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Abstract

A number of outstanding problems in robotic motion and manipulation in-
volve tasks where degrees of freedom (DoF), be they part of the robot, an object
being manipulated, or the surrounding environment, cannot be accurately con-
trolled by the actuators of the robot alone. Rather, they are also controlled by
physical properties or interactions – contact, robot dynamics, actuator behavior
– that are influenced by the actuators of the robot. In particular, we focus on
two important areas of poorly controlled robotic manipulation: motion plan-
ning for deformable objects and in deformable environments; and manipulation
with uncertainty. Many everyday tasks we wish robots to perform, such as
cooking and cleaning, require the robot to manipulate deformable objects. The
limitations of real robotic actuators and sensors result in uncertainty that we
must address to reliably perform fine manipulation. Notably, both areas share
a common principle: contact, which is usually prohibited in motion planners,
is not only sometimes unavoidable, but often necessary to accurately complete
the task at hand.

We make four contributions that enable robot manipulation in these poorly
controlled tasks: First, an efficient discretized representation of elastic de-
formable objects and cost function that assess a “cost of deformation” for a
specific configuration of a deformable object that enables deformable object
manipulation tasks to be performed without physical simulation. Second, a
method using active learning and inverse-optimal control to build these dis-
cretized representations from expert demonstrations. Third, a motion planner
and policy-based execution approach to manipulation with uncertainty which
incorporates contact with the environment and compliance of the robot to gen-
erate motion policies which are then adapted during execution to reflect actual
robot behavior. Fourth, work towards the development of an efficient path qual-
ity metric for paths executed with actuation uncertainty that can be used inside
a motion planner or trajectory optimizer.
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Chapter 1

Introduction

Many outstanding problems in robotic motion and manipulation involve tasks
where degrees of freedom (DoF) cannot be accurately controlled. These DoF,
be they part of the robot, an object being manipulated, or the surrounding en-
vironment, cannot be accurately controlled by the actuators of the robot alone.
Rather, they are also controlled by physical properties or interactions – contact,
robot dynamics, actuator behavior – that are influenced by the actuators of
the robot. Even though they cannot be controlled directly, these DoF must
be accounted for to enable robust robot behavior. Some robots, such as many
popular robotic hands, deliberately include underactuated mechanisms in their
design to reduce the number of actuators. Instead, we focus on difficult-to-
control systems that arise indirectly as a result of the task being performed or
undesired behavior of the robot.

In particular, we focus on two important areas of poorly controlled robotic
manipulation: motion planning for deformable objects and in deformable envi-
ronments; and manipulation with uncertainty. Many everyday tasks we wish
robots to perform, such as cooking and cleaning, require the robot to manipulate
deformable objects. Other important applications of deformable object manip-
ulation include industrial and surgical tasks. Here, the high number of DoF that
arise from the deformable materials cannot be controlled directly, but instead
are influenced primarily by gravity and contact. The limitations of real robotic
actuators and sensors result in uncertainty that we must address to reliably
perform fine manipulation. For example, the widespread use of safer compliant
and low-cost robot manipulators including Baxter and Raven has led to a class
of robots which exhibit significant actuator error yet also have accurate sensors.
Here, the poorly-controlled DoF arise from the uncertainty of the actuators,
which can be influenced by the dynamics of the robot and contact with the
environment. Notably, both areas share a common principle: contact, which is
usually prohibited in motion planners, is not only sometimes unavoidable, but
often necessary to accurately complete the task at hand.

This thesis makes four contributions that enable robot manipulation in these
poorly controlled tasks: First, an efficient discretized representation of elastic
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deformable objects and cost function that assess a “cost of deformation” for
a specific configuration of a deformable object that enables deformable object
manipulation tasks to be performed without physical simulation. Second, a
method using active learning and inverse-optimal control to build these dis-
cretized representations from expert demonstrations. Third, a motion planner
and policy-based execution approach to manipulation with uncertainty which
incorporates contact with the environment and compliance of the robot to gen-
erate motion policies which are then adapted during execution to reflect actual
robot behavior. Fourth, work towards the development of an efficient path qual-
ity metric for paths executed with actuation uncertainty that can be used inside
a motion planner or trajectory optimizer.

We seek to plan motion for deformable robots and environments that min-
imizes deformation. Previous work in motion planning for deformable robots
and environments has relied on the use of expensive Mass-Spring (M-S) [1] and
Finite Element (FEM) models [2] of the deformable elements. While these mod-
els can produce accurate models of deformed geometry, they are too expensive
to use inside a motion planner that must evaluate thousands of possible configu-
rations. Instead, inspired by work on efficient meshless models [3], we introduce
a discretized representation of deformable objects. Importantly, this represen-
tation contains parameters for both quantitative physical properties - i.e., the
stiffness of the material, but also quantitative characteristics - the “sensitivity”
of the object. This distinction allows us to encode not only material properties,
but properties like fragility or importance, which allows a motion planner to
increase deformation of other objects to avoid deforming a particularly sensitive
one.

Using these two sets of parameters, we develop a cost function that computes
a “cost of deformation” for colliding (i.e., deforming) configurations and can
be used in standard optimal and cost-sensitive motion planners such as A*,
RRT*, T-RRT, and GradienT-RRT. Further development of our representation
introduced an efficient online method for detecting motions that puncture a
deformable object. Such motions, while often low cost, are highly undesirable
and must be explicitly prohibited. Using our representation and cost function,
we have planned low- (SE(2)) and high-dimensional (SE(3)) paths for rigid
and deformable objects in deformable or rigid environments without requiring
expensive physical simulation of deformable object behavior.

While our “cost of deformation” and discretized models enable efficient mo-
tion planning without needing expensive physical simulation, the qualitative
sensitivity parameter introduces a critical new parameter to tune. As a pa-
rameter that captures qualitative characteristics of an object, it often cannot
be set directly from known physical properties. This is particularly important
in complex environments, in which accurate object sensitivities are critical to
producing desirable motion. Indeed, it is often easier to specify the desired
motion than the parameters that produce it. Instead of time-consuming and
error-prone manual parameter tuning, we frame the problem as one of inverse-
optimal control (IOC), in which we use optimal expert demonstrations to recover
the desired sensitivity parameters. IOC has been widely used in robot control
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and learning [4, 5, 6, 7], and offers the ability to use domain knowledge of the
task (for example, a surgeon familiar with the tissues and organs of the body)
to produce parameters for complex and unintuitive cost functions.

Our approach uses the Path Integral Inverse Reinforcement Learning (PI-
IRL) [8] IOC technique, which uses optimal demonstration trajectories and a
set of randomly-sampled suboptimal trajectories to compute optimal parameter
values using convex optimization. Notably, using PIIRL avoids the need to re-
peatedly solve the forward problem – in this case, the forward problem consists
of planning an optimal minimum-deformation path using the asymptotically-
optimal RRT* [9] planner, an operation which takes approximately 30 minutes.
PIIRL, of course, requires that sufficient demonstrations be collected to learn
the desired behavior. Too few collected, and incorrect behavior will result, while
exhaustively collecting all possible demonstrations (for example, a demonstra-
tion for every pair of deformable objects in an environment) would be time-
consuming and potentially infeasible. To address this, we introduce an active
learning algorithm that selects demonstrations needed to cover all objects in
the environment. Using the active learning and PIIRL, we accurately recover
sensitivity parameters for deformable objects in a simulated surgical probe in-
sertion task and show that planning using the recovered parameters reproduces
the expert-demonstrated motion.

Our contribution to manipulation with actuation uncertainty incorporates
contact with the environment and compliance of the robot to generate motion
policies which we then adapt during execution to reflect actual robot behavior.
This approach consists of two steps: First, an anytime sampling-based motion
planner which generates policies containing multiple solution paths; and Sec-
ond, policy-based execution which compares the real configurations reached by
the robot to those predicted by the planner and updates the policy accordingly.
Not only is contact with the environment often unavoidable due to the robot’s
actuator uncertainty, but it can be beneficial, as contact reduces uncertainty.
Our planner uses forward-simulation of the robot’s motion and compliance when
in contact with the environment to predict the configurations that result from
specified control inputs. While some previous approaches have used analytical
probability distributions to model the distribution of potential configurations
of a robot with uncertainty (what we call belief ), contact with the environment
results in some dimensions of the belief distribution losing support or the belief
becoming trans-dimensional, which these analytical distributions cannot model.
Instead, like previous work [10], we use a particle-based representation of un-
certainty in which we forward-simulate multiple noisy motions of the robot for
each control input.

Similarly to previous work [10], we note that multiple attempts to perform a
single action may result in multiple outcomes. While we cannot select between
these outcomes, we can be resilient to undesirable behavior by identifying during
execution which outcome is reached, and if need be, attempt to return to the
previous state and try again. We incorporate this resilience into execution
using policies that not only detect when undesirable outcomes are reached, but
also unexpected outcomes that were not encountered during planning. We use
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the robot behavior during execution to update the policy so that the policy
reflects the true ability of the robot to perform actions; for example, if an
action is in fact impossible to complete due to an obstruction or unmodelled
dynamics of the robot. In our experiments in a range of low- (SE(2)) and
high-dimensional (SE(3) and R7) manipulation tasks, our approach generates
policies that reliably perform manipulation tasks involving significant contact
and are resilient to significant changes during execution.

Our work in motion planning and execution with actuation uncertainty of-
fers a method for reliably performing fine manipulation tasks; however, it is
still significantly more computationally expensive than simpler sampling-based
techniques. While these simpler techniques do not account for uncertainty (or
even simpler techniques that forbid contact entirely), our experience shows that
they can accomplish some tasks with similar probability of success (see Section
5.4.2 for such an example) so long as the planned policy is robust and diverse.
Indeed, because simpler approaches that ignore uncertainty require significantly
less simulation, they produce policies with more diverse solution paths. Like-
wise, a conventional planner that did not require any simulation would likely
produce even more diverse policies. However, all of these simplified approaches
lose the ability to assess the quality of the paths they generate.

We wish to develop a metric to assess the quality of these paths; in particu-
lar, we seek a metric that can be used during the motion planning process. Such
a metric has a number of important applications: by independently assessing
path quality, we can use simpler, more efficient, planners without losing guar-
antees of path quality; it can be used to distinguish between tasks which can
be solved with simpler planners and those that require planning incorporating
uncertainty; or it can be used to assess the quality of planned paths in the face
of potential changes to robot’s actuation uncertainty or the environment. Sig-
nificantly, the availability of an efficient path quality metric enables the use of
trajectory optimization techniques. While we can empirically assess the quality
of these planned paths using simulation, forward-simulating the large number
of executions necessary to accurately measure path quality is prohibitively ex-
pensive.

Instead, we propose a metric using the reachable C-space volume of the path.
We construct a set of reachable C-space volumes between the waypoints of the
path that bound the possible configurations the robot could achieve given the
actuation uncertainty. Within each reachable volume, we can determine which
configurations become stuck and fail to reach the target waypoint, which we
use to characterize stuck regions of the contact manifold. We then estimate the
probability that samples reach these stuck regions. We combine these probabil-
ities for all reachable volumes along a path to compute the probability of the
robot becoming stuck, and thus form a metric for path quality.

In this thesis, we start by presenting the representation of deformable ob-
jects and cost function we developed to enable motion planning for deformable
robots and environments without expensive simulation in Chapter 3. Further
developing our representation and motion planning, in Chapter 4 we present our
active learning and IOC-based approach for learning behavior in deformable en-
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vironments from expert demonstration. Our development of a motion planner
and policy-based execution method for robots with actuation uncertainty is
presented in Chapter 5. Our work on motion planning for robots with actua-
tion uncertainty motivates the development of a path quality metric for paths
planned for these robots that can be used within the planning process. In
Chapter 6, we formally define the problem of computing a path quality metric
for execution under actuation uncertainty and develop a method for efficiently
computing such a metric.
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Chapter 2

Related Work

2.1 Modeling deformable objects

Deformable objects are important for a variety of fields ranging from computer
graphics to robotics to medicine. As a result, extensive work has been done on
the modelling and representation of deformable objects for computer graphics
[11] and medicine [12]. More recently, this work has been adapted to robotics to
allow the manipulation of real-world objects such as clothing, rope, and human
tissue. Unlike a range of work focusing on visual servoing [13, 14], realtime
simulation [15, 16], haptics [17, 18], and learning from demonstration [19, 20]
with deformable objects, we focus on motion planning for deformable objects –
i.e., we seek to compute a path that minimizes deformation. [16, 21]

While a wide variety of modelling approaches for deformable objects exist for
computer graphics and physical simulation purposes, we are primarily concerned
with representations suitable for motion planning purposes. We wish to avoid
the problem of directly computing the geometry of a deformed object, as doing
so is an expensive intermediate step to assessing the severity of deformation.

Existing representations of deformable objects fall into two main groups,
those using meshed volumetric models and those using meshless models:

Meshed - Often tetrahedral meshes, these models preserve volumetric con-
straints and allow the use of numerical simulation to compute the effects of col-
lision. Existing work uses Mass-Spring (M-S) [11] and Finite-Element (FEM)
[22],[23] methods to simulate changes to object geometry resulting from colli-
sions. These methods allow the inclusion of volume preservation and restoration.
However, as noted in [1], M-S models are inaccurate beyond low-deformation
cases, and both M-S and FEM are expensive to compute.

Meshless - Two variants of this approach exist – models that represent only
the surface of the object such as [1], and models such as [3], which use a dis-
cretized representation that allows for heterogeneous objects with varying in-
ternal properties. In the former case, the surface model was used to compute
the penetration into the object, ignoring internal forces. In the latter, discrete
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information on material properties allows the efficient computation of object
deformation with comparable accuracy to established FEM methods [3].

Some deformable objects, such as rope and thread, can change shape with
limited (or no) restoring forces. Existing models for these objects assume that
the object itself is incompressible [24] (i.e.,, a rope cannot be crushed), which
prevents the application of these techniques to problems such as ours, in which
the objects modelled must be compressible. Other models for these objects,
such as [25, 21] use approximate Jacobian-based models for online modelling
and control, but are unsuitable for our global planning approach.

The most similar work to ours is [3] which uses underlying discrete repre-
sentation similar to ours, [3] simulates the geometry and kinematics of hetero-
geneous deformable objects. While this technique could be used as a stepping-
stone to compute a cost of deformation, our method skips the simulation step to
directly compute a cost value. In addition, this approach does not incorporate
an element comparable to the sensitivity used in our representation.

Learning physical parameters of deformable objects from demonstration
and manipulation has been explored using camera and pointcloud observations
[26, 27, 28], and through active manipulation [29, 15, 30]. Limited work has
been done using optimization to learn parameters; in [27] parameters of an
FEM model were learned by iteratively updating model parameters until mod-
elled object deformation and interaction forces matched those measured when
deforming a test object. However, these approaches are limited to capturing the
observable physical behavior of a given object.

2.2 Planning for deformable objects

Building from these established representations and techniques, a range of mo-
tion planning approaches have been developed to find paths in deformable en-
vironments. Extensive work has been done applying Probabilistic Roadmap
planners (PRM) [31] and Rapidly-exploring Random Tree planners (RRT) [32]
to deformable objects, including [33, 34, 35, 36, 37, 2]. Other work in the area
includes planning for rope and thread such as [24].

However, the above work is marked by a trade-off between the desires for
accuracy and performance. Accurate methods based on FEM models are slow
to compute, prompting a range of simpler models such as [34, 1] which are
designed to provide “good-enough” simulation of deformation. Furthermore,
most previous work is concentrated on finding feasible deformations using vol-
ume preservation and penetration distance to evaluate feasibility, whereas we
seek to minimize deformation.

Limited work has been done to account for the severity of the deformation,
such as [1] and [2], which assess a cost of deformation. In the former, the
problem of motion planning itself is replaced with an optimization problem of
reducing the cost for motion along a parametrized Bezier curve below a preset
threshold. Instead of a local optimization approach like this, our approach is to
use global planners.
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The most similar planning approach to ours, [2], attempts to generate op-
timal paths, taking into account both costs incurred in deformation and path
length. Unlike our approach, [2] relies on extensive and time-consuming pre-
computation of a meshed environment using FEM methods. Notably, because
our approach provides a cost function that accounts for both object deformation
and sensitivity, it produces plans that both minimize deformation and prefer-
entially deform or avoid objects based on their sensitivity.

2.3 Inverse optimal control (IOC)

Inverse Optimal Control (IOC) is the problem of recovering the cost or reward
function being optimized by a trajectory or policy. Introduced by Kalman [4]
and applied to a range of robotics problems [5, 38, 39], several different formu-
lations of the IOC problem and algorithms to address it have been proposed,
covering both continuous and discrete state spaces [5]. Earlier approaches to the
IOC problem, such as apprenticeship learning, require that the forward prob-
lem be solved in addition to computing optimal weights [7, 6]. More recent
approaches, based on the maximum entropy principle, replace the need for solv-
ing the forward problem by using sample trajectories around the demonstration
[40].

The IOC approach we use, Path Integral Inverse Reinforcement Learning
(PIIRL) samples around the demonstration instead of solving the forward prob-
lem [41, 8]. In the PIIRL formulation, a series of locally-optimal demonstration
trajectories are gathered from the user(s). For each of these demonstrations,
a set of sample trajectories around the demonstration is generated; note that
these samples are assumed to be sub-optimal relative to their demonstration.
For all demonstrations and all samples, user-specified features are evaluated,
and the weights associated with these features are then recovered via convex
optimization that attempts to maximize the margin between the features of the
demonstrations and the features of the samples.

2.4 Planning and manipulation with uncertainty

Planning motion in the presence of actuation uncertainty dates back to the sem-
inal work of Lozano-Pérez et al. [42], which introduced pre-image backchaining.
A pre-image, i.e., a region of configuration space from which a motion command
attains a certain goal recognizably, was used in a planner that produced actions
guaranteed to succeed despite pose and action uncertainty. However, construct-
ing such pre-images is prohibitively computationally expensive [43, 44, 45].

In its general form, belief-space planning is formulated as a Partially-Observable
Markov Decision Process (POMDP) [46], which are widely known to be in-
tractable for high-dimensional problems [47, 44]. However, recent developments
of online planners [48] and general approximate point-based solvers such as
SARSOP [49], MCVI [50], DESPOT [51], and others [52, 53] have made consid-
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erable progress in generating policies for complex POMDP problems. For some
lower-dimensional robot motion problems like [54, 55, 56], the POMDP can
be simplified by extracting the part of the task that incorporates uncertainty
(e.g., the position of an item to be grasped) and applying off-the-shelf solvers
to the problem. Online approaches also exist, such as [51, 57]. In certain cases,
MDP and POMDP problems can be linearized [58, 59]. Others have investi-
gated learning approaches [60] for similar problems; however, we are interested
in planning because we want our methods to generalize to a broad range of tasks
without collecting new training data.

Recent work incorporates advances from sampling-based planning to plan
motions in belief-space. This work uses derivatives of both PRM [61] and RRT
[62] planners, including asymptotically-optimal derivatives such as [63, 64] which
may produce nearly-optimal motion plans in certain combinations of robots
and cost functions. Several sampling-based belief-space planners have been
developed [10, 65, 66, 58, 67]. Others have evaluated sampling [68] and belief-
space distance functions [69] and show that the selection of distance function
greatly impacts the performance of the planner. Additionally, approaches using
LQG and LQR controllers [58, 70, 71, 72, 73] and trajectory optimizers [74, 75]
have been proposed. These approaches use Gaussian distributions to model
uncertainty, but such a simple distribution cannot accurately represent the belief
of a robot moving in contact with obstacles, where belief may lose support in
one or more dimensions, or the state may become trans-dimensional. Other
approaches like [10] use a set of particles to model belief like a particle filter;
while we also use a particle-based representation, our approach more accurately
captures the behavior of splits and also includes resilience during execution.

The importance of contact and compliance has long been known, with [42]
demonstrating the important role of compliance in performing precise motion
tasks. Others have investigated the effects of uncertainty on the use of contact
in optimal control [76]. Sampling-based motion planning for compliant robots
has been previously explored in [77], albeit limited to disc robots with simplified
contact behavior. We draw from these methods, but our approach differs sig-
nificantly from previous work by incorporating contact and compliance directly
into the planning process by using forward simulation like the kinodynamic RRT
[62]. A major advantage over existing methods is that the policies we generate
are not fixed; instead, we update them online during execution, which allows us
to reduce the impact of differences between our planning models and real-world
execution conditions.
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Chapter 3

Representation Of
Deformable Objects For
Motion Planning Without
Physical Simulation

3.1 Introduction

The primary challenge of motion planning for deformable objects and environ-
ments is that deformation is very difficult to simulate accurately. Unlike rigid
objects, whose dynamics are well-understood, the motion of a deformable ob-
ject depends on a large and complex set of parameters that define its stiffness,
friction, and volume preservation. Computing the geometry of a deformable
object in contact with another object is particularly challenging, especially if
both objects are deformable. Many methods exist for deformable object simu-
lation, including mass-spring model simulation [11] and the more general finite
element method (FEM) [22, 23]. Simulation methods for meshless models also
exist [3]. FEM simulation is generally regarded to be the most accurate, al-
though it is highly sensitive to the discretization of the deformable object and,
for fine discretizations, is very time-consuming to compute.

