

CFD study of the intra and inter particles transport

phenomena in a fixed-bed reactor

by

M. Alexandre Troupel

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

In Chemical Engineering

May 2009

Approved:

Prof. A.G. Dixon, Advisor

Prof. D. DiBiasio, Departement head

2

Summary

Actual models for fixed-bed reactor modeling make this assumption that

temperature is uniform, or at least symmetric, within the catalytic pellets.

However, if this holds true for large beds (tube-to-particle diameter ratio N greater

than 10), it appears that for small N tubes (N = 3-10) that wall effects cannot be

neglected anymore. A large temperature gradient appears in the near wall region.

Hence for a particle at the wall a variation in temperature of up to 50˚C was

noticed.

This temperature change was investigated, and it has been noticed that the

proximity to the wall, but also to a low velocity region could explain a maximum

in temperature. Furthermore, species concentration discrepancies were also notice.

An adiabatic run was made to show that these were not due to heated wall effects.

Instead it appeared that these concentration variations are due to both their

proximity to a low flow region and to a confined area. Hence incoming diffusion

in these zones appeared to be lower than for the rest of the surface.

We also could notice a strong impact of the flow on the temperature

patterns in the near wall regions. Hence in our case, it appeared that the 4 holes

geometries allowed a better flow in front the particle at the flow, and therefore

better transport phenomena. On the contrary, the full cylinder geometry tend to

block the flow, consequently temperature on the wall particles were hotter than

what they were with the 4 holes cylinder geometry.

 A study of the diffusion within the catalytic particles was also conducted.

Hence, the Maxwell-Stefan, the dusty gas and the binary friction models were

implemented in Fluent. The goal here is to refine step by step the diffusion model

used. First products and reactants molar fluxes were assumed to be proportional.

The next step was to compute the actual molar fluxes; however this added one

more parameter to converge; that is the diffusion coefficient. Finally the

assumption of negligible pressure variation within the pellets was dropped.

Unfortunately, the implementation into Fluent was not successful, and few

possible reasons were given.

3

Acknowledgments

If there are two years that I know I will never forget, these would be the

two years that I spent at WPI. It has been a very rewarding and exiting experience.

And this would not have been possible if it wasn‟t for some persons.

Therefore, I would like to first thank my advisor, Professor Dixon, who has

guided me through my studies. His support, moral but also financial have been of

great value. And I particularly want to say how much I appreciated the

opportunity he gave me to give a talk at the 2008 AIChE annual conference in

Philadelphia. And since I know he can read French, I would like to say “un Grand

Merci”, for all this and much more.

I also like to take this opportunity to thank Professor Kazantzis who

recommended me for a WPI summer scholarship. Thanks also to Mohsen who

kept me company in the window-free lab. And finally I like to thank all the rest of

WPI‟s Chemical Engineering Department who granted me a Teaching

Assistantship. This is at the same time a very demanding and formative job, and I

know I will be of value throughout my career.

 Finally I am very grateful to my whole family. To my grandparents, Paul

and Lisette, who were kind enough to come and see my several times, and to René

and Nadou, who I know would have had also if they had been able.

 My greatest gratitude goes to my parents, Robert and Dominique, who

always pushed me further and farther. I know how much I owe them, and I am

sooooo grateful for this. I am also very thankful to my brother Guillaume, and my

little sister Chloé, who has send me so wonderful and lovely letters.

4

Table of Contents

Summary…….. .. 2

Acknowledgments ... 3

List of Figures… .. 7

List of Tables… ... 8

I) Introduction .. 9

 1) The Hydrogen production ... 9

 2) Heat effects ... 10

 3) Current models .. 12

 a. Model development .. 12

 b. Discussion about the model ... 14

 4) The reaction .. 15

II) The CFD approach .. 17

 1) Mesh generation .. 17

 a. Symmetries and periodicity .. 17

 b. Size mesh and boundary layers .. 18

 c. Contact points .. 20

 2) Turbulence model ... 21

 a. The k- model ... 21

 b. The k- model .. 22

 3) The catalytic zone ... 24

 4) Diffusion ... 25

III) Results………………………………...…………………………………………….26

 1) Earlier results .. 26

 2) Geometries used .. 26

 3) Near wall particle surface study ... 28

 a. Temperature comparison ... 28

 b. Mass fraction comparison .. 33

 4) Near wall particle inside study ... 36

5

 a. Temperature comparison ... 36

 b. Mass fraction comparison .. 38

 5) Zones of low methane concentration .. 41

 a. Cross sectional plane ... 41

 b. Results for the full cylinder geometry .. 42

 c. Results for the 1 hole cylinder geometry .. 44

 d. The adiabatic run for the 1 hole cylinder geometry....................................... 47

 e. Conclusion ... 49

 6) Extrema study ... 50

 a. Phenomenon description .. 50

 b. Reaction rates profiles for the full cylinder geometry 51

 c. Cross sectional plane ... 52

 d. Conclusion ... 55

IV) Diffusion model - Theory .. 56

 1) The various diffusion regimes .. 56

 2) The Maxwell-Stefan based diffusion model ... 56

 a. Maxwell-Stefan diffusion model ... 56

 b. The Maxwell-Stefan based diffusion model ... 57

 c. The constant fluxes ratio approximation ... 58

 d. The Approximated Multi-Component model .. 59

 i. Theory ... 59

 ii. Comparison with the Maxwell-Stefan model .. 60

 3) The dusty gas model ... 62

 4) Limitations of such models ... 63

 5) The Binary friction model (BFM) .. 65

V) Diffusion model – Implementation into Fluent ... 67

 1) The dusty gas model .. 67

 2) The Binary friction model (BFM) ... 69

 3) Program issues ... 71

VI) Conclusion .. 73

6

VII) Recommendations ... 74

 1) Coke formation ... 74

 2) Low N tubes modeling .. 74

 3) Diffusion model ... 74

Nomenclature …………………………………………………………………………..76

Bibliography …………………………………………………………………………..77

Appendices A – Boundary layers... 79

 1) Full cylinder .. 80

 2) 1 hole cylinder .. 81

 3) 4 holes cylinder ... 82

Appendices B – Running procedure .. 83

Appendices C – Applying the Maxwell-Stefan based model 85

Appendices D – Dusty gas model code .. 86

Appendices E – Binary friction model code ... 116

Appendices F – Reaction rates parameters .. 140

7

List of Figures

Figure 1 – Large N tube (N > 10) .. 10
Figure 2 - Unit cell (Gunjal, Ranade, & Chaudhari, 2005) ... 10
Figure 3 - Small N multitubular reactor (N = 3-10) .. 11

Figure 4 – Top-fired methane Steam reformer (Dixon, Nijemeisland, & Stitt, 2006) 11
Figure 5 – Geometry shrinking of a fixed bed reactor (Dixon, Nijemeisland, & Stitt,

2006) ... 17
Figure 6 – WS study by zones (Taskin, 2007) .. 18
Figure 7 - Meshing pattern .. 20

Figure 8 - Temperature profiles at inlet (a) and mid-tube (b) conditions (Dixon, Taskin,

Stitt, & Nijemeisland, 2007) ... 26
Figure 9 - Pellets geometries: (a) Full; (b) 1 hole and (c) 4 holes 27
Figure 10 - Real industrial pellets randomly packed form Johnson Mattey (Dixon,

Nijemeisland, & Stitt, 2006) ... 27
Figure 11 - WS geometry: particle test – surface ... 28

Figure 12 - Surface temperature profile for test particle - Full cylinder 29
Figure 13 - Surface temperature profile for test particle - 1 hole cylinder 29

Figure 14 - Surface temperature profile for test particle - 4 holes cylinder 29
Figure 15 – Full cylinder - Particle test (a) Surface temperature profile; (b) Pathlines

colored by velocity magnitude .. 31

Figure 16 - 1 hole cylinder - Particle test (a) Surface temperature profile; (b) Pathlines

colored by velocity magnitude .. 31

Figure 17 - 4 holes cylinder - Particle test (a) Surface temperature profile; (b) Pathlines

colored by velocity magnitude .. 31
Figure 18 - Flow pattern study - (a) 4 holes cylinder geometry only; (b) Pathlines for the

full cylinder geometry; (c) Pathlines for the 1 hole cylinder geometry; (d) Pathlines for

the 4 holes cylinder geometry ... 32

Figure 19 – Surface methane mass fraction profile for test particle - Full cylinder 33
Figure 20 - Surface methane mass fraction profile for test particle - 1 hole cylinder 33
Figure 21 - Surface methane mass fraction profile for test particle - 4 holes cylinder 33
Figure 22 – Surface hydrogen mass fraction profile for test particle - Full cylinder........ 34
Figure 23 - Surface hydrogen mass fraction profile for test particle - 1 hole cylinder 34
Figure 24 - Surface hydrogen mass fraction profile for test particle - 4 holes cylinder ... 34
Figure 25 - WS geometry: particle test – inside ... 36

Figure 26 – Temperature profile through test particle - Full cylinder 37
Figure 27 - Temperature profile through test particle – 1 hole cylinder 37
Figure 28 - Temperature profile through test particle – 4 holes cylinder 37
Figure 29 - Methane mass fraction profile through test particle - Full cylinder 39
Figure 30 - Methane mass fraction profile through test particle – 1 hole cylinder 39

Figure 31 - Methane mass fraction profile through test particle – 4 holes cylinder 39
Figure 32 - Hydrogen mass fraction profile through test particle - Full cylinder 40

Figure 33 - Hydrogen mass fraction profile through test particle – 1 hole cylinder 40
Figure 34 - Hydrogen mass fraction profile through test particle – 4 holes cylinder 40
Figure 35 - Examples of zones of methane depletion ... 41

Figure 36 - Cross sectional plane for methane depletion study .. 41

file:///C:\Users\Alexandre\Desktop\Thesis%20(R�par�).docx%23_Toc231230778
file:///C:\Users\Alexandre\Desktop\Thesis%20(R�par�).docx%23_Toc231230786

8

Figure 37 - Cross sectional plane – Methane mass fraction profile 42

Figure 38 - Cross sectional plane - Hydrogen mass fraction profile 42
Figure 39 - Cross sectional plane – Velocity magnitude profile 43
Figure 40 - Cross sectional plane - Temperature profile .. 43

Figure 41 - Cross sectional plane – Methane mass fraction profile 45
Figure 42 - Cross sectional plane - Hydrogen mass fraction profile 45
Figure 43 - Cross sectional plane – Velocity magnitude profile 46
Figure 44 - Cross sectional plane - Temperature profile .. 46
Figure 45 - Cross sectional plane – Methane mass fraction profile – Adiabatic case 47

Figure 46 - Cross sectional plane - Hydrogen mass fraction profile – Adiabatic case 48
Figure 47 - Cross sectional plane – Velocity magnitude profile – Adiabatic case 48
Figure 48 - Cross sectional plane - Temperature profile – Adiabatic case 49
Figure 49 – Extrema comparison for the full cylinder geometry. 50
Figure 50 – Reaction rates for the full cylinder geometry .. 52

Figure 51 – Schema of the methane diffusion between to pellets (a) for a free surface; (b)

between two pellets ... 53
Figure 52 - Results for the full cylinder cross sectional plane .. 54

Figure 53- Schematic of a PEMFC (Martinez, Shimpalee, & Van Zee, 2008) 60
Figure 54 - AMC and Maxwell-Stefan model comparison for low concentration

gradients (Martinez, Shimpalee, & Van Zee, 2008) ... 60

Figure 55 - AMC and Maxwell-Stefan model comparison for high concentration

gradients (Martinez, Shimpalee, & Van Zee, 2008) ... 61

Figure 56 – Multicomponent diffusion in a cylinder (Runstedtler, 2006) 63
Figure 57 – Concentrations and pressure variation through time(Runstedtler, 2006)

Knudsen regime (10
-7

m): (a) Left side; (b) Right side Bulk regime (10
-4

m): (c) Left side;

(d) Right side... 64
Figure 58 – Scheme of the dusty gas model implemented into Fluent 69

Figure 59 – Scheme of the binary diffusion model implemented into Fluent 71
Figure 60 - Particles numbering .. 79

List of Tables

Table 1 - Hydrogen production processes comparison(Rosen & Scott, 1998) 9
Table 2 - Species concentrations for Rundstedtler's experiment 64
Table 3 - Inlet conditions for UDSs .. 83

Table 4 - Parameters for the binary diffusivity ... 85
Table 5 – Reaction rates constants .. 140

9

I) Introduction

1) The Hydrogen production

If one considers the future of the energy economy, one will be likely to think of

hydrogen. Indeed, very promising researches are going on in the fuel cells area, using

hydrogen as an energy carrier.

However, one must not forget that hydrogen is already widely used in chemical

industries. In the first place, we found the ammonia production, consuming about half the

annual production. The second biggest hydrogen consumers are the refineries using 37%

of the annual production. The remaining 8% is used to produce methanol (Hydrogen

Today and Tomorrow).

Nevertheless, hydrogen presents several issues such as its lightness and its

explosiveness. And therefore, it is often technically, and economically favorable to

produce hydrogen in the same plant, where it will be consumed.

We know a lot of different ways of producing hydrogen, such as water hydrolysis or

fermentation. However, the main process used nowadays is the methane to hydrogen

conversion reaction, i.e. the Steam Reforming (MSR) reaction. The following table

(Table 1) allows a rapid comparison with other means of producing hydrogen. One can

see that MSR presents a high energy efficiency of 86%.

Category Process
Efficiency (%)

Energy

Hydrocarbon-based Methane Steam Reforming (MSR) 86

 Coal gasification 59

Non-hydrocarbon-based Current-technology water electrolysis 30

 Advanced-technology water electrolysis 49

 Thermochemical water decomposition 21

Integrated MSR/current-technology water electrolysis 55

 MSR/advanced-technology water electrolysis 70

 MSR/thermochemical water decomposition 45

Table 1 - Hydrogen production processes comparison(Rosen & Scott, 1998)

MSR is a strongly endothermic reaction, and therefore conducted in a multi-tubular

fixed bed. The present work focuses on understanding the mechanisms taking place in

such fixed bed reactors. In order to do that, computational fluid dynamics (CFD) has been

used to study both the influence of the pellet geometry on the surrounding flow field and

of the species diffusion model.

10

2) Heat effects

Temperature is one of the key parameters an engineer wants to control in a

reactor. However, some reactions such as MSR require more control over temperature

than others. Hence two categories of fixed bed reactor are commonly seen in industry. To

be able to compare them, one needs to introduce the dimensionless number N:

𝑁 =
𝑡𝑢𝑏𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑝𝑎𝑟𝑡𝑖𝑐𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

 The first type of reactor is the large N reactor (N > 10, c.f. Figure 2). In this type

of reactor, the overall cross-sectional temperature can be assumed to be constant and

equal to the bulk temperature.

However, this convenient case supposes that the heat flux needed to entertain the

reaction is not too large, i.e. the reaction is not highly endothermic. This type of reactor is

used for cases such as ammonia production and methanol synthesis. Due to its large N,

one can neglect the wall effects. Hence a common computational approach of such

geometry will be to consider a unit cell (Figure 1) that would map the whole tube. One

can easily see that following this approach leads to disregard any wall effect. This is often

a good assumption.

Figure 2 – Large N tube (N > 10)

The second type of reactor is the low N (N = 3-10) reactor. This type of reactors is

used for highly endothermic or exothermic reaction. Indeed, a large heat flux must travel

through the wall, which naturally entails a great temperature gradient between the wall

and the center of the tube. Hence to lower this gradient, small tube diameter is needed.

eq. I.2-1

Inlet

Outlet

Sustain

plate

Figure 1 - Unit cell (Gunjal, Ranade, &

Chaudhari, 2005)

11

However, to ensure a proper flowrate, several of these tubes must be put in

parallel (Figure 3). These multi-tubular reactors are used in steam reforming reactions as

well as ethylene oxidation and maleic anhydride formation.

Figure 3 - Small N multitubular reactor (N = 3-10)

The following picture (Figure 4Erreur ! Source du renvoi introuvable.a) shows

a steam reformer. It is composed of hundreds of catalytic tubes arranged in rows. Since

the MSR reaction is a strongly endothermic reaction, an important heat flux is needed.

This is ensured by several burners placed between each row and fueled by natural gas.

Figure 4 – Top-fired methane Steam reformer (Dixon, Nijemeisland, & Stitt, 2006)

Outlet

Inlet

Sustain

plates

12

 We can also see on that picture that parts of the tubes are lighter than others; this

is the result of temperature variations within the tube and even within the particles as it

will be discussed in chapter III. This stands out on Figure 4b, where a whole tube has

turned out yellow; hence this tube has undergone a high temperature increase that has

weaken its wall, and that will eventually break. Indeed an increase of 20°C of the wall

temperature will cut the tube lifetime by half (Dixon, Nijemeisland, & Stitt, Packed

Tubular Reactor Modeling and Catalyst Design using Computational Fluid Dynamics,

2006).

Temperature variations have several origins, the first being the flow. Indeed as we

will see later (chapter III), flow patterns have a strong influence on energy and species

transport. Hence if the flow is not well distributed, low convection zones will appear

where consequently heat transfers quality will be bad. Besides reactions rates will also

not be uniform everywhere creating some species discrepancies. Resulting of all this,

particles will undergo thermal and mechanical stresses, and eventually break.

Two reasons explain why flow could not be uniform. First, a poor particles

packing creates some favorable path in the reactor, leaving some zone with hardly any

flow. Second is dust. Indeed, the mechanical and thermal constraints we spoke of in the

previous paragraph can result in some particles crushing and dust creation. This dust will

then deposit and eventually block some paths.

 The last reason of the temperatures non homogeneity is carbon deposition on the

particles‟ surfaces. This is known as the coke formation, and is due to the methane

decomposition. This carbon formation makes it more difficult for reactant to access the

surface of the catalyst, and therefore reactions rates decrease and eventually become null.

This process is known as the particle deactivation process. And yet, the methane steam

reforming reaction is strongly endothermic. Therefore a strong heat fluxes is brought to

the reactor to sustain the reaction. This heat is then drained by the reactions. However, if

the rates of reaction decrease, part of that flux will no longer be drained and the overall

temperature of the near particle region will increase and so will the coke rate formation in

the particle neighborhood... This vicious circle will eventually lead to weaken the tube

wall and thus to the tube breaking.

 Knowing that, it becomes clear that well understanding the mechanisms that bring

these hotspots is a key step to improve reformers viability. And this is the goal of this

present work.

3) Current models
a. Model development

Nowadays, if one wants to model a fixed-bed reactor, one will very likely have to

use a homogenous model. This model assumes that solid and liquid phase are lumped

into a same homogenous phase. Hence, each point of the reactor will be associated with

two sets of equations: one for the fluid and one for the solid.

13

To write these two sets of equations, one often starts writing the model for a

single particle and in a single direction The following two equations correspond to a

species (equation I.1-1) and an energy (equation I.1-2) balance for the solid:

𝐷𝑒
𝜕2𝐶𝑠

𝜕𝜉2
+

2

𝜉

𝜕𝐶𝑠

𝜕𝜉
 − 𝜌𝑠𝑟𝐴 𝐶𝑠 , 𝑇𝑠 = 0

𝑘𝑒
𝜕2𝑇𝑠

𝜕𝜉2
+

2

𝜉

𝜕𝑇𝑠

𝜕𝜉
 − 𝜌𝑠 −Δ𝐻 𝑟𝐴 𝐶𝑠 , 𝑇𝑠 = 0

with the following set of boundary conditions:

𝑘𝑔 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

− 𝐶 = −𝐷𝑒 𝜕𝐶𝑠

𝜕𝜉

𝑓 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

− 𝑇 = −𝑘𝑒 𝜕𝑇𝑠

𝜕𝜉

where Ts and Cs are respectively the surface temperature and concentrations; and T and C

respectively the fluid temperature and concentrations.

In order to discuss further this model, we must introduce the effectiveness factor.

At a given point of a catalytic particle, the effectiveness factor is equal to the ratio of the

reaction rate over the surface reaction rate (equation I.3-5):

𝜂 =
𝑟

𝑟𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 goes from 0 to 1. For an average effectiveness factor close to 1, the reaction rate is

homogenous in the catalyst; therefore reaction is the limiting step. On the contrary for

average effectiveness factor close to 0, reaction happens essentially only near the surface;

the case is therefore diffusion limited.

 One can combine equations I.3-1 and I.3-2 with equations I.3-3 and I.3-4 using

the effectiveness factor as following:

𝑘𝑔 𝑎𝑣 𝐶 − 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 = 𝜂𝜌𝑠𝑟𝐴 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

, 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑓 𝑎𝑣 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

− 𝑇 = 𝜂 −Δ𝐻 𝜌𝑠𝑟𝐴 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

, 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 Here, in order to simplify the equations, two assumptions are made. The first one

is to assume that the species transfers outside the particles are much faster than within the

particles, and the external concentration gradients are neglected. And the second is to

eq. I.3-1

eq. I.3-2

eq. I.3-3

eq. I.3-4

eq. I.3-5

eq. I.3-6

eq. I.3-7

14

assume that heat transfers in the particle are much quicker that in the fluid, and therefore

the temperature gradient within the solid are neglected.

These equations can be extended to a two dimensional fixed-bed. Hence for the

fluid, one obtains

𝐷𝑒
𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
 − 𝑢𝑠

𝜕𝐶

𝜕𝑧
= 𝑘𝑔𝑎𝑣 𝐶 − 𝐶𝑠

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑘𝑒
𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
 − 𝑢𝑠𝜌𝑠𝐶𝑝

𝜕𝑇

𝜕𝑧
= 𝑓𝑎𝑣 𝑇 − 𝑇𝐶𝑠

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

And for the solid the equations are:

𝑘𝑔 𝑎𝑣 𝐶 − 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 = 𝜂𝜌𝑠𝑟𝐴 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

, 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑓 𝑎𝑣 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

− 𝑇 = 𝜂 −Δ𝐻 𝜌𝑠𝑟𝐴 𝐶𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

, 𝑇𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑘𝑠
𝑒

𝜕2𝑇𝑠

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑠

𝜕𝑟

And the corresponding boundary conditions for the reactor wall:

𝑘𝑤𝑓 𝑇𝑤 − 𝑇 = 𝑘𝑓
𝑒 𝜕𝑇

𝜕𝑟

𝑘𝑤𝑠 𝑇𝑤 − 𝑇𝑠 = 𝑘𝑠
𝑒 𝜕𝑇𝑠

𝜕𝑟

where Tw it the reactor wall temperature, and hwf and hws the respective heat transfer

coefficients for the fluid and the solid.

 Note that in equation I.3-13, a temperature radial diffusion has been added, in

order to increase the overall accuracy.

b. Discussion about the model

 Several variations of this model exist, depending on the degree of complexity one

wants to gibe to the model. This is shown by Amundson (1970), where he gradually adds

axial then radial transports phenomenon. However, for practical reasons, it is always

assumed that temperature is at least symmetric or even constant. This is made to simplify

computations. However, authors a fully aware that, in reality, distribution around a

particle is not uniform.

eq. I.3-8

eq. I.3-9

eq. I.3-10

eq. I.3-11

eq. I.3-12

eq. I.3-13

15

 Moreover, in this model, the particle interactions with the surrounded fluid are

model after the single particle model. However, as it will be shown latter in chapter III,

the surrounding particles have significant affect on the flow patterns which then has

significant impact on the diffusion process. According to Schwedock et al. (1989),

considering the reaction/diffusion process from point of view of a single particle and not

in the packed bed context is “an important simplification”.

4) The reaction

The reaction considered here is the Methane Steam reforming reaction (MSR).

This reaction has been modeled by the following three reactions, among which is the

Water Gas Shift reaction:

CH4 + H2O = CO + 3 H2 -Hr1 = -206.10 kJ.mol
-1

CO + H2O = CO2 + H2 -Hr2 = 41.15 kJ.mol
-1

CH4 + 2 H2O = CO2 + 4 H2 -Hr3 = -165.00 kJ.mol
-1

This reaction is done over a nickel/alumina catalyst (Ni/Al2O3) usually promoted

with potassium in order to limit the coke formation. The inlet conditions used for this

study are a pressure of 21.59 bar and a temperature of 824.15 K.

Notice that this equations neglect coke formation. Although we know that coke

formation does take place in actuality, we wanted at that point to keep the kinetics

relatively simple, and therefore suppose that no coke was formed.

The following kinetics (Hou & Hughes, 2001) are issued from experiments. In

order to limit the effect of deactivation due to coke formation, a flux of hydrogen was

added to the inlet stream. Consequently, although a decrease in the reaction rate was

observer in the first 200 min, the system eventually reached a quasi steady state. The

following expressions were found:

𝑟1 = 𝑘1
𝑃𝐶𝐻 4𝑃𝐻2𝑂

0.5

𝑃𝐻2
1.25 1 −

𝑃𝐶𝑂 𝑃𝐻2
3

𝐾𝑝1𝑃𝐶𝐻 4𝑃𝐻2𝑂
 𝐷𝐸𝑁2

𝑟2 = 𝑘2
𝑃𝐶𝑂 𝑃𝐻2𝑂

0.5

𝑃𝐻2
0.5 1 −

𝑃𝐶𝑂 2𝑃𝐻2

𝐾𝑝2𝑃𝐶𝑂 𝑃𝐻2𝑂
 𝐷𝐸𝑁2

𝑟3 = 𝑘1
𝑃𝐶𝐻 4𝑃𝐻2𝑂

𝑃𝐻2
1.75 1 −

𝑃𝐶𝑂 2𝑃𝐻2
4

𝐾𝑝3𝑃𝐶𝐻 4𝑃𝐻2𝑂
2 𝐷𝐸𝑁2

where

𝐷𝐸𝑁 = 1 + 𝐾𝐶𝑂𝑃𝐶𝑂 + 𝐾𝐻𝑃𝐻
0.5 + 𝐾𝐻2𝑂

𝑃𝐻2𝑂

𝑃𝐻2

eq. I.4-1

eq. I.4-2

eq. I.4-3

eq. I.4-4

16

Interesting to notice is that the expressions found by Hou et al. compare well with

the ones found by Xu et al. earlier (Xu & Froment, 1989).

The numerical values for pre-exponential factors and activation energy are listed

in appendix F.

17

II) The CFD approach

Using computers to model the behavior of a fixed bed reactor is the smart way to

get “experimental” data without intruding in the system. Moreover, Computational Fluid

Dynamics (CFD) is a very powerful tool getting access to virtually any parameters

throughout the system.

However, one needs to carefully set the system in order to get good results. The

first thing to take care of is the size of the computations. And this mainly depends on the

size of the geometry, i.e. the size of the mesh. This latest must be a compromise between

a coarse mesh that will enable a small computation time and a fine mesh that will give

more accurate results.

1) Mesh generation
a. Symmetries and periodicity

The first step in the meshing process is to reduce the size of the actual geometry

one wants to use, by taking advantage of its natural symmetries and periodicities. For our

fixed bed, it is thus interesting to only model about two layers of pellets and assume that

the flow is periodic.

Figure 5b shows that use of periodicity. The middle layer is comprised of full

pellets whereas the top and bottom layers are compromised of partial pellets. Notice that

the top and bottom layers are really connected one to the other, meaning that if one would

overlay two of that same geometry, the pellets will connect perfectly.

This geometry has been obtained by looking at an actual packing of cylinders and

by reproducing the main pattern that could be seen. The top layer has been obtained by

direct transposition of the bottom layer to obtain that perfect periodicity. Finally the void

fraction of the geometry has been compared to one of an actual packing to ensure a good

representation of reality.

