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TERMINOLOGY 

 Controlled Experiment: a study where treatments are 
imposed on experimental units, in order to observe a 
response 

 

 Factor: a variable that potentially affects the response 
 ex. temperature, time, chemical composition, etc. 

 

 Treatment: a combination of one or more factors 

 

 Levels: the values a factor can take on 

 

 Effect: how much a main factor or interaction between 
factors influences the mean response 
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TERMINOLOGY 

 Design Space: range of values over which factors are to be 
varied 

 

 Design Points: the values of the factors at which the 
experiment is conducted 

 One design point = one treatment 

 Usually, points are coded to more convenient values 

 ex. 1 factor with 2 levels – levels coded as (-1) for low level and (+1) for high level 

 

 Response Surface: unknown; represents the mean response 
at any given level of the factors in the design space. 

 

 Center Point: used to measure process stability/variability, as 
well as check for curvature of the response surface. 

 Not necessary, but highly recommended.   

 Level coded as 0 . 
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WHEN DO YOU USE A FACTORIAL DESIGN? 

 Factorial designs are good preliminary experiments 

 

 A type of factorial design, known as the fractional 
factorial design, are often used to find the “vital few” 
significant factors out of a large group of potential 
factors. 

 This is also known as a screening experiment 

 

 Also used to determine curvature of the response 
surface 

 

 

 5 

Return to Contents 



FULL FACTORIAL DESIGNS 

 Every combination of factor levels (i.e., every possible 
treatment) is measured. 

 2k design = k factors, each with 2 levels, 2k total runs 

 33 design = 3 factors, each with 3 levels, 33 = 27 total runs 

 

 Every factor effect can be estimated 

 

 Can include center points, but not necessary 

 

 2k designs are the most popular 
 High Level (+1) and Low Level (-1) 

 
Example: 22 design  4 runs Run Factor A Level  Factor B Level 

    1 -1  -1 

    2 -1  +1 

    3 +1  -1 

    4 +1  +1 
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FULL FACTORIAL DESIGNS 

 Full factorials can also allows factors to have different # of 
levels 

 213241 = 4 factors total (sum of exponents) 
One factor has 2 levels, two have 3 levels, one has 4 levels 
Total of 2*3*3*4 = 72 runs 

 
Ex. 2131 design  6 runs  Run Factor A Level  Factor B Level 

    1 1  1 

    2 1  2 

    3 1  3 

    4 2  1 

    5 2  2 

    6 2  3 
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FRACTIONAL FACTORIAL DESIGNS 

 Sometimes, there aren’t enough resources to run a Full 
Factorial Design.  Instead, you can run a fraction of the 
total # of treatments. 

 2k-p design = k factors, each with 2 levels, but run only 2k-p treatments (as 
opposed to 2k) 

 24-1 design = 4 factors, but run only 23 = 8 treatments (instead of 16) 

 8/16 = 1/2  design known as a “½ replicate” or “half replicate” 

 

 However, not all factor effects can be estimated 
 Factors are aliased with one another.  In other words, factors are confounded, 

and you cannot estimate their effects separately. 
 Ex. Suppose factors A and D are aliased.  When you estimate the effect for A, you actually estimate 

the effect for A and D together.  Only further experimentation can separate the two. 

 

 Main effects and low order interactions are of most interest, and are usually 
more significant that high order interaction terms. 

 Why?  See http://en.wikipedia.org/wiki/Sparsity-of-effects_principle 

 

 So, by aliasing main effects with high order interactions, you can obtain fairly 
accurate estimates of the main effects. 
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FRACTIONAL FACTORIAL DESIGNS 

 Certain fractional factorial designs are better than others 
 Determine the best ones based on the design’s Resolution 

 

 Resolution: the ability to separate main effects and low-order interactions from 
one another 
 

 The higher the Resolution, the better the design  
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Resolution Ability 

I 
Not useful: an experiment of exactly one run only tests one level of a factor and hence can't even distinguish 
between the high and low levels of that factor 

II Not useful: main effects are confounded with other main effects 

III Can estimate main effects, but these may be confounded with two-factor interactions 