Given the difficulties of deformable object simulation, we seek to explore the
practicality of performing useful motion planning for deformable objects without
explicitly simulating them. To accomplish this, we model the environment and
moving object using voxel grids. Each contains two values: deformability and
sensitivity. The deformability represents how compressible the voxel is. The
sensitivity represents the penalty for deforming that particular voxel. Sensitivity
is used to allow our motion planner to avoid some objects more than others in the
planning process, which is useful if different objects have different sensitivity to
deformation. For instance, in a surgical setting, one organ may be more sensitive
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(a) (b)

Figure 3.1: Execution of paths planned using our representation: (a) with a PR2, (b)
in the Bullet physics simulator.

to compression than another, even though both are equally deformable.
Our representation is designed to represent objects that deform elastically,

meaning that while the object may change its surface geometry when in con-
tact, it exhibits volume restoration and will return to its original shape when the
colliding object is removed (e.g., a sponge). Note that our representation cur-
rently assumes that environment objects, whether deformable or rigid, do not
move as a result of deformation or other forces. While restrictive, we believe
that these limitations are consistent with a range of real-world problems where
deformable objects are constrained by the environment (e.g., inside the body)
or by the robot itself (e.g., a robot with deformable components). In cases that
do not completely meet these constraints, we believe our representation will be
conservative – it will over-estimate the severity of deformation. Certain objects
such as clothing or rope that do not obey these limitations may instead be rep-
resented as an articulated series of these voxel-based representations, though
this is not within the scope our work.

Once the moving object and environment have been defined using our voxel-
based representation, we can evaluate the cost of a given configuration of the
object by computing a novel cost function that combines deformability and sen-
sitivity into a single value. This value represents the deformation cost of that
configuration. Using this cost function, the cost of a given configuration in a mo-
tion planner may be computed. As we demonstrate, this cost function is suitable
for both discrete (demonstrated using a variant of A*) and sampling-based mo-
tion planning algorithms (demonstrated using T-RRT [78] and GradienT-RRT
[79]).

In our experiments we show that our method is effective at finding paths for
rigid objects moving in deformable environments, deformable objects moving in
rigid environments, and deformable objects moving in deformable environments.
Computing paths for these scenarios would involve radically different simulation
methods, however, using our approach, we need only to adjust the deformability
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Figure 3.2: An example of our representation and cost function – deformability values
are shown in red, sensitivity values are shown in blue. The voxel centers of the moving
object (orange) are shown as black points. Cost is computed for the shaded voxel in
collision.

of the object and environment. We verify the efficacy of our method in virtual
environments using the Bullet physics simulator, and in physical experiments
using the PR2 robot with a custom deformation-tracking camera system.

3.2 Methods

We have developed an efficient representation for deformable objects and a cost
function for assessing the cost of collisions. Building from this representation, we
have developed a cost function that allows discrete and sampling-based planners
to compute paths that minimize deformation.

3.2.1 Representation

Object geometry is inherently captured in our voxel-based representation. Un-
like triangle meshes and other methods optimized for surface representation,
this discretization preserves information about the interior of the object. As
with all discrete representations, the resolution of our representation is limited
by the size on an individual voxel. Arbitrarily high resolution can be achieved
by increasing the number and decreasing the size of the voxels, at the cost
of increased memory usage and processing time. To address the well-known
problem of rotating voxels, only the planning environment is directly modelled
using voxels; objects being moved are represented by a set of points that shares
the same discretization, in which the points correspond to voxel centers. An
example representation is shown in Figure 3.2.

Our representation captures physical properties through the use of two pa-
rameters per voxel, Sensitivity and Deformability. These parameters represent
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the cost incurred by deforming the voxel, and the ability of the voxel to be
deformed (similar to the “stiffness” in [3]). Intuitively, a completely rigid ob-
ject has a deformability of zero, while empty space has a deformability of one.
Sensitivity is a user-assigned parameter that allows a range of object qualities
to be represented. In general, sensitivity may be used to differentiate between
two deformable objects with similar physical properties but different desired
qualities.

Increasing sensitivities from the surface to the center of an object can be
used to represent a greater severity of deformation (e.g., the tissue inside an
organ may be much more prone to damage than the exterior) or, by increasing
sensitivity to infinity, effectively prevent the planner from producing paths that
result in any penetration. While deformability parameters can be derived from
physical properties of an object, tuning sensitivity parameters is more com-
plicated. In future work, we plan to investigate the automatic generation of
sensitivity parameters.

3.2.2 Cost Function

Using our voxel-based representation, we develop a cost function to assess the
cost of collision between two objects. As noted already, previous work with
deformable objects requires the expensive calculation of the deformed geometry;
our method, however, directly assesses the costs resulting from this deformation
by observing the intersecting volume of objects in collision. Cost is computed
for each voxel of the object (or objects) being moved in collision, and the sum
of these per-voxel costs is the total cost of deformation for a given state.

Per-voxel cost is evaluated using Equation 3.1. Let Ci be the total defor-
mation cost of voxel i, while Si(A) and Sj(B) are the sensitivity parameters of
voxel i in object A and j in B, respectively. Similarly, Di(A) and Dj(B) are
the deformability parameters of voxels i and j.

Ci(A,B) =
Di(A)

Di(A) +Dj(B)
∗ Si(A)

+
Dj(B)

Di(A) +Dj(B)
∗ Sj(B) (3.1)

Intuitively, this cost function assigns cost based on the weighted combination
of costs incurred by both objects. If both objects have the same deformability,
each will contribute equally to the total cost (if Si(A) = Sj(B)), while in cases of
varying deformability, the “softer” object with higher deformability contributes
more to the total cost. In cases of hard-on-soft or soft-on-hard collision where
one object is completely rigid, only the soft object being deformed contributes
to the total cost.

A notable special case of Equation 3.1 exists if both Di(A) and Dj(B) are
zero (meaning that voxels i in A and j in B are both rigid), in which case
Ci(A,B) becomes undefined. This property is used for implicit collision detec-
tion in our planner, as our implementation of the cost function returns NaN
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in these cases, which allows states resulting in rigid body collisions to be elim-
inated. Similarly, using NaN for sensitivity values can also be used to make
certain states explicitly infeasible.1

3.2.3 Discrete Path Planning

For low-dimensional problems, we use a planning algorithm based on the well-
known A* search algorithm [80]. A* is both complete, meaning that it will
always find a solution if it exists, and optimal, meaning that it will always find
the minimum-cost path to the solution.

In its conventional form, A* orders states based on the combined value of
g(s), the cost of moving to state s, and h(s), the heuristic value of s. A* alone is
sufficient for use in rigid environments in which states are either feasible and free
of collision, or infeasible due to collision; however, A* is insufficient to handle
planning in deformable environments with feasible collisions.

Algorithm 1 Cost function for our A* planning algorithm

procedure Fvalue(s, p)
return (1− p)× (h(s) + g(s)) + p×Deform(s)

procedure Deform(s)
cost← s.parent.cost
for each point A in s.shape do

B ← Lookup(A)
cost← cost+ C(A,B)

return cost

Thus, we adapt the A* algorithm to account for the deformation cost in ad-
dition to the path length cost, as seen in the DEFORM and FVALUE functions
in Algorithm 1. The DEFORM function computes the total cost of deformation
in a given state using C(A,B), our cost function shown in Equation 3.1 for all
voxels in the moving object. LOOKUP transforms a given point in the object
being manipulated into the planning environment and returns the correspond-
ing voxel. FVALUE, which implements the classical f(s) = g(s)+h(s) in A*, is
extended to incorporate the deformation cost of the path to s, which is returned
by DEFORM. Here, g(s) is the path length from the start to state s, and h(s)
is the euclidean distance from s to the goal.

It is important to point out that we have not simply appended deformation
cost to the overall state cost. Instead, we have incorporated the concept of
Pareto-optimality for paths discussed in [81], which allows us to compute paths
with varying definitions of optimality. This control is introduced with the pa-
rameter p, which weighs the deformation against path length. Intuitively, low
values of p induce greater deformation if doing so will result in a shorter path,
as they increase the relative penalty of path length. High values of p may result

1As defined in the IEEE Floating Point standard, NaN “poisons” calculations, so a single
voxel cost of NaN results in a total cost of NaN.
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in lower deformation at the expense of longer paths. The two boundary cases
of p, namely p = 0 and p = 1, result in conventional A* (ignoring deformation)
and best-first search considering only deformation, respectively. Note that us-
ing 1− p to scale the heuristic is necessary to ensure that the heuristic remains
admissible.

In practice, selecting values for p close to 0 may result in undesirably high
deformation and values close to 1 may produce unnecessarily long paths. In
cases where no deformation-free path exists, the effect of p is dependent on
the total deformation encountered and the cost parameters of the deformable
objects. In practice, the paths for the range of p values can be presented to the
user, allowing the user to select from the Pareto front.

3.2.4 Sampling-based Planning

For higher-dimensional problems, we evaluate both the T-RRT algorithm [78]
and the GradienT-RRT algorithm [79] with our representation. Both are probabilistically-
complete sampling-based planners suitable for cost-space planning in high-dimensional
spaces. Our choice of these planners instead of the better-known RRT* [9] is
because T-RRT has been shown to outperform RRT* [82, 83] in higher dimen-
sions and because GradienT-RRT is an extension of T-RRT specifically intended
for narrow low-cost regions such as those encountered in many scenarios where
objects need to be deformed to complete a task.

The T-RRT algorithm, unlike the basic RRT, uses cost to control the addi-
tion of nodes to the tree. Addition of nodes is a function of the cost of the new
node, the cost of its parent, and the distance between them (see Algorithm 2 in
[78] for details). New nodes of lower cost than their parents are automatically
added. Higher-cost nodes are added to the tree with probability dependent on
the cost increase and the current temperature. Expansion behavior is primarily
controlled with the nFailMax parameter, which specifies the number of unsuc-
cessful extensions required to increase temperature. Effectively, nFailMax can
be used to trade between cost and planning time – lower values will result in
more rapid expansion (and thus faster planning), while higher values will result
in lower cost solutions, usually at the expense of longer planning time.

The GradienT-RRT algorithm is designed to address particular shortcom-
ings of T-RRT, namely in the inability of T-RRT to follow narrow valleys in
the cost-space. Instead of simply rejecting higher-cost nodes, GradienT-RRT
adjusts them using the gradient of the cost function. If these new nodes result
in lower cost, they are then added to the tree. GradienT-RRT has been previ-
ously applied to a range of cost-space problems including those with workspace,
task-space, and configuration-space costs. However, GradienT-RRT requires a
function that computes the gradient ∇q of the cost function at configuration q
in addition to the cost of that configuration. Our approach to computing the
gradient derives from previous work planning for workspace uncertainty [79].

The gradient for a given state is computed as shown in Equation 3.2 in a
similar manner to that used in [79].
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Figure 3.3: Workspace gradient computation: initial per-voxel gradients ∇xi,∇xj
(dashed arrows) are computed using a signed distance field in GradienT-RRT. These
gradients are scaled by the cost function evaluated at the voxel of intersection (shaded)
to produce the final Ci∇xi, Cj∇xj (solid arrows).

∇q = J(q, x1, x2, ...)
T [C1∇xT1 , C2∇xT2 , ...]T (3.2)

Here, a workspace gradient ∇xi is computed for each voxel xi of the robot
that intersects an obstacle at configuration q. As this workspace gradient only
reflects penetration of filled voxels, we multiply the magnitude of the gradient
for each voxel with the cost computed from our aforementioned cost function Ci
as shown in Figure 3.3. We use the Jacobian J(q, x1, x2, ...), a composition of the
Jacobians for each point in the intersection, to convert this workspace gradient
to the C-space gradient ∇q needed for GradienT-RRT. For both T-RRT and
GradienT-RRT planners, edge cost is simply the change in cost between a node
and its parent. Note that we do not currently have an equivalent to p for our
sampling-based planners, as the paths produced by T-RRT and GradienT-RRT
are not guaranteed to be optimal (though they have low cost in practice).

3.3 Results

We have applied our methods to both simulation-only environments and sim-
pler physical environments manipulated by a PR2 robot. For low-dimensional
problems, we have implemented a planner integrated with ROS [84], which pro-
vides both visualization for planning and testing, control of the PR2, and the
interface to our custom deformation tracking system. For higher-dimensional
problems, we have modified the existing GradienT-RRT planner in the Open-
RAVE [85] planning environment and implemented a validation environment
using the Bullet physics simulation engine [86]. We show the performance of
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(a) Triple-wall (b) Multi-cost

Figure 3.4: Simulation environments (a) three walls with a deformation-free path,
(b) two walls with multiple sensitivity values – blue sections have half the sensitivity
of gray sections.

these planners on several problems and report time and cost results. We also
present a way to calibrate our model.

3.3.1 Low-dimensional Planning

We first demonstrate the capabilities of our representation in low-dimensional
environments using our A*-derived planner. We use a set of simulated envi-
ronments and objects with different combinations of hard and soft material
properties. The environments are modelled at a resolution of 8mm, for a total
size of 54000 voxels. Due to the well-known performance problems of apply-
ing A* directly to high-dimensional problems, we limit planner control to 3D
translation of the object.

Environment

We have built two simulation environments, shown in Figure 3.4, that demon-
strate the capabilities of our low-dimensional planning method. The first of
these environments provides a set of distinct pareto-optimal paths with decreas-
ing path lengths and increasing cost, while the second environment illustrates
the control provided by the sensitivity parameter (e.g., Si(A)) of our represen-
tation. With both of these environments, the behavior of the planner can be
controlled using p. Additionally, due to the simplicity of our representation, it is
trivial to change these environments to reflect all four combinations of hard/soft
obstacles and robot, and we report results for all of these cases.

The first environment, (“triple-wall”), allows both deformation-free and de-
formed paths. By varying p, we are able to control the balance between defor-
mation and path length. Additionally, due to the existence of a deformation-free
solution, it can be simulated as a fully rigid environment instead, and we provide
this for comparison.
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The second environment, (“multi-cost”), illustrates the capability of our
deformability and sensitivity representation. Both black and blue obstacles in
this environment exhibit the same nominal physical properties (captured by
deformability). However, we assign lower sensitivity to the blue obstacles to
indicate that deformation of them is less severe. As before, using p we can tune
the behavior of the planner to produce paths that deform either or both blue and
black obstacles. While simple, this environment illustrates the advantage of our
representation, namely that it combines both physical and qualitative properties
of objects that are difficult to capture using purely mechanical models.

Testing

(a) (b) (c) (d)

Figure 3.5: Path classes for the Triple-wall simulation environment (soft) using the
robot (hard) shown (a) with the swept volume of the robot shown in red (b) deforma-
tion free path: length = 94, p = 0.7, deformation = 0, (c) medium deformation path:
length = 65, p = 0.01, deformation = 683, and (d) highest deformation path: length
= 61, p = 0.0, deformation = 1062.

(a) (b) (c) (d)

Figure 3.6: Path classes for the Multi-cost simulation environment (soft) using the
robot (hard) shown (a) with the swept volume of the robot shown in red (b) lowest
deformation path: length = 73, p = 0.7, deformation = 81, (c) medium deformation
path: length = 58, p = 0.01, deformation = 159, and (d) highest deformation path:
length = 57, p = 0.0, deformation = 310.

Using the triple-wall environment, we have run the planner for all combina-
tions of hard and soft properties and values of p ranging between 0 and 1. Three
distinct examples of these paths can be seen in Figure 3.5. Notably, only very
low values of p, such as p = 0.01 result in any incurred deformation for this test
environment. This is due to the imbalance between cost incurred due to path
length and cost of deformation – the optimal non-deformation path through
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the environment has a length of approximately 94, while a deformation-causing
path of length 61 incurs a deformation cost of 1062. In contrast, the multi-
cost environment lacks a deformation-free path. As before, we have tested the
planner with a range of p values. Several examples of paths with corresponding
values of p used to produce them can be seen in Figure 3.6.

Performance

(a) (b) (c) (d) (e)

Figure 3.7: (a) Vision system for deformation tracking, (b) the three Pareto-optimal
path classes, (c),(d),(e) execution of the shortest path through the physical test envi-
ronment, as seen by the forearm camera of the PR2.

For each combination of hard and soft environment and robot, we ran our
discrete planner 101 times on each environment, increasing p from 0.0 to 1.0 in
0.01 increments. Planning times for the two simulation environments (triple-
wall and multi-cost) average approximately 14.4 seconds and 2.3 seconds, respec-
tively, for these experiments. A notable outlier in terms of run time exists for
very low values of p in cases with soft environments and/or soft robots, in which
a solution is found in under 2 and 1 seconds, respectively, because the cost of
deformation is effectively ignored in these cases. In general, while computation
of deformation adds comparatively little overhead to the state evaluation pro-
cess, planner performance is worse with fully deformable environments or fully
deformable robots with p values above zero, as there are no longer any infeasible
states that can be eliminated as would be the case with rigid environments. As
a result, there are more states to consider.

3.3.2 PR2 Testing

We have also built a test environment to evaluate our cost function and demon-
strate the performance of our planner when applied to a physical environment.
This test environment is similar in concept to the triple-wall simulation envi-
ronment discussed already, containing a hard robot and soft obstacles, which
has been simplified to allow assessment of deformation. As full tracking of de-
formation in the physical world is currently very difficult to accomplish, our test
environment allows us to sense physical deformation.

PR2 Implementation

Our test environment consists of obstacles built out of deformable foam blocks
on a rigid backing. These blocks are attached to the backing to prevent rotation
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or movement without affecting the deformable behavior of the blocks’ exterior
(see Figure 3.7(a)). For planning purposes, the test environment is represented
at 5mm resolution, as this offers a balance between accuracy and fast planning
times. Planning times for the test environment average 1.2 seconds with a
maximum of 1.7 seconds, requiring the evaluation of at most 4818 unique states.

To represent the simulated robot in our test environment, we use the red
cylinder shown in Figure 3.7(b) which is moved through the environment by
a PR2 robot. For our tests, paths planned in the simulator are converted into
pose-space trajectories in the PR2’s reference frame. Using the provided inverse-
kinematics software, we convert these pose-space trajectories to joint-space tra-
jectories which are then executed using the PR2’s provided joint trajectory
controllers, while the base of the robot remains at a fixed location.

Deformation Tracking

To assess the accuracy of our cost function, we use a vision-based tracking
system shown in Figure 3.7(a) to provide ground-truth values for deformation.
This vision system consists of a camera mounted above the test environment
which measures the visible deformation of the foam environment. Our test
environment is specifically designed so that only the areas made up of deformable
foam are visible to the camera, as these are the only areas in which deformation
may occur.

Testing

Using three Pareto-optimal paths produced by the planner shown in Figure
3.7(b), we executed each path 12 times through the environment with six ex-
ecutions in either direction; snapshots from the execution are shown in figures
3.7(c-e). Notably, the deformation-free path of p = 0.5 caused a non-zero mea-
sured deformation – this was due to A* planning paths that closely follow the
shape of obstacles, which results in interaction between the surface of the foam
environment and the plastic object. Overall, however, measured deformation
and observed behavior of the foam strongly correlates to that expected from
the planner.

Calibration

An additional role of the deformation tracking system is to calibrate the costs
returned by the planner’s cost function to the costs measured by the tracking
system. To calibrate, we calculated the ratio between planned and measured
deformation (in pixels) for each point of the three paths, and used the mean of
this data to scale the cost computed by our cost function. For the two Pareto-
optimal paths in Figure 3.7(b) with planned deformation, the planner computed
cumulative path costs of 581 and 1240 in units of our cost function. We measured
cumulative path deformation of 19700 and 56200 in units of pixels. Applying
our calibration, the planner costs are 23000 and 51000 pixels, respectively, which
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are within 17% and 9% of the measured values. Inaccuracy in the calibration
occurs at points of starting and ending deformation; we believe this results from
the discretization of the planner and the material properties of our foam test
environment.

3.3.3 Higher-dimensional Planning

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 3.8: 6-dimensional planning: (a-f) Execution of a planned trajectory in the
OpenRAVE environment used for planning, (g-l) execution of the same trajectory in
the Bullet physics simulator.

To demonstrate the suitability of our representation for higher-dimensional
problems that cannot be reasonably addressed with discrete planning approaches,
we use the T-RRT and GradienT-RRT planners in the environment shown in
Figure 3.8.

Environment

In this environment, the vertical wall is rigid and the cube robot is deformable.
The vertical wall is largely symmetric; however, the hole in the blue half is 12.5%
larger and thus presents a lower-cost path. The robot has 6 degrees of freedom
(translation and rotation), but is neither capable of moving around the wall nor
passing completely through the wall, as the very center of the robot is rigid.
Rather, a valid solution must pass through one of the two holes, both of which
are smaller than the robot. These holes pose two particular challenges to the
planning algorithm as each presents both a “narrow passage” and a “cost-space
chasm” [79] – i.e., a narrow area of low cost.

Testing

Using the aforementioned testing environment, we can produce paths such as
those shown in Figure 3.8. As already discussed, the GradienT-RRT planning
algorithm is especially designed to navigate the low-cost C-space region resulting
from the hole in the wall, however, neither it nor T-RRT is particularly designed
to address the problem of entering this region.

In our initial tests, both T-RRT and GradienT-RRT failed to compute any
paths given a reasonable time limit. As a workaround, we added virtual padding
to the obstacle when creating the discretized cost-space. This effectively in-
creases the volume of the obstacle and produces a smoother gradient instead of
a sharp boundary. Counter-intuitively, while this padding makes the “narrow
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passage” of entry narrower, it makes the volume of the cost-space chasm larger,
which increases the probability of sampling within it. Notably, it also increases
the area of “useful gradients” that push the algorithm towards the hole. For
paths such as that shown in Figure 3.8, padding increased the length of the
cost-space chasm from 0.1m to 0.7m for both holes.

Performance

T-RRT GradienT-RRT
nFailMax 10 20 10 20
Planning time (s) 112(45.6) 736(260) 20.6(10.7) 175(69.4)
Planned cost 515(82.3) 478(56.9) 714(326) 563(164)
Calib. cost (m3) 3.04(0.48) 2.82(0.33) 4.21(1.90) 3.32(0.96)
Sim. cost (m3) 2.97(1.46) 2.63(1.28) 4.10(2.04) 3.48(1.29)

Table 3.1: Performance data [mean(std. dev.)] for T-RRT and GradienT-RRT plan-
ners. Cost given is the integral of costs incurred at each state in a trajectory.