Figure 5 – Geometry shrinking of a fixed bed reactor (Dixon, Nijemeisland, & Stitt, 2006)

1-1

1-2

1-3

1-4

1-51-6

1-7

1-8

1-9

(a)

18

 The second step in our process is to only take one third of the previous geometry

as shown on Figure 5a. We then assume that the two cutting planes are symmetrical

planes for the system. We thus obtain what we call the Wall Segment (WS).

 Though in fact these two planes are not really symmetrical planes for the system,

it has been shown(Taskin, 2007) that this assumption has little quantitative influence on

both the axial velocity and temperature. However, it has been noticed that pressure drop

was significantly influenced by this assumption, due to the “squeezing constraint”

imposed by the symmetrical walls.

 Therefore, Taskin divided the geometry in three and focused his study on the

central 60° as shown on the following picture (Figure 6). He compared averaged values

for flow and temperature between this 60° zone and the full bed (360°). The results he

obtained were closer to each other. Therefore, the WS geometry is a good compromise

between accuracy and computation time.

Figure 6 – WS study by zones (Taskin, 2007)

 However, the WS geometry brings some meshing issues. Indeed the symmetric

planes cut through the particles, leading sometimes to some squeezed zones, where the

meshing tends to be problematic. Thus skewed cells appear in these zones. Nevertheless,

both the size of the mesh and the boundary layers help improving the mesh quality as

shown thereafter.

b. Size mesh and boundary layers

Thanks to the previous step, we have been able to reduce the size of the geometry

we want to mesh. This allows us to go to small size in meshing and therefore, improve on

the accuracy of the results. The size of the mesh is goes from 0.02 to 0.03 inch (0.0508 –

0.0762 cm) for a total number of about 4.5 million cells (including boundary layers).

30° 60° 30°

19

We adopted an unstructured mesh, meaning that each node can be connected to

any number of other nodes. Each node will therefore contain information letting the

solver know to which node it is connected. The reason we chose unstructured mesh is that

the meshing is much easier with an unstructured mesh, and though structured mesh are

known to give better results, the complexity of our geometry simply doesn‟t allow us to

use structured mesh.

As we will see later, in certain zones the gradients are much higher than for the

rest of the geometry. It is thus very important to have a refined meshing in these zones,

and boundary layers help to fulfill this very nicely for two reasons.

The first is that boundary layers allow a progressive change in the mesh size in a

defined region. This progressing change in meshing helps to keep a good solving stability

and refines the mesh in the desired zones. Hence, the gradients will be caught with more

accuracy.

Second, it is important to keep in mind that we want to keep computation time

reasonable, and thus not have too many cells. Hence boundary layers only refine the

meshing in the desired zone, and leave the remaining ones unchanged. Therefore, the

zone where small gradients occur will not be refined, and thus not contribute a lot in the

overall number of cells.

 As one can suspect, and as shown by early results, large gradients appear at the

interface between particles and the fluid, and at the interface between the reactor wall and

the fluid. Hence boundary layers are added in these zones. The following picture shows

boundary layers applied to the fluid and solid zones:

20

Figure 7 - Meshing pattern

Notice that the solid particles have been mesh also. This is because reaction and

diffusion are taking place within these particles also. Therefore, both solid and fluid

zones are mesh, and boundary layers are added. However, in more complex geometries,

meshing was not possible if boundary layers were applied to all particles, hence some

boundary layers have been removed (c.f. appendix A).

c. Contact points

An important issue comes when meshing fixed bed, which is contact points: when

two particles touch each other, it creates a narrow zone in the fluid, where the meshing

tends to be problematic. To avoid that problem, several options have been studied

(Dixon, Nijemeisland, & Stitt, 2006).

The first one consists in increasing slightly the size of the particles, on the order

of 1%. This will bring particles to overlap(Guardo, Coussirat, Recasens, Larrayoz, &

Escaler, 2006). The second is to reduce the size of the particles. Hence, there will be no

more contact between particles. The last option that has been chosen by our group for

cylinders is to dispose particles such that they do not touch each others. With this option,

the actual size of the pellet is conserved. However the downside of these two last

methods is that the voidage of the bed is slightly increased.

Particle Fluid zone

Inwards
BL

Outwards BL

Reactor
 wall BL

21

2) Turbulence model

a. The k- model

Fixed-bed reactors are run under turbulent regime in order to improve

transportation mechanisms. There one needs to specify to the solver which turbulent

model to use. Our group initially started using the k- model.

For turbulent regime, the only “easy” values to access are the averaged value.

Hence it is more convenient to express these parameters values vis-à-vis their average

values. Following that, the k- model is based on the averaged Navier-Stokes equation.

That is to say, each variable X is expressed under the following form:

𝑋 = 𝑋0 + 𝜕𝑋

were X0 is the average value of X, and 𝜕X the variation of X to its average value.

Hence the Navier-Stokes equation

𝜕𝑢

𝜕𝑥
+ ∇𝑢𝑢 = 𝜈∇2𝑢 −

∇𝑃

𝜌

becomes
𝜕𝑢0

𝜕𝑥
+ ∇𝑢0𝑢0 = 𝜈∇2𝑢0 −

∇𝑃0

𝜌
+ ∇ 𝜕𝑢 𝜕𝑢

A new term appears which is 𝜕𝑢 𝜕𝑢 . It is called the Reynold„s Stress Tensor and

accounts for the momentum transfer between two particles moving at different speeds.

This term is problematic since we are left with one more parameter than we have

equations to solve them. Therefore one must somehow relate that term to the other

parameters in order to reduce the number of parameters to the same number of equations.

And this is the purpose of the k- model. However, one must keep in mind that this step

is purely artificial, and there is no rigorous way to achieve this.

The k- model depends, at its name implies, on two parameters which are k and .

The first parameter k is the turbulent kinetic energy. It hence relates to the energy

transported by turbulence, but does not take into account the size of the turbulence. This

is done by the second parameter . This last parameter is called the turbulence dissipation

rate.

eq. II.2-1

eq. II.2-2

eq. II.2-3

22

The expressions of these two parameters are as following:

𝑘 =
 𝜕𝑢𝑥 𝜕𝑢𝑥 + 𝜕𝑢𝑦 𝜕𝑢𝑦 + 𝜕𝑢𝑧 𝜕𝑢𝑧

2

휀 = 𝜈
𝜕 𝜕𝑢𝑖 𝜕 𝜕𝑢 𝑖

𝜕𝑥𝑗𝜕𝑥𝑗

This enables us to rewrite equation II.2-3 as

𝜕𝑢0

𝜕𝑥
+ ∇𝑢0𝑢0 = 𝜈 + 𝜈𝑇 ∇

2𝑢0 −
∇𝑃0

𝜌

where the kinematic eddy viscosity νT is given by

𝜈𝑇 = 𝐶𝜇
𝑘2

휀

 It is then possible to write two separate balance equations (one for each

parameter). They generally have the following form:

𝜕𝑘

𝜕𝑡
+ ∇𝑢0𝑘 = ∇𝐷𝑘∇𝑘 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

𝜕휀

𝜕𝑡
+ ∇𝑢0휀 = ∇𝐷휀∇휀 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 The k- model possesses several variations that differ on the actual expression of

the right hand side of equations II.2-8 and II.2-9.

For a no slip condition, one expects the turbulent energy to go to zero as one

approaches the wall. However the k- model lacks to model this properly. Therefore, wall

functions must be added to the k- model to account for wall effects on turbulence. These

wall functions are semi-empirical based, and model the behavior of the fluid between the

wall and the bulk flow.

However, for these wall functions to work properly, the distance y
+
 between the

wall and the bulk flow on which the wall function is used must be set properly. However,

in our model, due to a complex geometry, this distance varies. And since one is able to

specify only one y
+
, the wall function will lead to some inaccuracies.

b. The k- model

The k- model is a variation of the k- model, in that that both equations II.2-8

and II.2-9 are still used. However, the second parameter is changed to which is

eq. II.2-4

eq. II.2-5

eq. II.2-6

eq. II.2-7

eq. II.2-8

eq. II.2-9

23

proportional to the ratio of k and . All the results that will be presented here are based on

this k- model, which is defined by the following equations.

Equations II.2-8 and II.2-9 become:

𝜕𝑘

𝜕𝑡
+

𝜕𝑢0𝑖𝑘

𝜕𝑥𝑖
=

∂

∂xj
 𝜈 +

𝜈𝑡

𝜎𝑘

∂𝑘

∂xj
 − 𝑢0𝑖𝑢0𝑗

𝜕𝑢0𝑗

𝜕𝑥𝑖
− 𝑌𝑘

𝜕𝜔

𝜕𝑡
+

𝜕𝑢0𝑖𝜔

𝜕𝑥𝑖
=

∂

∂xj
 𝜈 +

𝜈𝑡

𝜎𝑘

∂𝜔

∂xj
 −

1/9+
𝑅𝑒𝑡

6

1+
𝑅𝑒𝑡

6

𝑢0𝑖𝑢0𝑗

𝜈𝑡

𝜕𝑢0𝑗

𝜕𝑥𝑖
− 𝑌𝜔

where

𝜈𝑡 =
0.024+𝑅𝑒𝑡/6

1+𝑅𝑒𝑡/6

𝑘

𝜔

𝑅𝑒𝑡 =
𝑘

𝜈𝜔

And the two dissipation terms are given by:

𝑌𝑘 = 0.09
4/15+ 𝑅𝑒𝑡⁄8 4

1+ 𝑅𝑒𝑡⁄8 4
 1 + 1.5 𝐹 𝑓∗ 𝑘 𝜔

𝑌𝜔 = 0.072 1 − 0.09
1.5 𝐹

0.072

4/15+ 𝑅𝑒𝑡⁄8 4

1+ 𝑅𝑒𝑡⁄8 4 𝑓 𝜔2

The various parameters used are defined as following:

𝐹 =

 0 𝑖𝑓
2𝑘

𝛾𝑅𝑇
≤ 0.25

2𝑘

𝛾𝑅𝑇
− 0.252 𝑖𝑓

2𝑘

𝛾𝑅𝑇
> 0.25

𝑓∗ =
 1 𝑖𝑓 𝜒𝑘 ≤ 0

1+640 𝜒𝑘

2

1+400 𝜒𝑘
2

 𝑖𝑓 𝜒𝑘 > 0

𝑓 =
1+70 𝜒𝜔

1+80 𝜒𝜔

eq. II.2-10

eq. II.2-11

eq. II.2-12

eq. II.2-13

eq. II.2-14

eq. II.2-15

eq. II.2-16

eq. II.2-17

eq. II.2-18

24

𝜒𝑘 =
1

𝜔3

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

𝜒𝜔 =
1

0.72 𝜔3
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑘
−

𝜕𝑢𝑘

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗

This model is an improvement over the k- model in that that it has shown good

agreements with flow near a wall. Note that the actual model used is a variation of the k-

model called the SST k- model. This model is a refinement of the basic k- model, given

that it mimics the k- model far from the wall (i.e. for high Reynolds number), but

reduces to a low Reynolds k- model near the wall. Hence the near wall behavior is well

captured, and wall functions are no longer needed. The model parameters are as for the k-

 model based on experiments. However, a refined boundary layers meshing is still

required in order to properly capture the near wall behavior.

3) The catalytic zone

Modeling the reaction through a CFD software can be a bit of an issue since these

software have often been developed for mechanical engineers rather than chemical

engineers. The Fluent software that we use for instance allows combustion, but very little

is offered besides it. Therefore, one must use user defined function (UDF) that allows

specifying source terms in the balance equations. This source terms can of course be

either positive for products or negative for reactants.

At first our group used to model the catalytic particles as porous. A zero velocity

was then imposed to these porous particles to account for the fact that there is no flow in

these particles. Indeed concentration changes are only due to reaction and species

diffusion in these particles, but the overall fluid is stagnant.

However, some inaccuracies were found in the results. This is due to the fact that

Fluent computes the velocity at the interface between the porous zone and the fluid as the

weighted average of the velocities of the nearest cells, both in the fluid and porous zones.

And if the velocities are null on the particle side, there are not on the fluid side. This is

causing the velocity at the particle-fluid interface to be different from zero, and therefore

wrong.

That is why, our group then moved on using solid particle. Here Fluent does

impose a zero velocity value at the interface. However, Fluent does not allow using

species in solid. Therefore, the mass fractions are now stored as user defined scalars

(UDS). Reaction is once more assured through UDF.

eq. II.2-19

eq. II.2-20

25

4) Diffusion

As we have seen, Fluent does not allow species in solid. It is then not surprising

that species diffusion in not implemented either. However, it does allow UDS diffusion in

all zones, and that it how we took care of it.

For a scalar , diffusion in Fluent must be put in a Fickian-like form:

𝐹𝜙 = −𝛤 𝛻𝜙

where is the diffusion coefficient and F the flux of scalar .

The diffusion coefficient can be user defined through a UDF. It also can be set

anisotropic. In chapter III we will discuss further the diffusion model used as it is an

important part of the present work.

 More details on the steps followed and on the parameters used are detailed in

appendix B.

26

III) Results

1) Earlier results

As we saw in chapter I.3., when chemical engineers need to model a fixed-bed,

they often make the assumption that temperature is uniform in the bed, and therefore

neglect the wall effects. But for highly endothermic reactions such as methane steam

reforming, an important heat flux is needed. Hence one can wonder if such an assumption

is still worthy. Furthermore such reactions are conducted in small N tubes. Consequently,

a non negligible number of particles stand near the wall.

The following picture (Figure 8) shows us a high gradient taking place in the near

wall region. A 60-80˚C difference between the wall and the bulk flow can be noticed.

And this is true both at inlet and middle tube conditions. Therefore the assumption of a

symmetrical or constant temperature is not a valid assumption near the wall.

Figure 8 - Temperature profiles at inlet (a) and mid-tube (b) conditions

(Dixon, Taskin, Stitt, & Nijemeisland, 2007)

Taskin (2007) then expanded this study to more complex geometries (Full and 4

holes cylinders), and was still able to see a high gradient due to wall heat effects.

The overall goal of this chapter is to compare the effects of the different

geometries and draw conclusions on the mechanisms that bring asymmetrical behavior

among particles.

2) Geometries used

All geometries used in this work are cylinder based. Their height and diameter are

both 1 inch (2.54 cm).

27

The first geometry used is the full cylinder geometry (Figure 9a). It has initially

been run by Taskin (2007), but with particles set as porous. At that time Fluent did not

allow UDS in solid zones. Later Dixon (2008) ran that same geometry using the set of

parameters we introduced earlier (c.f. chapter II and appendix B). The full geometry

results shown here are issued from Dixon‟s run.

The second geometry used is the one hole cylinder geometry (Figure 9b). Its

coaxial center hole has a diameter of 0.2868 inch (0.7285 cm). No results had been

published for this geometry yet.

The last geometry used is the four holes cylinder geometry (Figure 9c). It is

composed of 4 holes of the same diameter, i.e. 0.2868 inch (0.7285 cm) and at a distance

of 0.26 inch (0.6604 cm) of the center. This geometry had also been run previously by

Taskin (2007), but once more particles were set as porous. Results presented here are

issued from latest runs done with the set of parameters described earlier (c.f. chapter II).

Figure 10 - Real industrial pellets randomly packed form Johnson Mattey

 (Dixon, Nijemeisland, & Stitt, 2006)

Figure 9 - Pellets geometries: (a) Full; (b) 1 hole and (c) 4 holes

a b c

28

The geometries considered here are simplified versions of the one used in the

industry. Indeed, real particles often have domed top and bottom. This enables a more

efficient and denser packing. Besides the usual height-to-diameter ratio is not 1 as used in

our model but often greater than unity. Typically a value of 1.2 is adopted. Furthermore,

commercial pellets also differ. Hence Johnson Matthey‟s posess grooves as presented in

the following pictures (Figure 10). This reduces the overall porosity, and thus the

pressure drop of the fixed-bed reactor. As for Haldor Topsoe, they opted for a seven

holes cylinder. Finally the BASF group chose the four holes cylinders.

But for the sack of simplicity, and because our main goal is to understand the

mechanisms that take place in packed bed reactors, we chose not to consider more

complex geometries. Should one be interested in comparing the effectiveness of real

particle shapes, the results given here will help predicting their behaviors.

3) Near wall particle surface study

The first element we compared was the surface of the particle highlighted in the

following picture (Figure 11). The reason we choose this particle, is that it is within the

60˚ of validity for the WS (c.f. chapter II), and that it is the only particle to not be cut by

either a symmetry plane or a periodic plane.

Figure 11 - WS geometry: particle test – surface

a. Temperature comparison

To obtain the following pictures, the lateral surface of the test particle has been

unwrapped. To do this, we first performed geometrical transformations on the surface

coordinates. As a result the point of origin and the axes direction were adapted to the test

particle and any point on the surface could be identified thanks to only two parameters in

29

the cylindrical coordinates: the angle and the height z; the radius r remaining constant.

Finally a surface coordinate s was created as the product of the angle and the radius

(s = r).

Figure 12 - Surface temperature profile for test particle - Full cylinder

Figure 13 - Surface temperature profile for test particle - 1 hole cylinder

Figure 14 - Surface temperature profile for test particle - 4 holes cylinder

T (K)

T (K)

T (K)

30

To simplify the comparison between the various geometries, the same color scale

has been kept for the three previous figures. Notice that the overall mass flow rate has

been kept constant for all geometries, and therefore the overall Reynolds number is also

constant in all these simulations.

In agreement with the earlier results, a strong variation in temperature can be

seen. Hence for the same particle, one can notice a difference in temperature of 50˚C on

the wall.

The hottest zone (S ~ 0.05 m) correspond is the closest one to the reactor wall,

whereas the coolest zone is the farthest from that cylinder wall. The can be qualitatively

seen on Figure 11. It is as if the temperature increases the more one move towards the

reactor wall, and decreases the further one moves from it.

Comparing the geometries, we can first notice a similarity in the temperature

patterns. The hottest zone and the coldest are roughly located at the same places, not

matter the number of holes in the particle. However, significant variations appear on the

values of the extrema. Though the full and 4 holes temperature ranges are similar, it

appears that the 1 hole temperature range is significantly reduced. Its temperature range is

only of roughly 30˚C (20˚C lower than for the other geometries).

In order to understand this, one must focus on the flow around the particle. Figure

15, Figure 16 and Figure 17 on next page show a comparison between the flows. The left

figure (figure a) shows the surface temperature profile, and the right figure (figure b)

shows the pathlines of particles coming from the inlet (bottom surface). These pathlines

are colored by velocity magnitude. Since these pathlines track particles coming from the

inlet, a lack of pathlines on a particular area means no particle issued from the inlet

passes through that area. In other word, a lack of pathlines will highlight stagnant fluid,

and thus exchanges of both energy and species with the bulk flow is only due to

diffusion.

In order to spot the hotspots on the test particle‟s surface, the same view has been

kept for all the figures (Figure 15 through Figure 17). The first thing we can notice is that

there is a strong correlation between the localization of these hotspots and the flow. That

is to say, the hottest spots can be found where there is no flow. This is perfectly

understandable, since in these zones, hardly any fresh flow arrives. And it is well know

that heat transfer is highly more efficient when convection is at stake.

The relative coolness of the 1 hole geometry can also be understood thanks to

flow. Indeed it appears that the dead zones around the test particles are more confined,

and that the overall convection around these zones is better.

In order to understand the differences in the flow patterns, one needs to consider

the particle which is just on top of the test particle. Figure 18 still considers the same

pathlines, but includes the top particle. One can recognize the test particle at the center of

the images.

31

Figure 15 – Full cylinder - Particle test (a) Surface temperature profile; (b) Pathlines colored by velocity magnitude

Figure 16 - 1 hole cylinder - Particle test (a) Surface temperature profile; (b) Pathlines colored by velocity magnitude

Figure 17 - 4 holes cylinder - Particle test (a) Surface temperature profile; (b) Pathlines colored by velocity magnitude

T (K)

T (K) u (m.s
-1

)

u (m.s
-1

)

a b

a b

a b

T (K) u (m.s
-1

)

32

It appears that the particle on top of the test particle is blocking the flow coming

from between the wall and the test particle. Hence for the full cylinders and to a smaller

extent for the 1 hole cylinders geometries, swirls are formed, and velocities significantly

decrease. Hence the top particle acts like a barrier, and thus the path coming from in front

of the test particle becomes a non favorable path. However, if one adds a hole to the top

particle, fluid can now flow more easily, and the swirls become less important.

The 4 holes geometry could be consider as the most favorable case in that that

flow can now easily pass through one of the holes. It thus clearly appears that the fluid

flow more rapidly between the top and the test particle that it used to for the other two

geometries.

Figure 18 - Flow pattern study -

 (a) 4 holes cylinder geometry only; (b) Pathlines for the full cylinder geometry;

(c) Pathlines for the 1 hole cylinder geometry; (d) Pathlines for the 4 holes cylinder geometry

a b

c d

Top
particle

Test
particle

33

b. Mass fraction comparison

As before, the following plots (Figure 19 to Figure 24) have been made from the

test particle‟s surface. The following three focus on the methane mass fraction.

Figure 19 – Surface methane mass fraction profile for test particle - Full cylinder

Figure 20 - Surface methane mass fraction profile for test particle - 1 hole cylinder

Figure 21 - Surface methane mass fraction profile for test particle - 4 holes cylinder

YCH4

YCH4

YCH4

34

And the following three on the hydrogen mass fraction for the three different

geometries used.

Figure 22 – Surface hydrogen mass fraction profile for test particle - Full cylinder

Figure 23 - Surface hydrogen mass fraction profile for test particle - 1 hole cylinder

Figure 24 - Surface hydrogen mass fraction profile for test particle - 4 holes cylinder

YH2

YH2

YH2

35

As for temperatures, high gradients appear. Hence for the methane mass fraction,

a relative variation of over 4% can be noticed between the highest and lowest

concentration on the particle surface. The same thing is true with hydrogen, whose

concentration ratio varies over a factor of 5. We can also clearly identify zones on the

surface where the concentration is either high or low.

Moreover, these zones seem to overlap with the ones one could identify for

temperature, i.e. hot zones have low methane and high hydrogen concentrations, and cold

zones have high methane and low hydrogen concentrations. This is perfectly

understandable as that the two main reactions are highly endothermic. Hence an increase

in temperature will lead to an increase in reaction rates.

One can also notice that although temperatures and concentrations zones are in

good agreement, the maximum in temperature and the respective maximum and

minimum in methane and hydrogen do not have exactly the same location. The

temperature maximum is roughly located at S ~ 0.05 m, whereas the concentration

extrema are located at roughly S ~ 0.065-0.07 m. Hence, another phenomenon besides

temperature seems to be needed to explain concentration discrepancy. This will be

addressed in a further chapter (chapter III.6.).

 If we once more compare the results of the three geometries, we can notice a close

resemblance in the concentration patterns between the three. Not surprising is to notice

that the full cylinder geometry has the lowest methane mass fraction among the three

geometries. This is in perfect agreement with the fact that the full cylinder geometry has

the highest temperatures. Hydrogen concentration also confirms that last point since the

highest mass fractions are obtained for the full cylinder pellets.

36

4) Near wall particle inside study

 Let‟s now focus our attention on what is happening inside the particle. Therefore,

we will still consider the same test particle and we will consider two perpendicular planes

inside that particle:

Figure 25 - WS geometry: particle test – inside

 These planes have been chosen such as plane 1 is roughly perpendicular to the

reactor wall and plane 2 parallel to that same wall.

a. Temperature comparison

Figure 26, Figure 27 and Figure 28 represent the temperature variation along the

two planes previously described. Notice that for the 4 holes cylinder geometry‟s results, it

is as if the two holes displayed where not of the same diameter. This is simply due to the

way planes 1 and 2 pass through the holes. They do not follow the holes‟ diameters. Let‟s

first consider only plane 1, the one perpendicular to the reactor wall.

Looking at the temperature variation inside the test particle, we can notice that the

gradient is essentially located in the region of the pellets which is the closest to the wall.

Past that zone, temperature smoothes out rapidly.

37

Figure 26 – Temperature profile through test particle - Full cylinder

Figure 27 - Temperature profile through test particle – 1 hole cylinder

Figure 28 - Temperature profile through test particle – 4 holes cylinder

Plane 1 Plane 2

Plane 1 Plane 2

Plane 1 Plane 2

T (K)

T (K)

T (K)

T (K)

T (K)

T (K)

38

This becomes even more striking as we consider the other geometries. For

instance with the 1 hole geometry, we can clearly see that the hole divides the plane in

two. The left side presents a high gradient, whereas the right side has a more homogenous

temperature. This is showing that the right side of part1 is too far from the wall to see any

of the heat effects.

If we now consider plane 2, we can see that temperature is quite homogenous, no

matter what geometry we consider. Besides, the mean temperature decreases going from

full to 4 holes cylinder. This can be explained by the fact that the more holes are added

the larger the interface surface with the fluid will be. And as we will see in the next

chapter, the methane steam reforming reaction is diffusion limited. Therefore, if the

interface surface increases, the more fresh reactant will be brought to the pellet and the

more products will be converted. Consequently, there will be more heat removal, and a

lower mean temperature.

b. Mass fraction comparison

The following pictures show the methane (Figure 29 through Figure 31) and the

hydrogen (Figure 32 through Figure 34) mass fraction for plane 1 and 2. The first thing

we can notice is a high gradient in concentration near the interface solid/fluid. This is due

to diffusion limitations, i.e. the reactant that enters the particle reacts so quickly that it

doesn‟t have time to reach the center of the pellet. Hence we can see that the methane

concentration is much higher at the interface than at the core of the particle.

The same thing can be seen for hydrogen. A relatively low concentration can be

seen near the interface. The hydrogen that is produced by the reaction at the interface will

diffuse where its gradient is most favorable, that is to say towards the fluid zone where

the hydrogen concentration is the lowest.

Besides, we can see that the core of the pellets is almost homogenous in

concentration. It is as if diffusion is so limited that the system had enough time to reach

the reaction equilibrium. Nevertheless, a slightly lower methane concentration and a

slightly higher concentration can be noticed in the near wall region. The reaction being

endothermic, an increase in temperature will be in favor of more hydrogen production.

And the system equilibrium will thus be move towards a lower methane concentration.

39

Figure 29 - Methane mass fraction profile through test particle - Full cylinder

Figure 30 - Methane mass fraction profile through test particle – 1 hole cylinder

Figure 31 - Methane mass fraction profile through test particle – 4 holes cylinder

Plane 1 Plane 2

Plane 1 Plane 2

Plane 1 Plane 2

YCH4 YCH4

YCH4 YCH4

YCH4 YCH4

40

Figure 32 - Hydrogen mass fraction profile through test particle - Full cylinder

Figure 33 - Hydrogen mass fraction profile through test particle – 1 hole cylinder

Figure 34 - Hydrogen mass fraction profile through test particle – 4 holes cylinder

Plane 1 Plane 2

Plane 1 Plane 2

Plane 1 Plane 2

YH2 YH2

YH2 YH2

YH2 YH2

41

5) Zones of low methane concentration
a. Cross sectional plane

The near wall region is not the only zone where some asymmetries in

concentration appear. As one could see on Figure 19, surface concentration seems to vary

even away from the wall region. The following picture highlights some zones of methane

depletion.

