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“Those of us concerned with developing new technology should consider ourselves to have a
major undertaking to try to meet the expanding needs of the increasing number of people in
the world with its finite resources and environments constraints.”

— Harold H. CHESTNUT, 1981.

“As always, machine’s triumph was a human triumph, something we tend to forget when
humans are surpassed by our own creations.”

— Garry K. KASPAROV, 2017.

“This isn’t about replacing human thinking with machine thinking. Rather, in the era of
cognitive systems, humans and machines will collaborate to produce better results, each
bringing their own superior skills to the partnership.”

— John E. KELLY III, 2013.
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WORCESTER POLYTECHNIC INSTITUTE

Abstract

School of Engineering

Robotics Engineering Department

Doctor of Philosophy in Robotics Engineering

Robot Autonomy for Scrap Cutting in Metal Recycling

by James AKL

This dissertation develops an automation framework to address the challenges, prob-
lems, and opportunities of the metal recycling industry. This is achieved by integrat-
ing a variety of components and functionalities into a diverse cognitive architecture.
The aim is to endow robotic systems with task-specific autonomy against four main
problems found in metal scrap cutting and recycling. These are: (1) Cutting path
generation, using viewpoint planning and active perception; (2) Autonomous oxy-
fuel cutting, using visual feedback for conditioning and control; (3) Cutting task
validation, using learning-based inference via neural network models; and (4) Safe
structural disassembly, using sequential decision planning. In this dissertation, we
formalize and discuss the design and evaluation of each of these functionalities.
Additionally, we analyze the broader impacts of this research from a socio-technical,
economic, and ethical perspective. Ultimately, while this proposed framework is
tailored towards metal recycling, many of the components’ underlying techniques
may be applicable or transferable to tasks of similar nature. In effect, we demonstrate
the leverage and flexibility of diverse component-based architectures for augmenting
an agent’s capability, intelligence, and autonomy towards a particular goal.
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Chapter 1

Introduction

I N the wake and aftermath of the Second World War, ‘machine cognition’ became
a subject of growing interest [1]. The myriad of efforts and trends that followed

gestated into the various disciplines we know today [2], for instance: artificial intel-
ligence, control theory, cybernetics, data science, decision theory, robotics, among
many others. Ever since, the sophistication of autonomous and intelligent systems
has been growing at an ever-increasing pace. In effect, robotic systems have improved
in virtually every aspect of their capability, intelligence, and autonomy enabling them
to accomplish ever more complicated tasks in complex environments.

Initially, robots and agents were expected to operate mostly in narrow, focused,
structured, or semi-structured settings. In recent times, however, the desire grew [3]
towards these agents operating, surviving, and perhaps thriving within increasingly
complex settings. Perhaps customarily, one can sketch a brief timeline (Fig. 1.2)
showing the expansion of robotics into increasingly adverse spaces with an upwards
trend of task complexity and autonomy:

• 1961: The first industrial robot, the Unimate, is installed at General Motors [4];
with systematic tasks stored in a drum memory.

• 1972: The autonomous robot Shakey (Fig. 1.1a) and A* search are developed at
SRI International [5], enabling more general planning and execution of motions.

• 1989: The Q-learning algorithm, a model-free reinforcement learning technique,
is introduced by Christopher Watkins [6], enabling policy learning from data.

(A) “SRI Shakey with callouts”,
provided by SRI International,
licensed under CC BY-SA 3.0,

dated 1972.

(B) “Sojourner on Mars
PIA01122”, provided by
NASA, in the public domain,

dated 1997.

(C) “Spot robot Royal Air
Force”, provided by Senior Air-
man John Ennis, in the public

domain, dated 2021.

FIGURE 1.1: Three autonomous robots across generations.

https://creativecommons.org/licenses/by-sa/3.0/
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FIGURE 1.2: Timeline of accomplishments in the robotics community
highlighting the increasing adversity within which robots operate.

• 1997: The Sojourner rover (Fig. 1.1b), the first to autonomously operate on
another planet, is landed on Mars [7].

• 1998: The Rapidly-exploring Random Tree (RRT) motion planning algorithm is
introduced by Steven LaValle [8].

• 2002: The Roomba autonomous vacuum cleaner is introduced by iRobot to
operate in domestic environments [9].

• 2005: The DARPA Grand Challenge, a competition for autonomous vehicles, is
won by the Stanford Racing Team for their robot, Stanley [10].

• 2012: The Baxter robot, the two-armed collaborative industrial robot, is released
by Rethink Robotics [11].

• 2014: Autonomous underwater vehicles (AUVs) are used to search for the
wreckage of the missing Malaysian Airlines flight MH370 in the Indian Ocean [12].

• 2016: The first self-driving taxi trials begin in Singapore, demonstrating the
potential of autonomous transportation in complex urban environments [13].

• 2017: Recycling robots that can recognize and sort different recyclables are
installed by AMP Robotics, Bulk Handling Systems, and ZenRobotics [14].

• 2020: Boston Dynamics deploys the Spot robot (Fig. 1.1c) to help reduce the
exposure of frontline healthcare workers to COVID-19 [15].

• 2021: The robotic helicopter Ingenuity, carried by NASA’s Mars rover Persever-
ance, makes the first powered flight on another planet [16].

In effect, the range and complexity of targeted environments have expanded sig-
nificantly (Fig. 1.2). Despite their advancement in performance and scope, robotic
systems and agents continue to struggle [17] within environments characterized by:

1. Disorder: Fewer presence of patterns, structure, or regularity;

2. Variability: Higher variance and uncertainty in the inputs and events;

3. Uncertainty: Abundant noise, disturbances, model mismatches, and unknowns;

4. Complexity: Overwhelmingly large state, action, or decision spaces; and,

5. Volatility: Highly-dynamic change and strong nonlinearities.

Against such adversity, rather than cementing deeper into one class of approaches, the
advantages of multiparadigm thinking become more attractive [18] for the purpose
of designing intelligent agents.
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FIGURE 1.3: Shipbreaking operations break down a decommissioned
vessel into salvageable parts, further cutting them into recyclable

units. © IEEE

Such is one general theme of this dissertation: to explore the tackling of automation
within highly adverse environments and to develop robot autonomy therein, through
the examination and focus on the specific domain of metal scrap recycling. In doing
so, this work provides a blueprint and example for the problem-solving and system
design of autonomous and intelligent agents in environments of comparable adversity.
More broadly, one of this dissertation’s outcomes is to make explicit the advantages
of implementing diverse cognitive architectures for enabling robots to challenge and
exploit their environments’ difficulties.

1.1 Dissertation Motivation

This work was motivated by the ambitious goal of automating key processes within
the metal scrap recycling industry. The essence of this industry is the breakdown of
large metallic structures (such as decommissioned vessels and aircraft) into smaller
workable units of specified dimension (see Fig. 1.3). These recyclable units are then
sold as scrap for their eventual processing into secondary metals (or recycled metals).
In principle, the larger function of this industry is the material recovery of metals
(having industrial value) from end-of-life or out-of-service structures and devices. In
doing so, metal waste is reduced from landfills and oceans—recovered scrap is then
processed into secondary (recycled) metals. More broadly, this industry provides
employment opportunities to skilled workers and supplies (to its governments) the
domestic disposal of retired military vessels.

However, this industry is characterized by work that is notably labor-intensive,
hazardous, difficult, and notoriously resistant to mechanization and automation. In
particular, the breakdown of these large structures—which in itself is dangerous—is
accomplished manually using oxy-fuel cutting torches. In light of this, we give
priority to the automation of oxy-fuel metal scrap cutting: generating a cutting path,
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controlling the torch’s motions, monitoring for safety, and sequencing the cuts for
safe structural disassembly.

This dissertation’s motivation can thus be restated more precisely as: the design of a
robotic system’s autonomy and its associated collection of algorithms and methods
to overcome the difficulties of the metal cutting operation in the scrapyard envi-
ronment. By better taming some aspects of its tasks, our agent gets closer towards
accomplishing its goals.

1.2 Dissertation Objectives

The overarching aim of this research is to provide a framework for robot autonomy
to automate key tasks within metal cutting in the scrapyard environment. For this,
the metal scrap industry is analyzed and characterized in order to understand the
targeted tasks and their associated constraints, as well as the performance limitations
of automating them.

Accordingly, this dissertation’s specific goal lies in addressing each of these key tasks,
consisting of the following:

1. Given an input scrapyard object, identify the path on its surface along which
the robot must cut. These objects come in varying sizes and shapes, thus few
prior assumptions can be made about their geometric and physical properties.

2. Given a desired cutting path, control the oxy-fuel torch’s motion along this path
to correctly and efficiently cut through the metal surface. The combustion along
the path must be maintained at a desirable state.

3. Given images of an oxy-fuel cutting operation, infer the nominal cutting task
state to validate actions or detect anomalies. The inference must be sufficiently
efficient for online monitoring to improve the safety of the operations.

4. Given an input object, plan the sequence of cuts to safely break down the
structure. This cut sequencing must account for the dynamic and geometric
effects of object fragments falling around the cutter’s location.