We ran both planners 30 times in our test environment, each with nFailMax =
10 and nFailMax = 20. The results of these trials are shown in Table 3.1.
GradienT-RRT produced solutions in all 30 trials for both values of nFailMax,
while T-RRT failed to find a solution in 1200 seconds for 8 of 30 trials with
nFailMax = 20. GradienT-RRT is significantly faster than T-RRT with the
same parameters, however, T-RRT produces lower-cost paths and always tra-
verses the lower-cost hole when it returns a solution. At nFailMax = 10 and
nFailMax = 20, GradienT-RRT planned paths through the higher-cost hole
seven and one times, respectively. The high standard deviation for the cost
produced by GradienT-RRT is the result of these paths through the higher-cost
hole.

As is clearly visible in Table 3.1, T-RRT and GradienT-RRT work best
with different values of nFailMax. GradienT-RRT, by virtue of “greedily”
following the cost-space gradient, requires a higher value (e.g., 20) to discourage
planning through the higher-cost hole. T-RRT, on the other hand, requires
longer planning times for a given nFailMax but produces lower-cost paths than
GradienT-RRT with the same parameters. Notably, both planners produce
“corner-first” trajectories for the cube, demonstrating that our planners take
advantage of the rotational degrees of freedom to reduce deformation.

3.3.4 Simulator Validation

Given the difficulty of assessing real-world deformations, our simulation envi-
ronment provides an alternative to real-world testing – albeit one limited by the
accuracy of the simulator. To assess the paths produced with the T-RRT and
GradienT-RRT planning algorithms, we have implemented a validation environ-
ment using the Bullet physics simulation engine to match the OpenRAVE plan-
ning environment shown in Figure 3.8. This validation environment provides
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soft-body physics to simulate the physical interactions between the deformable
cube and the wall. The deformable robot is modelled using a tetrahedral mesh
anchored to a small rigid body. This setup allows the soft robot to be “towed”
along the path produced by the planner. Deformation is assessed by computing
the current volume of each tetrahedron in the tetrahedral mesh (in m3) and
comparing the total volume against that of an undeformed reference mesh.

Our calibration strategy is similar to that used previously in Section 3.3.2.
We calibrated the raw costs returned by the planner for each of the 112 trajec-
tories to produce the calibrated cost values shown in Table 3.1. Discrepancies
between the calibrated planner cost and the simulator cost are largely due to
“mangling” of the deformable cube – i.e., it does not return to its original shape
after deformation, which is an artifact of the Bullet simulator. This effect can
be seen in Figure 3.8(l).

3.3.5 Representation Performance

Cost assessment using our cost function offers significant performance improve-
ments over cost assessment using physical simulation. A single cost assessment
for the deformable cube discussed in Section 3.3.3, modelled with 1000 voxels
in our representation, takes an average of 84 microseconds, regardless of the
state of the deformable object. In comparison, the same cost assessment done
using the Bullet physics simulator (see Section 3.3.4), with the cube modelled
with 400 tetrahedrals, takes an average of 4 milliseconds when the cube is in
contact with a rigid obstacle, and 16 milliseconds when the cube is in contact
with a deformable obstacle. Not only is using our representation significantly
faster (almost 50 times so in hard-on-soft and 200 times so in soft-on-soft), but
Bullet at these settings – tuned for a balance between simulation quality and
speed – exhibits severe mangling and distortion of the deformable object during
and after deformation. Tuning parameters in favor of higher simulation quality
results in an even greater performance gap, while tuning them in favor of faster
simulation results in prohibitively poor simulation quality.

3.4 Conclusions

We have proposed a new method of representing deformable objects that allows
both physical and qualitative properties to be captured in a voxel-based rep-
resentation. Using this representation, we have designed a cost function that
directly assesses the severity of deformation without expensive physical simu-
lation or computation of deformed geometry. This cost function is particularly
suitable for motion planning, and we have demonstrated its application to both
discrete motion planning in low dimensions and sampling-based motion plan-
ning in higher dimensions. We show that our methods can generate paths that
minimize deformation in both simulated and physical environments with either
hard and soft robots in either hard and soft environments. In addition, using
both a physical test environment and a soft-body simulation environment, we

23



have demonstrated methods for calibrating our object representation to match
observed object behavior.
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Chapter 4

Reproducing Expert-Like
Motion in Deformable
Environments Using Active
Learning and IOC

4.1 Introduction

Modeling deformable objects is a difficult problem; models must not only cap-
ture the geometry (undeformed and deformed) of objects (itself a very difficult
problem), but should also capture the sensitivity of the object. This qualitative
aspect is critical for deformable environments, as it allows a motion planner to
distinguish between multiple objects with similar physical properties but with
different qualitative characteristics. An important example of this occurs in
surgical robotics; while multiple organs and tissues may have similar physical
properties, some parts of the body are significantly more sensitive than others.
Without accounting for sensitivity, motion planners can produce paths that
could cause unnecessary injury.

The motion planning methods introduced in the previous chapter use a voxel-
based representation of deformable objects in which each voxel has two param-
eters. The first parameter, deformability, captures physical properties of the
rigidity of the material. The second parameter, sensitivity, captures the qual-
itative significance of deforming the object. Together, these parameters are
used in a cost function that provides a cost of deformation that can be used in
cost-aware motion planners.

While the deformability parameters are directly related to material prop-
erties, setting the sensitivity parameters is more difficult, as they capture a
range of object characteristics. Setting them by hand is time-consuming and
error-prone, as incorrect sensitivity values can produce unwanted planner behav-
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Figure 4.1: Diagram of the three stages and main components of our framework.

ior. More problematically, setting these parameters for practical environments
requires both domain knowledge and the ability to mathematically represent
that knowledge such that the planner will perform well. Instead, we propose a
framework for automatically learning and validating these parameters from ex-
pert demonstrations. For example, a surgeon can demonstrate the optimal path
for inserting a probe, and we can use this demonstration to find the sensitivity
values of organs around the path. For completeness, in Appendix A we show
a simple method for learning deformability parameters in a given simulated
environment.

Our framework consists of three parts: (1) Automatic generation of demon-
stration tasks that prompt the user to provide informative demonstrations using
a novel active learning process; (2) Recovery of object sensitivity values using
Path Integral Inverse Reinforcement Learning (PIIRL) Inverse Optimal Control
(IOC) techniques [8]; and (3) Reproduction of the demonstrated behavior using
the RRT* asymptotically-optimal motion planner [9] with a key modification
that allows us to check for punctures of deformable objects.

This approach offers two main advantages over existing similar techniques.
First, by using sampling-based techniques for IOC that avoid the need to solve
the forward problem as well as sampling-based asymptotically-optimal planners,
our framework is applicable to higher-dimensional problems than approaches
such as LEARCH [6], which are limited by the need to repeatedly compute
optimal paths to recover the cost function. Second, our proposed method for
automatically generating demonstration tasks for experts to perform reduces
the number of demonstration tasks needed to capture the desired behavior and
removes the need for domain knowledge to generate these tasks by hand. Finally,
to our knowledge, IOC has never before been applied to the problem of learning
deformable object parameters.

In our experiments in simulated and physical test environments we show
that, despite the limitations inherent in asymptotically-optimal sampling-based
planning, the recovered sensitivity parameters allow motion planners to reliably
reproduce behavior demonstrated by expert users. We also present experiments
which show the generalization capabilities of our method.
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4.2 Problem Statement

Let τ represent the path of a rigid object (i.e., the robot) through an envi-
ronment composed of n deformable objects E = O1, O2, ..., On. Representing
τ with a discrete sequence of configurations, we assume the cost of executing

τ is a function of the form C(τ) =
∑|τ |
k=1

∑n
i=1DiSiVi(τk), where Vi(τk) is the

volume of deformation of Oi that results from placing the rigid object at the kth
configuration of path τ , Di is the deformability of Oi, and Si is the sensitivity
of Oi. We focus on learning the Si parameters, so we assume Di = 1 ∀i, though
our methods work with any known D. Note that while sensitivity parameters S
can be set per-voxel in our representation, we simplify the problem of recovering
sensitivities by assuming that each object has uniform sensitivity.

S represents the ground-truth sensitivities of the objects. We seek to gener-
ate a set of learned parameters Ŝ from a set of demonstrations, such that these
Ŝ can be used in a motion planner to produce similar behavior to the demon-
strations. Obtaining the true S from demonstration is not possible in general, as
a demonstration can, at best, encode only the ratios between different elements
of S and not their magnitudes. Thus it is not meaningful to compare S to Ŝ
directly. A more informative comparison is how well a planner imitates demon-
strated behavior when planning with Ŝ. Thus we evaluate our method in terms
of the cost of the path produced by our framework. Therefore the quality of Ŝ
relative to the ground truth is evaluated as E(Ŝ, S) = |CS(τd)−CS(τplanned(Ŝ))|,
where τd is a path demonstrated for a given task, τplanned(Ŝ) is a path planned

for the same task using the sensitivities Ŝ, and the cost function CS(·) is eval-
uated using the ground-truth sensitivities S.

4.3 Methods

We have developed a framework for recovering sensitivity parameters for de-
formable objects, as illustrated in Figure 4.1. Below we describe each of the
four components in detail.

4.3.1 Capturing Demonstrations

Like all IOC problems, our approach requires demonstrations. In our case,
demonstrations are captured in a simulation environment using a physics sim-
ulator to simulate deformable objects. Our demonstration task consists of in-
serting a cylindrical probe between deformable objects to reach target points
distributed across the environment, as illustrated in Figure 4.2. The user at-
tempts to minimize contact with more sensitive objects (shown in yellow and
green) compared to less sensitive objects (shown in blue). We record the demon-
stration trajectory along with the features of that trajectory, which are the total
amounts of deformation of each object. While outwardly simple, the problem of
probe and needle insertion between deformable objects such as this is common
in medical tasks [12] and a subject of previous research in robot motion [12, 1],
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(a) (b) (c) (d)

Figure 4.2: Example demonstration tasks for our 6-object test environment, shown
with the probe reaching the target. (a) Low sensitivity objects L1, L2 (blue), medium
sensitivity objectsM1,M2 (green), and high sensitivity objectsH1, H2 (yellow). (b,c,d)
Goal configurations for three automatically generated tasks.

however, none of this work has explored learning qualitative properties of de-
formable objects to determine higher-level behavior. In addition to capturing
demonstrations, we use this simulation environment to compute feature vectors
for demonstration and sample paths.

Each demonstration we capture can be parametrized as a demonstration task
by a starting pose of the probe Pstart, a target point Ptarget the user must touch
with the probe tip, and a set of “collision planes” Cplanes, hyperplanes that
constrain the motion of the probe. As shown in Figure 4.3, the hyperplanes ap-
proximate a funnel that guides the user towards the target point and restricts
which objects the user can contact with the probe. These hyperplanes are added
to constrain the user to producing demonstrations that capture the relative dif-
ference in sensitivity between the accessible objects. In our experience, without
the hyperplanes users sometimes produce demonstrations that deform only the
globally least-sensitive object(s) instead of capturing sensitivity relationships
between neighboring objects.

While we attempt to capture optimal demonstrations, in practice users may
provide slightly sub-optimal demonstrations. We attempt to correct for this
using a local optimizer that optimizes each demonstration. This method gen-
erates a set of random sample trajectories around the demonstration trajectory
and replaces the demonstration trajectory with any of the random samples with
strictly dominating deformation (i.e., the random sample deforms all objects less
than or equal to the demonstration).

4.3.2 Active Learning

We can capture demonstrations and compute features for demonstrations and
samples needed for PIIRL, however, this leaves two problems to address: how to
generate demonstration tasks for the user to complete, and how many demon-
strations must be collected. Clearly, the accuracy of recovered sensitivity values
depends on the quality of the demonstrations provided. For example, if an
object has zero feature values in both demonstrations and the trajectory sam-
ples around the demonstrations used by PIIRL, we cannot recover a meaningful
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Algorithm 2 Demonstration task collection algorithm

procedure CollectDemonstrations(A)
G← {∅, ∅}
O1 ← argmaxo∈E degree(A(o))
O2 ← argmaxo∈neighbors(A(O1))degree (A(o))
G← G ∪CollectSingleDemonstration(O1, O2)
while {o ∈ E|o /∈ Gv,degree(A(o)) > 0} 6= ∅ do

O1 ← argmax{o∈Gv|neighbors(A(o))\Gv 6=∅} depth(G(o))
O2 ← argmax{o∈neighbors(A(O1))\Gv} degree(A(o))
G← G ∪CollectSingleDemonstration(O1, O2)
G← EnsureRanking(G)

return G
procedure EnsureRanking(G)

for O1 ∈ Gv do
for {O2 ∈ Gv| depth(G(O2)) ≥ depth(G(O1))} do

if NoDirectedPathExists(O1, O2) then
if DirectlyComparable(O1, O2) then

G← G ∪CollectSingleDemonstration(O1, O2)
return EnsureRanking(G)

return G
procedure CollectSingleDemonstration(O1, O2)

Ptarget, Pedge, Cplanes ← GenerateTask(O1, O2, Tclearance, Trange)
Dv, De ← GetDemonstrationFromUser(Ptarget, Pedge, Cplanes)
return (Dv, De)

sensitivity value for the object; e.g., if all demonstrations entered through the
forward half of our cube environment, no features would be available for objects
on the reverse. A different, but equally problematic, issue occurs when features
have been collected for every object, but the demonstrations are “unconnected”;
for example, in an environment E = {O1, O2, O3, O4}, if features have been col-
lected for demonstrations between O1, O2 and O3, O4, but not for O2, O3, the
optimizer cannot determine if O1 and O2 are more or less sensitive that O3 and
O4. Thus, we need to ensure that sufficient demonstrations have been collected.

The conservative solution is to require a demonstration for every pair of
adjacent objects, however, this can result in a large number of demonstrations.
For our test environment shown in Figure 4.2, 12 demonstrations would be
required to capture the relationship between every adjacent pair. We seek to
reduce the number of demonstrations required.

Simply collecting demonstrations such that we observe a non-zero feature
for each object is insufficient for accurate parameter recovery, rather, we must
ensure that the demonstrations collected form a ranking of the objects in terms
of sensitivity; i.e., that for objects O1, O2 ∈ E, rank(O1) is either less than,
equal to, or greater than rank(O2) if the objects are comparable. Rankings are
derived from demonstrations collected between adjacent objects; the preferen-
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tially deformed object receives a lower ranking than the preferentially avoided
object. Rankings are not comparable in certain cases, such as between objects
on the opposing faces of our test environment, in which it impossible to per-
form a demonstration between the two objects, and they cannot be ranked via
a combination of other demonstrations.

Demonstrations are collected using Algorithm 2, which takes A, the set of
object adjacencies in E, and iteratively collects demonstrations until there are
no more useful demonstrations to perform. This algorithm captures preference
relationships between objects by building a directed graph G. The nodes in
G represent objects in the environment and the directed edges point from the
less-sensitive object to the more-sensitive one. Initially, G contains no nodes or
edges, and each demonstration adds an edge and 0, 1, or 2 nodes. The key to
the algorithm is determining which demonstration (and thus which edge) should
be queried next.

The algorithm uses the structure of G at the current time as well as a
heuristic to decide which demonstration to query next. If the ranking between
all objects in G is known, then the algorithm selects a new object to add to G
(via a demonstration involving that object and one already in G). After adding
a new object, the algorithm queries demonstrations until the ranking of all
objects in the graph is again established (this is done in the EnsureRanking
function). It then selects a new object to add, and so on, until no more objects
can be added.

At each step where objects or edges are selected, we choose the object or
edge based on connectivity heuristics. For new objects (i.e., those not already
in G), we prefer those that are adjacent to as many other objects as possible.
When picking objects already in G for a new edge, we prefer objects that have
a higher “depth”. Here depth(n) is the length of the longest directed path in
G which ends at n. These heuristics bias the algorithm to create long chains of
edges where possible, which is clearly beneficial for forming a ranked list; e.g.,
rank(O1) < rank(O2) < rank(O3) < rank(O4) is a chain of three edges which
gives a complete ranking of four objects.

Figure 4.3: Our au-
tomatic demonstra-
tion task generator.

Algorithm 2 is not guaranteed to produce the mini-
mal set of demonstrations because it cannot foresee the
results of future demonstrations. It frequently collects
demonstrations early on that prove to be unnecessary in
the final set of demonstrations. In pathological environ-
ments, Algorithm 2 may be forced to collect all possible
demonstrations. However, in practice, we show that it re-
duces the number of demonstrations without significant
impact on the recovered sensitivity parameters.

For each demonstration requested by Algorithm 2, we
generate a new task using Algorithm 3. This algorithm is
given a pair of target objects O1, O2, a target clearance
Tclearance, and a target depth range Trange. First, the
algorithm selects an “edge point”, Pedge by randomly selecting a point on the
medial axis between the two target objects. Using the edge point, the algorithm
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Algorithm 3 Demonstration task generation algorithm

procedure GenerateTask(O1, O2, Tclearance, Trange)
Pedge ← GetEdgePointBetweenObjects(O1, O2)
Ptarget ← ∅
while Ptarget = ∅ do

Psampled ← SampleInRange(Pedge, Trange)
if clearance(Psampled) < Tclearance then

Ptarget ← Psampled

Cplanes← GenerateCollisionPlanes(Pedge, Ptarget)
return Ptarget, Pedge, Cplanes

randomly samples nearby points Trange away from the edge point to select one
that is “inside” 1 the environment and also at least Tclearance away from an
object, which it returns as Ptarget, the target point. Finally, a set of “collision
planes” are generated to restrict the user’s demonstration to the desired area.
The parameter Trange ensures that the user must insert the probe sufficiently
to cause deformations. Similarly, the parameter Tclearance controls how close to
an object the target point can be, and can be used to ensure that the target
point itself is not in contact with an object (see Figure 4.3).

4.3.3 Parameter Recovery

Our approach to motion planning for deformable objects uses a “cost of defor-
mation” to enable any motion planner that accounts for cost to produce plans
that minimize deformation. We can frame the problem of imitating demon-
stration behavior as the problem of inferring the sensitivity parameters used to
produce the demonstration. Assuming that the demonstration is optimal, this
is the well-established problem of Inverse Optimal Control (IOC).

Using the PIIRL formulation of IOC, the cost function consists of a series
of features V = V1, V2, ..., Vn (in our case these are the amounts of deformation
of each of the n objects) with corresponding sensitivities S = S1, S2, ..., Sn,
such that the total cost of a configuration C =

∑n
i=1 ViSi, where the Vi can be

computed using our physics simulator, but the optimal set of sensitivities S∗ is
unknown.

To find the best estimate of the optimal set of sensitivities Ŝ, PIIRL requires
a set of sample paths around each demonstration. Because the demonstrations
are assumed to be locally optimal, all samples around a demonstration will be
sub-optimal w.r.t. the unknown cost function. For K demonstrations and L

1To determine which points are “inside” the environment, we compute a “local maxima
map” using the Signed Distance Field (SDF) of the environment. For each point in the SDF, we
follow the gradient away from obstacles and record the location the gradient becomes zero (i.e.,
the local distance maxima). Points “inside” the environment have corresponding local maxima
inside the bounds of the SDF, while points “outside” have local maxima corresponding to the
bounds of the SDF. Intuitively, “inside” points have finite-distance local maxima reachable
via the gradient, while for “outside” points, the local maxima are undefined.
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samples for each demonstration, the optimal weights are obtained using the
following minimization problem (a similar form of the minimization problem
used in [8]), where Vk are the feature values for demonstration k, and Vk,l are
the feature values for sample l of demonstration k:

Ŝ = argminS

K∑
k=1

STVk
L∑
l=1

STVk,l

(4.1)

This minimization finds the sensitivity values Ŝ that maximize the margin
between the cost of the demonstrations and the costs of their samples. Note
that in our problem, S > 0, Vk,l ≥ 0 and sample feature values Vk,l ≥ 0, as all
sensitivity values must be greater than zero and Vk,l = 0 implies Vk = 0 (since
samples must be sub-optimal relative to their demonstrations). Vk = 0 implies
that the demonstration k captures no information about any object and thus
can be removed from the optimization so this condition will not occur.

In our experience, this modified form of the minimization recovers param-
eters with more distinct separation between low-, mid-, and high-sensitivity
objects than the original form used in [8] using common function minimization
tools such as those available in Matlab. Unlike previous work such as LEARCH
[6], PIIRL does not rely on the specific configurations the demonstration path
traverses; rather, only the corresponding feature values must be locally optimal
in our cost function [87]. This makes it tractable to learn cost functions in
high-dimensional spaces.

4.3.4 Recovered Parameter Verification

Once sensitivity values Ŝ have been recovered for each object in our test envi-
ronments, we must verify that the recovered values allow our motion planner
to imitate the behavior of the expert demonstrations. We attempt to perform
each demonstration task using an optimal motion planner and comparing the
planned path τplanned(Ŝ) with the demonstration τd in terms of the true cost
function CS(·) using the ground truth sensitivity values S. In the previous
chapter, we used the T-RRT and GradienT-RRT planners to efficiently pro-
duce paths in high-dimensional spaces; however, since these planners have no
optimality guarantees, they are unsuitable for parameter verification. Instead,
we use the asymptotically-optimal RRT* planner [9] with our deformation cost
function. While we could use deformations measured via a physics simulator
to compute cost during planning, our voxel-based deformation cost function is
significantly faster, more stable, and detects object punctures and separation.
To accurately mimic the demonstration tasks, the RRT* planner is provided
with the same task-space target point to reach with the probe tip, rather than
a goal configuration of the probe. Feasible configurations touching this target
point can be sampled, and RRT* attempts to connect the tree to these goal
states. As RRT* runs, it improves the path by reducing the deformation cost of
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the path and by sampling and connecting to new, lower-cost goal states. Note
that while RRT* is asymptotically optimal, for finite time it will not return
the optimal path, so we expect paths reproduced with RRT* may be slightly
higher-cost than their corresponding expert demonstrations, but should exhibit
the same preferential deformation demonstrated by the expert.