Figure 35 - Examples of zones of methane depletion

In order to study in more detail this phenomenon we created a plane going

through some of these zones. Figure 36 - Cross sectional plane for methane depletion

study shows this plane:

Figure 36 - Cross sectional plane for methane depletion study

YCH4

42

b. Results for the full cylinder geometry

The first parameter we will consider on that cross sectional plan is the methane

mass fraction:

Figure 37 - Cross sectional plane – Methane mass fraction profile

We can notice on Figure 37, two zones of relatively low methane concentration.

The following figure (Figure 38) shows the hydrogen mass fraction. We can notice a

higher hydrogen concentration in the two zones of methane depletion.

Figure 38 - Cross sectional plane - Hydrogen mass fraction profile

YCH4

YH2

43

Looking carefully, we can see that the methane depletion zone appears in a

narrow zone between particles, where the flow velocity is likely to be low. Therefore, the

following figure (Figure 39), we looked at the velocity magnitude profile of that same

cross sectional plane.

Figure 39 - Cross sectional plane – Velocity magnitude profile

 We also had to make sure that temperature was not playing a role in the methane

depletion, and that is what that next figure (Figure 40) is here for:

Figure 40 - Cross sectional plane - Temperature profile

T (K)

u (m.s
-1

)

44

 We can notice a slight decrease in temperature. However, if we could notice a

temperature variation of about 50˚C in the near wall region, the temperature variation in

comparison to the bulk temperature, is only of about 10˚C. This change in temperature

seems therefore too weak to explain the depletion and it more likely to be a consequence

of the low velocity field which would slow down energy transfer.

 A quick computation shows that last point. Here let‟s consider the rate of the third

reaction, which is, as we will see later (chapter III.6.b), the dominant reaction. Average

values for the species have be taken (YCH4 = 0.193, YH2 = 0.00185, YCO = 0.00133 and

YCO2 = 0.191). We thus obtain the following ratios:

𝑟834 .15𝐾
𝐼𝐼𝐼

𝑟824 .15𝐾
𝐼𝐼𝐼 = 1.6

𝑟874 .15𝐾
𝐼𝐼𝐼

𝑟824 .15𝐾
𝐼𝐼𝐼 = 8.7

 Hence an increase of 10˚C in temperature increases the reaction rate of a factor of

1.6, and an increase of 50˚C in temperature increases the reaction rate of a factor of 8.7.

This clearly shows that the reaction rate variation in the near wall region is more than 5

times higher than what it is away from the wall.

c. Results for the 1 hole cylinder geometry

 To make sure that this phenomenon was not just an artifact of the computations,

we did the same thing, but using a different geometry. This time, the 1 hole geometry is

used. Once more, a cross sectional plane passing through some methane depletion zones

was created.

In the same order as previously, the following four figures (Figure 41 through

Figure 44) show respectively the methane and hydrogen mass fractions, the velocity

profile and the temperature profile.

45

Figure 41 - Cross sectional plane – Methane mass fraction profile

Figure 42 - Cross sectional plane - Hydrogen mass fraction profile

YCH4

YH2

46

Figure 43 - Cross sectional plane – Velocity magnitude profile

Figure 44 - Cross sectional plane - Temperature profile

The results of the 1 hole geometry are very close to the full cylinder geometry.

For instance, both low methane concentration zones that we highlighted for the previous

geometry are present here. And they both correspond to a higher hydrogen concentration,

and a low velocity zone. And once more, the temperature variation seems too low to

really be a key parameter for this phenomenon to appear.

T (K)

u (m.s
-1

)

47

 We can also point out that the 1 hole geometry the overall velocities are lower

that what they used to be with the full cylinder pellets. This can be explained by the fact

that the mass flowrate imposed to the system remains the same while switching from one

geometry to the other. Therefore a higher void fraction will entail lower velocities.

Consequently, we can notice that more methane depletion zones appear for the 1 hole

geometry, mainly in the pellets‟ hole. This new low velocities eventually leads to low

methane concentrations.

d. The adiabatic run for the 1 hole cylinder geometry

 As for now, results have shown that low methane concentration regions seem to

be linked to low velocities region, and that temperature seems not to be playing a role. To

confirm that last point, one more simulation was run. The idea was to remove all

temperature effects and see if the methane depletion zones remained. Therefore, the heat

flux through the reactor wall was turned off. We thus considered an adiabatic case. The

results obtained were the following (Figure 45 through Figure 48):

 As shown by Figure 45, the methane concentration has increased. Indeed, the lack

of wall flux has decreased the particle temperature by 10 to 15˚C. Consequently the

reactions rates have decreased, and so did methane conversion. However, we can still

clearly see the same methane depletion zones.

Figure 45 - Cross sectional plane – Methane mass fraction profile – Adiabatic case

YCH4

48

 Once more, Figure 46 shows that higher hydrogen concentrations appear for low

methane concentrations zones.

Figure 46 - Cross sectional plane - Hydrogen mass fraction profile – Adiabatic case

 Figure 47 shows velocity magnitude. One can notice that the velocity field for the

adiabatic case is almost identical to the non adiabatic case (Figure 43). This is a result of

our choice of taking non temperature dependent flow parameters.

Figure 47 - Cross sectional plane – Velocity magnitude profile – Adiabatic case

YH2

u (m.s
-1

)

49

 This last figure (Figure 48) is very interesting since it shows the temperature

profile. Given that we imposed an adiabatic regime, no wall heat effect can influence the

results; however we can still see a decrease in temperature in the methane depletion

zones.

Figure 48 - Cross sectional plane - Temperature profile – Adiabatic case

e. Conclusion

As previously seen in chapter III.2., asymmetries in both temperature and species

concentrations appear as we considered a packed bed. If an obvious reason for this

asymmetry was due to the wall effect, several methane depletion zones could be seen

away from that near wall region. Hence, the wall heat could not be the main reason for

these singularities in the methane concentration to appear.

Given the position of these depletion zones (in narrow gaps between particles), it

seemed adequate to suspect these zones to be almost stagnant. Therefore a cross sectional

plane passing through some of these depletions regions was created. We could then

notice that indeed low velocities regions and low methane concentration (as well as high

hydrogen concentration) were closely linked. This has been done for both the full and the

1 hole geometry. The results obtained for both showed that same behavior.

 To confirm that wall effects were not playing any role in that behavior, an

adiabatic case has been run. We then were able to notice that a system still showed the

same behavior, though it was denied of any heated wall effects. This is a clear proof that

the methane depletion is not only due to heated wall effects, but is also influenced by low

velocities region.

In an actual reactor, this variation of species concentration will eventually lead to

a different rate of coke formation over the surface. Hence the coke layer will not be of the

T (K)

50

same height everywhere on the particle‟s surface. Consequently this particle will undergo

different mechanical stress depending on that coke layer and eventually break. And as

seen in chapter I.2, particles‟ dust is responsible for non homogenous flow and

consequently hotspots.

6) Extrema study
a. Phenomenon description

As we saw previously, the temperature and concentrations extrema are not located

exactly at the same place. At first glance, this seems a bit contradictory, since a high

temperature for an endothermic reaction increases the reaction rate. And thus more

methane will be consumed and more hydrogen produced. So following that way of

thinking, it is natural to expect the maximum temperature, the minimum methane

concentration and the maximum hydrogen concentration to be located at the same place.

The following figure (Figure 49) helps better seeing that. It is composed of

previously seen Figure 12 and Figure 19, that is to say temperature and methane mass

fraction for the test particle‟s surface.

Figure 49 – Extrema comparison for the full cylinder geometry.

T (K)

YCH4

51

This figure only shows the comparison for the full cylinder geometry, but the

same thing can be seen for the other geometries, as their results have previously been

shown in chapter III.3. The maximum temperature displayed on Figure 49 appears for S ~

0.05 m, and the minimum methane concentration appears for S ~ 0.065-0.07 m.

b. Reaction rates profiles for the full cylinder geometry

For the full cylinder geometry, the reaction rates are given in Figure 50. We can

first notice that for all the reactions, their reaction rate maxima are located in the same

area, i.e. around S ~ 0.05 m. This is also the temperature maximum location. Moreover,

we can very clearly see a good resemblance between the pattern drawn by the high

temperature area and the one drawn by the high reaction rate area of the first and third

reaction. We can therefore conclude that temperature variation have more effect than the

other species concentrations on the reaction rates at the working conditions.

However, for lower temperatures, i.e. T ~ 800-820 ˚K, temperature variations

seems to be more or less counterbalanced by the species concentrations. In other words,

for the first reaction, for a temperature difference between the hottest and coldest zones

of 55˚C, the reaction rates ratio increases over 5 times; whereas in a cold zone, a

temperature variation of 20˚C only give rise to a variation in reaction rates of less than 1

to 2. If we consider the two other reactions, although if the figures are different, we can

still see that the variation in reaction rates is very low for cold zones and increases

quickly in the hottest zone.

The other interesting thing to notice is that the main reaction to take place at the

inlet of the reactor tube is the third reaction. Its rate of reaction is two orders of

magnitude higher that the ones of the other reactions.

 This however does not explain the difference in the extrema locations, and a

closer look to the methane minimum is required. This is done in the coming chapter.

52

Figure 50 – Reaction rates for the full cylinder geometry

c. Cross sectional plane

In this part, a new cross sectional plane was created, passing through the

temperature maximum and the methane mass fraction minimum. The plots for

temperature, velocity magnitude, methane and hydrogen mass fraction are given on the

next page (Figure 52).

 Surprisingly, we can notice that the pellet‟s highest temperature is not achieved

by the section of that surface which is the closest to the wall, but in fact slightly further

3E-006

6E-006

9E-006

1.2E-005

1.5E-005

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

S (m)

Full cylinder

-0.01

0

0.01

Z
 (

m
)

9.7E-008

2.2E-007

3.4E-007

4.6E-007

5.8E-007

7E-007

8.2E-007

9.4E-007

9E-005

0.00011

0.00013

0.00015

0.00017

0.00019

53

on. This gets explained by the velocity profile. There is an important flow passing near

that zone, cooling down the section of the pellet. On the contrary, the hottest section is

near an almost dead zone (i.e. with almost no flow). Consequently, heat exchanged by

convection is very low, and less heat gets removed.

However, one can see that the region where the velocity is even lower is not near

that hot zone, but between the two particles. And this is where the methane concentration

is the lowest. Hence what is happening is that methane is not diffused by the turbulent

flow, and only natural diffusion occurs. And yet, we know that this diffusion is a lot

slower. Therefore, the rate at which the reactant gets renewed in the nearby section of the

pellet is low.

 Moreover, whereas usually, methane can diffuse to the surface from five different

directions as shown by the green arrows (Figure 51a), for zone comprised between the

two pellets, it can only diffuse from four directions (Figure 51a):

Figure 51 – Schema of the methane diffusion between to pellets

(a) for a free surface; (b) between two pellets

In other words, the zone between the two pellets is more confined, and therefore

diffusion from the surrounded fluid is limited. Moreover, pellets are a zone of methane

consumption and therefore, the methane concentration is lower there that in the fluid.

Therefore, methane diffuses from the fluid to the solid. We can see that in the case of a

confined area (case b), methane is drained from two surfaces as opposed to only one

surface for a free particle‟s surface (case a). In other words, in a confined area, less

methane diffuses in, and more diffuses out than for a free surface. As a result the methane

concentration for a confined area is lower than for the rest of the fluid.

Pellet

Pellet

Pellet a b

Inlet methane diffusion Outlet methane diffusion

54

F
ig

u
re

 5
2

 -
 R

es
u

lt
s

fo
r

th
e

fu
ll

 c
y

li
n

d
er

 c
ro

ss
 s

ec
ti

o
n

a
l

p
la

n
e

Y
H

2

Y
C

H
4

T
 (

K
)

u
 (

m
.s

-1
)

55

d. Conclusion

If one studies the test particles‟ surface, it appears that species and temperature

extrema do not have the same location. Further investigations have shown that reaction

rates and temperature maxima match.

Furthermore, it has been notice that the extrama (i.e. temperature maximum and

methane minimum) are always located near a low velocity region. This is especially true

for temperature, since the area which gets the hottest is not the one the closest to the wall,

but rather located near the wall and near a low velocity region.

Therefore, both temperature and methane concentration minimums can be

explained by their proximity to a low velocity zone. In these latest, flow can be

considered laminar, and therefore convection transportations for both energy and species

are low.

Nevertheless an extra parameter comes into play. Otherwise why would the

methane maximum concentration not be located at the same place than the temperature

maximum? It appears that the fluid neat the methane minimum is also located is a

confined area between two particles. Hence, methane diffusion can only come from

limited directions. Moreover, since this confined zone is between two particles, methane

has to diffuse toward two different particles‟ surface. Schematically, less can diffuse in,

but more has to diffuse out. The methane concentration‟s minimum can therefore be

explained its closed location to a low flow region and a confined zone.

Note that flow region and a confined zone do not necessarily come together.

However, the confinement of an area makes is even more difficult for fluid to access it,

and that zone will be more likely to be a dead zone for flow.

56

IV) Diffusion model - Theory

1) The various diffusion regimes

Diffusion in a porous medium depends on various parameters among which are

the pore diameter, the species, temperature and pressure gradients, as well as external

forces. The importance of these parameters depends on the case studied, and therefore,

three main types of regime can be identified (Mason & Malinauskas, 1983):

- The Knudsen Flow. For low density region, the main type of collision will be

between the gas molecule and the wall, and thus collisions between gas

molecules will be neglected. This mainly happens in small pores, for which

l >> dp

where l is the mean free path and dp the pore diameter.

- The Viscous, Convective or Bulk Flow. Here, the main type of collision is

between the gas molecules, and thus the gas molecule/wall collisions are

neglected, and we will have

l << dp

In that case, the fluid will be considered as a continuous medium, and the flow

will be pressure driven.

- The Ordinary or Continuum Diffusion. Molecules migrate because of

species gradients, temperature gradients or because of external forces. Once

more in this case, the gas molecules to molecules collisions dominate

(eq. IV.1-2).

A fourth regime also exists, but since in most cases, it is not worth being

considered, and that it is independent of the others, it is often neglected. However it can

be added easily in the computations since it occurs in parallel to the others. This fourth

regime is:

- The Surface Flow or Diffusion. This regime addresses the flow on the solid

surfaces. The species diffuse along the surface in the adsorbed phase.

We will not consider that last case in our study, since it is assumed to play a

minor role here given that our applications are at high temperature.

2) The Maxwell-Stefan based diffusion model
a. Maxwell-Stefan diffusion model

The Stefan-Maxwell governing equation for the diffusion of species r in the z

direction is (Martinez, Shimpalee, & Van Zee, 2008)

eq. IV.1-1

eq. IV.1-2

57

𝑑𝑦𝑟

𝑑𝑧
=

𝑅𝑇

𝑃

𝑦𝑟𝑁𝑧 ,𝑠−𝑦𝑠𝑁𝑧 ,𝑟

𝔇𝑟𝑠
𝑒𝑠≠𝑟

 The binary diffusion coefficient is obtained by the following formula (Fuller,

Schettler, & Giddings, 1966):

𝔇𝑟𝑠 =
10−3𝑇1.25 𝑀𝑟+𝑀𝑠 /𝑀𝑟𝑀𝑠

𝑃 𝑣 𝑟
1/3

+ 𝑣 𝑠
1/3

2

with 𝔇𝑟𝑠
𝑒 in cm

2
.s

-1
, T in K and P in atm.

However, CFD limitations impose that we work with a Fickian form of the

diffusivity. Therefore, we will consider a mathematically equivalent form of eq II.2-1,

were the second term of the right hand side of the equation is equivalent to Fick‟s first

law.

𝑁𝑧 ,𝑟 = 𝑦𝑟 𝑁𝑧,𝑠𝑠 −
𝑃

𝑅𝑇

휀𝑠

𝜏
𝐷𝑟 ,𝑚

𝑑𝑦𝑟

𝑑𝑧

The mixture diffusion component Dr,m is defined here by

𝐷𝑟 ,𝑚 =
𝑁𝑧 ,𝑟−𝑦𝑟 𝑁𝑧 ,𝑠𝑠

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

𝔇𝑟𝑠
𝑠≠𝑟

b. The Maxwell-Stefan based diffusion model

The simplest approach when considering the diffusion in a porous medium is to

consider diffusion in a fluid and to add a term that addresses the diffusion in the pores.

Therefore, one can consider that two diffusions are taking place simultaneously: the

Knudsen Diffusion and the Stefan-Maxwell Diffusion. And thus the effective diffusivity

for species r, Dr
e
, is obtained by:

𝐷𝑟
𝑒 =

휀𝑠

𝜏
𝐷𝑟

where the straight-pore diffusivity Dr is given by:

1

𝐷𝑟
=

1

𝐷𝑟 ,𝑚
+

1

𝐷𝐾𝑟

Dr,m is the mixture diffusivity, and DKr the Knudsen Diffusivity of species r.

eq. IV.2-5

eq. IV.2-6

eq. IV.2-1

eq. IV.2-3

eq. IV.2-4

eq. IV.2-2

58

 The Knudsen Diffusivity deals with the small pores of the catalyst, where mainly

only molecule to wall collisions occur. And as shown by the following formula, it is not

pressure dependent:

𝐷𝐾𝑟 = 9.70. 103 . 𝑟 𝑝 .
𝑇

𝑀𝑟

 The mixture diffusivity Dr,m is based on the Maxwell-Stefan model (ch IV.2.a).

Therefore, we will use equation IV.2.4 to compute it.

 This model has been used in our simulations. Details on calculations and the

values of the different parameters are reported in appendix C.

c. The constant fluxes ratio approximation

The aim of this approximation is to simplify the computations. As for now, we

want to get an approximation that will enable us to compute the diffusion coefficient,

without knowing the values of the molar fluxes. Therefore, we assume that at steady state

fluxes of products and reactants are proportionnal.

Let‟s consider that one can identify a dominating reaction. For instance, let‟s take

the following reaction, where A, B, C and D are species, and , and their

respective stoichiometric coefficients.

A + B = C +D

Since this reaction is dominating, one can assume, with a good approximation that

the ratios of the fluxes are equal to the ratio of their corresponding stoichiometric

coefficients:

𝑁𝑧 ,𝐴

𝑁𝑧 ,𝐵
=

𝛼

𝛽
;

𝑁𝑧 ,𝐴

𝑁𝑧 ,𝐶
=

𝛼

𝛾
;

𝑁𝑧 ,𝐴

𝑁𝑧 ,𝐷
=

𝛼

𝛿
;

𝑁𝑧 ,𝐵

𝑁𝑧 ,𝐶
=

𝛽

𝛿
 …

If one wants to use to use this approximation with the Maxwell-Stefan‟s

expression of the mixture diffusivity, one should consider the following slightly modified

equation of eq IV.2-4.

𝐷𝑟 ,𝑚 =
1−𝑦𝑟 𝑁𝑧 ,𝑠 𝑁𝑧 ,𝑟⁄ 𝑠

𝑦𝑠−𝑦𝑟 𝑁𝑠 𝑁𝑟⁄

𝔇𝑟𝑠
𝑠≠𝑟

For latter model, this assumption will be dropped, and molar fluxes will be

computed. However, this entails a much heavier program, and needs one more

convergence on the diffusion coefficients as it will be discussed in chapter V.

eq. IV.2-7

eq. IV.2-8

eq. IV.2-9

59

d. The Approximated Multi-Component model

i. Theory

Some CFD applications, such as STAR CD developed an alternative formula for

the mixture diffusivity Dr,m (Martinez, Shimpalee, & Van Zee, 2008).

𝐷𝑟 ,𝑚 =
 𝑦𝑠𝑀𝑠𝑠≠𝑟

𝑀
𝑦𝑠
𝔇𝑟𝑠

𝑠≠𝑟

However, when applied to Maxwell-Stefan equation (eq IV.2.3), this definition of

the mixture diffusivity does not satisfy mass conservation. Therefore, a correction term is

added to the mass conservation equation and derived as follows.

The general mass balance equation can be written as:

𝜕𝐶𝑟

𝜕𝑡
+ ∇𝑁𝑟 =

𝑟𝑟

𝑀𝑟

Using the Fickian form of Maxwell-Stefan (eq II.2.5) and combining it to

eq II.2.13 leads to:

𝜕𝐶𝑟

𝜕𝑡
+ ∇ 𝑦

𝑟
 𝑁𝑠𝑠 −

𝑃

𝑅𝑇
𝐷𝑟,𝑚∇𝑦

𝑟
 =

𝑟𝑟

𝑀𝑟

Since this equation is not satisfied with eq II.2.10 definition of the mixture

diffusivity, a correction molecular flux, Nc is added to eq II.2.12:

𝜕𝐶𝑟

𝜕𝑡
+ ∇ 𝑦

𝑟
 𝑁𝑠 + 𝑵𝒄 𝑠 −

𝑃

𝑅𝑇
𝐷𝑟,𝑚∇𝑦

𝑟
 =

𝑟𝑟

𝑀𝑟

Hence summing of all species, leads to:

𝜕𝐶

𝜕𝑡
+ ∇ 𝑁𝑠 + 𝑁𝑐 𝑠 −

𝑃

𝑅𝑇
 𝐷𝑟,𝑚∇𝑦

𝑟
 𝑟 =

𝑟𝑟

𝑀𝑟
𝑟

And since the global mass balance gives us:

𝜕𝐶

𝜕𝑡
+ ∇ 𝑁𝑠𝑠 =

𝑟𝑟

𝑀𝑟
𝑟

Then

𝑁𝑐 =
𝑃

𝑅𝑇
 𝐷𝑟 ,𝑚∇𝑦𝑟 𝑟

eq. IV.2-10

eq. IV.2-11

eq. IV.2-12

eq. IV.2-13

eq. IV.2-14

eq. IV.2-15

eq. IV.2-16

60

ii. Comparison with the Maxwell-Stefan model

Martinez et al. compared this model to the Maxwell-Stefan one. For that, they

considered diffusion through the anode and cathode backing layers of a Proton Exchange

Membrane Fuel Cell (PEMFC). In that study, they disregarded the heat transfer and all

the physical state changes, since none of these are needed to compare both models.

Figure 53 shows a schematic of the PEMFC.

Figure 53- Schematic of a PEMFC (Martinez, Shimpalee, & Van Zee, 2008)

They applied usual running conditions (P = 101 kPa, T = 355 K and

i = 0.7 A.cm
-2

), and plotted the mole fractions according to the different models. The

following figure shows the results at the cathode backing layer. Notice that the same

results can be seen when considering the anode backing layer.

Figure 54 - AMC and Maxwell-Stefan model comparison

for low concentration gradients (Martinez, Shimpalee, & Van Zee, 2008)

61

As we see on Figure 54, the difference between the models is hardly noticeable

(less than 2%). However, the difference does get more important towards the membrane,

where the concentration gradients are supposed to be the higher.

The following figure considers now an unrealistic case, where all the oxygen

would be consumed. This entails a higher concentration difference throughout the

backing layers, and thus higher concentration gradients. The running conditions here are

413 K, 304 kPa and i = 22.4 A.cm
-2

.

Figure 55 - AMC and Maxwell-Stefan model comparison

for high concentration gradients (Martinez, Shimpalee, & Van Zee, 2008)

 Figure 55 shows the cathode behavior for these unrealistic conditions. Although

the uncorrected AMC model follows the same pattern as the Maxwell-Stefan model, it

fails to accurately predict the concentrations. On the other side, the corrected AMC

model differs for the water mole fraction at most for only 4% to the Maxwell-Stefan

model.

 The authors conclude by saying that the “insignificant inaccuracies” of the

corrected AMC model are compensated by the gain in simplicity of this model. Thus the

computation speed and storage needs will be decrease. This makes this model suitable for

CFD computations of a PEMFC.

62

3) The dusty gas model

The second model we will study here is based on the Dusty gas model. The main

idea of such a model is to consider the porous media as one species but without any

motion.

 The usual form of the Dusty Gas model consist of the three main diffusion

regimes discussed previously (ch. IV.1): the Knudsen regime, the Ordinary Diffusion and

the pressure-driven Viscous Flow. Thus for species s:

𝑁𝑟

𝐷𝐾𝑟
𝑒 +

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

𝔇𝑟𝑠
𝑒𝑠≠𝑟 = −

𝑃

𝑅𝑇
∇𝑦𝑟 −

𝑦𝑟

𝑅𝑇
 1 +

𝐵0𝑃

𝜇𝐷𝐾𝑟
𝑒 ∇𝑃

 If we sum over all species, we obtain the following equation:

𝑁𝑟

𝐷𝐾𝑟
𝑒𝑟 = −

1

𝑅𝑇
 1 +

𝐵0𝑃

𝜇

𝑦𝑟

𝐷𝐾𝑟
𝑒𝑟 ∇𝑃

 Combining eq IV.3-1 and eq IV.3-2 to eliminate the
𝐵0𝑃

𝜇𝐷𝐾𝑟
𝑒 term, gives us:

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

∆𝑟𝑠
𝑠≠𝑟 = −

𝑃

𝑅𝑇
∇𝑦𝑟 −

𝑦𝑟

𝑅𝑇
 1 −

1/𝐷𝐾𝑟
𝑒

 𝑦𝑠/𝐷𝐾𝑠
𝑒

𝑠
 ∇𝑃

where
1

∆𝑟𝑠
=

1

𝔇𝑟𝑠
𝑒 +

1

𝐷𝐾𝑟
𝑒 𝐷𝐾𝑠

𝑒 𝑦𝑡/𝐷𝐾𝑡
𝑒

𝑡

As previously, in order to be able to apply the Dusty gas model to Fluent, we have

to put it in the Fickian form. Therefore we will follow the same approach as Hite &

Jackson (1977). Their idea is to get rid of the pressure variable by saying that the pressure

variation within the particle is negligible in regards to the overall operating pressure P0.

Hence, the pressure is set as constant, and the pressure gradient term becomes negligible

when compared to the mass fraction term in equation IV.2-21. Hence we obtain:

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

∆𝑟𝑠
𝑠≠𝑟 = −

𝑃0

𝑅𝑇
∇𝑦𝑟

Using eq. III.2-3 to eliminate the mass fraction gradient in eq. IV.3-5 leads to

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

∆𝑟𝑠
𝑠≠𝑟

𝑅𝑇

𝑃0
=

𝑁𝑟−𝑦𝑠 𝑁𝑠𝑠
𝑃0
𝑅𝑇

𝐷𝑟
𝑒

i.e.

1

𝐷𝑟
𝑒 =

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

∆𝑟𝑠
𝑠≠𝑟

𝑁𝑟−𝑦𝑠 𝑁𝑠𝑠

eq. IV.3-1

eq. IV.3-2

eq. IV.3-3

eq. IV.3-4

eq. IV.3-5

eq. IV.3-6

eq. IV.3-7

63

Here the constant fluxes ratio approximation can be used by putting eq. IV.3-7

under the following form:

1

𝐷𝑟
𝑒 =

𝑦𝑠−𝑦𝑟

𝑁𝑠
𝑁𝑟

∆𝑟𝑠
𝑠≠𝑟

1−𝑦𝑠 𝑁𝑠
𝑁𝑟

 𝑠

As shown in chapter IV.2-c, the Ns ⁄ Nr term can be approximated as a constant.

4) Limitations of such models

As we have seen so far, all the diffusion models we used assumed that the

pressure variation in the pellet is negligible, and as a result that the pressure in the

particles is constant. Graham‟s relation says that for an isobaric diffusion

 𝑁𝑟 𝑀𝑟𝑟 = 0
or

 div 𝑁𝑟 𝑀𝑟𝑟 = 0

Besides a material balance leads to

div 𝑁𝑟 = 𝜐𝑟𝑟

 Thus

 𝜐𝑟 𝑀𝑟𝑟 = 0

Hence, according to Hite and Jackson (1977), a pressure gradient will appear if

there is a change in the 𝜐𝑟 𝑀𝑟 quantity for a given reaction. They thus highlighted that a

change in moles for a given reaction is not a valid parameter to tell if pressure varies or

not within a particle.

