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1.0 Introduction   

 Every year over 20,000 [3] people die as a result of being in a fire.  

Although flames have the biggest visual impact, it is usually the smoke produced by the 

combustion of natural and synthetic materials that causes more damage and claims more 

lives.  The main constituents of smoke, both the particulate matter as well as the hot and 

toxic gasses, are devastating to the tracheal and lung tissues.  The damage caused to the 

lung and trachea by inhaling this smoke can increase a fire victim’s susceptibility to 

infectious disease significantly [1]. Between 20% and 50% of people who suffer 

inhalation injury contract pneumonia due to the weakened status of their body’s defenses 

[2] and between 4,800 and 6,400 [1] people die from either pneumonia or other 

complications.  Despite the importance of the inner-lining of the trachea to a burn 

victim’s health and survival, current treatments consist of keeping the patient in a clean 

environment, supplying fresh oxygen, keeping the airways open, and letting the patient’s 

body heal itself [1].  This treatment is not so much an active healing mechanism; rather it 

is a passive means of allowing the body to repair itself.   

 The main goal of this work is to develop a minimally invasive technique that will 

replace lost cells on the inside surface of the trachea as efficiently as possible, actively 

healing the patient’s injury.  Ideally, the patient would receive a single treatment and then 

make a complete recovery on his or her own.  The main challenge lies in delivering an 

even layer of intact cells to the inner-surface of the trachea in such a manner that they 

will stay in place and will replace the damaged or missing tissue. The overall approach is 

to spray a suspension, composed of epithelial cells in an aqueous solution of Pluronic F-

127 polymer, onto the trachea using a jet atomizer. Because Pluronic F-127 solutions can 
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be liquids at room temperature but gels at body temperature, the role of the polymer will 

be to immobilize the cells onto the tracheal surface long enough for them to attach and 

grow.  

The trachea is a long, hard tube of cartilaginous rings that starts at the throat, in 

front of the esophageal opening, and runs down into the bronchi which open into the 

lungs (Figure 1.1).  The trachea is 1.90cm to 2.54cm in diameter and approximately 

10.16 cm long, and is generally larger in the male than female.  The outside of the trachea 

is ridged while the inside of the trachea is smooth and lined with ciliated epithelium.                   
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Figure 1.1:  A diagram of the male trachea showing the dimensions of the opening and 

branches for the bronchi. [4] 

 

Figure 1.2:  A cross-section of columnar epithelium showing the features of the inner-

trachea surface. [5] 
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 The ciliated epithelial cells illustrated in Fig. 1.2, fulfill two main roles in the 

body’s defense system. First, they provide a direct, physical barrier against bacteria and 

other foreign objects that enter the trachea with the air inhaled in normal respiration.  In 

addition, the cells are endowed with cilia, small hairs that can move. Thus, the cilia can 

transport mucous from the lungs, together with encapsulated foreign particles and 

bacteria, up to the mouth [18] where it can be swallowed or expectorated.  Without a 

functioning tracheal lining the body’s defense against airborne disease and contaminants 

is severely hindered, making it more susceptible to infection. 

The key biotechnological advance that makes the work in thesis possible is in 

vitro culture of mammalian cells. In vitro culture of mammalian cells only became 

common 20 years ago, and not until about 10 years ago did actual application of tissue 

engineering get a real start with the pioneering work of doctors Joseph and Charles 

Vacanti [19].  One of the reasons for this is the difficulty of duplicating the environment 

of the body for the cells to grow in.  In addition to keeping the cells warm and supplied 

with air there is also the difficulty of preventing infection by bacteria or molds and  the 

difficulty of feeding them the right combination of nutrients and growth factors to make 

them behave as they would within the body.  A number of studies have investigated 

optimal culture conditions and media compositions for tracheal epithelial cells [23, 24].  

A second important enabling technology is the development of block copolymers 

such as Pluronic F-127. This polymer, developed by BASF, is biocompatible [8, 9, 10, 14]  

and  has had extensive experimental trials performed on it in the field of tissue 

engineering.  The basic make-up of Pluronic copolymers is a three block structure of 

ethylene oxide, propylene oxide and ethylene oxide as shown in figure 1.5 
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Figure 1.5:  The block structure of a typical Pluronic co-polymer showing the building 

blocks of the structure [16]. 

 

As illustrated in the phase diagram in Fig. 1.6, Pluronic F-127 is a liquid at low 

temperatures and concentrations and gels as the temperature and concentration increase.  
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Figure 1.6:  The phase diagram for Pluronic F-127 copolymer in water showing 

gellation at body temperature and above at a concentration of a little more than 15%wt. 

and above.  Lines are drawn at 12%wt. and 15%wt. to indicate solutions used in this 

work as well as a line at 18% to show where a known gel boundary occurs [16]. 

 

For the work in this project, however, the standard phase diagram is not 

appropriate since cells mixed in a water solution die of osmotic shock.  Therefore, all 

Pluronic F-127 mixtures made for this work were mixed in PBS or Phosphate-Buffered 
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Saline.  The salts present in PBS directly affect the gellation phase boundary of the 

polymer.  Although experiments were not carried out to determine the precise shift in the 

phase diagram, in general, Pluronic dissolved in PBS gelled at lower concentrations and 

cooler temperatures than Pluronic dissolved in water.  These observations are supported 

by the work done by Susan Roberts and her group at UMass Amherst who studied the 

effect of various solutes on the phase-boundary of Pluronic F-127 [20].  The phase 

diagram for Pluronic mixed in MEM (Modified Eagle Medium, Gibco) is given in figure 

1.7. 

 

Figure 1.7: Phase diagram for Pluronic F-127 mixed in modified eagle medium showing 

a shift of the gellation boundary to lower temperatures and lower concentrations [20]. 

 

Pluronic F-127 has been used as a hydrogel scaffold for various applications in 

tissue engineering, most notably as a way to design cartilage formations such as ears or 

nipples in vivo in plastic surgery [8, 9].  Experiments have also been done with epithelial 

cells in a Pluronic scaffold [17] in vivo.  In vitro experiments have been performed using 

fibroblast cell-lines with an aerosol-generating device [15].  Now experiments have been 
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performed on chondrocyte and epithelial cell lines in combination with an atomizer and 

Pluronic F-127.   

 Current medical technology allows doctors limited access to the trachea through 

the throat. Without cutting the patient open, the trachea can be sealed from the lungs with 

an endotracheal tube and an operation within the trachea can be observed and lit with a 

laryngoscope.  Given the space limitations it is difficult to fit both a laryngoscope in and 

a cell-deposition device into the trachea.  It would, therefore, be beneficial to find a 

device that can reliably deposit cells on the inner-surface of the trachea without need for 

observation during the procedure.   
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Figure 1.3:  A picture of a typical endotracheal tube showing the inner-tube that allows 

respiration while the blue balloon is inflated to close off the lungs.  This prevents 

respiration through the trachea while the operation is occurring. [6] 

  

Most cells are too large to be transported any distance in a small tube by a gas 

stream. Thus, to deliver cells to the trachea efficiently as a spray, one must produce the 

aerosol at the entrance to the trachea, just beyond the vocal chords. An ideal sprayer 

would transport a liquid stream with cells and an air stream to the deposition site, keeping 

both streams separate until the point of aerosolization.    