Figure 4.4: Illustration of puncture checking for an extension from configuration q1
to q3. As the surfaces are no longer connected (red), puncture has occurred and the
q2 → q3 motion is invalid.

In addition to integrating our existing cost function with RRT*, we have sig-
nificantly improved the quality of planned paths by adding puncture detection
to prevent paths from puncturing or cutting deformable objects. Puncture and
cut detection is essential to planner performance; without it, planners can pro-
duce low-cost paths that pass directly though deformable objects. To prevent
punctures and cuts, we check every extension of the tree in RRT* for puncture
using an incremental variant of the algorithm introduced by Chen et. al. [88]
for computing topological invariants on voxel grids. The original algorithm ex-
tracts the surface vertices from the voxel grid, and computes the connectivity of
each surface vertex. Each surface vertex can be connected to between one and
six neighboring surface vertices; let M1 be the total number of surface vertices
with one connected neighbor, M2 the total with two neighbors, and so on. From
these totals, Chen et. al. prove that the number of holes in the voxel grid is
nholes = 1 + ((M5 + (2 ∗M6)−M3)/8).

Thus, checking for punctures can be implemented by removing the swept
volume of the path of the probe from the voxel-based model of deformable
objects used for motion planning, and then computing the number of holes to
ensure that no new holes have been created by the path. Additionally, to prevent
objects from being completely cut apart by the path, the overall connectivity
of the surface voxels corresponding to each object are computed; if the surface
vertices for an object form multiple disconnected groups, then the object has
been cut apart by the path.

To efficiently perform these checks during the planning process, we incre-
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mentally check for punctures with each extension and rewiring step of RRT*
(see Figure 4.4). For testing a new edge from configuration q1 to configuration
q2 the process is as follows: (1) retrieve the stored object surfaces corresponding
to q1, (2) update the object surfaces with the swept volume from q1 to q2, (3)
compute the number of holes in each object surface (check for puncture), (4)
compute the connectivity of each object surface (check for cuts), and (5) if no
holes or cuts are encountered, store the updated surfaces corresponding to q2.
For every such check, we are effectively checking the entire path from the start
configuration qstart to q2 for punctures and cuts.

4.4 Results

We present results of testing our framework in a 3D simulated environment
(5DoF probe insertion task) and in a physical planar environment (3DoF rigid
object navigation task) using an industrial robot. We use the Bullet physics
simulator [86] to provide an environment for capturing demonstrations and com-
puting features, and the Open Motion Planning Library (OMPL) [89] to provide
the RRT* planner used to verify the recovered sensitivity values. We show that
our methods accurately recover sensitivity values that allow planners to imitate
expert demonstrations. We also report on how the algorithm generalizes to a
new task, where an obstacle is introduced into the environment, and report on
the use of active learning for reducing the number of demonstrations required.
Ideally, we would compare the performance of our framework with existing ap-
proaches such as LEARCH [6], however, these approaches require computing
the true optimal path to perform IOC, which is intractable in the 5DoF probe
insertion task.

4.4.1 Recovered Behavior

We first demonstrate the performance of our framework in the 3D simulated
environment without using the automatic demonstration task generator, and
show that our demonstration capture environment and parameter recovery pro-
cess produce acceptable object sensitivity values. Using our RRT* planner,
we show that the recovered sensitivities produce paths that imitate the expert
demonstrations.

The test environment, as shown in Figure 4.2, consists of six deformable
objects forming the faces of a hollow cube. These objects form three classes;
each pair of opposing faces has the same sensitivity assigned, with the lowest
sensitivity (L1, L2) shown in blue, an intermediate sensitivity (M1,M2) shown in
green, and high sensitivity (H1, H2) shown in yellow. For testing purposes, the
“true” sensitivity values of these objects are set as L1, L2 = 0.2, M1,M2 = 0.4,
H1, H2 = 0.8. We use the true values to evaluate the quality of paths planned
with the recovered sensitivity values, but they are unknown to our IOC method.

Using the conservative approach discussed in Section 4.3.2, 12 demonstra-
tions were performed, one for each pair of adjacent objects. Several exam-
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ples of these demonstrations can be seen in Figure 4.2 and Figure 4.5. While
time-consuming, this approach ensures that sufficient demonstrations have been
collected to capture the desired behavior. In these demonstrations, lower-
sensitivity objects were preferentially deformed instead of higher-sensitivity ob-
jects.

Using the set of 12 demonstrations, we recovered the object sensitivity pa-
rameters using our parameter recovery process. We generated a set of 100 sam-
ple paths around each demonstration using a multivariate gaussian distribution
using the process described in [87], which produces smooth noisy path samples
around an initial path. Features for all demonstrations and samples were com-
puted by executing paths in the demonstration capture environment, and all
feature values were normalized relative to the highest feature value. Sensitivity
parameters were recovered using the optimization problem in Equation (4.1);
we used the function minimization tools in MATLAB to perform this optimiza-
tion. For optimization, the lower bound of possible weight values was 0.1, and
the upper bound was 1000, with the weights initialized to 500. The recovered
sensitivity values were L1 = 0.10004, L2 = 0.10092, M1 = 2.8523, M2 = 8.5683,
H1 = 958.92, H2 = 999.51. Note that both high sensitivity objects (H1 and
H2) were avoided in all demonstrations, and thus received maximum weights in
the optimization. Again, recovery of the true sensitivities is impossible and we
must evaluate our method in terms of the cost of the path planned using the
recovered sensitivities.

Recovered Parameter Verification

(a) (b) (c) (d)

Figure 4.5: Examples of goal configurations from demonstrations (a,c) and corre-
sponding goals of paths planned using recovered sensitivity values (b,d). Full paths
are not shown for clarity.

Using the recovered object sensitivity parameters, we planned for all 12
demonstration tasks using RRT*. Table 4.1 compares the demonstrations with
results for planning times of 30 and 60 minutes, with 30 and 15 trials of each,
respectively. Figure 4.5 shows examples of demonstrated paths compared with
paths produced by RRT*. As shown in the table, paths produced using the
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recovered parameters imitate the behavior of the demonstrations by deforming
the same objects with similar amounts of deformation except for two demon-
strations (namely 9 and 12) for which the planner found a path superior to the
original demonstration. Note that due to the difficulty of the planning prob-
lem and the finite planning time for RRT*, we do not expect planned paths
to exactly match the demonstrations. Two notable types of error resulted in
sub-optimal plans, namely cases where planned paths clip the edge of higher-
sensitivity objects, and cases where planned paths simply result in higher cost
than the demonstration. In both cases, errors are indicated by high standard
deviations; this is expected if a small number of the planned paths exhibit par-
ticularly sub-optimal behavior. These errors are caused by the limited time
available to RRT*, which restricts the number of goal states sampled and the
refinement of the path. Results for 60-minute planning times shown in Table
4.1 show that in most cases, increased planning time reduces these errors. Note
that the high planning times used here are partially a consequence of our punc-
ture test, which adds considerable computation in addition to the deformation
cost function.

Generalization of Recovered Parameters

The importance of recovering sensitivity parameters is not to reproduce the
demonstrations, since these could simply be replayed; rather, recovering the
sensitivity parameters allows us to generalize the behavior displayed in the
demonstrations to other tasks in the test environment. To demonstrate that the
recovered sensitivity parameters generalize, we performed a set of tests shown
in Figure 4.6. Starting from one of the demonstrations (demonstration task 6),
we adjusted the target point and inserted rigid obstacles that block the demon-
strated path. As shown in Figure 4.6, our planner produces paths that exhibit
the same behavior as the demonstration path; while the new path differs from
the demonstration and thus results in different cost, the preferential deforma-
tion of the blue object over the green one indicates that the expert’s preference
was correctly captured.

4.4.2 Automatic Generation of Demonstration Tasks

Using the same test environment, we tested our active learning method for au-
tomatically collecting demonstration tasks. Examples of these demonstration
tasks are shown in Figure 4.2. Unlike the conservative approach discussed pre-
viously, which used demonstrations between all pairs of adjacent objects, the
active learning method generates only enough tasks to form a ranking of all
objects in the environment. We tested the active learning method in the same
test environment as above and allowed it to select a subset of tests from the
set of comprehensive demonstrations. Using this method, between 8 and 10
demonstrations were required to capture features for all objects, compared to
the 12 used by the conservative approach. As before, 100 sample paths were
generated around each demonstration, and sensitivities were recovered using
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(a)
L=7.27,M=0.0,H=0.0

(b) L=8.20, M=0.0, H=0.0 (c) L=21.24, M=0.0, H=0.0

Figure 4.6: Paths planned to show the generality of recovered sensitivity values, (a)
goal configuration of demonstration 6, and (b)(c) two goals of paths planned with
target points offset from the center of the environment when the direct path from
start to target is blocked by a rigid obstacle (black).

the PIIRL optimization problem. Since the active learning process involves
some random selections, we ran 15 trials; 10 demonstrations were required in 14
cases, and 8 demonstrations in 1 case, with average recovered sensitivities (av-
erage [std.dev.]) being L1 = 0.100[0.0], L2 = 0.101[0.0002], M1 = 2.858[0.012],
M2 = 8.630[0.071], H1 = 984.12[29.272], H2 = 999.509[0.165]. Comparing
these results with the sensitivities learned using the full set of demonstrations
(see Section 4.4.1), we observe that the values are not meaningfully different,
which shows that the active learning method can infer very similar sensitivity
relationships with fewer demonstrations.

4.4.3 Physical Environment Tests

(a) (b) (c) (d)

Figure 4.7: Testing for our physical test environment (a), with objects numbered and
start (red) and goal (blue) states shown. Swept volumes of (b) path planned with
uniform object sensitivity values, (c) demonstration path, and (d) path planned with
recovered sensitivity values.

In addition to testing with our simulated environment, we have also applied
our framework to a planar physical test environment shown in Figure 4.7 with
an L-shaped block. Like our earlier experiments, the use of a planar 3DoF
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environment allows for the deformation of objects in the environment to be
tracked in real time by an overhead camera. Paths in the environment were
planned using the same RRT* planner as before, albeit in SE(2).

For comparison purposes, we first planned using uniform sensitivity values
for all objects, as shown in Figure 4.7b. A demonstration path through a nar-
rower, higher-deformation passage was provided using our demonstration cap-
ture environment, as shown in Figure 4.7c. As with the simulated environment,
100 samples were generated around the demonstration, and object sensitivity
values O1 = 1.00, O2 = 200.00, O3 = 100.03 , O4 = 200.00, O5 = 36.21 were
recovered using a lower bound of 1, upper bound of 200, and initial value of
100. These parameters are expected, as the demonstration path deforms O1,
O4 and O5, while avoiding the other objects. Planning using the recovered val-
ues is shown in Figure 4.7d; planning was performed with a planning time of 5
minutes. Following planning, all three paths were executed in our test environ-
ment by an industrial robot, with object deformations tracked by our tracking
camera and reported in Table 4.2. As before, we do not expect the planned
path to exactly match the demonstration; in particular due to the narrow low-
cost passages in the environment, it is unsurprising that the planned path has
significantly higher cost than the expert demonstration. However, the planned
path does avoid O3, instead preferring the passage between O1 and O2, which
matches the preferences demonstrated by the expert.

4.5 Conclusion

We have developed a framework for recovering sensitivities of deformable objects
so that our motion planners imitate the behavior of expert users in deformable
environments. By formulating the problem of motion planning in deformable
environments in terms of generating optimal paths that minimize deformation,
we can recover object sensitivity parameters from demonstrated optimal paths
using IOC. We also propose an active learning algorithm to generate demonstra-
tion tasks. Our framework has two advantages over existing similar techniques.
First, by using sampling-based techniques for IOC that avoid the need to solve
the forward problem and sampling-based asymptotically-optimal planners, our
framework is more applicable to higher-dimensional problems than existing ap-
proaches. Second, our method for automatically generating demonstration tasks
for users to perform reduces the number of demonstration tasks needed to cap-
ture the desired behavior. We tested our framework in simulated and physical
test environments, and showed that it recovers object sensitivities suitable for
planning paths that imitate the behavior of expert demonstrations. We also
showed that these preferences can generalize to new tasks.
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Demonstrated Recovered (30 min/plan) Recovered (60 min/plan)
L M H L M H L M H

1 5.61 0.0 0.0 12.14
[4.68]

0.0
[0.0]

0.0
[0.0]

10.81
[1.55]

0.0 [0.0] 0.0
[0.0]

2 7.14 0.0 0.0 12.35
[2.7]

0.0
[0.0]

0.0
[0.0]

11.57
[2.82]

0.0 [0.0] 0.0
[0.0]

3 4.87 0.0 0.0 10.65
[3.71]

0.16
[0.82]

0.0
[0.0]

9.82
[2.84]

0.0 [0.0] 0.0
[0.0]

4 5.30 0.0 0.0 10.27
[2.75]

0.07
[0.38]

0.01
[0.03]

11.06
[2.22]

0.0 [0.0] 0.0
[0.0]

5 7.69 0.0 0.0 13.65
[4.18]

0.0
[0.0]

0.1
[0.53]

14.17
[3.62]

0.0 [0.0] 0.0
[0.0]

6 7.92 0.0 0.0 10.73
[2.09]

0.0
[0.0]

0.0
[0.01]

11.24
[4.7]

0.0 [0.0] 0.0
[0.0]

7 7.27 0.0 0.0 11.86
[2.93]

0.1
[0.54]

0.0
[0.0]

12.48
[3.5]

0.0 [0.0] 0.0
[0.0]

8 9.55 0.0 0.0 13.48
[3.52]

0.34
[1.47]

0.0
[0.0]

11.97
[2.97]

0.26
[0.97]

0.0
[0.0]

9 0.0 35.59 0.0 0.02
[0.13]

32.55
[9.13]

0.0
[0.01]

0.03
[0.11]

31.51
[10.48]

0.0
[0.0]

10 0.0 20.38 0.0 0.9
[1.63]

21.8
[8.44]

0.0
[0.01]

1.44
[2.69]

20.51
[8.5]

0.0
[0.0]

11 0.0 18.67 0.0 0.02
[0.08]

23.79
[5.62]

0.29
[1.29]

0.17
[0.56]

24.68
[5.55]

0.0
[0.0]

12 0.0 17.17 0.0 9.58
[1.95]

0.1
[0.32]

0.07
[0.25]

9.36
[1.96]

0.02
[0.09]

0.03
[0.09]

Table 4.1: Comparison between demonstrated behavior and paths planned using ob-
ject sensitivity values recovered from 12 demonstrations between each pair of adjacent
objects. Costs reported (mean [std.dev.]) are the integral of volume change multiplied
by the true object sensitivity values, separated by class of object (L = low-sensitivity,
including objects L1 and L2, M = medium-sensitivity, including objects M1 and M2,
H = high-sensitivity, including objects H1 and H2).

Object deformation
O1 O2 O3 O4 O5

Uniform 0 3367 2442 0 554148
Demonstration 23451 0 0 0 35222
Recovered 51569 38798 0 0 73013

Table 4.2: Deformation comparison for the five left-hand objects in our physical
test environment between a path planned with uniform object sensitivity values, the
demonstrated path, and a path planned using the recovered sensitivity values. Re-
ported deformation values are in pixels.
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Chapter 5

Planning and Resilient
Execution of Policies For
Manipulation in Contact
with Actuation Uncertainty

5.1 Introduction

Many real-world tasks are characterized by uncertainty: actuators and sensors
may be noisy, and often the robot’s environment is poorly modelled. Unlike
robots, humans effortlessly perform everyday tasks, like inserting a key into
a lock, which require fine manipulation despite limited sensing and imprecise
actuation. We observe that humans often perform these tasks by exploiting
contact, compliance, and resilience. Using compliance to safely make contact
and move while in contact allows us to reduce uncertainty. We also exhibit
resilience: when an action fails to produce the desired result, we may withdraw
and try again. Seminal motion planning work by Lozano-Pérez et al. [42] shows
that incorporating contact and compliance is critical to performing fine motions
like inserting a peg into a hole. Building from this work and our observations
of human motions, we have developed a motion planner that incorporates con-
tact, compliance, and resilience to generate behavior for robots with actuation
uncertainty.

Motion in the presence of actuation uncertainty is an example of a continuous
Markov Decision Process (MDP), adding in sensor uncertainty, the problem
becomes a Partially-Observable Markov Decision Process (POMDP). Solving an
MDP or POMDP is often framed as the problem of computing an optimal policy
π∗ that maps each state to an action a that maximizes the expected reward
(e.g., the probability of reaching the goal). We focus on motion planning with
actuation uncertainty, and thus we frame the problem as an MDP. This MDP
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formulation is representative of the challenges face by low-cost and compliant
robots such as Baxter or Raven, which have accurate sensing but noisy actuators.

Instead of planning in the configuration or state-space of the robot, we rep-
resent the uncertainty of the state of the robot as a probability distribution
over possible configurations, and plan in the space of these distributions—the
belief space1. The computational expense of optimal motion planning leads us
to adopt a thresholding approach from conformant planning [90]. Instead of
attempting to find a global optimal policy, we seek to generate a partial policy
that allows a robot with actuation uncertainty to move from start configuration
qstart to reach goal qgoal within tolerance εgoal with at least planning threshold
Pgoal probability. A partial policy, which maps a subset of possible states to
actions rather than a global policy that maps all states to actions, simplifies the
problem and is appropriate for the single-query planning problems we seek to
solve..

The complexity of robot kinematics and dynamics preclude analytical mod-
eling of compliance and contact for practical, high-dimensional problems, and
thus we rely on the ability to forward simulate the state of the robot given
a starting state and action. In the presence of uncertainty, individual actions
may have multiple distinct outcomes: for example, when trying to insert a key
into a lock, some attempts will succeed in inserting the key, while some will
miss the keyhole. In advance of performing such an action, we cannot select
between desired outcomes (as is assumed in [10]). However, we can distinguish
between the outcomes after the action is executed. We directly incorporate this
behavior into our planner using splits and reversibility. Splits are single actions
that produce multiple distinct outcomes, which we distinguish between using a
series of clustering algorithms. Reversibility is the ability of a specific action
and outcome to be “undone” and return to the previous state, which allows the
robot to attempt the action again. Of course, the planner may not accurately
model the outcomes of every action, so we incorporate an online adaptation
process to update the planned policy during execution to reflect the results of
actions.

Our primary contributions are thus 1) incorporating contact and compli-
ance into policy generation, thus allowing contacts that other planners would
discard but that, in fact, can be used to reduce uncertainty; and 2) introducing
resilience into policy execution and thus significantly increasing the probabil-
ity of successfully completing the task. Our experiments with simulated test
environments suggest that our planner efficiently generates policies to reliably
perform motion for robots with actuation uncertainty. We apply our methods
to problems in SE(2), SE(3), and a simulated Baxter robot (R7) and show per-
formance improvements over simpler methods and the ability to recover from
an unanticipated blockage.

1The term belief is borrowed from POMDP literature, which assumes that the state is
partially-observable. Though we consider only MDPs, we nevertheless use “belief” as it is a
convenient and widely-used term for a distribution over states.
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5.2 Problem Statement

We consider the problem of planning motion for a controlled compliant robot R
with configuration space Q in an environment with obstacles E. For given start
(qstart) and goal (qgoal), we seek to produce motion which allows the robot to
reach qgoal within tolerance εgoal with at least Pgoal probability.

The robot is assumed to have actuation uncertainty modelled by qt+1 =
qt +(∆qt +r∆q) in which the next configuration qt+1 is the result of the previous
configuration qt , control input ∆q and actuation error r∆q . We assume that a
function F, which models the probability distribution of the uncertainty, is
available from which to sample r∆q ∼ F(∆q) for a given ∆q. Due to this
actuation uncertainty, when executing actions in our planner the result is a
belief distribution b. The robot is compliant, meaning that for a motion from
collision-free qcurrent to colliding qdesired , the resulting configuration qresult will
be in contact and the robot will not damage itself or the environment.

Since the motion of the robot is uncertain, a path τ that is a discrete sequence
of configurations may not be robust to errors. Instead, we wish to produce a
partial policy π : Q′ → A that maps Q′ ⊆ Q to actions A such that for a
configuration q ∈ Q′, the policy returns an action to perform. Even π may
not always be robust to unexpected errors, therefore during execution we wish
to detect actions that do not reach their expected results; i.e., when an action
produces qresult /∈ Q′. In such an event, we wish to adapt Q′ and π such that
qresult ∈ Q′ and continue attempting to complete the task.

5.3 Methods

We have developed a motion planner consisting of an anytime RRT-based global
planner and a local planner that uses a kinematic simulator to model robot
behavior. Together, they produce a set of solution paths S, where each solution
s ∈ S is a sequence of nodes ni = (bi, ai), in which bi is the belief distribution
for ni and ai is the action that produced bi. Using this set of solution paths, we
construct a single partial policy π. As π is queried during execution, we update
the policy to reflect the “true” state observed during the execution process.