Runstedtler (2006) argues that the Graham‟s relation stops being valid for

diffusion in the bulk regime, though no pressure drop appears. To show that he studied

gases passing through a cylinder as shown on the following figure:

Figure 56 – Multicomponent diffusion in a cylinder (Runstedtler, 2006)

eq. IV.3-7

eq. IV.4-1

eq. IV.4-1

eq. IV.4-1

eq. IV.4-1

64

 The cylinder is composed of two sections which concentrations are different and

set as follows:

Left side Right side

xH2 = 0

xN2 = 0.5

xCO2 = 0.5

xH2 = 0.5

xN2 = 0.5

xCO2 = 0

Table 2 - Species concentrations for Rundstedtler's experiment

 The experiment starts at t = 0, when the barrier is removed. And as one could

expect carbon dioxide will diffuse towards the right side and dihydrogen in the other

direction. To simulate the bulk or the Knudsen regime, the tube‟s diameter varies from

10
-7

 to 10
-4

 m.

 The following figure (Figure 57) shows the results for the Knudsen regime

(10
-7

 m) and for the bulk regime (10
-4

 m). Intermediate tube diameters are also studied

by Runstedtler, and are presented in the referred paper.

Figure 57 – Concentrations and pressure variation through time(Runstedtler, 2006)

Knudsen regime (10-7m): (a) Left side; (b) Right side

Bulk regime (10-4m): (c) Left side; (d) Right side

One can notice that in the bulk regime, hardly any pressure variation occurs,

though diffusion does take place. This means that diffusion taking place in the bulk

regime is equimolar, and this contradicts Graham‟s relation (eq. IV.4-1). Hence,

Runstedtler shows that Graham‟s relation stops being valid for the bulk diffusion limit.

a b

c d

65

However, one can also notice that for the Knudsen regime, a pressure gradiant does

occur, as expected by Graham‟s relation.

The question raised here is whether or not a pressure gradient occurs in the

particle due to reaction and if that gradient is or not negligible. It is indeed tempting to

think that new species created through a reaction are likely to be of different size and

number than the reactants they are issued from, and as a result form a pressure gradient.

That is why another model has been studied, namely the binary friction model.

This model does not assume that pressure variations are negligible. This model is

presented in the next chapter.

5) The Binary friction model (BFM)

The binary diffusion model for gases relies on the following equation:

∇𝑃𝑟 = 𝑅𝑇 𝜙𝑟𝑠
𝑃𝑟𝑁𝑠−𝑃𝑠𝑁𝑟

𝑃 𝔇𝑟𝑠
−𝑠

𝑅𝑇𝑁𝑟

𝐷𝐾𝑟 +
𝐵0
𝐾𝑟

Notice that the first term on the right side of equation IV.5-1 is really the Stefan-Maxwell

diffusion term multiplied by the 𝜙𝑖𝑗 coefficient. A good agreement with experiments was

found for 𝜙𝑖𝑗 = 1 (Kerkhof & Geboers, 2005).

 The second term on the right side of equation IV.5-1 accounts for wall frictions.

The Darcy permeability B0 is given by:

𝐵0 =
𝑟𝑝

2

8

and

𝐾𝑟 =
𝜇𝑟

0

 𝑃𝑠휀𝑟𝑠𝑠

Finally, the Wilke parameter ij is given by (Kerkhof, Geboers, & Ptasinski, 2001):

휀𝑟𝑠 =
 1+ 𝜇𝑟

0⁄𝜇𝑠
0 + 𝑀𝑟⁄𝑀𝑠

1/4

2

 8 1+𝑀𝑟⁄𝑀𝑠

 Besides for straight pores

𝑁𝑟 = −
𝐷𝑟

𝑅𝑇
∇𝑃𝑟

eq. IV.5-1

eq. IV.5-2

eq. IV.5-3

eq. IV.5-4

eq. IV.5-5

66

So by eliminating the partial pressure gradient term between equations IV.5-1 and

IV.5-5, we obtain

1

𝐷𝑟
=

1

𝐷𝐾𝑟 +
𝐵0
𝐾𝑟

− 𝜙𝑟𝑠
𝑃𝑟𝑁𝑠−𝑃𝑠𝑁𝑟

𝑃𝑁𝑟 𝔇𝑟𝑠 𝑠

These equations (eq. IV.5-1 through eq. IV.5-6) are valid for straight pores.

Similarly, and to account for the pore tortuosity, effective diffusion coefficients are

considered, and analogous equations can be written:

𝑁𝑟 = −
𝐷𝑟

𝑒

𝑅𝑇
∇𝑃𝑟

1

𝐷𝑟
𝑒 =

1

𝐷𝐾𝑟
𝑒

+
휀

𝜏

𝐵0
𝐾𝑟

− 𝜙𝑟𝑠
𝑃𝑟𝑁𝑠−𝑃𝑠𝑁𝑟

𝑃𝑁𝑟 𝔇𝑟𝑠
𝑒 𝑠

Note now that all equations are written for the partial pressures of the species, and

no longer for their mass fraction. Hence, the UDS in fluent will now be changed to partial

pressure. Details on the changes that this implies and how to implement this model in a

UDF in Fluent are given in chapter V.2.

eq. IV.5-6

eq. IV.5-7

eq. IV.5-8

67

V) Diffusion model – Implementation into Fluent

As seen in the previous chapter, diffusion if computed with accuracy requires

several parameters, such as temperature and species concentrations. This parameters vary

throughout the geometry, and therefore the diffusion coefficient also vary. To a first

approximation, one can take average values and calculate the mean diffusion coefficient.

This has been done by our group and all the results presented in chapter III are obtained

with these mean diffusion coefficients values. The details of the computations are given

in appendix C.

In this section of the research, we wanted to increase the accuracy by computing

the values of the diffusion coefficient at each point of the geometry. Therefore, a code

needed to be created in Fluent that would for each iteration and for each cell compute a

new value of the diffusion coefficient.

This has been done for two diffusion models: the dusty gas model (ch. IV.3) and

for the binary friction model (ch. IV.5).

1) The dusty gas model

As seen before, here the species mass fractions are stored in some UDS. And

since all mass fractions sum to one, the last species (i.e. water) mass fraction can easily

be computed from the others, and therefore was not modeled directly in Fluent. Hence,

we therefore used four user defined scalars assigned as follows:

UDS 0 𝑦𝐶𝐻4

UDS 1 𝑦𝐻2

UDS 2 𝑦𝐶𝑂

UDS 3 𝑦𝐶𝑂2

The diffusion coefficient is given by equation III.3-7, which has been rewritten

here for practicle reasons:

1

𝐷𝑟
𝑒 =

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠

∆𝑟𝑠
𝑠≠𝑟

𝑁𝑟−𝑦𝑠 𝑁𝑠𝑠

The fluxes Nr and Ns can be accessed through the formula:

𝑁𝑟 = −
𝜌

𝑀𝑟
𝐷𝑟

𝑒∇𝑌𝑟

eq. IV.3-7

eq. V.1-1

68

Here we can notice two things. First that in order to compute the fluxes, a value of

the diffusion coefficient is needed. Yet, that is the value we want to compute. Therefore,

an initial value is given. A new value is then obtained using that initial value using

equation III.3-7. Therefore, we must iterate on the diffusion coefficient in order to get an

accurate value.

Note that for the initial value, the values found from the Stefan Maxwell equation

at constant fluxes ratio was used. This ensures that the initial values are not too far from

the converged values, and thus converge more quickly.

Second, computing the molar fluxes requires the species mass fraction gradient.

One can access this variable in Fluent. However, what Fluent really does, is giving the

UDS gradient for each of the three space component. Therefore, the diffusion coefficient

will be anisotropic, that is to say, the molar flux will take three different values, one for

each space direction. We will therefore be left with Nrx, Nry and Nrz, and compute Drx, Dry

and Drz,

The last point we need to be aware is that at each iteration, Fluent needs to know

the value of the diffusion coefficient from the last iteration in order to compute the new

molar flux, and therefore store them. There are two ways to store scalars in fluent. The

first one is the user defined scalar (UDS). This is usually used if one wants to apply some

diffusion to the scalar. The second is the user defined memory (UDM). On the contrary to

UDSs, UDMs do not diffuse. Therefore, the diffusion coefficients are stored in 15 UDMs

(three for each species, including water).

In order to simplify the writing of the code and make it more easily readable,

some operation have been decomposed and the following three intermediate sums have

been added.

𝑠𝑢𝑚1𝑖 =

𝑦𝑠𝑁𝑟−𝑦𝑟𝑁𝑠
∆𝑟𝑠

𝑠≠𝑟

𝑁𝑟−𝑦𝑠 𝑁𝑠𝑠

𝑠𝑢𝑚2 = 𝑁𝑠𝑠

𝑠𝑢𝑚3 =
𝑦𝑡

𝐷𝐾𝑡
𝑒𝑡

 The following figure describes the overall scheme of the program (Figure 58).

The whole program can be found in appendix D. However, I couldn‟t get this program to

work correctly, and a few plausible reasons for this will be detailed in chapter V.3.

eq. V.1-2

eq. V.1-3

eq. V.1-4

69

Figure 58 – Scheme of the dusty gas model implemented into Fluent

 Note that all the main calculations of this program are done in a

DEFINE_EXECUTE_AT_END UDF. This means that the change in the value of the diffusion

coefficients is the last thing Fluent does for a given iteration. Therefore, the new value of

the diffusion coefficient will only be used in the following iteration. This does not change

the values of the final converged case, but has been done for practical reasons. Indeed,

when Fluent loads the case and data files, it somehow tries to run diffusion before

knowing the values of the UDMs. It therefore tries to run the program showed in Figure

58 without being able to access the UDMs values and therefore crashes. By forcing

Fluent to run the program at the end, UDMs are accessed before that program runs.

2) The Binary friction model (BFM)

The binary friction model differs from the dusty gas model in that that the UDS

now stand for the partial pressure, and since the total pressure in the particle can be

• Use 𝐷𝑟
𝑒 to compute diffusion of UDSr

• Iteration n+1

Getting Yr and Yr

Getting old 𝐷𝑟
𝑒

Intermediate computations:

• r (eq. V.1-1)

• 𝐷𝐾𝑠
𝑒 (eq. IV.2-7)

• sum2 (eq. V.1-3)

• sum3 (eq. V.1-4)

• 𝔇𝑟𝑠
𝑒 (eq. IV.2-2)

• ∆𝑟𝑠 (eq. IV.3-4)

• sum1i (eq. V.1-2)

Computing new 𝐷𝑟
𝑒

Store new value of 𝐷𝑟
𝑒

Iteration n+1

Iteration n

70

known only by summing all the partial pressure, there is no simple relation that enable

Fluent to compute the last species partial pressure from the others. Hence, the BFM

model now requires working with five UDSs:

UDS 0 𝑃𝐶𝐻4

UDS 1 𝑃𝐻2

UDS 2 𝑃𝐶𝑂

UDS 3 𝑃𝐶𝑂2

UDS 4 𝑃𝐻2𝑂

Note that since the definition of the UDSs has changed, the other UDFs have been

adapted, and so some slight differences can be noticed in the program shown in

appendix E.

1

𝐷𝑟
𝑒 =

1

𝐷𝐾𝑟
𝑒

+
휀

𝜏

𝐵0
𝐾𝑟

− 𝜙𝑟𝑠
𝑃𝑟𝑁𝑠−𝑃𝑠𝑁𝑟

𝑃𝑁𝑟 𝔇𝑟𝑠
𝑒 𝑠

And the molar flux Nr is now given by

𝑁𝑟 = −
𝐷𝑟

𝑒

𝑅𝑇
∇𝑃𝑟

where value of 𝜙𝑟𝑠 used is 1.

 Here we can once more notice that the value of the UDS gradient is needed, and

therefore an anisotropic diffusion is once more considered here (cf. chapter. V.1).

Moreover, as for the previous diffusion model, an earlier value of the diffusion

coefficient is needed in order to compute the molar fluxes. Therefore, these diffusion

coefficient values are stored in 15 UDMs, and initialized with the values obtained from

the Stefan Maxwell model.

 One intermediate sum is introduced here as follows:

𝑠𝑢𝑚𝑟 = 𝜙𝑟𝑠
𝑃𝑟𝑁𝑠−𝑃𝑠𝑁𝑟

𝑃𝑁𝑟 𝔇𝑟𝑠
𝑒 𝑠

Note that since the molar fluxes are vectors (i.e. have three components), sumr will also

have three components.

Figure 59 shows the scheme of the program. Note that this program is very

similar to the dusty gas one in the steps followed, but of course equations are different.

eq. V..2-1

eq. IV.5-8

eq. IV.5-7

71

Figure 59 – Scheme of the binary diffusion model implemented into Fluent

Like with the previous program, this one does run but fail to converge. Hence

after a couple of iterations, the case eventually starts to diverge and crash.

3) Program issues

The two programs presented here both fail to converge. Although the precise

reason for this is unknown, here are a few clues.

First, it turned out that the implementation of the C code in fluent is not perfect,

and from time to time, random problem have shown up. For instance, one can notice that,

in the diffusion program neither for loops nor matrixes have been used. This is because it

clearly appeared that Fluent has sometimes issues when trying to access certain

components of a matrix or the pointer of the for loop starts jumping some values with no

reason. This eventually made the program crash.

• Use 𝐷𝑟
𝑒 to compute diffusion of UDSr

• Iteration n+1

Getting Pr and Pr

Getting old 𝐷𝑟
𝑒

Intermediate computations:

• 𝐷𝐾𝑠
𝑒 (eq. IV.2-7)

• r (eq. IV.5-5)

• r (eq. IV.5-3)

• 𝔇𝑟𝑠
𝑒 (eq. IV.2-2)

• sumr (eq. V.2-1)

Computing new 𝐷𝑟
𝑒

Store new value of 𝐷𝑟
𝑒

Iteration n+1

Iteration n

72

The second issue was the zero values. Indeed one wants to take great care in

preventing any forbidden operation such as dividing by zero. This is especially true here

for the UDS gradients. Indeed it is very likely that at the symmetry planes, one gradient

goes to zero. To prevent this, a verification step has been added to the program that tells

Fluent to not change the value of the diffusion coefficient if it sees a zero value in the

UDS gradients.

The last issue, which is likely to be the one remaining and causing the programs

to crash, is the convergence issue. Indeed we added one more variable that needed to

converge, and this can have made the program unstable. A few tricks have therefore been

used to ease the convergence.

Before seeing the first one, it is worth noticing that with both models used, the

diffusion coefficient is able to become negative. Physically, this means that species are

able to diffuse against their own gradients. However, this is a numerical issue since this

will entail high changes in the diffusion coefficient. Indeed these latest can jump from

one positive value to one negative value, and creates oscillations. These oscillations will

likely diffuse through the system, creating some instability. Therefore in the program all

diffusion coefficients have been restricted to only positive values. This is a rather drastic

solution, which is likely to lower the accuracy of the solution. However, the idea of it is

to obtain a converged case and eventually allow the diffusion coefficient to become

negative. Another possible solution to take care of that issue is to use artificial viscosity.

This is a very common way in numerical methods to smooth out oscillations. However,

this requires the use of the UDM gradients, which are not available in Fluent.

Another trick that has proven useful is to add a under-relaxation factor (udf) in

order to reduce the change in the UDM values. We thus write:

UMDstored
i+1 : = UMDstored

i + UMDcomputed
i+1 − UMDstored

i . udf

Hence the change in value of the UDM will be slightly decreased. A typical value

for the under-relaxation factor is 0.1 to 1.

 This helps having a more progressive change in the values, and thus increases the

chances of convergence. However, it does also slow down the convergence process, and

therefore one does not want to give to that under-relaxation factor a too small value.

eq. V.3-1

73

VI) Conclusion

This study mainly focused on two aspects of the CFD approach of small N packed

bed. The first one was to understand more deeply the mechanisms of diffusion and

reaction within the particles and the effect of the flow on these mechanisms. The

common approach to model this type of reactor is to assume that temperature is either

symmetrical or uniform in the particle. Results have shown that this is clearly not the

case, and asymmetries could very clearly be seen in the near wall region.

Moreover, some species depletion could also be seen away from the near wall

region. It appeared these zones were all characterized also by a low velocity field. An

adiabatic case has been run in order to make sure that wall heat was not responsible for it

and since that phenomenon was still observable, we concluded that species depletion was

caused by low velocities. Furthermore, if that low velocity zone happens to be in a

confined area, the depletion will be even more noticeable. This appeared when we tried to

understand why the methane minimum on the surface of the test particle was not located

in the near wall region. And it appeared that this minimum was located in a region where

flow is squeezed between two particles, and velocities are very low.

We also looked at what was taking place within the particle. And as one could

suspect, all the reaction in taking place in the section of the particle near the interface.

This is in perfect agreement with the fact that methane steam reforming is a fast reaction,

and therefore it is diffusion limited. Therefore, the cores of the particles really act as if

they were a closed system, close to the equilibrium state. That is why even if a

temperature gradient could be seen within the particles in the near wall region, it the

impact on the species concentration was very little.

Finally, we decided to work on a way to improve the diffusion model used.

Initially a Stefan-Maxwell based model was used. For this model, we assumed the ratios

of the molar fluxes inside the particle to be constant, and therefore the same diffusion

coefficient was applied in the entire solid zone. To improve that, the dusty gas model has

been considered, and molar fluxes were now on computed. However, this model does

assume that the pressure variation within the particles is negligible, a point that has been

argued several times in the literature. Therefore, the binary friction model proposed by

Kerkhof et al. has been used. This model allows pressure variations. Unfortunately, no

results have been obtained from these two models as for now, since some convergence

issues appeared.

74

VII) Recommendations

1) Coke formation

One of the biggest challenges in catalytic reactions is the coke formation. Indeed

as we saw previously, layers of carbon often deposit on the surface of the catalyst. This

makes it harder for the reactant to access the catalyst, and therefore the rate of reaction

decreases. If the reaction is suppose to remove heat (i.e. in the case of an endothermic

reaction), temperature will increase. And as we have seen, the lifetime of a tube is cut in

half if temperature increases of 20˚C.

Moreover, as we saw, low velocities region creates some species concentration

variations, and thus coke formation in these areas will happen at a different rate than

elsewhere. Hence the size of the coke layer can vary over a same particle. This creates

some mechanical stress. And if we had stress caused by the temperature variations, the

particle will eventually break, creating dust. This dust will then eventually block some

paths and flow will become even less symmetrical.

Further work should therefore add the coke formation reaction as well as the

effect of coke on the other reaction rates.

2) Low N tubes modeling

Our results have clearly shown that for low N tube, a great temperature change

appears in the near wall region, and some slight methane depletion appears in the reactor.

This is not well described by current fixed-bed reactor models (cf chapter I.3).

 In the future, improvements over the actual model need to be done. Actual models

have two sets of equations, one for the fluid and one for the solid. And these equations

are solved one after the other. It does therefore not take into account the interdependence

of the flow and diffusion within the particles. Therefore, a possible way improve the

results could be to solve the solid and the fluid equations simultaneously.

3) Diffusion model

Two diffusion models have been studied here, namely the dusty gas model and

the binary friction model. Unfortunately, I could not get both of these programs to work

properly with Fluent. Future work should therefore expand this study.

Once a model works properly, it would be interesting to rerun the cases presented

here. One will then be able to compare the results. If the results obtained are not

75

significantly different, one could then say that the assumptions made to obtain the results

presented in chapter III, are good assumptions, and therefore maybe worth applying in

order to reduce the computation time as well as to increase the ease of convergence.

It could also be interesting to run a reaction for which the limiting step is reaction

and not diffusion. This is the case of the propane dehydrogenation reaction that has also

been studied by our group (Taskin, 2007).

76

Nomenclature

B0 Darcy permeability (m
2
)

dp Pore diameter (m)

C Total concentration of all the species (mol.m
-3

)

Cr Species r concentration (mol.m
-3

)

Dr

Overall diffusivity of species r (m
2
.s

-1
)

Dr
e

Effective overall diffusivity of species r (m
2
.s

-1
)

Drs

Binary diffusivity of species r (m
2
.s

-1
)

Drs
e

Effective binary diffusivity of species r (m
2
.s

-1
)

DKr

Knudsen diffusivity of species r (m
2
.s

-1
)

DKr
e

Effective Knudsen diffusivity of species r (m
2
.s

-1
)

i Current density (A.m
-2

)

k Turbulent kinetic energy (m
2
.s

-2
)

l Mean free path (m)

M Mean molecular weight (g.mol
-1

)

Mr Molecular weight of species r (g.mol
-1

)

N Tube to particle diameter ratio (-)

Nc Correction molar flux (mol.m
-2

.s
-1

)

Nr Molar flux of species r (mol.m
-2

.s
-1

)

P Pressure (Pa)

P0 Operating pressure (Pa)

R Gas constant (J.K
−1

.mol
−1

)

r Reaction rate (mol.m
-3

.s
-1

)

rr Reaction rate of species r (kg.m
-3

.s
-1

)

 Mean pore size (m
-3

)

T Temperature (K)

u Velocity (m.s
-1

)

ux Velocity in the x direction (m.s
-1

)

uy Velocity in the y direction (m.s
-1

)

uz Velocity in the z direction (m.s
-1

)

ys r mass fraction (-)

 Turbulent dissipation rate (m
2
.s

-3
)

s Porosity of catalyst particle (mvoid
3
/mcat

3
)

 Dimensionless coordinate

 Specific dissipation rate (s
-1

)

 Viscosity (Pa.s)

 Pure viscosity (Pa.s)

 Effectiveness factor

 Stoechiometric coefficient

 Effectivness factor (-)

 Tortuosity factor (-)

 Average value

http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Mole_(unit)

77

Bibliography

Amundson, N. R. (1970). Mathematical Models of Fixed Bed Reactors. Berichte der

Bunsen-Gesellschaft Vol. 74 (2) , 90-98.

Dixon, A. G. (2008). Private communication.

Dixon, A. G., Nijemeisland, M., & Stitt, E. H. (2006). Packed Tubular Reactor Modeling

and Catalyst Design using Computational Fluid Dynamics. Advances in Chemical

Engineering, vol. 31 , 307-389.

Dixon, A. G., Taskin, M. E., Stitt, E. H., & Nijemeisland, M. (2007). 3D CFD

simulations of steam reforming with resolved intraparticle reaction and gradients.

Chemical Engineering Science 62 , pp. 4963 – 4966.

Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of

binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry Vol. 58 ,

18-27.

Guardo, A., Coussirat, M., Recasens, F., Larrayoz, M., & Escaler, X. (2006). CFD study

on particle-to-fluid heat transfer in fixed bed reactors: Convective heat transfer at low and

high pressure . Chemical Engineering Science Vol. 61 , 4341-4353.

Gunjal, P. R., Ranade, V. V., & Chaudhari, R. V. (2005, February). Computational Study

of a Single-Phase Flow in Packed Beds of Spheres. AIChE Journal, Vol. 51, No. 2 , pp.

365-378.

Hite, R., & Jackson, R. (1977). Pressure gradients in porous catalyst pellets in the

intermediate diffusion regime. Chemical Engineering Science Vol. 32 , 703-709.

Hou, K., & Hughes, R. (2001). The kinetics of methane steam reforming ov a Ni/a-Al2O

catalyst. Chemical Engineering Journal 82 , 311-328.

Hydrogen Today and Tomorrow. (n.d.). Retrieved May 2009, from IEA Greenhouse Gas

R&D Programme: http://www.ieagreen.org.uk/hydrogen.pdf

Kerkhof, P. J., & Geboers, M. A. (2005). Analysis and ectension of the theory of

multicomponent fluid diffusion. Chemical Engineering Science 60 , 3129-3167.

Kerkhof, P. J., Geboers, M. A., & Ptasinski, K. J. (2001). On the isothermal binary mass

transport in a single pore. Chemical Engineering Journal 83 , 107-121.

78

Martinez, M. J., Shimpalee, S., & Van Zee, J. (2008). Comparing predictions of PEM

fuel cell behavior using Maxwell-Stefan and CFD approximation equations. Computers

and Chemical Engineering , 2958-2965.

Mason, E., & Malinauskas, A. (1983). Gas transport in porous media : the dusty-gas

model. Amesterdam, New York: Elsevier.

Rosen, M. A., & Scott, D. S. (1998). Comparative efficiency assessments for a range of

hydrogen production processes. Int. J. Hydrogen Energy, Vol. 23, No. 8 , 653-659.

Runstedtler, A. (2006). On the modified Stefan–Maxwell equation for isothermal

multicomponent gaseous diffusion. Chemical Engineering Science 61 , 5021-5029.

Schwedock, M. J., Windes, L. C., & Ray, W. H. (1989). Steady state and dynamic

modelling of a packed bed reactor for the partial oxidation of methanol to formaldehyde

II. Eperimental results compared with model predictions. Chemical Engineering

Communications Vol. 78 Issue 1 , 45-71.

Taskin, M. E. (2007). CFD simulation of transport and reaction in cylindrical catalys

particles. Worcester, MA: Worcester Polytechnic Intsitute.

Xu, J., & Froment, G. F. (1989). Methane Steam Reforming, Methanation and Water-Gas

Shift: I. Intrinsic Kinetics. AIChE Journal Vol.35, No. 1 , 88-96.

Xu, J., & Froment, G. F. (1989). Methane Steam Reforming: II. Diffusional Limitations

and Reactor Simulation. AIChE Journal Vol.35, No. 1 , 97-103.

79

Appendices A – Boundary layers

The software used to obtain our mesh is GAMBIT. In this appendix, we will

detail the boundary layers parameters for each particle and for the reactor wall. But

before this, we must agree on the appellation we will give to each particle. The following

figure (Figure 60) shows the label we opted for. Note that the same labeling has been

kept for the full, 1 hole and 4 holes geometries.

Figure 60 - Particles numbering

When one wants to set boundary layers, one has to consider three parameters:

- The height of the first layer (a)

- The growth factor, i.e. the ratio of the height of the second layer over

the height of the first layer (b/a)

- The number of layers

These set of three parameters then give access to the total height of the boundary

layers, called depth in GAMBIT (D).

 Not that the values varies from one particle to the other. The reason is that these

numbers have been adjusted in order to get the more boundary layers as possible.

However, adding layers and layers sometimes ends getting an overall poor mesh quality.

80

One can also notice that some boundary layers are missing. The reason is that some

particles are too close to each other, and in some narrows zone, adding boundary layers

makes it impossible for Gambit to mesh.

 The inwards boundary layers refer to the boundary layers inside the solid particle

and the outwards ones to the boundary layers attached to the particles but in the fluid

zone.