 This work first developed methods for working with Pluronic and an aerosolizing 

nozzle so that flowrates for both a liquid and air flow rate could be determined that would 

coat a model trachea.  Various model tracheas were experimented with, giving a final 
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model that optimally fit the parameters.  Testing then began on the bovine chondrocyte 

cell line with both viability and in-vitro culturability assays followed by a test on the 

target cell line, porcine epithelium.  The methods of the experiments are presented in 

section 2.0, the results of those experiments are presented in 3.0 and the final conclusions 

from the work as well as avenues of future research are presented in section 4.0.  Section 

5.0 lists the resources used in this paper. 
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2.0 Materials and Methods 

2.1 Medium formulation 

Two medium formulations were used in these experiments.  The base medium 

was prepared by mixing 500 mL of Ham’s F-12 media, 5 mL antibiotics/antimycotics 

(AB/AM, 100 X), and 50 mL Fetal Bovine Serum (FBS, 10X). All of these components 

were ordered from GIBCO. Both the FBS and the AB/AM were stored in a -20oC freezer 

until they were thawed and added to the F-12 media.  This was the medium used to 

culture bovine chondrocytes. To culture porcine epithelial cells, three additional 

components were added to the base medium.  Insulin 500µg/mL (Sigma-Aldrich) was 

stored in the refrigerator at 4oC and 5 mL of the stock solution were added to 500 mL of 

F-12 media giving a 2X final concentration of insulin.  Two other components, 

transferrin (Sigma) and epidermal growth factor (EGF, Peprotech) were stored in the -

20oC freezer. On the day the cells were fed, the last two components were thawed and 

added to the medium at levels of 1mL at 100X per 100 mL of medium to make a final 

concentration of 1X within the medium.  Medium preparation was carried out under 

sterile conditions 

2.2 Cell Lines 

2.2.1 Bovine Chondrocytes 

 Bovine chondrocytes were harvested from the joint cartilage of a fresh calf 

shoulder (Research 87, Hopkinton, NY) that was refrigerated until use.  The person 

collecting cartilage donned sterile surgical gloves and a facemask. The shoulder was 

placed on a sterile cloth on a countertop that had been disinfected by spraying with 70% 
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ethanol. The joints of the shoulder were covered in iodine and the muscles and tendons 

that hold the joints together were severed with a size 10 scalpel.  With the joint exposed, 

slices of cartilage less than 0.3 cm thick and 0.6 cm in diameter were cut with a new 

disposable scalpel and placed into a vial containing a sterile solution of PBS, antibiotics, 

and antimycotics.  The AB/AM was at 1X concentration in PBS (one 5mL 100X aliquot 

in 500mL of PBS) the vial was prepared in a Biosafety 2 laminar flow hood to ensure 

sterility.     

After evacuating the first joint of all cartilage (the surface was red indicating no 

more cartilage existed and bone was being scraped), a second joint was harvested using a 

new scalpel and a second vial. Once both vials were filled with the appropriate amount of 

cartilage they were each washed 3 times with a sterile PBS solution under a laminar flow 

hood. 

 To wash the cartilage samples the vials were shaken vigorously for 20-30 seconds. 

The solution was then aspirated using a Pasteur pipette.  If cartilage clogged the pipette, 

removing the suction often cleared the blockage.  Tapping the pipette against the inner 

wall of the vial to shake the flake loose also helped otherwise a new and sterile Pasteur 

pipette was used.  Once the original PBS was removed from the vial, 40mL of fresh 

sterile PBS was added to each vial and the cleaning procedure was repeated.   If the cells 

were not immediately digested and used, ~ 40mL of F-12 media with 

antibiotic/antimycotic solution was added to the vials and they were then stored in a 

refrigerator at 4oC.   

To digest the cartilage ~20 mL of F-12 media (no FBS or AB/AM) and 0.06g 

collagenase were added to the sample vials to yield a solution containing ~ 0.3% 
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collagenase.  Collagenase dissolves the matrix that binds the cells together and yields the 

free chondrocyte cells. Digestion was done in sterile conditions.  The Falcon Tubes 

containing the cells and collagenase were tightly capped and covered in parafilm [22].  A 

shake flask incubator at 37oC was used for the digestion.  The time required to digest the 

cartilage depended on the thickness of the cartilage slices.  Approximately 10 – 12 hours 

was enough to digest most of the large pieces 0.6cm by 0.3cm, while 8 – 10 hours was 

required to digest the thinner 0.4cm by 0.2mm pieces.  Digestion times that are too long 

will kill the cells, while digestion times that are too short will not yield enough free cells. 

In the current experiments, 10 hours of digestion resulted in close to 100% free cells with 

90 – 100% viability.   

 The digested cartilage was spun down in a centrifuge for 5 – 7 minutes at 

2000rpm to produce a large cell pellet at the bottom of the Falcon Tube.  The collagenase 

solution was removed and 10 mL of the base medium were added. The suspension was 

mixed on a vortex mixer and 90 µL of the cell suspension was placed in a centrifuge tube 

and mixed with 10 µL of Trypan blue stain (obtained from Fisher).  The capsule was 

sealed, mixed using a vortex mixer and, finally, 10 µL of the cell suspension was placed 

in a haemocytometer to both count the number of cells and determine cell viability.  

Trypan Blue is an exclusion dye that does not stain living cells. It can, however, penetrate 

the cellular membrane of dead cells.  A batch of cells was only used if at least 90% of the 

cells were viable. 

 

2.2.2 Porcine Epithelial Cells 
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 Porcine epithelial cells were harvested from a pig trachea using sterile techniques 

similar to those described above and placed in the appropriate growth medium (Sec. 2.1). 

The cells were grown for several weeks in T-175 or T-225 flasks (Fisher), and passaged 

at weekly intervals to ensure that the cells maintained the epithelial phenotype and that 

they had enough room to grow.  To passage the cells, 10mL (20 mL) of trypsin was 

added to each T-175 (T-225 flask) flask, the flasks were placed on a rotary shaker at a 

speed of 100rpm at 37oC for 10 minutes, and the degree to which cells were freed from 

the bottom of the flask was monitored with a microscope. The free cells and trypsin from 

up to 4 flasks were aspirated into a 50 mL Falcon Tube and sterile PBS was added to 

bring the total volume up to 50mL.  The tube was centrifuged for 7 minutes to form a cell 

pellet, and the trypsin – PBS solution was aspirated leaving the cell pellet intact.  F-12 

media (5 mL) was added to the cell pellet, and the solution and cells were mixed by 

aspirating both into the pipette, and then depositing them back into the tube several times. 

The content of all of the Falcon tubes was combined, diluted with an equal volume of F-

12 medium and counted in a haemocytometer to determine the cell concentration. New 

flasks were seeded at a level 560,000 cells/225cm2. 

 

2.3 The Gelling Agent 

 Pluronic F-127 was used as the gelling agent in the spray experiments.  To 

produce a solution with the desired concentration, a known weight of Pluronic powder 

was dissolved in a known volume of PBS. The density of PBS was taken as 1 g cm-3. All 

solutions sat over night in the lab refrigerator at 2-8oC. For the culturing experiments the 
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Pluronic powder was weighed onto a weight boat and placed in a laminar flow hood for 

five minutes before being mixed with sterile PBS under the hood. 