IV 
Can estimate main effects, and they are unconfounded with two-factor interactions 
Can estimate two-factor interaction effects, but these may be confounded with other two-factor interactions 

V 
Can estimate main effects, and they are unconfounded with three-factor (or less) interactions 
Can estimate two-factor interaction effects, and they are unconfounded with two-factor interactions 
Can estimate three-factor interaction effects, but these may be confounded with other three-factor interactions 

VI 
Can estimate main effects, and they are unconfounded with four-factor (or less) interactions 
Can estimate two-factor interaction effects, and they are unconfounded with three-factor (or less) interactions 
Can estimate three-factor interaction effects, but these may be confounded with other three-factor interactions 

http://en.wikipedia.org/wiki/Fractional_factorial_design#Resolution Return to Contents 
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CREATING A FACTORIAL DESIGN 
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Choosing the “default generators” 
option means that Minitab will select 
what effects are aliased with one 
another for you. 
 
You can see what designs are 
available for a specific # of runs or 
factors, as well as the corresponding 
design resolution.   

Return to Contents 



CREATING A FACTORIAL DESIGN 
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1. Select the # of factors 
 

2. Select your design (full or 
fractional) 
 

3. Select the # of center points 
(not required, but a good idea) 
 

4. Select how many replicates for 
each treatment (corner points). 
See Slide 12 
 

5. Select # of blocks 
See Slide 13 

 

1. 

3. 

4. 

5. 

2. 
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REPLICATION 

Replicates 

 NOT the same as repeated measurements 

 Repeated measurements is when you take multiple 
measurements on the same unit. 

 Replication is when you repeat your design a 2nd, 3rd, 4th, etc. 
time. 

 Ex. Say you have a 22 design (2 factors, 4 runs) and want 3 
replicates.  Your experiment will have 3*22 = 12 runs. 

 

 Replication will help give you more accurate effect 
estimates. 

 

 Replicates should be run at the same time as your 
original design (to ensure all controlled conditions are 
the same).  If that’s not possible, consider blocking 
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BLOCKING 

Blocking 

 Grouping together experimental units that are similar to 
one another – the groups are called blocks 

 

 Blocking “reduces known, but irrelevant sources of 
variation between units and thus allows greater 
precision” 

 

 In Factorial Designs, blocks are confounded with higher 
order interactions.  This means you don’t know if an 
observed relationship between a block and the response 
variable is due to  the block itself, or due to the factor 
interaction.  Assuming the higher order interactions are 
insignificant (see Slide 7), one canestimate the block 
effect. 
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http://en.wikipedia.org/wiki/Design_of_experiments#Principles_of_experimental_design.2C_following_Ronald_A._Fishers Return to Contents 
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CREATING A FACTORIAL DESIGN (CONTINUED) 
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You can name 
factors, select 
what type, and 
give what CODED 
values you want 
for each level. 

You should make sure to have 
the alias table printed out in 
the session window.  This 
information is important for 
interpretation 

Return to Contents 



OUTPUT 
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Fractional Factorial Design  

 

Factors:   5   Base Design:         5, 16   Resolution:    V 

Runs:     20   Replicates:              1   Fraction:    1/2 

Blocks:    1   Center pts (total):      4 

 

 

Design Generators: E = ABCD 

 

 

Alias Structure 

 

I + ABCDE 

 

A + BCDE 

B + ACDE 

C + ABDE 

D + ABCE 

E + ABCD 

AB + CDE 

AC + BDE 

AD + BCE 

AE + BCD 

BC + ADE 

BD + ACE 

BE + ACD 

CD + ABE 

CE + ABD 

DE + ABC 

 

I stands for Identity 
Identity is another word for control – i.e. no treatments. 

Just add another 
column (C10) for 
your observations. 

The effect estimate for factor A is actually the effect 
for A and BCDE 
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CREATING GENERAL FACTORIAL DESIGNS 
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1. Specify # of factors 
2. Add # of levels for each factor 
3. Select # of replicates 

After you enter in 
the # of levels, 
the “Factors” tab 
in the Create 
Factorial Design 
window should be 
clickable. 