Because it is difficult to model the belief state in contact using a parametric
distribution, we use a particle-based approach similar to [10] in which we rep-
resent the belief bi of node ni with a set of configurations q1, q2, ..., qn that are
forward-simulated by the local planner. Like previous work [10], we expect that
performing some actions will result in multiple qualitatively different states as
illustrated in Figure 5.1 (e.g., in contact with an obstacle some particles will
become stuck on the obstacle while others slide along the surface). These dis-
tinct parts of the belief state, which we refer to as splits, are distinguished in
our planner by a series of clustering operations. To ensure that all actions are
adequately modeled, a fixed number of particles Nparticles is used to simulate
every action; since splits reduce the number of particles at a given state, a new
set of particles must be resampled for these states to avoid particle starvation.
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Figure 5.1: Our belief-space RRT extending toward a random target (red X) from
b4 . Due to compliance, the particles (dots) can slide along the obstacles (gray). Solid
blue edges denote 100% probability edges, dashed edges denote a split resulting in
multiple states; solid magenta edges denote 100% reversible edges, while dashed edges
denote lower reversibility. Because the extension is attempting to move through a
narrow passage, particles separate and a split occurs, resulting in three distinct states
(b5 , b6 , b7 ).

It is important to understand that we cannot select between the different
result states of a split when performing the action; however, we can distinguish
using our clustering methods if we have reached an undesirable result. To be
resilient to such errors, we incorporate the ability to reverse the action back
to the previous state and try the action again. Clearly, not all actions will be
reversible, so we perform additional simulation to estimate the ability to reverse
each action after identifying the resulting states.

We first introduce our RRT-based global planner that uses a simulation-
based local planner and a series of particle clustering methods to generate
policies incorporating actuation uncertainty, and then discuss our online pol-
icy execution and adaptation that enables resiliency to unexpected behavior
encountered during execution.

5.3.1 Global planner

Until it reaches time limit tplanning , our global planner iteratively grows a tree
T using the local planner to extend the tree towards a sampled configuration
qtarget . Like the RRT, qtarget is either a uniformly sampled qrand ∈ C, or with
some probability, the goal qgoal . Each time we sample a qtarget , we select the
closest node in the tree nnear = argminni∈TProximity(bi, qtarget). The local
planner plans from nnear towards qtarget and returns new nodes Nnew and edges
Enew that grow the tree. We check each new node nnew ∈ Nnew to see if it
meets the goal conditions, and if so, add the new solution path to S.

We also incorporate several features distinct from the RRT. First, using
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Proximity we consider more than distance when selecting the nearest neigh-
bor node nnear . We want to bias the growth of the tree toward nodes that can
be reached with higher probability and have more concentrated bi, so we in-
corporate weighting using P (nstart → ni), the probability the entire path from
nstart to ni succeeds, and var(ni), the variance of bi. The proximity of a node
ni to a configuration q is given by the following equation:

Proximity(ni, q) = dist(expect(bi), q)

∗ [(1− P (nstart → ni)) ∗ αP + (1− αP )][erf(|var(bi)|1) ∗ αV + (1− αV )]
(5.1)

Here, expect(bi) = qexpected is the expected value of the belief distribution bi
and dist(qexpected , q) is the C-space distance function. Two weights αP and αV

control the effect of the probability and variance weighting, respectively. Values
of αP and αV closer to 1 increase the effect of the weighting, while values
closer to 0 increase the effect of the C-space distance.Using the error function
erf(x) = 2/

√
π
∫ x

0
e−t

2

dt maps variance in the range [0, inf) to the range [0, 1)
to simplify computation. Previous work in belief-space planning has used a
range of distance functions, such as L1, Kullback-Leibler divergence, Hausdorff
distance, or Earth Mover’s Distance (EMD) [69]; however, many of these choices
only provide useful distances between belief states with overlapping support.
While EMD encompasses both the C-space distance and probability mass of
two beliefs, it is expensive to compute. Since most of our distance computations
are between beliefs with non-overlapping support, the C-space distance between
expected configurations is an efficient approximation [69].

Second, we cannot simply test if nnew = qgoal , since the P (nstart → nnew )
may be low; instead, we check if a new solution has been found. To be a
solution, the probability nnew reaches the goal must be greater than Pgoal , i.e.,
the product of P (nstart → nnew ) and |q ∈ bnew |dist(q, qgoal) ≤ εgoal |. Finally,
once a path to the goal has been found, we continue planning to find alternative
paths. We want to encourage a diverse range of solutions, so once a solution
path has been found, we remove nodes on solution branches from consideration
for nearest neighbor lookups. This process recurses towards the root of the
planner’s tree T until it either reaches the root node nstart or a node ni which
is the result of a split. Once the base of the solution branch is found, we remove
the branch from nearest neighbors consideration and continue planning until
reaching tplanning .

5.3.2 Local planner

Our local planner grows the planner tree T from nearest neighbor node nnear to-
wards a target configuration qtarget by forward-propagating belief using Extend
to produce one or more result nodes nnew ∈ Nnew and edges enew ∈ Enew (re-
call that splits may occur). To improve the time-to-first-solution, the local
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planner operates like RRT-Connect, repeatedly calling Extend, until a solu-
tion is found, whereupon it switches to RRT-Extend, calling Extend only once,
to improve coverage of the space and encourage solution diversity. Note that
the RRT-Connect behavior is stopped if an extension results in a split.

Extend forward-simulates particles Qinitial from node nnear towards qtarget ,
clusters the resulting particles Qresults into new nodes Nnew , and computes the
transition probabilities. As previously discussed, we simulate every action with
the same number of particles. If node nnear is not the result of a split, and
thus bnear contains a full set of particles, then we simply copy bnear to use for
simulation. If, instead, nnear is the result of a split, then we uniformly resample
Nparticles particles from bi. We then simulate the extension toward qtarget for
each particle. Any simulation engine that simulates contact and compliance
could be used, but the simulation should be as fast as possible to minimize
planning time. In our experiments, we used an approximate kinematic simulator
described in Appendix B. The resulting particles are then grouped into one or
more clusters using ClusterParticles, which we describe in Section 5.3.3.
For each cluster Qcluster , we form a new node nnew = (bnew , anew ) with belief
bnew = Qcluster and action anew = qtarget . In the case of splits, where multiple
nodes are formed, we assign P (nnear → nnew ,i) = |bnew ,i |/Nparticles . We then
estimate the probability that action anew can be reversed from node nnew by
simulating Nparticles particles back towards node nnear . Note that some particles
may become stuck while reversing, and thus the probability of reversing the
action may not be 1.

The ability to reverse an action allows us to detect an undesired outcome,
reverse to the parent node, and retry the action until we either reach the de-
sired outcome or become stuck. Thus, we estimate the effective probability
P (nnear → nnew )effective for each node nnew by estimating the probability that
a particle has reached nnew after Nattempt attempts, where at each attempt,
particles that have not reached the nnew try to return to nnear and try again.

Analysis – The planner always stores Nstored = NactionsNparticles particles.
For every action Nparticles particles are forward-simulated, and all of them are
stored in Nnew . In the worst case, where every action produces Nparticles

distinct nodes, the number of particles that must be simulated Nsimulated =
Nnodes(Nparticles + 1), as each node itself is the product of one initial simulation
and Nparticles simulations are required to estimate reverse probability. In prac-
tice, as we discuss in Section 5.4.1, the space requirements to perform complex
tasks are low as most actions produce a small number of nodes, and the time
cost can be reduced by simulating particles in parallel.

5.3.3 Particle clustering

Intuitively, we want every configuration in a cluster to be reachable from every
other one using the local planner. However, testing this directly is computa-
tionally expensive, so we also consider two approximate methods. All clustering
methods use two successive passes to cluster the configurations resulting from
forward simulation: first, a spatial-feature-based pass that groups configurations
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(a) (b) (c) (d)

Figure 5.2: Our proposed spatial-feature particle clustering methods. (a) The posi-
tions of particles after an extension of the planner. (b) Actuation center clustering,
with clusters (red, blue) and the straight-line paths for each cluster. (c) Weakly Con-
vex Region Signature clustering, with the three convex regions shown and labeled.
(d) Particle movement clustering, with successful particle-to-particle motions shown
dashed for the main cluster (red) and two unconnected particles (blue, green).

based on their relationship to different parts of the workspace, and second, a
distance-based pass that refines the initial clusters. All of our clustering meth-
ods use complete-link hierarchical clustering, as it produces smaller, more dense
clusters, while not requiring the number of clusters to be known in advance
[91, 10]. Below we discuss the ideal approach and our two approximations,
shown in Figure 5.2. We compare the performance of these methods in Section
5.4.1.

Particle Connectivity (PC) Clustering

We run the local planner from every configuration to every other configuration
and record which simulations reach within εgoal of the target. For a pair of
configurations q1, q2, going from q1 to q2 may fail while the opposite succeeds;
however, to be conservative, we only record success if both executions succeed.
We then perform clustering using the complete-link clustering method with
distance threshold 0, where successful simulations correspond to distance 0 and
unsuccessful simulations correspond to distance 1. Note that this method is very
expensive, since it requires simulating N2 − N particles for N configurations
considered.

Weakly Convex Region Signature (WCR) Clustering

Intuitively, in many environments a robot can move freely from q1 to q2 if both
configurations reside entirely in the same convex region of the workspace. This
is also true for some slight concave features, so long as the features do not block
the robot. Conversely, for configurations in clearly distinct regions, it is less
likely that the robot can move from one configuration to the other.

Illustrated in Figure 5.2c, we capture this intuition by recording the position
of the robot relative to weakly convex regions of the free workspace, to form
what we call the convex region signature. These regions form a weakly convex
covering: individual regions may contain slight concavity, and multiple regions
overlap. Techniques such as [92] exist to automatically compute these regions,
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but for simple environments these regions can be directly encoded. The convex
region signature of a configuration q, WCR(q), records the region(s) occupied
by every point of the robot at q. Distance metric DWCR between two region
signatures WCR(q1) and WCR(q2) is the percentage of points in the robot
that do not share a common region between the signatures. Using this metric,
we perform complete-link clustering. We test different thresholds for DWCR in
Section 5.4.1. This method allows configurations with some points in a shared
region to be clustered together, while separating configurations that share no
regions. At runtime, this method requires N computations of WCR(q) and
(N2−N)/2 evaluations of DWCR to compute all pairwise distances. An alternative
to this method would be the use of Reeb graph representations which recent
motion planning work suggests is useful to capture topological information [93].

Actuation Center (AC) clustering

We observe that many successful motions in contact occur when the actuation
(or joint) centers of the starting and ending configuration can be connected by
collision-free straight lines, so this method checks the straight-line path from
the joint centers of one configuration to those of the other configuration. As
with the particle movement clustering approach, configurations with successful
(collision-free) paths have distance 0, while those with unsuccessful (colliding)
paths have distance 1. Like the previous approach, clusters are then produced
using complete-link clustering with threshold 0. At runtime, this method re-
quires (N2−N)/2 checks of the straight-line paths.

5.3.4 Partial policy construction

Once the global planner has produced a set of solution paths S, we construct a
partial policy π. Policy construction consists of the following steps:

1. Graph construction – An explicit graph is formed, in which the vertices
of the graph are nodes ni ∈ S, and the edges correspond to the edges
forming the paths in S. An edge ni → ni+1 is assigned an initial cost
1/P (ni → ni+1 )). This means that likely edges receive low cost, which is
necessary to compute maximum-probability paths through the graph.

2. Edge cost updating – The edge costs are updated to reflect the estimated
number of attempts needed to successfully traverse the edge by multiplying
the cost of the edge by the estimated number of attempts required to reach
P (ni → ni+1 ) ≥ Pgoal . This estimate is the complement of the effective
probability discussed in Section 5.3.2; instead of computing the probability
of reaching a node after a fixed number of attempts, we compute the
number of attempts needed to reach the node with Pgoal probability. The
fewer attempts necessary to traverse the edge, the faster the policy can be
executed, and thus this cost represents an expected execution time.

3. Dijkstra’s search – The optimal path from every vertex in the graph to
the goal state is computed using Dijkstra’s algorithm. This determines
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Algorithm 4 Partial policy query algorithm

procedure PolicyQuery(S, π, qcurrent , aperformed)
Npotential ← {ni ∈ S | ai = aperformed}
Nmatching ← {ni ∈ Npotential | |ClusterParticles(bi ∪ qcurrent)| = 1}
if Nmatching 6= ∅ then

nreached ← argminni∈Nmatching
DijkstraDistance(ni)

IncreaseProbability(nreached , aperformed);
for ni ∈ Npotential | ni 6= nreached do

ReduceProbability(ni, aperformed)

π ← ConstructPolicy(π)
if P (nreached → qgoal) ≥ Pgoal then

anext ← π(nreached)
return anext

else
return failure

else
nobserved ← {{qcurrent}, aperformed}
S ← S ∪ nobserved

return PolicyQuery(S, π, qcurrent , aperformed)

the optimal next state (and thus action to perform) for every state in the
graph.

5.3.5 Partial policy execution and adaptation

At every step during execution, the partial policy π is queried for the next
action to perform. While we could simply find the “closest” node in the policy
using a distance function like Equation 5.1, doing so would discard important
information. Not only do we know the configuration qcurrent that results from
executing an action, but we also know the action aperformed we attempted to
perform. Using this information, we know exactly which nodes(s) in π the robot
should have reached. As shown in Algorithm 4, we first collect all potential
result nodes (i.e., those nodes ni with actions ai = aperformed). We then use our
particle clustering method to cluster qcurrent with the belief bi of each ni. This
clustering tells us if the robot reached a given state (if a single cluster is formed)
or not (multiple clusters). In the unlikely (but possible) event that qcurrent

clusters with multiple potential result nodes, we select the “best” matching
node nreached using the distance-to-goal computed via Dijkstra’s algorithm.

The key contribution of our policy execution is that we adapt the policy
π to reflect the results of actual execution. If a matching node nreached is
found, we then update π to increase the probability that nreached is the result
of aperformed . We assign a constant Aimportance ∈ N that reflects how much we
value the results of executing an action compared to the results of simulating a
particle during planning. To update the probability, we increase the counts of
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attempted Nattempts actions and successful Nsuccessful actions, then recompute
probability:

P (nprevious → nreached |a) =
Nsuccessful +Aimportance

Nattempts +Aimportance
(5.2)

Likewise, we reduce the probability for other potential result states:

P (nprevious → nother |a) =
Nsuccessful

Nattempts +Aimportance
(5.3)

This update process allows us to learn online, during execution, the true
probabilities of reaching states given an action. In effect, the probabilities com-
puted by the global planner serve as an initialization for this online learning.
Once updated, we rebuild policy π to reflect the new probabilities. If the prob-
ability of reaching the goal P (nreached → qgoal) is at least Pgoal , we query π
for the next action to take. If the probability of reaching the goal has dropped
below Pgoal , policy execution terminates.

However, sometimes no matching node nreached exists. This means a split
occurred during execution that was not captured in S during planning (e.g.,
an obstacle that is not accurately modelled in E, or where the behavior of
the simulator diverges from the true robot). To handle this case, we insert a
new node nobserved with belief bobserved = {qcurrent} into S, and then retry the
policy query (which will now have an exactly matching state). To incorporate
reversibility, we initially assign new nodes a reverse probability Nattempts =
Nsuccessful = 1. Thus, the next action selected by the policy will be to return to
the previous node. Together with updating probabilities by inserting new states
in this manner, we can thus extend the policy to reflect behavior observed during
execution that was not captured during the planning process.

Analysis – In the worst case, a policy π cannot be executed successfully, and
performing every action a results in a new node nobserved . For any Aimportance ∈
N, Pgoal > 0, adapting the policy will detect failure and terminate in this case.

Proof – For every action ai+1 , ..., node nobserved will be created with a
reverse prior P (nobserved → nprevious) = 1/1. If reversing to nprevious fails, we
update P (nobserved → nprevious) = 1/1+Aimportance . For the ith successive failed
reverse and nobserved,i generated, P (nobserved,i → nprevious) = Πi

1
1+Aimportance

.

As the number of failed actions increases P (nobserved,i → nprevious) → 0, and
thus P (nobserved,i → qgoal) ≤ P (nobserved,i → nprevious) → 0. Thus eventually
P (nobserved,i → qgoal) will fall below Pgoal > 0 and execution will terminate. �

5.4 Results

We present results of testing our planner in simulated SE(2) and SE(3) en-
vironments and a simulated R7 Baxter robot. For dynamic simulation during
execution, we use the Gazebo simulator [94]. As our kinematic simulator does
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not consider friction, we use contact motion controllers to reduce contact forces
(see Appendix C). We present statistical results over a range of actuation un-
certainty and clustering methods and show that our planner produces policies
that allow execution of tasks incorporating contact and robot compliance. We
also present statistical results showing that our online policy updating adapts to
unexpected behavior during execution. All planning and simulation testing was
performed using 2.4 GHz Xeon E5-2673v3 processors. Likewise, all planning
was performed with Proximity weights αP = αV = 0.75 (see Equation 5.1),
Nattempt = 50 attempted reverse/repeats of each action, and planning threshold
Pgoal = 0.51, such that solutions must be more likely than not to reach the goal.

5.4.1 SE(3) simulation

(a) (b) (c) (d)

Figure 5.3: (a) The SE(3)PegInHole task involves moving from the start (red) to
the bottom of the hole. (b) An example policy produced from 296 solutions, the (c)
initial action sequence (blue arrows), actions the policy will return if every action is
successful, and (d) the swept volume of the peg executing the policy. Note that the
peg makes contact with the environment to reduce uncertainty, then slides into the
hole.

AC PC WCR with DWCR =
0.125 0.25 0.5 0.75 0.99

Pplan 1.0 1.0 1.0 0.97 0.97 0.97 0.97
Pexec 0.97

[0.17]
0.89

[0.19]
0.73
[0.42]

0.95
[0.18]

0.84
[0.34]

0.99
[0.02]

0.96
[0.18]

Table 5.1: SE(3)PegInHole particle clustering performance comparison (mean
[std.dev.]) of Pexec , the probability of reaching the goal with 300 seconds, between
policies produced using our planner with different clustering methods. Pplan is the
probability that a policy is planned within 5 minutes, averaged over 30 plans, and
Pexec is averaged over 40 executions on each successfully-planned policy.

Peg-in-hole

In SE(3)PegInHole, a version of the classical peg-in-hole task [42] shown in
Figure 5.3, the free-flying 6-DoF robot “peg” must reach the bottom of the hole.
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Simplified Planned policies (WCR, DWCR = 0.75)
Simple RRT Contact RRT 24 particles 48 particles

γ Pplan Pexec Pplan Pexec Pplan Pexec Pplan Pexec

0 0 0 [0] 1 0.78
[0.38]

1 0.42
[0.48]

0.97 0.59 [0.47]

1/16 0 0 [0] 1 0.78
[0.39]

1 0.60
[0.43]

1 0.625
[0.43]

1/8 0 0 [0] 1 0.79
[0.38]

1 0.99
[0.18]

0.93 0.81 [0.37]

1/4 0 0 [0] 1 0.50
[0.37]

1 0.90
[0.28]

0.86 0.72 [0.41]

Table 5.2: SE(3)PegInHole policy performance comparison between simplified plan-
ners and our planner with 24 and 48 particles and actuation uncertainty γ.

This task is difficult for robots with actuation uncertainty, as the hole is only
30% wider than the peg. Even without uncertainty, attempting to avoid contact
greatly restricts the motion of the robot entering the hole. Instead, as shown in
[42], the best strategy is to use contact with the environment and the compliance
of the robot to guide the peg into the hole. We assess the performance of a policy
approach in terms of Pexec , the probability that executing the policy reaches the
goal within a time limit of 300 seconds. For a given value of γ, linear velocity
uncertainty γv = γ (m/s) and angular velocity uncertainty γω = 1/4γ (rad/s).
Linear and angular velocity noise is sample from a zero-mean truncated normal
distribution with bounds [−γv ,ω, γv ,ω] and standard deviation 1/2γv ,ω. While
this differs from zero-mean normal distributions conventionally used to model
uncertainty, we believe the bounded truncated distribution better reflects the
reality of robot actuators, which do not exhibit unbounded velocity error. Goal
distance threshold εgoal was set to 1/2 the length of the peg.

We first compared the performance of our planner at a fixed γ = 1/8 and
Nparticles = 24 using the clustering approaches introduced in Section 5.3.3, in-
cluding several thresholds for DWCR = 0.125, 0.25, 0.5, 0.75, 0.99, with 30 plans
per approach (5 minutes planning time) and 40 executions of each planned
policy. As seen in Table 5.1, WCR clustering with DWCR = 0.75 clearly out-
performed the others in terms of policy success, reaching the goal in 99% of exe-
cutions. Planning time is overwhelmingly dominated by simulation, accounting
for approximately 99.9% of the allotted time. Using WCR and DWCR = 0.75,
we then compared the performance of our planner against two simplified RRT-
based approaches:

1. Simple RRT – Does not model uncertainty or allow contact, but like our
planner produces multiple solutions in the allotted planning time.

2. Contact RRT – Incorporates contact and compliance but does not model
uncertainty. Equivalent to planning with γ = 0 and one particle.

In addition, we tested our planner with both 24 and 48 particles to show
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the effects of increasing the number of particles used. As before, we planned
30 policies for each, and executed each planned policy 40 times. Note that the
Simple RRT was unable to produce solutions in 5 minutes due to the confined
narrow passage. Results are shown in Table 5.2. With low actuator error
the Contact RRT performs better, as it does not expend planning time on
simulating multiple particles and instead produces more solutions. As error
increases, our planner clearly outperforms the alternatives. Note that increasing
particles does not improve performance, indicating that 24 particles is sufficient
without requiring unnecessary simulation. Low Pexec overall, in particular when
planning with low γ, is due to the mismatch between the planning simulator
and the dynamics of Gazebo (i.e., motions that are possible in the planner,
but not in Gazebo) which disproportionally affects motions near the entrance
to the hole. In particular, the planner at low values of γ overestimates how
successfully motions at the edge of the hole can be performed and thus results
in a lower-than-expected Pexec .