 

2.4 The Sprayer 

 

Figure 2.1:  Schematic of Liquid and Air Flows in Nozzle 

 

The sprayer, illustrated schematically in Fig. 2.1, was a simple concentric tube design. 

The liquid flowed through the inner 1.6 mm (1/16in) diameter stainless steel tube and the 

gas flows through the outer ¼ inch steel pipe. One end of the outer pipe was capped and 

the inner tube passed through the 0.126 in hole drilled through the center of the cap 

leaving only a 0.08 cm gap between the outer wall of the inner tube and the inside of the 

hole in the cap. The centering piece, close to the cap, kept the inner tube centered while 

still allowing the gas to flow freely. A brass manifold at the other end of the sprayer 

connected the air supply to the outer tube and centered the other end of the inner tube.  

  Figure 2.2 illustrates the complete sprayer setup. The peristaltic pump on the left 

feeds the liquid to the inner tube through 0.8 mm Viton tubing.  The brass manifold is in 

the middle of Fig. 2.2. Model trachea A, described below, is to the right. A rotameter 

6.24 

1.6 

air

air

liquid 
0.8 mm 

air 

To Peristaltic 
pump 
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controlled the flow of air that came from a house air supply or a N2 tank. A 0.2 µm filter 

located upstream of the nozzle, prevented particles from entering the sprayer. Most spray 

experiments used a liquid flow-rate of 2mL/min and an air flow-rate of 6Lpm. 

 

Figure 2.2 A photo of the typical sprayer set up showing the pump, nozzle and air and 

liquid lines. 

 

2.5 The Model Trachea 

Two model tracheas were constructed. The first, model trachea A, was a clear 

acrylic tube16.5 cm long with an inner diameter of 2.54 cm and a smooth inner surface. 

The initial 6.35 cm of the tube represented the length of the mouth and the opening into 

the trachea. During a medical procedure, a balloon may be placed at the end of the 
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trachea to prevent cells from entering the lung. To simulate the effect of the balloon, a 

rubber stopper wrapped in Teflon tape was placed into the end of the tube.  

The second model trachea, model trachea B illustrated in Fig. 3.1.2, had the same 

inner dimensions as trachea A but also had a heat exchanger shell on the outside. Water 

circulated through the gap between in the two tubes and maintained the inner surface of 

trachea B at 37oC. 

 

2.6 Trachea Coating Experiments  

The distribution of Pluronic deposited on the inside of the model tracheas was 

examined in two ways. The first was to examine the deposited film by eye. In these 

experiments the solution was dyed to improve the contrast. In the second method, a 

polypropylene folder (Staples office supply) was cut to the correct size, weighed, and 

placed tightly against the inside wall of the model trachea. The polymer solution was 

sprayed, and then the plastic was removed, weighed, and cut into 2.54cm wide axial 

segments. Each segment was weighed and the sum of the individual weights was 

compared to the total weight determined earlier. Some of the samples were also freeze-

dried after spraying to eliminate the effect of water evaporating from the samples after 

spraying but before they were weighed. 

 

2.7 Cell Viability  

Cell viability was determined using the L-3224: LIVE/DEAD® 

Viability/Cytotoxicity Kit for animal cells (Molecular Probes in Eugene OR, 

http://www.molecularprobes.com).  Each kit contained two 40µL vials of Calcein AM 
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4mM in anhydrous DMSO and two 150µL vials of Ethidium Homodimer-1 2mM in 

DMSO/H2O 1:4 (v/v).  The chemicals were stored in sealed containers at -20oC to 

prevent degradation of the reagents.  Since Calcein AM is susceptible to hydrolysis, 

contact with the atmosphere was minimized as much as possible. Given the limited 

sample sizes in the current experiments, only 0.5mL of dye was mixed for one day of 

testing.   

 For each reagent a concentration of 1µM was effective for staining the bovine 

chondrocytes. Mixing 0.25µL of Ethidium Homodimer and 1µL Calcein AM into 0.5mL 

of PBS yielded the desired concentration. Only 10µL of the dye was required per 

microscope slide and 20 minutes of incubation at room temperature ensured that the cells 

absorbed enough dye to determine which cells were dead or alive under a fluorescent 

microscope. The fluorescent microscope used here could not simultaneously make both 

the both the LIVE and DEAD dyes fluoresce, thus composite images were analyzed in 

Photoshop (versions 6 and 7). Dye concentrations were increased with time as the 

reagents degraded. 

If a cell fluoresces red it was assumed to be dead even if it also fluoresced green. 

A section of each microscope slide (upon which cells had been sprayed and subsequently 

stained) was placed under the fluorescent microscope and exposed to the fluorescent light 

at wavelengths of between 494-517nm and 528-617nm (to make the cells fluoresce green 

and red respectively).  Photos were taken at 100X magnification.   

 

2.8 Cell Spraying Experiments 
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 The sprayer was not sterilized to conduct the cell spraying experiments. A 

suspension containing 2 million cells/ mL was made using 5 mL of a polymer solution. 

The cell suspension was placed in a 50mL Falcon Tube on a Styrofoam tray to the left of 

the sprayer. The tube from the peristaltic pump was placed in the Falcon tube at least one 

cm below the surface but not touching the bottom of the vial. The apparatus was run at 6 

L/min air and 2 ml/min liquid. After completing a spray experiment, the system was 

flushed with water to prevent the tube and sprayer from clogging. If the inner tube of the 

sprayer became a sterile hypodermic needle was used to clear it. 

 

2.9 Culturing Sprayed Cells  

For either cell line, Pluronic solutions were filter-sterilized using a 0.22µm 

syringe filter (Millipore) before being mixed with the sterile cell pellet. To sterilize the 

sprayer, each component was gas sterilized in a separate bag. The bags were sprayed with 

70% ethanol in water and the parts withdrawn using latex gloves. The sprayer was, 

however, reassembled in the lab rather than in a laminar flow hood or other sterile 

environment.  After assembly, the sprayer was run with dry air to maintain a filtered, 

sterile air flow past the nozzle tip and prevent any airborne contaminants depositing on 

the tip.  

 

2.9.1 Bovine Chondrocytes 

Bovine chondrocyte cells were sprayed onto 6-well plates and each well was 

sprayed between 0.5 and 3 seconds. The wells are covered with 5mL of the appropriate 

medium, the plate was covered, and the covered plates were incubated at 37oC with 5% 
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CO2.  During the first set of experiments, medium was changed and photos were taken 

upon spraying, after 7 days and after 11 days.  In later experiments the medium was 

changed more frequently (2 or 4 days). Controls consisted of cells sprayed in PBS and 

unsprayed (pipetted) samples of cells in Pluronic solution or PBS.  The volume of sample 

pipetted on to the plates was calculated by measuring the weight of the sprayed samples 

and assuming that the density of the sprayed samples was 1 g cm-3.  Typically, 7 plates 

were prepared for each concentration of Pluronic and for the PBS control.  The three top 

wells of each 6 well plate were sprayed with the chondrocytes suspension for one second, 

while and the bottom three wells were seeded by pipetting the corresponding suspension.  