1) Full cylinder

Particles ID a (inch) b/a (inch) Number of layers Depth (inch)

Inwards

1 0.001 1.2 3 0.00364

2 0.001 1.2 3 0.00364

3 0.001 1.2 3 0.00364

4 0.001 1.2 3 0.00364

5 0.001 1.2 3 0.00364

6 0.001 1.0 3 0.00364

7 0.001 1.0 3 0.00364

8 0.001 1.2 2 0.0022

9 0.001 1.2 3 0.00364

10 0.001 1.0 3 0.00364

11 0.001 1.0 3 0.00364

12 0.001 1.0 3 0.00364

Outwards

1 0.003 1.2 4 0.016104

2 0.003 1.2 4 0.016104

3 0.003 1.2 4 0.016104

4 0.003 1.2 4 0.016104

5 0.003 1.2 4 0.016104

6 0.003 1.2 4 0.016104

7 0.003 1.2 4 0.016104

8 0.003 1.2 4 0.016104

9 0.003 1.2 4 0.016104

10 0.003 1.2 4 0.016104

11 0.003 1.2 4 0.016104

12 0.003 1.2 4 0.016104

Wall 0.001 1.2 4 0.005368

81

2) 1 hole cylinder

Particles ID a (inch) b/a (inch) Number of layers Depth (inch)

Inwards

1 - - - -

2 0.003 1.2 4 0.016104

3 0.003 1.2 4 0.016104

4 0.003 1.2 5 0.0223248

5 0.003 1.2 5 0.0223248

6 0.003 1.2 4 0.016104

7 0.003 1.2 4 0.016104

 8* 0.003 1.2 4 0.016104

9 0.003 - 1 0.003

10 - - - -

11 - - - -

12 - - - -

Outwards

1 0.001 1.0 2 0.002

2 0.001 - 1 0.001

3 0.001 1.0 2 0.002

4 0.001 1.2 3 0.00364

5 0.001 1.2 3 0.00364

6 0.001 1.2 2 0.0022

7 0.001 1.2 2 0.0022

8 0.001 - 1 0.001

9 0.001 1.2 4 0.005368

10 - - - -

11 - - - -

12 0.001 1.0 2 0.002

Wall 0.001 1.1 3 0.00331

* Usually boundary layers are only attached on particles’ “natural faces”, that is to say

they are not attached on faces created by the particle and the periodic or symmetry

planes. However, in that particular case, some convergence issue appeared. Therefore a

mesh refinement was required and the boundary layer was extended to the intersection

between the symmetry plane and particle 8.

82

3) 4 holes cylinder

Particles ID a (inch) b/a (inch) Number of layers Depth (inch)

Inwards

1 - - - -

2 0.005 1.0 6 0.03

3 - - - -

4 - - - -

5 - - - -

6 - - - -

7 - - - -

8 - - - -

9 - - - -

10 - - - -

11 - - - -

12 - - - -

Outwards

1 0.001 1.0 2 0.002

2 0.001 1.0 3 0.003

3 0.001 1.0 2 0.002

4 0.001 1.0 2 0.002

5 0.001 1.0 2 0.002

6 0.001 - 1 0.001

7 0.001 - 1 0.001

8 0.001 - 1 0.001

9 0.001 1.0 3 0.003

10 - - - -

11 - - - -

12 0.001 1.0 2 0.002

Wall 0.001 1.2 4 0.005368

83

Appendices B – Running procedure

 As we will see later, as set of two runs is needed to obtain the final converge case.

However, most of the parameters remain the same from one run to the other. These

parameters are the following:

Operating pressure: 2,159,000 Pa

Turbulent model: k- STT model

Species diffusion: see appendix B

And for the particles:

Density: 1,947 kg.m
-3

Specific heat Cp: 1,000 J.kg
-
1.K

-1

Thermal conductivity: 1.0 kg.m
-3

The inlet conditions are

Species Inlet mass fraction Partial pressure (Pa)

CH4 0.1966 424,459.4

H2 0.0005 1,079.5

CO 0.0007 1,511.3

CO2 0.1753 378,472.7

H2O 0.6269 1,353,477

Table 3 - Inlet conditions for UDSs

Notice that the inlet conditions for water is only used with the binary friction

model (c.f. chapter V.2). Indeed with that model, partial pressures are required, and since

the total pressure is computed as the sum of the partial pressure, there is no easy way to

access the fifth partial pressure knowing the four others. Nevertheless, for the other

diffusion models, the simple relation 𝑌𝑖 = 1 enables us to very easily deduce the fifth

mass fraction from the four others, and hence water is not implemented in the model.

Notice also that in order to minimize the error due to the numerical methods used, the

species that is not implemented in Fluent has to be the one which has the largest mass

fraction; hence water has been chosen as the fifth species.

 As previously stated, we typically follow two steps. The First one is a flow only

run, where the inlet and outlet are linked together. In other words, what flows out at the

outlet is what flows in at the inlet. The second case it the real case, where we solve for

both flow and reaction (including energy). This case is no longer periodic, and the inlet

flow is taken equal to the inlet of the first case. The idea behind such a process is not to

have a homogenous velocity at the inlet, which would be unrealistic.

84

1
st
 case – Periodic flow

 The goal of this first run is to get a heterogeneous velocity profile for the inlet.

Therefore we impose a periodic flow with a fix overall mass flowrate of0.02677 kg.s
-1

.

The geometry is made periodic by linking the bottom and top faces. For this run

only the flow and turbulence equations are solved. The reaction and energy equations are

not solve since here we are only interested in taking out the inlet velocity profile, and this

profile does not depend on the temperature since all the parameters have been taken

independent of temperature.

Once the case is converged, the inlet profile is exported and used in the second

case.

2
nd

 case – Non periodic run

For this second case, the same mesh is used as in the first case, but the flow is not

made periodic. The following conditions are used:

Inlet velocities: from profile file of the 1
st
 case

Species sinks & sources: defined by UDF (c.f. appendices D & E)

Heat sinks: defined by UDF (c.f. appendices D & E)

Heat flux: 113,300 W.m
-2

To ease convergence, the first few thousand iterations are done on flow and

convergence only. Then reaction and heat transfer are added till the whole case has

converged.

85

Appendices C – Applying the Maxwell-Stefan based model

 The following values were taken in order to apply the Maxwell-Stefan based

model describes in ch. IV.2.b.

Turtuosity: = 3.54 (Xu & Froment, 1989, p. 99)

Void fraction: s = 0.44 (Hou & Hughes, 2001)

Mean pore size: rp = 10
3
 Å = 10

-5
 cm (Hou & Hughes, 2001)

Pressure: P = 21.3 atm

Temperature: T = 834.15 K

 The moles fractions taken are the inlet moles fractions:

yCH4 = 0.2392 yCO2 = 0.0776

yH2 = 0.0005 yH2O = 0.6777

yCO = 0.0005

 Finally, the following parameters for the binary diffusivity are used:

Species 𝒗 𝒓 Mr (g.mol
-1

)

CH4 24.42 16

H2 7.07 2

CO 18.9 28

CO2 26.9 44

H2O 12.7 18

Table 4 - Parameters for the binary diffusivity

In order to use the fluxes approximation (chapter IV.2.c), we need to identify the

dominant reaction. For the inlet conditions, the following reaction is the dominant

reaction:

CH4 + 2 H2O = CO2 + 4 H2

 Therefore

𝑁𝐻2

𝑁𝐶𝐻4

= −4;
𝑁𝐶𝑂

𝑁𝐶𝐻4

= 0;
𝑁𝐶𝑂2

𝑁𝐶𝐻4

= −1;
𝑁𝐻2𝑂

𝑁𝐶𝐻4

= 2; …

 After few calculations we obtain the following results:

Species 𝑫𝒓,𝒎 (cm
2
.s

-1
) 𝑫𝒓 (cm

2
.s

-1
) 𝑫𝒓

𝒆 (m
2
.s

-1
)

CH4 0.123 0.104 1.3.10
-6

H2 0.225 0.202 2.5.10
-6

CO 0.072 0.063 8.0.10
-7

CO2 0.049 0.044 5.0.10
-7

H2O 0.209 0.158 2.0.10
-6

86

Appendices D – Dusty gas model code

#include "udf.h"

#include "mem.h"

/* Gas constant in kJ/mol.K or m3.kPa/mol.K */

#define rgas 0.0083144

/* Solid density in kg/m3 */

#define rhos 1947.0

/* Adsorption enthalpies and activation energies in kJ/mol */

#define delhco -140.0

#define delhh -93.4

#define delhh2o 15.9

#define E1 209.2

#define E2 15.4

#define E3 109.4

/* Pre-exponential factors for ki (kmol/kg(cat.).s) */

#define A1 5.922e8

#define A2 6.028e-4

#define A3 1.093e3

/* Pre-exponential factors for Ki */

#define AKco 5.127e-13

#define AKh 5.68e-10

#define AKh2o 9.251

/* Heats of reaction in J/kgmol */

#define delHr1 -206100000.0

#define delHr2 41150000.0

#define delHr3 -165000000.0

/* Molecular weights in g.mol-1 */

#define Mco 28.01055

#define Mh2 2.01594

#define Mh2o 18.01534

#define Mch4 16.04303

#define Mco2 44.00995

#define epsilon 0.44

#define tau 3.54

#define alpha 1.

#define urf 0.01

#define diff_limit_upper 1.e-3

#define diff_limit_lower 1.e-15

#define flux_limit_upper 1e-4

#define flux_limit_lower -1e-4

FILE *fout;

/***/

/* DIFFUSION */

/***/

DEFINE_EXECUTE_AT_END(UDMI_computation)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real Dk_i_0, Dk_i_1, Dk_i_2, Dk_i_3, Dk_i_4;

 real sum1_0x, sum1_1x, sum1_2x, sum1_3x, sum1_4x;

 real sum1_0y, sum1_1y, sum1_2y, sum1_3y, sum1_4y;

 real sum1_0z, sum1_1z, sum1_2z, sum1_3z, sum1_4z;

 real sum2_x, sum2_y, sum2_z;

 real sum3, diff;

87

 real sum_v_0, sum_v_1, sum_v_2, sum_v_3, sum_v_4;

 real Delta_Yi_0x, Delta_Yi_1x, Delta_Yi_2x, Delta_Yi_3x, Delta_Yi_4x;

 real Delta_Yi_0y, Delta_Yi_1y, Delta_Yi_2y, Delta_Yi_3y, Delta_Yi_4y;

 real Delta_Yi_0z, Delta_Yi_1z, Delta_Yi_2z, Delta_Yi_3z, Delta_Yi_4z;

 real Ni_0x, Ni_1x, Ni_2x, Ni_3x, Ni_4x;

 real Ni_0y, Ni_1y, Ni_2y, Ni_3y, Ni_4y;

 real Ni_0z, Ni_1z, Ni_2z, Ni_3z, Ni_4z;

 real Dij_01, Dij_02, Dij_03, Dij_04, Dij_12, Dij_13, Dij_14, Dij_23, Dij_24, Dij_34;

 real inv_Delta_01, inv_Delta_02, inv_Delta_03, inv_Delta_04;

 real inv_Delta_12, inv_Delta_13, inv_Delta_14;

 real inv_Delta_23, inv_Delta_24;

 real inv_Delta_34;

 real dens;

 int zone_ID;

 real diff_matrix_0x, diff_matrix_1x, diff_matrix_2x, diff_matrix_3x, diff_matrix_4x;

 real diff_matrix_0y, diff_matrix_1y, diff_matrix_2y, diff_matrix_3y, diff_matrix_4y;

 real diff_matrix_0z, diff_matrix_1z, diff_matrix_2z, diff_matrix_3z, diff_matrix_4z;

 int pb;

 Domain *d;

 cell_t c;

 Thread *t;

 int ID;

 d = Get_Domain(1);

 for (ID = 3; ID <= 14; ++ID)

 {

 t = Lookup_Thread(d, ID);

 begin_c_loop(c,t)

 {

 pb = 0;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

 sum_v_0 = 24.42;

 sum_v_1 = 7.07;

 sum_v_2 = 18.9;

 sum_v_3 = 26.9;

 sum_v_4 = 12.7;

 /* Density calculation (kg.m-3). */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R (kg.m-3) */

 /* Getting Di's (m2.s-1) values from the previous iteration. */

 diff_matrix_0x = C_UDMI(c,t,0);

 diff_matrix_0y = C_UDMI(c,t,1);

 diff_matrix_0z = C_UDMI(c,t,2);

 diff_matrix_1x = C_UDMI(c,t,3);

 diff_matrix_1y = C_UDMI(c,t,4);

 diff_matrix_1z = C_UDMI(c,t,5);

 diff_matrix_2x = C_UDMI(c,t,6);

 diff_matrix_2y = C_UDMI(c,t,7);

88

 diff_matrix_2z = C_UDMI(c,t,8);

 diff_matrix_3x = C_UDMI(c,t,9);

 diff_matrix_3y = C_UDMI(c,t,10);

 diff_matrix_3z = C_UDMI(c,t,11);

 diff_matrix_4x = C_UDMI(c,t,12);

 diff_matrix_4y = C_UDMI(c,t,13);

 diff_matrix_4z = C_UDMI(c,t,14);

 /* Species gradient (m-1) calculation (Water mass fraction gradient is computed using

the other gradients since the Water mass fraction is unknown by Fluent). */

 Delta_Yi_0x = C_UDSI_G(c, t, 0)[0]; Delta_Yi_0y = C_UDSI_G(c, t, 0)[1]; Delta_Yi_0z =

C_UDSI_G(c, t, 0)[2];

 Delta_Yi_1x = C_UDSI_G(c, t, 1)[0]; Delta_Yi_1y = C_UDSI_G(c, t, 1)[1]; Delta_Yi_1z =

C_UDSI_G(c, t, 1)[2];

 Delta_Yi_2x = C_UDSI_G(c, t, 2)[0]; Delta_Yi_2y = C_UDSI_G(c, t, 2)[1]; Delta_Yi_2z =

C_UDSI_G(c, t, 2)[2];

 Delta_Yi_3x = C_UDSI_G(c, t, 3)[0]; Delta_Yi_3y = C_UDSI_G(c, t, 3)[1]; Delta_Yi_3z =

C_UDSI_G(c, t, 3)[2];

 Delta_Yi_4x = - Delta_Yi_0x - Delta_Yi_1x - Delta_Yi_2x - Delta_Yi_3x;

 Delta_Yi_4y = - Delta_Yi_0y - Delta_Yi_1y - Delta_Yi_2y - Delta_Yi_3y;

 Delta_Yi_4z = - Delta_Yi_0z - Delta_Yi_1z - Delta_Yi_2z - Delta_Yi_3z;

 /* Computation of the effective Knudsen diffusivity (m2.s-1). */

 Dk_i_0 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mch4,0.5);

 Dk_i_1 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mh2,0.5);

 Dk_i_2 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mco,0.5);

 Dk_i_3 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mco2,0.5);

 Dk_i_4 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mh2o,0.5);

 /* Computation of the species molecular fluxes (mol.m-2.s-1)(with Delta_Yi updated to

the new values). */

 Ni_0x = - dens * diff_matrix_0x * Delta_Yi_0x / Mch4 * 1e3; Ni_0y = - dens *

diff_matrix_0y * Delta_Yi_0y / Mch4 * 1e3; Ni_0z = - dens * diff_matrix_0z * Delta_Yi_0z /

Mch4 * 1e3;

 Ni_1x = - dens * diff_matrix_1x * Delta_Yi_1x / Mh2 * 1e3; Ni_1y = - dens *

diff_matrix_1y * Delta_Yi_1y / Mh2 * 1e3; Ni_1z = - dens * diff_matrix_1z * Delta_Yi_1z /

Mh2 * 1e3;

 Ni_2x = - dens * diff_matrix_2x * Delta_Yi_2x / Mco * 1e3; Ni_2y = - dens *

diff_matrix_2y * Delta_Yi_2y / Mco * 1e3; Ni_2z = - dens * diff_matrix_2z * Delta_Yi_2z /

Mco * 1e3;

 Ni_3x = - dens * diff_matrix_3x * Delta_Yi_3x / Mco2 * 1e3; Ni_3y = - dens *

diff_matrix_3y * Delta_Yi_3y / Mco2 * 1e3; Ni_3z = - dens * diff_matrix_3z * Delta_Yi_3z /

Mco2 * 1e3;

 Ni_4x = - dens * diff_matrix_4x * Delta_Yi_4x / Mh2o * 1e3; Ni_4y = - dens *

diff_matrix_4y * Delta_Yi_4y / Mh2o * 1e3; Ni_4z = - dens * diff_matrix_4z * Delta_Yi_4z /

Mh2o * 1e3;

 /* Checking for 0 values. */

 if (Ni_0x == 0 || Ni_0x > flux_limit_upper || Ni_0x < flux_limit_lower)

 pb = 1;

 if (Ni_0y == 0 || Ni_0y > flux_limit_upper || Ni_0y < flux_limit_lower)

 pb = 1;

 if (Ni_0z == 0 || Ni_0z > flux_limit_upper || Ni_0z < flux_limit_lower)

 pb = 1;

 if (Ni_1x == 0 || Ni_1x > flux_limit_upper || Ni_1x < flux_limit_lower)

 pb = 1;

 if (Ni_1y == 0 || Ni_1y > flux_limit_upper || Ni_1y < flux_limit_lower)

 pb = 1;

 if (Ni_1z == 0 || Ni_1z > flux_limit_upper || Ni_1z < flux_limit_lower)

 pb = 1;

 if (Ni_2x == 0 || Ni_2x > flux_limit_upper || Ni_2x < flux_limit_lower)

 pb = 1;

 if (Ni_2y == 0 || Ni_2y > flux_limit_upper || Ni_2y < flux_limit_lower)

89

 pb = 1;

 if (Ni_2z == 0 || Ni_2z > flux_limit_upper || Ni_2z < flux_limit_lower)

 pb = 1;

 if (Ni_3x == 0 || Ni_3x > flux_limit_upper || Ni_3x < flux_limit_lower)

 pb = 1;

 if (Ni_3y == 0 || Ni_3y > flux_limit_upper || Ni_3y < flux_limit_lower)

 pb = 1;

 if (Ni_3z == 0 || Ni_3z > flux_limit_upper || Ni_3z < flux_limit_lower)

 pb = 1;

 if (Ni_4x == 0 || Ni_4x > flux_limit_upper || Ni_4x < flux_limit_lower)

 pb = 1;

 if (Ni_4y == 0 || Ni_4y > flux_limit_upper || Ni_4y < flux_limit_lower)

 pb = 1;

 if (Ni_4z == 0 || Ni_4z > flux_limit_upper || Ni_4z < flux_limit_lower)

 pb = 1;

 if (pb == 0)

 {

 /* Intermediate sums. */

 sum2_x = Ni_0x + Ni_1x + Ni_2x + Ni_3x + Ni_4x; /* (mol.m-2.s-1) */

 sum2_y = Ni_0y + Ni_1y + Ni_2y + Ni_3y + Ni_4y; /* (mol.m-2.s-1) */

 sum2_z = Ni_0z + Ni_1z + Ni_2z + Ni_3z + Ni_4z; /* (mol.m-2.s-1) */

 sum3 = Yi_0/Dk_i_0 + Yi_1/Dk_i_1 + Yi_2/Dk_i_2 + Yi_3/Dk_i_3 + Yi_4/Dk_i_4; /*

(s.m-2) */

 /* Dij (m2.s-1) effective computation */

 Dij_01 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mch4+Mh2)

/(Mch4*Mh2),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) + pow(sum_v_1,1/3),2));

 Dij_02 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mch4+Mco)

/(Mch4*Mco),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) + pow(sum_v_2,1/3),2));

 Dij_03 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) *

pow((Mch4+Mco2)/(Mch4*Mco2),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) +

pow(sum_v_3,1/3),2));

 Dij_04 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) *

pow((Mch4+Mh2o)/(Mch4*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) +

pow(sum_v_4,1/3),2));

 Dij_12 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mh2+Mco)

/(Mh2*Mco),0.5) / ((p_operating/101325) * pow(pow(sum_v_1,1/3) + pow(sum_v_2,1/3),2));

 Dij_13 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mh2+Mco2)

/(Mh2*Mco2),0.5) / ((p_operating/101325) * pow(pow(sum_v_1,1/3) + pow(sum_v_3,1/3),2));

 Dij_14 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mh2+Mh2o)

/(Mh2*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_1,1/3) + pow(sum_v_4,1/3),2));

 Dij_23 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mco+Mco2)

/(Mco*Mco2),0.5) / ((p_operating/101325) * pow(pow(sum_v_2,1/3) + pow(sum_v_3,1/3),2));

 Dij_24 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mco+Mh2o)

/(Mco*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_2,1/3) + pow(sum_v_4,1/3),2));

 Dij_34 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) *

pow((Mco2+Mh2o)/(Mco2*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_3,1/3) +

pow(sum_v_4,1/3),2));

 /* Computation of the inverse of Delta_rs (s.m-2) */

 inv_Delta_01 = 1./Dij_01 + 1./(Dk_i_0*Dk_i_1*sum3);

 inv_Delta_02 = 1./Dij_02 + 1./(Dk_i_0*Dk_i_2*sum3);

 inv_Delta_03 = 1./Dij_03 + 1./(Dk_i_0*Dk_i_3*sum3);

 inv_Delta_04 = 1./Dij_04 + 1./(Dk_i_0*Dk_i_4*sum3);

 inv_Delta_12 = 1./Dij_12 + 1./(Dk_i_1*Dk_i_2*sum3);

 inv_Delta_13 = 1./Dij_13 + 1./(Dk_i_1*Dk_i_3*sum3);

 inv_Delta_14 = 1./Dij_14 + 1./(Dk_i_1*Dk_i_4*sum3);

 inv_Delta_23 = 1./Dij_23 + 1./(Dk_i_2*Dk_i_3*sum3);

 inv_Delta_24 = 1./Dij_24 + 1./(Dk_i_2*Dk_i_4*sum3);

 inv_Delta_34 = 1./Dij_34 + 1./(Dk_i_3*Dk_i_4*sum3);

90

 /* One last intermediate sum (mol.m-4). */

 sum1_0x = inv_Delta_01*(Yi_1*Ni_0x - Yi_0*Ni_1x) + inv_Delta_02*(Yi_2*Ni_0x -

Yi_0*Ni_2x) + inv_Delta_03*(Yi_3*Ni_0x - Yi_0*Ni_3x) + inv_Delta_04*(Yi_4*Ni_0x - Yi_0*Ni_4x);

 sum1_0y = inv_Delta_01*(Yi_1*Ni_0y - Yi_0*Ni_1y) + inv_Delta_02*(Yi_2*Ni_0y -

Yi_0*Ni_2y) + inv_Delta_03*(Yi_3*Ni_0y - Yi_0*Ni_3y) + inv_Delta_04*(Yi_4*Ni_0y - Yi_0*Ni_4y);

 sum1_0z = inv_Delta_01*(Yi_1*Ni_0z - Yi_0*Ni_1z) + inv_Delta_02*(Yi_2*Ni_0z -

Yi_0*Ni_2z) + inv_Delta_03*(Yi_3*Ni_0z - Yi_0*Ni_3z) + inv_Delta_04*(Yi_4*Ni_0z - Yi_0*Ni_4z);

 sum1_1x = inv_Delta_01*(Yi_0*Ni_1x - Yi_1*Ni_0x) + inv_Delta_12*(Yi_2*Ni_1x -

Yi_1*Ni_2x) + inv_Delta_13*(Yi_3*Ni_1x - Yi_1*Ni_3x) + inv_Delta_14*(Yi_4*Ni_1x - Yi_1*Ni_4x);

 sum1_1y = inv_Delta_01*(Yi_0*Ni_1y - Yi_1*Ni_0y) + inv_Delta_12*(Yi_2*Ni_1y -

Yi_1*Ni_2y) + inv_Delta_13*(Yi_3*Ni_1y - Yi_1*Ni_3y) + inv_Delta_14*(Yi_4*Ni_1y - Yi_1*Ni_4y);

 sum1_1z = inv_Delta_01*(Yi_0*Ni_1z - Yi_1*Ni_0z) + inv_Delta_12*(Yi_2*Ni_1z -

Yi_1*Ni_2z) + inv_Delta_13*(Yi_3*Ni_1z - Yi_1*Ni_3z) + inv_Delta_14*(Yi_4*Ni_1z - Yi_1*Ni_4z);

 sum1_2x = inv_Delta_02*(Yi_0*Ni_2x - Yi_2*Ni_0x) + inv_Delta_12*(Yi_1*Ni_2x -

Yi_2*Ni_1x) + inv_Delta_23*(Yi_3*Ni_2x - Yi_2*Ni_3x) + inv_Delta_24*(Yi_4*Ni_2x - Yi_2*Ni_4x);

 sum1_2y = inv_Delta_02*(Yi_0*Ni_2y - Yi_2*Ni_0y) + inv_Delta_12*(Yi_1*Ni_2y -

Yi_2*Ni_1y) + inv_Delta_23*(Yi_3*Ni_2y - Yi_2*Ni_3y) + inv_Delta_24*(Yi_4*Ni_2y - Yi_2*Ni_4y);

 sum1_2z = inv_Delta_02*(Yi_0*Ni_2z - Yi_2*Ni_0z) + inv_Delta_12*(Yi_1*Ni_2z -

Yi_2*Ni_1z) + inv_Delta_23*(Yi_3*Ni_2z - Yi_2*Ni_3z) + inv_Delta_24*(Yi_4*Ni_2z - Yi_2*Ni_4z);

 sum1_3x = inv_Delta_03*(Yi_0*Ni_3x - Yi_3*Ni_0x) + inv_Delta_13*(Yi_1*Ni_3x -

Yi_3*Ni_1x) + inv_Delta_23*(Yi_2*Ni_3x - Yi_3*Ni_2x) + inv_Delta_34*(Yi_4*Ni_3x - Yi_3*Ni_4x);

 sum1_3y = inv_Delta_03*(Yi_0*Ni_3y - Yi_3*Ni_0y) + inv_Delta_13*(Yi_1*Ni_3y -

Yi_3*Ni_1y) + inv_Delta_23*(Yi_2*Ni_3y - Yi_3*Ni_2y) + inv_Delta_34*(Yi_4*Ni_3y - Yi_3*Ni_4y);

 sum1_3z = inv_Delta_03*(Yi_0*Ni_3z - Yi_3*Ni_0z) + inv_Delta_13*(Yi_1*Ni_3z -

Yi_3*Ni_1z) + inv_Delta_23*(Yi_2*Ni_3z - Yi_3*Ni_2z) + inv_Delta_34*(Yi_4*Ni_3z - Yi_3*Ni_4z);

 sum1_4x = inv_Delta_04*(Yi_0*Ni_4x - Yi_4*Ni_0x) + inv_Delta_14*(Yi_1*Ni_4x -

Yi_4*Ni_1x) + inv_Delta_24*(Yi_2*Ni_4x - Yi_4*Ni_2x) + inv_Delta_34*(Yi_3*Ni_4x - Yi_4*Ni_3x);

 sum1_4y = inv_Delta_04*(Yi_0*Ni_4y - Yi_4*Ni_0y) + inv_Delta_14*(Yi_1*Ni_4y -

Yi_4*Ni_1y) + inv_Delta_24*(Yi_2*Ni_4y - Yi_4*Ni_2y) + inv_Delta_34*(Yi_3*Ni_4y - Yi_4*Ni_3y);

 sum1_4z = inv_Delta_04*(Yi_0*Ni_4z - Yi_4*Ni_0z) + inv_Delta_14*(Yi_1*Ni_4z -

Yi_4*Ni_1z) + inv_Delta_24*(Yi_2*Ni_4z - Yi_4*Ni_2z) + inv_Delta_34*(Yi_3*Ni_4z - Yi_4*Ni_3z);