We thus present novel solutions to these domain-specific and application-driven
problems. Our proposed automation framework integrates a variety of paradigms
into a diverse cognitive architecture for endowing the robot with the autonomy to
engage in its tasks within the scrapyard environment.

We follow these developments with an analysis of the broader impacts of this research
(socio-technical, economic, and ethical) in terms of its projected benefits, concerns,
and uncertainties. More broadly, this dissertation illustrates the advantages of diverse
cognitive architectures for developing robot autonomy in highly-unstructured set-
tings. Furthermore, it explores the application of robotics and automation to address
an environmental problem, thus serving as an instance of environmental robotics.

1.3 Proposed Framework

To design autonomous systems for any complex environment, we must crucially begin
with understanding, analyzing, and characterizing the problem and domain with
great detail. This often requires on-site surveying and communication with experts
from multiple disciplines. Without a substantial understanding of the domain, efforts
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FIGURE 1.4: Conceptual overview illustrating the proposed automa-
tion framework and its components. The blocks show the methodolo-

gies that are developed in this dissertation.

in automation, representation, or modeling would risk solving a different problem,
or risk tackling an overly simplified or idealized setting. In our case, we undertook
an on-site survey in a representative shipbreaking yard to observe and study the key
tasks in their real setting at their full complexity. With the insight and knowledge
gained from surveying scrapping operations, and after learning from the workers’
experiences and intuition, we deconstruct the problem and identify its most essential
tasks that are achievable given the constraints in design and development.

Accordingly, we propose the following framework for the undertaking of automating
the aforementioned key tasks within metal scrap recycling.

1. Cutting path generation: Obtain a reference cutting path on an input object’s
surface—using human–robot collaboration and autonomous viewpoint plan-
ning—without any a priori specification or knowledge about the shapes and
sizes of the path or the object.

2. Autonomous oxy-fuel cutting: Operate an oxy-fuel cutting torch autonomously
along a given reference cutting path—using a vision-based framework for
calibration, surface conditioning, and control—while maintaining a desired
combustion state on the metal’s surface.

3. Task state monitoring: Infer the cutting task state from the robot’s vision
in order to monitor the validity of the robot’s actions—using an a classifier
designed for and trained on our image dataset curated from our numerous oxy-
fuel cutting experiments—thus increasing the safety of the robot’s autonomy.

4. Safe structural disassembly: Plan a cutting sequence algorithmically for dis-
assembling large structures safely—using a mathematical model for safety,
a physics-based simulation environment, and decision algorithms—given a
volumetric partitioning of the input structure.

In this framework, the inputs, outputs, and requirements of the components as well
as the interactions between them are summarized in Fig. 1.4. These are further
elaborated in Chapter 3 along with their respective fundamentals.

1.4 Novel Contributions

To the best of our knowledge, the work covered by this dissertation consists of the
first-ever research effort into automating the cutting operations within a metal scrap
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recycling yard. More explicitly, our novel contributions include:

1. A feature-driven next best view paradigm for exploring a subset of an unknown
surface to reconstruct a feature of desired characteristic.

2. A vision-based framework for autonomous oxy-fuel cutting encompassing
visual calibration, metal surface conditioning, and torch combustion control.

3. An oxy-fuel cutting task state monitoring strategy accompanied by a novel
open-access image dataset usable for clustering and classification.

4. A cut sequencing algorithm for safely disassembling large structures via physics-
based simulation and a mathematical model for safety.

1.5 Dissertation Structure

This dissertation is organized as follows. We first discuss in Chapter 2 the metal scrap
recycling industry and its problems, opportunities and challenges. Next, we elaborate
in Chapter 3 the specifics of our proposed framework and trace the fundamentals
and methodologies of its components. In the chapters that follow, we develop each
component in detail, specifically:

• Chapter 4 covers cutting path generation via human–robot collaboration and
viewpoint planning. The object surface is explored and the desired cutting
path is reconstructed using next view planning, next best view algorithms, and
spatial curve reconstruction methods.

• Chapter 5 develops a vision-based control algorithm to regulate the motion of
the oxy-fuel torch during combustion cutting. This requires the calibration of
the vision system to reduce noise and retrieve the targeted features, as well as
the conditioning of the metal surface for combustion cutting.

• Chapter 6 designs and trains a neural network-based classifier for online moni-
toring of cutting operations to infer the nominal cutting task state of the robot.
For this, a dataset of oxy-fuel cutting footage is curated from live cutting experi-
ments conducted using a 1-DOF robot.

• Chapter 7 devises a decision algorithm to disassemble partitioned structures
safely for the cutter and the surrounding environment. For measuring the
safety of a cut or a cutting sequence, the decision agent relies on the outcome of
physics-based simulations and a mathematical model for safety.

Afterwards in Chapter 8, the broader impacts of this research are analyzed in terms
of their projected benefits, concerns, and potential risks. Finally in Chapter 9, we
conclude with the outcomes of the proposed framework and methods along with
some insights and recommendations for future research.
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Chapter 2

Metal Scrap Recycling

T HIS chapter introduces the metal recycling industry and its operational contexts
within shipbreaking and scrapyards. Therein, we characterize the scrapping

environment and its operations. Accordingly, we examine the problems and corre-
sponding opportunities of this industry. These are then assessed through the lens
of automation and the benefits and challenges that follow. The operational insights
and photographs in this chapter are derived from our on-site fieldwork consisting
of surveying a representative large-scale shipbreaking yard in the Southern United
States: EMR International Shipbreaking Limited, LLC based in Brownsville, TX.

Keywords: Metal recycling, shipbreaking, metal scrapyards, on-site survey, scrapping
operations, scrapyard environment, automation.

2.1 Industry Background & Problems

The metal markets are sustained by the utilization of two different methods of material
sourcing [19]: primary materials, which refer to virgin ores extracted from mines,
and secondary materials, which refer to recycled metal scrap. In the case of steels,
recycling steel scrap through the process of melting is a markedly more energy-
efficient [20] method than producing primary steel from mined iron ores. To supply
secondary materials for producing recycled metal, the metal scrapping industry
carries out the breakdown of large decommissioned metal structures—such as vessels
and aircraft—into smaller and workable recyclable units, later sold for the purpose of
producing new and recycled metals.

2.1.1 The Shipbreaking Industry

A major stakeholder in metal recycling is the shipbreaking industry [21] which ser-
vices the various marine industries seeking disposal of their decommissioned vessels.
Bearing high overheads, these marine industries are especially vulnerable [22], [23]
to global crises, market volatility, and uncertain market outlook. This is exemplified,
for instance, during the fallout of the COVID-19 crisis when global supply chains
constricted [22], [24] and fuel prices severely fluctuated. During such fluctuations, the
servicing, maintenance, and operation of ships become more expensive endeavors,
but more so, their future costs become more difficult to estimate. As a result, ship-
yards, construction companies, maritime shippers, and navies are faced with the diffi-
cult decision between maintaining their fleet, and selling off their most problematic
ships for demolition and scrapping—especially when the options of refurbishment,
storage, resale, or salvaging are unavailable, infeasible, or less attractive.

https://us.emrlocal.com/yards/emr-brownsville-scrap-metal
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FIGURE 2.1: In the shipbreaking yard, the breakdown of decommis-
sioned vessels is conducted via oxy-propane gas cutting and its ancil-

lary logistics are facilitated using on-site machinery.

For companies, the decision of whether to maintain or scrap a vessel depends on
their strategic opportunities, market conditions, and market outlook. Factors which
support the scrapping of their vessels include [25] aging, depreciation, market shocks,
rising commodity prices, and stricter regulations [26]. In the case of navies, an
aging vessel can incur severe maintenance costs that increasingly burden government
defense budgets, and by extension, the taxpayers. However, retiring warships such
as aircraft carriers and battleships may constitute a breach of national security if
acquired by foreign scrappers. Accordingly, government navies may give preference
to domestic scrappers [27] even when their scrapping rates are less competitive. This
is especially true when the vessels in question contain nuclear material, weapon
systems, or exhibit classified engineering designs.

While there are a variety of ships that are subject to scrapping, the most common
category that are recycled globally are transport vessels [28], such as bulk carriers,
oil tankers, and container vessels. In effect, these transport vessels typically have
25–30 years of service [29] in the global marine shipping industry. In all cases,
aging vessels that are decommissioned are typically sent to shipbreaking yards for
recycling. During this scrapping process, the vessels are broken apart and then cut
into recyclable metal components using gas torches (see Fig. 2.1 and Fig. 1.3).
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2.1.2 The Scrapyard and its Operations

This industry is characterized by its labor-intensive and comparatively low-technology
activity—shipbreaking operations are not straightforward to mechanize or automate.
The working conditions in these scrapyards are difficult and dangerous, often requir-
ing the disposal of hazardous substances [26], [30]. An essential operation in these
scrapyards is metal cutting and its planning. Certainly, orchestrating the large-scale
complexity of scrapping activities relies on many other crucial aspects, such as the
operation of heavy machinery, logistics, transportation, and many others.