Every two days the plates to be harvested were visualized via phase contrast 

microscopy (Nikon TE 200, Microvideo Instruments, Milford, MA) and 

photomicrographs were recorded at 100X using a digital camera (Spot Jr., Microvideo 

Instruments, Milford, MA) The media was aspirated from the plates that were not to be 

harvested, and a fresh 5 mL of media was added to each of the wells, and the plates were 

returned to the incubator.   The media was then aspirated from the plates to be harvested, 

1.5mL of trypsin was added to each well, and the plates were put in a shaking flask 

incubator for 10 minutes.  The plates were banged fifteen times after five minutes and an 

additional fifteen times after ten minutes to help release the cells. Cell release was 

confirmed by observing the samples under the microscope. Any cells that were still 

attached were freed by scouring each well with a sterile cell-scraper for ten seconds by 

hand.  The cell and trypsin suspension from each well was then pipetted into a labeled 

microcentrifuge tube and placed in a micro-centrifuge for 4 minutes with the hinges of 

the tubes facing out.  The tubes were then removed and the trypsin removed from the cell 
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pellet via a two-stage micro-pipette aspiration.  A 1000µL micro-pipette was used to 

remove most of the trypsin followed by a 90µL pipette to remove the trypsin close to the 

cell pellet.  For very low cell concentrations the cell pellet was invisible and so the only 

guideline to prevent removing the pellet was to aspirate from the opposite side of the 

hinge. Enough PBS (≥ 90 µl) was added to each micro-centrifuge tubes produce a cell 

concentration low enough to measure with the haemocytometer.   

 

2.9.2 Culturing Epithelial Cells      

Porcine tracheal epithelial cells were detached from the surface of the T-225 

flasks by use of 20mL of 0.05% Trypsin and at least 10 minutes of incubation in the 

shake flask incubator.  They were then collected into a single, sterile, 50mL Falcon tube.  

After a small sample (100µL) was diluted and placed in a microcentrifuge tube it was 

stained with 10% Trypan blue and the cells were counted using a haemocytometer using 

the average of four large squares. The 14mL of cells in suspension in F-12 media were 

then either re-suspended in PBS and Pluronic and used in the spray culturing experiment 

or were used to seed 10 new T-225 flasks or they were discarded. Each new flask was 

seeded with 560,000 cells (slightly higher than a typical cell culture such as for 

chondrocytes [7]) and 30mL of media (Gibco/Invitrogen guidelines). 

 The cell suspension for the spray experiments was evenly divided between two 

Falcon tubes, under sterile conditions, and spun down into pellets.  The media was 

aspirated and the cell pellets were resuspended into 7 milliliters of Pluronic or sterile PBS 

to form concentrations of 2 million cells/mL.  The cell suspensions were then either 

sprayed or piptted onto 6-well plates as described in the bovine chondrocyte experiments, 
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with the exception that twice as many plates were sprayed.  Each well was covered with 5 

mL of the appropriate medium, covered and placed in a 37oC incubator. Every two days, 

4 plates were photographed and harvested, while the remaining plates were fed with fresh 

media. The harvested cells were then counted using the method outlined in section 2.9.1 

with the exception that the cells were placed in the microcentrifuge for 7 minutes instead 

of 4. 
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3.0 Results and Discussion 

3.1 Spray Coating Experiments 

A fundamental assumption in this work is that the distribution of sprayed cells 

will mirror that of the Polymer.  Thus, before conducting experiments with cells, it was 

important to conduct initial spraying experiments in order to (1) demonstrate that the 

sprayer can deposit an even coating Pluronic on the inner surface of the model trachea, (2) 

demonstrate that the gel forms quickly enough to avoid excessive draining from the top 

of the model trachea to the bottom, and (3) to determine which operating parameters are 

most critical for producing an even spray coating. These experiments also investigated 

the effect that the presence or absence of a “balloon” at the end of the trachea had on the 

spray pattern. Finally, some tests included a drying step to determine if this would help 

lower Pluronic concentrations gel adequately. Tables 3.1.1 and 3.1.2 summarize the 

experiments that were conducted and the method of analysis that was used to characterize 

the coating. The parameters that were varied included the Pluronic concentration, the 

spraying procedure, and the method used to evaluate the spray coating quality. 

 

 



 27

Table 3.1.1: A summary of the spray coating experiments conducted with model trachea 

A. For these experiments, the spray appeared to favor the top middle of the tube, 

therefore two changes in the spraying technique were implemented.  First, the model 

trachea was rotated 180o about the z-axis between sprays.  Secondly, the nozzle tip was 

inserted half-way down the model so that the back-end of the model would receive more 

Pluronic.  The end of the trachea was open to the atmosphere for all of these experiments 

and some Pluronic spray could be seen leaving the end of the model. 

Model Trachea A    
Test Pluronic Concentration Spray Procedure Method Observations 
A-1 12% wt. in water 30 seconds at entrance visual Pluronic stuck to the 

middle top of the 
model and ran down 
after several minutes 

A-2 12% wt. in water 15 seconds at entrance, 15 
seconds rotated 180o at 
entrance 

visual Pluronic appeared to 
more evenly coat the 
first two-thirds of the 
model 

A-3 12% wt. in water 7 seconds at entrance, 
rotated 180o  sprayed for 
about 7 seconds, inserted 
half-way down and repeat 

visual Pluronic appeared to 
coat the inside of the 
tube evenly 

A-4 12% wt. in water 30 seconds at entrance weight Pluronic weight too 
light, could not get 
firm, quantitative 
results 
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Table 3.1.2: A summary of the spray coating experiments conducted with model trachea 

B. The end of the trachea was plugged for all of these experiments, changing the flow 

pattern enough that rotating the nozzle was no longer necessary.  

Model Trachea B    
Test Pluronic Concentration Spray Procedure Method Observations 
B-1 12% wt. in water 15 seconds at entrance, 15 

seconds inserted half-way 
down the model 

visual 
w/dye 

Pluronic appeared to 
evenly coat the inner-
surface with some 
puddling at the bottom 

B-2 15% wt. in water 15 seconds at entrance, 15 
seconds inserted half-way 
down the model 

visual 
w/dye 

Pluronic appeared to 
evenly coat the inner-
surface with less 
puddling at the bottom 

B-3 15% wt. in PBS 15 seconds at entrance, 15 
seconds inserted half-way 
down the model 

weight Pluronic weight lost in 
transport to scale.  
Ratios used, however 
visual evidence 
differed 

B-4 15% wt. in PBS 15 seconds at entrance, 15 
seconds inserted half-way 
down the model 

weight Pluronic freeze-dried, 
too light, could not 
weigh accurately 
compared to 
polyethylene folder 

 

 

Figure 3.1.1: Model trachea A showing a layer of 12%wt. Pluronic through the inner-

surface with greater amounts in the middle than the two ends. 

 

Figure 3.1.1 illustrates the results of spray experiment A-3.  Initial experiments 

showed that Pluronic was sticking and gelling to the inside walls of model trachea A, but 

over the course of several minutes about a 20% of the Pluronic drained from the top and 
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the walls of the trachea and formed a puddle on the bottom. The spraying procedure 

necessary to get an even coat in trachea A over the course of 30 seconds required a 180o 

rotation of the trachea after approximately 7 seconds, an insertion of the tip of the nozzle 

to the midway point of the trachea after 15 seconds, and a final rotation after about 22 

seconds. 

To better model deposition onto a human trachea and the presence of a balloon at 

the end of the trachea, several experiments were conducted using model trachea B. 

