thus we will use these two expressions

interchangeably. Now, Lemma 3.13 guarantees that the polynomial x2 − (1 + µ`)λj + µ`
has no real roots only when every polynomial x2 − (1 + µ`′)λj + µ`′ for each `′ > ` also
has no real roots. Therefore let h be the largest integer less than or equal to `∗ for which
x2 − (1 + µh)λj + µh has real roots. We seek to prove that projBj

(y`) is within the region
for which Lemma 3.11 applies for each 2 ≤ ` ≤ h. For the sake of induction, fix 2 ≤ ` ≤ h,
let η` be the largest root (in absolute value) of x2 − (1 + µ`)λj + µ`, and assume that

there exist constants a` and b` such that projBj
(y`−1) =

[
a`pj
b`pj

]
where

(
λja`

/
b`

)
≥ 0

and |η`| ≤ |a`

b`
| ≤ |λj|. Then Lemma 3.11 tells us that there exists β ∈ R such that

projBj
(y`) = T`

(
projBj

(y`−1)
)

=
[
βpj
a`pj

]
where

(
λjβ

/
a
)
≥ 0, |η`| ≤ |βa | ≤ |λ|. Using

Lemma 3.13, we know that as long as ` < h, |η`+1| < |η`| where η`+1 is the largest root in
absolute value of the polynomial x2 − (1 + µ`+1)λj + µ`+1. Thus, either ` = h or we may
use a`+1 = β and b`+1 = a` to complete our induction step. Our base case is covered by
our earlier observation that

projBj
(y1) = 1

|X|

[
λjpj
pj

]
.
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Further, Lemma 3.11 also tells us that in each case∣∣∣∣∣∣projBj
(y`)

∣∣∣∣∣∣2
2
≤ |λ|2 ·

∣∣∣∣∣∣projBj
(y`−1)

∣∣∣∣∣∣2
2
.

We therefore find that∣∣∣∣∣∣projBj
(yh)

∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣projBj

(y1)
∣∣∣∣∣∣2

2

(
h∏
`=2

λ2
j

)
= (1 + λ2

j)
kj
|X|

(
h∏
`=2

λ2
j

)
.

Now let h < ` ≤ `∗, and define v = projBj
(yh). Then Lemma 3.12 gives us∣∣∣∣∣∣

∣∣∣∣∣∣
 `∗∏
`=h+1

T`

v

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤ ||v||22
`∗∏

`=h+1
µ` ≤ (1 + λ2

j)
kj
|X|

(
h∏
`=2

λ2
j

) `∗∏
`=h+1

µ`

 .
We are now ready to prove the main theorem of this section, using Lemma 3.14 to

control the norm of the transient vectors at each iteration.

Theorem 3.15. Suppose we have a feasible parameter set for an association scheme with
first and second eigenmatrices P and Q. Fix 0 ≤ i ≤ d and set mi := Q0i. For ` > 0
define µ` = `−1

`+mi−3 and λj = Qji/Q0i. Let γ`,j equal λ2
j if (1+µ`)2λ2

j ≥ 4µ` and µ` otherwise.
Then all entries of Qmi

`∗

(
1
mi
L∗i
)

are non-negative whenever

d∑
j=1

(
`∗+1∏
`=2

γx,j

)
P0j

(
1 + λ2

j

)
≤ 1
|X|

.

Proof. Let y` be given by the recurrence relation (3.8) for ` > 1 with y1 =
[ 1√

mi
ei

e0

]
. Ob-

serve that the sign of [y`]i is negative if and only if there is a negative entry in either c` or
c`−1 as defined in Equation (3.5) and, thus, if and only if one ofQmi

`

(
1
mi
L∗i
)

orQmi
`−1

(
1
mi
L∗i
)

contains a negative value. As before, define subspaces Bj = span
([

pj
0

]
,

[
0
pj

])
where

pj is the jth column of
√

∆mP . Lemma 3.14 then tells us that

projBj
(y1) = 1

|X|

[
λjpi
pi

]

allowing us to split y1 into

y1 = 1
|X|

[ √
∆m1√
∆m1

]
+

d∑
j=1

projBj
(y1).

Noting that the first term is an eigenvector for T` with eigenvalue 1, we then have

y`∗+1 =
(
`∗+1∏
`=2

T`

)
y1 = 1

|X|

[ √
∆m1√
∆m1

]
+

d∑
j=1

projBj
(y`∗+1).
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Note that the smallest entry of 1
|X|

[ √
∆m1√
∆m1

]
is 1
|X| and thus in order for y`∗+1 to have a

negative entry, we must have

d∑
j=1

∣∣∣∣∣∣projBj
(y`∗+1)

∣∣∣∣∣∣2
2
>

1
|X|2

.

Again using Lemma 3.14, we find

d∑
j=1

∣∣∣∣∣∣projBj
(y`∗+1)

∣∣∣∣∣∣2
2
≤ 1
|X|

d∑
j=1

vj(1 + λ2
j)
(
`∗+1∏
i=2

γ`,j

)
.

Therefore, as long as ∑d
j=1 vjλ

2`∗
j (1 +λ2

j) ≤ 1
|X| , we guarantee y`∗+1 has no negative entry.

Additionally, since the bottom half of y`∗+1 equals the top half of y`∗ , we may assume
that any negative entry of y`∗ appears in the bottom half, implying that y`∗−1 also has a
negative entry. Thus checking the first `∗ − 1 Gegenbauer polynomials is sufficient.

Corollary 3.16. Suppose we have a feasible parameter set for an association scheme with
first and second eigenmatrices P and Q. Let 0 ≤ i ≤ d be given and define λj := Qj,i

mi
.

Further assume 1 = λ0 > |λ∗| ≥ |λj| for 0 < j ≤ d. Then define

`∗ =
⌈

ln [(1 + (λ∗)2)|X|(|X| − 1)]
−2 ln(λ∗)

⌉
.

If |λ∗|2 ≥ `∗

`∗+mi−2 then Qmi
`

(
1
mi
L∗i
)
≥ 0 for any ` ≥ `∗.

Proof. As long as |λ∗|2 is greater than both |λj|2 and µ` for 2 ≤ ` ≤ x,

d∑
j=1

kj
(
1 + λ2

j

)( x∏
`=2

γx,j

)
≤ (λ∗)2x−2

(
1 + (λ∗)2

) d∑
j=1

kj = (λ∗)2x−2
(
1 + (λ∗)2

)
(|X| − 1).

Solving
(λ∗)2x−2

(
1 + (λ∗)2

)
(|X| − 1) ≤ 1

|X|
(3.9)

for x gives
x ≥ ln [(1 + (λ∗)2)|X|(|X| − 1)]

−2 ln(λ∗) + 1.

Thus for `∗ =
⌈

ln[(1+(λ∗)2)|X|(|X|−1)]
−2 ln(λ∗)

⌉
, `∗ + 1 is the smallest integer for which Inequality

(3.9) holds. Using Theorem 3.15, as long as |λ∗|2 ≥ µ`∗+1, we have our result.

Example 3.3. We now give an example of a feasible parameter set which fails to be
realizable due to Theorem 3.8. We will also use Theorem 3.15 to specify which Gegenbauer
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polynomials we will apply. Consider the feasible parameter set with first and second
eigenmatrices

P =


1 100 240 100
1 37 −12 −26
1 2 −12 9
1 −5 9 −5

 , Q =


1 20 180 240
1 37/5 18/5 −12
1 −1 −9 9
1 −26/5 91/5 −12

 .

If realizable, an association scheme with this parameter set would be a 3-class primitive
Q-polynomial association scheme. We will apply these two theorems to the parameters
of the first idempotent in the Q-polynomial ordering — this idempotent, if realizable,
would correspond to a spherical 3-distance set in R20. Using column 1 of Q, we find
λ0 = 1, λ1 = 37

100 , λ2 = − 1
20 , and λ3 = − 26

100 where λj = Qj1/Q01. Let µ` = `−1
`+m−3 and, for

1 ≤ j ≤ d, define `j as the largest integer for which `j−1
`j+m−3 ≤ 2− |λj| − 2

√
1− |λj|. Then

we find `1 = `2 = `3 = 1 giving

3∑
j=1

kj
(
1 + λ2

j

)(x+1∏
`=2

γ`,j

)
=
(
x+1∏
`=2

µ`

)(
440 + 100

( 37
100

)2
+ 240

( 1
20

)2
+ 100

( 26
100

)2)

=
(
x+1∏
`=2

µ`

)
18843

40 .

We then apply Theorem 3.15 noting that if we choose x = 7 then we find( 8∏
`=2

µ`

)
18843

40 ≈ 0.00098 < 1
441 = 1

|X|
.

Thus, we have that the conditions θ`j ≥ 0 are vacuous for this parameter set whenever
` ≥ 7. Below we list θ`j for 0 ≤ ` ≤ 6 and 0 ≤ j ≤ 3, listing only the first two decimal
places for readability:

441 0 0 4.95 0.43 −0.11 0.93
0 22.05 4.5 0.38 0.67 0.84 0.97
0 0 1.95 1.09 0.81 1 1.04
0 0 0 0.97 1.17 1.02 0.98

 .

Note that θ50 = −0.11 < 0 and therefore this parameter set is not realizable due to
Theorem 3.8.

3.4 Cometric association schemes
In this section, we restrict to the case of cometric association schemes and explicitly
compute the entries in the first column of Qmi

`

(
1
mi
L∗i
)
. If the parameter set is realizable,

these values correspond to the eigenvalues of the same Gegenbauer polynomial applied
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entrywise to |X|
mi
Ei, thus we denote the jth entry of the first column of Qmi

`

(
1
mi
L∗i
)

by θ`,j.
We will compute θ`,j for 2 ≤ ` ≤ 5 and 0 ≤ j ≤ d as well as θ6,0. Theorem 3.7 tells us that
each eigenvalue must be non-negative, and thus we derive more feasibility conditions on
the parameters of a cometric association scheme. Many of these feasibility conditions will
be implied by our previous conditions FC1, FC2, and FC3, however there are some which
are independent of these three conditions. We will examine one such example closely in
the section that follows. Suppose we have a feasible parameter set for a Q-polynomial
association scheme with Krein array

{
m, b∗1, . . . , b

∗
d−1; 1, c∗2 . . . , c∗d

}
. From our initial two

Gegenbauer polynomials, we know

θ0i = |X|δ0i; θ1i = |X|
m
δ1i

where δij equals q if i = j and zero otherwise. Using Equation (3.5) and our Krein array,
we have for ` ≥ 2 and 0 ≤ i ≤ d,

θ`i = (2`+m− 4)(c∗i θ`−1,i−1 + a∗i θ`−1,i + b∗i θ`−1,i+1)− (`− 1)mθ`−2,i

m(`+m− 3) (3.10)

where θ`,−1 = θ`,d+1 = 0 for all choices of `. Before listing the eigenvalues, we note that
many of the conditions θ`i ≥ 0 will be implied by either the Krein conditions FC1 or the
cometric property.

Lemma 3.17. Suppose we have a feasible parameter set for a Q-polynomial association
scheme with Krein array

{
m, b∗1, . . . , b

∗
d−1; 1, c∗2 . . . , c∗d

}
. For ` ≥ 0, define θ`j via Equation

(3.10) with θ0i = |X|δ0i and θ1i = |X|
m
δ1i. Then θ`i = 0 for i > ` and FC1 implies θ`i ≥ 0

for i ∈ {`− 1, `}.

Proof. We prove this by induction, showing first that the cometric property implies θ`,i = 0
for i > `, ` ≥ 0 and then the conditions FC1 imply θ`,` and θ`,`−1 are both non-negative.
First note from our initial conditions that θ0i = 0 for i > 0. Now, let ` ≥ 1 be given and
assume that θ`,i = 0 for i > `. Then choose i > `+ 1 and from Equation (3.10),

θ`+1,i = (2`+m)(c∗i θ`,i−1 + a∗i θ`,i + b∗i θ`,i+1)− `mθ`−1,i

m(`+m− 2) .

However if i > ` + 1 then by our induction hypothesis, θ`,i−1 = θ`,i = θ`,i+1 = θ`−1,i = 0,
thus θ`+1,i = 0. For the remaining two conditions, note that θ10 ≥ 0 and θ11 ≥ 0 are both
vacuously true. Now let ` ≥ 1 be given and assume θ`,`−1 ≥ 0 and θ`,` ≥ 0. Then

θ`+1,`+1 = (2`+m)(c∗`+1θ`,` + a∗`+1θ`,`+1 + b∗`+1θ`,`+2)− `mθ`−1,`+1

m(`+m− 2) = (2`+m)c∗`+1θ`,`
m(`+m− 2)

θ`+1,` = (2`+m)(c∗`θ`,`−1 + a∗`θ`,` + b∗`−1θ`,`+1)− `mθ`−1,`

m(`+m− 2) = (2`+m) (c∗`θ`,`−1 + a∗`θ`,`)
m(`+m− 2) .

Therefore as long as a∗` , c∗` , c∗`+1 ≥ 0 (FC1), then θ`+1,`+1 ≥ 0 and θ`+1,` ≥ 0.
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In view of this lemma, we know that any feasible parameter set for a cometric asso-
ciation scheme and any choice of ` ≥ 0, the condition θ`,i ≥ 0 will be implied by FC1 or
the cometric property for i ≥ `− 1. Therefore we will omit θ`,i for i > ` in the discussion
that follows, listing θ`,` and θ`,`−1 only to assist in calculating eigenvalues from higher
degree polynomials. In each case, we will use our Krein parameters (primarily those from
the Krein array) to calculate the eigenvalues and note when our feasibility condition FC1
is sufficient to imply θ`,i ≥ 0. At the end of the section, we will summarize any of the
conditions which are not implied by FC1, noting that these are our (potentially) new
constraints on the parameters of cometric schemes. For convenience we extend our Krein
array to include a∗j , c∗j , and b∗j for all j ∈ Z+ noting that b∗j−1 = c∗j = a∗j = 0 for j > d. We
will also use Lemma (2.7) (vi’) when convenient, so we assume that our Krein parameters
satisfy the condition

d∑
l=0

qlijq
m
lk =

d∑
l=0

qmil q
l
jk. (3.11)

Degree 2 constraint
θ20

|X|
= 0; θ21

|X|
= a∗1
m(m− 1); θ22

|X|
= c∗2
m(m− 1) .

Each condition θ2i ≥ 0 is implied by FC1 and thus we have no new restrictions from this
case.

Degree 3 constraint

θ30

|X|
= (m+ 2) a∗1
m2 (m− 1); θ31

|X|
=
−2m (m− 1) + (m+ 2)

(
(a∗1)2 + b∗1c

∗
2

)
m3 (m− 1) ;

θ32

|X|
= (m+ 2) c∗2 (a∗1 + a∗2)

m3 (m− 1) ; θ33

|X|
= (m+ 2) c∗2c∗3

m3 (m− 1) .

Here, θ31 ≥ 0 is not implied by FC1. Thus we have the new feasibility condition

(a∗1)2 + b∗1c
∗
2 ≥

2m(m− 1)
m+ 2 . (3.12)

Degree 4 constraint

θ40

|X|
=

(
−2m (m− 1) + (m+ 2)

(
(a∗1)2 + b∗1c

∗
2

))
(m+ 4)

(m2 − 1)m3 ;

θ41

|X|
=

(
−4a∗1m+

(
(a∗1)3 + (2a∗1 + a∗2) b∗1c∗2

)
(m+ 4)

)
(m+ 2)

(m2 − 1)m4 ;

θ42

|X|
=

(
−4m (m− 2) +

(
(a∗1)2 + 2a∗1a∗2 + c∗2q

2
22

)
(m+ 4)

)
c∗2 (m+ 2)

(m2 − 1)m4 ;
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θ43

|X|
= (m+ 4) (m+ 2) c∗3c∗2 (a∗1 + a∗2 + a∗3)

(m2 − 1)m4 ;

θ44

|X|
= (m+ 4) (m+ 2) c∗4c∗3c∗2

(m2 − 1)m4 .

First, note that we used Equation (3.11) with j = k = 1 and i = m = 2 to reduce θ42.
Now, since θ20 = 0, θ40 = (m+4)θ31

m+1 and thus θ40 ≥ 0 is equivalent to θ31 ≥ 0 and we will
omit this constraint. We therefore find only two new conditions: θ41 ≥ 0 and θ42 ≥ 0,
neither of which is implied by FC1.

(a∗1)2 + b∗1c
∗
2

(
2 + a∗2

a∗1

)
≥ 4m
m+ 4 whenever a∗1 > 0; (3.13)

(a∗1)2 + 2a∗1a∗2 + c∗2q
2
22 ≥

4m(m− 2)
m+ 4 . (3.14)

Degree 5 constraint

θ50

|X|
=

(
−4a∗1m (2m− 3) +

(
(a∗1)3 + (2a∗1 + a∗2) b∗1c∗2

)
(m+ 6)

)
(m+ 4)

m4 (m2 − 1) ;

θ51

|X|
=

6m2(m− 1)(m− 4) + (m+ 4)(m+ 6)
(
(3a∗1 (a∗1 + a∗2) + c∗2q

2
22) b∗1c∗2 + (a∗1)4

)
m5 (m2 − 1)

−
m(m+ 4)(7m− 18)

(
(a∗1)2 + b∗1c

∗
2

)
m5 (m2 − 1) ;

θ52

|X| (m+ 4) c∗2
=

(m+ 6)
(
(a∗1 + a∗2)3 + 2

(
c∗2q

2
22 − (a∗2)2

)
(a∗1 + a∗2) + b∗2c

∗
3 (a∗3 − a∗1)−ma∗2

)
m5 (m2 − 1)

− 6 (a∗1 + a∗2)m(m− 4)
m5 (m2 − 1) ;

θ53

|X|
=

(
−3 (3m− 2) +

(∑3
i=1

(
b∗i c
∗
i+1 + a∗i

∑3
j=i a

∗
j

))
(m+ 6)

)
(m+ 4) c∗2c∗3

m5 (m2 − 1) ;

θ54

|X|
= (a∗1 + a∗2 + a∗3 + a∗4) c∗2c∗3c∗4 (m+ 4) (m+ 6)

m5 (m2 − 1) ;

θ55

|X|
= c∗2c

∗
3c
∗
4c
∗
5 (m+ 4) (m+ 6)
m5 (m2 − 1) .

In this case we find four new conditions arising from θ5i ≥ 0 for 0 ≤ i ≤ 3. They are:

(a∗1)2 + b∗1c
∗
2

(
2 + a∗2

a∗1

)
≥ 4m(2m− 3)

m+ 6 (3.15)
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6m(m− 1)(m− 4)
(m+ 4)(m+ 6) + (3a∗1 (a∗1 + a∗2) + c2q

2
22) b∗1c∗2 + (a∗1)4

m
≥

(7m− 18)
(
(a∗1)2 + b∗1c

∗
2

)
m+ 6

(3.16)

(a∗1)2 + 2a∗1a∗2 − (a∗2)2 + 2c∗2q2
22 + b∗2c

∗
3 (a∗3 − a∗1)−ma∗2

a∗1 + a∗2
≥ 6m(m− 4)

m+ 6 (3.17)

3∑
i=1

b∗i c∗i+1 + a∗i

3∑
j=i

a∗j

 ≥ 3(3m− 2)
m+ 6 . (3.18)

Note that Inequality (3.13) is implied by Inequality (3.15) for m > 2.

Degree 6 constraint
Here, we list only θ60 as we will use this bound in Section 5.3.

θ60

|X|(m+ 6) = 16(m− 2)
m3(m+ 1)(m+ 3) +

(
(a∗1)4 + (3a∗1 (a∗1 + a∗2) + c∗2q

2
22) b∗1c∗2

)
(m+ 8)(m+ 4)

m5(m2 − 1)(m+ 3)

−
12
(
(a∗1)2 + b∗1c

∗
2

)
(m− 2)(m+ 4)

m4(m2 − 1)(m+ 3) .

This results in the final condition that

16m(m− 1)
(m+ 4)(m+ 8) + (a∗1)4 + (3a∗1 (a∗1 + a∗2) + c∗2q

2
22) b∗1c∗2

(m− 2)m ≥
12
(
(a∗1)2 + b∗1c

∗
2

)
m+ 8 . (3.19)

In summary, we have the following theorems where, in each case, we assume the Krein
parameters fulfill the condition FC1. We omit the inequality coming from θ41 as we may
assume m > 2 for all cases we are interested in.

Theorem 3.18. Suppose we have a feasible parameter set for a cometric association
scheme with Krein array ι∗(X,R) =

{
m, b∗1, . . . , b

∗
d−1; 1, c∗2 . . . , c∗d

}
where m > 2. Define

b∗j−1 = c∗j = a∗j = 0 for j > d. Then the scheme is realizable only if

(i) (a∗1)2 + b∗1c
∗
2 ≥

2m(m−1)
m+2 ,

(ii) (a∗1)2 + 2a∗1a∗2 + c∗2q
2
22 ≥

4m(m−2)
m+4 ,

(iii) 6m(m−1)(m−4)
(m+4)(m+6) + (3a∗1(a∗1+a∗2)+c∗2q2

22)b∗1c∗2+(a∗1)4

m
≥

(7m−18)
(
(a∗1)2

+b∗1c∗2
)

m+6 ,

(iv) ∑3
i=1

(
b∗i c
∗
i+1 + a∗i

∑3
j=i a

∗
j

)
≤ 3(3m−2)

m+6 .

(v) 16m(m−1)
(m+4)(m+8) + (a∗1)4

+(3a∗1(a∗1+a∗2)+c∗2q2
22)b∗1c∗2

(m−2)m ≥
12
(
(a∗1)2

+b∗1c∗2
)

m+8 ,

Additionally, if a∗1 > 0, then
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(vi) (a∗1)2 + b∗1c
∗
2

(
2 + a∗2

a∗1

)
≥ 4m(2m−3)

m+6 ,

(vii) (a∗1)2 + 2a∗1a∗2 − (a∗2)2 + 2c∗2q2
22 + b∗2c

∗
3(a∗3−a∗1)−ma∗2

a∗1+a∗2
≥ 6m(m−4)

m+6 .

Proof. The table below gives the eigenvalue inequality from which each part of the The-
orem is derived.

Part (i) (ii) (iii) (iv) (v) (vi) (vii)
Inequality θ31 ≥ 0 θ42 ≥ 0 θ51 ≥ 0 θ53 ≥ 0 θ60 ≥ 0 θ50 ≥ 0 θ52 ≥ 0

Jason Williford maintains a list of small (|X| < 10000) feasible parameter sets for
cometric schemes including primitive cometric schemes with 3 classes [104] andQ-bipartite
schemes with 4 classes [103]. Using these lists, we find nine 3-class primitive cometric
schemes which are ruled out by Theorem 3.18 (vi) and 11 4-class Q-bipartite schemes
which are ruled out by Theorem 3.18 (v). They are as follows, listed as tuples of the form
(|X|,m1):

• 3-class primitive schemes ruled out by Theorem 3.18 (vi)

{(441, 20), (576, 23), (729, 26), (1015, 28), (1240, 30),

(1548, 35), (1836, 35), (1944, 29), (1976, 25)} .

• 4-class Q-bipartite schemes

– ruled out by Theorem 3.18 (v),

{(4464, 24), (4968, 27), (5280, 30), (5436, 27), (6148, 29)}

– ruled out by Theorem 3.18 (v) and (iii),

{(8432, 31), (9984, 32)}

– ruled out by Theorem 3.18 (v), (iii), and (ii)

{(594, 9), (7776, 27), (8478, 27), (9984, 24)}

3.4.1 Q-bipartite association schemes
We conclude this section by proving Q-bipartite analogues of Theorem 3.15, Corollary
3.16, and Theorem 3.18. We begin by proving an important theorem concerning the
eigenvalues θ`i as described in Theorem 3.7.

Theorem 3.19. Let (X,R) be a Q-bipartite association scheme with cometric ordering
E0, E1, . . . , Ed. Define θ`,j for 0 ≤ j ≤ d and ` ≥ 0 so that

Gm
` ◦

(
|X|
m
E1

)
=

d∑
j=0

θ`,jEj.

Then θ`,j = 0 whenever `+ j /∈ 2Z.
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Proof. We prove this by induction. First, note that θ0,j = |X|δ0j and thus θ0,j = 0
whenever j /∈ 2Z. Now let ` ∈ Z be given so that θ`,j = 0 whenever ` + j /∈ 2Z and
consider

θ`+1,j =
(2`+m)(c∗jθ`,j−1 + a∗i θ`,j + b∗jθ`,j+1)− `mθ`−2,j

m(`+m− 2) .

If (`+ 1) + j /∈ 2Z then `+ (j− 1), `+ (j + 1), (`− 1) + j /∈ 2Z and thus by our induction
hypothesis,

θ`+1,j = (2`+m)(a∗i θ`,j)
m(`+m− 2) .

However since a∗1 = 0 for Q-bipartite schemes, we have θ`+1,j = 0.

This theorem tells us that approximately half of the eigenvalues θ`,j will be zero for a
Q-bipartite scheme. This information allows us to recast many of the previous theorems
seen in this section for this case. We first consider Theorem 3.15, following much of
the same approach to prove the following theorem. We note that in this theorem we
only consider the case i = 1; while the same arguments may be made for any odd i, we
restrict ourselves to i = 1 here as we will primarily be interested in the first idempotent
of Q-polynomial association schemes.

Theorem 3.20. Suppose we have a feasible parameter set for a Q-bipartite association
scheme with first and second eigenmatrices P and Q. Assume the relations are ordered
naturally and set m1 = Q0,1. For 0 ≤ j ≤ d, define λj := Qj,1

m1
and let γ`,j equal λ2

j if
(1 + µ`)2λ2

j ≥ 4µ` and µ` otherwise. Then all entries of Qm1
`∗

(
1
m1
L∗1
)

are non-negative
whenever

d−1∑
j=1

(
`∗+1∏
`=2

γ`,j

)
P0j

(
1 + λ2

j

)
≤ 4
|X|

.

Proof. Let L∗1 be the Krein matrix of our parameter set. Define M = 1
m1

√
∆mL

∗
1
√

∆m
−1.

As in Section 3.3.1, let
y` = T`y`−1 ` ≥ 2

with

µ` = `− 1
`+m− 3; y1 =

[ 1√
m

e1

e0

]
; T` =

[
(1 + µ`)M −µ`I

I 0

]
.

Further define Bj = span
([

pj
0

]
,

[
0
pj

])
for 0 ≤ j ≤ d where pj is the jth column of

√
∆mP . Then Lemma 3.14 tells us that

projBj
(y1) = 1

|X|

[
λjpj
pj

]
;

∣∣∣∣∣
∣∣∣∣∣
(

`∗∏
`=2

T`

)
projBj

(y1)
∣∣∣∣∣
∣∣∣∣∣
2

2
≤
(

`∗∏
`=2

γ`,j

) ∣∣∣∣∣∣projBj
(y1)

∣∣∣∣∣∣2
2
.
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For a Q-bipartite scheme, the first and last column of
√

∆P are given by

p0 =
[
1,
√
m, . . . ,

√
md−1, 1

]T
, pd =

[
1,−
√
m, . . . , (−1)d−1√md−1, (−1)d

]T
with λ0 = −λd = 1. Noting that the roots of the polynomial x2 − (1 + µ`)(±1)x + µ`
are ±1 and µ`, we find that both projB0(y1) and projBd

(y1) are eigenvectors of T` for all
` ≥ 2. Therefore

projB0(y`∗) = projB0(y1); projBd
(y`∗) = (−1)`

∗−1 projB0(y1).