In the scrapyard, the most commonly used metal cutting medium is oxy-propane
gas cutting. While the plasma cutting of metals is used within certain edge cases
during scrapping, it is less compatible with the overall requirements of the scrap-
yard operations. In effect, each cutting medium has its own advantages and their
comparative cost advantages [31] depending on the desired cutting thickness. As
compared to oxy-gas cutting, plasma cutting can achieve (at a higher convenience)
cleaner and more precise cuts at faster cutting speeds. However, unlike in manufac-
turing, these factors are unnecessary in scrapping. In manufacturing, a higher quality
product leads to a higher added value and ultimately a higher price. By contrast,
in scrapping the end-product is sold at commodity prices yielding tighter margins.
Therefore, the cost-effectiveness of scrapping operations dictates the preference for
the cutting medium. Moreover, plasma cutting would complicate logistics since it
requires electrical shielding and smoke removal hoods.

When compared to plasma cutting, the preference for oxy-propane cutting is based on
the following incentives: (1) propane is a relatively affordable fuel; (2) oxy-propane
cutting penetrates carbon steel more deeply (albeit more slowly) and with a larger
heat-affected zone; and, (3) carbon steel is the predominant recycled metal in ship-
breaking yards, against which oxy-propane cutting is particularly advantageous. For
these reasons, the bulk of the cutting operations are carried out using oxy-propane
metal cutting via gas torches.

While scrappers may differ in their internal processes, we summarize a common
pattern for scrapping operations [27]. First, the ships are examined and cleared of
hazards, whether mechanical, chemical, or radioactive. Depending on the severity
and complexity of the hazards, this may take months. Afterwards, safety forepersons
and cutting workers enter the ships and assess the cutting scenarios. Typically, cutting
plans are drafted and approved by safety forepersons prior to the execution of cutting
operations. Next, cutting workers begin segmenting the large structural elements
of the ship which are then lifted from the ship and placed on the ground by means
of heavy machinery. These structures are then re-assessed by the forepersons and
workers in newly drafted cutting plans. The worker then executes the cuts, which
depending on the size of the structure, may span several days. Moreover, the worker
cuts the structure into segments of approximate dimensions agreed-upon before
cutting per market needs.

Finally, these recyclable units are sold to buyers of processed metal scrap. It is worth
noting that depending on the targeted end-product, the specifics of these processes
may vary. Downstream, metal scrap undergoes further processing which may include
sorting, shredding, melting, decontamination, and solidification leading to the distri-
bution of metal ingots. Furthermore, in the scrapyard, the prioritization of worker
safety and well-being often varies widely between countries and employers. In
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FIGURE 2.2: Metal scrapping operations are conducted in an outdoor
shipbreaking yard.

poorly-regulated scrapping sectors, the impacts [32] on workers and the environment
can be detrimental.

2.1.3 The Industry’s Problems

Shipbreaking as an activity, an industry, a market, and a working environment suffers
from a wide array of structural problems, outlined below.

Metal scrap cutting is laborious and under-mechanized.

Cutting steel and other common marine-grade metals and alloys—such as stainless
steel, copper, aluminum, brass, and monel—is highly labor-intensive, dirty, loud,
stifling, and dangerous work. The personal protective equipment (PPE) required on-
site can be heavy and uncomfortable. This is especially true for shipbreaking activities
concentrated within hot and humid climates such as in the Gulf of Mexico—where
most cutting operations occur in the United States [26]. In less regulated scrapyards,
workers may get substandard upfront training in oxy-propane metal cutting using
gas torches and may often have to learn to operate dangerous tools through trial
and error with little supervision. Moreover, the availability of low-cost labor often
discourages companies from investing into capital-intensive mechanized solutions.

The work environment is harsh, unstructured, and dangerous.

The work often occurs in outdoor yards (see Fig. 2.2) which are exposed to the ele-
ments throughout every season of the year. Workers must mind their surroundings
and terrain whose properties may vary—e.g., muddy, slippery, soft, or hard—and
must halt scrapping operations when conditions are highly adverse such as dur-
ing rainfall. The work requires manipulating and lifting heavy loads as well as
operating gas torches in stifling, enclosed, and sometimes dark spaces—as in the
hulls and chambers of a decommissioned ship. Scrapyard conditions can often be
highly hazardous, and work accidents [33] are not uncommon. In less supervised
yards—especially those violating the many guidelines specified by the OSHA [34] for
metal scrapping—occurrences of worker deaths [35], [36] are more likely. In addition,
many wrecked ships may contain hazardous materials—chemical, biological, radio-
logical, and nuclear (CBRN)—such as those inside oil tankers or nuclear-powered
aircraft carriers. In some cases [27], on-site medical care and emergency provisions
can be substandard, wherein even treatable accidents can be fatal.
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American scrappers are overly dependent on U.S. government demand.

Due to the scrapyard’s labor-intensive operations, labor costs often amount to at least
half [26] of the total scrapping cost. A wide range of workers—supervisors, cutters,
crane operators, truck drivers, and loaders—are needed for these large-scale opera-
tions. For especially complex vessels, these labor costs can reach up to 90% [26] of the
total; especially when one factors in the cost of proper handling of hazardous materi-
als. In the United States, labor wages are comparatively higher than the scrapping
industries in developing countries. Accordingly, American scrappers are often less
globally competitive in terms of cost and and are also more sensitive to fluctuations
in commodity prices. In effect, decommissioned vessels can often be composed of
steel content that makes up 90% of their mass or more [37], and accordingly their
scrapping revenue would then heavily depend [38] on the prevailing market value of
steel. Furthermore, the comparatively stricter government regulations enforced on
American scrappers renders them less competitive (cost-wise) on the international
market. In effect, the American shipbreaking sector relies heavily on scrapping de-
commissioned military vessels [27]. In order to uphold environmental standards
set by the EPA [39], it is often necessary for the government to allocate substantial
financial resources in support of domestic scrappers. As an illustration [27], the US
government was required to expend a total of over USD 3 million in 2009 to under-
take the cleansing and demolition of two cargo ships from the reserve fleet, equating
to a cost of around USD 400 per ton. Furthermore, there have been occurrences
of authorities reclaiming decommissioned ships in situations where the scrapping
process failed to meet the necessary standards. As a result, the U.S. government
constitutes a monopsony in shipbreaking, i.e., being the largest source of market
demand, thereby yielding a highly dependent domestic market. For these reasons,
automation becomes increasingly attractive for its potential to attenuate many of
these structural problems.

2.2 Automation: Opportunities & Challenges

Compared to many other industries which have been able to modernize and mecha-
nize, the metal scrapping industry remains lagging requiring much of its hazardous
and labor-intensive work to be accomplished manually.

2.2.1 The Need to Automate

While the metal recycling industry is vulnerable to market conditions, this is even
more pronounced within shipbreaking given the industry’s sensitivity to freight
market conditions [40] and currency exchange rates [41].

Moreover, long-term projections indicate [42] that the global supply of scrapped steel
from decommissioned vessels is expected to increase dramatically by 2050. This
would impose drastic demands to upscale [43] the scrapping capacity of shipbreaking
yards, which is limited [44] especially in industrialized countries [26] having compar-
atively higher labor costs. More generally, the efficiency of metal scrapping and of its
processes would gain increasing importance since the demand for major metals in
the 21st century is projected [45] to increase.

Many of these structural inefficiencies, risks, and market pressures can be alleviated
through advancing automation within the industry. Indeed, both the productivity and
the safety of metal recycling can be improved by integrating robotic and automated
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FIGURE 2.3: Scrap pieces in the shipbreaking yard vary greatly in size,
shape, and geometric complexity.

systems—as is the case in various other sectors such as manufacturing [46] and
logistics [47]. Such systems can target key processes such as metal sorting [48], but
also crucially the metal scrap cutting operations. These would involve planning,
executing, monitoring, and sequencing the oxy-fuel cutting process on diverse object
structures of varying shapes and sizes.

2.2.2 Challenges towards Automation

While in many industries the task environment’s structure and regularities can be
exploited, conventional schemes for automation are ill-suited for the adversity of
the scrapyard environment and the complexity of its operations. More precisely, the
automation of metal scrap cutting in the scrapyard is challenging because of three
salient factors:

The input objects to be cut are extremely diverse.

Scrap pieces in the scrapyard (Fig. 2.3) are highly variable, differing in properties
such as size, shape, surface condition, spatial configuration, and so on. Objects can be
small or large, simple or complex, smooth or sharp, visible or self-occluding, whole
or perforated, among many other variations. Experienced workers can examine the
cutting scenarios of a particular object to plan and execute cuts safely and efficiently.

The corresponding oxy-fuel cutting operations are complicated.

The kinematic parameters of cutting—such as the cutting speed along arbitrary cut-
ting paths on arbitrary surfaces—are non-trivial to explicitly model and determine.
This is in addition to accounting for combustion-specific parameters such as torch
tip size and oxy-fuel flow proportions. In effect, combustion-cutting is a complicated
process that skilled cutting workers learn intuitively by experimentation and supervi-
sion. Crucially, experienced cutting workers can identify anomalies and promptly
stop the burning operations.