Return to Contents 



OUTPUT 
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Multilevel Factorial Design  

  

Factors:       3     Replicates:     1 

Base runs:    12     Total runs:    12 

Base blocks:   1     Total blocks:   1 

  

Number of levels: 2, 3, 2 
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ANALYZING A FACTORIAL DESIGN 
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Enter in your 
measurement(s) 
column(s) as responses 

Return to Contents 



ANALYZING A FACTORIAL DESIGN 
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When you analyze an experiment, 
you are actually fitting a model to 
the data.  You estimate the effects 
of main factors and interaction 
terms. 
 
Here, you can choose how high of 
an interaction term you want to 
estimate. 

Selected Terms are the main 
factor/interaction effects that will 
be estimated. 
 
Available Terms are other 
interaction terms that are not 
being estimated (but could be).   
 
You can pick and choose specific 
effects to estimate using the 
arrow buttons in the middle. 

Return to Contents 



ANALYSIS OUTPUT 
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Factorial Fit: Response versus A, B, C, D, E  

 

Estimated Effects and Coefficients for Response (coded units) 

 

Term       Effect    Coef  SE Coef      T      P 

Constant           760.19    45.28  16.79  0.000 

A          -21.88  -10.94    45.28  -0.24  0.825 

B          125.87   62.94    45.28   1.39  0.259 

C           57.12   28.56    45.28   0.63  0.573 

D          -10.37   -5.19    45.28  -0.11  0.916 

E           -0.37   -0.19    45.28  -0.00  0.997 

A*B        -81.88  -40.94    45.28  -0.90  0.433 

A*C        -97.62  -48.81    45.28  -1.08  0.360 

A*D        -51.13  -25.56    45.28  -0.56  0.612 

A*E         38.38   19.19    45.28   0.42  0.700 

B*C         64.63   32.31    45.28   0.71  0.527 

B*D        -35.87  -17.94    45.28  -0.40  0.719 

B*E        156.62   78.31    45.28   1.73  0.182 

C*D         43.87   21.94    45.28   0.48  0.661 

C*E        -81.13  -40.56    45.28  -0.90  0.436 

D*E       -168.63  -84.31    45.28  -1.86  0.160 

Ct Pt               56.06   101.26   0.55  0.618 

 

 

S = 181.130     PRESS = * 

R-Sq = 81.65%   R-Sq(pred) = *%   R-Sq(adj) = 0.00% 

 

 

Analysis of Variance for Response (coded units) 

 

Source              DF  Seq SS  Adj SS  Adj MS     F      P 

Main Effects         5   78776   78776   15755  0.48  0.779 

  A                  1    1914    1914    1914  0.06  0.825 

  B                  1   63378   63378   63378  1.93  0.259 

  C                  1   13053   13053   13053  0.40  0.573 

  D                  1     431     431     431  0.01  0.916 

  E                  1       1       1       1  0.00  0.997 

2-Way Interactions  10  349024  349024   34902  1.06  0.543 

  A*B                1   26814   26814   26814  0.82  0.433 

  A*C                1   38123   38123   38123  1.16  0.360 

  A*D                1   10455   10455   10455  0.32  0.612 

  A*E                1    5891    5891    5891  0.18  0.700 

  B*C                1   16706   16706   16706  0.51  0.527 

  B*D                1    5148    5148    5148  0.16  0.719 

  B*E                1   98126   98126   98126  2.99  0.182 

  C*D                1    7700    7700    7700  0.23  0.661 

  C*E                1   26325   26325   26325  0.80  0.436 

  D*E                1  113738  113738  113738  3.47  0.160 

  Curvature          1   10058   10058   10058  0.31  0.618 

Residual Error       3   98425   98425   32808 

  Pure Error         3   98425   98425   32808 

Total               19  536283 

Effect Estimates 

Is your response surface simply 
a multi-dimensional plane?   
Or does it have curvature? 
 
The p-values < 0.05 indicate 
significant curvature. 

vs. 

-1 +1 0 

-1 +1 

0 

Which are the vital few significant effects?  
Determine this using p-values. 
 