For a vector v of length d+ 1, we refer to the entries v0, v2, v4, . . . , v2b d
2c as the even part

of v and likewise the entries v1, v3, . . . , v2d d
2e−1 as the odd part of v. Further, for a vector

y of length 2d + 2, define the top half of y to be the first d + 1 entries and the bottom
half of y to be the last d+ 1 entries. Then we have the following four statements
• For even `,

– all entries in the odd part of the top half of projB0⊕Bd
(y`) are 0;

– all entries in the even part of the bottom half of projB0⊕Bd
(y`) are 0.

• For odd `,

– all entries in the even part of the top half of projB0⊕Bd
(y`) are 0;

– all entries in the odd part of the bottom half of projB0⊕Bd
(y`) are 0.

Similarly Theorem 3.19 shows that the same is true for y`, that is
• For even `,

– all entries in the odd part of the top half of y` are 0;
– all entries in the even part of the bottom half of y` are 0.

• For odd `,

– all entries in the even part of the top half of y` are 0;
– all entries in the odd part of the bottom half of y` are 0.

We find also that projB0(y`)+projBd
(y`) is non-zero except in the entries listed above. This

implies the sum of the remaining projections must follow the same pattern, permitting
non-zero values only when projB0 (y`) + projBd

(y`) is also non-zero. Since the smallest
remaining entry of projB0(y`) + projBd

(y`) is 2
|X| , we have the implication: If∣∣∣∣∣∣

∣∣∣∣∣∣
d−1∑
j=1

(
`∗+1∏
`=2

T`

)
projBj

(y1)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤ 4
|X|2

then y`∗+1 has no negative entries. Following the reasoning from before, we note that if y`∗
has a negative value, it must appear in the bottom half, thus y`∗−1 must have a negative
value and it is sufficient to check the Gegenbauer polynomials up to degree `∗ − 1.
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Corollary 3.21. Suppose we have a feasible parameter set for a Q-bipartite association
scheme with relations ordered naturally. Define λ1 := Q1,1/m1 and let λ∗ ≥ |λ1| be given.
Then for

`∗ =
⌈

ln [(1 + λ2
1) |X| (|X| − 2)]− ln(4)
−2 ln (λ∗)

⌉
,

if |λ∗|2 ≥ `∗

`∗+m1−2 then θ`,j ≥ 0 is implied by FC1 for ` ≥ `∗ and 0 ≤ j ≤ d.

Proof. Let λj := Qj,1
m1

and note that the Q-bipartite property, along with the natural
ordering of relations, tells us |λ1| ≥ |λj| for 1 ≤ j ≤ d − 1. Therefore, as long as |λ∗|2 is
greater than both |λ1|2 and µ` for 2 ≤ ` ≤ x,

d−1∑
j=1

P0j(1 + λ2
j)
(

x∏
`=2

γ`,j

)
≤ (λ∗)2x−2(1 + λ2

1)
d−1∑
j=1

P0j = (λ∗)2x−2(1 + λ2
1)(|X| − 2).

Solving
(λ∗)2x−2(1 + λ2

1)(|X| − 2) ≤ 4
|X|

(3.20)

for x gives
x ≥ ln [(1 + λ2

1)|X|(|X| − 2)]− ln(4)
−2 ln(λ∗) + 1.

Thus defining `∗ =
⌈

ln[(1+(λ1)2)|X|(|X|−2)]−ln(4)
−2 ln(λ∗)

⌉
gives that `∗ + 1 is the smallest integer for

which Inequality (3.20) holds. Then, as long as |λ∗|2 ≥ µ`∗+1, we may use Theorem 3.20
to give our result.

Finally, we use our Q-bipartite property to simplify the expressions in Theorem 3.18.

Corollary 3.22. Suppose we have a feasible parameter set for a Q-bipartite association
scheme with Krein array

{
m, b∗1, . . . , b

∗
d−1; 1, c∗2 . . . , c∗d

}
. Then the scheme is realizable only

if each of the following hold:

(i) b∗1c
∗
2 ≥

2m(m− 1)
m+ 2 ,

(ii) c∗2q
2
22 ≥

4m(m− 2)
m+ 4 ,

(iii) 6m(m− 1)(m− 4)
(m+ 4)(m+ 6) + b∗1c

∗
2c
∗
2q

2
22

m
≥ b∗1c

∗
2(7m− 18)
m+ 6 ,

(iv)
3∑
i=1

b∗i c
∗
i+1 ≤

3(3m− 2)
m+ 6 ,

(v) 16m(m− 1)
(m+ 4)b∗1c∗2

+ c∗2q
2
22(m+ 8)

(m− 2)m ≥ 12.
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Proof. Consider Theorem 3.18 with the added constraint that a∗i = 0 for 0 ≤ i ≤ d.

We finish this chapter with two examples, one with a feasible parameter set which
satisfies all above conditions and another which is ruled out by Corollary 3.22.
Example 3.4. In this example we will apply Corollary 3.21 to find the maximum degree
of Gegenbauer polynomials which we need to check in order to verify Theorem 3.19.
Consider the feasible parameter set with first and second eigenmatrices

P =


1 1116 7750 1116 1
1 186 0 −186 −1
1 24 −50 24 1
1 −6 0 6 −1
1 −36 70 −36 1

 , Q =


1 156 2976 4836 2015
1 26 64 −26 −65
1 0 −96/5 0 91/5

1 −26 64 26 −65
1 −156 2976 −4836 2015

 .

If realizable, the association scheme with this parameter set would be a 4-class Q-bipartite
scheme. Defining λ∗ := √µ6 =

√
5

159 and noting that λ1 = Q11
m1

= 1
6 , we have

ln
[(

1 + (λ1)2
)
|X| (|X| − 2)

]
− ln(4)

−2 ln (λ∗)

 = 5.

Since |λ∗|2 = µ6 = 4
158 >

1
36 = |λ1|2, we may use Corollary 3.21 to show that θ`,j ≥ 0 is

vacuous for this parameter set for ` ≥ 5. We list the remaining eigenvalues below
9984 0 0 0 2.61

0 64 0 2.56 0
0 0 3.36 0 1.99
0 0 0 1.98 0
0 0 0 0 2.02


Since all eigenvalues are non-negative, this parameter set is not ruled out by Theorem
3.19. We will see many more examples like this in Chapter 5, many of which will be ruled
out.
Example 3.5. In contrast to the example above, we now give a feasible parameter set
for a 4-class Q-bipartite association scheme which is ruled out by the methods discussed
in this chapter. Consider the feasible parameter set with first and second eigenmatrices

P =


1 128 336 128 1
1 64 0 −64 −1
1 20 −42 20 1
1 −2 0 2 −1
1 −4 6 −4 1

 , Q =


1 9 44 288 252
1 9/2 55/8 −9/2 −63/8

1 0 −11/2 0 9/2

1 −9/2 55/8 9/2 −63/8

1 −9 44 −288 252

 .

Using Lemma 2.7, we may calculate the various Krein parameters appearing in Corol-
lary 3.22 as follows

b∗1 = 8; c∗2 = 18
11; q2

22 = 121
16 ; m = 9.
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Plugging these values into the left hand side of Corollary 3.22 (v) results in

16m(m− 1)
(m+ 4)b∗1c∗2

+ c∗2q
2
22(m+ 8)

(m− 2)m = 7359
728 ≈ 10.1,

thus, Corollary 3.22 (v) is violated and this parameter set is not realizable.
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Chapter 4

3-class Q-antipodal: LSSDs

In [24], Cameron investigated groups with inequivalent doubly-transitive permutation
representations having the same permutation character and introduced the notion of a
linked system of symmetric designs (LSSD). One such example arising from Kerdock
codes was communicated by Goethals [47] and studied in depth by Cameron and Seidel
[26]. These structures, in the homogeneous case, were then further studied by Noda
[77] who bounded the number of fibers in a LSSD in terms of the design parameters
induced between any two of the fibers. Focusing on the (16, 6, 2) designs, Mathon [72]
classified all inequivalent LSSDs using these design parameters via a computer search,
finding that there were multiple inequivalent LSSDs with two or three fibers but only
the scheme described by Geothals worked with four or more fibers. Later, Van Dam
proved in [34] the equivalence between these objects and 3-class Q-antipodal association
schemes. Martin, Muzychuk, and Williford found a connection to mutually unbiased bases
in certain dimensions [69]. Finally Davis, Martin, Polhill [37] and Jedwab, Li, Simon [57]
built more non-trivial examples using difference sets in 2-groups.

We begin this chapter with a survey of known results focusing on the connection to
association schemes. We introduce “linked simplices”, natural geometric objects which
are of interest in their own right, as collections of full-dimensional simplices with only
two possible angles between vectors in distinct simplices. We establish the equivalence
of sets of linked simplices and LSSDs. We compare three known bounds on the number
of fibers and explore connections to structures in Euclidean space. We show how to
construct equiangular lines from arbitrary LSSDs and explore cases where LSSDs lead to
real mutually unbiased bases (MUBs). After reviewing known examples, we focus on the
case of Menon design parameters and, employing an equivalence with sets of mutually
unbiased Hadamard matrices, we construct new families of LSSDs for many values of
v. In particular, we show that one may fix the largest power of two dividing v without
bounding the number of fibers in an LSSD, a result which was not previously known.
In Appendix A, we survey the design parameters of known infinite families of symmetric
designs and determine which of these cannot be the design parameters of LSSDs with
more than two fibers, noting differences vis-á-vis a recent discovery by Jedwab et. al. [57]
in restricted cases.
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Throughout this chapter we will heavily discuss both the parameters of the association
schemes given by LSSDs as well as the design parameters of the given symmetric designs.
Thus, for clarity sake, we will always refer to the triple (v, k, λ) as the design parameters
of the LSSD so as to distinguish these from the intersection numbers, Krein parameters,
and eigenmatrices of an association scheme. This chapter is based on research published
in [61]. Below we list the main theorems of this chapter.

Theorem 4.10. A LSSD(v, k, λ;w) is equivalent to a set of w linked simplices in Rv−1

whose angles depend on the parameters v, k, and λ.

Theorem 4.16. An optimistic LSSD(v, k, λ;w) with |v − 2k| = 2
√
k − λ exists if and

only if there exists a set of w − 1 regular unbiased Hadamard matrices, Hi, with order v
and HiJ = 2

√
k − λJ .

Theorem 4.17. [cf. Thm 13 in [53]] Given a regular Hadamard matrix of order n and
an orthogonal array of size n2 ×N ,

• There exist N − 1 regular unbiased Hadamard matrices of order n2.

• There exists a LSSD with v = n2 and w = N .

Corollary 4.19. For sufficiently large n, if there exists a regular Hadamard matrix of
order n, then there exists a LSSD(n2, k, λ;w) with w ≥ n

1
14.8 .

Corollary 4.20. For any n ≥ 1 and w > 2, there exists an odd t for which there exists
an LSSD(16nt, k, λ;w).

Corollary 4.21. There exists an LSSD(v, k, λ;w) with v = 362n and w = 4n + 1 for all
n ≥ 1.

4.1 Homogeneous linked systems of symmetric de-
signs

We begin by reviewing symmetric designs as these will play a central role in all that
follows. A symmetric 2-design with design parameters (v, k, λ) is a set of blocks B on
point set X written as (X,B) satisfying the following three conditions:

• There are v blocks and v points (|B| = |X| = v);

• Every block contains k points and every point is contained in k blocks;

• Every pair of points is contained in λ blocks and the intersection of any pair of
blocks contains λ points.
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We will ignore the case v = k = λ and consider the case k = 1, λ = 0 “degenerate”.
We form an incidence matrix B for the block design, indexing rows by blocks and

columns by points, setting Bij = 1 if point j is in block i and Bij = 0 otherwise. Finally,
we note the following two equivalent equations which hold for any symmetric 2-design:

k(k − 1) = λ(v − 1), (4.1)
k(v − k) = (k − λ)(v − 1). (4.2)

The incidence graph of (X,B) is the graph whose adjacency matrix is
[

0 B
BT 0

]
.

We now move to a description of a homogeneous1 linked system of symmetric designs
as described by Cameron in [24] and Noda in [77]. Consider a multipartite graph Γ on
wv vertices with vertex set partitioned into w sets of v vertices called “fibers”:

X = X1∪̇X2∪̇ · · · ∪̇Xw.

We say Γ is a linked system of symmetric designs, LSSD(v, k, λ;w) (w ≥ 2), if it satisfies
the following three properties:

(i) no edge of Γ has both ends in the same fiber Xi;

(ii) for all 1 ≤ i, j ≤ w with i 6= j, the induced subgraph of Γ between Xi and Xj is the
incidence graph of some (v, k, λ)-design;

(iii) there exist constants µ and ν such that for distinct h, i, j (1 ≤ h, i, j ≤ w),

a ∈ Xi, b ∈ Xj ⇒ |Γ(a) ∩ Γ(b) ∩Xh| =

µ a ∼ b

ν a 6∼ b
(4.3)

where ∼ denotes adjacency in Γ and Γ(x) denotes the neighborhood of vertex x. Observe
that Γ is regular with valency k(w − 1). A specific type of LSSD introduced in [37], con-
structed from a linking system of difference sets, is a LSSD where the symmetric design
induced between any two fibers comes from a difference set with the further restriction
that the difference sets induced between any pair of three fibers interact in a consistent
way. Recently Jedwab, Li, and Simon [57] examined these in more detail, building new ex-
amples and proving non-existence results for certain design parameters. However, Mathon
[72] showed there exist three-fiber LSSDs which do not correspond to linking systems of
difference sets, thus we expect there to be many LSSDs which we cannot build via linking
difference sets. We will consider the general case, and thus do not assume this added
structure on our symmetric designs.

1Here, “homogeneous” refers to the designs between fibers all having the same design parameters.
For the duration of this chapter, we will only concern ourselves with this case, though we drop this
clarification later and refer to the structures simply as linked systems of symmetric designs.
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In [77, Proposition 0], Noda shows that µ and ν must take one of two pairs of values
given by:

ν = k(k ±
√
k − λ)

v
, µ = ν ∓

√
k − λ. (4.4)

With these two possibilities for µ and ν, it becomes useful to distinguish between the two
types of LSSDs. We will refer to the LSSD as µ-heavy (resp., ν-heavy) when µ > ν (resp.,
ν > µ). Note that since both µ and ν are integers, we must also have

√
k − λ ∈ Z; for

the remainder of this chapter, define s =
√
k − λ Note, this parameter is known as the

“order” of the symmetric design and many authors use n to denote this value — we will
always use s. Further, since k 6= λ, we must have s > 0 and thus µ 6= ν. We now review
a proposition of Noda which notes that, given an LSSD Γ, swapping adjacency between
fibers produces another LSSD; we call this graph the multipartite complement of Γ.

Proposition 4.1 (Noda). Let Γ be a LSSD(v, k, λ;w) with w > 2. If Γ is µ-heavy (resp.,
ν-heavy), the multipartite complement Γ′ is a ν-heavy (resp., µ-heavy) LSSD(v, v−k, v−
2k + λ;w).

We further find that, given v, k, and λ, only one of the outcomes in (4.4) is possible
for v ≥ 3.

Lemma 4.2. Let Γ be a LSSD(v, k, λ;w) with w > 2 and 1 < k < v − 1. Then the
following hold:

(i) exactly one of k(k+s)
v

and k(k−s)
v

is an integer;

(ii) gcd(k, v) > 1;

(iii) gcd(s, v) > 1.

Proof. By Proposition 4.1, we may assume k ≤ v
2 as k(k±s)

v
is integral if and only if

(v−k)((v−k)±s)
v

is integral. Now, Equation (4.1) gives k2 − s2 = λv and thus we have the
equations

k(k + s)
v

− s(k + s)
v

= k(k − s)
v

+ s(k − s)
v

= λ.

Now assume k(k+s)
v

and k(k−s)
v

are both integral. This implies that s(k+s)
v

and s(k−s)
v

are
both integral, and thus their difference 2s2

v
must also be integral. However this contradicts

s < k ≤ v
2 , thus at most one of k(k+s)

v
and k(k−s)

v
may be integral. The assumption that our

parameters were feasible (in fact, realizable) is sufficient to guarantee at least one is an
integer, giving (i). For (ii), we again assume k ≤ v

2 (noting that gcd(k, v) = gcd(v− k, v)
since k < v). Now, since s < k we must have k + s < v. Thus if k(k+s)

v
is an integer, we

must have gcd(k, v) > 1. Similarly k(k−s)
v
∈ Z implies gcd(k, v) > 1. The same argument

applies to (iii) noting again that one of k(k±s)
v

is integral if and only if one of s(k±s)
v

is
integral.
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Remark. Theorem 4.4 and the discussion that follows shows that the parameters of an
LSSD uniquely determine the parameters of an association scheme. It is important to
note here that the first line of Lemma 4.2 may be replaced with the line “Suppose the
parameter set of a LSSD(v, k, λ;w) with w > 2 and 1 < k < v−1 is feasible.” In fact, all
we need to prove Lemma 4.2 is that either k(k+s)

v
or k(k−s)

v
is integral. This will become

useful as we apply this lemma to rule out feasible parameter sets where, clearly, we cannot
assume the LSSD exists.

The case where k = 1 or k = v − 1 produces LSSDs which are not of interest to
us and for the remainder of the chapter, we will refer to these designs as “degenerate”.
For a further description of why these designs are degenerate, see Section 4.4.1. The
observations that gcd(k, v) > 1 and gcd(s, v) > 1 are two tools which help us determine
more easily which design parameters might be feasible for a LSSD with w > 2. We may
find many other statements similar to these, but these two will be sufficient for now.
Using these, we can immediately rule out many design parameters. For instance:

Corollary 4.3. Assume w > 2. If there exists a non-degenerate LSSD(v, k, λ;w), then
v is composite.

For a further use of these tools to rule out certain families of symmetric designs, see
Appendix A.

We now provide a theorem of Van Dam concerning the equivalence between linked
systems of symmetric designs and 3-class Q-antipodal association schemes. We do not
give a self-contained proof here, instead referring to results of Van Dam to outline the
proof. While this result appears in [34], we include a later result appearing in [36] to
assist with our outline.

Theorem 4.4 ([34]). Let Γ be a non-degenerate LSSD with adjacency matrix A. Then
the algebra 〈A〉∗ is the Bose-Mesner algebra of a 3-class Q-antipodal association scheme
on X. Conversely, every Q-antipodal 3-class association scheme arises in this way. More
specifically, the natural ordering of the relations of any Q-antipodal 3-class association
scheme is as follows:

• R0 is the identity relation on X;

• R1 is given by adjacency in the µ-heavy LSSD;

• R2 is the union of complete graphs on the fibers induced by R1;

• R3 is given by adjacency in the ν-heavy LSSD.

Proof outline. Let Γ be the graph of a linked system of symmetric designs with 0 <
λ < k − 1 and assume without loss of generality that k ≤ v

2 . Using the definition of an
LSSD, one may verify quickly that all intersection numbers are well-defined, and thus the
adjacency algebra of Γ is the Bose-Mesner algebra of a 3-class association scheme. We may
then build L1 to find that the eigenvalues of this graph are k(w − 1) >

√
k − λ(w − 1) >
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−
√
k − λ > −k with multiplicities m0,m1,m2,m3 respectively. Since Γ is connected, we

find that m0 = 1. Further, since Γ has four distinct eigenvalues, Theorem 5.8 of [34]
tells us m1 = v − 1. We then use the equations ∑3

i=0 θimi = 0 and ∑3
i=0mi = vw to

find that m3 = w − 1 and m2 = (w − 1)(v − 1). We then apply Proposition 6.1 of [36]
to see that this association scheme is Q-antipodal. Conversely, let (X,R) be a 3-class
Q-antipodal association scheme with relations ordered naturally. Then Theorem 2.16 tells
us the system of imprimitivity is given by J = {0, 3} and I = {0, 2} and Theorem 5.1 of
[36] tells us (X,R) is uniform. We may then refer again to Proposition 6.1 of [36] to see
that m2 = (w − 1)m1. This, along with the antipodal property, forces k1 = v − 1 where
k1 is the valency of the nearest neighbor graph. Thus Theorem 5.8 of [34] tells us this
nearest neighbor graph is the incidence graph of a linked system of symmetric designs
with 0 < λ < k − 1.

In addition to the above proof, we list the intersection numbers, the first and second
eigenmatrices, and a some of the Krein parameters for later use. Let Γ1 = (X,R1) be a
µ-heavy LSSD(v, k, λ) with complement design given by Γ2 = (X,R3). The following are
the intersection numbers, listed via the four matrices L0, L1, L2, L3 where Li = [pki,j]k,j;

L0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , L1 =


0 k(w − 1) 0 0
1 µ(w − 2) k − 1 (k − µ)(w − 2)
0 λ(w − 1) 0 (k − λ)(w − 1)
0 ν(w − 2) k (k − ν)(w − 2)

 ,

L2 =


0 0 v − 1 0
0 k − 1 0 v − k
1 0 v − 2 0
0 k 0 v − k − 1

 ,

L3 =


0 0 0 (v − k)(w − 1)
0 (k − µ)(w − 2) v − k (v + µ− 2k)(w − 2)
0 (k − λ)(w − 1) 0 (v + λ− 2k)(w − 1)
1 (k − ν)(w − 2) v − k − 1 (v + ν − 2k)(w − 2)

 .

We note here that, while µ and ν alone are not intersection numbers of our association
scheme, we will often allow for the slight abuse of terminology and include both of these
as parameters of an LSSD. The first and second eigenmatrices are given as:

P =


1 k(w − 1) v − 1 (v − k)(w − 1)
1
√
k − λ(w − 1) −1 −

√
k − λ(w − 1)

1 −
√
k − λ −1

√
k − λ

1 −k v − 1 k − v

 (4.5)

Q =


1 v − 1 (w − 1)(v − 1) w − 1
1 v−k√

k−λ − v−k√
k−λ −1

1 −1 1− w w − 1
1 −k√

k−λ
k√
k−λ −1

 . (4.6)
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Finally, we use this matrix Q to calculate our Krein parameters using standard techniques
(see [16]). Defining L∗i = [qkij]k,j similar to before, we find

L∗1 =


0 v − 1 0 0
1 (1−w)(2k−v)+(v−2)s

ws
(w−1)(s(v−2)+(2k−v))

ws
0

0 s(v−2)+2k−v
ws

s(w−1)(v−2)−(2k−v)
ws

1
0 0 v − 1 0

 , L∗3 =


0 0 0 w − 1
0 0 w − 1 0
0 1 w − 2 0
1 0 0 w − 2

 .

Note that our Q-polynomial property means that L∗1 must be irreducible tridiagonal ([16,
Prop. 2.7.1(i’)]). While the tridiagonal property is clear from the above matrix, the
irreducible property requires s(v − 2) > v − 2k, for which k > 1 is necessary (and suffi-
cient). Thus, while we may fulfill the LSSD conditions using degenerate design parameters
(v, 1, 0), these will not satisfy our Q-polynomial property. This is one reason why we will
ignore this case for much of our discussion.

Finally, the final column of L∗3 tells us that E3 ◦ E3 ∈ 〈E0, E3〉; that is, our scheme is
Q-antipodal. We henceforth use the term linked system of symmetric designs to refer to
either the graph Γ or to the association scheme it generates as in Theorem 4.4.

4.1.1 Bounds on number of fibers
One central question in the study of linked systems of symmetric designs is determining
the maximum number of fibers one may use to build LSSDs. Theorem 2 of [77] provides
us with the main non-trivial bound known to date. In this paper, Noda proves

(w − 1)
[
(k − 2)λ

(
k
3

)
− (v − 2)

[
(v − k)

(
ν
3

)
+ k

(
µ
3

)]]
≤ (v − 2)

[
(v − 1)

(
λ
3

)
+
(
k
3

)
−
[
(v − k)

(
ν
3

)
+ k

(
µ
3

)]]
with equality if and only if a pair (X1, X2∪X3∪ · · · ∪Xw) forms a 3-design. If we restrict
ourselves to the case of µ-heavy LSSDs, this results in the following theorem

Theorem 4.5. Suppose there exists a LSSD(v, k, λ;w) with ν = k(k−s)
v

and µ = ν + s.
Then if k > v

2 ,

w ≤ (v − 2)
√
k − λ

2k − v + 1. (4.7)

Note the condition becomes vacuous when 2k < v, thus the bound only applies when
(2k − v)(µ− ν) > 0.

Examining the Krein parameters which arise (in particular those listed in the discus-
sion following Theorem 4.4), we find that the only non-trivial condition from the Krein
conditions is q1

11 ≥ 0. While constructing the various different possible configurations
of LSSDs using design parameters (16, 6, 2) [72], Mathon also shows that the condition
q1

11 ≥ 0 is equivalent to the Noda bound (seen above). In fact, we have

q1
11 = (1− w)(2k − v) + (v − 2)s

ws
. (4.8)
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Thus, as long as k < v
2 we may rearrange the terms to get

w ≤ (v − 2)s
2k − v + 1.

This is, of course, equivalent to the previous bound since s =
√
k − λ. Note that, as

before, we only arrive at this bound if k < v
2 for the µ-heavy design.

The final bound we will consider is one which does not require k < v
2 for the µ-heavy

design. In [69], Martin, Muzychuk, and Williford use the absolute bound to bound the
number of fibers, relying on the Q-polynomial structure (particularly that q3

11 = 0 and
q2

11 > 0). Let mi = rank(Ei). We know from our Q matrix that m2 = (w−1)m1. Further,

E1 ◦ E1 = 1
|X|

(
q0

11E0 + q1
11E1 + q2

11E2
)
. (4.9)

The bound itself will depend on whether or not q1
11 is non-zero. Thus we must split our

derivation into two cases. In what follows, we derive the bound for the case q1
11 > 0 as

well as examine further the case of q1
11 = 0, deriving the absolute bound for this case and

pairing this with tightness in the Noda bound to further restrict our parameters.
First consider the case when q1

11 > 0. Here, we find the rank of the right hand side of
(4.9) is m2 + m1 + 1 while the rank on the left is no larger than 1

2m1 (m1 + 1). Thus we
must have

m2 +m1 + 1 ≤ 1
2m1(m1 + 1)

(w − 1)m1 ≤
m2

1 −m1

2 − 1,

w ≤ m1 − 1
2 − 1

m1
.

Since m1 = v − 1, this gives w ≤ v
2 −

1
v−1 . Further, since v > 2 this results in w ≤ v−1

2 .
Now consider the case where q1

11 = 0. The only change is that the right hand side
of (4.9) now has rank m2 + 1. Thus our bound gives instead w ≤ v+1

2 . However, (4.8)
gives us an expression for q1

11. Thus, if q1
11 = 0, we must have k > v

2 and w = (v−2)s
2k−v + 1.

Using this value for w in our bound w ≤ v+1
2 results in the inequality (v−2)s

2k−v + 1 ≤ v+1
2 or

equivalently,
2s ≤ (2k − v) + 2s

v − 1 .

Since 0 < 2s < k < v − 1, we must then have 2s ≤ (2k − v). Squaring both sides then
gives 4(k − λ) ≤ 4k2 − 4kv + v2. Finally, using Equation (4.2) we have

4(k − λ) ≤ v.

In summary, if q1
11 > 0, the absolute bound tells us w ≤ v−1

2 for both µ-heavy and
ν-heavy designs independent of the size of k. Additionally, if q1

11 = 0 (i.e. the Noda
bound is tight), we must have 4(k − λ) ≤ v. Recall this is exactly the case where Noda
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showed (X1, X2 ∪ X3 ∪ · · · ∪ Xw) forms a 3-design. There is only one known family of
constructions which achieve the Noda bound. For this construction (see Section 4.4.2)
v = 4(k − λ). Further, these designs have parameters belonging to the Menon family —
the only possible family for which this v = 4(k − λ).