The environment hazards are difficult to assess.

This is especially true in the early stages of cutting, when structures are large and
complex. The workers learn to select the desired cutting path on the object not only
based on the object’s properties, but also based on its surroundings and the predicted
outcomes. An experienced worker and safety foreperson can assess the risks and
hazards of particular cuts and agree on a cutting plan.
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FIGURE 2.4: Three scrap pieces with desirable cutting paths on their
surfaces painted by an experienced scrap cutting foreperson.

Thus, for each piece’s individual properties and surrounding conditions, the desired
cutting locations must be determined, the subsequent cutting trajectories must be gen-
erated, and the resultant cut must be executed with the adequate cutting parameters.
In manual cutting, skilled workers can successfully determine the suitable operation
objectives and can apply the adequate cutting parameters—all while compensating
for disturbances and monitoring for safety. Translating all of these decision-making
capacities and workers’ implicit know-how into robot task parameters is highly chal-
lenging. While there are a few studies in the literature on robotic cutting, e.g., [49]–
[54], these focus on structured conditions, restricted tasks, controlled environments,
or known object shapes. The development of robot autonomy for addressing the
challenges of the metal scrap cutting environment is not examined in the literature.

2.3 On-site Survey: from Operations to Objectives

To develop fundamental contributions in environmental robotics that serve the practi-
cal applications of metal recycling, we must: (1) analyze and understand the targeted
domain of metal scrap cutting; and, (2) enable the formulation of specific research
problems. For this, we conducted on-site fieldwork consisting of closely surveying the
operations of the aforementioned shipbreaking yard: EMR International Shipbreaking
Limited, LLC based in Brownsville, TX.

These investigations resulted in the identification and specification of four salient
research problems aimed at endowing robots with some autonomous functionality
for metal scrap cutting. These problems are specified in order.

Cutting path generation

Since object pieces are highly diverse, it is required to identify an adequate path
on the object’s surface along which the cut is executed using a cutting torch. This
desired path varies depending on the properties of the object and of its surface. For
illustration, each of the three objects in Fig. 2.4 has a surface that is roughly cylindrical.
Yet, the manner in which each of these is cut—indicated by the markings painted by
a scrap cutting expert—can be significantly distinct due to the differences in size and
features. Stated concisely, this problem is: given an arbitrary object surface, generate
a cutting path. Equivalently, this can be stated as:

‘Input object’ 7−→ ‘Cutting path’.

https://us.emrlocal.com/yards/emr-brownsville-scrap-metal
https://us.emrlocal.com/yards/emr-brownsville-scrap-metal
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FIGURE 2.5: The shipbreaking yard processes large metal structures
(shown in the images) by cutting them into smaller fragments.

Chapter 4 tackles this problem by first simplifying it via human–robot collaboration
and then solving it using surface exploration, viewpoint planning, and spatial curve
reconstruction.

Autonomous oxy-fuel cutting

After obtaining a desired cutting path, a robotic agent would need to execute it by
means of an oxy-fuel cutting torch. This would involve controlling the torch motions
along the path, i.e., regulating the torch flame’s tangential velocity along the path on
the object surface. The problem can be summarized as:

‘Cutting path’ 7−→ ‘Cutting execution’.

Chapter 5 addresses this problem by developing a vision-based framework for oxy-
fuel torch control inspired by the visual workflow of skilled cutting workers.

Task state monitoring

Since the oxy-fuel cutting process itself is delicate but also prone to risks and hazards,
it is desirable to monitor the task state of the operation and to halt upon detecting
anomalies. Skilled cutting workers can do this instinctively and can aptly respond to
anomalous events during cutting. Concisely stated, this is:

‘Cutting execution’ 7−→ ‘Cutting task state’.

Chapter 6 targets this problem by curating an image dataset for oxy-fuel cutting and
designing a CNN model for classifying cutting task states.

Safe structural disassembly

In the shipbreaking yard, the fragments separated from decommissioned vessels tend
to be large metal structures as seen in Fig. 2.5 and are placed on the ground by means
of heavy machinery for further cutting. The disassembly of these large structures
exposes the cutting agent to a variety of hazards such as falling fragments, shifting
centers of mass, collapsing structures, and so on. Prior to executing any cuts, skilled
cutting workers typically agree with safety forepersons on a drafted cutting plan,
which can often be revised during cutting if necessary. The goal is then to plan a
sequence of cuts to fragment the object into smaller segments, that is:

‘Input object’ 7−→ ‘Cutting sequence’
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Chapter 7 targets this problem by designing a sequential decision-making algorithm
for safely disassembling large structures.

The automation framework proposed in Chapter 3 is built on combining these four
functionalities into a diverse cognitive architecture. Its purpose is to endow a robotic
system with autonomous behavior towards facilitating the automation of metal scrap
cutting operations.
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Chapter 3

Proposed Automation Framework

W E propose a novel framework for tackling the automation of metal scrap cut-
ting operations. This is achieved by employing task-specific robot autonomy

alongside worker expertise within a collaborative workflow. In this workflow, the
skilled worker studies the scene containing the input scrap piece, determines an
appropriate cutting reference, and marks it on the object with spray paint. The robot
then autonomously explores the object’s surface to identify and reconstruct the sur-
face’s painted regions from which a reference cutting path is obtained. Afterwards,
the robot executes the cut along this desired cutting path on the object’s surface by
means of an oxy-fuel cutting torch using visual feedback. During execution, the
robot’s eye-in-hand vision is focused on the heated surface to monitor the cutting task
state and detect the occurrence of anomalies in which case the operation is halted.
More generally, the cutting sequence to safely disassemble a large structure can be
planned using a special-purpose sequential decision-making algorithm.

Keywords: Robot autonomy, metal scrap recycling, metal cutting, environmental robotics,
field robots, human–robot collaboration.

Notice: Part of the work in this chapter is published at the IEEE Transactions on
Automation Science and Engineering (T-ASE) [55] and is subject to IEEE Copyright.
An earlier version of this work is published at the IEEE 17th International Conference
on Automation Science and Engineering (CASE) [56] and is subject to IEEE Copyright.

3.1 Scheme Overview

The complexity of the scrapyard environment and the complexity of its tasks—as
discussed and analyzed in Chapter 2—can be addressed through: (1) reducing com-
plexity by exploiting the implicit knowledge and experience of skilled workers; and
(2) developing a orchestrated set of diverse functionalities, each addressing a specific
task in the environment. In effect, by formulating and employing special-purpose
methodologies tailored to the particularities of each task, parts of the environment
can be tamed. In doing so, our collaborative workflow combines the respective
strengths of both the robot and the skilled worker. The advantages of human–robot
collaboration are commonly observed in industrial settings [57] and in the same spirit
our scheme yields particular benefits:

• We leverage worker expertise that is difficult to transfer to the robot. The
worker examines the scenario of cutting a particular object and provides cutting
references to the robot by conveniently drawing them on the object’s surface.
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FIGURE 1.4: Conceptual overview illustrating the proposed automa-
tion framework and its components. The blocks show the methodolo-

gies that are developed in this dissertation.

• The work required by the robot is significantly reduced. The robot explores
only the marked regions on the object—this avoids wasteful scanning of the
entire object’s surface.

• Accordingly, the robot can acquire the desired cutting path (per the worker’s
specification) and execute the cut using an oxy-fuel torch and visual feedback.

• The difficulty of the worker’s labor is reduced as the tedious and high-risk tasks
are delegated to the robot.

The proposed scheme’s components are shown in Fig. 1.4 which is first presented
in Chapter 1 and is reproduced in this section. The worker provides the cutting
references on the object’s surface in the form of drawings. Accordingly, the subsequent
tasks for the robot are: (see Fig. 1.4)

1. Explore the surface and generate a cutting path from the drawing. (Chapter 4)

2. Executing the cut with the oxy-fuel torch using visual feedback. (Chapter 5)

3. Monitoring the cutting task state to detect any anomalies. (Chapter 6)

In addition, we develop in Chapter 7 a sequential decision-making algorithm to plan
the cutting sequence for the safe structural breakdown of a large object. For this, the
decision agent uses physics-based simulations and a mathematical model for safety
to recommend a cutting sequence as well as prescribed cutter locations—where the
cutter can be a human worker or a robotic agent.

For safe structural disassembly planning, this decision agent expects a volumetric
partitioning (as in Fig. 1.4) on the input structure—wherein its segments and cutting
location options are provided. In the scrapyard, this partitioning is informally per-
formed during the planning by the safety foreperson and the worker (see Fig. 7.1)
and can therefore be translated to the decision agent. Alternatively, Section 7.1 briefly
reviews specialized algorithms for volumetric partitioning.