1. Select your confidence level.  Usually, L = 0.05. 
2. P-values < 0.05 indicate the effect is significant. 
 
There is a little leeway: If you choose L = 0.1, effects with 
p-values < 0.1 are considered significant.  What confidence 
level you choose depends on how many factors you want to 
keep. 
 
 
 
In this example, no effect is significant at the 0.1 level.  I 
would re-fit the model, removing interaction terms that 
have large p-values (such as AD, AE, etc.)  Then, re-
examine p-values. 

Return to Contents 



ANALYSIS OUTPUT (CONTINUED) 
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Unusual Observations for Response 

 

                                                       St 

Obs  StdOrder  Response      Fit  SE Fit  Residual  Resid 

  1         1    633.00   633.00  181.13      0.00      * X 

  2         2    749.00   749.00  181.13      0.00      * X 

  3         3    601.00   601.00  181.13      0.00      * X 

  4         4   1052.00  1052.00  181.13      0.00      * X 

  5         5    706.00   706.00  181.13      0.00      * X 

  6         6    650.00   650.00  181.13      0.00      * X 

  7         7   1063.00  1063.00  181.13      0.00      * X 

  8         8    669.00   669.00  181.13      0.00      * X 

  9         9    780.00   780.00  181.13      0.00      * X 

 10        10    642.00   642.00  181.13      0.00      * X 

 11        11    761.00   761.00  181.13      0.00      * X 

 12        12    635.00   635.00  181.13      0.00      * X 

 13        13    550.00   550.00  181.13      0.00      * X 

 14        14    868.00   868.00  181.13      0.00      * X 

 15        15   1075.00  1075.00  181.13      0.00      * X 

 16        16    729.00   729.00  181.13      0.00      * X 

 

X denotes an observation whose X value gives it large leverage. 

 

 

Alias Structure 

I + A*B*C*D*E 

A + B*C*D*E 

B + A*C*D*E 

C + A*B*D*E 

D + A*B*C*E 

E + A*B*C*D 

A*B + C*D*E 

A*C + B*D*E 

A*D + B*C*E 

A*E + B*C*D 

B*C + A*D*E 

B*D + A*C*E 

B*E + A*C*D 

C*D + A*B*E 

C*E + A*B*D 

D*E + A*B*C 

Outliers in the X (independent) variables are called high leverage points. 
 
Remember, in 2k designs, the independent variables are the factors, and they 
take on either a high or low level.  It makes sense that those runs have large 
leverage, whereas the center points do not. 

Can also look at R-sq. values and 
residuals to determine how well the 
model fits.  See Regression Analysis 
for an explanation on how to 
interpret residuals 
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INTERACTION PLOTS 
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How do certain 
factors interact 
with one another? 
 
 
Interaction plots 
will help answer 
this.   
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INTERACTION PLOTS 

23 
Black and green lines with considerably 
different slopes indicate an interaction 
between the two factors. 

Interpretation: 
 
Black Line: When factor A is at it’s low 
level (-1), the mean response increases 
when factor C changes from it’s low level 
(-1) to it’s high level (+1). 
 
Green Line: When factor A is at it’s high 
level (+1), the mean response decreases 
when factor C changes from it’s low level 
(-1) to it’s high level (+1). 

Interpretation:  
 
Black Line: The change in mean response 
when factor C changes from it’s low level 
(-1) to it’s high level (+1), assuming all 
other factors are kept constant 
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SPLIT – PLOT DESIGNS 

 If one or more of your factors are hard to change, consider using a 
split – plot design 

 

 “The levels of the hard-to-change factors are held constant for 
several runs, which are collectively treated as a whole plot, while 
easy-to-change factors are varied over these runs, each of which is 
a subplot.”  – Minitab Help 
 

Split – Plot designs contain an embedded factorial (full or fractional) design. 
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Example: 3 factors each with 2 levels: Temperature, Chocolate, Sugar 
 
Temperature is the hard to change factor.  Run whole plot 1 on day 1, whole plot 2 on day 2 
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CREATING SPLIT – PLOT DESIGNS 
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You can view all available split – plot designs, as 
well as the resolution 
 
1 HTC = 1 Hard to Change Factor 
2 HTC = 2 Hard to Change Factors 
3 HTC = 3 Hard to Change Factors 
 
ETC = Easy to Change Factor 
WP = Whole Plot 
SP = Subplot 
 
3FI = 3 factor interaction, confounded with 
whole plots for some designs 
 
1/8, ¼, ½, Full – Refers to the type of factorial 
design used within the split – plot design 
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CREATING SPLIT – PLOT DESIGNS 
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Select how many hard 
to change factors, the 
particular design, etc. 