In terms of the number of particles stored, the worst case was Nparticles =
48, γ = 0, with an average of 148894 (std.dev. 25015) particles stored. The
worst case for simulated particles was Nparticles = 24, γ = 1/4, with an average
268634 (std.dev. 16856) particles simulated. In practice, the storage and com-
putational expense is limited; the worst-case for particles stored requires a mere
15 megabytes, while for a planning time of 300 seconds and using eight threads,
the planner evaluated more than 100 particles per second per thread.

(a) (b) (c) (d)

Figure 5.4: An execution of the Baxter task, from start (a) to goal (d), and environ-
ment with confined space around the goal. The planned policy is shown in blue. Note
the use of contact with the environment to reduce uncertainty and reach the target
passage.

5.4.2 Baxter simulation

In addition to SE(3) and SE(2) tests, we apply our planner and policy execution
to a simulated Baxter robot shown in Figure 5.4, with the robot reaching into a
confined space. We compare the performance of our planner with Nparticles = 24
and WCR clustering method with DWCR = 0.1 with the simplified Contact
RRT in terms of success probability Pexec for uncertainty γ = 0.1. To simulate
Baxter’s actuation uncertainty γ defines a truncated normal distribution with
σ = 1/2γq̇i and bounds [−γq̇i , γq̇i ] for each joint i with velocity q̇i . Goal distance
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threshold εgoal = 0.15 radians. We generated 10 policies using each approach
with a planning time of 10 minutes to ensure both approaches would produce
multiple solutions, then executed each 8 times for up to 5 minutes. As expected,
Contact RRT finds solutions faster; on average 8.42s (std.dev. 2.61) versus 65.4s
(std.dev. 32.9) and policies contain more solutions; on average 17.2 (std.dev.
16.5) versus 6.33 (std.dev. 3.97) since each solution requires less simulation
time. However, our planner incorporating uncertainty outperforms the Contact
RRT baseline with Pexec = 0.79 (std.dev. 0.30) versus Pexec = 0.70 (std.dev.
0.30). This suggests that, while planning with uncertainty does help in this
environment, our approach to policy execution and resilience also works well
when uncertainty is not accounted for in the planner, but we have a diverse
policy.

5.4.3 Policy adaptation

We performed tests in a planar SE(2) (3-DoF) environment to show that our
policy adaptation recovers from unexpected behavior during execution. As
shown in Figure 5.5, the L-shaped robot attempts to move from the start (upper
left) to the goal (lower right). Due to the obstacles present, there are three dis-
tinct horizontal passages. Using the same controllers and uncertainty models as
the SE(3) tests with uncertainty γ = 0.125 and WCR clustering method with
DWCR = 0.75, 24 particles, and a planning time of 2 minutes, we generated
30 policies using our planner. Goal distance threshold εgoal was set to 1/8 the
length of the robot.

(a) (b) (c) (d)

Figure 5.5: (a) Our planar test environment, in which the robot must move from
upper left (red) to lower right (green), with an example policy produced by our planner,
with solutions through each of the horizontal passages. (b) The initial action sequence
(blue arrows), showing actions the policy will return if every action is successful. (c)
Following the policy, the robot becomes stuck on the new obstacle (gray). (d) Once
the policy detects the failed action, it adapts to avoid the obstacle.

We evaluated the performance of the planned policies in the unmodified en-
vironment and an environment in which we blocked the horizontal passage used
by the initial path of each policy. Each was executed 8 times for a total of 240
policy executions, for a maximum of 600 seconds. In the unmodified environ-
ment, 97% of policies were executed successfully, with an average of 15.4 actions
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(std.dev. 9.62). In the modified environment with policy execution importance
Aimportance = 500 (this high value results in rapid policy adaptation), 73% of
policies were executed successfully, with an average of 26.7 actions (std.dev.
12.3). This result shows that adapting the policy using our methods allows us
to circumvent the new obstacle, however, doing so may result in following a
path that is less likely to succeed.

5.4.4 Discussion

Our planner relies on our kinematic simulator to model compliant robot behav-
ior. While this is an implementation choice and a more accurate simulator could
be used, the advantage of our simulator is that it is fast enough to allow use-
ful planning times. Our kinematic simulator offers a computationally efficient
method for simulating contact and compliance; however, since our simulator
does not model dynamic behavior such as inertia, forces, torques, or friction
directly, it cannot capture behavior that depends on them. In particular, this
occurs when simulating multi-point contact and multi-link robots. To bridge
the gap between our approximate simulator and real dynamic simulation, we
use contact motion controllers that serve to reduce interaction forces and allow
the real robot to better follow the planned motions.

In straightforward cases of sliding contact along one or more surfaces, the
combination of our simulator and controllers perform well. However, as is com-
mon to many simulators, multi-point contact can be challenging. This can occur
as part of “jamming” behavior where the robot becomes stuck against the en-
vironment as the result of multiple contacts blocking the motion of the robot.
Motion in these configurations is highly dependent on interaction forces, and
thus our simulator does not accurately model them. This may be mitigated in
certain cases by using the simulator in a model-predictive manner where the
approximate simulator evaluates an idealized compliant configuration which is
then used to adjust the target of the robot’s motion. However, in our experi-
ence, jamming behavior is not reliably handled by our controllers: if reducing
interaction forces is not enough to “unjam” the robot, the motion will fail.

Compliant behavior of a multi-link robot in contact with the environment
depends on the exact torques of actuators and magnitudes of interaction forces.
In our testing with the Baxter robot, the contacting configurations simulated
by our simulator did not match the configurations produced by simulating in
Gazebo or by executing on the real robot. This does not mean our simulator
produces invalid configurations; rather, it produces a possible complied configu-
ration. This limitation of our simulator can be mitigated by using the simulator
in a model-predictive manner. In this manner, we can effectively adapt the real
robot to match the limitations of the simulator. A similar challenge is posed
when trying to resolve self-collisions between links of a multi-link robot. In our
limited experience, the self-contacting configurations returned by our simulator
do not exactly match those encountered on a real robot. Here, again, the use of
our simulator in a model-predictive controller allows real robot behavior to be
“idealized” to match the simulator.
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5.5 Conclusion

We have developed a method for planning motion for robots with actuation
uncertainty that incorporates environment contact and compliance of the robot
to reliably perform manipulation tasks. First, we generate partial policies using
an RRT-based motion planner that uses particle-based models of uncertainty
and kinematic simulation of contact and compliance. Second, we adapt planned
policies online during execution to account for unexpected behavior that arises
from model or environment inaccuracy. We have tested our planner and policy
execution in simulated SE(2) and SE(3) environments and on the simulated
Baxter robot and show that our methods generate policies that perform ma-
nipulation tasks involving significant contact and compare against two simpler
methods. Additionally, we show that our policy adaptation is resilient to signif-
icant changes during execution; e.g., adding a new obstacle to the environment.
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Chapter 6

Towards an Efficient Path
Quality Metric For
Compliant Robots with
Actuation Uncertainty

6.1 Introduction

In recent years, robotics researchers and developers have introduced a number
of compliant robots aimed at a range of tasks from human-robot collaboration
to factory assembly. Compliance improves the safety of both the robot and its
surroundings, as the robot can safely make unexpected contact without damage
to itself or the surroundings. However, this compliance often comes at a cost
of actuator accuracy, in particular on robots where compliance is implemented
by means of passive hardware. As a result, these robots often exhibit signifi-
cant actuation uncertainty. In practice, this means that executing collision-free
planned plans can result in unexpected contact with the environment. While
this contact is safe for a compliant robot, it may prevent the robot from suc-
cessfully completing the planned path. Thus, we seek to develop an efficient
path quality metric that reflects the robustness of a path to actuation uncer-
tainty during execution; i.e., a metric that approximates the probability a robot
executing the path successfully reaches the goal.

The availability of such a path quality metric has important applications in
motion planning with uncertainty. While existing approaches to motion plan-
ning with uncertainty like that presented in Chapter 5 are able to incrementally
estimate the probability of successfully executing a path during the planning
process, this often requires significant expensive simulation for each state con-
sidered by the planner. Notably, in our previous experience, even in tasks with
significant actuation uncertainty, planners that ignored actuation uncertainty
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remained competitive with planners that modelled uncertainty as the simpler
planners were able to explore significantly more candidate states and produce
more robust and diverse execution policies. This experience suggests that many
tasks may be successfully planned without accounting for uncertainty, but ensur-
ing that these planners produce paths with sufficient quality requires a quality
metric. Potentially, such a metric can be used to distinguish between simple
tasks that can be efficiently planned using simpler planners and “uncertainty-
sensitive” tasks that require more powerful planners. An additional role of such
a metric is as an objective function in a trajectory optimizer, in which the
quality metric can be used to optimize the path to improve robustness.

A key component to developing this metric is modelling the compliant be-
havior of the robot and environment; however, the complexity of real high-
dimensional robot kinematics and dynamics preclude the development of a use-
ful analytical model. Instead, as with our previous work, we rely on the avail-
ability of forward simulation given a starting configuration and desired action.
Of course, such a simulator provides a näıve metric for path quality: simply
by simulating a large number of executions of the path, we may estimate the
probability the robot reaches the goal or instead becomes stuck. Such a näıve
metric, however, would be extremely expensive and slow to compute for non-
trivial numbers of simulated executions. Achieving high coverage of the C-space
volume surrounding the path, in particular near the contact manifold with the
environment, requires a high number of executions. Similarly, such a solution
would face a problem common to particle filters, in which a large number of
“particles” (i.e., simulated robots) become stuck in confined parts of the envi-
ronment and thus the simulated robots would need to be “resampled” to ensure
converge throughout the path. However, it is very unclear how such simulated
robots could be consistently resampled. Instead, we seek to develop a met-
ric that is both efficient to compute and ensures coverage of the path without
requiring superfluous simulation.

We develop two variants of a path quality metric. In both variants, we first
compute the reachable C-space volume between each pair of adjacent waypoints
in the path. Within this reachable volume, we sample configurations and iden-
tify those close to the contact manifold. For these configurations, we use forward
simulation to determine if they collide with the environment and become stuck.
In the first, primary variant, we use the images of the sampled configurations
to directly estimate the probability that a robot executing the path becomes
stuck in each reachable volume, from which we can compute the probability of
successfully reaching the next waypoint. In the simplified second variant, we
use stuck configurations to identify where in the path and how many simulated
executions to perform, and then use simulation to estimate the probability of
successfully moving to the next waypoint. By computing these probabilities for
every adjacent waypoint-waypoint pair, we can then compute the probability
of successfully executing the path. We extend the work of [95] in computing
reachable volumes for kinematic linkages to trajectory-linkages so that we can
compute the reachable volume of C-space surrounding the path. The use of im-
ages and pre-images in robot motion with uncertainty has been long established,
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with the seminal work of Lozano-Pérez et al. [42], however, it has been shown
that computing pre-images exactly is expensive [43, 45]. Instead of attempting
to exactly compute them, we propose approximating the images using sampling.

6.2 Problem Statement

Specifically, we seek to develop a path quality metric M : Π→ R that computes
the quality of an arbitrary path Π composed of waypoints πstart, π1, π2, ..., πgoal
executed by a controlled compliant robot R with configuration space Q and
configuration q in an environment with obstacles E. For a robot with tar-
get waypoint πi, we step forward to the next waypoint πj , j > i only after
dist(q, πi) ≤ εreached. We similarly define the quality of a path Π as Pexec(Π),
the probability that a robot executing the path reaches πgoal within tolerance
εreached.

The robot is assumed to have actuation uncertainty modelled by qt+1 =
qt +(∆qt +r∆q) in which the next configuration qt+1 is the result of the previous
configuration qt , control input ∆q and actuation error r∆q . We assume that a
function F, which models the probability distribution of the uncertainty, is
available from which to sample r∆q ∼ F(∆q) for a given ∆q. The robot is
compliant, meaning that for a motion from collision-free qcurrent to colliding
qdesired , the resulting configuration qresult will be in contact and the robot will
not damage itself or the environment.

6.3 Trajectories as Reachable Volumes

As a consequence of the manner we select target waypoints, we ensure that a
robot moving from waypoint πi to waypoint πj must start within εreached of
πi. Therefore, we can consider each pair of adjacent waypoints independently,
and thus Pexec(Π) = Pexec(π1 → πgoal), the probability the entire path Π is
executed successfully, is the product of all Pexec(πi → πi+1) where πi and πi+1

are adjacent waypoints in Π. Thus, our problem is to compute Pexec(πi → πi+1)
for an arbitrary pair of adjacent waypoints.

Motion between adjacent waypoints defines a volume of C − space covering
all possible robot configurations in the process of moving from one waypoint to
the next. Within this volume, we seek to identify regions where the robot may
become stuck and compute the likelyhood of the robot passing through these
regions. Computing a continuous representation of this C − space volume is
non-trivial; however, since the robot is controlled, we can use the timestep ∆t
of controller cycles to discretize the volume into a set of C − space volumes cor-
responding to points in time, which we refer to as reachable volumes. Of course,
computing these volumes exactly in the presence of obstacles is intractable; do-
ing so would require extensive simulation to model possible robot trajectories.
Since we have assumed the provided path is visible, we can make the conserva-
tive approximation that the robot’s motion will follow the provided path, and

58



that approximate reachable volumes computed without accounting for obstacles
can be used. Note that this approximation is conservative - by ignoring po-
tential robot motions that leave these volumes due to contact (and potentially
still reach the target waypoint) it can only underestimate the probability of
successfully completing the motion.

6.4 Methods

(a) (b) (c)

Figure 6.1: (a) Reachable volumes are computed between starting waypoint πi and
ending waypoint πi+1. (b) Configurations are randomly sampled within each reachable
volume; colliding samples are omitted for clarity. Near-contact samples are projected
to the contact manifold, then simulated to distinguish between sliding (blue) and
stuck (red). (c) We estimate the probability that samples in the previous reachable
volume (dashed box, select samples shown) lead to stuck regions defined by these
stuck configurations. We integrate the image (cyan box) of each sample over these
stuck regions to estimate the probability these samples become stuck.

While approximate reachable volumes provide a critical simplification of the
C−space motion of the robot, the issue of capturing C−space configurations of
the robot remains. Since the robots we wish to model may have many DoF, this
space will be high-dimensional and intractable to model analytically. To address
this, we rely on sampled configurations to model the reachable volumes. Our
approach consists of four main steps shown in Figure 6.1: First, we compute
approximate reachable volumes {RV1, ..., RVn} of the trajectory between πi and
πi+1. Second, within each reachable volume RVi we sample configurations of the
robot on the contact manifold and evaluate if the configurations make progress
towards the target waypoint, or if they get stuck. Third, we use these stuck
samples to identify regions of the contact manifold in which the robot is likely
to become stuck. Fourth, we estimate Pstuck(RVi → RVi+1), the probability
that the robot becomes stuck moving from one reachable volume to the next.
Finally, we compute Pexec(πi → πi+1), the probability of successfully reaching
the next waypoint, which we use to compute the probability that the entire path
is successfully executed Pexec(Π).
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6.4.1 Approximate reachable volumes

Approximate reachable volumes provide a time-discretized model of the C −
space reachable volume of the robot’s trajectory. We extend the concept of
C − space reachable volumes presented in [95], which models reachable configu-
rations of a kinematic linkage given the possible values of joints in the linkage.
Instead of a linkage of joints, ours are a linkage of configurations of the robot,
which we call a trajectory-linkage l = {(q0, t0), (q1, t1), ..., (qn, tn)} consisting of
a sequence of configurations in time. The reachable volume of a trajectory-
linkage is the set of all possible configurations at each point in time given the
previous configurations.

The advantage of this model of reachable volumes is that they can be defined
recursively, as we adapt from [95]:

RVt = RVt−1 ⊕RVt−1→t (6.1)

The reachable volume at time t, RVt, can be defined as the composition
of the reachable volume at t − 1, RVt−1, and the reachable volume of the link
from t − 1 to t, RVti−1→t. The initial reachable volume RVt0 is defined by the
εreached threshold for reaching a waypoint in the path, while the link between
two reachable volumes is constructed from all possible configurations that the
robot can reach in one timestep of the controller given a configuration in the
previous reachable volume:

RVt−1→t = {q + ∆q + ω} ∀q ∈ RVt−1 (6.2)

where ∆q is displacement produced by the controller as a function of previous
configuration q and target waypoint πi, and ω is the maximum displacement
caused by actuator error drawn from F(∆q). Of course, this definition of reach-
able volumes is not useful on its own; if t, ∆q or ω is unbounded, then reachable
volumes will grow to encompass the entire C − space of the robot. However, we
seek to model the reachable volume of a real robot, one for which ∆q is bounded
by limits to velocity and timestep ∆t, and ω is bounded by limits to actuator
error. We show that even if t is not bounded, the robot’s controllers ensure that
the reachable volume remains bounded, provided that we assume the controllers
used are stable and thus converge to the target. We present the calculation of
reachable volumes in terms of a robot using a common PD controller for each
actuator, however, this calculation can be adapted for other control methods.

First, we show how to calculate the bounds of the linkage from RVt−1→t. We
compute the bounds Bd,t for each dimension d of the configuration of the robot,
given the bounds of the dimension in the previous reachable volume Bd,t−1 and
target waypoint πi+1. Here, πi+1,d is the value of d− th dimension of the target
waypoint πi+1, while minBd,t−1 and minBd,t−1 are the minimum and maximum
values of the bounds Bd,t−1, respectively.

First, we compute the error for lower and upper bounds:
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EminBd
= πi+1,d −minBd,t−1 (6.3)

EmaxBd
= πi+1,d −maxBd,t−1 (6.4)

From this, we compute the nominal velocity command for each bound, in-
corporating the gains of the d− th dimension actuator’s PD-controller, Kp and
Kd:

∆qminBd,t−1
= clamp(KpEminBd

+KdĖminBd
,∆t) (6.5)

∆qmaxBd,t−1
= clamp(KpEmaxBd

+KdĖmaxBd
,∆t) (6.6)

Here, Clamp represents the applications of actuator limits (i.e., velocity
or acceleration limits) over timestep ∆t. We combine with noise drawn from
F(∆q) to compute the new bounds. Theorem 1: The new bounds are given by:

minBd,t = minBd,t−1 + ∆qminBd,t−1
+ minF(∆qminBd,t−1

) (6.7)

maxBd,t = maxBd,t−1 + ∆qmaxBd,t−1
+ maxF(∆qmaxBd,t−1

) (6.8)

Proof: Provided that the previous reachable volume(s) RVt−1, ..., RVt0 are
convex, and F(∆q) has convex finite support, the resulting reachable volume
is convex as it is the Minkowski sum of convex sets. By definition, the initial
reachable volume RVt0 defined by εreached is convex. The link between two
sequential reachable volumes is also convex, as it is the Minkowski sum of the
affine transformation of the initial reachable volume and noise drawn from F.
By induction, all reachable volumes are convex.

It can be shown that the Minkowski sum of convex hulls of convex sets is
equal to the convex hull of the Minkowski sum of the sets. For each dimension,
the bounds are calculated from this convex hull. Equation 6.7 is derived by
summing the bounds of the affine transformation induced by the controller (a
convex set) with the bounds of noise induced by F (also a convex set). �

It is also important to show in an environment without obstacles, the robot
is guaranteed to reach within εreached of πi+1 in finite time, which ensures that
the number of reachable volumes is finite. This requires that controllers used be
stable, and that failure to reach the next waypoint cannot occur as the result
of other constraints (ex. torque limits).

Theorem 2: The set of approximate reachable volumes covers the true reach-
able volume of the robot for the motion between πi and πi+1.

Proof: It is clear that the affine transformation induced by the controller
always makes progress in each timestep towards πi+1, as the controller used is
stable. Once the reachable volumes contain the εreached-ball centered at πi+1,
we know the reachable volumes will not advance further, since the controller will
always move the robot towards the target configuration. Thus, the reachable
volumes RVt0 , ..., RVtn will eventually cover the entire true reachable volume of
C − space for the robot moving from πi to πi+1. �
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6.4.2 Reachable volume sampling

Within each reachable volume RVi, we need to model the potential distribution
of robot configurations. While the effects of uncertainty in the robot’s actuators
can be modeled to generate such a distribution, this does not incorporate the
effects of contact or collision which can make such a distribution lose support in
one or more dimensions. Instead, to ensure coverage of the reachable volume, we
uniformly sample configurations QRVi

proportional to the measure (i.e., volume)
of RVi. This sampling is controlled by parameter density, which represents the
number of samples to draw for a unit of measure. For each configuration q ∈
QRVi

, we check for collision and assign one of three labels: colliding for samples
in collision with the environment or self-collision, near-collision for samples
close to collision, and free for the remaining samples. Ideally, we would directly
identify near-collision configurations based on proximity to the contact manifold;
however, exactly modeling this manifold is difficult. Rather, we approximate
C −space proximity to collision using workspace proximity by checking collision
against an expanded version of the environment and robot geometry.

6.4.3 Contact manifold characterization

We wish to characterize which parts of the contact manifold lead to the robot
becoming stuck. Sampling within reachable volumes allows us to identify near-
collision configurations, but since the contact manifold is zero-volume, sampling
will not produce contacting configurations directly. To generate these contact-
ing configurations, we iteratively project near-collision configurations towards
contact using the Jacobian J pseudoinverse of the robot for configuration q:

∆q = J(q, pclosest)
+[∆pTclosest]

T (6.9)

We identify pclosest, the point on the robot closest to collision, and com-
pute ∆pclosest, the motion that moves pclosest towards contact. We iteratively
project the configuration towards contact until either contact is achieved or the
configuration leaves the current reachable volume RVi.