3.2 Robotic System Requirements

This framework is formulated for robotic systems of a particular configuration that is
well-suited for the task requirements of metal scrap cutting. The hardware configura-
tion of such robots would have to include a minimum set of actuation and sensing
modalities suited for our framework. At the very least, this would consist of a robotic



3.2. Robotic System Requirements 19

FIGURE 3.1: Conceptual diagram of the robotic system’s hardware
configuration. © IEEE

arm, RGB-D vision, and oxy-fuel cutting equipment. When mobility is desired in
implementation for the scrapyard such a system would also need a mobile platform
adapted for the adversity of the scrapping environment and its terrain. These are
discussed and illustrated in Fig. 3.1 in an assumed robotic system.

3.2.1 Hardware Configuration

The robotic system that is conceptualized (see Fig. 3.1) for implementing our proposed
framework consists of the following elements:

• Robotic manipulator: A serial arm mounted with a camera and cutting equip-
ment, thus allowing it to explore its surroundings and execute cuts.

• RGB-D camera: This would be mounted eye-in-hand to provide the robot with
visual feedback in the form of RGB images as well as 3-D colored point clouds.

• Cutting equipment: Most aptly, an oxy-propane cutting torch with appropriate
fuel sources as well as logistical and safety provisions.

• Mobile platform: This vehicle would structurally support the aforementioned
components but also enable mobility and navigation on the scrapyard terrain.
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In our research, we employed specialized experimental setups to demonstrate and
evaluate our methods. We do not explicitly implement a fully-fledged and production-
ready field robot. We instead develop our framework and methods to enable such a
system with autonomous functionalities. The specialized experimental setups used
by each of our methods are clearly delineated in their respective chapters.

3.3 Review of the Underlying Methods

Before developing and detailing our methodologies in the subsequent chapters, we
broadly and briefly review some of underlying methods and techniques used in our
framework and indicate the chapter within which they are employed.

3.3.1 Viewpoint Planning

In many vision and perception applications, obtaining information from a single view
may be insufficient or unreliable for performing the task. As such, the perceiving
agent must select several viewpoints from which more information—and preferably
more pertinent information—is sampled. The agent thus requires a mechanism,
viewpoint planning [58], for selecting these viewpoints to assist its task, e.g., scene
exploration, environment mapping, object recognition, or object reconstruction.

Often, the viewpoint planner relies on a viewpoint sampling method to obtain a set
of candidate views. Afterwards, the planner uses a viewpoint selection method to
score these candidates and select that which optimizes for certain criteria. Sampling
viewpoints can be accomplished deterministically such as in view sphere sampling
where views are sampled on a discretized sphere centered around the object. Alterna-
tively, sampling can be probabilistic such as with Monte Carlo viewpoint sampling.
After obtaining a sample of viewpoints, the agent must select the next view to move
towards. Selection can be based on optimizing some criteria, such as maximizing
distance, visibility, or coverage or additionally by minimizing occlusions.

In performing viewpoint planning, the agent can face a variety of challenges, such as:

• Operating within uncertainty or partial observability—for instance when the
surroundings are unknown or when objects can change locations or appearance.

• Balancing between accuracy and efficiency during planning—since capturing
more details consumes more computational resources and processing time.

• Overcoming occlusions in the scene and self-occluding objects wherein certain
details in the scene may not be visible to the agent.

In addition, there are iterative schemes for viewpoint planning, notably next best view
(NBV) planning. NBV methods are used for selecting the viewpoint that maximizes
a specified quality during each sequential planning step. The agent utilizes the
currently available knowledge of its surroundings to select its next best viewpoint.
This iterative process continues until the agent reaches some termination criteria,
such as an accuracy threshold or an empty search frontier. The design of the quality
to be maximized defines the behavior of the planner and its success. One common
approach for defining quality is to use information gain formulations [59] whose aim
is to maximize the expected information gained from the next view. Often, this is
achieved by estimating the current knowledge’s uncertainty, i.e., information entropy,
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and by selecting the viewpoint which maximally decreases it. NBV algorithms have
numerous applications, some of which are reviewed in Section 4.2.3.

In Chapter 4, we use viewpoint planning and next best view algorithms to enable the
tasks of exploring surfaces and reconstructing feature point clouds.

3.3.2 Vision-based Control

Visual feedback can be a highly suitable sensing modality for some control tasks. In
such cases, vision-based control schemes [60] use this visual information to estimate
states and perform actions in the environment. Depending on the task and the
environment, the visual feedback may contain complex information but may also
be subject to noise and disturbances. Accordingly, such control schemes often rely
a multitude of image processing techniques and other computer vision algorithms.
The visual data is processed to extract useful features relevant to the control task as
well as reducing noise. Such features can be any characteristic that can be detected
and tracked in the visual data. Examples include shapes (e.g., points, lines, edges,
and corners), colors, or more complex features such as keypoints and robot joints.

The visual data may first undergo a noise filtering step to enable more robust feature
detection, i.e., identifying the features of interest. These features must be consistently
identified and tracked across multiple frames. In some cases, this can be trivial as
features may not change much across frames. When there are significant variations,
however, then features must be matched, e.g., by finding correspondences between
them in different frames. This enables the estimation of change in the features,
for instance, motion, color shifts, or shape changes. Finally, a control rule can be
formulated using the tracked and matched features, for example, by computing the
error between the desired features and the current features and using this error to
adjust the control signals. Vision-based control can be quite flexible in its sensitivity
to changes in the environment and its potential to handle a diversity of visual features.
Nevertheless, the visual data must be appropriately processed to attenuate unwanted
effects such as occlusions, noise, and variable lighting conditions.

In Chapter 5, we design a vision-based control algorithm that regulates the cutting
speed of an oxy-fuel torch. This is achieved by computing (from the visual data) the
combustion state of the resultant heat pool on the metal surface which can then be
regulated towards a desired value.

3.3.3 Neural Network-based Classification

In machine learning, classification is a supervised learning task whose goal is to learn
a map from the input data to output class scores—relative measures of correspon-
dence to predefined classes, where the predicted class has the highest score. The
classification problem requires a dataset whose instances are labeled with the desired
output class. This data is then partitioned into a training set (to train the model for
classification) and a testing set (to evaluate the model’s performance).

A neural network model [61] is a parameterized representation of possible mapping
functions, where the choice of mapping parameters define the map. Such neural
network models can be ‘trained’ for classification tasks, meaning that their mapping
parameters are optimized to minimize the error between predictions and training
labels. This is accomplished using suitable optimization algorithms which iteratively
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adjust the model parameters during multiple passes over the training set. After train-
ing, the model can be used as a classifier to classify new input data. The classifier’s
performance is evaluated against the test set and is assessed through a variety of
performance metrics such as accuracy, precision, recall, and F1 score.

Neural network models can have one of the many diverse neural network architec-
tures. Such architectures refer to the type and structure of the model’s computational
elements, often described in terms of ‘layers’ and the maps between them. These
affect the manner with which data is being represented and transformed from the
input, through the latent space (intermediate representations), to the output. Most
neural network models incorporate compositions of affine transformations and (typi-
cally nonlinear) activation functions. Network architectures may also include more
particular elements. For instance, convolutional neural networks (CNNs) make use
of convolution kernels (or filters) and are well-suited for many vision tasks [62].

In Chapter 6, we curate an image dataset for the problem of classifying task states in
oxy-fuel cutting. Using this data, we develop and train a CNN model and evaluate
its performance. Such a classifier would enable the monitoring of automated cutting
operations to improve their safety.

3.3.4 Sequential Decision-Making

In sequential decision problems (SDPs) [63], a decision agent must select decisions
(or actions) one step at a time. In these problems each decision affects the future
outcomes (non-episodicness). The agent’s objective is to select a decision sequence
that maximizes a cumulative score across the decision steps. The number of steps may
be finite, e.g., may terminate when reaching a goal state, or may continue arbitrarily.

Typically, SDPs consist of the following problem elements (terminology can vary):

• State space: The set of all possible states of the agent and the environment,
which may be fully-observable or partially-observable.

• Action space: The set of all possible sets of actions (or decisions) that are
available to the agent for each state.

• Transition function: The environment dynamics that map the selected action
given a current state to its outcome (the next state). These dynamics can be
deterministic (e.g., set of rules, dynamical system, physics-based simulations)
or stochastic (e.g., probability models, random processes).

• Reward function: This provides the agent with feedback on the quality or
success of its decisions—essentially assigning a score to each state–action pair.
This reward can be immediate, delayed, or uncertain.

• Policy: The map from states to actions that dictates the agent’s action selection
and represents their decision-making strategy. The policy can be explicit (e.g.,
rules, heuristics) or it can be learned over time through trial and error.

SDPs can be approached with a variety of sequential decision-making techniques,
such as search methods, Monte Carlo methods, and reinforcement learning methods.

In Chapter 7, we formulate the SDP of safe structural disassembly and design a
decision agent to sequence cuts that safely disassemble the input structure.
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Chapter 4

Cutting Path Generation

W ITHIN our framework proposed in Chapter 3, this chapter focuses on the
problem of obtaining the cutting path along which to cut a given input object.