We finish this section by noting that, in either case (q1
11 > 0 and q1

11 = 0), the exact
bound arising from the absolute bound is non-integral assuming m1 > 2. Thus, while we
reduce these bounds to w ≤ v−1

2 and w ≤ v+1
2 , the actual absolute bound will never be

tight.

4.2 Linked simplices
In this section, we will write {bj} for the set {b1, . . . , bv} for both sets of points and sets
of blocks. For our purposes a regular simplex will be taken to be a set of v unit vectors
spanning Rv−1 with the property that the inner product of any pair of distinct vectors
is − 1

v−1 . Let A = {ai} and B = {bj} be two regular simplices in Rv−1. We say A
and B are linked if there exist two real numbers γ and δ such that for all 1 ≤ i, j ≤ v,
〈ai, bj〉 ∈ {γ, δ}. (Note that, here, “linked” always implies regular.) Following the same
abuse of terminology as we did with equiangular lines in Chapter 3, we will refer to the
real numbers γ and δ as the “angles” of our linked simplices. Extending this, given regular
simplices A1, . . . ,Aw in Rv−1 we say {A1, . . . , Aw} is a set of w linked simplices if any two
of them are linked with the same angles γ and δ. The next few theorems establish an
equivalence between these objects and LSSDs.

Theorem 4.6. Consider a LSSD(v, k, λ;w) with Bose-Mesner algebra A. The first idem-
potent E1 in a Q-polynomial ordering of A, appropriately scaled, is the Gram matrix of a
set of w linked simplices. In the case w = 2, E2 scaled similarly is also the Gram matrix
of a second set of two linked simplices.

Proof. Let (X,R) be a LSSD(v, k, λ;w) with Bose-Mesner algebra A. Let {Ai} and {Ej}
be the bases of Schur and matrix idempotents respectively. We have from (2.1)

Ej = 1
|X|

∑
QijAi.

As Ej is an idempotent, Ej is a positive semidefinite matrix with rank Q0j. Therefore
using (4.6),

G = vw

v − 1E1 = A0 + v − k
(v − 1)

√
k − λ

A1 −
1

v − 1A2 −
k

(v − 1)
√
k − λ

A3

is positive semidefinite with 1 on the main diagonal. Given that Q01 = v − 1, G is the
Gram matrix of a set Y of vw vectors in Rv−1. Further there are only three possible inner
products among distinct vectors of Y given by

α1 = v − k
(v − 1)

√
k − λ

, α2 = − 1
v − 1 , α3 = − k

(v − 1)
√
k − λ

.
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Since A2 has the form Iw ⊗ Jv, encoding adjacency in the complete graphs within fibers,
our vectors form a set of w linked simplices in Rv−1 with γ = α1 and δ = α3 as inner
products between vectors in distinct simplices.

Similarly we have

G′ = vw

v − 1E2 =
(
A0 + −k

(v − 1)
√
k − λ

A1 −
1

v − 1A2 + v − k
(v − 1)

√
k − λ

A3

)

forcing G′ also to be the Gram matrix of a set of vectors coming from w distinct simplices.
However, the rank of E2 is (w − 1)(v − 1) and thus these simplices are full-dimensional,
hence linked, only when w = 2. This means any pair of fibers from our LSSD will give
us another set of linked simplices with inner products −α1 and −α3. This corresponds to
choosing one of the two simplices and replacing each x in that simplex by −x.

This tells us that every LSSD gives rise to a set of linked simplices. Before proving
the converse, we first prove a lemma arising from the observation that a regular simplex
is an equiangular tight frame, that is, a set of vectors {vj}j∈J ⊂ V for which there exists
a constant A so that v = 1

A

∑
j∈J 〈v, vj〉 vj for every vector v ∈ V . We will instead use the

equivalent Plancherel definition 〈v, w〉 = 1
A

∑
j∈J 〈v, vj〉 〈vj, w〉 for all v, w ∈ V (see [56]).

Lemma 4.7. Let {ai} be a regular simplex in Rv−1 and let x, y ∈ Rv−1. Then
∑
i

〈ai, x〉 〈ai, y〉 = v

v − 1 〈x, y〉 .

Proof. For a vector x, let x(i) denote the ith entry of x. For each 1 ≤ i ≤ v, define αi ∈ Rv

as the unit vector

αi =
√
v − 1
v

[
ai(1), ai(2), . . . , ai(v − 1), 1√

v − 1

]
.

For i 6= i′,
〈αi, αi′〉 = v − 1

v

(
〈ai, ai′〉+ 1

v − 1

)
= 0.

Then {αi} forms an orthonormal basis for Rv. Now define χ, ψ ∈ Rv as:

χ = [x(1), x(2), . . . , x(v − 1), 0] , ψ = [y(1), y(2), . . . , y(v − 1), 0] .

Then for each i,

〈αi, χ〉 =
√
v − 1
v
〈ai, x〉 , 〈αi, ψ〉 =

√
v − 1
v
〈ai, y〉

giving us
〈x, y〉 = 〈χ, ψ〉 =

∑
i

〈αi, χ〉 〈αi, ψ〉 = v − 1
v

∑
i

〈ai, x〉 〈ai, y〉 .
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Using this lemma, we now seek to build a LSSD with w fibers from a set of w linked
simplices. We first provide a construction of the graph Γ and then split the verification
into two parts: first that Γ restricted to a pair of fibers represents a symmetric design,
and second that the constants µ and ν given by (4.3) are well-defined. Clearly, we need
only consider three fibers in the proofs to follow; the arguments extend to w fibers.

Theorem 4.8. Let {ai} and {bj} be linked simplices in Rv−1 with inner products γ and
δ. For each j, let Bj = {ai : 〈ai, bj〉 = γ}. Then ({ai} , {Bj}) is a symmetric 2-design.

Proof. First we must prove that each block contains a constant number of points. Let 1 ≤
j ≤ v be fixed and define kj = |Bj|. Since the set {ai} of vectors form a regular simplex,
the centroid of those vectors must be the origin. Then, ∑i 〈bj, ai〉 = 〈bj,

∑
i ai〉 = 0 giving

us the equation kjγ + (v − kj)δ = 0. Solving this for kj gives kj = δv
γ−δ , independent

of j. Now we will show that any pair of blocks have a constant number of points in
common; swapping roles this gives that any pair of points is contained in a constant
number of blocks. Fix 1 ≤ s, t ≤ v so that bs and bt are two distinct vectors in {bj} with
corresponding blocks Bs and Bt respectively. Define λs,t = |Bs ∩Bt| and

xs = [〈a1, bs〉 , 〈a2, bs〉 , . . . , 〈av, bs〉] , xt = [〈a1, bt〉 , 〈a2, bt〉 , . . . , 〈av, bt〉] .

Recalling that kγ + (v − k)δ = 0,

〈xs, xt〉 = λs,tγ
2 + 2(k − λs,t)γδ + (v − 2k + λs,t)δ2 = λs,t (δ − γ)2 − vδ2.

We may instead apply Lemma 4.7 to get

〈xs, xt〉 =
∑
i

〈ai, bs〉 〈ai, bt〉 = v

v − 1 〈bs, bt〉 = − v

(v − 1)2 .

Equating these two values gives us

λs,t = vδ2

(δ − γ)2 −
v

(v − 1)2(γ − δ)2 .

The quantity on the right is independent of s and t and therefore λs,t does not depend on
s and t. This tells us our collection of blocks forms a 2-design with the above values for
k and λ.

As both k and λ are integers, this gives us restrictions on which inner products are
allowed. We solve the system

kγ + (v − k)δ = 0,

λ(δ − γ)2 − vδ2 = − v

(v − 1)2

to find that δ2 = k
(v−1)(v−k) . Using (4.2), this simplifies to

δ = ± k

(v − 1)
√
k − λ

, γ = ∓ v − k
(v − 1)

√
k − λ

. (4.10)
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These match the previously determined entries of E1 and E2 corresponding to the first
and third relations. Our next theorem concerns the existence of µ and ν, which arise
between triples of fibers.

Theorem 4.9. Let {ai}, {bi}, and {ci} be three linked simplices in Rv−1 with inner
products γ and δ as before. For each 1 ≤ j, k ≤ v, let Bj = {ai : 〈ai, bj〉 = γ} and
Ck = {ai : 〈ai, ck〉 = γ}. Then there exists integers µ and ν such that

|Bj ∩ Ck| =

µ 〈bj, ck〉 = γ

ν 〈bj, ck〉 = δ

where µ and ν are independent of our choice of j and k.

Proof. We follow a similar method of calculating an inner product in two ways, then
equating the results. Fix 0 ≤ i, j ≤ v and let ηi,j = |Bi ∩ Cj|. Define

xi = [〈a1, bi〉 , 〈a2, bi〉 , . . . , 〈av, bi〉] , xj = [〈a1, cj〉 , 〈a2, cj〉 , . . . , 〈av, cj〉] .

Then we have 〈xi, xj〉 = ηi,j(γ − δ)2 − vδ2 and using Lemma 4.7,

〈xi, xj〉 =
∑
`

〈a`, bi〉 〈a`, cj〉 = v

v − 1 〈bi, cj〉 .

Equating these two values and solving for ηi,j gives us

ηi,j = 1
(γ − δ)2

(
vδ2 + v

v − 1 〈bi, cj〉
)
.

While the right side is not independent of i and j as we saw in the previous theorem, it
is only dependent on the value of 〈bi, cj〉. Using ν and µ for ηi,j when 〈bi, cj〉 is δ and γ
respectively, we have

ν = v

(γ − δ)2

(
δ2(v − 1)2 + δ(v − 1)

(v − 1)2

)
,

µ = v

(γ − δ)2

(
δ2(v − 1)2 + γ(v − 1)

(v − 1)2

)
= ν + v

(γ − δ)(v − 1) .

Using equation 4.10, we find

γ − δ = ∓ v

(v − 1)
√
k − λ

,

giving us that

ν = k(k ±
√
k − λ)

v
,

µ = ν ∓
√
k − λ.

72



Note that, since µ and ν are both cardinalities of sets, any time we find non-integral
values for µ and ν we can conclude that the hypothesized set of linked simplices does not
exist. This brings us to the main theorem of this section (cf. [88, Theorem 2.6(1)]).
Theorem 4.10. A LSSD(v, k, λ;w) is equivalent to a set of w linked simplices in Rv−1

whose angles depend on the parameters v, k, and λ.
Proof. Theorem 4.6 tells us that given any LSSD(v, k, λ;w) we can always build a set
of w linked simplices using a scaled version of the first idempotent as the Gram matrix.
For the converse, let {X1, X2, . . . , Xw} be a set of w linked simplices with inner products
γ > δ. Define a graph Γ on vertex set ⋃iXi where x ∈ Xj and y ∈ X` (j 6= `) are adjacent
if and only if 〈x, y〉 = γ. Then Γ is a multipartite graph with w fibers. Theorem 4.8 tells
us that the induced graph between a pair of fibers is a symmetric 2-design. Theorem 4.9
shows that given any pair of vertices in distinct fibers x ∈ Xi and y ∈ X`,

|Γ(x) ∩ Γ(y) ∩Xj| =

µ x ∼ y

ν x 6∼ y

where Xj is any third fiber. As we assumed γ > δ, this also provides that µ > ν. Therefore
Γ is a µ-heavy LSSD and adjacency in Γ is the first relation of our proposed association
scheme. The third relation (the ν-heavy LSSD) is built using inner product δ to define
adjacency.

4.2.1 A geometric classification
As every association scheme has relations corresponding to complementary µ-heavy and
ν-heavy LSSDs, it becomes useful to differentiate between LSSDs where P01 (the valency
of the µ-heavy design) is greater than P03 (the valency of the ν-heavy design) or vice versa.
Noting that the µ-heavy LSSD gives the nearest neighbor graph2 of our association scheme
and thus the only positive inner product apart from 1, we classify a LSSD as optimistic if
P01 > P03 (and thus there are more positive inner products than negative). Likewise we
classify the opposite case as pessimistic. While this classification helps designate whether
the set of linked simplices has mostly positive or mostly negative inner products between
distinct simplices, we also note that every known non-degenerate example of a LSSD is
optimistic. At the parameter level, an LSSD is optimistic if (2k − v)(µ − ν) > 0 and
pessimistic if (2k − v)(µ− ν) < 0. The following table lists the possibilities.

2k > v 2k < v
µ-heavy optimistic pessimistic
ν-heavy pessimistic optimistic

Motivated by the natural ordering of relations, we will adopt the convention of focusing
on the µ-heavy LSSD. This forces us to allow for k > v

2 .
2The “nearest neighbor graph” here refers to the basis relation in our association scheme corresponding

to largest inner product not equal to 1. By definition, this is R1 under the natural ordering of relations
for a Q-polynomial scheme.
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4.3 Connections to other Euclidean structures
In the previous section, we developed the equivalence between LSSDs and linked simplices
using the columns of the first idempotent as a spherical code. We now explore similar
structures which can be built using combinations of these idempotents, though we will
not always be able to reverse these constructions as we did with linked simplices. Recall
that

Ej = 1
|X|

d∑
i=0

QijAi

and the rank of Ej is given by Q0j. By considering non-negative linear combinations
of these idempotents, we construct Gram matrices of systems of vectors with desirable
properties. As we are interested in low rank Gram matrices, we will only consider non-
negative combinations of two or three of these idempotents, avoiding E2 as this has rank
(w−1)(v−1). Before moving to the examples, we note that the matrix αE0 +βE1 +γE3
is expressible as ∑i yiAi with the following values for yi:

y0 = 1
vw

(α + (v − 1)β + (w − 1)γ),

y1 = 1
vw

(α + v − k√
k − λ

β − γ),

y2 = 1
vw

(α− β + (w − 1)γ),

y3 = 1
vw

(α− k√
k − λ

β − γ).

(4.11)

4.3.1 Equiangular lines
Recall that a set of equiangular lines in dimension n with “angle” 0 < α < 1 may be
considered a set of unit vectors in Rn such that the inner product between any distinct
vectors has a fixed magnitude α. Thus we consider a set of equiangular lines equivalent to
a Gram matrix with only one magnitude off the main diagonal. Our task of constructing
equiangular lines from an LSSD then reduces to finding a low rank matrix inside the
Bose-Mesner algebra for which the off diagonal entries (y1, y2, and y3 in (4.11)) all have
the same norm.

We now show that we may find a set of equiangular lines from any LSSD whose
size and dimension depend on the number of fibers used in the construction. This is a
generalization of the construction of de Caen’s [21] which uses the idempotents Cameron-
Seidel scheme to build a family of equiangular lines with 2

9(d+ 1)2 lines in Rd. Let A be
the Bose-Mesner algebra of an LSSD with Q-polynomial ordering E0, . . . , E3 and relations
ordered naturally. Consider the matrix

G = vw(αE0 + βE1 + γE3)

for α, β, γ ≥ 0. This is a vw × vw matrix with rank at most v + w − 1. The off-diagonal
entries are given by y1, y2, y3 in (4.11). In order to obtain a Gram matrix for a set of
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equiangular lines, we must have a constant positive value c such that∣∣∣∣α + β

(
v − k√
k − λ

)
− γ

∣∣∣∣ =
∣∣∣∣α− β + (w − 1)γ

∣∣∣∣ =
∣∣∣∣α− β

(
k√
k − λ

)
− γ

∣∣∣∣ = c.

First note that, if β = 0 then the above equations imply |α − γ| = |α + (w − 1)γ|
which is impossible unless γ = 0. Since the case β = γ = 0 results in the rank 1
matrix J , we are not interested in this case. Thus we may assume β > 0. This implies
α + β

(
v−k√
k−λ

)
− γ > α− β

(
k√
k−λ

)
− γ and we must have

c = α + β

(
v − k√
k − λ

)
− γ = −

[
α− β

(
k√
k − λ

)
− γ

]
.

This tells us that

β = 2c
√
k − λ
v

and α− γ = c

(
2k − v
v

)
.

Here we have one final choice: the sign of α− β + (w− 1)γ. Substituting in our value for
β, we find that

α + (w − 1)γ = c

(
2
√
k − λ± v
v

)
.

Since we must have 2
√
k − λ < v, we know that choosing the minus on the right hand

side would make the entire side negative. However α, γ, and (w − 1) are all positive so
this is not possible. Therefore we must use the +, giving

γ = 2c
(
v − k +

√
k − λ

vw

)
, α = c

(
v + 2

√
k − λ− (w − 1) (v − 2k)

vw

)
.

Our final constraint is that the main diagonal of G is equal to 1. Setting y0 ≡ 1 in 4.11,
we find

c = 1
2
√
k − λ− 1

.

Scaling by vw for convenience, this gives us the final values:

vwα = v + 2
√
k − λ− (w − 1)(v − 2k)

(2
√
k − λ− 1)

,

vwβ = 2w
√
k − λ

2
√
k − λ− 1

,

vwγ = 2v − 2k + 2
√
k − λ

2
√
k − λ− 1

,

with inner product 1
2
√
k−λ−1 . It is easy to see that β and γ will always be positive, thus

the rank of our matrix will always be at least v + w − 2. In the optimistic case, the
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same holds for α since v − 2k < 0. However, in the pessimistic case, it is possible that
w = 2(k+s)

v−2k + 2, resulting in α = 0. More broadly, whenever our LSSD is pessimistic, we
must have w ≤ 2(k+s)

v−2k + 2 where equality implies the rank of our matrix is v+w− 2. This
gives the following generalization of de Caen’s construction:

Theorem 4.11. Let (X,R) be the association scheme arising from a LSSD(v, k, λ;w).
If either (X,R) is optimistic, or w ≤ 2 + 2(k+s)

v−2k then we can build a set of vt equiangular
lines in Rv+t−1 for any 1 ≤ t ≤ w. In the pessimistic case with w > 2 + 2(k+s)

v−2k , we can
achieve the construction for any t ≤ 2 + 2(k+s)

v−2k .

4.3.2 Real mutually unbiased bases
Recall that a set of real mutually unbiased bases (MUBs) is a set of orthonormal bases
of Rn such that any pair of vectors from distinct bases has inner product equal to one of
± 1√

n
. We may build structures close to this by taking x2 = x3 = 0 and x0 = x1 = w.

This gives us the Gram matrix

G = A0 + v − k +
√
k − λ

v
√
k − λ

A1 −
k −
√
k − λ√

k − λ
A3

of a set of w orthonormal bases where two vectors from distinct bases have one of two
inner products;

β1 = v − k +
√
k − λ

v
√
k − λ

, β2 = −k −
√
k − λ

v
√
k − λ

.

Of particular interest is the case when |β1| = |β2|; this is precisely when our construction
gives a set of mutually unbiased bases. This will be discussed in greater detail in Section
4.5.

4.4 Known infinite families
This section discusses two families of LSSDs, one trivial and one quite central to the
subject. In each case we introduce the family and provide the parameters of the association
schemes.

4.4.1 Degenerate case
We first examine the case when the Q-polynomial structure fails as seen in the discussion
of Theorem 4.4. Arguably the most interesting property of this scheme is that there is no
bound on w. In fact, for any choice of v, w > 0, we can build a LSSD with w fibers by
building a set of cliques, each of size w, where each clique contains a single vertex from
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each fiber. This gives a µ-heavy LSSD with the complement giving us the ν-heavy LSSD.
Below is a representation of the complementary pairs LSSD(4,1,0;3) and LSSD(4,3,2;3).

µ-heavy LSSD ν-heavy LSSD

In this case the µ-heavy LSSD has design parameters (v, 1, 0), so we find that s =√
k − λ = 1, ν = k(k−s)

v
= 0, and µ = ν + s = 1. We list the eigenmatrices and use

these to further describe the LSSD:

P =


1 w − 1 v − 1 (v − 1)(w − 1)
1 w − 1 −1 −(w − 1)
1 −1 −1 1
1 −1 v − 1 1− v

 , Q =


1 v − 1 (w − 1)(v − 1) w − 1
1 v − 1 −(v − 1) −1
1 −1 1− w w − 1
1 −1 1 −1

.

This means that our first idempotent is given by:

E1 = (v − 1)I + (v − 1)A1 − A2 − A3 = (vI − J)⊗ J.

If we scale this appropriately to obtain a Gram matrix of unit vectors, we find that E1 is
the Gram matrix of w copies of the same simplex in Rv. This can be seen as well from the
fact that Q01 = Q11 meaning that any simplex vector has inner product 1 with exactly
one vector from each of the “other” simplices, meaning the simplices are just copies of
the same simplex. This explains why w is unbounded as we can always copy the same
simplex as many times as we would like. This also indicates why this example is not of
interest to us as it is not giving w distinct linked simplices.

4.4.2 Cameron-Seidel scheme
This construction is given originally by Goethals [47] in terms of Kerdock codes, though
it was extensively studied by Cameron and Seidel. A restating of this concept is found
in [7], where Bey and Kyureghyan frame the properties of Kerdock sets in terms of bent
functions rather than quadratic forms. In addition, Kantor [58] showed that there are
exponentially many non-isomorphic non-linear binary codes having Kerdock parameters.
Just as the binary codes are not isomorphic, the resulting LSSDs will not be combinatori-
ally isomorphic — that is, given two LSSDs (X,R) and (X ′,R′) built from non-isomorphic
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Kerdock sets, there cannot be a mapping φ : X → X ′ such that (x, y) ∈ Ri if and only if
(φ(x), φ(y)) ∈ R′i.

Definition ([26]). Let V = V (2m, 2) be a 2m-dimensional vector space over the field
F = GF (2), (m ≥ 2). A quadratic form on V is a function Q from V to F with the
properties

(i) Q(x0) = 0, where x0 is the zero vector;

(ii) The function B = B(Q): V × V → F defined by

B(x, y) = Q(x+ y) +Q(x) +Q(y),∀x, y ∈ V

is bilinear.

We note that, over any field F, the bilinear form corresponding to any quadratic
form is symmetric (B(x, y) = B(y, x)). In the specific case of F = GF (2) however,
this bilinear form is also alternating (B(x, x) = 0). That is, for any x ∈ V , B(x, x) =
Q(x + x) + Q(x) + Q(x) = Q(2x) + 2Q(x) = 0. Thus, within this context, we associate
any quadratic form with an alternating bilinear form given by a square matrix with 0’s
on the main diagonal.

We now give a derivation of the Kerdock codes coming from quadratic forms. Let
Q1, Q2, . . . , Qw be a set of w quadratic forms on Zn2 for which Qi + Qj is a full rank
quadratic form whenever i 6= j. Note that, through evaluation, each quadratic form gives
us a vector [Qi(v)]v∈Zn

2
of length 2n. Let Q1,Q2, . . . ,Qw be cosets, Qi = [Qi(v)]v∈Zn

2
+

R(1, n), of the first order Reed Muller code (see [97, Section 4.5]). For each 1 ≤ i ≤ w,
define the shortening of Qi as the set of vectors

Vi =
{

[q(1), q(2), . . . , q (2n − 1)] | q(2n) = 0
}
q∈Qi

where q(j) denotes the jth entry of q. Since Qi is closed under complements, we know
that |Vi| = 1

2 |Qi| = 2n. Further, any pair of vectors v, w ∈ ⋃
i Vi come from vectors

qv, qw ∈
⋃
iQi with last entry 0, so wt(v ⊕ w) = wt(qv ⊕ qw) where wt(x), the Hamming

weight of the binary tuple x, is equal to the number of non-zero entries. Finally, for each
i, construct the set of vectors

Xi =
{

1√
2n − 1

(2v − 1) |v ∈ Vi
}
.

We claim {Xi}i=1..w is a set of linked simplices. To verify this, fix 1 ≤ i < j ≤ w and let
xi, yi ∈ Xi and zj ∈ Xj with corresponding coset vectors qx, qy, and qz respectively. Then,

〈xi, xi〉 = 1
2n − 1

(
(wt(xi) + (−1)2(2n − 1− wt(xi))

)
= 1

giving that every vector in ⋃iXi is a unit vector. Next,

〈xi, yi〉 = 1
2n − 1 ((2n − 1)− 2wt(qx ⊕ qy)) = − 1

2n − 1
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giving us that Xi forms a regular simplex. Finally,

〈xi, zj〉 = 1
2n − 1 ((2n − 1)− 2wt(qx ⊕ qw)) .

Since wt(qx ⊕ qz) ∈ {2n−1 ± 2r−1} we have that

〈xi, wj〉 =


2r−1
2n−1 wt(qx ⊕ qw) = 2n−1 − 2r−1

− 2r+1
2n−1 wt(qx ⊕ qw) = 2n−1 + 2r−1

meaning there are two possible angles between simplices.
Therefore we can build a LSSD with w fibers whenever we have w quadratic forms

whose pairwise sums are full rank. We represent each quadratic form as the n×n matrix
giving the corresponding alternating bilinear form. Then, any two of these matrices must
differ in the first row in order for their difference to be full rank. This means w ≤ 2n−1

as there are only 2n−1 possible choices for the first row. This upper bound is achievable
whenever n is even [26]. Below we give an example when n = 4 where Qi is the alternating
bilinear form corresponding to the ith quadratic form.

Q1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Q2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , Q3 =


0 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

 , Q4 =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 ,

Q5 =


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

 , Q6 =


0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

 , Q7 =


0 0 1 1
0 0 1 0
1 1 0 1
1 0 1 0

 , Q8 =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

 .

It is straightforward to form the characteristic vectors [Qi(v)]v. Below we display [Q2(v)]v
and [Q8(v)]v:

[Q2(v)]v =
[

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0
]
,

[Q8(v)]v =
[

0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0
]
.

Each of these binary vectors of length 16 is a codeword in the second-order Reed-Muller
code R(2, 4), thus each codeword then determines a coset of R(1, 4) inside R(2, 4). The
coset corresponding to Q2(v) is given below as the set of rows of the matrix. To improve
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readability, + denotes a 1 and an empty space denotes a 0.

[Q2(v)]v + R(1, 4) =



+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + + + + + +

+ + + + + +
+ + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + +



.

To form our regular simplex we now choose all vectors with 0 in the last coordinate,
discard the last entry, replace every 0 with a −1 (abbreviated to −), and then scale by

1√
15 giving us the vectors (given by rows):

X2 = 1√
15



− − − + − − − + − − − + + + +
+ − + + + − + + + − + + − + −
+ + − + + + − + + + − + − − +
− + + + − + + + − + + + + − −
+ + + − − − − + + + + − + + +
− + − − + − + + − + − − − + −
− − + − + + − + − − + − − − +
+ − − − − + + + + − − − + − −
+ + + − + + + − − − − + + + +
− + − − − + − − + − + + − + −
− − + − − − + − + + − + − − +
+ − − − + − − − − + + + + − −
− − − + + + + − + + + − + + +
+ − + + − + − − − + − − − + −
+ + − + − − + − − − + − − − +
− + + + + − − − + − − − + − −


.

Likewise each [Qj(v)]v gives us a coset of size 32, which in turn is transformed to a regular
simplex Xj of sixteen vectors in R15 in this manner.

Symmetric design parameters

The design parameters of this scheme are (22r, 2r−1 (2r + 1) , 2r−1 (2r−1 + 1)). Using these,
we have: s = 2r−1, ν = 2r−2 (2r + 1), and µ = 2r−2 (2r + 3).