Adding dye to polymer solution also made it easier to see the polymer through the heat 

exchange shell. Figures 3.1.2 and 3.1.3 illustrate two of the experiments completed using 

Trachea B. 

As expected, the warmer surface helped gel the Pluronic shortly after it contacted 

the surface.  An additional, and unexpected, improvement was due to the presence of the 

stopper at the exit of the trachea. Because the aerosol was now forced to return via the 

entrance of the tube, the droplets flowed back closer to the walls and resulted in a more 

even coverage that had been possible without the stopper.  It was, therefore, no longer 

necessary to rotate the trachea to ensure an even coating.  As illustrated in Fig. 3.1.2, 

puddling still occurred for a 12%wt. Pluronic solution, but was less severe for trachea A.   
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Figure 3.1.2: Model trachea B sprayed was sprayed with a 12% solution of Pluronic and 

the coverage appeared good despite some puddling which can be seen as a dark green 

line within the model above. 

Several experiments were therefore conducted with 15%wt. polymer solutions. 

Although the 15%wt. solutions dried more quickly, puddling was still similar to the 

12%wt. solution.  Higher concentrations were not tested as they became increasingly 

viscous and more difficult to work with.  Up to 14 minutes of drying (running the sprayer 

with no liquid flow) was found to be very helpful in gelling the Pluronic.  Both 12% and 

15% wt. solutions of Pluronic were entirely gelled after the drying procedure. 

 

Figure 3.1.3: The model was also sprayed with a 15%wt. solution of Pluronic which was 

found to gel somewhat faster, although the tell-tale dark-purple line shows that some 

puddling still occurred. 
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 In an attempt to quantify polymer deposition, experiments were conducted to 

weigh the polymer that was deposited on a polypropylene folder using the techniques 

outlined in section 2.6. In most cases these experiments were inconclusive. When the film 

was freeze dried to remove water, there was so little Pluronic on each section of film that 

slight deviations in the size of the pieces changed the weight more than the mass of 

Pluronic on the section of film.  Alternatively, when the Pluronic layer was weighed 

while wet, the sum of the weights of the individual pieces of film did not agree with the 

initial weight of the coated film due to continued evaporation of water.  In summary, 

although Pluronic was not deposited solely on a single part of the tube, it was not 

possible to quantify deposition more accurately than by visual inspection.  

To investigate whether the cell distribution was uniform with respect to the 

sprayed polymer, cells were suspended in a 12% Polymer solution, dyed with the 

Live/Dead Kit assay, sprayed onto a thin polypropylene folder, and photographed under a 

fluorescent microscope as well as under room light. Typical results are illustrated in Figs 

3.1.4-3.1.7.  By comparing the fluorescent and phase photographs, it is clear that the 

regions with high concentrations of green cells correspond to areas with higher 

concentrations of Pluronic.   
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Figure 3.1.4: A 100X fluorescent photo of epithelial cells demonstrates that most of the 

cells survive spraying.  
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Figure 3.1.5: A 100 X fluorescent photo of chondrocyte cells after spraying demonstrates 

that most of the cells are alive.  
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Figure 3.1.6: A phase 1 photo of chondrocytes in Pluronic showing the cells within the 

Pluronic droplets (100X). 
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Figure 3.1.7: Fluorescent photo of the cells within the droplet showing the locations of 

the living and dead cells in comparison to the phase 1 picture (100X).   
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3.2 Cell Spraying Experiments 

Although Fig 3.1.5 illustrates that most of the chondrocytes survived spraying, 

additional experiments were conducted to better quantify the results and to determine 

whether cell viability depended on the air flowrate through the sprayer. Increasing the 

flow rate of air through the nozzle should increase the shear at the liquid gas interface and 

could decrease cell viability.  

 

3.2.1 Chondrocyte Experiments 

Chondrocytes suspended in a 15% wt. Pluronic solution were sprayed onto 

uncoated microscope slides at a constant liquid flowrate of 2mL/min and air flowrates 

that varied between 4 and 9Lpm.  The lower flowrate corresponded to the minimum level 

required to produce a stable spray. Flow rates that are too high could reduce the 

deposition of the droplets, and could also lead to higher pressures inside the trachea. 

Figure 3.2.1 illustrates a LIVE/DEAD composite photo for chondrocytes that had been 

sprayed with a liquid flowrate of 2mL/min, an air flow-rate of 6Lpm. 
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Figure 3.2.1:  An example of a composite image of live and dead cells created in Adobe 

Photoshop showing living and dead cells (100X). 

 

As always, cells that fluoresced red were assumed dead even if they also 

fluoresced green, since cells will only fluoresce red if the cellular membrane is broken. 

Because cells fluoresce green as long as esterase is produced (Molecular Probes Assay 

Product Description), cells with broken membranes can occasionally fluoresce green 

even thought they are no longer viable. The red or green dots that are also outlined in red 

in Fig. 3.2.1, correspond to cells that fluoresced both red and green. Photos were typically 

taken at 100X magnification and cells were counted to determine the percentage of viable 

cells in each photo.  Table 3.2.1 summarizes the results of all of the tests that were 

conducted.    
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Table 3.2.1.  The percentage of viable cells on single photos of 15% wt. Pluronic sprayed 

with chondrocytes 

Air 
Flowrates 5/23/2002 6/6/2002 6/14/2002 6/21/2002 
9L/min  (undetermined) 71% (undetermined) 
8L/min   66% 76% 
7L/min   75% 80% 
6L/min 32%-36% 42% 71% 76% 
5L/min   77% 83% 
4L/min  78%  83% 

 

A preliminary experiment on 6/6/2002 suggested that chondrocytes had much 

higher viability when the air flowrate was reduced from 6Lpm to 4Lpm. However, when 

more extensive experiments were conducted, 6/14/2002 and 6/21/2002, using 

chondrocytes harvested independently from two different calf shoulders, cell viabilities 

were essentially independent of the air flowrate and very similar to each other.  One 

reason for the difference between experiments may be the quality of the harvested cells.  

For example, if cells are digested for longer than necessary, the action of the collagenase 

may weaken the cell membrane. The important conclusion that can be drawn from the 

data in Table 3.2.1 is that chondrocytes are able to survive spraying quite well. Even if 

only 30% survived, it should still be possible to deliver enough viable cells to a damaged 

trachea by increasing the overall cell concentration. Further experiments could be 

conducted to determine whether there is a key step in the cell preparation process that 

influences the viability of the cells to spraying, but this was not considered an important 

point in this stage of the research. 

 

3.2.2 Epithelial Experiments 
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 Spray viability experiments were conducted with two different concentrations of 

epithelial cells by spraying cells previously incubated in LIVE/DEAD stain onto plastic 

folders.  Experiments with epithelial cell concentrations of 166,666 cells per mL and 2 

million cells per mL both demonstrated that most of the cells survived spraying.  In these 

experiments the Pluronic concentration was lowered to 12% wt. to attempt to reduce 

shear stress.  Photos of the cells corresponding to these experiments are illustrated in Figs. 

3.2.2 and 3.2.3. 