In metal scrapyards, the high variability of object surfaces poses significant challenges
to identifying a path along which to cut the piece. We propose a novel collaborative
workflow for cutting path generation that combines worker expertise with robot
autonomy. In this workflow, the skilled worker studies the scene, determines an
appropriate cutting reference, and marks it on the object with spray paint. The
robot, then, autonomously explores the surface of the object for identifying and
reconstructing the drawn reference, converts it to a cutting trajectory, and finally
executes the cut. This chapter focuses on the surface exploration and cutting reference
reconstruction tasks, which require appropriate next view planning (NVP) algorithms.
We devise three NVP algorithms enabling the robot to explore and extract desired
features from the scene, i.e., the drawn reference, without requiring any a priori object
model. Contrasting with global or feature-agnostic NVP algorithms, our approaches
guide the robot via desired local features to increase the efficiency of the exploration.
We evaluate our NVP algorithms against six categories of objects both in simulation
and in physical experiments.

Keywords: Viewpoint planning, next view planning, active vision, next best view algorithms,
3-D feature reconstruction, human–robot collaboration.

Notice: The work in this chapter is published at the IEEE Transactions on Automation
Science and Engineering (T-ASE) [55] and is subject to IEEE Copyright. An earlier
version of this work is published at the 2023 IEEE International Conference on
Automation Science and Engineering (CASE) [56] and is subject to IEEE Copyright.

4.1 Introduction

The work in this chapter is motivated by the need of extracting a desired cutting
reference determined and drawn on the object by scrap yard workers. From the
robot’s perspective, it must explore and reconstruct the drawing, starting from an
unknown scene containing an unknown object featuring an unknown drawing. We
assume that an RGB-D camera is attached to the tool-tip of the robot, and the color
of the drawn path is significantly different from the object’s color. The goal of the
robotic system is to explore the object surface to uncover the drawn path entirely
without colliding with the object. The exploration algorithm must overcome complex
object shapes and must be fast enough for practical use in scrap yards. This means
conventional exploration (active vision) techniques are insufficient since they focus
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FIGURE 4.1: Block representation of the system’s general workflow.
This chapter’s primary contribution concerns the “Exploration & Re-

construction" component. © IEEE

on exploring the entirety of the object, which is unnecessary for our task and is time-
consuming. Our methods exploit the drawing information to guide the exploration
for quickly determining a suitable viewpoint, which results in an efficient extraction
of the entire cutting reference, without needing to explore the entire object’s surface.
Our algorithms are robust against adversarial features such as discontinuous, non-
smooth, or self-occluded object surfaces. Our feature-driven strategies are not limited
to robotic scrap cutting as they are applicable to any viewpoint planning problem
requiring high performance while extracting the local features in the scene.

The proposed scheme’s components are shown in Fig. 4.1.

4.1.1 Focus and Contribution

The scheme in Fig. 4.1 has two main tasks for the robot: extract the cutting reference
and execute the cut. This chapter focuses on exploring the target object’s surface and
extracting the 3-D drawing to generate a desired cutting path.

It is important to note that the objects and drawings are both unknown to the robot
prior to the operation, as they would be in scrapyards. Moreover, the objects in scrap-
yards are often large and complex in shape, which requires a systematic exploration
of the objects’ surface; the drawings would not be visible from a single viewpoint of
the camera and are often times self-occluded. Therefore, the robot needs to scan the
drawing one image at a time and reconstruct it piece by piece on a surface whose size
and shape are both unknown. For this, the robot must carefully and intelligently plan
its camera’s next poses (viewpoints). This goal requires next view planning (NVP),
i.e., determining the camera’s subsequent poses to fully explore the object’s targeted
feature. This chapter builds on our prior work [56], which outlined our human–robot
collaboration scheme and presented our first NVP algorithm for cutting path recon-
struction. While this algorithm was effective for objects with simpler geometries,
it failed against more complex shapes by terminating prematurely. In this chapter,
we address our prior method’s shortcomings by adopting a next-best view strategy
repurposed from the information gain formulations [64], [65].

This chapter accomplishes the following contributions:

• Propose a novel feature-driven active vision strategy to autonomously search
for and reconstruct a drawn cutting reference on an object’s surface, both having
unknown size and shape.
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FIGURE 4.2: Visual overview of the three proposed next view planning
algorithm. “Extrapolated NVP” fits a curve to the feature points in the
available data and obtains the next viewpoint pose by extrapolating
from this curve while estimating surface normals. “Constained NBV”
converts the available data into a volumetric occupancy grid, generates
search spaces, scores every candidate viewpoint within, and then
selects the candidate with the highest score. “Guided NBV” constructs
the same grid but instead generates a reduced search space thereby

rapidly obtaining a next viewpoint. © IEEE

• Develop two next best view (NBV) algorithms which respectively constrain
and guide the search using feature information to select the camera’s next
viewpoint.

• Provide simulations and real robot experiments with six different object cate-
gories to evaluate the efficiency, flexibility, and robustness of our methods.

To the best of the author’s knowledge, the work in this chapter is the first to develop
cutting path generation for robotic cutting in unstructured scrapyards; and the first
to present feature-driven active vision schemes for efficient and robust surface explo-
ration. Our novel algorithms are not limited to scrap cutting but can also be applied
to other problems that require 3-D feature reconstruction.

4.2 Related Work

This section, first, situates existing methodologies for robotic cutting and welding
against our problem’s challenges. Next, we discuss how our approach compares to
current standards in active vision and NVP.

4.2.1 Cutting Path Generation for Robotic Cutting

As reviewed in [49], robotic cutting systems are employed in various industrial
and medical applications. While these robots are highly diverse in their designs,
objectives, and cutting media (e.g., laser, plasma, oxy-gas, or water-jet), they often
benefit from executing explicit and well-defined tasks in structured and controlled
environments. For example, in manufacturing applications, object properties are
known and can be directly modeled for the robot, as is the case for offline robot
programming in [50] and [51]. Similarly, [52] improves the robot’s cutting efficiency
on known airframe parts in known locations to reduce manufacturing costs. For
automated laser cutting [66], analytical methods in [67]–[71] are developed for known
object geometries, while [72] improves path generation in a known and structured
scene. In gas cutting, [54] develops a reactive control architecture for a robot to
remove low-quality metal strips from sheet metal moved on a conveyor. Each of
these uses contrasts with the operations of metal recycling scrapyards, where objects,
their surroundings, and their cutting plans are unknown a priori. To the best of
our knowledge, the only work on robotic shipbreaking is [53], where the focus is
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on applying a specialized cutting medium (hybrid induction plasma) to submarine
recycling. This system operates only on submarine hulls, and therefore cannot handle
the more difficult cutting operations in scrapyards. These formulations for robotic
cutting are incompatible with our target application—metal scrap recycling—since
they operate in structured environmental settings and directly on objects with full or
partial knowledge of their properties. Instead, our algorithms explore and reconstruct
an unknown drawing (cutting reference) on unknown objects. Our algorithms operate
in different problem conditions, and so cannot be meaningfully compared against the
aforementioned methods. We are not aware of any existing work on robotic cutting
in unstructured environments—except ours in [56], which this chapter extends.

4.2.2 Weld Seam Extraction for Robotic Welding

While welding is a distinct operation from cutting, there are similar subtasks required
for its automation. For example, the problem of weld seam extraction, which is
covered in [73]–[79] has apparent similarities with retrieving a desired cutting path.
Elsewhere, [80] proposes human–robot collaborative welding using a virtual reality
setting. However, for scrap cutting, this approach limits the robot’s task autonomy.
It is worth noting that in welding, the goal is to join materials for the purpose
of fabrication wherein there is abundant and reliable knowledge about the input
objects. In effect, some of these seam extraction methods either assume partial or full
knowledge of the seam, or expect a viewpoint containing it entirely. By contrast, the
goal in metal recycling is to scrap or break down the objects into smaller workable
units; noting that there is a large variety of objects and a high variance in their
properties. Moreover, weld seams have favorable properties (precise, clear, and
relatively predictable) which are often exploited to facilitate the seam extraction.
In metal scrap cutting, however, the cutting references are noisy, irregular, and
unpredictable. This is worsened by the fact that these drawings are painted by the
worker in an unstructured setting. Moreover, scrapyard objects are often too large
and complex to guarantee that the entire drawing can be fit in one view. For these
reasons, these weld seam extraction methods are incompatible with our problem nor
can they be directly compared with our algorithms.

4.2.3 Active Vision and Next View Planning

Active vision systems investigate the environment to gain pertinent information by
manipulating the camera’s viewpoint. Viewpoint planning has diverse applications,
among which include precise manufacturing [81], shape reconstruction [82], human
motion capture [83], underwater exploration [84], and robot grasping [85]–[87]. Re-
cent developments also tackle less conventional configurations and solutions, such
as exploring articulated scenes (manipulating surroundings while scanning) [88],
scanning objects and scenes using an aerial robot [89], and estimating occlusions
via surface edge exploration [90]. Learning-oriented paradigms are also found in
NVP, most notably deep learning [91]–[93] and reinforcement learning [94]. These
approaches are not suitable for our application since they do not exploit the relevant
feature information to enhance the NVP. Instead, we avoid wasteful scanning of the
entire object and target only its desired subsets.