Intersection numbers

Noting that pkij = pkji, we list the unique intersection numbers while omitting the trivial
pj0i parameters. Note that each pjik is scaled by a constant based on i and k given in the
top row of our table.

j pj11

/
2r−2 pj12

/
2r−1 pj13

/
2r−2 pj22 pj23

/
2r−1 pj33

/
2r−2

0 (2r+1 + 2) (w − 1) 0 0 22r − 1 0 (2r+1 − 2)(w − 1)
1 (2r + 3) (w − 2) (2r + 1)− 21−r (2r − 1)(w − 2) 0 (2r − 1) (2r−2 − 1) (w − 2)
2 (2r + 2) (w − 1) 0 2r(w − 1) 22r − 2 0 (2r − 2)(w − 1)
3 (2r + 1) (w − 2) 2r + 1 (2r + 1)(w − 2) 0 (2r − 1)− 1 (2r−2 − 3) (w − 2)
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Krein parameters

As with the intersection numbers, we recall that qkij = qkji and list each unique Krein
parameter omitting the trivial qj0i parameters. No scaling is done here.

j qj11 qj12 qj13 qj22 qj23 qj33
0 22r − 1 0 0 (w − 1)(22r − 1) 0 w − 1
1 22r

w
− 2 22r

(
w−1
w

)
0 22r(w−1)2

w
− 2(w − 1) w − 1 0

2 22r

w
22r

(
w−1
w

)
− 2 1 22r(w−1)2

w
+ 2(w − 2) w − 2 0

3 0 22r − 1 0 (w − 2)(22r − 1) 0 w − 2

4.5 New examples with v 6= 2m

Recall from Section 4.3.2 that we found the Gram matrix for a set of bases by adding the
first two idempotents of our scheme, giving us

M = w(E0 + E1) =
(
A0 + v − k +

√
k − λ

v
√
k − λ

A1 −
k −
√
k − λ

v
√
k − λ

A3

)
(4.12)

where k is the block size of the µ-heavy LSSD. If v−k+
√
k−λ

v
√
k−λ and −k−

√
k−λ

v
√
k−λ have the same

absolute value, then M is the Gram matrix for a set of w mutually unbiased bases in Rv.
This will only occur when

v − 2k = −2
√
k − λ.

This means our LSSD must be optimistic, leading to the following lemma:

Lemma 4.12. Let A be the Bose-Mesner algebra of an optimistic LSSD(v, k, λ;w) with
Q-polynomial ordering E0, E1, E2, E3 of its primitive idempotents. If |v − 2k| = 2

√
k − λ

then w(E0 + E1) is the Gram matrix of a set of w real MUBs in dimension v.

It is important to note here that there exist pessimistic LSSDs such that v − 2k =
2
√
k − λ. One such example is a specific case of the degenerate design parameters in

Section 4.4.1 given by (v, k, λ) = (4, 1, 0) with the graph Γ1 displayed below.
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We can easily see that v − 2k = 2 = 2
√
k − λ. However, the sum of the first two

eigenspaces gives
M = 3(E0 + E1) = 1

3A0 −
1
4A1

which is not the Gram matrix of a set of MUBs. In fact, any Menon parameter set with
v/4 odd will satisfy |v − 2k| = 2

√
k − λ yet none of these will produce MUBs. Thus our

restriction to optimistic LSSDs is required and we cannot say that any LSSD satisfying
|v − 2k| = 2

√
k − λ will give us MUBs using this construction. Conversely, the existence

of w MUBs in Rv does not guarantee the existence of an optimistic LSSD(v, k, λ;w);
consider 3 MUBs in R4.

4.5.1 Restrictions on the design parameters
In this section, we show that |v − 2k| = 2

√
k − λ implies (v, k, λ) are Menon design

parameters. In the case of optimistic LSSDs, we also show v/4 is even. We now take a
closer look at our restriction v − 2k = −2

√
k − λ. First note we can square both sides to

get
4(k − λ) = v2 − 4k(v − k).

Using (4.2), this gives v = 4(k − λ) where we apply (4.1) to get

k2 + k + λ = 4λ(k − λ).

Solving this for k gives k = 4λ+1
2 ±

√
4λ+1
2 requiring 1

2±
1
2

√
4λ+ 1 to be an integer. Therefore√

4λ+ 1 must be an odd integer. Assume 4λ+ 1 = (2u− 1)2 for some positive integer u.
Then λ = u2 − u and

k = 2u2 − (2∓ 1)u+
(1∓ 1

2

)
.

If we re-parameterize the second family to avoid the trivial (0, 0, 0) design when u = 1,
we get the complementary families:

λ = (u− 1)u λ′ = (u+ 1)u
k = (2u− 1)u and k′ = (2u+ 1)u
v = 4u2 v′ = 4u2.

If we restrict to an optimistic LSSD, we must use the second family for our µ-heavy LSSD
Γ. From (4.4), we find

s =
√
k − λ = u, ν = k(k − s)

v
= u2 + u

2 , µ = ν + s = u2 + 3
2u.

This forces ν (and µ) to be integral if and only if u is even, resulting in the following
theorem

Theorem 4.13. Let Γ be an optimistic LSSD(v, k, λ;w). If v − 2k = −2
√
k − λ then

(v, k, λ) are Menon design parameters. That is,
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(i) v = 4u2

(ii) k = 2u2 + u

(iii) λ = u2 + u

(iv) w ≤ 2u2

Further, if u is odd, then w = 2.

Proof. Statements (i) – (iii) as well as our restriction when u is odd follow directly from
above. Conclusion (iv) follows from (4.7).

The upper bound for w is achieved whenever u is a power of two using the Cameron-
Seidel scheme. In light of this family and the condition that w = 2 whenever v/4 is odd,
one might ask if w is bounded as a function of the highest power of 2 dividing v. We will
show later that this is not true by constructing examples with w as large as we like and
v/16 odd.

4.5.2 Mutually unbiased Hadamard matrices
In this section, we establish an equivalence between LSSDs with design parameters as in
Theorem 4.13 with sets of regular unbiased Hadamard matrices (see [53] for more detailed
information on unbiased Hadamard matrices). Van Dam et al. [37, p. 1423] briefly mention
this connection citing constructions of unbiased regular Hadamard matrices by Holzmann,
Kharaghani, and Orrick [53] using mutually orthogonal latin squares. In this section, we
describe the connection between unbiased regular Hadamard matrices and LSSDs in full,
using Theorem 4.12. A real Hadamard matrix of order v is a v× v matrix H with entries
±1 such that HHT = vI. H is a regular Hadamard matrix if HJ = JH = cJ for some
constant c; one easily verifies that c =

√
v. Two Hadamard matrices H1 and H2 are

unbiased if 1√
v
H1H

T
2 is itself a Hadamard matrix. Finally, a set of Hadamard matrix

matrices are mutually unbiased if each pair is unbiased. Using these definitions, consider
the following:

Theorem 4.14. Let Γ be an optimistic LSSD(v, k, λ;w). If |v − 2k| = 2
√
k − λ, then

there exists a set of w − 1 real mutually unbiased regular Hadamard matrices of order v.

Proof. Let (X,R) be the association scheme arising from Γ with Bose-Mesner algebra A.
Let {E0, E1, E2, E3} be the set of idempotents under the natural Q-polynomial ordering.
From Lemma 4.12, G = w(E0 +E1) is the Gram matrix of a set of w MUBs in Rv. Let the
w MUBs be given by the columns of the w orthogonal matrices {M1, . . . ,Mw} and without
loss of generality assume M1 = I. Then any column from another Mi (i 6= 1) must have
entries ± 1√

v
. For 1 < i ≤ w, let Hi =

√
vMi. First note that HiH

T
i = vMiM

T
i = vI,

therefore for each 1 < i ≤ w, Hi is a Hadamard matrix. Now consider that the first v
rows of G will have the block form

[
I M2 M3 . . . Mw

]
. However from (4.12), we have

that the positive (resp., negative) entries of Mi represent adjacency between vertices in
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the first and ith fibers of the µ-heavy (resp., ν-heavy) LSSD. Since each vertex in the
first fiber must be adjacent to k vertices in the ith fiber in the µ-heavy LSSD, each row
of Mi must have k positive entries and v − k negative entries. Similarly, each vertex in
the ith fiber is adjacent to k vertices in the first fiber in the µ-heavy LSSD, thus each
column of Mi has k positive entries and v−k negative entries. Therefore each Hi must be
regular. Now define

(
w
2

)
matrices Mi,j where Mi,j is the orthogonal matrix representing

basis j when basis i is taken to be the standard basis (so M1,j = Mj). Then we repeat all
previous arguments to show that G has the block form:

G =


I M1,2 . . . M1,w

M2,1 I . . . M2,w
... ... . . . ...

Mw,1 Mw,2 . . . I


where

√
vMi,j is a Hadamard matrix for all 1 ≤ i 6= j ≤ w. Now consider a second

association scheme (X ′,R′) arising from the subgraph of Γ induced on three distinct
fibers Xi, Xj, and Xk. The matrix G′ = w(E ′0 + E ′1) will have the form:

G′ =

 I Mi,j Mi,k

Mj,i I Mj,k

Mk,i Mk,j I

 .
Noting that G2 = wG, the block in the (1, 2) block of G2 gives us that

2Mi,j +Mi,kMk,j = 3Mi,j, or equivalently Mi,kMk,j = Mi,j.

Therefore, if we return to the original LSSD and define Hi,j =
√
vMi,j, we find that

1√
v
HT
i Hj = Hi,j. It follows that the set {H2, . . . , Hw} is a set of w − 1 regular mutually

unbiased Hadamard matrices.

We now show the converse:

Theorem 4.15. Assume w > 2. Let {H2, . . . , Hw} be w − 1 regular unbiased Hadamard
matrices of order v. Then there exists an optimistic LSSD(v, k, λ;w).

Proof. Assume without loss of generality that the row sum of each of our Hadamard
matrices is positive. Define vectors xi,j for 2 ≤ i ≤ w and 1 ≤ j ≤ v such that xi,j is
the jth column of Hi − 1√

v
J . Let x1,j be the jth column of

√
vI − 1√

v
J . Note that for all

1 ≤ i ≤ w, ‖xi,j‖ = v − 1. Then, for all i, j, let x̂i,j = xi,j√
v−1 . Letting Xi = {x̂i,1, . . . , x̂i,v},

we claim that {X1, . . . , Xw} is a set of linked simplices. To show this, fix j 6= k, i 6= i′
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and consider the following four inner products:

〈x̂1,j, x̂1,k〉 = 1
v − 1 [vI − J ]j,k = − 1

v − 1 , (4.13)

〈x̂i,j, x̂i,k〉 = 1
v − 1

[
HiH

T
i − J

]
j,k

= − 1
v − 1 , (4.14)

〈x̂1,j, x̂i,k〉 =
√
v

v − 1

[
HT
i −

1√
v
J

]
j,k

, (4.15)

〈x̂i,j, x̂i′,k〉 =
√
v

v − 1

[
1√
v
HiH

T
i′ −

1√
v
J

]
j,k

. (4.16)

(4.13) and (4.14) give us the inner products within each Xi. Since 1√
v
HiH

T
i′ is a Hadamard

matrix, (4.15) and (4.16) tell us that inner products between sets Xi and Xi′ take values of
±
√
v−1

v−1 . Finally note that the all ones vector is orthogonal to all x̂i,j, implying {X1, . . . , Xw}
is a set of w simplices in Rv−1 such that inner products between simplices can take only
two possible values. Finally consider that the possible inner products are

√
v

v−1

(
±1− 1√

v

)
.

This tells us that |γ| < |δ| where γ is the positive inner product and δ is the negative.
Since the centroid of any simplex is the origin, we must have more positive inner products
between simplices than negative, telling us our LSSD is optimistic.

This provides us with the following theorem

Theorem 4.16. An optimistic LSSD(v, k, λ;w) with |v − 2k| = 2
√
k − λ exists if and

only if there exists a set of w − 1 regular unbiased Hadamard matrices, Hi, with order v
and HiJ = 2

√
k − λJ .

4.5.3 Constructing LSSDs from real MUBs
Using the results from the last section and the close relation between MUBs and Hadamard
matrices, we wish to build new LSSDs. From Theorem 4.16 and Theorem 4.13, we are
only going to find optimistic LSSDs with Menon design parameters. The Cameron-Seidel
scheme is a construction for w = 2u2 whenever u is a power of 2 (see Section 4.4.2).
We skip this case and instead look for constructions where u (and equivalently v) is not
necessarily a power of 2.

Wocjan and Beth construction

Wocjan and Beth in [105] detail a way to create MUBs from MOLS. They take a set of
t MOLS with side length d and create t + 2 MUBs in dimension d2. The process is to
convert the MOLS into an orthogonal array with d2 rows. They then expand the array by
replacing each column with d columns given by the characteristic vector of each symbol in
that column. Finally, they extend this matrix by replacing each 1 in the array with a row
from a Hadamard matrix and each 0 by an appropriate length vector of 0s. The result is
that the d columns arising from each original column are orthogonal to each other. We
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will focus on the case where the resultant MUBs produce regular Hadamard matrices as
scalar multiples of the mixed Gram matrices between any pair of fibers.

For our purposes, an orthogonal array of size (n2 × N) has entries from the set
{1, . . . , n} and any two columns contain each ordered pair exactly once. Let O be an
orthogonal array of size n2 × N , let Ci denote the ith column of O with entries Ci

h

(1 ≤ h ≤ n2). We may uniquely express

Ci =
n∑
j=1

jBi,j

where each Bi,j is a 01-vector of length n2. As each symbol j appears in each column Ci

exactly n times, Bi,j will have n 1s and n2 − n 0s. Let H be a Hadamard matrix matrix
of order n. For 1 ≤ l ≤ n define a matrix M i,j,l as follows: for 1 ≤ h ≤ n, we replace the
hth 1, counting from the top, in Bi,j with the Hh,l. This produces n2N columns each with
n2 entries M i,j,l

h ∈ {0, 1,−1}.
The fact that HTH = nI together with Bi,j ◦ Bi,j′ = 0 for j 6= j′ give us that

Bi = {M i,1,1, . . . ,M i,n,n} is an orthogonal basis for each i = 1, . . . , N . Each vector in
these bases has squared norm n. For i 6= i′, Ci and Ci′ denote distinct columns in our
orthogonal array implying, for any j and j′ (not necessarily distinct), Bi,j ◦Bi′,j′ has one
non-zero entry. Then M i,j,l ◦M i′,j′,l′ also has one non-zero entry giving〈

M i,j,l,M i′,j′,l′
〉

= M i,j,l
h M i′,j′,l′

h = ±1 (4.17)

where Oh,i = j and Oh,i′ = j′. This tells us the bases B1, . . . ,Bs produced by Wocjan and
Beth are pairwise unbiased.

We now show that if H is regular, then the resulting unbiased Hadamard matrices
are regular (see proof of Theorem 4.14 for the construction of these Hadamard matrices).
For each Hadamard matrix, the row sum is the sum of inner products between a column
M i,j,l of one basis with the set of n2 columns M i′,j′,l′ (i 6= i′, 1 ≤ j′, l′ ≤ n) of the second
basis used in its construction. We first sum

〈
M i,j,l,M i′,j′,l′

〉
over l′ to get

∑
l′

〈
M i,j,l,M i′,j′,l′

〉
= M i,j,l

h

(∑
l′
M i′,j′,l′

h

)
= pM i,j,l

h

where p is the row sum of our Hadamard matrix H. We then sum this result over j′,
noting that h was chosen so that Oh,i = j and Oh,i′ = j′, meaning it depends on j′. As
this sum will include every non-zero entry in M i,j,l exactly once, we know∑

j′

∑
l′

〈
M i,j,l,M i′,j′,l′

〉
=
∑
j′
pM i,j,l

h = p
∑
j′
Hj′,l = p2. (4.18)

Then the sum of any row of the Hadamard matrix built from M i,j,l and M i′,j′,l′ (i 6= i′) will
be p2. Further, we showed in Theorem 4.14 that these Hadamard matrices are unbiased.
Noting that n = 4t2 for some t, Theorem 4.16 tells us that the resultant LSSD will be an
optimistic LSSD(16t4, k, λ;N). This leads to our final theorem.
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Theorem 4.17. [cf. Thm 13 in [53]] Given a regular Hadamard matrix of order n and
an orthogonal array of size n2 ×N ,

• There exist N − 1 regular unbiased Hadamard matrices of order n2.

• There exists a LSSD with v = n2 and w = N .

The following theorem is due to Beth [99] and will be used to show the number of
fibers is unbounded as v increases.

Theorem 4.18. [99] Let N(n) be the maximum size of a set of mutually orthogonal latin
squares of side n. Then, for n sufficiently large, N(n) ≥ n

1
14.8 .

Corollary 4.19. For sufficiently large n, if there exists a regular Hadamard matrix of
order n, then there exists a LSSD(n2, k, λ;w) with w ≥ n

1
14.8 .

Proof. Using Theorem 4.18, we know that for sufficiently large n, we may find a set of
mutually orthogonal latin squares of side n with at least n 1

14.8 squares. However, given
t mutually orthogonal latin squares of side n, we may build an orthogonal array with
n + 2 columns with n symbols. This is achieved by indexing the rows of our orthogonal
array by the n2 positions in a latin square. The first and second columns of the orthgonal
array denote the row and column (resp.) of the position within the latin square. Each
remaining column corresponds to one of the mutually orthogonal latin squares where the
symbols in each position generate the column. Thus, as long as we may find a regular
Hadamard matrix of order n, we may build a LSSD(n2, k, λ;w) with w ≥ n

1
14.8 .

Corollary 4.20. For any n ≥ 1 and w > 2, there exists an odd t for which there exists
an LSSD(16nt, k, λ;w).

Proof. Considering a symmetric Bush-type Hadamard matrix as a specific case of regu-
lar Hadamard matrices, Theorem 3.5 of [74] tell us that there exists regular Hadamard
matrices of order 4t4 for any odd t. Let t ≥ 1 and Ht be one such regular Hadamard
matrix of order 4t4. Using Corollary 4.19, we can choose t large enough to guarantee the
existence of a LSSD(16t8, k, λ;w). Now consider the Hadamard matrix

H =


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

Using this matrix, we can now build the regular Hadamard matrix Hn,t = Ht⊗n−1H which
is regular of order 4nt4. This matrix, again paired with Corollary 4.19, now guarantees
the existence of a LSSD(16nt8, k, λ;w) for any choice of n.
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Corollary 4.21. There exists an LSSD(v, k, λ;w) with v = 362n and w = 4n + 1 for all
n ≥ 1.

Proof. Using the MacNeish construction [65],[10, Thm 1.1.2], there exists an orthogonal
array On of size 362n× (4n + 1). Consider the regular Hadamard matrix of order 36 found
by Seberry [85]:

H =



− − − − + − − + + + + − + + − + − + + + + + − − − + + + + − + + + − + −
+ − − − − + − − + + − + + − + − + + + + + − − − + + + + − + + + − + − +
+ + − − − − + − − − + + − + − + + + + + − − − + + + + − + + + − + − + +
− + + − − − − + − + + − + − + + + − + − − − + + + + + + + + − + − + + −
− − + + − − − − + + − + − + + + − + − − − + + + + + + + + − + − + + − +
+ − − + + − − − − − + − + + + − + + − − + + + + + + − + − + − + + − + +
− + − − + + − − − + − + + + − + + − − + + + + + + − − − + − + + − + + +
− − + − − + + − − − + + + − + + − + + + + + + + − − − + − + + − + + + −
− − − + − − + + − + + + − + + − + − + + + + + − − − + − + + − + + + − +
+ + − + + − + − + + + + + − + + − − + − + − + + + − + − − − + + + − − −
+ − + + − + − + + − + + + + − + + − − + − + + + − + + − − + + + − − − −
− + + − + − + + + − − + + + + − + + + − + + + − + + − − + + + − − − − −
+ + − + − + + + − + − − + + + + − + − + + + − + + − + + + + − − − − − −
+ − + − + + + − + + + − − + + + + − + + + − + + − + − + + − − − − − − +
− + − + + + − + + − + + − − + + + + + + − + + − + − + + − − − − − − + +
+ − + + + − + + − + − + + − − + + + + − + + − + − + + − − − − − − + + +
− + + + − + + − + + + − + + − − + + − + + − + − + + + − − − − − + + + −
+ + + − + + − + − + + + − + + − − + + + − + − + + + − − − − − + + + − −
+ + + + − − − + + − + − + − − − + − + + + + − + + − − + + − + − + + − +
+ + + − − − + + + + − + − − − + − − − + + + + − + + − + − + − + + − + +
+ + − − − + + + + − + − − − + − − + − − + + + + − + + − + − + + − + + +
+ − − − + + + + + + − − − + − − + − + − − + + + + − + + − + + − + + + −
− − − + + + + + + − − − + − − + − + + + − − + + + + − − + + − + + + − +
− − + + + + + + − − − + − − + − + − − + + − − + + + + + + − + + + − + −
− + + + + + + − − − + − − + − + − − + − + + − − + + + + − + + + − + − +
+ + + + + + − − − + − − + − + − − − + + − + + − − + + − + + + − + − + +
+ + + + + − − − + − − + − + − − − + + + + − + + − − + + + + − + − + + −
+ + − + + + − + − + + + − − − + + + − − + − + − − + − + + + + − + + − −
+ − + + + − + − + + + − − − + + + + − + − + − − + − − − + + + + − + + −
− + + + − + − + + + − − − + + + + + + − + − − + − − − − − + + + + − + +
+ + + − + − + + − − − − + + + + + + − + − − + − − − + + − − + + + + − +
+ + − + − + + − + − − + + + + + + − + − − + − − − + − + + − − + + + + −
+ − + − + + − + + − + + + + + + − − − − + − − − + − + − + + − − + + + +
− + − + + − + + + + + + + + + − − − − + − − − + − + − + − + + − − + + +
+ − + + − + + + − + + + + + − − − + + − − − + − + − − + + − + + − − + +
− + + − + + + − + + + + + − − − + + − − − + − + − − + + + + − + + − − +



.

Alternatively, one may use the Menon difference set

{(010), (011), (012), (020), (021), (022), (100), (110),
(120), (200), (211), (222), (300), (312), (321)}

within Z4 × Z2
3 to generate a regular Hadamard matrix H. In either case, since H is

regular, Hn = H⊗n is a regular Hadamard of order 36n. Then On and Hn, along with
Theorem 4.17, give us the desired LSSD.

The same construction gives, for example, LSSD(1002n, k, λ; 4n + 1) for all n ≥ 1.
Finally, we note that if we can build a regular Hadamard matrix of order 4t2 for 1 ≤ t ≤ 50,
the table of largest known orthogonal arrays for small n in [33] gives us LSSDs with the
following number of fibers.

To give an example of the construction for Theorem 4.17 we build a LSSD(16, 10, 6; 3).
In all matrices that follow, “+” denotes a positive 1, “−” denotes a −1, and an empty
space denotes 0. We begin by using the orthogonal array O and the Hadamard matrix
H:

OT =

 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3

 , H =


− + + +
+ − + +
+ + − +
+ + + −

 .
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
w 5 17 9 65 10 12 8 257 10 17 17 10 10 10 29 1025 10

t 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
w 26 11 26 11 17 11 32 10 17 10 50 30 30 12 4097 32

t 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
w 18 32 65 32 18 32 26 13 20 32 65 17 32 32 30 17

Table 4.1: For each t, w represents the largest known number of fibers for a LSSD on
v = 16t4 vertices. In each case, we will also require the existence of a regular Hadamard
matrix of order 4t2 in order to apply Theorem 4.17; Remark 1.25 in the handbook of
combinatorial designs [33] guarantees such regular Hadamard matrices up to t = 46.

Using this OA, we have

B:,: =



+ + +
+ + +
+ + +
+ + +

+ + +
+ + +
+ + +
+ + +

+ + +
+ + +
+ + +
+ + +

+ + +
+ + +
+ + +
+ + +


.

Below we display the three arrays M1,:,:, M2,:,:, and M3,:,: respectively3

− + + +
+ − + +
+ + − +
+ + + −

− + + +
+ − + +
+ + − +
+ + + −

− + + +
+ − + +
+ + − +
+ + + −

− + + +
+ − + +
+ + − +
+ + + −


,



− + + +
− + + +

− + + +
− + + +

+ − + +
+ − + +

+ − + +
+ − + +

+ + − +
+ + − +

+ + − +
+ + − +

+ + + −
+ + + −

+ + + −
+ + + −


,



− + + +
− + + +

− + + +
− + + +

+ − + +
+ − + +

+ − + +
+ − + +

+ + − +
+ + − +

+ + − +
+ + − +

+ + + −
+ + + −

+ + + −
+ + + −


.

Finding the inner products of each pair of bases we find the three Hadamard matrices
H1,2, H1,3, and H2,3 respectively.



+ − − − − + + + − + + + − + + +
− + + + + − − − − + + + − + + +
− + + + − + + + + − − − − + + +
− + + + − + + + − + + + + − − −
− + − − + − + + + − + + + − + +
+ − + + − + − − + − + + + − + +
+ − + + + − + + − + − − + − + +
+ − + + + − + + + − + + − + − −
− − + − + + − + + + − + + + − +
+ + − + − − + − + + − + + + − +
+ + − + + + − + − − + − + + − +
+ + − + + + − + + + − + − − + −
− − − + + + + − + + + − + + + −
+ + + − − − − + + + + − + + + −
+ + + − + + + − − − − + + + + −
+ + + − + + + − + + + − − − − +


,



+ − − − − + + + − + + + − + + +
− + + + + − − − − + + + − + + +
− + + + − + + + + − − − − + + +
− + + + − + + + − + + + + − − −
+ − + + − + − − + − + + + − + +
+ − + + + − + + − + − − + − + +
+ − + + + − + + + − + + − + − −
− + − − + − + + + − + + + − + +
+ + − + + + − + − − + − + + − +
+ + − + + + − + + + − + − − + −
− − + − + + − + + + − + + + − +
+ + − + − − + − + + − + + + − +
+ + + − + + + − + + + − − − − +
− − − + + + + − + + + − + + + −
+ + + − − − − + + + + − + + + −
+ + + − + + + − − − − + + + + −


,



+ − − − + − + + + + − + + + + −
− + + + − + − − + + − + + + + −
− + + + + − + + − − + − + + + −
− + + + + − + + + + − + − − − +
+ + + − + − − − + − + + + + − +
+ + + − − + + + − + − − + + − +
+ + + − − + + + + − + + − − + −
− − − + − + + + + − + + + + − +
+ + − + + + + − + − − − + − + +
+ + − + + + + − − + + + − + − −
− − + − + + + − − + + + + − + +
+ + − + − − − + − + + + + − + +
+ − + + + + − + + + + − + − − −
− + − − + + − + + + + − − + + +
+ − + + − − + − + + + − − + + +
+ − + + + + − + − − − + − + + +


.

3Note that we need not use the same Hadamard matrix H in each of these substitutions: any twelve
regular Hadamard matrices of order 4 will do. This allows us to construct (potentially) non-isomorphic
3-class association schemes with the same parameters.
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This gives us a rank v idempotent

M = 1
12

 4I H12 H13
HT

12 4I H23
HT

13 H
T
23 4I

 .
Replacing the positive entries of the off-diagonal blocks of this matrix with ones and all
other entries with zeros gives us the adjacency matrix of a µ-heavy LSSD(16, 10, 6; 3).
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Chapter 5

Orthogonal projective double covers

Throughout this thesis we have examined many different spherical t-distance sets and
their close relation to association schemes. In some cases, we may find an equivalence
between such t-distance sets and certain classes of association schemes; thus is the case
discussed in Chapter 4 where we found 3-class Q-antipodal association schemes were
equivalent to the 3-distance sets called linked simplices. In other cases we find that
equivalence occurs only when we impose additional restrictions on the t-distance set, for
instance only certain sets of equiangular lines occur within 3-class Q-bipartite association
schemes. In this chapter, we introduce a line system known as a projective double of a
graph, denoted PDm(Γ; β, δ). This object is a set of lines in Rm with two possible angles,
β and δ, where Γ is the incidence graph on β. We note that projective double covers of
complete graphs (Γ = Kn) give sets of equiangular lines, and thus are well-studied in the
literature. Here, as with sets of equiangular lines, β and δ represent the cosine of the
angles between lines; despite this we will abuse notation and refer to them as the “angles”
of our projective double. We find that these systems are closely related to 4- and 5-class
Q-bipartite association schemes. In this chapter, we will focus on the 4-class case and
define a related line system called an orthogonal projective double of a graph Γ, denoted
OPDm(Γ; β). These are projective doubles for which δ = 0. We begin by considering
the general objects but will add restrictions along the way with the motivation of finding
an equivalence between these objects and our association schemes. This material in this
chapter contains joint work with W. J. Martin. Below is a list of the main results found
in this chapter.