 

Figure 3.2.2: A LIVE/DEAD epifluorescence photo showing a majority of living cells at a 

low concentration of epithelial cells in Pluronic 12% wt. (500X) 
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Figure 3.2.3: A LIVE/DEAD epifluorescence photo showing a majority of living cells at a 

high concentration of epithelial cells in Pluronic 12% wt. (100X) 

 

3.3 Culturability Experiments 

   Although the cells survived the initial spraying, this was no guarantee that the 

cells would reproduce and maintain their normal phenotype. The next step, therefore, was 

to conduct cell culturing experiments with cells that had been sprayed.  A typical test for 

culturability is to place the cells to be cultured in a 6-well plate.  For mammalian cell 

culture the plates must be coated with proteins to aid in the adhesion of the cells to the 

plate.  Once cells adhere to a plate they grow to confluence with nutrient medium 

changes every few days. 

 In total, 5 culturability experiments were conducted with chondrocytes and 2 with 

epithelial cells. Table 3.3.1 and table 3.3.2 summarize the experimental conditions 
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including the number of plates harvested each time, the feeding and observation schedule, 

and comments.  The goals of these experiments were to ensure cells maintained 

phenotype, to determine the average growth rates and doubling times, and to ensure that 

cells grew to confluence. 

 

Table 3.3.1 The results of the 5 main chondrocyte experiments showing the Pluronic 

concentrations in each experiment, the days on which media was changed, and the 

observations.  Through these tests the best growth was discovered when the least amount 

of Pluronic was used, as shown in C-5. 

Bovine Chondrocyte Experiments   
Test Pluronic Concentration Media Changing Frequency Method Observations 
C-1 15% wt. in PBS Day 7 and day 11 visual Cells from both the 1-2 and 

2-3 second groups grew to 
confluence by day 11 

C-2 15% wt. in PBS Every 4 days counting Phenotype appeared 
consistent, cells grew to 
confluence, but more 
slowly than in C-1 

C-3 15% wt. in PBS Every 2 days counting Results were similar to 
those of C-2 

C-4 12% wt. in PBS Every 2 days counting Results were similar to 
those of C-3 but the 
doubling times were faster 

C-5 Pure PBS, 10%wt.,        
12% wt., 15% in PBS 

Every 2 days counting The lower the Pluronic 
concentration, the better 
the initial seeding density, 
growth was similar to C-
2&3 
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Table 3.3.2  The results of the 2 epithelial cell experiments showing the Pluronic 

concentration used, the media changing frequency and the observations in both 

experiments.  The only classical exponential growth was found with the pipetted cells in 

PBS. 

Porcine Epithelium Experiments   
Test Pluronic Concentration Media Changing Frequency Method Observations 
E-1 12% wt. in PBS Every 2 days counting Cells in PBS both sprayed 

and pipetted appeared to 
grow well, those in 
Pluronic did not 

E-2 12% wt. in PBS Every 2 days counting Cells pipetted in PBS grew 
well, cells sprayed in PBS 
appeared to grow near the 
end, cells in Pluronic did 
not grow 

 

 In the preliminary qualitative test, experiment C-1, cells were sprayed onto 6-well 

plates and left to grow with media changes on days 7 and 11 (after initial seeding). Figure 

3.3.1 illustrates the changes in cell density of the cultures as a function of time.   Each 

well was fully confluent by the end of 11 days of culturing.  Although the wells sprayed 

for 2-3 seconds had more Pluronic and, therefore, more cells deposited in them than the 

wells sprayed for 0.5-1 seconds both reached confluence in the same number of days.   

All future experiments, therefore, used a standard spraying time of one second per well.  

No infections were present and the shape of the cells suggested that the cells retained 

their phenotype.  
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Figure 3.3.1:  A series of photos demonstrating the cell density and phenotype of bovine 

chondrocytes sprayed in a 15%wt. solution of Pluronic for 0.5-1 or 2-3 seconds over the 

period of 11 days.  All wells reached confluence by day 11.  

 

Figure 3.3.2 shows the growth trends of the first quantitative experiment, 

experiment C-2.  This experiment was conducted as a “proof-of-concept” in order to test 

the cell harvesting and counting methods outlined in section 2.9.1.  Here, medium was 

changed every four days and a 15% solution of Pluronic was used to suspend the cells in 

to be sprayed.  Cells were counted as described in section 2.9.1.   

Day 1, sprayed fast (0.5-1seconds) Day 1, sprayed slow (2-3 seconds) 

Day 7, sprayed fast (0.5-1seconds) Day 7, sprayed slow (2-3 seconds)

Day 11, sprayed fast (0.5-1seconds) Day 11, sprayed slow (2-3 seconds)
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Figure 3.3.2:  Cell growth of bovine chondrocyte during experiment C-2. Cells were both 

sprayed and pipetted in a 15%wt. solution of Pluronic onto 6-well plates.  The numbers 

for the PBS controls sprayed and pipetted are also shown.  Strong growth can be seen in 

all conditions but cells sprayed in Pluronic.  The dashed lines are growth curves fit to the 

log-linear plot. 

 

Figure 3.3.2 shows the data taken from each day that the cells were harvested and 

counted.  The dashed lines in Fig. 3.3.2 are the growth curves calculated by fitting a 

straight line to the data on a log-linear plot.  The x-axis represents the number of days 

since the cells were seeded onto the 6-well plates and the y-axis is a logarithmic scale of 

the number of cells per well.  The data points on the graph are the average of the two 
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wells that were counted for each condition on each day. The initial concentration, day 0, 

is estimated to be 220,000 cells/well for the PBS conditions and 62,000 cells/well for the 

Pluronic conditions. After the first 4 days, the number of cells/well decreased by as much 

as a factor of 100 from the initial number of seeded cells and cells seeded from the 15% 

Pluronic solution appeared to fare worse than those seeded from PBS. The initial 

decrease in cell number is typical for mammalian cell cultures where cells are unable to 

multiply unless they are attached to a surface. Although bovine chondrocytes are robust 

enough to survive in floating in the media for several days without adhering to a substrate 

and producing an extra-cellular matrix or ECM [21] even these cells will eventually die 

or be removed from the well when old media is aspirated off and replaced by fresh media. 

Photos confirmed that the initial adhesion of cells was low for the first several days.    By 

day 8, the strong upward trend of the data demonstrates that cell growth occurred under 

each of the conditions tested. Since cells did eventually grow under all of the conditions, 

it was postulated that the biggest effect of Pluronic was to inhibit the cells from adhering 

to the plate surface. 

In the exponential growth region, the slope of the growth curve can be used to 

calculate the doubling times for cell growth, and in this experiment doubling times 

ranged from 23 to 79 hours. The doubling times for all of the experiments are 

summarized in Table 3.3.3.  The r2 values are at least 0.36 for the growth curves, with the 

lowest value corresponding to the sprayed Pluronic experiment.  One reason for this low 

r2 value could be that the average number of cells per well was calculated using the data 

from only two of the three wells, and there can be significant differences from one the 

well to the next. Nevertheless, experiment C-2 demonstrated that bovine chondrocytes 
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grow after being sprayed, and that our cell counting methods gave growth results that 

appeared reasonable.   

 

Table 3.3.3  A summary of the bovine chondrocyte doubling times indicating some 

variation, but typically between 20 and 30 hours, corresponding well with literature.  

Experiments C-4 and C-5, at low Pluronic concentrations, had the fastest doubling times, 

indicating the fastest growth curves. 