 /* Final calculation of diff_matrix (m2.s-1). */

 diff_matrix_0x = (Ni_0x - Yi_0 * sum2_x) / sum1_0x;

 diff_matrix_0y = (Ni_0y - Yi_0 * sum2_y) / sum1_0y;

 diff_matrix_0z = (Ni_0z - Yi_0 * sum2_z) / sum1_0z;

 diff_matrix_1x = (Ni_1x - Yi_1 * sum2_x) / sum1_1x;

 diff_matrix_1y = (Ni_1y - Yi_1 * sum2_y) / sum1_1y;

 diff_matrix_1z = (Ni_1z - Yi_1 * sum2_z) / sum1_1z;

 diff_matrix_2x = (Ni_2x - Yi_2 * sum2_x) / sum1_2x;

 diff_matrix_2y = (Ni_2y - Yi_2 * sum2_y) / sum1_2y;

 diff_matrix_2z = (Ni_2z - Yi_2 * sum2_z) / sum1_2z;

 diff_matrix_3x = (Ni_3x - Yi_3 * sum2_x) / sum1_3x;

 diff_matrix_3y = (Ni_3y - Yi_3 * sum2_y) / sum1_3y;

 diff_matrix_3z = (Ni_3z - Yi_3 * sum2_z) / sum1_3z;

 diff_matrix_4x = (Ni_4x - Yi_4 * sum2_x) / sum1_4x;

 diff_matrix_4y = (Ni_4y - Yi_4 * sum2_y) / sum1_4y;

 diff_matrix_4z = (Ni_4z - Yi_4 * sum2_z) / sum1_4z;

 C_UDMI(c,t,0) = C_UDMI(c,t,0) + (diff_matrix_0x - C_UDMI(c,t,0)) * urf;

 C_UDMI(c,t,1) = C_UDMI(c,t,1) + (diff_matrix_0y - C_UDMI(c,t,1)) * urf;

 C_UDMI(c,t,2) = C_UDMI(c,t,2) + (diff_matrix_0z - C_UDMI(c,t,2)) * urf;

 C_UDMI(c,t,3) = C_UDMI(c,t,3) + (diff_matrix_1x - C_UDMI(c,t,3)) * urf;

 C_UDMI(c,t,4) = C_UDMI(c,t,4) + (diff_matrix_1y - C_UDMI(c,t,4)) * urf;

 C_UDMI(c,t,5) = C_UDMI(c,t,5) + (diff_matrix_1z - C_UDMI(c,t,5)) * urf;

91

 C_UDMI(c,t,6) = C_UDMI(c,t,6) + (diff_matrix_2x - C_UDMI(c,t,6)) * urf;

 C_UDMI(c,t,7) = C_UDMI(c,t,7) + (diff_matrix_2y - C_UDMI(c,t,7)) * urf;

 C_UDMI(c,t,8) = C_UDMI(c,t,8) + (diff_matrix_2z - C_UDMI(c,t,8)) * urf;

 C_UDMI(c,t,9) = C_UDMI(c,t,9) + (diff_matrix_3x - C_UDMI(c,t,9)) * urf;

 C_UDMI(c,t,10) = C_UDMI(c,t,10) + (diff_matrix_3y - C_UDMI(c,t,10)) * urf;

 C_UDMI(c,t,11) = C_UDMI(c,t,11) + (diff_matrix_3z - C_UDMI(c,t,11)) * urf;

 C_UDMI(c,t,12) = C_UDMI(c,t,12) + (diff_matrix_4x - C_UDMI(c,t,12)) * urf;

 C_UDMI(c,t,13) = C_UDMI(c,t,13) + (diff_matrix_4y - C_UDMI(c,t,13)) * urf;

 C_UDMI(c,t,14) = C_UDMI(c,t,14) + (diff_matrix_4z - C_UDMI(c,t,14)) * urf;

 if (C_UDMI(c,t,0) > diff_limit_upper)

 C_UDMI(c, t, 0) = diff_limit_upper;

 if (C_UDMI(c,t,0) < diff_limit_lower)

 C_UDMI(c, t, 0) = 1.e-10;

 if (C_UDMI(c,t,1) > diff_limit_upper)

 C_UDMI(c, t, 1) = diff_limit_upper;

 if (C_UDMI(c,t,1) < diff_limit_lower)

 C_UDMI(c, t, 1) = 1.e-10;

 if (C_UDMI(c,t,2) > diff_limit_upper)

 C_UDMI(c, t, 2) = diff_limit_upper;

 if (C_UDMI(c,t,2) < diff_limit_lower)

 C_UDMI(c, t, 2) = 1.e-10;

 if (C_UDMI(c,t,3) > diff_limit_upper)

 C_UDMI(c, t, 3) = diff_limit_upper;

 if (C_UDMI(c,t,3) < diff_limit_lower)

 C_UDMI(c, t, 3) = 1.e-10;

 if (C_UDMI(c,t,4) > diff_limit_upper)

 C_UDMI(c, t, 4) = diff_limit_upper;

 if (C_UDMI(c,t,4) < diff_limit_lower)

 C_UDMI(c, t, 4) = 1.e-10;

 if (C_UDMI(c,t,5) > diff_limit_upper)

 C_UDMI(c, t, 5) = diff_limit_upper;

 if (C_UDMI(c,t,5) < diff_limit_lower)

 C_UDMI(c, t, 5) = 1.e-10;

 if (C_UDMI(c,t,6) > diff_limit_upper)

 C_UDMI(c, t, 6) = diff_limit_upper;

 if (C_UDMI(c,t,6) < diff_limit_lower)

 C_UDMI(c, t, 6) = 1.e-10;

 if (C_UDMI(c,t,7) > diff_limit_upper)

 C_UDMI(c, t, 7) = diff_limit_upper;

 if (C_UDMI(c,t,7) < diff_limit_lower)

 C_UDMI(c, t, 7) = 1.e-10;

 if (C_UDMI(c,t,8) > diff_limit_upper)

 C_UDMI(c, t, 8) = diff_limit_upper;

 if (C_UDMI(c,t,8) < diff_limit_lower)

 C_UDMI(c, t, 8) = 1.e-10;

 if (C_UDMI(c,t,9) > diff_limit_upper)

 C_UDMI(c, t, 9) = diff_limit_upper;

 if (C_UDMI(c,t,9) < diff_limit_lower)

 C_UDMI(c, t, 9) = 1.e-10;

 if (C_UDMI(c,t,10) > diff_limit_upper)

 C_UDMI(c, t, 10) = diff_limit_upper;

 if (C_UDMI(c,t,10) < diff_limit_lower)

92

 C_UDMI(c, t, 10) = 1.e-10;

 if (C_UDMI(c,t,11) > diff_limit_upper)

 C_UDMI(c, t, 11) = diff_limit_upper;

 if (C_UDMI(c,t,11) < diff_limit_lower)

 C_UDMI(c, t, 11) = 1.e-10;

 if (C_UDMI(c,t,12) > diff_limit_upper)

 C_UDMI(c, t, 12) = diff_limit_upper;

 if (C_UDMI(c,t,12) < diff_limit_lower)

 C_UDMI(c, t, 12) = 1.e-10;

 if (C_UDMI(c,t,13) > diff_limit_upper)

 C_UDMI(c, t, 13) = diff_limit_upper;

 if (C_UDMI(c,t,13) < diff_limit_lower)

 C_UDMI(c, t, 13) = 1.e-10;

 if (C_UDMI(c,t,14) > diff_limit_upper)

 C_UDMI(c, t, 14) = diff_limit_upper;

 if (C_UDMI(c,t,14) < diff_limit_lower)

 C_UDMI(c, t, 14) = 1.e-10;

 }

 }

 end_c_loop(c,t)

 }

}

DEFINE_DIFFUSIVITY(uds0_diff_x,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 0 in the x direction. */

 diff = C_UDMI(c,t,0) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds0_diff_y,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

93

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 0 in the y direction. */

 diff = C_UDMI(c,t,1) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds0_diff_z,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 0 in the z direction. */

 diff = C_UDMI(c,t,2) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds1_diff_x,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

94

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 1 in the x direction. */

 diff = C_UDMI(c,t,3) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds1_diff_y,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 1 in the y direction. */

 diff = C_UDMI(c,t,4) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds1_diff_z,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

95

/* Calculation of diff for specy 1 in the z direction. */

 diff = C_UDMI(c,t,4) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds2_diff_x,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 2 in the x direction. */

 diff = C_UDMI(c,t,6) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds2_diff_y,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 2 in the y direction. */

 diff = C_UDMI(c,t,7) * dens * alpha;

 return diff;

}

96

DEFINE_DIFFUSIVITY(uds2_diff_z,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 2 in the z direction. */

 diff = C_UDMI(c,t,8) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds3_diff_x,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 3 in the x direction. */

 diff = C_UDMI(c,t,9) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds3_diff_y,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

97

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 3 in the y direction. */

 diff = C_UDMI(c,t,10) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds3_diff_z,c,t,i)

{

 real rp, MWav, cell_temp, p_operating;

 real Yi_0, Yi_1, Yi_2, Yi_3, Yi_4;

 real diff;

 real dens;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(c, t);

 rp = 1e-5; /* cm */

 Yi_0 = C_UDSI(c, t, 0);

 Yi_1 = C_UDSI(c, t, 1);

 Yi_2 = C_UDSI(c, t, 2);

 Yi_3 = C_UDSI(c, t, 3);

 Yi_4 = 1. - Yi_0 - Yi_1 - Yi_2 - Yi_3;

/* Density calculation. */

 MWav = 1.0/(Yi_0/Mch4 + Yi_1/Mh2 + Yi_2/Mco + Yi_3/Mco2 + Yi_4/Mh2o);

 dens = p_operating/rgas/cell_temp*MWav;

 dens = dens*1.0e-06; /* adjust density for wrong value of R */

/* Calculation of diff for specy 3 in the z direction. */

 diff = C_UDMI(c,t,11) * dens * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds0_fluid_diff,c,t,i)

{

 return C_R(c,t) * 1.23e-05 + C_MU_T(c,t)/0.7;

}

DEFINE_DIFFUSIVITY(uds1_fluid_diff,c,t,i)

{

 return C_R(c,t) * 2.25e-05 + C_MU_T(c,t)/0.7;

}

DEFINE_DIFFUSIVITY(uds2_fluid_diff,c,t,i)

{

 return C_R(c,t) * 7.2e-06 + C_MU_T(c,t)/0.7;

}

98

DEFINE_DIFFUSIVITY(uds3_fluid_diff,c,t,i)

{

 return C_R(c,t) * 4.9e-06 + C_MU_T(c,t)/0.7;

}

/***/

/* REACTION */

/***/

DEFINE_SOURCE(spe_uds0, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dPch4dYch4, dr1dPch4, dr2dPch4, dr3dPch4;

 real cell_temp, cell_press;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 real p_operating;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(cell, thread);

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 alph1 = -1.0;

 alph2 = 0.0;

 alph3 = -1.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

99

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mch4;

 dPch4dYch4 = cell_press*MWav/Mch4*(1.0-Ych4*MWav/Mch4);

 dr1dPch4 = k1*pow(Ph2o,0.5)/pow(Ph2,1.25)*(1-Prev1/Kp1)/pow(DEN,2.)

 +k1*Pkin1*(Pco*pow(Ph2,3.)/Kp1/pow(Pch4,2.)/Ph2o)/pow(DEN,2.);

 dr2dPch4 = 0;

 dr3dPch4 = k3*Ph2o/pow(Ph2,1.75)*(1-Prev3/Kp3)/pow(DEN,2.)

 +k3*Pkin3*(Pco2*pow(Ph2,4.)/Kp3/pow(Pch4,2.)/pow(Ph2o,2.))/pow(DEN,2.);

 dS[eqn] = rhos*Mch4*(alph1*dr1dPch4+alph2*dr2dPch4+alph3*dr3dPch4)*dPch4dYch4;

 }

 return source;

}

DEFINE_SOURCE(spe_uds1, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dPh2dYh2, dDENdPh2, dr1dPh2, dr2dPh2, dr3dPh2;

 real cell_temp, cell_press;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 real p_operating;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(cell, thread);

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 alph1 = 3.0;

 alph2 = 1.0;

 alph3 = 4.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

100

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mh2;

 dPh2dYh2 = cell_press*MWav/Mh2*(1.0-Yh2*MWav/Mh2);

 dDENdPh2 = 0.5*kh/pow(Ph2,0.5)-kh2o*Ph2o/pow(Ph2,2.);

 dr1dPh2 = k1*(-1.25*Pch4*pow(Ph2o,0.5)/pow(Ph2,2.25))*(1-Prev1/Kp1)/pow(DEN,2.)

 +k1*Pkin1*(-3.0*Pco*pow(Ph2,3.)/Kp1/Pch4/Ph2o)/pow(DEN,2.)

 -2.0*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdPh2;

 dr2dPh2 = k2*(-0.25*Pco*pow(Ph2o,0.5)/pow(Ph2,1.5))*(1-Prev2/Kp2)/pow(DEN,2.)

 +k2*Pkin2*(-1.0*Pco2)/Kp2/Pco/Ph2o/pow(DEN,2.)

 -2.0*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdPh2;

 dr3dPh2 = k3*(-1.75*Pch4*Ph2o)/pow(Ph2,2.75)*(1-Prev3/Kp3)/pow(DEN,2.)

 +k3*Pkin3*(-4.0*Pco2*pow(Ph2,3.))/Kp3/Pch4/pow(Ph2o,2.)/pow(DEN,2.)

 -2.0*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdPh2;

 dS[eqn] = rhos*Mh2*(alph1*dr1dPh2+alph2*dr2dPh2+alph3*dr3dPh2)*dPh2dYh2;

 }

 return source;

}

DEFINE_SOURCE(spe_uds2, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dPcodYco, dDENdPco, dr1dPco, dr2dPco, dr3dPco;

 real cell_temp, cell_press;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 real p_operating;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(cell, thread);

 cell_press = p_operating/1000.0;

101

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 alph1 = 1.0;

 alph2 = -1.0;

 alph3 = 0.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mco;

 dPcodYco = cell_press*MWav/Mco*(1.0-Yco*MWav/Mco);

 dDENdPco = kco;

 dr1dPco = k1*Pkin1*(-1.0*pow(Ph2,3.)/Kp1/Pch4/Ph2o)/pow(DEN,2.)

 -2.0*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdPco;

 dr2dPco = k2*pow(Ph2o,0.5)/pow(Ph2,0.5)*(1-Prev2/Kp2)/pow(DEN,2.)

 +k2*Pkin2*(Ph2*Pco2)/Kp2/pow(Pco,2.)/Ph2o/pow(DEN,2.)

 -2.0*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdPco;

 dr3dPco = -2.0*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdPco;

 dS[eqn] = rhos*Mco*(alph1*dr1dPco+alph2*dr2dPco+alph3*dr3dPco)*dPcodYco;

102

 }

 return source;

}

DEFINE_SOURCE(spe_uds3, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dPco2dYco2, dr1dPco2, dr2dPco2, dr3dPco2;

 real cell_temp, cell_press;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 real p_operating;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(cell, thread);

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 alph1 = 0.0;

 alph2 = 1.0;

 alph3 = 1.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

103

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mco2;

 dPco2dYco2 = cell_press*MWav/Mco2*(1.0-Yco2*MWav/Mco2);

 dr1dPco2 = 0;

 dr2dPco2 = k2*Pkin2*(-1.0*Ph2)/Kp2/Pco/Ph2o/pow(DEN,2.);

 dr3dPco2 = k3*Pkin3*(-1.0*pow(Ph2,4.)/Kp3/Pch4/pow(Ph2o,2.))/pow(DEN,2.);

 dS[eqn] = rhos*Mco2*(alph1*dr1dPco2+alph2*dr2dPco2+alph3*dr3dPco2)*dPco2dYco2;

 }

 return source;

}

DEFINE_SOURCE(q_tdep, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dk1dt, dKp1dt, dk2dt, dKp2dt, dk3dt, dKp3dt, dDENdt, dr1dt, dr2dt, dr3dt;

 real cell_temp, cell_press;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 real p_operating;

 p_operating = RP_Get_Real ("operating-pressure");

 cell_temp = C_T(cell, thread);

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

104

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(delHr1*r1+delHr2*r2+delHr3*r3);

 dDENdt = Pco*kco*delhco/rgas/cell_temp/cell_temp

 +pow(Ph2,0.5)*kh*delhh/rgas/cell_temp/cell_temp

 +Ph2o/Ph2*kh2o*delhh2o/rgas/cell_temp/cell_temp;

 dk1dt = k1*E1/rgas/cell_temp/cell_temp;

 dk2dt = k2*E2/rgas/cell_temp/cell_temp;

 dk3dt = k3*E3/rgas/cell_temp/cell_temp;

 dKp1dt = Kp1*26830/cell_temp/cell_temp;

 dKp2dt = Kp2*(-4400)/cell_temp/cell_temp;

 dKp3dt = Kp3*22430/cell_temp/cell_temp;

 dr1dt = dk1dt*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.)

 +k1*Pkin1*(Prev1/Kp1/Kp1)*dKp1dt/pow(DEN,2.)

 -2*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdt;

 dr2dt = dk2dt*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.)

 +k2*Pkin2*(Prev2/Kp2/Kp2)*dKp2dt/pow(DEN,2.)

 -2*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdt;

 dr3dt = dk3dt*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.)

 +k3*Pkin3*(Prev3/Kp3/Kp3)*dKp3dt/pow(DEN,2.)

 -2*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdt;

 dS[eqn] = rhos*(delHr1*dr1dt+delHr2*dr2dt+delHr3*dr3dt);

 }

 return source;

}

DEFINE_ADJUST(Yi_adjust,d)

{

 Thread *t;

 cell_t c;

 thread_loop_c(t,d)

 {

 if(NNULLP(T_STORAGE_R(t,SV_P)))

 /* Test if it is fluid by seeing if pressure is available */

 {

 begin_c_loop(c,t)

 {

 C_YI(c, t, 0) = C_UDSI(c, t, 0);

 C_YI(c, t, 1) = C_UDSI(c, t, 1);

 C_YI(c, t, 2) = C_UDSI(c, t, 2);

 C_YI(c, t, 3) = C_UDSI(c, t, 3);

 }

 end_c_loop(c,t)

105

 }

 }

}

/***/

/* INTERFACE */

/***/

DEFINE_PROFILE(coupled_uds_0, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,0);

 diff1 = C_UDSI_DIFF(c1,tc1,0);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,0) + h1*C_UDSI(c1,tc1,0))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_1, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

106

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,1);

 diff1 = C_UDSI_DIFF(c1,tc1,1);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,1) + h1*C_UDSI(c1,tc1,1))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_2, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,2);

 diff1 = C_UDSI_DIFF(c1,tc1,2);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,2) + h1*C_UDSI(c1,tc1,2))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

107

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_3, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,3);

 diff1 = C_UDSI_DIFF(c1,tc1,3);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,3) + h1*C_UDSI(c1,tc1,3))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

/* START OF DEFINE-ON-DEMAND SUBROUTINES

###*

/

DEFINE_ON_DEMAND(heat_sinks_particles)

{

 Domain *d;

 Thread *thread;

 cell_t cell;

 int ID;

 real cell_vol, Totsink, psink, csink;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real cell_temp, cell_press, p_operating;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

108

 d = Get_Domain(1);

 Totsink = 0;

 for (ID = 2; ID <= 2; ++ID)

 {

 thread = Lookup_Thread(d, ID);

 fout = fopen("part_sinks", "w");

 psink = 0;

 begin_c_loop(cell,thread)

 {

 cell_vol = C_VOLUME(cell, thread);

 cell_temp = C_T(cell, thread);

 p_operating = RP_Get_Real ("operating-pressure");

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 if (cell_temp <= 550)

 csink = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 csink = cell_vol*rhos*(delHr1*r1+delHr2*r2+delHr3*r3);

 psink = csink + psink;

109

 fprintf(fout, "%g %g\n", cell_vol, csink);

 }

 }

 end_c_loop(f,t)

 fprintf(fout, "\n");

 printf("\n");

 printf("Particle %d: Heat sink = %f W \n", ID, psink);

 Totsink = Totsink + psink;

 }

 printf("\n");

 printf("Total heat sink = %f W \n", Totsink);

 fclose(fout);

}

DEFINE_ON_DEMAND(reaction_rates_particles)

{

 Domain *d;

 Thread *thread;

 cell_t cell;

 int ID, uds_i;

 real R1sink, R2sink, R3sink, psink1, psink2, psink3, csink1, csink2, csink3;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real cell_vol, cell_temp, cell_press, p_operating;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 real uds_tot[4], uds_part[4], uds_cell[4];

 d = Get_Domain(1);

 R1sink = 0;

 R2sink = 0;

 R3sink = 0;

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_tot[uds_i] = 0;

 }

 fout = fopen("part_rxns", "w");

 for (ID = 2; ID <= 2; ++ID)

 {

 thread = Lookup_Thread(d, ID);

 psink1 = 0;

 psink2 = 0;

 psink3 = 0;

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_part[uds_i] = 0;

 }

 begin_c_loop(cell,thread)

 {

 cell_vol = C_VOLUME(cell, thread);

 cell_temp = C_T(cell, thread);

 p_operating = RP_Get_Real ("operating-pressure");

110

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(cell, thread, 0);

 Yh2 = C_UDSI(cell, thread, 1);

 Yco = C_UDSI(cell, thread, 2);

 Yco2 = C_UDSI(cell, thread, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 if (cell_temp <= 550)

 { csink1 = 0.0;

 csink2 = 0.0;

 csink3 = 0.0;

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_cell[uds_i] = 0;

 }

 }

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 csink1 = cell_vol*rhos*r1;

 csink2 = cell_vol*rhos*r2;

 csink3 = cell_vol*rhos*r3;

 uds_cell[0] = cell_vol*rhos*(-r1-r3);

 uds_cell[1] = cell_vol*rhos*(3*r1+r2+4*r3);

 uds_cell[2] = cell_vol*rhos*(r1-r2);

 uds_cell[3] = cell_vol*rhos*(r2+r3);

 psink1 = csink1 + psink1;

 psink2 = csink2 + psink2;

 psink3 = csink3 + psink3;

 for (uds_i = 0; uds_i <= 3; ++uds_i)

111

 {

 uds_part[uds_i] = uds_part[uds_i] + uds_cell[uds_i];

 }

 fprintf(fout, "%d %g %g %g %g %g %g %g %g %g\n", ID, cell_temp, cell_press, csink1,

csink2, csink3,

 uds_cell[0], uds_cell[1], uds_cell[2], uds_cell[3]);

 }

 }

 end_c_loop(f,t)

 fprintf(fout, "\n");

 printf("\n");

 printf("Particle %d Reaction 1 (kmol/s): %g\n", ID, psink1);

 printf("Particle %d Reaction 2 (kmol/s): %g\n", ID, psink2);

 printf("Particle %d Reaction 3 (kmol/s): %g\n", ID, psink3);

 printf("Particle %d CH4 consumption (kmol/s): %g\n", ID, uds_part[0]);

 printf("Particle %d H2 production (kmol/s): %g\n", ID, uds_part[1]);

 printf("Particle %d CO production (kmol/s): %g\n", ID, uds_part[2]);

 printf("Particle %d CO2 production (kmol/s): %g\n", ID, uds_part[3]);

 R1sink = R1sink + psink1;

 R2sink = R2sink + psink2;

 R3sink = R3sink + psink3;

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_tot[uds_i] = uds_tot[uds_i] + uds_part[uds_i];

 }

 }

 printf("\n");

 printf("Total reaction 1 (kmol/s): %g\n", R1sink);

 printf("Total reaction 2 (kmol/s): %g\n", R2sink);

 printf("Total reaction 3 (kmol/s): %g\n", R3sink);

 printf("Total CH4 consumption (kmol/s): %g\n", uds_tot[0]);

 printf("Total H2 production (kmol/s): %g\n", uds_tot[1]);

 printf("Total CO production (kmol/s): %g\n", uds_tot[2]);

 printf("Total CO2 production (kmol/s): %g\n", uds_tot[3]);

 fclose(fout);

}

DEFINE_ON_DEMAND(solid_species_surface_flow)

{

 Domain *d;

 Thread *t, *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], es0[ND_ND], es1[ND_ND], xf[ND_ND];

 real grad_0[ND_ND], grad_1[ND_ND];

 real uds_0, uds_1, diff0, diff1;

 real uds_face_flow[4], uds_flow[4], uds_flow_tot[4], uds_flux[4], MW[4];

 real pgrad, sgrad, sgrad0, sgrad1, h0, h1;

 real mag, area, ds0, ds1, A_by_es0, A_by_es1;

 int wall_id, uds_i;

 d = Get_Domain(1); /*Get the domain ID*/

 MW[0] = Mch4;

 MW[1] = Mh2;

 MW[2] = Mco;

 MW[3] = Mco2;

112

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_flow_tot[uds_i] = 0;

 }

 fout = fopen("surface_flows", "w");

 for (wall_id = 16; wall_id <= 19; ++wall_id)

 {

 /* Get the thread id of that surface*/

 t = Lookup_Thread(d,wall_id);

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_flow[uds_i] = 0;

 }

 area = 0;

 /* Loop over all surface faces*/

 begin_f_loop(f,t)

 {

 F_AREA(A,f,t); /*Get the area vector*/

 mag = NV_MAG(A);

 c0 = F_C0(f,t); /*Get the adjacent C0 cell*/

 c1 = F_C1(f,t); /*Get the adjacent C1 cell*/

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(x0,c0,tc0);

 C_CENTROID(x1,c1,tc1);

 F_CENTROID(xf, f,t);

 NV_VV(es0, =, xf,-,x0);

 NV_VV(es1, =, xf,-,x1);

 ds0 = NV_MAG(es0);

 ds1 = NV_MAG(es1);

 NV_S(es0,/=,ds0);

 NV_S(es1,/=,ds1);

 A_by_es0 = NV_DOT(A,A)/NV_DOT(es0,A);

 A_by_es1 = NV_DOT(A,A)/NV_DOT(es1,A);

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 /*uds gradients*/

 NV_V(grad_0, =, C_UDSI_G(c0,tc0,uds_i));

 NV_V(grad_1, =, C_UDSI_G(c1,tc1,uds_i));

 /*harmonic mean to allow for discontinuity*/

 diff0 = C_UDSI_DIFF(c0,tc0,uds_i);

 diff1 = C_UDSI_DIFF(c1,tc1,uds_i);

 h0 = diff0/ds0*A_by_es0;

 h1 = -diff1/ds1*A_by_es1;

 uds_0 = C_UDSI(c0,tc0,uds_i);

 uds_1 = C_UDSI(c1,tc1,uds_i);

 /*uds flow through face from primary and secondary gradients*/

 pgrad = (uds_1-uds_0)*h0*h1/(h0+h1);

 sgrad0 = diff0*(NV_DOT(A,grad_0)-A_by_es0*NV_DOT(grad_0,es0));

 sgrad1 = diff1*(NV_DOT(A,grad_1)-A_by_es1*NV_DOT(grad_1,es1));

 sgrad = (sgrad0*h1-sgrad1*h0)/(h0+h1);

 uds_face_flow[uds_i] = (pgrad + sgrad)/MW[uds_i];

 uds_flow[uds_i] = uds_flow[uds_i] + uds_face_flow[uds_i];

 }

 area = area + mag;

 fprintf(fout, "%d %g %g %g %g %g %g %g %g\n", wall_id, xf[0], xf[1], xf[2], mag,

uds_face_flow[0],

 uds_face_flow[1], uds_face_flow[2], uds_face_flow[3]);

113

 }

 end_f_loop(f,t)

 for (uds_i = 0; uds_i <= 3; ++uds_i)