Proposition 5.6. An OPDm(Γ; β) for simple graph Γ induces an association scheme
only if Γ is strongly regular.

Corollary 5.10. Let Γ be a connected strongly regular graph with v vertices and eigen-
values k > r > s which contains a Delsarte coclique C of size m. Then an OPDm(Γ; β)
exists only if β = 1√

−s . Further, either Γ is complete bipartite or β−1 ∈ Z.

Corollary 5.17. Let Γ be a connected strongly regular graph with v vertices and eigen-
values k > r > s. An OPDm(Γ; β) with m < v induces an association scheme if and only
if m = v (1 + kβ2)−1.
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Theorem 5.23. Suppose we have a feasible parameter set for a 4-class association scheme
which is Q-bipartite but not Q-antipodal. Let k = P01, r = P21, and s = P41 where P
is the first eigenmatrix using the natural ordering. Then the scheme is realizable only if
s = −n2 for some integer n > 1 and

15n4(2n2 − 3)r2 + (n6 − 45kn2 + 76k)n2r + k(16k + n6)(n2 − 2) ≥ 0.

5.1 Orthogonal projective doubles of regular graphs
As we saw with other examples, it becomes useful to represent a line system by a set of
unit vectors, defining the “angle” between two lines to be the absolute value of the inner
product between representative unit vectors. As we have two choices of a representative
for each line, we have many equivalent such representations of any line set. In this chapter,
we will instead include both directions; that is, we will represent our line system with an
antipodal set of unit vectors with twice as many vectors as there are lines. Further, we
will describe a projective double by not only the parameters m, β, and δ but also the
graph which is induced on the set of lines where two lines are adjacent if they intersect
in angle β.

Let Γ = Γ(V,E) be an undirected graph on v vertices. A projective double (PDm(β, δ))
of Γ is an antipodal spherical code, say L = {`1, . . . , `2v} ⊂ Rm with inner products
A = {±1,±β,±δ} such that there exists a surjective mapping φ : L → V with the
properties

(i) φ(`i) = φ(`j) if and only if |〈`i, `j〉| = 1,

(ii) φ(`i) ∼ φ(`j) if and only if |〈`i, `j〉| = β

for 1 ≤ i, j ≤ 2v. Note that, since L is an antipodal set, any subset of size v in which the
inner product −1 does not occur will completely determine our entire set. This also tells
us that we may order our vectors, say `1, . . . , `v,−`1, . . . ,−`v, such that the Gram matrix
corresponding to this ordering is [

G −G
−G G

]
where G is the Gram matrix of the set {`1, . . . , `v}. Further, this principal submatrix G
gives us the adjacency matrix of Γ when we zero out the main diagonal and replace all
±β entries with 1 and ±δ entries with 0.

We note that PDm(β, δ) of Γ is immediately a PDm(δ, β) of Γ — for this reason, we
adopt the convention that β > δ for all of our projective doubles. So long as δ > 0,
a PDm(Γ; β, δ) will be a spherical 5-distance set and thus the Gram matrix of such
a projective double cannot belong to the Bose-Mesner algebra of a 4-class association
scheme. Thus, our first restriction is that δ = 0 and we define an orthogonal projective
double, OPDm(Γ; β), as a projective double of Γ for which δ = 0. It is this class of objects
which we will focus on for the entirety of this chapter.
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Our primary goal is to determine which OPDs induce association schemes; that is,
when is the Schur closure of the Gram matrix a Bose-Mesner algebra. We begin by asking
the simpler question — for which graphs does there exist an OPD. We find quickly that
without any restrictions on the dimension, we may always find an OPD for a given graph
Γ — consider the following two propositions.

Proposition 5.1. For any non-empty simple graph Γ(V,E), there exists an OPDm(Γ; 1
d
)

for some m ≤ |V | with d the maximum degree of Γ.

Proof. Let Γ = Γ(V,E) be given. Now orient every edge of Γ and define e+
i , e

−
i ∈ V so

that ei = (e−i , e+
i ), thus ei points from vertex e−i to e+

i . Let M be the matrix with rows
indexed by vertices and columns indexed by edges such that

[M ]ij =


1 if vi = e+

j

−1 if vi = e−j
0 otherwise.

Then we find [
MMT

]
ij

=


ki if i = j,

1 if i ∼ j,

0 otherwise

where ki is the degree of vertex i. Thus two distinct rows are orthogonal if and only if
their corresponding vertices are non-adjacent. However unless ki is constant independent
of i (i.e. unless the graph is regular), the rows do not have the same norm. To fix this,
let d = maxi(ki) (the maximum degree of Γ) and define the diagonal matrix D whose ith
diagonal entry is

√
d− ki. Then the matrix N =

[
M D

]
has the property that

[
NNT

]
ij

=
[
MMT

]
ij

+ (d− ki)δij =


d if i = j,

1 if i ∼ j,

0 otherwise.

Thus the rows of 1√
d
N , along with their negatives, result in an orthogonal projective double

of Γ with angle 1
d
. Further, the rank of N is no larger than min {|V |, |V |+ |E|} = |V |

and thus m ≤ |V |.

Corollary 5.2. Let Γ be a regular graph with valency k > 0. There exists an OPDm(Γ; 1
k
)

for some m ≤ |T | where T a spanning forest.

Proof. We follow the same approach as in the proof of Proposition 5.1, however we note
that since our graph is regular, the rows ofM all have the same norm. Thus the normalized
rows (with their negatives) suffice as our orthogonal projective double. Now, consider any
cycle C in Γ and assume without loss of generality that C = {e1, . . . , es}. Then, replacing
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a column with its negative if necessary, Mes =
s−1∑
i=1

Mei
, where Me denote the column of

M indexed by e. We then reorder the columns of M so that the first T edges correspond
to the edges of a spanning forest and note that every remaining column lies in the span
of these.

Proposition 5.1 and Corollary 5.2 provide upper bounds on the dimension necessary
for an OPD to exist for a given graph. The following observation gives us a lower bound
using the size of a largest coclique in Γ. We denote the cardinality of any such maximum
coclique as the independence number, α (Γ), of the graph Γ.

Proposition 5.3. Let Γ be a simple graph for which an OPDm(Γ; β) exists. Then m ≥
α (Γ) where α (Γ) is the independence number of Γ.

Proof. Assume
{
±`1, . . . ,±`|V |

}
is an OPDm(Γ; β) with φ(±`i) = vi for 1 ≤ i ≤ |V |. Let

α = α (Γ) and, without loss of generality, let S = {v1, . . . , vα} be an independent set.
Then {`1, . . . , `α} is an orthonormal set, forcing m ≥ α.

Example 5.1. Consider the graph C4. This is a regular graph with 3 edges in any
spanning tree, thus Corollary 5.2 tells us there exists an orthogonal projective double in
R3 with angle 1

2 . In fact, the columns of U1 serve as one such OPD, where

U1 =


1 −1 1

2 −1
2 0 0 1

2 −1
2

0 0
√

3
2 −

√
3

2
1√
3 −

1√
3 −

1√
12

1√
12

0 0 0 0
√

2
3 −

√
2
3

√
2
3 −

√
2
3

 .
A largest coclique in this graph has size 2 and thus Proposition 5.3 allows for the possibility
of an OPD2(C4; β). While it is not hard to show that we cannot find an OPD2(C4; β)
with β = 1

2 , the following is an example in dimension 2 with angle 1√
2 .

U2 =
[

1 −1 0 0
√

2
2 −

√
2

2

√
2

2 −
√

2
2

0 0 1 −1
√

2
2 −

√
2

2 −
√

2
2

√
2

2

]

To illustrate the difference between the two OPD’s above, we define for any OPDm(Γ; β)
the graph Γβ on the OPD with two vectors adjacent if and only if their inner product is β.
Using the columns of U1 as our OPD, we find that Γ 1

2
is given below where vi represents

the ith column of U1.

v1 v3

v7 v5

v2 v4

v8 v6

Γ 1
2
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Alternatively, if we consider U2, Γ 1√
2

is given below.

v1

v5

v7

v4

v3

v8

v6

v2

Γ 1√
2

Thus U1 and U2 are clearly different as their corresponding graphs are non-isomorphic
double covers of C4. We similarly define the five relations R0, . . . , R4 on any OPDm(Γ; β)
via the inner products 1, β, 0, −β, and −1 respectively so that, for instance, (x, y) ∈
R2 if and only if the corresponding vectors are orthogonal. These five relations satisfy
conditions (i) – (iii) of an association scheme, leaving condition (iv) as our final test; that
is, we must determine if the intersection numbers are well-defined. In the case of the first
OPD, we find that even though both (v1, v5) and (v1, v6) are in R2,

|{vx : (vx, v1), (v5, vx) ∈ Rβ}| 6= |{vx : (vx, v1), (v6, vx) ∈ Rβ}| .

On the other hand, the second OPD has well-defined intersection numbers and we find
that the columns of U2, along with the relations R0, . . . , R4, give the association scheme
C8.

As one might expect, there are many graphs for which we cannot find an orthogonal
projective double in the dimension given by the independence number. In other words,
Proposition 5.3 is often not tight. To see an example, consider the following proposition

Proposition 5.4. Let Γ be a complete multipartite graph with w parts of size v. Let
U be the matrix with columns corresponding to an OPDα(Γ)(Γ; β). Then a subset of the
columns of U form a set of w mutually unbiased bases in Rv.

Proof. Let Γ = wKv be the complete multipartite graph with w parts of size v. Label the
vertices as vi,j for 1 ≤ i ≤ w, 1 ≤ j ≤ v so that the sets Si = {vi,j}1≤j≤v for fixed 1 ≤ i ≤ w
give the maximal independent sets. Assume {±`i,j}1≤i≤w;1≤j≤v is an OPDm(Γ; β) with
φ(±`i,j) = vi,j for 1 ≤ i ≤ w, 1 ≤ j ≤ v. Then each of the sets Bi = {`i,j}1≤j≤v form an
orthonormal basis for Rv. Further, the inner products between vectors in distinct bases
will be one of ±β. Thus {B1, . . . , Bw} is a set of w mutually unbiased bases in Rv.

Corollary 5.5. Let Γ = Kt,t for t 6= 0 mod 4. There does not exist an OPDα(Γ)(Γ; β).
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Proof. If Kt,t had an orthogonal projective double in Rt, Proposition 5.4 would guarantee
the existence of two mutually unbiased bases in Rt. This is only possible when t is a
multiple of 4.

5.2 Schemes induced by projective doubles
The OPD given by the columns of U2 in Example 5.1 provides an orthogonal projective
double which gives an association scheme on the vectors by relating vectors based on their
inner product. In this section, we consider which graphs produce such an association
scheme and some properties of the association scheme which arise. First, let L = {`i}
be an orthogonal projective double of some graph Γ and let G be the Gram matrix of
L; that is, the matrix whose entry in row i and column j is 〈`i, `j〉. We denote by 〈G〉◦
the smallest vector space of matrices containing G and closed under entrywise products;
we say this vector space is the Schur closure of G. Note that the adjacency matrices of
each graph Γθ for θ ∈ {±1,±β, 0} are all contained in 〈G〉◦. Thus 〈G〉◦ is a Bose-Mesner
algebra if and only if it is closed under standard matrix multiplication. If this occurs, we
say L induces the corresponding 4-class association scheme. Thus, from Example 5.1, the
association scheme C8 is induced by the columns of U2. We similarly define 〈A〉∗ for any
matrix A and note that this algebra is a Bose-Mesner algebra if and only if it is closed
under Schur products.

Recall from Section 2.1 that strongly regular graphs are 2-class association schemes.
While many strongly regular graphs are nice examples and thus have been seen throughout
this thesis, in this chapter we will need strongly regular graphs more explicitly and thus
we define them here. A strongly regular graph (see [16]) with parameters (v, k, λ, µ) is a k-
regular graph with v points where every pair of adjacent vertices have exactly λ neighbors
in common while distinct non-adjacent vertices have µ neighbors in common. Using the
terminology of association schemes, a strongly regular graph is a 2-class association scheme
with parameters k = p0

11, λ = p1
11 and µ = p2

11.

Proposition 5.6. An OPDm(Γ; β) for simple graph Γ induces an association scheme
only if Γ is strongly regular.

Proof. We will prove our result by showing that Γ, the complement of Γ, is strongly
regular. Let V be the vertex set of Γ and define v = |V |. Now, let L = {`1, . . . , `2v} be
our OPD with the projective mapping φ : L → V . First let R0, . . . , R4 be the relations
of the association scheme induced by L where R2 is given by orthogonality, R0 is the
identity relation, and the remaining relations are given by the inner products β,−β, and
−1 respectively. By definition of our mapping, φ(`) = φ(`′) for ` 6= `′ if and only if
` = −`′. Thus for distinct vertices u,w ∈ V , u 6∼ w if and only if φ−1(w) ⊂ φ−1(u)⊥.
Then the number of vertices not adjacent to u is half the number of vectors orthogonal
to either vector in φ−1(u); this value is 1

2p
0
22. Similarly, assuming u 6∼ w, the number of

vertices adjacent to neither u nor w must be half the number of vectors orthogonal to
any pair of vectors, one from φ−1(v) and the other from φ−1(w); that is, 1

2p
2
22. Similarly,
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assume v ∼ w and we find the number of vertices adjacent to neither v nor w must be
1
2p

1
22 = 1

2p
3
22. Thus Γ is strongly regular with parameters (v, 1

2p
0
22,

1
2p

2
22,

1
2p

1
22).

This proposition tells us that we must only consider strongly regular graphs if we wish
to find orthogonal projective doubles which induce association schemes. Note that the
converse of Proposition 5.6 is certainly not true; the first projective double of Example
5.1 does not result in an association scheme even though C4 is strongly regular. Thus we
will look for further necessary or sufficient conditions for a OPD to induce an association
scheme. Before we continue, we review a few details of strongly regular graphs which will
be useful for us.

Let Γ be a strongly regular graph with parameters (v, k, λ, µ). Let R1 be the relation
given by adjacency in Γ and define parameters r, s, f, g so that the spectrum of Γ is
k1, rf , sg. Using the first and second orthogonality relations (Lemma 2.5) we find the first
and second eigenmatrices of the association scheme are:

P =

 1 k v − k − 1
1 r −(r + 1)
1 s −(s+ 1)

 , Q =

 1 f g

1 fr
k

gs
k

1 f(1+r)
k+1−v

g(1+s)
k+1−v

 . (5.1)

The following lemma from [16], shows us that the parameters k, r, and s are sufficient to
define all other parameters as long as k + rs 6= 0. In the case of k + rs = 0, Γ is a union
of cliques and v is not uniquely determined by the spectrum — we will ignore this case
in our discussion.

Lemma 5.7. [16, Theorem. 1.3.1.(iii,vi)] Whenever k + rs > 0, the parameters of a
strongly regular graph may be expressed in terms of r, s, and k with g = v − f − 1:

µ = k + rs, v = (k − r)(k − s)
µ

, λ = µ+ r + s, f = (s+ 1)k(k − s)
µ(s− r) .

The association scheme structure allows us to improve on the naive upper bound given
in Corollary 5.2 by using the techniques discussed in Section 3.1.

Theorem 5.8. Let Γ be a strongly regular graph with v vertices and spectrum k1, rf , sg
(r > s). There exists an OPDf+1(Γ; β) where β = k + r(v − 1)

/
v + r − k .

Proof. Let A0 = I. Let A1 and A2 be the adjacency matrices of Γ and Γ respectively.
From Equation (5.1), E1 = 1

v

(
fA0 + fr

k
A1 + f(1+r)

k+1−vA2
)
. Then the matrix

G = (1 + r)
v − k − 1E0 + 1

f
E1 =

(
v + r − k

v(v − k − 1)

)
A0 +

(
k + r(v − 1)
v(v − k − 1)

)
A1

is a v×v positive semidefinite matrix with rank f+1 with the off diagonal entries we seek.
We may then find an (f + 1) × v matrix U such that

(
v(v−k−1)
v+r−k

)
G = UTU ; that is, the

columns of U are unit vectors in Rf+1 such that ui ⊥ uj if the corresponding points in X
are related by R2 and 〈ui, uj〉 is otherwise constant for i 6= j. Then L = {±u1, . . . ,±uv}
is an OPDf+1

(
Γ; k+r(v−1)

v+r−k

)
where ui is the ith column of U .
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Note that this construction does not induce a 4-class association scheme. We see this
by noting that all off diagonal entries in G are non-negative. Thus we may split our OPD
into two sets L+ and L− where L+ contains all the columns of U and L− contains their
negatives. Then for vectors u ⊥ v, the number of vectors w such that 〈v, w〉 = 〈u,w〉 = β
could be either 0 (if v ∈ L+ and u ∈ L−) or λ (if v, w ∈ L+). Thus this value is not solely
dependent on the inner product 〈u, v〉 and p2

11 is not well defined. While this does not
solve our question of which OPD’s induce association schemes, it does provide us with a
better upper bound on the dimension needed for strongly regular graphs. For example,
this gives an OPD of the Petersen graph in dimension 5 while Corollary 5.2 produces one
in dimension 9. Now consider the following theorem of Delsarte.
Theorem 5.9. [38, Theorem 3.8] Let Γ = Γ(V,E) be a strongly regular graph with v
vertices and eigenvalues k > r > s. Then

α (Γ) ≤ v

(
1− k

s

)−1

.

A coclique C ⊂ V achieves equality in this bound if and only if every vertex x /∈ C has
the same number of neighbors (namely −s) in C.

We will refer to a Delsarte coclique as a coclique for which this bound is tight. This
theorem, along with Proposition 5.3, gives a lower bound on the dimension of any OPD
in terms of the spectrum whenever Γ contains a Delsarte coclique. Further, we may use
the second half of Theorem 5.9 to learn more information about any OPD achieving this
bound.
Corollary 5.10. Let Γ be a connected strongly regular graph with v vertices and eigen-
values k > r > s which contains a Delsarte coclique C of size m. Then an OPDm(Γ; β)
exists only if β = 1√

−s . Further, either Γ is complete bipartite or β−1 ∈ Z.

Proof. Let L be the OPDm(β) of Γ. Further, let `1, . . . , `m be vectors in L such that
the set {φ(`1), . . . , φ(`m)} is a Delsarte coclique. Then {`1, . . . , `m} forms an orthonormal
basis for Rm = span(L). Let a ∈ L be given with φ(a) /∈ C. By Theorem 5.9, φ(a) must
be adjacent to exactly −s points in C and thus, reordering the vectors and replacing `i
with −`i as needed, we may assume 〈a, `i〉 = β for 1 ≤ i ≤ −s. Therefore a = ∑−s

i=1 β`i
implying that −sβ2 = 1 and thus s = −β−2. Note 〈a, `i〉 = 0 for −s < i ≤ m. Now, as
long as Γ is not complete bipartite (i.e., provided s 6= k), there must be another vector
b ∈ L for which φ(b) /∈ C and φ(b) ∼ φ(a); assume 〈b, a〉 = β taking −b if needed. We
again find that φ(b) is adjacent to exactly −s vertices in C; let h be the number of vertices
adjacent to both a and b. Without loss of generality b = ∑h

i=1 βi`i + ∑−2s−h
i=−s+1 β`i where

βi = ±β. Thus 〈a, b〉 = (p − q)β2 where p is the number of vectors in {`1, . . . , `h} with
〈b, `i〉 = 〈a, `i〉 and q = h− p. However, since a and b have inner product β, this implies
β−1 = p− q.

While this theorem only provides information about OPDs of strongly regular graphs
with Delsarte cocliques, there are many common examples which contain these cocliques
for which we may apply our theorem. For instance, consider the following result.
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Corollary 5.11. There do not exist OPDs for either the Petersen graph in R4 or the
Paley graph on F9 in R3.

Proof. Recall that the Petersen graph is an srg(10, 3, 0, 1) with s = −2. Thus a Delsarte
coclique has size 10

/(
1 + 3

2

)
= 4; we may verify quickly that such a coclique exists.

Thus Corollary 5.10 tells us a projective double of the Petersen graph in R4 would require
that

√
−s is an integer, which is false. Similarly the Paley graph on F9 is an srg(9, 4, 1, 2)

with s = −2. Using the same reasoning, noting that here a Delsarte coclique has size 3,
we have our result.

Corollary 5.10 hints that OPDs in the smallest possible dimension for a given graph
have some extra structure imposed on them. The Lemma 5.13 and Theorem 5.14 will
detail much of this extra structure in the general case. Before those results, we collect
several useful facts about Gram matrices and spherical designs from [40].

Lemma 5.12. [40, Thm. 5.5 and Ex. 5.7] Let X be a spherical s-distance set in Rm with
inner products A = {α1, . . . , αs}.

(i) Let A′ = A∪ {1} and denote by Qm
k (x) the degree k Gegenbauer polynomial. Let dα

denote the sum of the elements of the distance matrix Dα for α ∈ A. Then∑
α∈A′

dαQ
(m)
k (α) ≥ 0,

and equality holds for k = 1, 2, . . . , t if and only if X is a t-design.

(ii) If X is an antipodal set, X is a 3-design if and only if Gx has two eigenvalues, |X|
m

and 0.

Lemma 5.13. Let Γ be a connected strongly regular graph with v vertices and eigenvalues
k > r > s. Let G be the Gram matrix of an OPDm(Γ; β). Then m ≥ v (1 + kβ2)−1 with
equality if and only if m

2vG is idempotent.

Proof. This is an immediate result of the previous theorem of Delsarte, Goethals, and
Seidel. Lemma 5.12 tells us ∑i,j Q

m
` (Gij) ≥ 0 for all ` ≥ 0 with equality for ` = 1, 2 if and

only if G is the Gram matrix of a spherical 2-design. The antipodal nature of our OPD
makes it clear that ∑i,j Q

m
1 (Gij) = ∑

i,j Gij = 0. Using the second degree Gegenbauer
polynomial (see Equation (3.2)) we find

∑
i,j

Qm
2 (Gij) = 2v

(
m (2 + 2kβ2)− 2v

m− 1

)
.

Thus we must have m (2 + 2kβ2) ≥ 2v with equality if and only if our OPD admits a
spherical 2-design. The latter half of Lemma 5.12 tells us this occurs exactly when G has
two distinct eigenvalues: 0 and 2v

m
; that is, m

2vG is idempotent.
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We note that, while Qm
2 denoted the second degree Gegenbauer polynomial in this

lemma, for the remainder of the chapter we will exclusively use Q to denote the second
eigenmatrix of an association scheme. The next few results give us a close connection
between whether an OPD gives rise to an association scheme and the dimension which
the OPD is in. These results are summarized in Corollary 5.17.

Theorem 5.14. Let Γ be a connected strongly regular graph with v vertices and eigen-
values k > r > s. Let G be the Gram matrix of an OPDm(Γ; β) with m = v (1 + kβ2)−1.
Then 〈G〉◦ is the Bose-Mesner algebra of a 4-class association scheme.

Proof. We begin by ordering the vectors in our orthogonal projective double so that
`1, . . . , `v are representatives from distinct lines and `i+v = −`i for 1 ≤ i ≤ v. Likewise
we order the vertices of Γ so that `i and `v+i are mapped to vertex i. Let G be the
Gram matrix of our OPDm(Γ; β) with rows and columns ordered in this fashion; that is,
Gij = 〈`i, `j〉 for 1 ≤ i, j ≤ 2v. This ordering implies there exists a matrix G̃1 such that

G =

 G̃ −G̃

−G̃ G̃

 .
Now let Ã1 and Ã2 be the adjacency matrices of Γ and Γ respectively. Let Ẽ0, Ẽ1, and
Ẽ2 be the minimal idempotents corresponding to the eigenvalues k, r, and s respectively;
that is, Ã1Ẽ0 = kẼ0, Ã1Ẽ1 = rẼ1, and Ã1Ẽ2 = sẼ2. For each matrix, assume the rows
and columns are ordered via the vertex ordering defined above. Recall that the second
eigenmatrix of this association scheme is

Q̃ =

 1 f g

1 fr
k

gs
k

1 f(r+1)
k+1−v

g(s+1)
k+1−v

 .
We now define five matrices E0, . . . , E4, which we will show are orthogonal idempo-

tents. First, define E0 = 1
2vJ and E1 = m

2vG. We then define E2 and E4 using the
idempotents of our quotient scheme via

E2 = 1
2

 Ẽ1 Ẽ1

Ẽ1 Ẽ1

 , E4 = 1
2

 Ẽ2 Ẽ2

Ẽ2 Ẽ2

 .
We note that the definition of E0 implies an analogous structure using Ẽ0. It follows
that E0, E2, and E4 are pairwise orthogonal idempotents. Now, Lemma 5.13 tells us that
E1 is also idempotent since m = v (1 + kβ2)−1. Additionally, the block structure of the
matrices E0, E1, E2, and E4 imply that E1E0 = E1E2 = E1E4 = 0 telling us that E0,

1Here, we use ∼ only to emphasize that G̃ is the Gram matrix induced on a subset of the vertices.
This matrix does not belong to the Bose-Mesner algebra of the quotient scheme.
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E1, E2, E4 are pairwise orthogonal idempotents. In view of Lemma 2.6 (iii ′), we define
E3 = I − E0 − E1 − E2 − E4 and may immediately compute.

E2
3 = (I − E0 − E1 − E2 − E4)2 = I − E0 − E1 − E2 − E4

and E3Ei = 0 for i 6= 3. Therefore the vector space 〈E0, E1, E2, E3, E4〉 is symmetric,
closed under matrix multiplication, and contains both the identity matrix and the all
ones matrix. In order to show this vector space is a Bose-Mesner algebra, we must also
show it is closed under entrywise products. First note that since G contains exactly five
distinct entries, we have 〈G〉◦ = 〈A1, Aβ, A0, A−β, A−1〉 where, for each θ ∈ {±1,±β, 0},

Aθ =

1 Gij = θ,

0 o.w.

Now, the ordering of rows and columns of our quotient matrices imply the following

2v [E2]ij =


f if Gij = ±1,
fr
k

if Gij = ±β,
f(r+1)
k+1−v if Gij = 0,

2v [E4]ij =


g if Gij = ±1,
gs
k

if Gij = ±β,
g(s+1)
k+1−v if Gij = 0.

2v [E3]ij =



v −m if Gij = 1,
−mβ if Gij = β,

0 if Gij = 0,
mβ if Gij = −β,
m− v if Gij = −1,

Thus the entries of our idempotents E0, . . . , E4 depend solely on the corresponding
entries of G. It follows that each idempotent is contained in 〈A1, Aβ, A0, A−β, A−1〉 forcing
〈E0, E1, E2, E3, E4〉 ⊂ 〈G〉◦. Finally, since 〈G〉◦ has dimension five, we must have equality.
Therefore 〈E0, E1, E2, E3, E4〉 is Schur-closed and is the Bose-Mesner algebra of a 4-class
association scheme. We complete our proof by listing the Krein parameters, referring to
the parameter definitions in Theorem 5.7 for the strongly regular graph parameters.