Two of the algorithms proposed in this chapter are probabilistic NBV planners and use
formulations similar to the information gain-based methods found in [64] and [65]. In
these works, a probabilistic volumetric map is used for volumetric scene reconstruc-
tion, where the expected information gain is computed from discrete candidate views.
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We emphasize that our NBV algorithms repurpose the aforementioned methods in
a specialized framework adapted to the domain-specific task of robotic metal scrap
scanning and cutting. While the formulations [64] and [65] are useful for global scene
exploration and total object reconstruction, they are not tailored for nor are incompat-
ible with our target application since they seek to map an entire object or scene and
not the subset of the object surface containing the desired feature—thereby solving
a distinct problem. In some cases, it may not even be possible—in our problem’s
formulation—to scan the object entirely due to workspace constraints within which
our methods operate. Accordingly, we adapt their strategies into feature-driven
planners by assisting the viewpoint search using the desired feature’s information. To
the best of our knowledge, no existing approach targets local features on unknown
objects in unstructured scenes, a need which we address in this chapter.

4.3 Overview of the System

This section presents the different workflow components, the robot tasks, and the
hardware configuration required for this chapter.

4.3.1 Hardware Configuration

We design our algorithms assuming that the system includes a mobile platform, a
manipulator, an RGB-D camera, and a gas torch connected to appropriate oxy-fuel
tanks (see Fig. 3.1). For the purposes of this chapter—both in simulation and in the
physical experiments—the manipulator in use is the Franka Emika Panda 7-DOF arm
and the RGB-D camera equipped is the Intel RealSense D435. The Panda robotic arm
is used stand-alone, and its integration to a mobile platform is not addressed. The
design and implementation of such a mobile robotic base is explored in [95].

4.3.2 Workflow Components

In this human–robot collaborative workflow (presented in Chapter 3), the worker and
robot have well-defined roles and functions. From the robot’s perspective, the worker
provides the cutting references on the object. Afterwards, the robot must discover
and recover these references and then carry them out. We emphasize that the robot
does not know the locations of neither drawing nor object, nor does it assume their
shape or size. It merely assumes their existence, and must autonomously discover
and acquire any required properties. This is essential for scrapyard environments, as
there is little regularity in shapes, sizes, and cuts.

After worker input, the robot’s tasks become: (see Fig. 4.1)

1. Search to discover an initial partial view of the drawing.

2. Plan next views to gradually reconstruct the full drawing.

3. Generate a 3-D cutting path from this recovered drawing.

4. Execute the cut and using visual feedback.

The workflow can be viewed as an action sequence on the input (colored point clouds)
to the desired output (successful cut). This is: scan (tasks #1 and #2), generate the
cutting path (tasks #3), and execute the cut with visual feedback (task #4). The main
contributions of this chapter is to solve tasks #2 (obtaining the drawing) and #3
(generating a cutting path). For this purpose, task #1 is assumed complete, i.e., we
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assume that a (small) part of the drawing is visible to the robot from the initial view.
Task #4 is addressed in Chapter 5.

4.4 Exploration & Reconstruction

This section introduces and explains the subroutines of the exploration and recon-
struction task.

4.4.1 Task Overview

Referring to Fig. 4.1, the exploration and reconstruction task must facilitate the
eventual generation of a cutting path. Instrumentally, it must provide an appropriate
reconstruction of the desired feature (here, a 3-D colored drawing). This reconstructed
drawing must cover as much of the original drawing as possible. Thus, the task’s
desired output is a high-coverage point cloud reconstruction of the drawing.

Due to the high variance of object sizes and shapes, the robot’s initial view is unlikely
to contain the entire drawing. Accordingly, the robot keeps exploring the object until
it fully uncovers the desired feature. Thus, the exploration and reconstruction routine
is formulated as a loop that terminates once the drawing is considered fully explored.
Until this stop condition is met, the robot repeats the following steps:

1. Acquire a colored point cloud image.

2. Transform the acquired cloud to the fixed base frame.

3. Combine clouds from several views to reconstruct a surface containing parts of
the drawing.

4. Segment the drawing region from the reconstruction.

5. Plan the next viewpoint using the extracted points.

6. Move to the next view while avoiding collisions.

In essence, we iteratively reconstruct a subset of the object’s surface that contains the
entire drawing, and then at each step, we use its available portion of the drawing
to inform the next viewpoint. We terminate the search once this reconstruction is
considered to contain the entire drawing, which is then extracted. These steps are
elaborated in the rest of this section.

4.4.2 Point Cloud Processing

The robot acquires colored point clouds obtained from the variable camera frame.
The surface containing the drawing is reconstructed by combining the point clouds
obtained from multiple views. These clouds are first transformed to the fixed base
frame and are then concatenated.

More formally, let k ≥ 0 be the exploration’s current step. Let cCk be the cloud
obtained at step k with respect to the camera frame c. The camera’s pose at step k
is bTk in the base frame b. These acquired clouds cCk are concatenated to iteratively
expand the cumulative knowledge of the drawing.

Accordingly, let bCtotal,k be the cloud containing all the RGB-D information obtained
thus far, i.e., the cumulative cloud after step k expressed in the base frame. This can
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be expressed recursively for k ≥ 1 as follows,{
bCtotal,0 = bT0

cC0,
bCtotal,k =

bCtotal,k−1 ∪ bTk
cCk

(4.1)

The transformations bTk map all clouds acquired at different steps k to the base frame
for concatenation. The expression bTk

cCk maps all of the cloud’s member points from
the camera frame at step k to the base frame.

The loop’s next step is to segment the drawing from the current cumulative cloud
bCtotal,k. Let ϕξ(·) be the filtering function defined by its parameter ξ which deter-
mines its filtering behavior. In our setup, ϕξ(·) filters by color such that ξ is an
admissible range of colors. Let bDtotal,k be the cloud representing the drawing such
that ϕξ : bCtotal,k 7−→ bDtotal,k.

With these first four subtasks defined, we summarize their inputs, outputs, and
interaction in the pseudocode below.

define ProcessClouds(step k) :
cCk ← AcquireImageAt(bTk)
bCk ← Transform(bTk, cCk)
bCtotal,k ← Concatenate(bCtotal,k−1, bCk)
bDtotal,k ← Filter(ξ, bCtotal,k)

return (bDtotal,k, bCtotal,k, bCk)

We implement some of these 3-D point cloud processing tasks using the Point Cloud
Library [96].

We note the distinction between the clouds bCtotal,k and bDtotal,k. The cloud bCtotal,k is
the local surface reconstruction of the object, i.e., the concatenation of all the acquired
and transformed point clouds bCk at each step k. In contrast, the cumulative feature
cloud bDtotal,k is the filtered version of bCtotal,k and thus retains only the feature points
(in our case, points of red color) with all other points discarded.

4.4.3 Next View Planning

Until now, we have defined the acquisition and processing of point clouds at a
particular viewpoint pose bTk. The initial viewpoint at k = 0 supposedly provided by
the mobile search (see Fig. 4.1) is assumed given. Beyond this, we must obtain the
subsequent viewpoints to gradually explore and reconstruct the drawing. For this,
we require a next view planner.

Conceptually, the NVP algorithm performs higher-level reasoning on the raw point
clouds obtained from the ProcessClouds(·) procedure. Specifically, the NVP gen-
erates candidate viewpoints using information from the cumulative feature cloud
bDtotal,k, the local surface cloud bCtotal,k, and the latest transformed cloud bCk. The
pseudocode below conceptually sketches the exploration and reconstruction routine.
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define ReconstructDrawing() :
bT0 ← InitialViewpoint()
for k = 0, 1, . . . , kstop − 1 :

(bDtotal,k, bCtotal,k, bCk)← ProcessClouds(k)
bTk+1 ← NextViewpoint(bDtotal,k, bCtotal,k, bCk)

bDtotal,kstop ← ProcessClouds(kstop)
return bDtotal,kstop

The loop’s stopping condition is determined and checked by the viewpoint plan-
ner, terminating the exploration at some eventual step kstop. After termination, the
cumulative cloud bCtotal,kstop should contain the entirety of the desired feature. The
final and fully reconstructed drawing’s point cloud bDtotal,kstop is outputted for cutting
trajectory generation.

Each of our three planning algorithms implement the ReconstructDrawing() routine
with their own respective mechanism for NextViewpoint(·), i.e., planning the next
viewpoint. Irrespective of choice, the viewpoint planner controls these two decisions
during exploration:

1. Termination: Determine if the drawing is fully explored, and accordingly either
proceed searching or terminate.

2. Viewpoint Generation: Provide and select candidate camera poses to continue
the robot’s search.

For scrap cutting, the NVP algorithm is subject to performance constraints. An
inefficient planner slows down the exploration routine, which would worsen cutting
productivity. The planning time is affected jointly by the number of steps and by the
step duration. This often comes with a trade-off, as planners that finish with less
steps tend to spend more time per view, and by contrast planners which compute
steps rapidly tend to iterate more. This trade-off is present in our algorithms and is
later examined in our evaluations.