 {

 uds_flux[uds_i] = uds_flow[uds_i]/area;

 uds_flow_tot[uds_i] = uds_flow_tot[uds_i] + uds_flow[uds_i];

 }

 printf("\n");

 printf("Wall ID: %d CH4 flux (kmol/m2-s): %g CH4 flow (kmol/s): %g\n", wall_id,

uds_flux[0], uds_flow[0]);

 printf("Wall ID: %d H2 flux (kmol/m2-s): %g H2 flow (kmol/s): %g\n", wall_id,

uds_flux[1], uds_flow[1]);

 printf("Wall ID: %d CO flux (kmol/m2-s): %g CO flow (kmol/s): %g\n", wall_id,

uds_flux[2], uds_flow[2]);

 printf("Wall ID: %d CO2 flux (kmol/m2-s): %g CO2 flow (kmol/s): %g\n", wall_id,

uds_flux[3], uds_flow[3]);

 }

 printf("\n");

 printf("Total particle CH4 flow (kmol/s): %g\n", uds_flow_tot[0]);

 printf("Total particle H2 flow (kmol/s): %g\n", uds_flow_tot[1]);

 printf("Total particle CO flow (kmol/s): %g\n", uds_flow_tot[2]);

 printf("Total particle CO2 flow (kmol/s): %g\n", uds_flow_tot[3]);

 fclose(fout);

}

DEFINE_ADJUST(reaction_rates,d)

{

 Thread *t;

 cell_t c;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real cell_vol, cell_temp, cell_press, p_operating;

 real Ych4, Yh2, Yco, Yco2, Yh2o, MWav, Pch4, Ph2, Pco, Pco2, Ph2o;

 thread_loop_c(t,d)

 {

 if(NULLP(T_STORAGE_R(t,SV_P)))

 /* Test if it is solid by seeing if pressure is not allocated*/

 {

 begin_c_loop(c,t)

 {

 cell_vol = C_VOLUME(c, t);

 cell_temp = C_T(c, t);

 p_operating = RP_Get_Real ("operating-pressure");

 cell_press = p_operating/1000.0;

 Ych4 = C_UDSI(c, t, 0);

 Yh2 = C_UDSI(c, t, 1);

 Yco = C_UDSI(c, t, 2);

 Yco2 = C_UDSI(c, t, 3);

 Yh2o = 1.0-Ych4-Yh2-Yco-Yco2;

 MWav = 1.0/(Ych4/Mch4+Yco/Mco+Yco2/Mco2+Yh2/Mh2+Yh2o/Mh2o);

 Pch4 = cell_press*Ych4*MWav/Mch4;

 Ph2 = cell_press*Yh2*MWav/Mh2;

 Pco = cell_press*Yco*MWav/Mco;

 Pco2 = cell_press*Yco2*MWav/Mco2;

 Ph2o = cell_press*Yh2o*MWav/Mh2o;

 if (cell_temp <= 550)

 {

114

 C_UDSI(c, t, 4) = 0.0;

 C_UDSI(c, t, 5) = 0.0;

 C_UDSI(c, t, 6) = 0.0;

 }

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 C_UDSI(c, t, 4) = cell_vol*rhos*r1;

 C_UDSI(c, t, 5) = cell_vol*rhos*r2;

 C_UDSI(c, t, 6) = cell_vol*rhos*r3;

 }

 }

 end_c_loop(c,t)

 }

 }

}

/***/

/* UDM INITIAL VALUES (Init and On Demand) */

/***/

DEFINE_ON_DEMAND(On_demand_UDMI_Initialization)

{

 Domain *d;

 cell_t c;

 Thread *t;

 int ID;

 d = Get_Domain(1);

 for (ID = 2; ID <= 14; ++ID)

 {

 t = Lookup_Thread(d, ID);

 begin_c_loop(c,t)

 {

 C_UDMI(c, t, 0) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 1) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 2) = 1.1907 * pow(10.,-6.);

115

 C_UDMI(c, t, 3) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 4) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 5) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 6) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 7) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 8) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 9) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 10) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 11) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 12) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 13) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 14) = 1.633 * pow(10.,-6.);

 }

 end_c_loop(c,t)

 }

}

DEFINE_INIT(Init_UDMI_Initialization,d)

{

 cell_t c;

 Thread *t;

 /* loop over all cell threads in the domain */

 thread_loop_c(t,d)

 {

 /* loop over all cells */

 begin_c_loop_all(c,t)

 {

 C_UDMI(c, t, 0) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 1) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 2) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 3) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 4) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 5) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 6) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 7) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 8) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 9) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 10) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 11) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 12) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 13) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 14) = 1.633 * pow(10.,-6.);

 }

 end_c_loop_all(c,t)

 }

}

116

Appendices E – Binary friction model code

#include "udf.h"

#include "mem.h"

/* Gas constant in kJ/mol.K or m3.kPa/mol.K */

#define rgas 0.0083144

/* Solid density in kg/m3 */

#define rhos 19.470

/* Adsorption enthalpies and activation energies in kJ/mol */

#define delhco -140.0

#define delhh -93.4

#define delhh2o 15.9

#define E1 209.2

#define E2 15.4

#define E3 109.4

/* Pre-exponential factors for ki (kmol/kg(cat.).s) */

#define A1 5.922e8

#define A2 6.028e-4

#define A3 1.093e3

/* Pre-exponential factors for Ki */

#define AKco 5.127e-13

#define AKh 5.68e-10

#define AKh2o 9.251

/* Heats of reaction in J/kgmol */

#define delHr1 -206100000.0

#define delHr2 41150000.0

#define delHr3 -165000000.0

/* Molecular weights */

#define Mco 28.01055

#define Mh2 2.01594

#define Mh2o 18.01534

#define Mch4 16.04303

#define Mco2 44.00995

#define epsilon 0.44

#define tau 3.54

#define mu_0 2.41e-5 /* Pa.s */

#define mu_1 1.793e-5 /* Pa.s */

#define mu_2 3.658e-5 /* Pa.s */

#define mu_3 3.587e-5 /* Pa.s */

#define mu_4 3.077e-5 /* Pa.s */

#define epsilon_01 2.9445

#define epsilon_02 0.3490

#define epsilon_03 0.3568

#define epsilon_04 0.3495

#define epsilon_10 0.3507

#define epsilon_12 0.3445

#define epsilon_13 0.3438

#define epsilon_14 0.3504

#define epsilon_20 0.4269

#define epsilon_21 0.4922

#define epsilon_23 0.4015

#define epsilon_24 0.3747

#define epsilon_30 0.4149

#define epsilon_31 2.9309

#define epsilon_32 0.3817

#define epsilon_34 0.3704

#define epsilon_40 0.4972

#define epsilon_41 7.9552

#define epsilon_42 0.4366

117

#define epsilon_43 0.4610

#define alpha 1.

#define urf 0.01

#define diff_limit_upper 1.e-5

#define diff_limit_lower 1.e-15

FILE *fout;

/**/

/* DIFFUSION */

/**/

DEFINE_EXECUTE_AT_END(UDMI_computation)

{

 real rp, MWav, cell_temp, p_operating;

 real Pi_0, Pi_1, Pi_2, Pi_3, Pi_4;

 real Dk_i_0, Dk_i_1, Dk_i_2, Dk_i_3, Dk_i_4;

 real sum0x, sum1x, sum2x, sum3x, sum4x;

 real sum0y, sum1y, sum2y, sum3y, sum4y;

 real sum0z, sum1z, sum2z, sum3z, sum4z;

 real sum2_x, sum2_y, sum2_z;

 real sum3, diff;

 real sum_v_0, sum_v_1, sum_v_2, sum_v_3, sum_v_4;

 real Delta_Pi_0x, Delta_Pi_1x, Delta_Pi_2x, Delta_Pi_3x, Delta_Pi_4x;

 real Delta_Pi_0y, Delta_Pi_1y, Delta_Pi_2y, Delta_Pi_3y, Delta_Pi_4y;

 real Delta_Pi_0z, Delta_Pi_1z, Delta_Pi_2z, Delta_Pi_3z, Delta_Pi_4z;

 real Ni_0x, Ni_1x, Ni_2x, Ni_3x, Ni_4x;

 real Ni_0y, Ni_1y, Ni_2y, Ni_3y, Ni_4y;

 real Ni_0z, Ni_1z, Ni_2z, Ni_3z, Ni_4z;

 real Dij_01, Dij_02, Dij_03, Dij_04, Dij_12, Dij_13, Dij_14, Dij_23, Dij_24, Dij_34;

 real Ki_0, Ki_1, Ki_2, Ki_3, Ki_4;

 real dens;

 int zone_ID;

 real diff_matrix_0x, diff_matrix_1x, diff_matrix_2x, diff_matrix_3x, diff_matrix_4x;

 real diff_matrix_0y, diff_matrix_1y, diff_matrix_2y, diff_matrix_3y, diff_matrix_4y;

 real diff_matrix_0z, diff_matrix_1z, diff_matrix_2z, diff_matrix_3z, diff_matrix_4z;

 int pb;

 Domain *d;

 cell_t c;

 Thread *t;

 int ID;

 d = Get_Domain(1);

 for (ID = 3; ID <= 14; ++ID)

 {

 t = Lookup_Thread(d, ID);

 begin_c_loop(c,t)

 {

 pb = 0;

 Pi_0 = C_UDSI(c, t, 0);

 Pi_1 = C_UDSI(c, t, 1);

 Pi_2 = C_UDSI(c, t, 2);

 Pi_3 = C_UDSI(c, t, 3);

 Pi_4 = C_UDSI(c, t, 4);

 p_operating = Pi_0 + Pi_1 + Pi_2 + Pi_3 + Pi_4; /* Pa */

 cell_temp = C_T(c, t); /* K */

 rp = 1e-5; /* cm */

118

 sum_v_0 = 24.42;

 sum_v_1 = 7.07;

 sum_v_2 = 18.9;

 sum_v_3 = 26.9;

 sum_v_4 = 12.7;

 /* Getting Di's (m2.s-1) values from the previous iteration. */

 diff_matrix_0x = C_UDMI(c,t,0);

 diff_matrix_0y = C_UDMI(c,t,1);

 diff_matrix_0z = C_UDMI(c,t,2);

 diff_matrix_1x = C_UDMI(c,t,3);

 diff_matrix_1y = C_UDMI(c,t,4);

 diff_matrix_1z = C_UDMI(c,t,5);

 diff_matrix_2x = C_UDMI(c,t,6);

 diff_matrix_2y = C_UDMI(c,t,7);

 diff_matrix_2z = C_UDMI(c,t,8);

 diff_matrix_3x = C_UDMI(c,t,9);

 diff_matrix_3y = C_UDMI(c,t,10);

 diff_matrix_3z = C_UDMI(c,t,11);

 diff_matrix_4x = C_UDMI(c,t,12);

 diff_matrix_4y = C_UDMI(c,t,13);

 diff_matrix_4z = C_UDMI(c,t,14);

 /* Partial pressure gradient (Pa.m-1) calculation. */

 Delta_Pi_0x = C_UDSI_G(c, t, 0)[0]; Delta_Pi_0y = C_UDSI_G(c, t, 0)[1]; Delta_Pi_0z =

C_UDSI_G(c, t, 0)[2];

 Delta_Pi_1x = C_UDSI_G(c, t, 1)[0]; Delta_Pi_1y = C_UDSI_G(c, t, 1)[1]; Delta_Pi_1z =

C_UDSI_G(c, t, 1)[2];

 Delta_Pi_2x = C_UDSI_G(c, t, 2)[0]; Delta_Pi_2y = C_UDSI_G(c, t, 2)[1]; Delta_Pi_2z =

C_UDSI_G(c, t, 2)[2];

 Delta_Pi_3x = C_UDSI_G(c, t, 3)[0]; Delta_Pi_3y = C_UDSI_G(c, t, 3)[1]; Delta_Pi_3z =

C_UDSI_G(c, t, 3)[2];

 Delta_Pi_4x = C_UDSI_G(c, t, 4)[0]; Delta_Pi_4y = C_UDSI_G(c, t, 4)[1]; Delta_Pi_4z =

C_UDSI_G(c, t, 4)[2];

 /* Computation of the effective Knudsen diffusivity (m2.s-1). */

 Dk_i_0 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mch4,0.5);

 Dk_i_1 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mh2,0.5);

 Dk_i_2 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mco,0.5);

 Dk_i_3 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mco2,0.5);

 Dk_i_4 = 1e-4 * epsilon / tau * 9.70e3 * rp * pow(cell_temp/Mh2o,0.5);

 /* Computation of the species molecular fluxes (mol.m-2.s-1) (with Delta_Pi updated to

the new values, and rgas adjusted to the proper units). */

 Ni_0x = - diff_matrix_0x * Delta_Pi_0x / (1.e3 * rgas * cell_temp); Ni_0y = -

diff_matrix_0y * Delta_Pi_0y / (1.e3 * rgas * cell_temp); Ni_0z = - diff_matrix_0z *

Delta_Pi_0z / (1.e3 * rgas * cell_temp);

 Ni_1x = - diff_matrix_1x * Delta_Pi_1x / (1.e3 * rgas * cell_temp); Ni_1y = -

diff_matrix_1y * Delta_Pi_1y / (1.e3 * rgas * cell_temp); Ni_1z = - diff_matrix_1z *

Delta_Pi_1z / (1.e3 * rgas * cell_temp);

 Ni_2x = - diff_matrix_2x * Delta_Pi_2x / (1.e3 * rgas * cell_temp); Ni_2y = -

diff_matrix_2y * Delta_Pi_2y / (1.e3 * rgas * cell_temp); Ni_2z = - diff_matrix_2z *

Delta_Pi_2z / (1.e3 * rgas * cell_temp);

 Ni_3x = - diff_matrix_3x * Delta_Pi_3x / (1.e3 * rgas * cell_temp); Ni_3y = -

diff_matrix_3y * Delta_Pi_3y / (1.e3 * rgas * cell_temp); Ni_3z = - diff_matrix_3z *

Delta_Pi_3z / (1.e3 * rgas * cell_temp);

 Ni_4x = - diff_matrix_4x * Delta_Pi_4x / (1.e3 * rgas * cell_temp); Ni_4y = -

diff_matrix_4y * Delta_Pi_4y / (1.e3 * rgas * cell_temp); Ni_4z = - diff_matrix_4z *

Delta_Pi_4z / (1.e3 * rgas * cell_temp);

 /* Checking for 0 values. */

 if (Ni_0x == 0 || Ni_0y == 0 || Ni_0z == 0)

 pb = 1;

119

 if (Ni_1x == 0 || Ni_1y == 0 || Ni_1z == 0)

 pb = 1;

 if (Ni_2x == 0 || Ni_2y == 0 || Ni_2z == 0)

 pb = 1;

 if (Ni_3x == 0 || Ni_3y == 0 || Ni_3z == 0)

 pb = 1;

 if (Ni_4x == 0 || Ni_4y == 0 || Ni_4z == 0)

 pb = 1;

 if (pb == 0)

 {

 /* Ki (s) computation */

 Ki_0 = mu_0 / (Pi_0 + Pi_1 * epsilon_01 + Pi_2 * epsilon_02 + Pi_3 * epsilon_03 +

Pi_4 * epsilon_04);

 Ki_1 = mu_1 / (Pi_0 * epsilon_10 + Pi_1 + Pi_2 * epsilon_12 + Pi_3 * epsilon_13 +

Pi_4 * epsilon_14);

 Ki_2 = mu_2 / (Pi_0 * epsilon_20 + Pi_1 * epsilon_21 + Pi_2 + Pi_3 * epsilon_23 +

Pi_4 * epsilon_24);

 Ki_3 = mu_3 / (Pi_0 * epsilon_30 + Pi_1 * epsilon_31 + Pi_2 * epsilon_32 + Pi_3 +

Pi_4 * epsilon_34);

 Ki_4 = mu_4 / (Pi_0 * epsilon_40 + Pi_1 * epsilon_41 + Pi_2 * epsilon_42 + Pi_3 *

epsilon_43 + Pi_4);

 /* Dij (m2.s-1) effective computation */

 Dij_01 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mch4+Mh2)

/(Mch4*Mh2),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) + pow(sum_v_1,1/3),2));

 Dij_02 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mch4+Mco)

/(Mch4*Mco),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) + pow(sum_v_2,1/3),2));

 Dij_03 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) *

pow((Mch4+Mco2)/(Mch4*Mco2),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) +

pow(sum_v_3,1/3),2));

 Dij_04 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) *

pow((Mch4+Mh2o)/(Mch4*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_0,1/3) +

pow(sum_v_4,1/3),2));

 Dij_12 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mh2+Mco)

/(Mh2*Mco),0.5) / ((p_operating/101325) * pow(pow(sum_v_1,1/3) + pow(sum_v_2,1/3),2));

 Dij_13 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mh2+Mco2)

/(Mh2*Mco2),0.5) / ((p_operating/101325) * pow(pow(sum_v_1,1/3) + pow(sum_v_3,1/3),2));

 Dij_14 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mh2+Mh2o)

/(Mh2*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_1,1/3) + pow(sum_v_4,1/3),2));

 Dij_23 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mco+Mco2)

/(Mco*Mco2),0.5) / ((p_operating/101325) * pow(pow(sum_v_2,1/3) + pow(sum_v_3,1/3),2));

 Dij_24 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) * pow((Mco+Mh2o)

/(Mco*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_2,1/3) + pow(sum_v_4,1/3),2));

 Dij_34 = epsilon / tau * 1.e-7 * pow(cell_temp,1.75) *

pow((Mco2+Mh2o)/(Mco2*Mh2o),0.5) / ((p_operating/101325) * pow(pow(sum_v_3,1/3) +

pow(sum_v_4,1/3),2));

 /* Intermediate sum calculation (s.m-2). */

 sum0x = 1/(Ni_0x * p_operating) * ((Pi_1 * Ni_0x - Pi_0 * Ni_1x) / Dij_01 +

(Pi_2 * Ni_0x - Pi_0 * Ni_2x) / Dij_02 + (Pi_3 * Ni_0x - Pi_0 * Ni_3x) / Dij_03 + (Pi_4 *

Ni_0x - Pi_0 * Ni_4x) / Dij_04);

 sum0y = 1/(Ni_0y * p_operating) * ((Pi_1 * Ni_0y - Pi_0 * Ni_1y) / Dij_01 +

(Pi_2 * Ni_0y - Pi_0 * Ni_2y) / Dij_02 + (Pi_3 * Ni_0y - Pi_0 * Ni_3y) / Dij_03 + (Pi_4 *

Ni_0y - Pi_0 * Ni_4y) / Dij_04);

 sum0z = 1/(Ni_0z * p_operating) * ((Pi_1 * Ni_0z - Pi_0 * Ni_1z) / Dij_01 +

(Pi_2 * Ni_0z - Pi_0 * Ni_2z) / Dij_02 + (Pi_3 * Ni_0z - Pi_0 * Ni_3z) / Dij_03 + (Pi_4 *

Ni_0z - Pi_0 * Ni_4z) / Dij_04);

 sum1x = 1/(Ni_1x * p_operating) * ((Pi_0 * Ni_1x - Pi_1 * Ni_0x) / Dij_01 +

(Pi_2 * Ni_1x - Pi_1 * Ni_2x) / Dij_12 + (Pi_3 * Ni_1x - Pi_1 * Ni_3x) / Dij_13 + (Pi_4 *

Ni_1x - Pi_1 * Ni_4x) / Dij_14);

120

 sum1y = 1/(Ni_1y * p_operating) * ((Pi_0 * Ni_1y - Pi_1 * Ni_0y) / Dij_01 +

(Pi_2 * Ni_1y - Pi_1 * Ni_2y) / Dij_12 + (Pi_3 * Ni_1y - Pi_1 * Ni_3y) / Dij_13 + (Pi_4 *

Ni_1y - Pi_1 * Ni_4y) / Dij_14);

 sum1z = 1/(Ni_1z * p_operating) * ((Pi_0 * Ni_1z - Pi_1 * Ni_0z) / Dij_01 +

(Pi_2 * Ni_1z - Pi_1 * Ni_2z) / Dij_12 + (Pi_3 * Ni_1z - Pi_1 * Ni_3z) / Dij_13 + (Pi_4 *

Ni_1z - Pi_1 * Ni_4z) / Dij_14);

 sum2x = 1/(Ni_2x * p_operating) * ((Pi_0 * Ni_2x - Pi_2 * Ni_0x) / Dij_02 +

(Pi_1 * Ni_2x - Pi_2 * Ni_1x) / Dij_12 + (Pi_3 * Ni_2x - Pi_2 * Ni_3x) / Dij_23 + (Pi_4 *

Ni_2x - Pi_2 * Ni_4x) / Dij_24);

 sum2y = 1/(Ni_2y * p_operating) * ((Pi_0 * Ni_2y - Pi_2 * Ni_0y) / Dij_02 +

(Pi_1 * Ni_2y - Pi_2 * Ni_1y) / Dij_12 + (Pi_3 * Ni_2y - Pi_2 * Ni_3y) / Dij_23 + (Pi_4 *

Ni_2y - Pi_2 * Ni_4y) / Dij_24);

 sum2z = 1/(Ni_2z * p_operating) * ((Pi_0 * Ni_2z - Pi_2 * Ni_0z) / Dij_02 +

(Pi_1 * Ni_2z - Pi_2 * Ni_1z) / Dij_12 + (Pi_3 * Ni_2z - Pi_2 * Ni_3z) / Dij_23 + (Pi_4 *

Ni_2z - Pi_2 * Ni_4z) / Dij_24);

 sum3x = 1/(Ni_3x * p_operating) * ((Pi_0 * Ni_3x - Pi_3 * Ni_0x) / Dij_03 +

(Pi_1 * Ni_3x - Pi_3 * Ni_1x) / Dij_13 + (Pi_2 * Ni_3x - Pi_3 * Ni_2x) / Dij_23 + (Pi_4 *

Ni_3x - Pi_3 * Ni_4x) / Dij_34);

 sum3y = 1/(Ni_3y * p_operating) * ((Pi_0 * Ni_3y - Pi_3 * Ni_0y) / Dij_03 +

(Pi_1 * Ni_3y - Pi_3 * Ni_1y) / Dij_13 + (Pi_2 * Ni_3y - Pi_3 * Ni_2y) / Dij_23 + (Pi_4 *

Ni_3y - Pi_3 * Ni_4y) / Dij_34);

 sum3z = 1/(Ni_3z * p_operating) * ((Pi_0 * Ni_3z - Pi_3 * Ni_0z) / Dij_03 +

(Pi_1 * Ni_3z - Pi_3 * Ni_1z) / Dij_13 + (Pi_2 * Ni_3z - Pi_3 * Ni_2z) / Dij_23 + (Pi_4 *

Ni_3z - Pi_3 * Ni_4z) / Dij_34);

 sum4x = 1/(Ni_4x * p_operating) * ((Pi_0 * Ni_4x - Pi_4 * Ni_0x) / Dij_04 +

(Pi_1 * Ni_4x - Pi_4 * Ni_1x) / Dij_14 + (Pi_2 * Ni_4x - Pi_4 * Ni_2x) / Dij_24 + (Pi_3 *

Ni_4x - Pi_4 * Ni_3x) / Dij_34);

 sum4y = 1/(Ni_4y * p_operating) * ((Pi_0 * Ni_4y - Pi_4 * Ni_0y) / Dij_04 +

(Pi_1 * Ni_4y - Pi_4 * Ni_1y) / Dij_14 + (Pi_2 * Ni_4y - Pi_4 * Ni_2y) / Dij_24 + (Pi_3 *

Ni_4y - Pi_4 * Ni_3y) / Dij_34);

 sum4z = 1/(Ni_4z * p_operating) * ((Pi_0 * Ni_4z - Pi_4 * Ni_0z) / Dij_04 +

(Pi_1 * Ni_4z - Pi_4 * Ni_1z) / Dij_14 + (Pi_2 * Ni_4z - Pi_4 * Ni_2z) / Dij_24 + (Pi_3 *

Ni_4z - Pi_4 * Ni_3z) / Dij_34);

 /* Final calculation of diff_matrix (m2.s-1). */

 diff_matrix_0x = 1 / (1/(Dk_i_0 + rp*rp*epsilon*1.e-4/(8*Ki_0*tau)) + sum0x);

 diff_matrix_0y = 1 / (1/(Dk_i_0 + rp*rp*epsilon*1.e-4/(8*Ki_0*tau)) + sum0y);

 diff_matrix_0z = 1 / (1/(Dk_i_0 + rp*rp*epsilon*1.e-4/(8*Ki_0*tau)) + sum0z);

 diff_matrix_1x = 1 / (1/(Dk_i_1 + rp*rp*epsilon*1.e-4/(8*Ki_1*tau)) + sum1x);

 diff_matrix_1y = 1 / (1/(Dk_i_1 + rp*rp*epsilon*1.e-4/(8*Ki_1*tau)) + sum1y);

 diff_matrix_1z = 1 / (1/(Dk_i_1 + rp*rp*epsilon*1.e-4/(8*Ki_1*tau)) + sum1z);

 diff_matrix_2x = 1 / (1/(Dk_i_2 + rp*rp*epsilon*1.e-4/(8*Ki_2*tau)) + sum2x);

 diff_matrix_2y = 1 / (1/(Dk_i_2 + rp*rp*epsilon*1.e-4/(8*Ki_2*tau)) + sum2y);

 diff_matrix_2z = 1 / (1/(Dk_i_2 + rp*rp*epsilon*1.e-4/(8*Ki_2*tau)) + sum2z);

 diff_matrix_3x = 1 / (1/(Dk_i_3 + rp*rp*epsilon*1.e-4/(8*Ki_3*tau)) + sum3x);

 diff_matrix_3y = 1 / (1/(Dk_i_3 + rp*rp*epsilon*1.e-4/(8*Ki_3*tau)) + sum3y);

 diff_matrix_3z = 1 / (1/(Dk_i_3 + rp*rp*epsilon*1.e-4/(8*Ki_3*tau)) + sum3z);

 diff_matrix_4x = 1 / (1/(Dk_i_4 + rp*rp*epsilon*1.e-4/(8*Ki_4*tau)) + sum4x);

 diff_matrix_4y = 1 / (1/(Dk_i_4 + rp*rp*epsilon*1.e-4/(8*Ki_4*tau)) + sum4y);

 diff_matrix_4z = 1 / (1/(Dk_i_4 + rp*rp*epsilon*1.e-4/(8*Ki_4*tau)) + sum4z);

 C_UDMI(c,t,0) = C_UDMI(c,t,0) + (diff_matrix_0x - C_UDMI(c,t,0)) * urf;

 C_UDMI(c,t,1) = C_UDMI(c,t,1) + (diff_matrix_0y - C_UDMI(c,t,1)) * urf;

 C_UDMI(c,t,2) = C_UDMI(c,t,2) + (diff_matrix_0z - C_UDMI(c,t,2)) * urf;

 C_UDMI(c,t,3) = C_UDMI(c,t,3) + (diff_matrix_1x - C_UDMI(c,t,3)) * urf;

121

 C_UDMI(c,t,4) = C_UDMI(c,t,4) + (diff_matrix_1y - C_UDMI(c,t,4)) * urf;

 C_UDMI(c,t,5) = C_UDMI(c,t,5) + (diff_matrix_1z - C_UDMI(c,t,5)) * urf;

 C_UDMI(c,t,6) = C_UDMI(c,t,6) + (diff_matrix_2x - C_UDMI(c,t,6)) * urf;