Once all contacting configurations Qcontacting have been identified, we briefly
forward-simulate each configuration qcontacting ∈ Qcontacting towards waypoint
πi+1 for ∆t to produce Qresult. While we used our approximate kinematic sim-
ulator (see Appendix B) to provide simulation, any simulation method capable
of modeling contact and robot compliance can be used for this process. We
identify which configurations become stuck by checking dist(qcontacting, πi+1)−
dist(qresult, πi+1) ≥ ∆stuck and assign labels sliding for those that made suffi-
cient progress towards πi+1 and stuck to those that have not. Note that this
alone is not enough; a robot may slide in contact for some distance before be-
coming stuck, and we need to identify these sliding regions that lead to being
stuck. Doing so exactly, like many operations involving the contact manifold, is
intractable in many cases. Instead, we check if a stuck region is “downstream”
of a sliding region. We perform this check by rejecting the nominal motion of the
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contacting configurations defined by −−−−−−−−−−→qcontactingπi+1 onto the nominal motion of
the trajectory −−−−→πiπi+1. For each qsliding with rejected motion −−−−−−−−→qslidingπi+1rejected,
we compare against each qstuck with rejected motion −−−−−−−→qstuckπi+1rejected. If there
exists a qstuck such that |−−−−−−−→qstuckπi+1rejected| < |−−−−−−−−→qslidingπi+1rejected| and the an-
gle between −−−−−−−→qstuckπi+1rejected and −−−−−−−−→qslidingπi+1rejected is less than small angle
θ, then we identify qsliding as becoming stuck. Intuitively, this checks if slid-
ing configurations are likely to pass through regions in which they will become
stuck.

6.4.4 Stuck probability estimation

To estimate the probability that the robot becomes stuck for each pair of se-
quential reachable volumes Pstuck(RVi → RVi+1), we estimate the probability
that QRVi

, the sampled configurations in RVi, reach stuck regions in RVi+1

in the next timestep. To do so, we compute bounds on the image of each
q ∈ QRVi

, q /∈ Qstuck, i.e., the bounds on the distribution of possible future con-
figurations. As our mode of uncertainty is additive, we can model the image as a
distribution centered on qnext, the configuration resulting from ∆t of noise-free
motion, with bounds corresponding to the maximum noisy displacement in each
dimension. To ensure that this check is robust to sampling density, we ensure
that the bounds are no smaller than the expected distance between samples
dexpected = 1/density1/dimensions. Within the image, we check for sliding and
stuck regions identified in RVi+1, and record the relevant qstuck and qsliding as
QRVi+1,relevant. If no stuck configurations are found, we assume that the region
of RVi represented by q does not become stuck. For q with corresponding stuck
configurations, we integrate the image of q over the stuck regions of RVi+1.

Exactly integrating a multi-dimensional probability distribution in the pres-
ence of obstacles is challenging, so we perform numerical integration using a
Monte-Carlo approach. For a given number of iterations, we draw a possible
noisy future configuration qfuture and check if it falls within a stuck region of
RVi+1. Note that these stuck regions are regions of the contact manifold, and
thus have zero volume, so no qfuture will fall within one. Instead, we must check
if the motion of the robot from q to qfuture makes contact in one of these re-
gions. Since we wish to avoid the cost of simulating motion from q to qfuture to
check for contact, we must approximate this check. We know that any qfuture in
collision means that the robot must reach the contact manifold, and we retrieve
the closest configuration qclose ∈ QRVi+1,relevant as a heuristic to determine if
qfuture belongs to a stuck region. If qclose is stuck, we determine that qfuture is
stuck. The probability of a configuration q becoming stuck is:

Pstuck(q → RVi+1) = |{qfuture,stuck}|/|{qfuture}| (6.10)

We sum these probabilities for all collision-free q ∈ RVi to compute proba-
bility that the robot becomes stuck trying to reach the next reachable volume:
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Pstuck(RVi → RVi+1) =
∑

q∈RVi,q∈C−free

(Pstuck(q → RVi+1)) (6.11)

Performing this estimate for each pair of sequential reachable volumes, we
compute the probability that the robot reaches the next waypoint. Reaching
the next waypoint is equivalent to the probability of not becoming stuck for all
pairs of squential reachable volumes:

Pexec(πi → πi+1) = Πn−1
i=1 (1− Pstuck(RVi → RVi+1)) (6.12)

Finally, we can compute the probability that the entire path can be executed:

Pexec(Π) = Πgoal−1
i=1 (Pexec(πi → πi+1)) (6.13)

6.5 Results

We present results of testing our path quality metric in SE(2) and SE(3) en-
vironments. Since our metric operates over pairs of adjacent waypoints inde-
pendently, our experiments are designed to reflect the most challenging pairs of
adjacent waypoints from the motion planning tasks of Section 5.4. To provide
a ground-truth metric for path quality, we execute the provided paths using a
Kuka LBR IIWA 7 robot. Since this robot is not inherently passively compli-
ant, paths were executed using the onboard cartesian impedance controller to
provide active compliance. As the kinematic simulator used to check if motions
become stuck does not consider friction, we use contact motion controllers to
reduce contact forces (see Appendix C for details on the controllers). We present
statistical results over a range of actuation uncertainty and values of εreached
and show that our metric can provide reasonable assessments of path quality
compared to real robot performance of the task. We discuss the efficiency and
accuracy of our proposed metric against several simpler approaches. All metric
evaluation was performed using a 3.4 GHz 16-thread R7-1700X processor.

For both SE(3) and SE(2) tasks, we used the same range of εreached =
{0.125, 0.1875, 0.25} and actuator error α = {0.0625, 0.125, 0.25}. To accommo-
date for the small translation component of the tasks (on the order of tens of cen-
timeters at most) we weighted translation by a factor of 10 (i.e., εreached = 0.25
is equivalent to 0.25 radians or 2.5 centimeters). Actuator error is modelled in
the form of velocity noise, with linear velocity similarly weighted to 1/10, while
angular velocity is weighted by 1/4 as in Section 5.4. For a given value of α,
velocity noise for actuator d is drawn from a zero-mean truncated normal dis-
tribution with bounds [−limd, limd] and standard deviation σd proportional to
the desired actuator velocity q̇d and maximum actuator velocity maxq̇d:
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limd = max(αq̇d, α
1

4
maxq̇d) (6.14)

σd =
1

2
limd (6.15)

While this model, a further development of those used in Section 5.4, differs
from the zero-mean normal distributions commonly used in the literature, we
believe a bounded distribution better models the reality of robot actuators; it is
also required by our model of reachable volumes, as a pure normal distribution
does not have bounded support and thus reachable volumes would cover the
entire C − space. Additionally, we believe the combination of noise proportional
to commanded actuator velocity and a fixed noise floor better approximates real
actuator behavior than either of the previous models we have explored.

The ground truth likelihood of successfully completing the task was deter-
mined by performing 100 attempts of each combination of εreached and α. We
compare this “true” likelihood against Pexec estimated by our method “Metric”
and several simpler simulation-based approaches that rely on our approximate
kinematic simulator to evaluate robot motion:

1. Simulation (scaled) – Simulate the motion of the robot from a randomly
sampled configuration in RVt0 of the current waypoint until it either
reaches within εreached of the next waypoint or fails to make progress
and becomes stuck. This simulation is repeated proportional to the mea-
sure of the largest reachable volume encountered on the provided path.
The estimated Pexec is the percentage of iterations which reach the target
waypoint. This method provides a means to conservatively estimate the
number of simulation iterations needed.

2. Sampling-driven – Compute the reachable volumes from current to target
waypoint, and sample within them, checking for stuck samples in each
reachable volume. Record the last reachable volume that contains a stuck
sample as RVs. If a stuck sample is detected, simulate all free samples in
RVt0 until they: 1) reach RVs+1, 2) within εreached of the target waypoint,
or 3) fail to make progress and become stuck. This method offers a prin-
cipled way to detect where the robot may become stuck and simulation
may be necessary, while offering a set of starting configurations.

For purposes of comparison, we also include Simulation (baseline), in which
we assess the true likelihood of successfully completing the path in our simulator
by simulating with a high number of simulations. This baseline is important,
since it shows any differences between the behavior of the simulated and real
robots.

It is important to note that the behavior modeled by the kinematic simulator
will not exactly correspond to the behavior of the real robot. The previously-
developed compliant motion controllers mitigate the effects of friction during
sliding contact, but for the controller to adapt the motion of the robot, it must
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get stuck first. Therefore, to detect if the robot is actually stuck, rather than
merely in the process of being un-stuck by the controller, we must check if the
robot fails to make sufficient forward progress over several successive iterations.
While a similar check can be incorporated into the kinematic simulator, these
are not directly equivalent since the kinematic simulator will never get stuck
as the result of friction. Requiring multiple successive stuck iterations (in our
experience, 2 successive iterations is reasonable) may cause the simulator to
overestimate the likelihood of successfully executing the path, since given time,
the effects of actuator error may “un-stick” the simulated robot.

6.5.1 SE(3) Peg-in-hole

(a) (b) (c)

Figure 6.2: The SE(3) peg-in-hole task involves moving from the start (a) to the
bottom of the hole. (b) An example of a successful execution of the task, in which the
peg enters the hole. (c) An example of a failed execution, in which the peg becomes
stuck and fails to reach the hole.

In SE(3) peg-in-hole, a version of the classical peg-in-hole task [42] shown
in Figure 6.2, the free-flying 6-DoF robot “peg” must reach the bottom of the
hole. This task is difficult for robots with actuation uncertainty, as the hole
is less than 10% wider than the peg. For this experiment, Simulation (base-
line) was performed with 10000 simulations from the initial to target waypoint,
and sampling density parameter density was set so that at the lowest values of
εreached and α the largest reachable volume contained 500 samples; thus Simula-
tion (scaled) and Sampling-driven performed 500 simulations. For this task, at
most 21 reachable volumes are computed, depending on εreached and α, and thus
Sampling-driven and Metric must sample and assess approximately 10000 con-
figurations. Note that this sampling density is not particularly high, however,
higher sampling densities would result in excessive computation time.

As shown in Table 6.1, Simulation (scaled) and Sampling-driven produce
similar assessments of Pexec; this is to be expected since these two methods
perform identical amounts of simulation. Both estimate similar Pexec to the
simulation baseline, despite performing 1/20 of the simulation. However, true
Pexec estimated from real robot experiments often differs significantly from the
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εreached = 0.125 εreached = 0.1875 εreached = 0.25
Method α =

0.0625
α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

Ground
truth

0.91
[0.0]

0.97
[0.0]

0.92
[0.0]

0.82
[0.0]

0.91
[0.0]

0.84
[0.0]

0.85
[0.0]

0.79
[0.0]

0.84
[0.0]

Simulation
(baseline)

1.0
[0.00]

0.99
[0.00]

0.80
[0.00]

0.99
[0.00]

0.99
[0.00]

0.86
[0.00]

0.99
[0.00]

0.98
[0.00]

0.88
[0.00]

Simulation
(scaled)

1.0
[0.00]

0.99
[0.00]

0.80
[0.02]

1.0
[0.00]

0.99
[0.00]

0.86
[0.01]

0.99
[0.00]

0.98
[0.01]

0.88
[0.02]

Sampling-
driven

1.0
[0.00]

0.99
[0.00]

0.84
[0.02]

1.0
[0.00]

0.99
[0.00]

0.89
[0.02]

0.99
[0.0]

0.96
[0.18]

0.88
[0.01]

Proposed
Metric

1.0
[0.00]

1.0
[0.0]

0.99
[0.01]

0.99
[0.01]

0.96
[0.02]

0.87
[0.02]

0.88
[0.02]

0.79
[0.04]

0.71
[0.03]

Table 6.1: SE(3) peg-in-hole task success comparison (mean [std.dev.]) between real-
world execution of the task. Ground truth percentages are the result of 100 executions
of each combination of state-reached threshold εreached and actuator error α. Assessed
execution probability from our method (Proposed Metric) and alternative approaches
are averaged over 30 runs.

predicted value. Our proposed Metric produces a closer estimate overall to the
true Pexec, but this estimate is not uniformly conservative as we would desire.
We discuss these results, and compare the efficiency of these methods in detail
in Section 6.6.

6.5.2 SE(2) Through-passage

(a) (b) (c)

Figure 6.3: The SE(2) through-passage task involves moving from the start (a)
through the passage. (b) An example of a successful execution of the task, in which
the L-block clears the passage. (c) An example of a failed execution, in which the
block becomes stuck.

In SE(2) through-passage, shown in Figure 6.3, the free-flying 3-DoF robot
“L-block” must pass hole. This task is difficult for robots with actuation un-
certainty, as the hole is only a few millimeters wider than the peg. Note that
due to the asymmetry of the block, rotations to one side or the other result
in significantly different likelihoods of success. For this experiment, Simulation
(baseline) was performed with 2000 simulations from the initial to target way-
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εreached = 0.125 εreached = 0.1875 εreached = 0.25
Method α =

0.0625
α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

Ground
truth

0.74
[0.0]

0.74
[0.0]

0.8
[0.0]

0.68
[0.0]

0.63
[0.0]

0.71
[0.0]

0.61
[0.0]

0.45
[0.0]

0.54
[0.0]

Simulation
(baseline)

1.0
[0.00]

0.96
[0.01]

0.63
[0.02]

1.0
[0.00]

0.99
[0.00]

0.72
[0.01]

1.0
[0.00]

0.99
[0.0]

0.77
[0.02]

Simulation
(scaled)

1.0
[0.00]

0.95
[0.01]

0.63
[0.03]

1.0
[0.00]

0.99
[0.01]

0.73
[0.03]

1.0
[0.00]

0.99
[0.01]

0.77
[0.03]

Sampling-
driven

1.0
[0.00]

1.0
[0.00]

0.79
[0.04]

1.0
[0.00]

0.99
[0.01]

0.80
[0.02]

1.0
[0.00]

0.99
[0.00]

0.82
[0.02]

Proposed
Metric

0.98
[0.03]

0.79
[0.10]

0.39
[0.06]

1.0
[0.00]

0.87
[0.10]

0.38
[0.07]

1.0
[0.01]

0.78
[0.10]

0.35
[0.05]

Table 6.2: SE(2) through-hole task success comparison (mean [std.dev.]) between
real-world execution of the task. Ground truth percentages are the result of 100
executions of each combination of state-reached threshold εreached and actuator error
α. Assessed execution probability from our method (Proposed Metric) and alternative
approaches are averaged over 30 runs.

point, and sampling density parameter density was set so that at the lowest
values of εreached and α the largest reachable volume contained 250 samples;
thus Simulation (scaled) and Sampling-driven performed 250 simulations. For
this task, at most 31 reachable volumes are computed, depending on εreached
and α, and thus Sampling-driven and Metric must sample and assess approxi-
mately 7800 configurations. Like the SE(3) case, this sampling density is low;
higher sampling densities would result in excessive computation time.

As shown in Table 6.2, Simulation (scaled) produces nearly identical as-
sessments of Pexec to baseline simulation, despite performing a fraction of the
simulation. Unexpectedly, Sampling-driven produces different estimates at high
uncertainty. Similarly, Metric consistently produces lower estimates of Pexec
in mid- and high-uncertainty cases. These differences suggest that the chosen
sampling density is too low. Choosing a higher density would result in signifi-
cantly higher computation times, however. When compared to the true Pexec,
all methods show significant inaccuracy. In all cases, the true Pexec is lower
than predicted at low- and mid-uncertainty. Only at high uncertainty does one
method, Metric, produce more conservative estimates. We discuss the efficiency
of the presented methods and reasons for their inaccuracy in Section 6.6.

6.6 Discussion

While our experiments suggest that the proposed methods show promise, they
do not produce uniformly positive conclusions. Both our proposed method and
several baseline methods struggle to accurately predict the true likelihood that
our example tasks will be successfully executed. In light of our experience
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planning for such tasks, we believe the most important issue is the mismatch
between the behavior of the idealized simulator and controllers and the behavior
of the real robot with its own distinct control scheme. This is shown in the con-
trast between the relative similarity of baseline simulation and metric-assessed
Pexec, while the ground truth value may differ significantly. In our previous
experiments, we sought to develop robot controllers that would allow reliable
execution of planned motions. Here, however, producing accurate assessments
of Pexec requires that the behavior of simulated and real robots be nearly iden-
tical: there cannot be systematic cases where one succeeds and the other fails.
The computational efficiency of our approximate kinematic simulator makes it
possible to cheaply model compliant robot behavior, but on its own, it cannot
accurately model tasks that involve friction or robot dynamics.

Another fundamental limitation of the presented method is the reliance on
uniform sampling. Uniform sampling is clearly suboptimal; we know from ex-
perience and in simulated and real environments that potential robot configu-
rations are concentrated near the medial axis of the path. However, accurately
modeling a more accurate distribution in the presence of obstacles is difficult.
Uniform sampling, while inferior to using the true distribution, ensures that we
do not introduce unexpected artifacts in our sampling. A consequence of us-
ing uniform sampling is that the metric may underestimate Pexec in case where
samples near the bounds of reachable volumes become stuck, as uniform sam-
pling will overestimate the likelihood of the robot being in these regions. We
believe this effect is particularly visible in the highest uncertainty cases of our
SE(2) experiment as seen in Table 6.2 where our proposed metric significantly
underestimates the true likelihood of reaching the target waypoint.

6.6.1 Efficiency

To be practically useful as a method for assessing the quality of a path in a
motion planner or trajectory optimizer, a path quality metric must be efficient.
In our tests, we have explicitly limited sampling density and simulation iter-
ations in an effort to limit computation time to reasonable durations. Higher
accuracy from sampling-based methods is of no use if the computation time
required by greater density exceeds that of pure simulation. The computation
time required by all methods are shown in Table 6.3 and Table 6.4 for SE(3)
and SE(2) tasks, respectively. All methods exhibit a significant degree of par-
allelism: simulations and sampling/assessment may be performed in parallel,
as inter-dependencies between simulation iterations and samples are minimal.
To the greatest extent practical, the methods presented have been parallelized
through the use of OpenMP directives [96]. Further increases to performance
would require significant algorithmic changes.

For SE(3), Simulation (scaled) is clearly the most efficient method, requir-
ing approximately a quarter of the computation time of the next-most efficient
method. However, as can be seen in both SE(3) and SE(2) tasks, all methods
using simulation require significantly more computation time as εreached and α
increase. This results from the increased contact present at higher parameter
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values. Our kinematic simulator is designed to ensure that free-space motion is
evaluated as cheaply as possible (in practice, requiring little more than inter-
mediate collision checks), while motion in contact requires collision resolution
to be performed at every simulation iteration.

εreached = 0.125 εreached = 0.1875 εreached = 0.25
Method α =

0.0625
α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

Simulation
(baseline)

4.99
[0.05]

6.26
[0.08]

13.08
[0.19]

4.78
[0.07]

6.33
[0.08]

12.62
[0.19]

5.43
[0.09]

6.99
[0.10]

12.63
[0.17]

Simulation
(scaled)

0.26
[0.01]

0.32
[0.01]

0.66
[0.03]

0.24
[0.01]

0.34
[0.02]

0.65
[0.03]

0.29
[0.02]

0.35
[0.02]

0.64
[0.03]

Sampling-
driven

1.48
[0.08]

1.47
[0.15]

2.08
[0.08]

2.0
[0.10]

2.03
[0.08]

2.38
[0.08]

1.82
[0.06]

1.93
[0.09]

2.23
[0.06]

Proposed
Metric

1.45
[0.06]

1.44
[0.10]

1.93
[0.08]

1.96
[0.11]

2.08
[0.10]

2.25
[0.07]

1.99
[0.07]

2.16
[0.11]

2.32
[0.06]

Table 6.3: SE(3) peg-in-hole task computation time (seconds) comparison (mean
[std.dev.]) between our method (Proposed Metric) and alternative approaches aver-
aged over 30 runs of each combination of state-reached threshold εreached and actuator
error α.

εreached = 0.125 εreached = 0.1875 εreached = 0.25
Method α =

0.0625
α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

α =
0.0625

α =
0.125

α =
0.25

Simulation
(baseline)

7.32
[0.19]

12.60
[0.22]

19.89
[0.48]

7.45
[0.17]

12.47
[0.31]

20.31
[0.54]

7.53
[0.16]

12.56
[0.25]

20.27
[0.43]

Simulation
(scaled)

1.79
[0.06]

3.06
[0.11]

4.91
[0.16]

1.84
[0.08]

3.06
[0.09]

5.00
[0.18]

1.84
[0.07]

3.13
[0.10]

5.02
[0.15]

Sampling-
driven

2.47
[0.24]

3.82
[0.30]

7.36
[0.47]

2.46
[0.32]

3.91
[0.47]

7.58
[0.30]

2.39
[0.16]

3.85
[0.57]

7.50
[0.43]

Proposed
Metric

2.42
[0.08]

3.00
[0.15]

3.53
[0.13]

2.45
[0.06]

2.85
[0.11]

3.48
[0.11]

2.36
[0.07]

2.74
[0.10]

3.38
[0.10]

Table 6.4: SE(2) through-hole task computation time (seconds) comparison (mean
[std.dev.]) between our method (Proposed Metric) and alternative approaches aver-
aged over 30 runs of each combination of state-reached threshold εreached and actuator
error α.