Return to Contents 



OUTPUT 

27 

Fractional Factorial Split-Plot Design  

 

Factors:          5   Whole plots:            4   Resolution:    V 

Hard-to-change:   2   Runs per whole plot:    4   Fraction:    1/2 

Runs:            16   Whole-plot replicates:  1 

Blocks:           1   Subplot replicates:     1 

 

 

Design Generators: E = ABCD 

 

 

Hard-to-change factors: A, B 

 

 

Whole Plot Generators: A, B 

 

 

Alias Structure 

 

I + ABCDE 

 

A + BCDE 

B + ACDE 

C + ABDE 

D + ABCE 

E + ABCD 

AB + CDE 

AC + BDE 

AD + BCE 

AE + BCD 

BC + ADE 

BD + ACE 

BE + ACD 

CD + ABE 

CE + ABD 

DE + ABC 

 

Analysis: Follow the same steps as for the factorial design.  See Here 
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RESPONSE SURFACE DESIGNS 

 As mentioned before, factorial designs are useful when 
determining the “vital few” significant factors 

 

 Once you have determined those vital factors, you may 
want to map the response surface.  Why? 
 

1. To find the factor settings that optimize the response (max./min. 
problem, or hitting a specific target) 

 

2. In order to improve a process, you’ll need to understand how certain 
factors influence the response 

 

3. Find out what tradeoffs can be made in factor settings, while staying 
near the optimal response 

 

 Essentially, you are finding a model that describes the 
relationship between the vital factors and the response. 
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CENTRAL COMPOSITE DESIGNS (CCD) 

 A CCD design is one type of response surface design.  It is a 
factorial design (2k or 2k-p) with 2k additional points. 
 The additional points are known as star points or axial points 

 Axial points have coded values (±a, 0, 0, … 0), (0, ±a, 0, … 0), … (0, 0, 0, … ±a) 

 

 The design is rotatable if 
 All points are the same distance from the center 

point, so the quality of predication is the same in 
any direction.  See here for more. 

 

 The design is face centered if a =1 
 Only three factor levels (-1, 0, +1) are needed as 

opposed to five levels (-1, -a , 0, +a, +1) 
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(+1, +1) 

(-1, -1) 

Return to Contents 
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BOX BEHNKEN DESIGNS 

 Another type of response surface design. 

 

 Does not contain an embedded factorial design like the CCD. 
 Instead, design points are the midpoints 

 Requires 3 levels (-1, 0, +1) for each factor 

 

 Less expensive to run than the CCD (less points) 

 

 Does not contain axial points, so all design points are sure to be 
within safe operating limits 
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Box Behnken design for 3 factors 

(0, -1, -1) 

(+1, +1, 0) 

Return to Contents 



CREATING A RESPONSE SURFACE DESIGN 
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You can view all available designs 
 
“Full”, “Half”, “Quarter”, and “Eighth” – refers to the 
factorial design piece of the CCD. 
 Full = 2k 
 Half = 2k-1 
 Quarter = 2k-2 
 Eighth = 2k-3 

Click on “Designs” to select the 
specific design you wish to use 
for a specified number of factors. 
See Here 
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OUTPUT 
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Central Composite Design  

 

Factors:       2     Replicates:     1 

Base runs:    13     Total runs:    13 

Base blocks:   1     Total blocks:   1 

 

Two-level factorial: Full factorial 

 

Cube points:             4 

Center points in cube:   5 

Axial points:            4 

Center points in axial:  0 

 

Alpha: 1.41421 

 

Enter measurements 
into C7 column 

Return to Contents 



ANALYZING RESPONSE SURFACE DESIGNS 

33 If your preliminary screening experiments 
indicated curvature, then you should use a 
quadratic equation.  If there was no significant 
curvature, then try fitting a linear model. 
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Response Surface Regression: Response versus A, B  

 

The analysis was done using coded units. 