 C_UDMI(c,t,7) = C_UDMI(c,t,7) + (diff_matrix_2y - C_UDMI(c,t,7)) * urf;

 C_UDMI(c,t,8) = C_UDMI(c,t,8) + (diff_matrix_2z - C_UDMI(c,t,8)) * urf;

 C_UDMI(c,t,9) = C_UDMI(c,t,9) + (diff_matrix_3x - C_UDMI(c,t,9)) * urf;

 C_UDMI(c,t,10) = C_UDMI(c,t,10) + (diff_matrix_3y - C_UDMI(c,t,10)) * urf;

 C_UDMI(c,t,11) = C_UDMI(c,t,11) + (diff_matrix_3z - C_UDMI(c,t,11)) * urf;

 C_UDMI(c,t,12) = C_UDMI(c,t,12) + (diff_matrix_4x - C_UDMI(c,t,12)) * urf;

 C_UDMI(c,t,13) = C_UDMI(c,t,13) + (diff_matrix_4y - C_UDMI(c,t,13)) * urf;

 C_UDMI(c,t,14) = C_UDMI(c,t,14) + (diff_matrix_4z - C_UDMI(c,t,14)) * urf;

 if (C_UDMI(c,t,0) > diff_limit_upper)

 C_UDMI(c, t, 0) = diff_limit_upper;

 if (C_UDMI(c,t,0) < diff_limit_lower)

 C_UDMI(c, t, 0) = 1.e-10;

 if (C_UDMI(c,t,1) > diff_limit_upper)

 C_UDMI(c, t, 1) = diff_limit_upper;

 if (C_UDMI(c,t,1) < diff_limit_lower)

 C_UDMI(c, t, 1) = 1.e-10;

 if (C_UDMI(c,t,2) > diff_limit_upper)

 C_UDMI(c, t, 2) = diff_limit_upper;

 if (C_UDMI(c,t,2) < diff_limit_lower)

 C_UDMI(c, t, 2) = 1.e-10;

 if (C_UDMI(c,t,3) > diff_limit_upper)

 C_UDMI(c, t, 3) = diff_limit_upper;

 if (C_UDMI(c,t,3) < diff_limit_lower)

 C_UDMI(c, t, 3) = 1.e-10;

 if (C_UDMI(c,t,4) > diff_limit_upper)

 C_UDMI(c, t, 4) = diff_limit_upper;

 if (C_UDMI(c,t,4) < diff_limit_lower)

 C_UDMI(c, t, 4) = 1.e-10;

 if (C_UDMI(c,t,5) > diff_limit_upper)

 C_UDMI(c, t, 5) = diff_limit_upper;

 if (C_UDMI(c,t,5) < diff_limit_lower)

 C_UDMI(c, t, 5) = 1.e-10;

 if (C_UDMI(c,t,6) > diff_limit_upper)

 C_UDMI(c, t, 6) = diff_limit_upper;

 if (C_UDMI(c,t,6) < diff_limit_lower)

 C_UDMI(c, t, 6) = 1.e-10;

 if (C_UDMI(c,t,7) > diff_limit_upper)

 C_UDMI(c, t, 7) = diff_limit_upper;

 if (C_UDMI(c,t,7) < diff_limit_lower)

 C_UDMI(c, t, 7) = 1.e-10;

 if (C_UDMI(c,t,8) > diff_limit_upper)

 C_UDMI(c, t, 8) = diff_limit_upper;

 if (C_UDMI(c,t,8) < diff_limit_lower)

 C_UDMI(c, t, 8) = 1.e-10;

 if (C_UDMI(c,t,9) > diff_limit_upper)

 C_UDMI(c, t, 9) = diff_limit_upper;

 if (C_UDMI(c,t,9) < diff_limit_lower)

 C_UDMI(c, t, 9) = 1.e-10;

 if (C_UDMI(c,t,10) > diff_limit_upper)

122

 C_UDMI(c, t, 10) = diff_limit_upper;

 if (C_UDMI(c,t,10) < diff_limit_lower)

 C_UDMI(c, t, 10) = 1.e-10;

 if (C_UDMI(c,t,11) > diff_limit_upper)

 C_UDMI(c, t, 11) = diff_limit_upper;

 if (C_UDMI(c,t,11) < diff_limit_lower)

 C_UDMI(c, t, 11) = 1.e-10;

 if (C_UDMI(c,t,12) > diff_limit_upper)

 C_UDMI(c, t, 12) = diff_limit_upper;

 if (C_UDMI(c,t,12) < diff_limit_lower)

 C_UDMI(c, t, 12) = 1.e-10;

 if (C_UDMI(c,t,13) > diff_limit_upper)

 C_UDMI(c, t, 13) = diff_limit_upper;

 if (C_UDMI(c,t,13) < diff_limit_lower)

 C_UDMI(c, t, 13) = 1.e-10;

 if (C_UDMI(c,t,14) > diff_limit_upper)

 C_UDMI(c, t, 14) = diff_limit_upper;

 if (C_UDMI(c,t,14) < diff_limit_lower)

 C_UDMI(c, t, 14) = 1.e-10;

 }

 }

 end_c_loop(c,t)

 }

}

DEFINE_DIFFUSIVITY(uds0_diff_x,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 0 in the x direction. */

 diff = C_UDMI(c,t,0) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds0_diff_y,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 0 in the y direction. */

123

 diff = C_UDMI(c,t,1) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds0_diff_z,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 0 in the z direction. */

 diff = C_UDMI(c,t,2) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds1_diff_x,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 1 in the x direction. */

 diff = C_UDMI(c,t,3) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds1_diff_y,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 1 in the y direction. */

 diff = C_UDMI(c,t,4) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

124

DEFINE_DIFFUSIVITY(uds1_diff_z,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 1 in the z direction. */

 diff = C_UDMI(c,t,5) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds2_diff_x,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 2 in the x direction. */

 diff = C_UDMI(c,t,6) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds2_diff_y,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 2 in the y direction. */

 diff = C_UDMI(c,t,7) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds2_diff_z,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

125

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 2 in the z direction. */

 diff = C_UDMI(c,t,8) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds3_diff_x,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 3 in the x direction. */

 diff = C_UDMI(c,t,9) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds3_diff_y,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 3 in the y direction. */

 diff = C_UDMI(c,t,10) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds3_diff_z,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

126

/* Calculation of diff for specy 3 in the z direction. */

 diff = C_UDMI(c,t,11) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds4_diff_x,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 4 in the x direction. */

 diff = C_UDMI(c,t,12) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds4_diff_y,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 4 in the y direction. */

 diff = C_UDMI(c,t,13) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

DEFINE_DIFFUSIVITY(uds4_diff_z,c,t,i)

{

 real cell_temp;

 real diff;

 real Ptot, Mav;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 Mav = 1.e-3 * Mav; /* putting Mav in kg.mol-1. */

 cell_temp = C_T(c, t);

/* Calculation of diff for specy 4 in the z direction. */

 diff = C_UDMI(c,t,14) / (rgas * cell_temp) * Mav * alpha;

 return diff;

}

127

DEFINE_DIFFUSIVITY(uds0_fluid_diff,c,t,i)

{

 real cell_temp;

 real Mav, Ptot;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 cell_temp = C_T(c, t);

 return (C_R(c,t) * 1.23e-05 + C_MU_T(c,t)/0.7) * Mav/(C_R(c,t) * rgas * cell_temp);

}

DEFINE_DIFFUSIVITY(uds1_fluid_diff,c,t,i)

{

 real cell_temp;

 real Mav, Ptot;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 cell_temp = C_T(c, t);

 return (C_R(c,t) * 2.25e-05 + C_MU_T(c,t)/0.7) * Mav/(C_R(c,t) * rgas * cell_temp);

}

DEFINE_DIFFUSIVITY(uds2_fluid_diff,c,t,i)

{

 real cell_temp;

 real Mav, Ptot;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 cell_temp = C_T(c, t);

 return (C_R(c,t) * 7.2e-06 + C_MU_T(c,t)/0.7) * Mav/(C_R(c,t) * rgas * cell_temp);

}

DEFINE_DIFFUSIVITY(uds3_fluid_diff,c,t,i)

{

 real cell_temp;

 real Mav, Ptot;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 cell_temp = C_T(c, t);

 return (C_R(c,t) * 4.9e-06 + C_MU_T(c,t)/0.7) * Mav/(C_R(c,t) * rgas * cell_temp);

}

DEFINE_DIFFUSIVITY(uds4_fluid_diff,c,t,i)

{

 real cell_temp;

 real Mav, Ptot;

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) + C_UDSI(c, t,

4);

128

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c, t,

3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 cell_temp = C_T(c, t);

 return (C_R(c,t) * 2.09e-05 + C_MU_T(c,t)/0.7) * Mav/(C_R(c,t) * rgas * cell_temp);

}

/**/

/* REACTION */

/**/

DEFINE_SOURCE(spe_uds0, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dr1dPch4, dr2dPch4, dr3dPch4;

 real cell_temp;

 real Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 cell_temp = C_T(cell, thread);

 Pch4 = C_UDSI(cell, thread, 0);

 Ph2 = C_UDSI(cell, thread, 1);

 Pco = C_UDSI(cell, thread, 2);

 Pco2 = C_UDSI(cell, thread, 3);

 Ph2o = C_UDSI(cell, thread, 4);

 alph1 = -1.0;

 alph2 = 0.0;

 alph3 = -1.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

129

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mch4;

 dr1dPch4 = k1*pow(Ph2o,0.5)/pow(Ph2,1.25)*(1-Prev1/Kp1)/pow(DEN,2.)

 +k1*Pkin1*(Pco*pow(Ph2,3.)/Kp1/pow(Pch4,2.)/Ph2o)/pow(DEN,2.);

 dr2dPch4 = 0;

 dr3dPch4 = k3*Ph2o/pow(Ph2,1.75)*(1-Prev3/Kp3)/pow(DEN,2.)

 +k3*Pkin3*(Pco2*pow(Ph2,4.)/Kp3/pow(Pch4,2.)/pow(Ph2o,2.))/pow(DEN,2.);

 dS[eqn] = rhos*Mch4*(alph1*dr1dPch4+alph2*dr2dPch4+alph3*dr3dPch4);

 }

 return source;

}

DEFINE_SOURCE(spe_uds1, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dDENdPh2, dr1dPh2, dr2dPh2, dr3dPh2;

 real cell_temp;

 real Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 cell_temp = C_T(cell, thread);

 Pch4 = C_UDSI(cell, thread, 0);

 Ph2 = C_UDSI(cell, thread, 1);

 Pco = C_UDSI(cell, thread, 2);

 Pco2 = C_UDSI(cell, thread, 3);

 Ph2o = C_UDSI(cell, thread, 4);

 alph1 = 3.0;

 alph2 = 1.0;

 alph3 = 4.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

130

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mh2;

 dDENdPh2 = 0.5*kh/pow(Ph2,0.5)-kh2o*Ph2o/pow(Ph2,2.);

 dr1dPh2 = k1*(-1.25*Pch4*pow(Ph2o,0.5)/pow(Ph2,2.25))*(1-Prev1/Kp1)/pow(DEN,2.)

 +k1*Pkin1*(-3.0*Pco*pow(Ph2,3.)/Kp1/Pch4/Ph2o)/pow(DEN,2.)

 -2.0*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdPh2;

 dr2dPh2 = k2*(-0.25*Pco*pow(Ph2o,0.5)/pow(Ph2,1.5))*(1-Prev2/Kp2)/pow(DEN,2.)

 +k2*Pkin2*(-1.0*Pco2)/Kp2/Pco/Ph2o/pow(DEN,2.)

 -2.0*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdPh2;

 dr3dPh2 = k3*(-1.75*Pch4*Ph2o)/pow(Ph2,2.75)*(1-Prev3/Kp3)/pow(DEN,2.)

 +k3*Pkin3*(-4.0*Pco2*pow(Ph2,3.))/Kp3/Pch4/pow(Ph2o,2.)/pow(DEN,2.)

 -2.0*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdPh2;

 dS[eqn] = rhos*Mh2*(alph1*dr1dPh2+alph2*dr2dPh2+alph3*dr3dPh2);

 }

 return source;

}

DEFINE_SOURCE(spe_uds2, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dDENdPco, dr1dPco, dr2dPco, dr3dPco;

 real cell_temp;

 real Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 cell_temp = C_T(cell, thread);

 Pch4 = C_UDSI(cell, thread, 0);

 Ph2 = C_UDSI(cell, thread, 1);

 Pco = C_UDSI(cell, thread, 2);

 Pco2 = C_UDSI(cell, thread, 3);

 Ph2o = C_UDSI(cell, thread, 4);

 alph1 = 1.0;

 alph2 = -1.0;

 alph3 = 0.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

131

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mco;

 dDENdPco = kco;

 dr1dPco = k1*Pkin1*(-1.0*pow(Ph2,3.)/Kp1/Pch4/Ph2o)/pow(DEN,2.)

 -2.0*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdPco;

 dr2dPco = k2*pow(Ph2o,0.5)/pow(Ph2,0.5)*(1-Prev2/Kp2)/pow(DEN,2.)

 +k2*Pkin2*(Ph2*Pco2)/Kp2/pow(Pco,2.)/Ph2o/pow(DEN,2.)

 -2.0*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdPco;

 dr3dPco = -2.0*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdPco;

 dS[eqn] = rhos*Mco*(alph1*dr1dPco+alph2*dr2dPco+alph3*dr3dPco);

 }

 return source;

}

DEFINE_SOURCE(spe_uds3, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dr1dPco2, dr2dPco2, dr3dPco2;

 real cell_temp;

 real Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 cell_temp = C_T(cell, thread);

 Pch4 = C_UDSI(cell, thread, 0);

 Ph2 = C_UDSI(cell, thread, 1);

 Pco = C_UDSI(cell, thread, 2);

 Pco2 = C_UDSI(cell, thread, 3);

 Ph2o = C_UDSI(cell, thread, 4);

 alph1 = 0.0;

 alph2 = 1.0;

 alph3 = 1.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

132

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mco2;

 dr1dPco2 = 0;

 dr2dPco2 = k2*Pkin2*(-1.0*Ph2)/Kp2/Pco/Ph2o/pow(DEN,2.);

 dr3dPco2 = k3*Pkin3*(-1.0*pow(Ph2,4.)/Kp3/Pch4/pow(Ph2o,2.))/pow(DEN,2.);

 dS[eqn] = rhos*Mco2*(alph1*dr1dPco2+alph2*dr2dPco2+alph3*dr3dPco2);

 }

 return source;

}

DEFINE_SOURCE(spe_uds4, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dDENdPh2o, dr1dPh2o, dr2dPh2o, dr3dPh2o;

 real cell_temp;

 real Pch4, Ph2, Pco, Pco2, Ph2o;

 real alph1, alph2, alph3;

 cell_temp = C_T(cell, thread);

 Pch4 = C_UDSI(cell, thread, 0);

 Ph2 = C_UDSI(cell, thread, 1);

 Pco = C_UDSI(cell, thread, 2);

 Pco2 = C_UDSI(cell, thread, 3);

 Ph2o = C_UDSI(cell, thread, 4);

 alph1 = -1.0;

 alph2 = -1.0;

 alph3 = -2.0;

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

133

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(alph1*r1+alph2*r2+alph3*r3)*Mh2o;

 dDENdPh2o = kh2o/Ph2;

 dr1dPh2o = 0.5*k1*Pch4/pow(Ph2o,0.5)/pow(Ph2,1.25)*(1-Prev1/Kp1)/pow(DEN,2.)

 + k1*Pkin1*Pco*pow(Ph2,3.)/Kp1/Pch4/pow(Ph2o,2.)/pow(DEN,2.)

 - 2*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdPh2o;

 dr2dPh2o = 0.5*k2*Pco/pow(Ph2o*Ph2,0.5)*(1-Prev2/Kp2)/pow(DEN,2.)

 + k2*Pkin2*Pco2*Ph2/Kp2/Pco/pow(Ph2o,2.)/pow(DEN,2.)

 - 2*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdPh2o;

 dr3dPh2o = k3*Pch4/pow(Ph2,1.75)*(1-Prev3/Kp3)/pow(DEN,2.)

 + k3*Pkin3*2*Pco2*pow(Ph2,4.)/Kp3/Pch4/pow(Ph2o,3.)/pow(DEN,2.)

 - 2*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdPh2o;

 dS[eqn] = rhos*Mh2o*(alph1*dr1dPh2o+alph2*dr2dPh2o+alph3*dr3dPh2o);

 }

 return source;

}

DEFINE_SOURCE(q_tdep, cell, thread, dS, eqn)

{

 real source;

 real kco, kh, kh2o, DEN, k1, Kp1, r1, k2, Kp2, r2, k3, Kp3, r3;

 real Pkin1, Prev1, Pkin2, Prev2, Pkin3, Prev3;

 real dk1dt, dKp1dt, dk2dt, dKp2dt, dk3dt, dKp3dt, dDENdt, dr1dt, dr2dt, dr3dt;

 real cell_temp;

 real Pch4, Ph2, Pco, Pco2, Ph2o;

 cell_temp = C_T(cell, thread);

 Pch4 = C_UDSI(cell, thread, 0);

 Ph2 = C_UDSI(cell, thread, 1);

134

 Pco = C_UDSI(cell, thread, 2);

 Pco2 = C_UDSI(cell, thread, 3);

 Ph2o = C_UDSI(cell, thread, 4);

 if (cell_temp <= 550)

 source = dS[eqn] = 0.0;

 else

 {

 Pkin1 = Pch4*pow(Ph2o,0.5)/pow(Ph2,1.25);

 Prev1 = Pco*pow(Ph2,3.)/Pch4/Ph2o;

 Pkin2 = Pco*pow(Ph2o,0.5)/pow(Ph2,0.5);

 Prev2 = Pco2*Ph2/Pco/Ph2o;

 Pkin3 = Pch4*Ph2o/pow(Ph2,1.75);

 Prev3 = Pco2*pow(Ph2,4.)/Pch4/pow(Ph2o,2.);

 kco = AKco*exp(-delhco/(rgas*cell_temp));

 kh = AKh*exp(-delhh/(rgas*cell_temp));

 kh2o = AKh2o*exp(-delhh2o/(rgas*cell_temp));

 DEN = 1+Pco*kco+pow(Ph2,0.5)*kh+Ph2o/Ph2*kh2o;

 Kp1 = 1.198e17*exp(-26830/(cell_temp));

 Kp2 = 1.767e-2*exp(4400/(cell_temp));

 Kp3 = 2.117e15*exp(-22430/(cell_temp));

 k1 = A1*exp(-E1/(rgas*cell_temp));

 r1 = k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.);

 k2 = A2*exp(-E2/(rgas*cell_temp));

 r2 = k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.);

 k3 = A3*exp(-E3/(rgas*cell_temp));

 r3 = k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.);

 source = rhos*(delHr1*r1+delHr2*r2+delHr3*r3);

 dDENdt = Pco*kco*delhco/rgas/cell_temp/cell_temp

 +pow(Ph2,0.5)*kh*delhh/rgas/cell_temp/cell_temp

 +Ph2o/Ph2*kh2o*delhh2o/rgas/cell_temp/cell_temp;

 dk1dt = k1*E1/rgas/cell_temp/cell_temp;

 dk2dt = k2*E2/rgas/cell_temp/cell_temp;

 dk3dt = k3*E3/rgas/cell_temp/cell_temp;

 dKp1dt = Kp1*26830/cell_temp/cell_temp;

 dKp2dt = Kp2*(-4400)/cell_temp/cell_temp;

 dKp3dt = Kp3*22430/cell_temp/cell_temp;

 dr1dt = dk1dt*Pkin1*(1-Prev1/Kp1)/pow(DEN,2.)

 +k1*Pkin1*(Prev1/Kp1/Kp1)*dKp1dt/pow(DEN,2.)

 -2*k1*Pkin1*(1-Prev1/Kp1)/pow(DEN,3.)*dDENdt;

 dr2dt = dk2dt*Pkin2*(1-Prev2/Kp2)/pow(DEN,2.)

 +k2*Pkin2*(Prev2/Kp2/Kp2)*dKp2dt/pow(DEN,2.)

 -2*k2*Pkin2*(1-Prev2/Kp2)/pow(DEN,3.)*dDENdt;

 dr3dt = dk3dt*Pkin3*(1-Prev3/Kp3)/pow(DEN,2.)

 +k3*Pkin3*(Prev3/Kp3/Kp3)*dKp3dt/pow(DEN,2.)

 -2*k3*Pkin3*(1-Prev3/Kp3)/pow(DEN,3.)*dDENdt;

 dS[eqn] = rhos*(delHr1*dr1dt+delHr2*dr2dt+delHr3*dr3dt);

 }

135

 return source;

}

DEFINE_ADJUST(Yi_adjust,d)

{

 Thread *t;

 cell_t c;

 real Mav, Ptot;

 thread_loop_c(t,d)

 {

 if(NNULLP(T_STORAGE_R(t,SV_P)))

 /* Test if it is fluid by seeing if pressure is available */

 {

 begin_c_loop(c,t)

 {

 Ptot = C_UDSI(c, t, 0) + C_UDSI(c, t, 1) + C_UDSI(c, t, 2) + C_UDSI(c, t, 3) +

C_UDSI(c, t, 4);

 Mav = (C_UDSI(c, t, 0)*Mch4 + C_UDSI(c, t, 1)*Mh2 + C_UDSI(c, t, 2)*Mco + C_UDSI(c,

t, 3)*Mco2 + C_UDSI(c, t, 4)*Mh2o) / Ptot;

 C_YI(c, t, 0) = C_UDSI(c, t, 0) * Mch4 / (Ptot * Mav);

 C_YI(c, t, 1) = C_UDSI(c, t, 1) * Mh2 / (Ptot * Mav);

 C_YI(c, t, 2) = C_UDSI(c, t, 2) * Mco / (Ptot * Mav);

 C_YI(c, t, 3) = C_UDSI(c, t, 3) * Mco2 / (Ptot * Mav);

 /* Yh2o is not adjusted since fluent wants to compute it from "sum Yi = 1". */

 }

 end_c_loop(c,t)

 }

 }

}

/**/

/* INTERFACE */

/**/

DEFINE_PROFILE(coupled_uds_0, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

136

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,0);

 diff1 = C_UDSI_DIFF(c1,tc1,0);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,0) + h1*C_UDSI(c1,tc1,0))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_1, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,1);

 diff1 = C_UDSI_DIFF(c1,tc1,1);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,1) + h1*C_UDSI(c1,tc1,1))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_2, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

137

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,2);

 diff1 = C_UDSI_DIFF(c1,tc1,2);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,2) + h1*C_UDSI(c1,tc1,2))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_3, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,3);

138

 diff1 = C_UDSI_DIFF(c1,tc1,3);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,3) + h1*C_UDSI(c1,tc1,3))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

DEFINE_PROFILE(coupled_uds_4, t, i)

{

 Thread *tc0, *tc1;

 cell_t c0,c1;

 face_t f;

 real A[ND_ND], x0[ND_ND], x1[ND_ND], C1_COORD[ND_ND], C0_COORD[ND_ND], F_COORD[ND_ND];

 real e_x0[ND_ND], e_x1[ND_ND];

 real uds_b, diff0, diff1;

 real h0, h1, A_by_ex0, A_by_ex1;

 real dx0, dx1;

 begin_f_loop(f, t)

 {

 F_AREA(A,f,t);

 c0 = F_C0(f, t);

 c1 = F_C1(f, t);

 tc0 = THREAD_T0(t);

 tc1 = THREAD_T1(t);

 C_CENTROID(C0_COORD, c0, tc0);

 C_CENTROID(C1_COORD, c1, tc1);

 F_CENTROID(F_COORD, f, t);

 NV_VV(x0, =, F_COORD, -, C0_COORD);

 dx0 = NV_MAG(x0);

 NV_VV(x1, =, F_COORD, -, C1_COORD);

 dx1 = NV_MAG(x1);

 NV_VS(e_x0, =, x0, /, dx0);

 NV_VS(e_x1, =, x1, /, dx1);

 A_by_ex0 = NV_DOT(A,A)/NV_DOT(e_x0,A);

 A_by_ex1 = NV_DOT(A,A)/NV_DOT(e_x1,A);

 diff0 = C_UDSI_DIFF(c0,tc0,4);

 diff1 = C_UDSI_DIFF(c1,tc1,4);

 h0 = diff0/dx0*A_by_ex0;

 h1 = -diff1/dx1*A_by_ex1;

 uds_b = (h0*C_UDSI(c0,tc0,4) + h1*C_UDSI(c1,tc1,4))/(h0+h1);

 F_PROFILE(f,t,i) = uds_b;

 }

 end_f_loop(f, t)

}

/**/

/* UDM INITIAL VALUES (Init and On Demand) */

/**/

DEFINE_ON_DEMAND(On_demand_UDMI_Initialization)

{

 Domain *d;

 cell_t c;

 Thread *t;

 int ID;

 d = Get_Domain(1);

139

 for (ID = 2; ID <= 14; ++ID)

 {

 t = Lookup_Thread(d, ID);

 begin_c_loop(c,t)

 {

 C_UDMI(c, t, 0) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 1) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 2) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 3) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 4) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 5) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 6) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 7) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 8) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 9) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 10) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 11) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 12) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 13) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 14) = 1.633 * pow(10.,-6.);

 }

 end_c_loop(c,t)

 }

}

DEFINE_INIT(Init_UDMI_Initialization,d)

{

 cell_t c;

 Thread *t;

 /* loop over all cell threads in the domain */

 thread_loop_c(t,d)

 {

 /* loop over all cells */

 begin_c_loop_all(c,t)

 {

 C_UDMI(c, t, 0) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 1) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 2) = 1.1907 * pow(10.,-6.);

 C_UDMI(c, t, 3) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 4) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 5) = 2.501 * pow(10.,-6.);

 C_UDMI(c, t, 6) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 7) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 8) = 8.0 * pow(10.,-7.);

 C_UDMI(c, t, 9) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 10) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 11) = 4.968 * pow(10.,-7.);

 C_UDMI(c, t, 12) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 13) = 1.633 * pow(10.,-6.);

 C_UDMI(c, t, 14) = 1.633 * pow(10.,-6.);

 }

 end_c_loop_all(c,t)

 }

}

140

Appendices F – Reaction rates parameters

 The reaction parameters for Hou & Hughes‟ (2001) metane steam reforming

kinetic model are the following:

Reaction
Pre-exponential factor

 (kmol.kgcat
-1

.s
-1

)
Activation energy

 (kJ.mol
-1

)

1 5.922.10
8
 209.2

2 6.028.10
-4

 15.4

3 1.093.10
3
 109.4

Table 5 – Reaction rates constants

Besides

𝐾𝐶𝑂 = 5.127 . 10−13 . 𝑒
140

𝑅𝑇

𝐾𝐻 = 5.68 . 10−10 . 𝑒
93.4

𝑅𝑇

𝐾𝐻2𝑂 = 9.251. 𝑒
−15.9

𝑅𝑇

𝐾𝑃1 = 1.198 . 1017 . 𝑒
−26,830

𝑇

𝐾𝑃2 = 1.767 . 10−2. 𝑒
4,400

𝑇

𝐾𝑃3 = 2.117 . 1015 . 𝑒
−22,430

𝑇

where RT is in kJ.mol
-1

.

eq. F-1

eq. F-2

eq. F-3

eq. F-4

eq. F-3

eq. F-4