L∗0 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


, L∗1 =



0 m 0 0 0
1 0 f(1+rβ2)

1+kβ2 0 g(1+sβ2)
1+kβ2

0 m(1+rβ2)
1+kβ2 0 β2(k−r)m

1+kβ2 0
0 0 f(k−r)

k(1+kβ2) 0 g(k−s)
k(1+kβ2)

0 m(1+sβ2)
1+kβ2 0 β2(k−s)m

1+kβ2 0


,
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L∗2 =



0 0 f 0 0

0 (β2r+1)f
(β2k+1) 0 (k−r)β2f

(β2k+1) 0

1 0 f − 1 + (k−r)gs
(r−s)k 0 − (k−r)gs

(r−s)k

0 f(k−r)
k(β2k+1) 0 (β2k2+r)f

k(β2k+1) 0

0 0 − (k−r)sf
(r−s)k 0 (k−s)rf

(r−s)k


,

L∗3 =



0 0 0 mβ2k 0

0 0 fβ2(k−r)
β2k+1 0 gβ2(k−s)

β2k+1

0 mβ2(k−r)
β2k+1 0 mβ2(β2k2+r)

β2k+1 0

1 0 f(β2k2+r)
k(β2k+1) 0 g(β2k2+s)

k(β2k+1)

0 mβ2(k−s)
β2k+1 0 β2(β2k2+s)

β2k+1 0


,

L∗4 =



0 0 0 0 g

0 g(β2s+1)
(β2k+1) 0 (k−s)β2g

(β2k+1) 0

0 0 − (k−r)gs
(r−s)k 0 (k−s)rg

(r−s)k

0 (k−s)g
k(β2k+1) 0 g(β2k2+s)

k(β2k+1) 0

1 0 (k−s)rf
(r−s)k 0 g − 1− (k−s)rf

(r−s)k


.

Corollary 5.15. Let Γ be a connected strongly regular graph with v vertices and eigen-
values k > r > s which contains a Delsarte coclique. Let G be the Gram matrix of an
OPDm(Γ; β) with m = v

(
1− k

s

)−1
. Then 〈G〉◦ is the Bose-Mesner algebra of a 4-class

Q-bipartite association scheme.

Proof. Corollary 5.10 tells us that β = 1√
−s and therefore m = v (1 + kβ2). Then Theorem

5.14 gives that 〈G〉◦ is the Bose-Mesner algebra of a 4-class association scheme. The Q-
bipartite property follows as (1 + sβ2) = 0, implying L∗1 is tridiagonal.

Theorem 5.14 tells us that OPDs of strongly regular graphs induce association schemes
whenever the dimension is tight with respect to Lemma 5.13. It turns out this is also a
necessary condition as long as the dimension is not too far away from optimal; that is,
m < v.

Theorem 5.16. Let Γ be a strongly regular graph with v vertices, valency k, and smallest
eigenvalue s. Let L be an OPDm(Γ; β) with m < v. L induces an association scheme
only if m = v (1 + kβ2)−1. Further, either rank (G ◦G) = v or the induced scheme is
Q-bipartite and s = −β−2.
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Proof. We prove this by building the Q matrix of the resultant scheme. First let A =
〈G〉◦ and B = 〈AΓ〉∗ where AΓ is the adjacency matrix of Γ. Since G has five distinct
values, A must be a 4-class association scheme with basis matrices A0, A1, A2, A3, and
A4 corresponding to the values 1, β, 0,−β, and −1. By definition of an OPD, we find
that R0 ∪R4 gives a system of imprimitivity where B is the quotient algebra of A. Since
I = {0, 4}, the matrix A0 + A4 must be one basis matrix; the other two matrices are
A1 +A3 and A2. Further, there exist three basis idempotents of A, call them E0, E2, and
E4, which span the same subalgebra as A0 + A4, A1 + A3, and A2. By Lemma 2.15, we
must have Q̃k̃j = Qkj for j ∈ {0, 2, 4} and 0 ≤ k ≤ 4 where Q̃ is the second eigenmatrix
of the strongly regular graph. Equation (5.1) tells us this matrix is

Q̃ =

 1 f g

1 fr
k

gs
k

1 f(1+r)
k+1−v

g(1+s)
k+1−v


and thus the second eigenmatrix of A must be (∗ denotes an unknown value)

Q =


1 ∗ f ∗ g

1 ∗ fr
k
∗ gs

k

1 ∗ f(r+1)
k+1−v ∗

g(1+s)
k+1−v

1 ∗ fr
k
∗ gs

k

1 ∗ f ∗ g

 .

Let n1 and n3 be the remaining two multiplicities corresponding to E1 and E3 respectively.
Since 1 + f + g = v and |X| = 2v, we must have n1 + n3 = v. Now, by construction,
G = A0 + βA1 − βA3 − A4 and therefore any diagonal entry of GE2 is

[GE2]ii = 1
|X|

(
f + k

(
fr

k

)
β − k

(
fr

k

)
β − f

)
= 0.

Similar calculations for GE4 and GE0 show that tr(GE0) = tr(GE2) = tr(GE4) = 0.
Since G is contained within this commutative algebra, we find GEi = EiG for each
idempotent Ei and therefore the matrices GE4, GE2, and GE0 are all symmetric, forcing
GE0 = GE2 = GE4 = 0. Then G = c1E1 + c3E3 for some c1, c2 ∈ R. Since m < v, only
one of these constants may be non-zero. Without loss of generality assume c1 6= 0 giving
G = 2v

m
E1. Lemma 5.13 then provides m = v (1 + kβ2)−1.

Now we may return to our Q matrix and fill in the entries of the first column. Further,
the orthogonality relations (Lemma 2.5) tell us that ∑j Qij = δ0j|X|. Using the same fact
for Q̃, we may find the final column as well.

Q =


1 m f v −m g

1 mβ fr
k
−mβ gs

k

1 0 f(r+1)
k+1−v 0 g(1+s)

k+1−v
1 −mβ fr

k
mβ gs

k

1 −m f m− v g


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Since we now have the entire Q matrix, we may use Lemma 2.7 (xiii ′) to find the Krein
parameters of our scheme. In particular we find that q3

11 = q4
12 = 0 as well as

q2
11 = 1

2vf

d∑
h=0

(khQh1Qh1Qh2) = m2 (1 + β2r)
v

,

q3
12 = 1

2v(v −m)

d∑
h=0

(khQh1Qh2Qh3) = mf (v −m(1 + β2r))
v(v −m) ,

q4
13 = 1

2vg

d∑
h=0

(khQh1Qh3Qh4) = m (v −m(1 + β2s))
v

.

Recall that m = v(1 + kβ2)−1 and therefore v − m(1 + β2k) = 0. Thus we have both
v−m(1 + β2r) > 0 and v−m(1 + β2s) > 0 as long as r < k (i.e. Γ is connected), forcing
all three of the above Krein parameters to be non-zero. Thus A is Q-polynomial if and
only if q4

11 = 0. Calculating this similarly, we find

q4
11 = 1

2vg

d∑
h=0

(khQh1Qh1Qh4) = m2 (1 + β2s)
v

.

We therefore find q4
11 = 0 if and only if s = −β−2. Finally, noting that q1

11 = 0 (calculated
similarly), we must have rank(G◦G) = 1+f+g = v if q4

11 > 0 and rank(G◦G) = 1+f < v
otherwise.

Corollary 5.17. Let Γ be a connected strongly regular graph with v vertices and eigen-
values k > r > s. An OPDm(Γ; β) with m < v induces an association scheme if and only
if m = v (1 + kβ2)−1.
Proof. The result follows immediately from Theorems 5.16 and 5.14.

From these results we are very close to the statement “The association scheme induced
by an OPDm(Γ; β) is Q-bipartite if and only if β = 1√

−s”, however this statement is ul-
timately false. Consider the Gram matrix of any OPDm(Γ; 1√

−s) with m = v
(
1− k

s

)−1
,

following the proof of Theorem 5.16 we find that 〈G〉◦ generates a Q-bipartite associa-
tion scheme with E1 = m

2vG. However, in this case, 2v
v−mE3 is the Gram matrix of an

OPDv−m
(
Γ; m

(v−m)
√
−s

)
. Further, since E3 has five distinct entries just as E1, we find that

〈G〉◦ =
〈

2v
v−mE3

〉
◦

and thus we have an OPD which generates a Q-bipartite association
scheme without β = 1√

−s . It is the belief of this author that this is the only obstruction
to our statement. We note that this requires v −m > m else it would violate Corollary
5.3. Therefore we can avoid this issue by requiring m < v

2 , guaranteeing our Gram matrix
corresponds to the first idempotent in the Q-polynomial ordering.
Conjecture 5.18. Let Γ be a strongly regular graph with v vertices, valency k, and
smallest eigenvalue s. An OPDm(Γ; β) in dimension m < v

2 induces an association
scheme if and only if m = v

(
1− k

s

)−1
. Further, the association scheme induced is Q-

bipartite.

104



5.3 4-class Q-bipartite association schemes
Theorem 5.16 and Corollary 5.3 indicated that nearly any orthogonal projective double
of a strongly regular graph which induces an association scheme must induce a 4-class Q-
bipartite scheme. As we saw in Corollary 5.5, many complete multipartite graphs will not
have any orthogonal projective doubles in the dimension required to induce an association
scheme. In general, the existence of an OPD forKn,m which induces an association scheme
is equivalent to the existence of a set of mutually unbiased bases in the same dimension.
These are exactly the 4-class Q-bipartite schemes which are also Q-antipodal ([63]). We
will ignore these cases and assume that the underlying strongly regular graph is not
complete multipartite. For the remaining 4-class Q-bipartite schemes, we examine the
eigenmatrices and find that the parameters of such a scheme are completely determined
by the spectrum of the quotient strongly regular graph. We then recast Theorem 3.18
in terms of these three parameters and derive explicit bounds for this case which are
required for the parameter set to be realizable. Let (X,R) be a 4-class Q-bipartite
association scheme, not also Q-antipodal, with Q-polynomial ordering E0, E1, . . . , E4 and
natural ordering A0, A1, . . . A4. We know from Theorem 2.16 that the quotient of (X,R)
has exactly two non-trivial relations and thus must be strongly regular. Let (v, k, λ, µ)
be the parameters of the quotient strongly regular graph corresponding to A1 + A3. Let
k > r > s be the eigenvalues of this SRG with corresponding multiplicities 1, f , and g.
Since (X,R) is not Q-antipodal, we must have k > r and s > −k. The Q matrix of this
SRG will be

Q̃ =

 1 f g

1 fr
k

gs
k

1 f(1+r)
k+1−v

g(1+s)
k+1−v

 .
We may use this information to build the first and second eigenmatrices of our 4-class
Q-bipartite scheme as follows.

Theorem 5.19. Let (X,R) be a 4-class Q-bipartite association scheme with relations
ordered naturally. Let the quotient SRG have v vertices and spectrum k1, rf , sg with k >
r > s. Then the first and second eigenmatrices are as follows:

P =


1 k 2(v − 1− k) k 1
1 k

n
0 − k

n
−1

1 r −2(1 + r) r 1
1 −n 0 n −1
1 s −2(s+ 1) s 1

 Q =


1 m f mk

n2 g

1 m
n

fr
k
−m

n
gs
k

1 0 f(r+1)
k+1−v 0 g(1+s)

k+1−v
1 −m

n
fr
k

m
n

gs
k

1 −m f mk
n2 g


where s = −n2.

Proof. We begin by building all of Q and then employ the use of our orthogonality prop-
erties. Note that column 0 of Q comes by definition. From Theorem 2.15, Q1,1 = −Q3,1 6=
0 = Q2,1, so we define n = m

Q1,1
= − m

Q3,1
and column 1 is given. Each entry in columns 2
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and 4 follow from Lemma 2.15. Finally column 3 may be found using the first orthogo-
nality condition (specifically that

∑
j

Qij = |X|δi0). From here we have that

Q =


1 m f v −m g

1 m
n

fr
k

−m
n

gs
k

1 0 f(r+1)
k+1−v 0 g(1+s)

k+1−v
1 −m

n
fr
k

m
n

gs
k

1 −m f m− v g

 ,

matching our theorem in all but two places. Since we have ordered the relations using the
natural ordering, the valencies of our relations are given by [1, k, 2(v − 1− k), k, 1]. This
allows us to derive an expression for q1

01 using [16, Theorem. 2.3.2.] which gives

qkij = 1
|X|mk

d∑
l=0

(vlQliQljQlk)

where mk and vl are the multiplicities and valencies of the kth and lth relations respectively.
We find that q1

01 = 1
2vm

(
2m2 + 2km2

n2

)
, however we know from Lemma 2.7 that q1

01 = 1,
resulting in km

n2 = v − m. This completes our proof for the second eigenmatrix and we
may use the second orthogonality condition to find P noting that the first row of P is the
valencies of our relations. Thus

P =


1 k 2(v − 1− k) k 1
1 k

n
0 − k

n
−1

1 r −2(1 + r) r 1
1 −n 0 n −1
1 s −2(s+ 1) s 1

 .

We again use our equation for Krein parameters one more time to find q4
11 = mg(n2+s)

n2v
.

Since q4
11 = 0 due to our cometric property, we have that s = −n2.

Corollary 5.20. The parameters of a 4-class Q-bipartite scheme are uniquely determined
by the eigenvalues of the quotient SRG.

Proof. Our first eigenmatrix only requires v, k, r, s, and n. However since n > 0 due to
the natural ordering of relations, n =

√
−s. The remaining parameter is given in Lemma

5.7.

Before moving to examine the effect of Schönberg’s theorem on 4-class Q-bipartite
schemes, we mention a few parameter bounds arising from the feasibility conditions FC1-
FC3 and show how they restrict the space of feasible parameters.

Theorem 5.21. Suppose we have a feasible parameter set for a 4-class association scheme
which is Q-bipartite but not Q-antipodal. Let k = P01, r = P21, and s = P41 where P is
the first eigenmatrix using the natural ordering. The following must hold with n :=

√
−s

and µ = k + rs:
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(i) n is an integer greater than 1,

(ii) µ ≥ n(r + n),

(iii) n|µ and n|k,

(iv) r ≥ 2k
3n2 − n2

3 ,

(v) kn2(n2 − 1) ≥ µ(n2 + r).

Proof. First, since n =
√
−s, if n is not an integer then columns one and three of Q

must be irrational. However Galois conjugation is an automorphism of our Bose-Mesner
algebra and thus E0, E3, E2, E1, E4 must be a second Q polynomial ordering in this case,
implying q4

33 = 0. Using our P and Q matrices, we find that q4
33 = (k−r)(k+s)

µ
. This means

that whenever n is irrational, either r = k (and thus Γ is disconnected) or s = −k (and
thus Γ is complete bipartite). Both of these cases imply (X,R) is Q-antipodal, which we
assumed to be false. Now note that k, r, and s are the eigenvalues of a strongly regular
graph and thus integral (we assume here that the SRG is not a conference graph). For (ii)
and (iii), note that p1

13 = (n−1)(µ−n(r+n))
2n . FC2 tells us that this must be a non-negative

integer, and therefore we must either have −s = n = 1 or µ − n(r + n) ≥ 0. As s = −1
implies our SRG is a union of cliques (and thus again (X,R) is Q-antipodal), we may
ignore this case and (ii) follows. Since gcd(n, n − 1) = 1, we have that n|(µ − n(r + n))
forcing n|µ and since k = µ+rn2, (iii) follows. Next, (iv) follows from the absolute bound
1 + f ≤ m(m+1)

2 giving us n4 + 3n2r − 2k ≥ 0. Using another absolute bound, (v) follows
from v

m
≤ f .

Corollary 5.22. Suppose we have a feasible parameter set for a 4-class association scheme
which is Q-bipartite but not Q-antipodal. Let k = P01, r = P21, and s = P41 where P is
the first eigenmatrix using the natural ordering. Then the parameter set is realizable only
if

k2 − n2(n5 + 2n4 − 3n2 − 3n+ 1)k + n5(n2 + n− 1) ≤ 0.

Proof. Using Theorem 5.21 (i) and (iv), we have that n(r + n) ≤ µ ≤ kn2(n2−1)
n2+r . Using

µ = k − rn2, these two inequalities give us

k − n4 +
√
n8 − 2n4k(2n2 + 3) + k2

2n2 ≤ r ≤ k − n2

n(n+ 1) ,

implying our bound. The lower bound on k is always less than 1 and thus vacuous.
However, the upper bound is non-trivial for any n > 1.

We now examine the bounds arising from Corollary 3.22 as applied to our 4-class
Q-bipartite association scheme. We begin by noting that θ31 ≥ 0 becomes Theorem 5.21
(i) when we use the parameters k, r, and n, thus making it equivalent to an absolute
bound in this context. Next, we find that plugging in our parameters gives θ42 ≥ 0 and
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θ53 ≥ 0 if and only if k ≥ −rn2

n2−2 and k ≥ − (3n2−7)rn2

n4−3n2+6 respectively. Both of these bounds
are vacuous since the right hand side will be negative for any choice of n > 1. Finally one
may show that θ31 ≥ 0 and θ60 ≥ 0 together imply θ51 ≥ 0 in the specific case of a 4-class
Q-bipartite scheme. Thus the only new restriction, not implied by FC1-FC3, is θ60 ≥ 0.

Theorem 5.23. Suppose we have a feasible parameter set for a 4-class association scheme
which is Q-bipartite but not Q-antipodal. Let k = P01, r = P21, and s = P41 where P
is the first eigenmatrix using the natural ordering. Then the scheme is realizable only if
s = −n2 for some integer n > 1 and

15n4(2n2 − 3)r2 + (n6 − 45kn2 + 76k)n2r + k(16k + n6)(n2 − 2) ≥ 0.

Proof. Apply the parameters k, r, and s to Theorem 3.22 (v).

We may pair this Theorem with Theorem 5.21 to get the following corollary.

Corollary 5.24. Suppose we have a feasible parameter set for a 4-class association scheme
which is Q-bipartite but not Q-antipodal. Let k = P01 and n = P31 where P is the first
eigenmatrix using the natural ordering. The parameter set is realizable only if the following
bounds hold.

n 2 3 4 5 6 7 8 9 10
k ≤ 56 891 5504 22297 85128 282828 867787 2609805 8468529

Proof. Let r1 ≥ r2 be the two roots of 15n4(2n2− 3)r2 + (n6− 45kn2 + 76k)n2r+ k(16k+
n6)(n2 − 2). Then Theorem 5.23 tells us that either r ≥ r1 or r ≤ r2. Pairing this with
Theorem 5.21 we find that r ≥ r1 and µ ≥ n(r + n) together restrict k via

k

n3(n2 − 1) ≤
n7 + 2n6 − 3n4 − 17n3 + 45n2 + 14n− 76
−2(n4 − 13n3 + 15n2 + 12n− 32)(n2 − 1)

+
√
n10 + 4n9 + 6n8 + 2n7 − 35n6 + 22n5 + 145n4 − 72n2 + 32n+ 16

−2(n4 − 13n3 + 15n2 + 12n− 32) .

Secondly, r ≤ r2 with r ≥ 2k
3n2 − n2

3 implies that k ≤ 3n6−5n4

2 . Taking the maximum of
these two bounds for each 2 ≤ n ≤ 10 results in the values given in the table. While we
may also find a nontrivial bound for the case n = 11, the resultant bound is larger than
the bound given in Theorem 5.22, thus we omit it here.

We conclude this chapter by noting the impact of Theorem 5.23 on the feasible pa-
rameter space of 4-class Q-bipartite association schemes. In the table below we list the
number of feasible schemes for a given n > 0 when only considering conditions FC1, FC2,
and FC3. We also list the number of feasible schemes when we include Theorem 5.23 as
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a feasibility condition.

n
# of feasible # of feasible parameter sets

parameter sets satisfying Theorem 5.23
2 6 5
3 60 44
4 223 140
5 473 334
6 1015 701
7 1256 952
8 2256 1659

The following figure compares the original feasibility conditions with Theorem 5.23. We
display the graphs for n = 7, noting that similar graphs may be generated for any n > 1.

Figure 5.1: These figures pertain to the case n = 7. On the left we have two absolute
bounds and a bound due to the non-negativity of an intersection number. In green, we
have plotted every parameter set which is feasible under FC1-FC3. On the right, we have
replaced the bounds with the bound θ60 ≥ 0. Any parameter set contained within the
parabola is not realizable.
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Chapter 6

Connectivity of basis relations

Brouwer and Mesner [20] showed in 1985 that the vertex connectivity of a strongly regular
graph Γ is equal to its valency and that the only disconnecting sets of minimum size are
the neighborhoods Γ(a) of its vertices. (Brouwer [15] mentions that the corresponding
result for edge connectivity was established by Plesńık in 1975.) This result on vertex
connectivity was extended by Brouwer and Koolen [19] in 2009 to show that a distance-
regular graph of valency at least three has vertex connectivity equal to its valency and that
the only disconnecting sets of minimum size are again the neighborhoods Γ(a). Meanwhile
a conjecture of Brouwer on the size and nature of the “second smallest” disconnecting
sets in a strongly regular graph has inspired both new results and interesting examples
by Cioabă, et al. [28, 29, 30, 31, 32].

Godsil [45] conjectured in 1981 that the edge connectivity of a connected basis relation
in any symmetric association scheme is equal to the valency of that graph. Brouwer [15]
claimed in 1996 that the same should hold for the vertex connectivity. In [45], Godsil
proved that if Γ = Γ(X,R1) is regular of valency k1, then the edge connectivity of Γ is
at least k1

2
|X|
|X|−1 . In 2006, Evdokimov and Ponomarenko proved Brouwer’s conjecture for

Γ = Γ(X,R1) in the case when (X,R) is equal to the projection onto X of the k1-fold
tensor product ⊗k1

h=1(X,R). See [42] for definitions and details.
Much more is known about the connectivity of vertex- and edge-transitive graphs.

(See [44, Sec. 3.3-4].) Mader [67] and Watkins [101] independently obtained the following
two results in 1970. The vertex connectivity of an edge-transitive graph is equal to the
smallest valency. A vertex-transitive graph of valency k has vertex connectivity at least
2
3(k + 1). Further, in 1971, Mader [68] proved that any vertex-transitive graph has edge
connectivity equal to its valency.

We begin this chapter with some preliminary results which will work towards proving
the main theorems in this chapter. With reference to a fixed undirected graph Γ =
Γ(V,E), we say that a and b are twins if a 6= b yet Γ(a) = Γ(b). A graph Γ is complete
multipartite if any two non-adjacent vertices are twins; i.e., the complement of Γ is a union
of complete graphs. We explore which association schemes contain twins, particularly in
the polynomial case. We then move to examine the structure of a fixed relation given
a basepoint a. First, we define a homomorphism mapping Γi, the graph of some basis
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relation, to the unweighted distribution diagram Hi of that relation. This allows us to
compare the structure of Γi and Hi, particularly by projecting and lifting paths from one
to the other. Write1 a⊥ = {a}∪Γ(a) and define the subgraph Γa = Γ\a⊥. We decompose
the vertices Γa into three (possibly empty) sets based on each vertices relation with a
and compare these vertex sets to sets of vertices in H ′i = H ′\ {0, 1}. By employing these
techniques using multiple basepoints, we show that one of the sets in the decomposition
of Γa must be empty. Using this result we prove Theorem 6.1 below, along with the
corollaries that follow. We finish this chapter by applying Theorem 6.1 along with a
spectral lemma in the case of small valency.

This chapter is based on joint work with W. J. Martin, published in [62]. The main
goal of this chapter is to prove the following theorem related to connectivity in symmetric
association schemes:

Theorem 6.1. Let (X,R) be a symmetric association scheme. Assume the graph Γ =
Γ(X,Ri) is connected and not complete multipartite. Let H = Hi be the corresponding
unweighted distribution diagram on {0, 1, . . . , d}. The following are equivalent:

(1) there exists a ∈ X for which the subgraph Γ \ a⊥ is connected;

(2) for all a ∈ X, the subgraph Γ \ a⊥ is connected;

(3) the subgraph H \ {0, i} is connected;

(4) Γ contains no twins.

Recall that a commutative association scheme (see Section 2) is a more general combi-
natorial object in which we replace property (iii) with the condition: For each 0 ≤ i ≤ d,
there exists some index i′ such that RT

i = Ri′ ; that is, (x, y) ∈ Ri if and only if (y, x) ∈ Ri′ .
We also require that for all 0 ≤ i, j, k ≤ d, pkij = pkji — thus we preserve the property
that our Bose-Mesner algebra is commutative. Given a commutative association scheme
(X,R) we define the symmetrization of the relation Ri as the relation Ri ∪ Ri′ noting
that this is exactly Ri if i = i′ (i.e. Ri is already symmetric). In this way, we define the
symmetrization of (X,R) to be (X,R′) where

R =
{
R ∪RT | R ∈ R

}
.

The edge sets of all the graphs considered in the following corollaries are given by relations
in the symmetrization, thus Theorem 6.1 extends immediately to give these corollaries.
Due to this, we will only consider the symmetric case when proving the main theorem.
The following are the remaining main results of this chapter.

Corollary 6.2. Let (X,R) be a commutative association scheme. Assume the undirected
graph Γ = Γ(X,Ri ∪ Ri′) is connected and a ∈ X. Then Γ \ Γ(a) contains at most one
non-singleton component.

1Note that some authors assign another meaning to ⊥; here, we follow [16, p. 440].
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Corollary 6.3. Let (X,R) be a commutative association scheme. Assume the undirected
graph Γ = Γ(X,Ri ∪ Ri′) is connected and a ∈ X. Then, for any T ⊆ a⊥ with Γ(a) 6⊆ T ,
the graph Γ \ T is connected.

Corollary 6.4. Let (X,R) be a commutative association scheme. Assume the undirected
graph Γ = Γ(X,Ri ∪Ri′) is connected and C ⊆ X is the vertex set of a clique in Γ. Then
Γ \ C is connected.

Theorem 6.24. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1) be
the graph associated to a connected basis relation. If Γ admits a disconnecting set of size
two, then Γ is isomorphic to a polygon.

Theorem 6.26. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1) be
the graph associated to a connected basis relation. If Γ has diameter two, then either Γ
has vertex connectivity at least four or Γ is isomorphic to one of the following graphs: the
4-cycle, the 5-cycle, K3,3, the Petersen graph.

Lemma 6.18. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1) be
the graph associated to a connected basis relation. Assume that Γ contains no induced
subgraph isomorphic to K2,1,1. If T ⊆ X is a disconnecting set for Γ, then |T | > p1

11.

We should remark that Corollaries 6.3 and 6.4 extend naturally to the case where Γ is
not connected in that the deletion of vertices does not increase the number of components.
One verifies this by applying the respective corollary to the subscheme induced by vertices
in a particular component of Γ.

6.1 Twins
Let (X,R) be a symmetric association scheme. Let Γ = (X,R) be the graph of a basis
relation in (X,R). Write R(a) = Γ(a). Examples where twins arise (i.e., R(a) = R(b)
for a 6= b) include not only complete multipartite graphs but antipodal distance-regular
graphs such as the n-cube in which case R is the distance-n2 relation of the association
scheme.

Lemma 6.5. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,Ri) for
some i 6= 0. If a and b are twins, then (X,R) is imprimitive and some system of imprim-
itivity exists in which a and b belong to the same fiber.