 

Estimated Regression Coefficients for Response 

 

Term          Coef   SE Coef       T      P 

Constant  0.251400  0.002995  83.950  0.000 

A         0.013351  0.002367   5.640  0.001 

B         0.013016  0.002367   5.498  0.001 

A*A       0.000300  0.002539   0.118  0.909 

B*B       0.017300  0.002539   6.814  0.000 

A*B       0.002000  0.003348   0.597  0.569 

 

 

S = 0.00669619  PRESS = 0.00177034 

R-Sq = 93.99%   R-Sq(pred) = 66.09%  R-Sq(adj) = 89.69% 

 

 

Analysis of Variance for Response 

 

Source          DF    Seq SS    Adj SS    Adj MS      F      P 

Regression       5  0.004906  0.004906  0.000981  21.88  0.000 

  Linear         2  0.002781  0.002781  0.001391  31.01  0.000 

    A            1  0.001426  0.001426  0.001426  31.80  0.001 

    B            1  0.001355  0.001355  0.001355  30.22  0.001 

  Square         2  0.002109  0.002109  0.001055  23.52  0.001 

    A*A          1  0.000027  0.000001  0.000001   0.01  0.909 

    B*B          1  0.002082  0.002082  0.002082  46.43  0.000 

  Interaction    1  0.000016  0.000016  0.000016   0.36  0.569 

    A*B          1  0.000016  0.000016  0.000016   0.36  0.569 

Residual Error   7  0.000314  0.000314  0.000045 

  Lack-of-Fit    3  0.000231  0.000231  0.000077   3.70  0.119 

  Pure Error     4  0.000083  0.000083  0.000021 

Total           12  0.005220 

 

 

Estimated Regression Coefficients for Response using data in uncoded units 

 

Term             Coef 

Constant     0.251400 

A           0.0133514 

B           0.0130156 

A*A       0.000300000 

B*B         0.0173000 

A*B        0.00200000 

Once again, you can use p-values to 
determine the significant effects. 
 
AA and AB are not significant. 
So, you could reduce your model to 
only include the A, B, and BB terms. 
 
 

Can also look at R-sq. values and residuals to determine how well the model fits.  
See Regression Analysis for an explanation on how to interpret residuals 
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CONTOUR/SURFACE PLOTS 

Can draw these AFTER you fit a model to the data. 
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If you do not click on setup, 
this error will pop up. 

You will need to click 
setup in order for Minitab 
to draw the plot(s) 



OUTPUT 
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OPTIMIZATION 

 Response Surface Analysis involves 2 steps 
1. Initial search for the region that contains the optimum (max, min, or target) 

2. Detailed search of the region from #1, to find the optimum 

 

 Basically, you find the region where you believe the optimum to be.  Then, you zoom in on 
that area and model it in more detail 

 

 On page 34, a fitted model was outputted as part of the analysis.  This model is an 
equation that describes the surface in that specific region.  From the model, you can find 
the direction where the surface increases (or decreases) most quickly - the gradient 

 

 A secondary experiment could then be run by using factor settings along the gradient 
1. Find the gradient vector. 

2. Divide the gradient vector by it’s length (Euclidean norm) to obtain a unit vector 

3. New Experiment Points = Initial Factor Settings Vector + m * Step Size * Unit Vector             for m = 1, 2, … 

 Note: This is all in terms of CODED units 

 

 

Caution: In step 1, it’s possible you will be looking at a region that contains a LOCAL optimum 
as opposed to the overall GLOBAL optimum.  In step 2, you may discover that the region 
does NOT contain the optimum.  Repeating steps 1 and 2 in other regions may be 
necessary. 37 

http://en.wikipedia.org/wiki/Gradient
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