Bovine Chondrocyte Growth Times  
Test 

Pluronic Concentration Deposition Method 
Doubling 
Time 

Sprayed 74 hours 15% wt. in PBS 
Pipetted 29 hours 
Sprayed 23 hours 

C-2 

PBS 
Pipetted 31 hours 
Sprayed 29 hours 15% wt. in PBS 
Pipetted 33 hours 
Sprayed 28 hours 

C-3 

PBS 
Pipetted 37 hours 
Sprayed 19 hours 12% wt. in PBS 
Pipetted 16 hours 
Sprayed 20 hours 

C-4 

PBS 
Pipetted 18 hours 

 

 In experiment C-2, media was changed only every 4 days. The standard cell 

culturing procedure is to change the media in the 6-well plates every two days [10] (or 3 

in some literature [11, 12, 13]) and, therefore, for the remaining experiments media was 

changed every two days.  More frequent media changes ensured fresh 

antibiotics/antimycotics were in the media to prevent infection and to provide a fresh 

batch of nutrients to the cells. Figure 3.3.3 illustrates the results for experiment C-3, the 

first experiment where media was changed every 2 days.  
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Figure 3.3.3  A 15%wt. solution of Pluronic was used to spray cells in suspension onto 

plates which were then counted every two days.  Media was changed in the remaining 

plates on those days.  Growth trends appear to be very similar between the 4 different 

sets of conditions; the doubling times range from 28 days to 37 days giving a range of 

only 9 days difference between the slowest growth (sprayed cells in Pluronic) and the 

fastest (sprayed cells in PBS).  

 

 Experiments C-2 and C-3 are excellent examples of the difference a 

change in the cell culturing procedure can make.  The main difference between these 

experiments was the feeding time, and increasing the feeding frequency changed some of 

the curves dramatically.  In C-2 the cells that were sprayed from the 15% Pluronic 
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solution were unable to grow as fast as the other cells.  In C-3, the data from the cells 

sprayed from Pluronic solution lie just below the data from cells that were pipetted from 

Pluronic solution.  Furthermore, once the cells began to grow, the slopes calculated in the 

exponential growth region are quite similar and the doubling times all lie between 28 and 

37 hours.  The main difference appears to be rate at which cells are initially lost from the 

wells between the initial seeding and day 4, and this is most likely due to initial 

adherence of the cells to the plate.  Comparing the experiments conducted with Pluronic 

and those conducted with PBS, it appears that Pluronic inhibits cell adherence.   

To test this theory, the Pluronic concentration in experiment C-4 was reduced to 

12%wt. In addition, to improve the statistical accuracy of the data, the cells from all 3 

wells were counted each day.   
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Figure 3.3.4:  Cell-growth data for experiment C-4 in which a 12%wt. Pluronic solution 

was used.  The data are very close to each other, showing the points for those wells 

sprayed and pipetted with Pluronic have nearly merged with those of the wells sprayed 

and pipetted with PBS.  

 

Figure 3.3.4 summarizes the results from experiment C-4. Although a peculiar 

data point was discovered on day 12, the data from day 4 through day 10 showed the 

expected rapid increase in cell number, and, on a log-linear plot, the correlation lines all 

of the experiments were linear with an r2 value of 0.83 or higher.  As expected, based on 

the results from experiment C-3 reducing the Pluronic concentration reduced the 

difference between the cell growth curves to the point that by day 4 the cell numbers for 



 50

experiments conducted with Pluronic were only slightly beneath those using PBS.  The 

photographs in Figures 3.3.5 and 3.3.6 clearly illustrate the difference in cell growth 

achieved by day 6 that accompanied the change in Pluronic concentration. 

 

 

Figure 3.3.5:  A sample photograph taken in phase 1 light of sprayed chondrocytes in a 

12%wt. solution of Pluronic at their 6th day after seeding showing a large number of 

adhered cells.  Cells that appear darker have begun to generate extra-cellular matrix (a 

pre-cursor to growth) 
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Figure 3.3.6:  A sample photograph taken in phase 1 light of sprayed chondrocytes in a 

15%wt. solution of Pluronic at their 6th day after seeding showing only a few cells 

adhered to the plate.  The light color and circular shape of the cells indicates that they 

have barely adhered to the surface and have not yet begun to produce extra-cellular 

matrix (a precursor to cell-growth). 

 

 Although tests were done with both 15wt% and 12 wt% solutions of Pluronic, 

experiments C-2 – C-4 were conducted with cells harvested from different calf shoulders. 

It was, therefore, important to conduct a series of experiments using the same batch of 

bovine chondrocytes and multiple Pluronic concentrations to verify the observed trends.  

Since the growth trends appear to stabilize by day 8, there was no need to run the 

experiment longer.   Experiment C-5 used followed the same procedures as experiments 

C-3 and C-4, with four concentrations of Pluronic (0%wt., 10%wt., 12%wt., and 15%wt.) 

and sprayed or pipetted cells. All Pluronic solutions were made at least a day in advance 

of the experiment to ensure that the Pluronic powder had completely gone into solution 
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[14].  The Pluronic solutions were then filter-sterilized and added to the cells.  Cell 

densities remained at 2 million cells per mL of either PBS or Pluronic.  Spraying began 

with the lowest concentration of Pluronic (0%wt. Pluronic F-127) and after the top 3 

wells of each of 4 plates were sprayed the next lowest concentration of Pluronic was used 

(10%wt. Pluronic F-127).  Spraying continued in this manner until all of the top wells on 

each of the 16 6-well plates had been sprayed. The bottom wells on each plate contained 

the pipetted samples. The cell counts of all three wells were averaged for each condition. 

 Figures 3.3.7 and 3.3.8 summarize the results of experiment C-5.   Data from day 

6 was discarded for the 10%wt. Pluronic sprayed and pipetted wells because these data 

seemed flawed.  No infection was observed, but the cell numbers were too low to be 

considered representative. Because all of the samples came from a single 6-well plate it 

was considered that the plate itself caused the problem.  On day 4 the media was not 

changed on four of the 10%wt. Pluronic wells that would be counted on day 8 and the 

cells in the wells containing the pipetted samples and the left well containing a sprayed 

sample died.  The cells in the remaining two wells that contained the sprayed samples 

grew normally and these data were used.  



 53

% wt. Pluronic Sprayed

0 % S 10% S 12% S 15% S

N
um

be
r 

of
 C

el
ls

 p
er

 W
el

l

103

104

105

106

107

Day 2

Day 8

Day 4 Day 6

 

Figure 3.3.7:  A comparison of the various sprayed Pluronic concentrations and their 

growth over a period of 8 days.  Growth trends are in line with expectations as the lower 

Pluronic concentrations grow faster and reach a higher total number of cells by day 8.  
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Figure 3.3.8:  A comparison of the various pipette-seeded Pluronic concentrations and 

their growth over a period of 8 days.  Growth trends were in-line with expectations; the 

lower Pluronic concentrations had faster growth and larger numbers of cells by day 8.   

 

The growth curves as a function of Pluronic concentration confirmed the same 

trends observed in experiments C-2, C-3, and C-4. Because the experiments did not go 

beyond 8 days, there was not enough data to calculate reliable doubling times.  Because 

the coating experiments presented in Section 3.1 gave satisfactory results with a 12%wt. 

solution of Pluronic and because the bovine chondrocytes reached confluence more 

quickly when sprayed in a 12%wt. solution of Pluronic, this concentration was chosen for 

epithelial cell culture experiments. 