Proof. One easily checks that the following relation ∼ on X is an equivalence relation:
a ∼ b if either a = b or a and b are twins in Γ. To see that this is a system of imprimitivity,
we verify that ∼ is the union of basis relations Rj for which pjii = p0

ii. Since piii < p0
ii and

we are assuming at least one pair of twins exists, the equivalence relation is non-trivial
and (X,R) is imprimitive.
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Remark. We now discuss twins in polynomial association schemes. We use the well-
known fact that an association scheme is imprimitive if and only if some idempotent Ej
(1 ≤ j ≤ d) has repeated columns (see, e.g., [69, Theorem 2.1]). Denote by uj(a) the
column of Ej indexed by a ∈ X. If Ri(a) = Ri(b), then for each 0 ≤ j ≤ d

Pjiuj(a) = Aiuj(a) =
∑

(x,a)∈Ri

uj(x) =
∑

(x,b)∈Ri

uj(x) = Aiuj(b) = Pjiuj(b)

so that either Pji = 0 or uj(a) = uj(b).

1. Assume (X,R) is the association scheme coming from a distance-regular graph Γ =
Γ(X,R1) with distance-k relation Rk for 0 ≤ k ≤ d and assume Ri(a) = Ri(b) for
distinct vertices a and b. Suppose a and b do not belong to a common antipodal
fiber in an antipodal system of imprimitivity. Then Γ must be bipartite, in which
case columns a and b of Ej can be identical only for j ∈ {0, d} (where E0, . . . , Ed
are ordered so that P01 > P11 > · · · > Pd1 = −P01 [16, Prop. 4.4.7]). But then,
except for d = 2, there is some j 6= 0, d for which Pji 6= 0; thus a = b for d > 2. So
bipartite systems of imprimitivity only arise for d = 2. Viewing complete bipartite
graphs as having the antipodal property, we then have that any distinct a and b with
Ri(a) = Ri(b) must belong to the same antipodal fiber, d is even, and i = d/2.

2. Assume (X,R) is a Q-polynomial (or “cometric”) association scheme [16, Sec-
tion 2.7], not a polygon, and a 6= b yet Ri(a) = Ri(b). Then, by Theorem 2.16,
(X,R) is either Q-bipartite or Q-antipodal. Let E0, . . . , Ed be a Q-polynomial or-
dering of the primitive idempotents and order relations such that Q01 > Q11 > · · · >
Qd1. If a and b belong to the same fiber of a Q-bipartite imprimitivity system, then
d must be even and i = d

2 by Corollary 4.2 in [69]. Otherwise, a and b must belong
to the same Q-antipodal fiber and uj(a) = uj(b) only for j ∈ {0, d}. So Pji = 0
for 1 ≤ j < d, forcing (X,Ri) to be an imprimitive strongly regular graph (as it is
regular with three eigenvalues). Since the scheme is cometric with an imprimitive
strongly regular graph as a basis relation, we must have d = 2 and a and b are
non-adjacent vertices in a complete multipartite graph.

6.2 The graph homomorphism ϕa

For 0 < i ≤ d, let Γi = (X,Ri) and let Hi denote the unweighted distribution diagram
corresponding to symmetric relation Ri — that is, Hi = Γ(V,E) where V = {0, . . . , d}
and (j, k) ∈ E if and only if pkij > 0. Note Hi need not be simple, in fact, there will be a
loop at vertex j whenever pjij > 0.

Proposition 6.6. For any a ∈ X, the map ϕa,i : Γi → Hi sending b ∈ X to j where
(a, b) ∈ Rj is a graph homomorphism. Under this map, every walk in Γi projects to a walk
in Hi of the same length. As a partial converse, for any b ∈ X with (a, b) ∈ Rj0 and any
walk

w = (j0, j1, . . . , j`)
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in Hi, there is at least one walk (b = b0, b1, . . . , b`) of length ` in Γi such that ϕa,i(bs) = js
for each 0 ≤ s ≤ `. �

We will call ϕa,i the projection map and will omit the second subscript when it is clear
from the context.

For vertices x and y in an undirected graph Γ, we use dΓ(x, y) to denote the path-
length distance from x to y in Γ, setting dΓ(x, y) = ∞ when no path from x to y exists
in Γ.

Lemma 6.7. Let (X,R) be a symmetric association scheme and, for some 0 < i ≤ d, let
Γ = Γ(X,Ri) with corresponding unweighted distribution diagram H. If Γ is connected,
then for (a, b) ∈ Rj, dΓ(a, b) = dH(0, j).

Proof. A shortest path in H from j to 0 lifts via ϕ−1
a,i to a walk in Γ from b to a vertex in

R0(a) — i.e., lifts to a walk from b to a — of length dH(j, 0). Conversely, each path from
b to a in Γ projects to a walk of the same length from j to 0 in H.

6.3 The decomposition {Ia, Ua,Wa}
For simplicity, we henceforth take Γ = Γ(X,R1) with unweighted distribution diagram
H = H1 in the symmetric association scheme (X,R). We assume throughout the re-
mainder of the chapter that Γ itself is a connected graph. We will compare the graphs
Γa := Γ\a⊥ and H ′ := H \{0, 1} and show that, with known exceptions, one is connected
if and only if the other is connected. One direction is straightforward.

Proposition 6.8. If H ′ is not a connected graph, then for any a ∈ X, Γa is also discon-
nected. If i and j are in distinct components of H ′, then Γa contains no path from Ri(a)
to Rj(a).

Proof. Let x ∈ Ri(a) and y ∈ Rj(a) and suppose x = x0, x1, . . . , x` = y is a path in
Γa. Then i = ϕa(x0), ϕa(x1), . . . , ϕa(x`) = j is a walk from i to j in H. Since H ′ is
disconnected, ϕa(xt) ≤ 1 for some t which forces xt ∈ a⊥, a contradiction.

Proposition 6.9. If x and y lie in distinct components of Γa, then Γ(x) ∩ Γ(y) ⊆ Γ(a).
�

For Ũ ⊆ {0, 1, . . . , d}, note that |ϕ−1
a (Ũ)| = ∑

i∈Ũ ki. We now assume that H ′ is
disconnected and we define a decomposition of its vertex set. Let

Ĩ = {i > 0 | pi11 = p0
11}.

Now the set {2, . . . , d} \ Ĩ decomposes naturally into the vertex sets of the connected
components of H ′, excluding the isolated vertices in Ĩ. Let Ũ be the vertex set of some
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Ũ Ĩ W̃

•

•

•

0

1

h • •· · · •

Figure 6.1: Graph H. Upon deletion of 0 and 1, the isolated vertices in Ĩ are those
subconstituents which contain all twins of the basepoint while Ũ is the vertex set of a
component outside Ĩ which minimizes ∑i∈Ũ ki.

component of H ′ \ Ĩ such that |ϕ−1
a (Ũ)| is minimized. Let W̃ = {2, . . . , d} \

(
Ĩ ∪ Ũ

)
as

depicted in Figure 6.1. For x ∈ X, set

Ix = ϕ−1
x (Ĩ), Ux = ϕ−1

x (Ũ), Wx = ϕ−1
x (W̃ )

and note that |Ix|, |Ux|, and |Wx| are independent of the choice of x ∈ X. Observe that x
and y are twins if and only if y ∈ Ix. While our basepoint will vary in what follows, our
choice of Ũ , W̃ and Ĩ will remain fixed for this connected graph Γ.

Lemma 6.10. If W̃ 6= ∅, then for every u ∈ Ux, dΓ(x, u) = 2.

Proof. By way of contradiction, assume u ∈ Ux with Γ(x) ∩ Γ(u) = ∅. For any w ∈ Wx,
we note that Γ contains an xw-path which does not pass through u⊥. So x and w lie
in the same connected component of Γu. But if (x, u) ∈ Rh then h ∈ Ũ so x ∈ Uu by
symmetry. It follows that Wx∪{x} ⊆ Uu. But this contradicts |ϕ−1

u (Ũ)| ≤ |ϕ−1
x (W̃ )|.

6.3.1 Comparing the view from multiple basepoints
In this section we will select a, b ∈ X with b ∈ Ua and compare components of Γa against
those of Γb, defining vertex sets V∆, Ya, and Za relative to the pair a, b.

Proposition 6.11. For any a ∈ X and any b ∈ Ua, we have Wa ∩ Ib = ∅.

Proof. If x and b are twins, then x cannot be a twin of a since b is not a twin of a. So
Γ(x) = Γ(b) ⊆ Ua ∪ Γ(a) gives Γ(x) ∩ Ua 6= ∅. So x 6∈ Wa.

Now fix a ∈ X and choose b ∈ Ua. Consider the component ∆ of Γb containing a.
Denote by V∆ the vertex set of ∆. Since b and a are not twins, some element of Γ(a) is a
vertex of ∆ and hence ∆ contains vertices in Wa unless W̃ = ∅. Let Za = V∆ ∩Wa and
let Ya = Wa \ Za. This vertex decomposition is depicted in Figure 6.2. Since b ∈ Ua, we
have a ∈ Ub and, since ∆ is connected, Za ⊆ Ub.

In the next two results, we proceed under the assumption that H ′ is disconnected and
that W̃ is non-empty. Further we assume that vertices a and b ∈ Ua have been chosen
and the sets Ya and Za are defined as above relative to this pair of vertices.
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Lemma 6.12. Let w = (u0, u1, . . . , u`) be a walk in Γ with u0 ∈ Ya and u` lying some
other component of Γa. Let t ∈ {1, . . . , `} be the smallest subscript with ut 6∈ Ya. Then
ut ∈ Γ(a). �

Lemma 6.13. For 0 ≤ i ≤ d, Ri(a)∩Ya 6= ∅ implies Ri(a)∩Za 6= ∅. So no subconstituent
of Γ with respect to a is entirely contained in Ya.

Proof. Let y ∈ Ya and consider a shortest ya-path π in Γ, of length ` say, and label its
vertices as follows: π = (y = v`, v`−1, . . . , v1, v0 = a). Then, by Lemma 6.12, vs ∈ Ya for
1 < s ≤ `. Consider js = ϕa(vs), 0 ≤ s ≤ `, and assume j` = i. Then we have pjs1,js+1 > 0
for 0 ≤ s < `. Note j0 = 0 and j1 = 1. Now we lift the walk (j0, . . . , j`) in H to a different
walk in Γ. Since a and b are not twins, we may choose v′1 ∈ Γ(a) \ Γ(b). Since p1

1j2 > 0,
there exists v′2 ∈ Rj2(a) with v′2 adjacent to v′1 in Γ. Continuing in this manner, we may
construct a walk π′ = (a = v′0, v

′
1, . . . , v

′
`) in Γ with ϕa(v′s) = js. Since Γ(b) ⊆ Γ(a) ∪ Ua,

none of the vertices v′s lie in Γ(b), so the entire walk π′ is contained in one component of
Γb. By definition of Za, we then have v′` ∈ Za ∩Ri(a).

•a

• b

Γ(a)

Ua Ia Wa

Ya

Zab⊥

b⊥

Figure 6.2: This diagram depicts Γ as decomposed relative to basepoint a. In Γb, vertex
a belongs to component ∆, whose vertex set is indicated by the shaded region. The set
Wa splits into Za and Ya according to membership in V∆.

Lemma 6.14. If W̃ 6= ∅, then Γ has diameter two; i.e., pi11 > 0 for all i > 1.

Proof. Let a, x ∈ X with x 6∈ a⊥. Let V Γa be the vertex set of the graph Γa. Choose
b ∈ Ua as above and consider, in turn, each part of the decomposition

V Γa = Ia ∪̇ Ua ∪̇ Za ∪̇ Ya
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relative to a and b. If x ∈ Ia, Γ(x) = Γ(a); if x ∈ Ua, then dΓ(a, x) = 2 by Lemma 6.10.
Next consider x ∈ Za. Then d(x, b) = 2 but Γ(x)∩Γ(b) ⊆ Γ(a) since x and b lie in distinct
components of Γa (Proposition 6.9). Finally, consider x ∈ Ya with (a, x) ∈ Ri. By Lemma
6.13, there exists x′ ∈ Za ∩ Ri(a). Since x′ has a neighbor in Γ(a), pi11 > 0 which then
implies that some neighbor of x lies in Γ(a) as well.

Theorem 6.15. Let (X,R) be any symmetric association scheme and let Γ = Γ(X,R1)
be any connected basis relation. With reference to the above definitions, W̃ = ∅.

Proof. By way of contradiction, assume W̃ 6= ∅ and define

µ = min{pi11 | i ∈ Ũ}, ω = min{pi11 | i ∈ W̃}

and select k ∈ Ũ and ` ∈ W̃ with pk11 = µ and p`11 = ω. Note that µ, ω > 0 by Lemma
6.14. Now choose a ∈ X, and select x in Rk(a). Since x is not a twin of a, we may choose
a′ ∈ Γ(a) \ Γ(x) and since p1

1` > 0, we may choose y in R`(a) which is a neighbor of a′.
Since Γx contains a path from a to y and a ∈ Ux, we have y ∈ Ux. So |Γ(x) ∩ Γ(y)| ≥ µ.
By Proposition 6.9, Γ(x) ∩ Γ(y) ⊆ Γ(a). (See Figure 6.3.) But a′ ∈ Γ(y) ∩ Γ(a). So

ω ≥ 1 + |Γ(x) ∩ Γ(y)| > µ.

Now we simply reverse the roles of x and y; more precisely, we swap ` and k.
Select x in R`(a) and, choosing a′ ∈ Γ(a)\Γ(x), we may find a vertex y in Rk(a) which

is a neighbor of a′. Since Γx contains a path from a to y and a ∈ Wx, we have y ∈ Wx.
So |Γ(x) ∩ Γ(y)| ≥ ω. By Proposition 6.9, Γ(x) ∩ Γ(y) ⊆ Γ(a). But a′ ∈ Γ(y) ∩ Γ(a). So

µ ≥ 1 + |Γ(x) ∩ Γ(y)| > ω.

We have ω > µ and µ > ω, producing the desired contradiction.

Ua Wa

• a

• x • y

•a′
Γ(a) ∩ Γ(x) Γ(a) ∩ Γ(y)

Figure 6.3: Since Γ has diameter two, all common neighbors of x and y are in Γ(a).

6.4 Proofs of the main theorem and its corollaries
We are now ready to present the proof of our main theorem. We continue with the
notation established previously in this chapter. Recall that, for a ∈ X, Γa := Γ \ a⊥ is
the subgraph of Γ = Γ(X,Ri) obtained by deleting basepoint a and all its neighbors.
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Proof of Theorem 6.1. As before, we assume i = 1 for notational convenience.
We begin by showing (3) ⇔ (4). If a and b are twins in Γ with (a, b) ∈ Rj, then

j > 1 and pj11 = k1 so that j ∈ Ĩ and {j} is the entire vertex set of some component of
H ′ = H \ {0, 1}. So either H ′ is not connected or d = j = 2 and Γ, being imprimitive, is
a complete multipartite graph. Conversely, by Theorem 6.15, W̃ = ∅ so if Ĩ = ∅ we have
that H ′ is connected.

The assertion (2)⇒ (1) is trivial. Proposition 6.8 gives us (1)⇒ (3). So we need only
check that (3) implies (2).

Assume now that H ′ is connected and yet there is some a ∈ X with Γa not connected.
By Proposition 6.6, any x in Γa is joined by a walk in Γa to some vertex in Rj(a) for
every j > 1. (Simply lift a walk in H ′ from ` to j where (a, x) ∈ R`.) So for every j > 1
every connected component of Γa intersects subconstituent Rj(a) non-trivially. Select
j > 1 so as to maximize D := dH(0, j) and choose x, y ∈ Rj(a) such that x and y lie in
distinct components of Γa. Then every xy-path in Γ must include a vertex in Γ(a), so
dΓ(x, y) ≥ 2(D − 1). Since dΓ(x, y) ≤ D by Lemma 6.7, this forces D ≤ 2. In particular,
p`11 > 0 for every ` > 1.

Select ` > 1 so as to minimize p`11 and select x, y ∈ R`(a) from distinct components
of Γa. Then (x, y) ∈ Rj for some j > 1 and so |Γ(x) ∩ Γ(y)| ≥ p`11. But since these two
vertices lie in distinct components, Proposition 6.9 gives us

Γ(x) ∩ Γ(y) ⊆ Γ(a) ∩ Γ(y)

so pj11 = p`11 and Γ(x) ∩ Γ(y) = Γ(a) ∩ Γ(y). If a′ ∈ Γ(a), then a′ has p1
1` > 0 neighbors

in R`(a). For any such neighbor z, we must have either Γ(z) ∩ Γ(a) = Γ(x) ∩ Γ(a) or
Γ(z) ∩ Γ(a) = Γ(y) ∩ Γ(a), both of which force a′ ∈ Γ(x). So vertices a and x must be
twins. The only possibility that remains is that Γ is a complete multipartite graph. �

The proofs of Corollaries 6.3, 6.2 and 6.4 are now rather immediate. Since each is a
statement about the symmetrization of some commutative scheme, Theorem 6.1 applies.

Proof of Corollary 6.2. This is essentially Theorem 6.15. �

Proof of Corollary 6.3. We apply Theorem 6.1 to prove this. First, if we have no twins
then Γa is connected. Any a′ ∈ Γ(a) has at least one neighbor in V Γa. If a 6∈ T , then
some a′ ∈ Γ(a) is also not included in T . So the graph Γ \ T is connected as long as
T 6= Γ(a).

If b is a twin of a in Γ, then b is adjacent to every x ∈ Γ(a). Since Γ(a) 6⊆ T , some
a′ ∈ Γ(a) is a vertex of Γ \ T . By Corollary 6.2, Γ \ a⊥ has at most one non-singleton
component. Let Ξ be the component of Γ \ T containing this component as a connected
subgraph. (If Γ \ a⊥ consists only of singletons, choose Ξ to be any component of Γ \ T
containing some twin of a.) Since a′ has at least one neighbor in V Γa, the component Ξ
contains a′ and every twin b of a since each of these is a neighbor of a′. Likewise, if a 6∈ T ,
then a belongs to Ξ since it is adjacent to a′. So in this case as well, Γ \ T is connected.
�

Proof of Corollary 6.4. Let a ∈ C and take T = C. Then apply Corollary 6.3. �
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We finish this section with a simple generalization arising from the proof above.

Theorem 6.16. Assume (X,R), Γ and H are defined as in Theorem 6.1. Let BH,t(0) =
{i | 0 ≤ i ≤ d, dH(0, i) ≤ t} and BΓ,t(a) = ∪BH,t(0)Ri(a).

(a) If Γ′ := Γ \ BΓ,t(a) is disconnected and b ∈ X with dΓ(a, b) = D (the diameter
of Γ), then for any x 6∈ BΓ,t(a) not in the same component of Γ′ as b, we have
dΓ(a, x) ≤ 2t.

(b) If H \BH,t(0) is connected and yet Γ′ is disconnected, then D ≤ 2t.

Proof. (a) Since x and b are in distinct components of Γ′, there must exist some y ∈ X
such that dΓ(a, y) ≤ t and dΓ(x, b) = dΓ(x, y) +dΓ(y, b). This gives dΓ(y, b) ≥ D− t which
then implies dΓ(x, a) ≤ dΓ(x, y) + dΓ(y, a) ≤ 2t.

(b) Since H \ BH,t(0) is connected, for every j 6∈ BH,t(0), Rj(a) has non-trivial inter-
section with every component of Γ′. So we may select x, b in distinct components of Γ′
both satisfying dΓ(a, x) = dΓ(a, b) = D and then apply part (a).

6.5 Further results on connectivity
In this section, we develop some machinery for the study of small disconnecting sets which
are not localized. We then apply these tools to show that, with the exception of polygons,
a basis relation in a symmetric association scheme has vertex connectivity at least three.
We can say a bit more in the case where Γ has diameter two. For the remainder of this
chapter, we assume without loss of generality that Γ = Γ(X,R1) in order to simplify
notation.

Elementary graph theoretic techniques allow us to handle the case where Γ is in some
sense locally connected. For example, if Γ(y) induces a connected subgraph for every
y ∈ T and dΓ(y, y′) ≥ 3 for any pair of distinct elements y, y′ ∈ T , then Γ\T is connected.
The proof of this claim is essentially the same as the proof of the following proposition,
which applies more generally to any connected simple graph Γ.

Proposition 6.17. Let Γ = Γ(X,R1) be the graph associated to a connected basis relation
in a symmetric association scheme (X,R). Suppose any two vertices at distance two in
Γ lie in some common cycle of length at most g and T ⊆ V Γ satisfies dΓ(y, y′) ≥ g + 1
for all pairs y, y′ of distinct vertices from T . Then Γ \ T is connected.

Proof. Set δ = bg/2c and, for y ∈ T set Bδ(y) = {x ∈ X | dΓ(x, y) ≤ δ}. The induced
subgraph Γ[B] of Γ determined by B = Bδ(y) is connected so admits a spanning tree.
Moreover, since y is not a cut vertex of Γ[B], there exists a spanning tree Ty for Γ[B] in
which y is a leaf vertex. For y ∈ T , let Ey denote the edge set of Ty with the sole edge
incident to y removed.

Now consider the minor ∆ of Γ obtained by contracting Bδ(y) to a single vertex for
every y ∈ T . Since ∆ is again a connected graph, it admits a spanning tree T . Lift the
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edge set ET of T back to EΓ and note that ET contains no edge from any of the induced
subgraphs Γ[Bδ(y)], y ∈ T . So ET ∪ (∪y∈TEy) is the edge set of a spanning tree in Γ \ T ,
which demonstrates that Γ \ T is connected.

6.5.1 A spectral lemma
Eigenvalue techniques such as applications of eigenvalue interlacing play an important
role in [20] and [19]. The following lemma is inspired by those ideas. This can be used,
in conjunction with Lemma 6.21, to show that a graph with a small disconnecting set T
whose elements are not too close together must be locally a disjoint union of cliques of
size at most |T |.

Lemma 6.18. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1) be
the graph associated to a connected basis relation. Assume that Γ contains no induced
subgraph isomorphic to K2,1,1. If T ⊆ X is a disconnecting set for Γ, then |T | > p1

11.

Proof. The result obviously holds when Γ is complete multipartite, so assume Γ is not a
complete multipartite graph. By [16, Cor. 3.5.4(ii)], we then know that the second largest
eigenvalue θ of Γ is positive. Order the eigenspaces of the scheme so that A1E1 = θE1
and abbreviate E = E1. For K,L ⊆ X, denote by EK,L the submatrix of E obtained
by restricting to rows in K and columns in L. Let C be any clique in Γ. Then, because
k1 > θ > 0, the matrix EC,C = m1

|X|I + θm1
k1|X|(J − I) is invertible.

Assume now that some disconnecting set T ⊆ X has |T | ≤ p1
11. Let Ξ and Ξ′ be two

connected components of Γ \ T with vertex sets B and B′, respectively, and let ρ and
ρ′ denote the spectral radii of these two graphs. Assume, without loss, that ρ ≤ ρ′. By
eigenvalue interlacing, ρ ≤ θ. (see, e.g.,[16, Theorem 3.3.1].) We now show ρ = θ.

Since Γ does not contain K2,1,1 as an induced subgraph, it is locally a disjoint union
of cliques and every edge of Γ lies in a clique C of size p1

11 + 2. If Ξ is edgeless, then
T contains all neighbors of some vertex, which is impossible since |T | ≤ p1

11 < k1. So Ξ
contains at least one edge and B ∪ T contains some clique C of size at least p1

11 + 2. It
follows that the submatrix EX,B∪T has rank at least p1

11 + 2. But |T | ≤ p1
11. So the row

space of EX,B∪T contains at least two linearly independent vectors which are zero in every
entry indexed by an element of T . Restricting these two vectors to coordinates in B only,
we obtain two linearly independent eigenvectors for graph Ξ belonging to eigenvalue θ.
It follows that ρ = θ and ρ, the spectral radius of Ξ, is not a simple eigenvalue. This
contradicts the Perron-Frobenius Theorem (see, e.g., [16, Theorem 3.1.1]) since Ξ was
chosen to be a connected graph.

Remark. The hypotheses of the above lemma may clearly be weakened. The proof simply
requires that both B ∪ T and B′ ∪ T contain cliques of size |T |+ 2 or larger and that the
entries Exy of idempotent E are the same for all adjacent x and y in V Γ.
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6.5.2 Intervals and metric properties of Γ
Let (X,R) be a symmetric association scheme and Γ = Γ(X,R1) with unweighted distri-
bution diagram H. For a, b ∈ X, if (a, b) ∈ Ri, Lemma 6.7 tells us that the path-length
distance dΓ(a, b) between a and b in graph Γ is equal to the path-length distance dH(0, i)
between 0 and i in H. It follows that the diameter, D say, of Γ is equal to maxi dH(0, i),
which happens to be the diameter of H. We thus partition the index set {0, 1, . . . , d}
according to distance from 0 in H. For each 0 ≤ h ≤ D, define Ih = {i : dH(0, i) = h}.
For 0 ≤ i ≤ d with i ∈ Ih, define

c(i) =
∑

j∈Ih−1

pi1j .

Proposition 6.19. With c(i) defined as above

(a) For any geodesic 0 = `0, 1 = `1, `2, . . . , `h in H,

1 = c(`1) ≤ c(`2) ≤ · · · ≤ c(`h).

(b) If c(i) = 1, then for any ` ∈ {1, . . . , d} which lies along a geodesic from 0 to i in H,
c(`) = 1 as well.

(c) If c(i) = 1, then there is a unique shortest path in H from 0 to i and, for (a, b) ∈ Ri,
there is a unique shortest path in Γ from a to b.

Proof. For part (a), observe that for (a, b) ∈ R`h there exists a′ ∈ R`h−1(b) adjacent to a
since p`h1,`h−1

> 0 so that

{x ∈ R1(b) | dΓ(x, a′) = dΓ(b, a′)− 1}⊆{x ∈ R1(b) | dΓ(x, a) = dΓ(b, a)− 1}.

Parts (b) and (c) follow immediately.

For a, b ∈ X, we define the interval [a, b] to be the union of the vertex sets of all
geodesics in Γ from a to b:

[a, b] = {x ∈ X | dΓ(a, x) + dΓ(x, b) = dΓ(a, b)} .

For the purpose of the present discussion, we introduce a piece of terminology. For
x ∈ X and y ∈ T ⊆ X, we say that x is proximal to y (relative to T ) if dΓ(x, y) ≤ dΓ(x, y′)
for all y′ ∈ T . Vertex x is then proximal only to y ∈ T if dΓ(x, y) < dΓ(x, y′) for all y′ ∈ T
distinct from y.

Proposition 6.20. Let T be a disconnecting set for Γ and let x and z be vertices lying in
different components of Γ \ T with (x, z) ∈ Ri. Suppose there is some y ∈ T such that x
is proximal only to y and z is proximal to y with (x, y) ∈ Rs and (z, y) ∈ Rt. If c(s) = 1
or c(t) = 1, then c(i) = c(s) = c(t) = 1.

Proof. Every shortest path joining x to z in Γ must pass through y. Apply Proposition
6.19(b).
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6.5.3 Small disconnecting sets
We continue under the assumption that Γ = Γ(X,R1) is the graph of some connected
basis relation in the symmetric association scheme (X,R). We begin by examining a
simple condition which guarantees that Γ is locally a disjoint union of cliques.
Lemma 6.21. Let T be a minimal disconnecting set for Γ, y ∈ T . Suppose dΓ(y, y′) ≥ 4
for all y′ ∈ T with y′ 6= y. Then c(j) = 1 for all indices j in I2.
Proof. Let j ∈ I2 and let x ∈ Rj(y). Let z ∼ y be some vertex lying in a different
component of Γ\T from that containing x. For (z, x) ∈ Ri, we find c(i) = 1 by Proposition
6.20. So c(j) = 1 by Lemma 6.19.
Lemma 6.22. Let T be a disconnecting set for Γ, y ∈ T .