Unlike the simulation-based methods, our proposed method increases in com-
putation time at a slower rate, as a combination of the increasing volume of the
computed reachable volumes and the increasing number of near-contact sampled
configurations which are projected to contact and evaluated for stuck/sliding.
This can be see in the SE(2) task, where simulation-based methods that start
with the lowest computation time quickly rise above the time required by the
Metric approach. This shows that our sampling-based method provides an ef-
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ficient alternative in case where simulation-based approaches become too ex-
pensive. In particular, this approach shows particular promise efficiency-wise
if used with a more expensive simulator. By avoiding prolonged simulation,
the sampling-based approach may show significant efficiency improvements in
comparison to paths evaluated in a dynamic simulator such as Gazebo [94].

6.6.2 Future improvements

There are several avenues for further development of the proposed methods.
A limitation of the proposed approach is that reachable volumes may contain
volumes of C − free that are not reachable from previous reachable volumes
due to obstacles in the environment. Likewise, since the approximate reachable
volumes are computed assuming no obstacles are present, they are limited to
modeling visible paths. We briefly discuss two options are available for address-
ing this limitation.

Using the spatial particle clustering heuristics introduced in Section 5.3.3, we
can check that all n samples in a given reachable volume RVt are close to at least
one of the m samples in the previous reachable volume RVt−1. Intuitively, these
clustering heuristics reflect the reachability of regions of the environment, so us-
ing them to filter which samples are reachable is a natural extension. Indeed, we
have explored using this technique but not included it in our results; it requires
significant computation time. A näıve implementation requires O(mn) compar-
isons, while an optimized implementation using K-d trees for nearest-neighbor
search may reduce this complexity to O(log(m)n) comparisons. Implementing
high-performance K-d trees for configuration spaces containing SO(3), however,
is difficult [97].

A more exact representation of the reachable volume of a path can be derived
by modeling the actual motion of potential configurations of the robot. Not only
does this approach avoid the issue of extraneous free reachable volume, it also al-
lows non-visible paths to be evaluated. A potential avenue for such an approach
is to adopt ideas from the Unscented Kalman Filter (UKF) like [75], and use
the propagation of possible configurations as sigma points for the UKF. Other
belief-space approaches use Extended Kalman Filters to propagate belief [98].
This would provide both an accurate model of the true reachable volume and a
useful non-uniform distribution within the volume that might better represent
the likely configurations of the robot. Unfortunately, it is unclear how to im-
plement such an approach without heavy reliance on computationally-expensive
simulation. In such a case, the amount of simulation alone could be equivalent
to that needed to directly estimate the likelihood of successfully completing the
path.

6.7 Conclusion

We have developed a pair of methods for assessing the robustness of paths
executed by robots with actuation uncertainty. Both methods incorporate en-
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vironment contact and compliance of the robot to distinguish between contact
that allows the robot to slide and complete the path, and contact that results in
the robot becoming stuck. We model the possible reachable volume of C−space
covered while executing a provided path using a set of approximate reachable
volumes. Within each reachable volume, we use sampling to identify regions
of the contact manifold on which the robot may become stuck. Using these
regions, we estimate the likelihood that the robot will successfully execute the
provided path. We have applied our methods to several real world robot tasks
in SE(3) and SE(2) and compare against simpler simulation-based methods.
We show that our proposed methods, while not uniformly superior to pure sim-
ulation, offer a promising avenue for efficient assessment of path robustness. In
addition, we discuss limitations of the proposed work and directions for future
improvements.
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Chapter 7

Discussion and Future
Work

This thesis makes contributions to the areas of motion planning with deformable
objects and environments and manipulation with uncertainty, but these tasks
remain challenging for robots. We have focused on tasks where issues of sensing,
modeling, planning, and control are often inseparable: even the best planned
motion may be for naught if the controllers attempting to perform it are poor.
As a result, in our search for methods that allow robots to perform useful practi-
cal tasks, addressing the tasks we wish to perform often involves the development
of a combination of new models, planning approaches, and execution methods.

We have developed approximate models and cost functions that allow prac-
tical and efficient motion planning in elastic deformable environments to mini-
mize deformation. These environments are representative of those encountered
in important real-world tasks such as robotic assembly and surgery. Previous
work in this area was limited to local optimization or relied upon extensive
precomputation. Beyond simply modeling physical properties, we have incor-
porated qualitative information about deformable objects into our models and
provided means for expert users to accurately build these models from their
expert knowledge of the task. Combining quantitative properties and qualita-
tive characteristics is a key step in making robotic manipulation of deformable
objects and environments practical for the kinds of complex heterogeneous en-
vironments encountered in industrial and medical tasks.

Despite the success of our approximate model, we need not forsake more
principled and accurate simulation methods. The voxel-based model presented
in Chapter 3 is a coarse approximation of real deformable objects. For ob-
jects that are not completely elastic or are not fixed in place, better models
are needed. Higher fidelity models, such as FEM simulation, can be used to
improve lightweight discretized models. At the most basic level, more accu-
rate simulation can be used to compute parameters for our models that capture
higher-order characteristics like fragility. Expensive high-fidelity simulation can
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be used up front to train models such as GMMs [2] or neural networks which
then predict the severity of object deformation or the behavior of the deformable
objects. For example, this could offer a means of incorporating object flexibility
and motion into our lightweight models, where a trained model predicts the
amount of bending or movement that will result for a given deformation. This
could be combined with our cost function to produce conservative estimates of
cost that account for the possibility of object bending or movement. A similar
opportunity exists with puncture detection: if the likelihood of a path resulting
in puncture could be predicted using a trained model, it would greatly reduce
the runtime expense of planning using our topology-based puncture check.

Some of the limitations imposed by our models may be addressed by clos-
ing the loop of sensing, modeling, planning, and execution. Rapid adaptation
of planned paths and replanning as-needed offer promise to reliably perform
tasks in dynamic deformable environments without paying the up-front high
costs of higher-fidelity models. Indeed, work in visual servoing and control has
produced FEM models that may be evaluated in realtime; while these are not
fast enough to use in a planner, they are fast enough to use inside a controller
that adapts the planned path to real object behavior encountered during exe-
cution. Parallel work on the development of efficient approximate models for
control of deformable objects [25, 99] may offer an alternate approach. Instead
of planning motions in a purely kinematic sense, planning incorporating the be-
havior of controllers and producing an execution policy rather than a path offers
a potential way to combine execution, sensing, and as-needed replanning.

Policy-based planning and execution form the core inspiration of our work
planning manipulation for robots with actuation uncertainty. Even the most
reliable industrial robot will diverge from the exact path produced by a planner;
let alone a robot with actuator error. Intuitively, we want a planner to generate
behavior for a range of possible robot states, and for that behavior to adapt to
reflect the success or failure of execution. The planner presented in Chapter 5
provides an efficient means for generating policies that adapt online to reflect
the true behavior encountered during execution. Unlike previous work in this
area, we have developed a planner that can safely use and exploit contact and
compliance. Just like working with deformable objects, we have turned the
problem of contact into a strength. Our robots can automatically leverage
contact like that proposed in seminal planning work [42] without specifying
which, if any, contact to use.

Like our voxel-based model that makes planning for deformable objects ef-
ficient, planning with contact is fundamentally enabled by our development of
a fast approximate kinematic simulator (see Appendix B). Existing kinody-
namic planning using simulated high-DoF robots rarely incorporates contact,
True dynamic simulation in contact is often computationally expensive. With-
out this simulator, it would be impractical to plan these motions; rather than
the seconds it takes for our planner to produce its first solutions, using a full
dynamics simulator would take minutes or hours. This approximate simulator
is not without its limitations, many of which can (and often must) be addressed
to produce reliable robot behavior.
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Of course, the planner introduced in Chapter 5 is not perfect. It strikes one
possible balance in a set of options: how much to model and simulate up front;
exploration of multiple alternative motions; and reliance on post-processing and
smart execution. Clearly, different combinations of robots and tasks could bene-
fit from different choices: our experience shows that many tasks can be planned
without explicitly modelling uncertainty at all, provided a sufficient diversity
of possible motions is encoded in the policy. Selecting the right balance for a
given task is an important area for future investigation. The role of different
controllers and control modes is also one to explore. Reasoning over different
controllers together with uncertainty offers the ability to selectively change the
certainty of the robot’s motion, which could greatly improve the ability of robots
to perform precise manipulation without sacrificing speed. Human motion often
combines fast, imprecise motion with slow, fine motion. Can we use techniques
from planning with uncertainty to produce safe human-like motion on common
robots?

The limitations of our planning work inspire us to explore the problem from
another direction. In Chapter 6 we address the complement of the planning
problem. Instead of planning manipulation in the face of uncertainty, we assess
the resilience of a desired motion to the addition of uncertainty. This problem
offers a deceptively simple näıve solution: simply execute the motion for a
sufficient number of iterations. Of course, executing every planned path with
a robot is impractical, perhaps even dangerous, and defeats the purpose of
generating robust motion. Simulation alone is also no ideal solution. Accurate
simulation is expensive, and ensuring that simulation accurately captures the
robustness of all parts of a desired motion is difficult.

This challenge drives us to explore the characteristics of the space used by
the robot to perform the motion. Reachable volumes provide a discretization in
time, while sampling allows us to consider continuous regions of the configura-
tion space in terms of representative samples. Using sampling, we can charac-
terize the relevant regions of the contact manifold, and estimate the probability
that a robot will encounter troublesome regions. Though this work provides
only the first steps towards a robust metric of path quality, it shows promise for
a method that does not rely on extensive simulation.

Our work towards developing an efficient metric for path robustness pre-
sented in Chapter 6 is illustrative of the many challenges posed trying to model
and perform complex tasks on practical robots. High-DoF robots render search-
based planning and fixed discretization impractical, so we rely on sampling. Yet,
this sampling adds new problems. Fewer samples reduce computation time to
practical levels, yet often introduce artifacts and poor coverage of the space.
Often we want not just a specific sample, but a representation of a region of
the configuration space. Can a new approach, perhaps relying on advances in
topology and geometry, change how we model high-dimensional space?

A troubling consequence of the integration of models, planning, and execu-
tion is a lack of theoretical guarantees. This is an issue even when building
from planners and controllers with well-known properties. The topology-based
puncture check for deformable objects introduced in Chapter 4 becomes a con-
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straint on the entire path. While the theoretical consequences of this check have
not been explored in depth, discussions suggest that it compromises any com-
pleteness or optimality guarantees of a planner using it. Likewise, our methods
for planning manipulation with uncertainty in Chapter 5 combine techniques
from planning, execution, and state estimation with useful theoretical proper-
ties. Yet, their combination creates an entirely new space, in which we must
reason over their combined behavior. [58] is a rare example of a method in this
area with completeness guarantees, although the success of trajectory optimiz-
ers suggests that theoretical properties may be unnecessary for practical utility.
Can we prove completeness or optimality for these planning approaches? These
are important topics to address in the future.
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[83] Devaurs, D., Siméon, T., Cortés, J.: Enhancing the Transition-based RRT
to Deal with Complex Cost Spaces. In: ICRA. (2013)

82



[84] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger,
E., Wheeler, R., Ng, A.: Ros: an open-source robot operating system. In:
ICRA workshop on open source software. (2009)

[85] Diankov, R., Kuffner, J.: Openrave: A planning architecture for au-
tonomous robotics. Technical report, Robotics Institute, Pittsburgh, PA
(2008)

[86] Coumans, E.: Bullet 2.73 Physics SDK Manual (2010)

[87] Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.:
STOMP: Stochastic Trajectory Optimization for Motion Planning. In:
ICRA. (2011)

[88] Chen, L., Rong, Y.: Linear time recognition algorithms for topological
invariants in 3D. In: International Conference on Pattern Recognition.
(2008)
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Chapter 8

Appendix

Appendix A Learning deformability parameters

While learning physical properties of deformable objects is not a focus of our
work, it is useful to ground the deformability parameter used in our models
against real-world measurable behavior. Since we have reduced the physical
behavior of objects to a single parameter in the range [0, 1], it is not directly
equivalent to known physical characteristics of the material (ex. Young’s modu-
lus). Similarly, a modelled object might consist of multiple materials, and thus
the overall behavior is a combination of the materials involved. Instead, our
deformability parameter is primarily a relative value between the objects being
modelled: two objects that deform in similar amounts when exposed to simi-
lar contacts should receive similar deformability values. To demonstrate that
this deformability parameter can be recovered using an active manipulation ap-
proach like [29, 15, 30], we have performed a simple experiment using the same
physics simulator used to recover sensitivity parameters.

(a) (b) (c)

Figure 8.1: (a) The experiment used to demonstrate recovery of deformability pa-
rameters. The center red object has known deformability; other objects’ are unknown.
(b,c) The known object is used to deform the unknown objects, and the deformability
of the unknown object is recovered based on the object’s deformation.
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Object
1 2 3 4 5

Ground truth 0.75 0.625 0.5 0.375 0.25
Recovered 0.813 0.604 0.482 0.413 0.191

Table 8.1: Comparison between known ground-truth and recovered deformability
parameters.

In our experiment setup, as shown in Figure 8.1, a set of deformable objects
with varying (unknown) deformability are arranged around a central object (in
red) with known deformability. In turn, the central object is brought into con-
tact with each of the unknown objects until both objects deform. We then
record the final deformed volume of the objects, from which we compute the
ratio of volume change. By multiplying this ratio with the known deformability
of the central object, we estimate the deformability of the unknown object. We
performed this test with 30 iterations for each unknown object, averaging the
deformed volume to minimize simulator-induced noise. We can then compare
the estimated deformability values to the ground truth deformability values used
to configure the simulator. As shown in Table 8.1, we produce a reasonable esti-
mate of the deformability of each unknown object. Note that due to simulation
artifacts and noise, we do not expect to recover these values exactly; however,
we recover parameters with the correct relative ranking.

Appendix B Fast kinematic simulation

(a) (b) (c) (d)

Figure 8.2: The collision resolution process used by our lightweight simulator. From
left to right, (a) a robot represented by points (black) moving towards a target (light
blue) and an obstacle (gray) (b) collides with the object, triggering the collision resolu-
tion. (c) point corrections ∆pn for each colliding point of the robot are computed from
the surface normals of the object and applied (d) so the robot complies to produce an
in-contact state.

Our approach for planning with uncertainty in Chapter 5 relies on a efficient
simulator for the behavior of a controlled compliant robot. While progress has
been made in the performance and accuracy of dynamic simulators [100, 101],
we require a simulator capable of evaluating hundreds, if not thousands, of robot
motions per second to grow the planner’s tree in reasonable time. To improve
computational performance, we limit ourselves to kinematic simulation, though
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our planning framework is agnostic to the simulator being used. Kinematic sim-
ulation is only an approximation of true robot motion; however, we mitigate the
discrepancy between simulated and real dynamic behavior using policy adapta-
tion to update the planned policy with the results of real-world executions. For
our work, the robot is controlled via PD feedback controller with gains Kp ,Kd ;
for error eq = qdesired − q the resulting control input is ∆q = Kpe + Kd ėq ;
however, different controllers can be used with the simulator. For a fixed time
limit tsimulate , we forward simulate the motion of the robot from the current
configuration qt to the next configuration qt+1 using the equation below.

eq = qtarget − qt (8.1)

∆q = Kpeq +Kdėq (8.2)

qt+1 = q + ∆q + F(∆q) (8.3)

q′t+1 = ResolveCollisions(qt+1 ) (8.4)

Collision resolution and robot compliance are modelled by ResolveCollisions,
which iteratively corrects colliding configurations qt+1 until an in-contact con-
figuration q′t+1 is reached. For performance purposes, the environment E is
modelled using a voxel grid that stores the surface normals for all obstacles in
E, and the robot R is modelled using a set of points for each link. Collision
checking of a configuration q is performed by transforming every point of the
robot into the environment and checking if any of the corresponding voxels be-
long to an obstacle. If any voxels belong to an obstacle, the collision is resolved
by iteratively applying corrections ∆q as shown in Figure 8.2. Each correction
∆q is the product of the individual point corrections ∆pn for each colliding
point, where ∆pn is the product of the surface normal of the collided obstacle
and penetration distance of point pn, and the Jacobian J pseudoinverse of the
robot for configuration q and point pn as shown below:

∆q = J(q, p1, p2, ...)
+[∆pT1 ,∆p

T
2 , ...]

T (8.5)

Intuitively, this computes the change in configuration necessary to move
points p1, p2, ... out of collision, where the correct direction to move of out of
collision is approximated by the surface normal of the collided object. Note
that this approximation is only valid if the maximum penetration of an obstacle
is small; thus we apply the motions computed by Equation 8.1 and Equation
8.5 over small timesteps to ensure that the workspace motion of the robot is
small. To avoid oscillation in confined spaces where corrections from one set
of contacts may produce new contacts, an adaptive step scaling mechanism is
necessary to detect oscillations and reduce step sizes accordingly. Importantly,
to avoid over-determining Equation 8.5, we must ensure that penetration dis-
tances are correctly computed; simply estimating using a signed-distance field
will produce incorrect behavior, as penetration distances are discretized by the
field. Similarly, using the gradient of a signed-distance field to supply surface
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normals will result in unexpected behavior on edges and corners, where the di-
rection of robot motion determines which face of the object is contacted, and
thus the surface normal. This issue is avoided by precomputing true surface
normals for every contacting face of the voxels of the environment, and then
retrieving the surface normal corresponding to the robot’s direction of motion.

To extend the environment-collision resolution of Equation 8.5 to self-collisions
of a multi-link robot, we identify colliding points on the robot’s links and gen-
erate per-point corrections using a pure momentum-based model of general n-
body inelastic collisions, as this method does not require full dynamics. We
approximate the momentum of colliding links using the mass of the link and
the ∆q of the last simulated step of the controller. Of course, since this ap-
proach does not account for the dynamics of the robot, it will exaggerate the
motion of near-root links as a result of self-collision. To mitigate this error,
we approximate the inertia of the arm by assigning massi, mass of link i, to
massi = massi+massi+1 + ...+massn while evaluating the resulting velocities
from the inelastic collision. These resulting velocities are used directly as point
corrections ∆pn.

While our kinematic simulation does not consider surface friction which
could hamper sliding motions, we address this using a simple controller dis-
cussed in Appendix C and our simulation results show that this limitation does
not overly impair the performance of our planner, though unexpected jamming
could still occur.

Appendix C Execution controllers

(a) (b) (c) (d)

Figure 8.3: Our contact motion controller helps mitigate the effects of contact friction.
(a) The robot approaches contact while moving towards the goal in blue. (b) The robot
makes contact and becomes stuck on the surface, from which we estimate a plane
(green) that locally approximates the surface and adjust the goal by εadjust shown in
magenta to reduce contact force until (c) the robot resumes moving. (d) Alternatively,
the robot remains stuck for i iterations until iεadjust = εadjustmax and the controller
terminates.

We use the Gazebo dynamics simulator in both planar and 3D environments
to simulate execution of robot motion including contact with obstacles. In the
kinematic simulator used during planning, a PD position controller attempts
to reach a target configuration qtarget by commanding velocities to the robot.
Likewise, we control the simulated robot in Gazebo using a position controller
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that receives qtarget and commands velocities. To safely achieve those veloci-
ties in collision and contact, a velocity controller commands forces and torques
that move the simulated robot. Unlike the kinematic simulator, which ignores
friction and dynamic effects to achieve faster runtime, the dynamic simulator
incorporates friction between the robot and the environment. To mitigate the
effects of friction in execution, we use a contact motion controller illustrated in
Figure 8.3 which adjusts qtarget to reduce contact forces that cause the robot to
become stuck.

When the contact motion controller receives a new target position, it first
commands qtarget without modification. For the duration of execution texec , at
each iteration the controller records the trajectory of the robot and checks if
the robot has become stuck, i.e., if the total motion over a sliding window of
the trajectory is below a threshold εstuck . If the robot is stuck, we assume that
the surface on which the robot is stuck can be locally approximated as a plane,
which we can estimate from the recent motion of the robot. Once the robot is
stuck, the controller then fits a plane defined by point Pplane and normal vector
−−−−→
Nplane to the sliding window of the trajectory and projects qtarget towards the
plane:

q′target = qtarget + (

−−−−−−−−−→
qtarget , Pplane ·

−−−−→
Nplane

−−−−→
Nplane ·

−−−−→
Nplane

−−−−→
Nplane)(iεadjust) (8.6)

Here, on the ith stuck iteration of the controller (i.e., the robot has be
stuck for i consecutive iterations of the controller), the controller computes
−−−−−−−−−→
qtarget , Pplane , the vector from qtarget to Pplane , and projects it onto

−−−−→
Nplane to

compute an adjustment vector. The target configuration is then moved along
the adjustment vector towards the plane by iεadjust , where εadjust is the amount
to adjust at each step. If the controller exceeds the time limit texec or iεadjust ≥
εadjustmax, the controller reports that the robot has become “completely stuck”.
Intuitively, this controller reduces contact forces (and thus the effects of friction)
by moving qtarget towards the surface of the obstacle approximated by fitting a
plane to the trajectory. If the robot continues to move, or if the robot resumes
moving after being stuck, the controller commands the original qtarget . For both
SE(2) and SE(3) simulation tests, we used εadjust = 0.01 and εadjustmax = 1.0
(i.e., it will attempt 100 stuck iterations before terminating the motion). In
testing in both Gazebo and with the cartesian impedance controllers of the
Kuka IIWA robot, the contact motion controller enables reliable sliding motion.

A structurally similar contact motion controller is used with the Baxter
robot; however, instead of fitting a plane in R7 and projecting the target to-
wards it, we use the kinematic simulator described in Appendix B to predict the
next adjusted target configuration. At a stuck configuration qstuck , we forward-
simulate using the kinematic simulator towards qtarget for a brief timestep, and
record the resulting configuration qsimulated . We then interpolate between qtarget

and qsimulated by iεadjust to produce the new adjusted target q′target .
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