 55

Porcine epithelial cell spraying experiments built upon the success of the bovine 

chondrocyte work.  Thus, these experiments used one-second spray time, two-day 

medium exchanges, 12%wt. Pluronic solution, and the same counting and photographing 

techniques.  Figure 3.3.9 summarizes the results for the first epithelial cell spray 

experiments.  Unfortunately, mold infected many of the plates due to an improperly 

prepared aliquot of AB/AM.  The plates that were not infected with mold, continued to 

grow and the results were recorded.   
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Figure 3.3.9:  A graph of the average cell counts for epithelial cell experiment E-1.  Cells 

were seeded at approximately their 11th passage.  A definitive exponential growth curve 

appears for cells in PBS that were pipetted.  All other curves represent either weak 

growth, as with PBS sprayed and Pluronic pipetted, or no growth, as with the Pluronic 

sprayed.  
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 The growth curves for experiment E-1 were discouraging but not unexpected.  

Compared with the bovine chondrocytes, the growth of the epithelial cells was poor 

especially for cells that had been sprayed; even those sprayed in PBS did not grow as 

well as those that had been pipetted in PBS.  Although Sec. 3.2 had shown good viability 

of sprayed epithelial cells there are two important factors that must be considered. First, 

epithelial cells are not able to survive unless they adhere to a plate immediately after 

being seeded and produce ECM. In addition, the epithelial cells used in this experiment 

were from a much later passage than those used in the two viability tests. Typically cells 

should not be used if they have been passaged beyond 5 times [17]. The cells in 

experiment E-1 were from the 11th passage. 

Due to time constraints, experiment E-2 used the 13th passage of the same 

epithelial cells that had been used for all other experiments, including the viability tests 

and E-1, and many of the culture flasks contained cells that were floating in the media.  

In an attempt to counteract the poor cell quality of the late-passage epithelial cells, a 

higher cell density, 3.2 million cells per mL rather than 2 million cells per mL, was used 

for experiment E-2.  Finally, after the cells had been sprayed (on day 0) the growth 

medium added contained a solution of freshly purchased EGF (epidermal growth factor) 

from Peprotech.  This seemingly minor change altered the phenotype of the cells back to 

a more epithelial-like state both in the culture flasks and in the wells, a change that is 

clearly visible in Figs.3.3.10 and 3.3.11: 
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Figure 3.3.10: A photo taken of epithelial cells pipette-seeded in PBS in a 6-well plate 

during E-1, day 10 after seeding, showing only weak resemblance to the classic epithelial 

cell phenotype. 
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Figure 3.3.11: A photo of epithelial cells pipette-seeded in PBS in a 6-well plate during 

E-2, day 10 after seeding, showing a much stronger resemblance to the classic epithelial 

cell phenotype than those in Fig. 3.3.10. 

 

 The average cell count as a function of time from experiment E-2 is illustrated in 

Fig. 3.3.12. Over the length of the experiment, only the cells pipette-seeded from PBS 

grew well. Near the end of the experiment, the cells exposed to other conditions were 

starting to increase in number as well. Photographs taken during the last several days 

confirmed that the cells both pipette-seeded and sprayed in PBS were expressing the 

epithelial phenotype, similar to the cells shown in Fig. 3.3.11.   
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Figure 3.3.12:  A graph of cell number vs. days after seeding from E-2 showing a strong 

growth trend for the cells pipette-seeded in PBS but no other strong growth trends. 

  

 As in the chondrocyte experiments, doubling times were calculated from the 

exponential growth curves and are summarized in Table 3.3.4, however, many of the 

doubling times do not agree with literature values because growth did not occur or only 

started after an elongated lag phase. Despite these difficulties, it is still encouraging that 

sprayed epithelial cells survived, grew and expressed the correct phenotype. 
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Table 3.3.4 Doubling time of the epithelial cell line with the various conditions of the 

experiments.  DNG stands for “did not grow” and indicates either cell death for that set 

of conditions or merely a lack of any upward trend.   

Porcine Epithelium Growth Times  
Test 

Pluronic Concentration Deposition Method 
Doubling 
Time 

Sprayed DNG 12% wt. in PBS 
Pipetted 182 hours 
Sprayed 104 hours 

E-1 

PBS 
Pipetted 41 hours 
Sprayed DNG 12% wt. in PBS 
Pipetted 87 hours 
Sprayed 66 hours 

E-2 

PBS 
Pipetted 29 hours 
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4.0  Summary, Conclusions, and Future Work 

4.1 Bovine Chondrocytes 

 This work demonstrated that the bovine chondrocyte cells can be sprayed onto 6-

well plates and cultured in vitro. Although Pluronic appears to inhibit the initial growth 

when compared to cells sprayed in PBS, all cells reached confluence in 10-14 days.  This 

suggests that the next set of experiments for bovine chondrocytes could be in vivo animal 

trials to judge the ability of the cells to grow on actual damaged tissue.  A typical trial 

might be to cause a small defect in a cartilage surface and then attempt to resurface the 

area using the atomized chondrocytes in a Pluronic suspension.  The prime difficulty in 

this experiment would be to find an area of the body where the cartilage is not being 

stressed since the everyday stress on articular joints would most likely displace the cells 

before they had a chance to fix themselves to the bone surface.  This is even more of a 

problem given the difficulties that these experiments have encountered with regards to 

the reduced adhesive properties of cells in Pluronic.  

 

4.2 Porcine Epithelium 

 The porcine epithelium used in these experiments came from a late generation 

passage.  Even though the cells were restored to their earlier phenotype when they were 

fed new EGF, this only occurred after the cells had been sprayed in Pluronic.  The 

porcine epithelial cell culturability experiments should be repeated with cells that have 

been harvested more recently.   

 If the cells from these proposed experiments are still difficult to culture in 

Pluronic, another possible step could be to spray a layer of cells in PBS and then spray a 
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layer of the Pluronic on top to hold the cells in place. Due to the very thin nature of the 

film of cells that is being produced over the course of one second of spraying, the 

Pluronic would still be able to gel, but it should allow the cells to come into direct contact 

with the surface of the 6-well plate, giving more opportunity for unrestricted bonding to 

the plate surface.  

 

4.3 Chondrocytes Versus Epithelium 

  The bovine chondrocytes gave an initial point of success, probably due to their 

ability to grow in media without bonding to a surface.  In addition, the chondrocytes used 

were always first passage, digested directly from a calf shoulder and used.  In light of 

these two factors it is not surprising that the epithelium did not fare as well when the 

same set of experiments were performed on them.  The inability of epithelium to survive 

when floating in media for extended periods and the late-generation starting point for the 

epithelium severely hindered its ability to adhere and grow on the culture dishes in 

Pluronic.   

 

4.4 Phenotype Testing 

 Although the phenotype of the two cell lines was visually checked during 

culturability testing, a more quantitative way to test the bovine chondrocyte cell 

phenotype is to check the collagen that the cells produce.  Although samples of the cells 

from each culturability experiment were saved and frozen, the collagen test has not yet 

been performed which would quantitatively confirm what was seen visually in these 

experiments. 
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