(a) Let x and z be vertices lying in different components of Γ\T . If dΓ(x, y′)+dΓ(y′, z) >
D for every y′ ∈ T except y, then z has a unique neighbor lying closer to x and z
has a unique neighbor lying closer to y.

(b) Suppose x ∈ X \T satisfies dΓ(x, y′) = D for every y′ ∈ T except y. If z ∈ X lies in
a component of Γ \ T distinct from that containing x, then z has a unique neighbor
lying closer to x and z has a unique neighbor lying closer to y.

In both cases, for (x, z) ∈ Ri, and (y, z) ∈ Rj, we have c(i) = c(j) = 1.
Proof. Clearly (b) follows from (a). So first verify (a) for the case z ∼ y. Next, observe
that any geodesic joining x to z passes through y. So [x, z] = [x, y]∪ [y, z]. Let z′ ∈ Γ(y)∩
[y, z]. Since [x, y] ⊆ [x, z] and [x, z′] = [x, y]∪ {z′}, we find Γ(x)∩ [x, z] = Γ(x)∩ [x, z′], a
set of size one. By the same token, [y, z] ⊆ [x, z] and so Γ(z) ∩ [y, z] ⊆ Γ(z) ∩ [x, z] gives
|Γ(z) ∩ [y, z]| = 1.
Lemma 6.23. Let T be a minimal disconnecting set for Γ, y ∈ T , and suppose x ∈ X
satisfies dΓ(x, y′) = D for every y′ ∈ T except y. Then

(a) for (x, y) ∈ Ri where i ∈ Ih, we have ∑`∈Ih
pi1` = p1

11.

(b) for z ∈ X \ T which is separated from x by deletion of T , if Γ(z) ∩ T ⊆ {y}, then∑
`∈Ik

pj1` = p1
11 where (y, z) ∈ Rj with j ∈ Ik.

Proof. Let z be a neighbor of y which is separated from x by deletion of T . Since dΓ(x, z) ≤
D, we see that x is proximal only to y and [x, z] = [x, y] ∪ {z}. The set Γ(y) ∩ Γ(z) has
size p1

11 and every z′ ∈ Γ(y) ∩ Γ(z) lies at distance h + 1 from x in Γ. Since every other
neighbor of z, with the exception of y, is further away from x, we have ∑`∈Ih+1 p

j
1` = p1

11
where (x, z) ∈ Rj. Reversing roles, we see that x then has exactly p1

11 neighbors which
lie at distance h + 1 from z. But, for x′ ∼ x, dΓ(x′, y) = dΓ(x′, z) − 1. This gives (a).
To obtain (b), observe that every neighbor x′ of x with dΓ(x′, z) = dΓ(x, z) must have
dΓ(x′, y) = dΓ(x, y). By part (a), there are exactly p1

11 such vertices. So, for (x, z) ∈ Rs,∑
`∈Ih+k

ps1` = p1
11. Reversing roles, we see that exactly p1

11 neighbors of z lie at distance
h + k from x. But this is precisely the set of vertices adjacent to z which lie at distance
k from y.
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Theorem 6.24. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1) be
the graph associated to a connected basis relation. If Γ admits a disconnecting set of size
two, then Γ is isomorphic to a polygon.

Proof. Let T = {y, y′} be a disconnecting set of size two. Let D = diam Γ and let B be
the vertex set of some connected component of Γ \ T . First consider the case where y′ is
the unique vertex at distance D from y in Γ. Then every vertex is at distance D from
exactly one other vertex. On the other hand, if x ∈ B ∩ Γ(y), then any neighbor of y′
not lying in B must be at distance D from x by the triangle inequality. It follows that
y has exactly one neighbor not in B and, symmetrically, exactly one neighbor in B. So
the graph has valency two in this special case. For the remainder of the proof, assume
dΓ(y, y′) < D.

By Corollary 6.3, we have dΓ(y, y′) ≥ 3. Let x (resp., x′) denote some vertex at
distance D from y′ (resp., y). (Note x 6= y, x′ 6= y′.) Let B and B′ be the vertex sets
of two connected components Ξ and Ξ′, respectively, of Γ \ T and assume x ∈ B. By
Lemma 6.22(b), any z ∈ B′ has a unique neighbor lying closer to y. (Choosing j ∈ I2 and
z ∈ Rj(y), we see that this implies Γ is K2,1,1-free.) By Lemma 6.23(a), any z ∈ B′ \Γ(y′)
has exactly p1

11 neighbors z′ satisfying dΓ(z′, y) = dΓ(z, y). Since dΓ(x, y) + dΓ(y, x′) > D
and dΓ(x, y′) + dΓ(y′, x′) > D, we must have x′ ∈ B also. So we can swap the roles of x
and x′, y′ and y, to find that any z ∈ B′ \ Γ(y) has a unique neighbor closer to y′ and
exactly p1

11 neighbors z′ with dΓ(z′, y′) = dΓ(z, y′). Now select z ∈ B′ so as to maximize
dΓ(z, y) + dΓ(z, y′). Since dΓ(y, y′) ≥ 3, z is non-adjacent to at least one of y, y′; assume
z is not adjacent to y′. Then z has exactly p1

11 neighbors z′ satisfying dΓ(z′, y) = dΓ(z, y).
Since z maximizes dΓ(z, y)+dΓ(z, y′), any neighbor of z which lies farther away from y must
lie closer to y′. But there is exactly one such vertex. In all, we have |Γ(z)| = 1 + p1

11 + 1.
But Γ is K2,1,1-free so the neighborhood of any vertex is partitioned into cliques of size
p1

11 + 1. We find that p1
11 + 1 divides p1

11 + 2. This can only happen if p1
11 = 0; i.e., Γ is

triangle-free. But then z has degree two and Γ must be a polygon.

Our final two results deal with the special case where graph Γ has diameter two.

Theorem 6.25. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1)
be the graph associated to a connected basis relation. If Γ has diameter two and |X| >
k1(t− 1) + 2, then Γ has vertex connectivity at least t+ 1 unless t = k1.

Proof. Let T be a minimal disconnecting set of size at most t. For each y ∈ T , we use
the fact that any two vertices have at least one common neighbor to obtain∣∣∣∣∣∣

⋃
y 6=y′∈T

Γ(y′)

∣∣∣∣∣∣ ≤ (k1 − 1)(t− 1) + 1

so that there is some x ∈ X \ T not adjacent to any element of T except possibly y. Let
B be the component of Γ \ T containing x. Since Γ has diameter two, x ∼ y and every
z ∈ X \ (B ∪ T ) must also be adjacent to y. Swapping roles of the vertices in T , we find
that, for every y in T , there is some vertex x (necessarily in B) with Γ(x)∩T = {y}. But
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this implies that every z ∈ X \ (B ∪ T ) is adjacent to every vertex in T , so T = Γ(z) for
every z 6∈ B ∪ T .

Remark. With reference to Theorem 6.25, we expect the case of t = k1 to be very rare.
If t = k1, then we find that X \ (B ∪ T ) = {z} is a singleton and all but at most k1 − 2
elements of B have exactly one neighbor in T = Γ(z). With |X| ≥ k2

1 − k1 + 3 so close to
the Moore bound, does this condition force Γ to be a Moore graph?

Theorem 6.26. Let (X,R) be a symmetric association scheme and let Γ = Γ(X,R1) be
the graph associated to a connected basis relation. If Γ has diameter two, then either Γ
has vertex connectivity at least four or Γ is isomorphic to one of the following graphs: the
4-cycle, the 5-cycle, K3,3, the Petersen graph.

Proof. The case where Γ admits a disconnecting set of size two is handled by Theorem
6.24. Let T = {y1, y2, y3} be a minimal disconnecting set of size three.
Case (i): T ⊆ a⊥ for some a ∈ X.

By Corollary 6.3, we have T = Γ(a) and Γ has valency three; i.e., Γ is isomorphic to
either K3,3 or the Petersen graph.
Case (ii): Assume T is not contained in a⊥ for any vertex a.

In view of Theorem 6.25, we may assume |X| ≤ 2k1 + 2. (There is no cubic graph on
nine vertices.) Let B and B′ denote the vertex sets of two distinct connected components
of Γ\T and assume, without loss of generality, that |B| ≤ |B′|. Then we have |B| ≤ |X|−3

2 .
So |B| − 1 ≤ k1 − 2. In view of Case (i), we may assume each x ∈ B is adjacent to
exactly two members of T and every pair of distinct vertices in B is adjacent. This forces
|B| = k1 − 1. Looking at x ∼ x′ in B, we find that p1

11 ≥ |B| − 2 + 1 since x and x′

must share a common neighbor in T . Now compare this to some y ∈ T . Since we are
not in Case (i), some y ∈ T is not adjacent to any other element of T . For this y, choose
some neighbor z of y where z ∈ B if |Γ(y) ∩ B| ≤ k1

2 and z ∈ B′ if |Γ(y) ∩ B| > k1
2 .

The number of common neighbors of y and z is then at most k1
2 − 1. The inequalities

k1−2 ≤ p1
11 ≤ k1

2 −1 then imply that Γ is a polygon, which is impossible as T was chosen
to be minimal.
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Appendix A

Feasible parameter sets for LSSDs

The Handbook of Combinatorial Designs gives us a list of 21 distinct families of symmetric
designs. We now examine each family to determine which parameter sets could be the
incident symmetric design between fibers in a LSSDs with three or more fibers. The two
main conditions we will employ are that s =

√
k − λ and ν = k(k±s)

v
are integers, though

recall from Lemma 4.2 (and the remark that followed) that for any feasible parameter set,
the following must hold in order for the set to be realizable:

(i) (Corollary 4.3) v must be composite;

(ii) (Lemma 4.2(ii)) gcd(v, k) > 1;

(iii) (Lemma 4.2(iii)) gcd(v, s) > 1;

(iv) (Lemma 4.2(i)) At most one of k(k±s)
v

is integral.

Our results show that Families 6, 7, 9, 12, 13, and 14 are feasible. Further, Families 15-19
are feasible in specific cases (m = 1) but will not be feasible in general. It should be noted
that this does not mean that we can find LSSDs in each of these families with w > 2,
instead this means that we cannot disprove the existence of such LSSDs using only our
integrality conditions. In fact, two of the families (McFarland/Wallis and Spence) were
ruled out by Jedwab et al. ([57]) in the case where the symmetric designs come from
certain known constructions of difference sets. It is still open whether these families can
produce LSSDs which do not arise from linking systems of difference sets.

Family 1 (Point-hyperplane Designs)

v = qm + · · ·+ 1, k = qm−1 + · · ·+ 1, λ = qm−2 + · · ·+ 1, n = qm−1, s = q
m−1

2 .

Since s is a power of q, we know that gcd(s, v) = 1. Therefore via (iii), any LSSD with
these design parameters will have w = 2.
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Family 2 (Hadamard matrix designs)
v = 4n− 1, k = 2n− 1, λ = n− 1, s =

√
n.

Since s divides v + 1, we know that gcd(s, v) = 1. Therefore via (iii), any LSSD with
these design parameters will have w = 2.

Family 3 (Chowla)

v = 4t2 + 1, k = t2, λ = 1
4(t2 − 1), s = 1

2
√

3t2 + 1.

Chowla designs require that v is prime, therefore any LSSD with these design parameters
will have w = 2 due to (i).

Family 4 (Lehmer)
(1)

v = 4t2 + 9, k = t2 + 3, λ = 1
3(t2 + 3), n = 3

4k.

(2)
v = 8t2 + 1 = 64u2 + 9, k = t2, λ = u2, n = t2 − u2.

(3)

v = 8t2 + 49 = 64u2 + 441, k = t2 + 6, λ = u2 + 7, n = t2 − u2 − 1.

All three of the Lehmer designs require v to be prime, therefore any LSSD with
these design parameters will have w = 2 due to (i).

Family 5 (Whiteman)

v = pq, k = 1
4(pq − 1), λ = 1

16(pq − 5), s = 1
4(3p+ 1).

where p and q = 3p+ 2 are both prime. Since gcd(s, v) > 1 we must have s = p or s = q.
However s = q implies that p is negative while s = p implies that p = 1 and q = 5. As this
case gives the design parameters (5, 1, 0), only the degenerate case is possible. Therefore
any non-degenerate LSSD using Whiteman design parameters will require w = 2.

Family 6 (Menon)
v = 4t2, k = 2t2 − t, λ = t2 − t,
n = t2, s = t,

ν = (2t2 − t)(2t2 − t± t)
4t2 = 1

2(2t− 1)
(
t− 1∓ 1

2

)
.
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Since 2t−1 will always be odd, we must have that
(
t− 1∓1

2

)
is even. This means that for

odd t, we must choose the + so that we have ν = (2t− 1) t−1
2 . If instead t is even then we

must choose the − so that ν = (2t− 1) t2 . This means that Menon design parameters are
feasible for all t > 0, though our choice of µ-heavy or ν-heavy depends on the parity of t.

Family 7 (Wallis; McFarland)
v = qm+1(qm + · · ·+ q + 2), k = qm(qm + · · ·+ q + 1), λ = qm(qm−1 + · · ·+ q + 1),

s = qm, ν = qm(qm + · · ·+ q + 1)(qm(qm + · · ·+ q + 1)± qm)
qm+1(qm + · · ·+ q + 2) .

Consider first the case of ν-heavy parameters,

ν = qm(qm + · · ·+ q + 1)(qm(qm + · · ·+ q + 2))
qm+1(qm + · · ·+ q + 2) = qm−1(qm + · · ·+ q + 1).

As this is always an integer, we note using (iv) that µ-heavy parameters will never be
feasible.

Family 8 (Wilson; Shrikhande and Singhi)
v = m3 +m+ 1, k = m2 + 1, λ = m, n = m2 −m+ 1.

Note that v = mk + 1. Therefore gcd(k, v) = 1 and, from (ii), any LSSD using these
design parameters will have w = 2.

Family 9 (Spence)

v = 3m
(3m − 1

2

)
, k = 3m−1

(3m + 1
2

)
, λ = 3m−1

(
3m−1 + 1

2

)
, s = 3m−1,

ν =
1
23m−1(3m + 1)(1

23m−1(3m + 1)± 3m−1)
1
23m(3m − 1) .

First consider µ-heavy parameters,

ν =
(3m + 1)

(
1
23m−1(3m − 1)

)
3(3m − 1) = 3m−2

(3m + 1
2

)
.

As this is always an integer, we note using (iv) that ν-heavy parameters will never be
feasible.

Family 10 (Rajkundlia and Mitchell; Ionin)

v = 1 + qr
(
rm − 1
r − 1

)
, k = rm, λ = rm−1

(
r − 1
q

)
, r = qd − 1

q − 1 .

Since r divides v − 1 and k is a power of r, we know that gcd(v, k) = 1. Therefore, by
(ii), any LSSD using these design parameters will require w = 2.
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Family 11 (Wilson; Brouwer)

v = 2(qm + · · ·+ q) + 1, k = qm, λ = 1
2q

m−1(q − 1), n = 1
2q

m−1(q + 1).

Since q divides v − 1 and k is a power of q, we must have that gcd(k, v) = 1. Therefore,
by (ii), any LSSD using these design parameters will require w = 2.

Family 12 (Spence, Jungnickel and Pott, Ionin)

v = qd+1
(
r2m − 1
r − 1

)
, k = r2m−1qd, λ = (r − 1)r2m−2qd−1, s = rm−1qd,

r = qd+1 − 1
q − 1 , ν = r2m−1qd(r2m−1qd ± rm−1qd)

qd+1
(
r2m−1
r−1

) = qd−1r3m−2(rm ± 1)
r2m−1 + · · ·+ 1 .

First consider when m = 1,

v = qd+1
(
qd + · · ·+ q + 2

)
, k = qd(qd + · · ·+ 1), λ = qd

(
qd−1 + · · ·+ q + 1

)
,

s = qd.

giving us the same design parameters as McFarland (Family 7). While these constructions
may be distinct, our conditions only depend on the design parameters and thus these will
work for ν-heavy designs when m = 1. If m > 1 however, r3m−2 is relatively prime with
the denominator, so we must have (r2m−1 + · · · + 1)|qd−1 (rm ± 1). Since r = qd+1−1

q−1 =
qd + · · · + 1, we have that qd−1 < r. Therefore qd−1 (rm ± 1) < rm+1 ± r < r2m−1 · · · + 1
and thus any LSSD using these design parameters with m > 1 will require w = 2.

Family 13 (Davis and Jedwab)

v = 22d+4
(

22d+2 − 1
3

)
, k = 22d+1

(
22d+3 + 1

3

)
, λ = 22d+1

(
22d+1 + 1

3

)
, s = 22d+1,

ν =
22d+1

(
22d+3+1

3

) (
22d+1

(
22d+3+1

3

)
± 22d+1

)
22d+4

(
22d+2−1

3

) =

(
22d+3 + 1

) ((
22d+3 + 1

)
± 3

)
22d−2

3 (22d+2 − 1) .

First consider µ-heavy parameters,

ν =

(
22d+3 + 1

) (
22d+3 − 2

)
22d−2

3 (22d+2 − 1) =

(
22d+3 + 1

)
22d−1

3 .

As 2n + 1 is divisible by 3 any time n is odd, this will always be an integer. Therefore,
using (iv), ν-heavy parameters will never be feasible.
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Family 14 (Chen)

v = 4q2d
(
q2d − 1
q2 − 1

)
, k = q2d−1

(
1 + 2

(
q2d − 1
q + 1

))
, λ = q2d−1(q − 1)

(
q2d−1 + 1
q + 1

)
,

s = q2d−1, ν =
q2d−1

(
1 + 2

(
q2d−1
q+1

)) (
q2d−1

(
1 + 2

(
q2d−1
q+1

))
± q2d−1

)
4q2d

(
q2d−1
q2−1

) .

First consider µ-heavy parameters,

ν =

(
1 + 2

(
q2d−1
q+1

)) (
2q2d−1

(
q2d−1
q+1

))
4q
(
q2d−1
q2−1

) =
q2d−2(q − 1)

(
1 + 2

(
q2d−1
q+1

))
2

Since 2 will always divide either q2d−2 or q − 1, we have that ν is integral under µ-heavy
parameters. Then from (iv), ν-heavy parameters will never be feasible.

Family 15 (Ionin)

v = qd
(

r2m − 1
(q − 1)(qd + 1)

)
, k = qdr2m−1, λ = qd(qd + 1)(q − 1)r2m−2, s = qdrm−1,

r = qd+1 + q − 1,

ν =
qdr2m−1

(
qdr2m−1 ± qdrm−1

)
qd
(

r2m−1
(q−1)(qd+1)

) = (q − 1)(qd + 1)qdr3m−2

(rm ∓ 1) .

First assume that m = 1. Then,

ν = (q − 1)(qd + 1)qdr
(r ∓ 1) .

First considering µ-heavy parameters,

ν = (q − 1)(qd + 1)qdr
(r + 1) = (q − 1)(qd + 1)qdr

q(qd + 1) = (q − 1)qd−1r

Therefore these design parameters are feasible using µ-heavy parameters when m = 1
(and via (iv), ν-heavy parameters are infeasible). Now consider when m > 2. In this
case, note that r3m−2 is relatively prime to rm ∓ 1. Therefore if ν is integral, then rm ∓ 1
must divide qd(q−1)(qd+1). However, since q ≥ 2 we know that r = q(qd+1)−1 > qd+1
and r = qd+1 + q − 1 > qd+1 − qd. Therefore rm ≥ r2 > qd(q − 1)(qd + 1) meaning that it
is not possible for rm to divide the latter. Therefore ν will never be integral when m > 1.
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Family 16 (Ionin)

v = 2 · 3d
(
q2m − 1
3d + 1

)
, k = 3dq2m−1, λ = 1

23d(3d + 1)q2m−2, s = 3dqm−1,

q = 1
2(3d+1 + 1), ν = 3dq2m−1(3dq2m−1 ± 3dqm−1)

2 · 3d
(
q2m−1
3d+1

) = 3d(3d + 1)q3m−2

2(qm ∓ 1) .

We again must consider the case when m = 1 separately. If m = 1, then

ν = 3d(3d + 1)q
2(q ∓ 1)

We first consider µ heavy parameters,

ν = 3d(3d + 1)q
3d+1 + 3 = 3d−1q

Therefore when m = 1, these design parameters are feasible with µ-heavy parameters
(and via (iv), ν-heavy parameters are infeasible). Using the same arguments as before,
we can quickly find that ν will not be an integer for m > 1 noting that q is relatively
prime to qm ∓ 1 and qm − 1 > 3d(3d + 1).

Family 17 (Ionin)

v = 3d
(
q2m − 1

2(3d − 1)

)
, k = 3dq2m−1, λ = 2

(
3d
)

(3d − 1)q2m−2, s = 3dqm−1,

q = 3d+1 − 2,

ν =
3dq2m−1

(
3dq2m−1 ± 3dqm−1

)
3d
(
q2m−1
2(3d−1)

) =
3dq3m−2 (qm ± 1)

(
2(3d − 1)

)
(q2m − 1) = 2q3m−23d(3d − 1)

(qm ∓ 1) .

As before, we first consider the case when m = 1 using ν-heavy parameters,

ν = 2q3m−23d(3d − 1)
(q − 1) = 2q3m−23d(3d − 1)

(3d+1 − 3) = 2q3m−23d−1.

Therefore when m = 1, these design parameters are feasible with ν-heavy parameters
(and via (iv), µ-heavy parameters are infeasible). We again find that m > 1 will not
permit ν to be an integer as q3m−2 is relatively prime to qm±1 and qm−1 > 2 ·3d(3d−1).

Family 18 (Ionin)

v = 22d+3
(
q2m − 1
q + 1

)
, k = 22d+1q2m−1, λ = 22d−1(q + 1)q2m−2, s = 22d+1qm−1,

q = 1
3
(
22d+3 + 1

)
, ν =

22d+1q2m−1
(
22d+1q2m−1 ± 22d+1qm−1

)
22d+3

(
q2m−1
q+1

) = (q + 1)22d−1q3m−2

(qm ∓ 1) .
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First consider m = 1 using µ-heavy parameters, then ν = 22d−1q3m−2. Due to (iv) we
see that ν-heavy parameters will not be feasible. Further, ν is non integral when m > 1
noting that q3m−2 is relatively prime to qm ∓ 1 and qm − 1 > (q + 1)22d−1.

Family 19 (Ionin)

v = 22d+3
(
q2m − 1
3q − 3

)
, k = 22d+1q2m−1, λ = 3

(
22d−1

)
(q − 1)q2m−2, s = 22d+1qm−1,

q = 22d+3 − 3, ν =
22d+1q2m−1

(
22d+1q2m−1 ± 22d+1qm−1

)
22d+3

(
q2m−1
3q−3

) = 22d−1q3m−23(q − 1)
(qm ∓ 1) .

If m = 1 and we take ν-heavy parameters then ν = 22d−13q. Due to (iv) we see that
ν-heavy parameters will not be feasible. Further, ν is non integral when m > 1 noting
that q3m−2 is relatively prime to qm ∓ 1 and qm ∓ 1 > 3 · 22d−1(q − 1).

Family 20 (Ionin)
For this family we use the only known realization where p = 2 and q = 2d−1 is a Mersenne
prime.

v = 1 + 2d+1 2dm − 1
2d + 1 , k = 22dm, λ = 22dm−d−1(2d + 1), n = 22dm−d−1(2d − 1).

Our first restriction tells us that n must be a square. However since 2 does not divide
2d − 1, we know that 2d − 1 must be a square in order for n to be a square giving us a
contradiction. Thus any LSSD with these design parameters will require w = 2.

Family 21 (Kharaghani and Ionin)

v = 4t2
(
qm+1 − 1
q − 1

)
, k = (2t2 − t)qm, λ = (t2 − t)qm, s = tq

m
2 , q = (2t− 1)2,

ν =
(2t2 − t)qm

(
(2t2 − t)qm ± tqm

2
)

4t2
(
qm+1−1
q−1

) = (2t− 1)3m+1(q − 1)
4 ((2t− 1)m+1 ∓ 1) .

First, since (2t−1) is odd, we have that (2t−1)3m+1 is relatively prime to 4((2t−1)m+1∓1).
However since m ≥ 1, 4((2t − 1)m+1 ∓ 1) ≥ 4(q − 1) and thus ν is never integral. Thus
any LSSD with these design parameters will require w = 2.

Summary
We have shown here that only Families 6, 7, 9, 13, and 14 will always satisfy our integrality
conditions. Further, Families 12, 15, 16, 17, 18, and 19 satisfy our integrality conditions
whenever m = 1. Finally all remaining families will not allow for any LSSDs with w > 2.
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[32] S. M. Cioabă, J. H. Koolen, and W. Li. Max-cut and extendability of matchings in
distance-regular graphs. European J. Combin., 62:232–244, 2017.

[33] C. J. Colbourn and J. H. Dinitz. Handbook of Combinatorial Designs, Second Edi-
tion (Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 2006.

[34] E. R. van Dam. Three-class association schemes. Journal of Algebraic Combina-
torics, 10:69–107, 1999.

[35] E. R. van Dam and J. H. Koolen. A new family of distance-regular graphs with
unbounded diameter. Invent. Math., 162(1):189–193, 2005.

[36] E. R. van Dam, W. J. Martin, and M. Muzychuk. Uniformity in association schemes
and coherent configurations: cometric q-antipodal schemes and linked systems.
Journal of Combinatorial Theory, Series A, 120:1401–1439, 2013.

[37] J. Davis, W. J. Martin, and J. Polhill. Linking systems in nonelementary abelian
groups. Journal of Combinatorial Theory Series A, 123:92–103, 2014.

[38] P. Delsarte. An algebraic approach to the association schemes of coding theory.
Philips Res. Rep. Suppl., (10):vi+97, 1973.

[39] P. Delsarte, J. M. Goethals, and J. J. Seidel. Bounds for systems of lines, and Jacobi
polynomials. Philips Res. Repts., 30:91–105, 1975.

[40] P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geome-
triae Dedicata, 6(3):363–388, 1977.

[41] G. A. Dickie. Q-polynomial structures for association schemes and distance-regular
graphs. PhD thesis, 1995. The University of Wisconsin - Madison.

[42] S. A. Evdokimov and I. N. Ponomarenko. On the vertex connectivity of a relation in
an association scheme. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI), 316(Teor. Slozhn. Vychisl. 9):55–62, 225–226, 2004.

134



[43] A. Gardiner. Redrawing distance-regular graphs. Unpublished manuscript, 1980?

[44] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2001.

[45] C. D. Godsil. Equiarboreal graphs. Combinatorica, 1(2):163–167, 1981.

[46] C. D. Godsil. Algebraic combinatorics. Chapman and Hall Mathematics Series.
Chapman & Hall, New York, 1993.

[47] J. M. Goethals. Nonlinear codes defined by quadratic forms over GF(2). Information
and Control, 31(1):43 – 74, 1976.
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01-basis, 10
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arrays of intersection numbers, 15
arrays of Krein parameters, 15
intersection matrix, 16
intersection numbers, 9
Krein, 13
Krein array, 27
Krein matrix, 16

polynomial
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derivative, 39
harmonic, 39

on the sphere, 39
homogeneous, 39

on the sphere, 39
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zonal, 39

positive definite function, 41
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projection map, 114
projective double, 92
proximal, 121

real mutually unbiased bases, 76
realizable parameter set, 20
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subconstituents, 9

relative bound, 32, 35

strongly regular graph, 96
subalgebra, 11

Schur, 12
symmetric design

incidence graph, 63
symmetric design parameters, 62
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of association scheme, 111
of relation, 111

translation schemes, 18
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unweighted distribution diagram, 113
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