The NVP algorithm determines poses to visit sequentially, throughout the exploration
task, to reconstruct the drawing on the object surface. The motion planner attempts
to plan a feasible trajectory towards these poses and executes the first viable one.
This motion then executes while avoiding collisions. For our implementation, we use
ROS [97] and Gazebo [98]. We also use MoveIt! [99] for motion planning, which is
internally set to use OMPL and TRAC-IK.

4.5 Next View Planning Algorithms

This section develops the three feature-driven NVP algorithms. Each algorithm:

• Obtains a point clouds of the object that is marked with the cutting path.

• Segments the points that belong to the cutting path.

• Processes the object point cloud and the cutting path point cloud to calculate
the next viewpoint.

• Moves the robot to the next viewpoint, and repeats this process until a termina-
tion condition is reached.
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The algorithms can be distinguished (see Fig. 4.2) by how each of these three high-
level actions is accomplished.

The first algorithm generalizes the procedure for point cloud fitting and curve ex-
trapolation, from our prior work [56]. To the best of the authors’ knowledge, this
method is the first of its kind to address the application of interest: reconstructing an
unknown drawing on an unknown surface, given a known feature (here, the color
red). As such, this algorithm is used as a baseline against which the remaining two
are compared.

The second algorithm reformulates the methodologies in [64] and in [65] into one that
is adapted for the application of interest. Briefly, the method relies on a probabilistic
occupancy voxel grid and a quality metric (based on information gain) to explore
and rank candidate viewpoints, thereby selecting that which maximizes quality.
This planner searches the grid in a rather exhaustive manner. In contrast, our third
algorithm, which uses the same formulation as the second, exploits greedy-like
optimizations for faster searching.

We examine each method in its respective subsection.

4.5.1 Extrapolated Next View Planning (E-NVP) Algorithm

This first planner treats the feature NVP task like a path exploration problem—by
iteratively exploring the branches of an unknown path until all endpoints are found.
The point clouds are converted to more useful and more structured representations
using fitting methods. The next view is obtained by extrapolating those fits.

Exploring along a path requires a sense of its direction. However, the data obtained
from the stereocamera, which is then processed in the procedure ProcessClouds(·),
remains in the format of point clouds. Essentially, this is an unordered list of 3-D
colored points where the direction of the drawing cannot be directly inferred. In this
form, viewpoint planning on the desired feature is not straightforward.

This planner solves this representation problem by mapping the point cloud to a more
usable structure. The cloud data is used to construct or fit spatial curves parametrized
in 1-D. This procedure is captured by the map R6

xyzRGB → R×R3
xyz where the input

space R6
xyzRGB represents the point cloud. The output space (a curve) can equivalently

be rewritten as a rule R→ R3
xyz, which takes a 1-D parameter and returns a 3-D point.

The cloud is thus reduced to a curve as follows,

{(
bpx, bpy, bpz, pR, pG, pB

)
j

}
j=1

Fit7−→
(
bqxyz(t)

)
t

(4.2)

This 1-D ordering of 3-D points yields a sense of direction along the curve wherein
there is an ordering on the curve points. Specifically, the set of unordered points
{bpj}j=1 is used to create the list of ordered points

(
bqxyz(t)

)
t indexed by the pa-

rameter t. This provides the planner with a way to determine the next viewpoint
to continue exploring the drawing. Since the curve represents one continuous and
known portion of the drawing, the drawing’s unknown regions come after the end-
point of this curve. This planner assumes that the entire drawing has two extremities,
meaning it is branchless. Thus, after the initial viewpoint, there are two scenarios for
curve endpoint selection. If the initial viewpoint happened to already contain one
extremity of the drawing, then the planner explores in the direction of the second
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curve endpoint. On the other hand, if the initial view contains an intermediate por-
tion of the drawing, then the planner has two candidate directions to explore. The
curve endpoint closest to the camera is chosen to reduce movement time between
unexplored endpoints.

With a chosen curve endpoint, the planner extrapolates to the next viewpoint at
each step at a configurable distance δdistance. When δdistance = 0, the extrapolated
endpoint itself becomes the next viewpoint. Exploring one curve endpoint at a time is
slower, but plans towards the drawing extremity more conservatively. Alternatively,
δdistance > 0 places the next viewpoint, beyond the curve endpoint. This speeds up
exploration but may cause some overshoot. Accordingly, keeping the extrapolation
distance small is preferable.

Extrapolation only determines the position bdk+1 of the next viewpoint. To fully
provide the next pose bTk+1, the planner must also determine the next orientation
bRk+1 of the camera at that position bdk+1. The planner sets the orientation to be
orthogonal to the surface at the viewpoint position bdk+1. This orientation is obtained
by estimating the vector normal to the surface surrounding the viewpoint position
bdk+1. This region is contained in the cumulative cloud bCtotal,k. Orienting the camera
orthogonally helps the robot obtain a more accurate capture of the surface and thus
avoid leaving gaps in the drawing point cloud during exploration—which would
otherwise require backtracking and cost additional time. The orientation about the
normal does not affect output significantly, and is relaxed for motion planning.

This planner continues searching by iteratively obtaining new clouds, fitting a curve
on the desired feature, and extrapolating towards the next viewpoint. The planner
considers a drawing extremity to be found when the size difference between two
consecutive reconstructions bDtotal,k falls below a threshold δsize. After both extremi-
ties are found, the search terminates and returns the reconstruction bDtotal,kstop . This
iterative extrapolation procedure is outlined in Algorithm 1, where the result is the
feature’s reconstruction.

Note that this procedure is affected by the fitting method choice. In our prior work
[56], we examined and compared the effects and results of two types of fitting
methods. The first fitting method relies on an optimization scheme to fit a non-
uniform rational B-spline (NURBS) curve to the cloud. This method initializes a
proposed curve and then improves the fit using point-distance minimization. An
alternative fitting method from computational geometry is topological skeletonization.
The goal of a skeletonization algorithm is to compute the medial axis of a shape—
defined as the set of points equidistant from its boundary. This discretizes the shape
into a voxel grid, and then erodes its edges away by repeatedly applying a thinning
algorithm, until a single voxel-wide skeleton remains. This method runs faster than
the NURBS-based method, and is used in our evaluations.

4.5.2 Constrained Next Best View (C-NBV) Algorithm

This planner restructures the NVP task into a search problem on a voxel grid. In brief,
this grid is constructed from the point clouds and updated at each measurement. A
frontier region is computed to constrain and generate the candidate search space,
within which each candidate is scored with a viewpoint quality metric. The best
candidate is selected as the next view. This repeats until a termination criterion is
met.
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Algorithm 1: Extrapolated Next View Planner (E-NVP)

Input : Initial view containing part of the drawing.
Output : bDtotal,kstop , fully-reconstructed drawing cloud.
Initialize step, extremities found, and viewpoint.
step k← 0
nextremities ← 0
bT0 ← InitialViewpoint()

Explore the drawing until two extremities are found.
while nextremities < 2 do

Acquire, transform, concatenate, and filter clouds.
(bDtotal,k, bCk)← ProcessClouds(k)

Backtrack to initial view if drawing size unchanged.
if size(bDtotal,k)− size(bDtotal,k−1) ≤ δsize then

nextremities ← nextremities + 1
bTk+1 ← InitialViewpoint()

else
Fit a curve on the cumulative drawing’s cloud.
Curve← Fit(bDtotal,k, FittingMethod)

Obtain next view pose from fit’s extrapolation.
bdk+1 ← Extrapolate(Curve, δdistance)
bRk+1 ← GetNormalVec(bdk+1, bCtotal,k)
bTk+1 ← (bdk+1, bRk+1)

k← k + 1
return bDtotal,kstop

The algorithm voxelizes the obtained processed clouds into an octree grid of oc-
cupancy probabilities. The grid distinguishes between occupied, unoccupied, and
unknown cells based on their occupancy probabilities—respectively more than, less
than, and equal to 0.5. We use OctoMap [100] as a probabilistic voxel occupancy grid.
This grid allows efficient storage and querying of cell probabilities.

Let Gk be the voxel grid generated at step k. The local scene’s cumulative cloud bCtotal,k
is voxelized to map the currently available knowledge, while the reconstructed
drawing’s cumulative cloud bDtotal,k is used to identify those voxels belonging to the
drawing. Since the drawing is the region of interest, we determine its frontier on the
grid. Here we define a frontier cell to have at least one unknown neighbor and at least
another neighbor belonging to the drawing’s region. The frontier at step k is denoted
by Fk and represents the boundary of current knowledge about the drawing used
to determine high-vantage locations for generating viewpoint search spaces. This
constrains the search at step k for the next view in search space Sk where candidate
viewpoints are scored and ranked. The space is constructed by generating regions
from geometric primitives (e.g., cubes, spheres) around each frontier cell, and then
concatenating them such that Sk =

⋃
f∈Fk

S( f ) where S(·) generates a search space
primitive for a single cell.

The camera’s viewpoint sk can be expressed in the base frame as bsk = (bx, by, bz, αx, αy, αz),
where (bx, by, bz) is the position in the grid, and (αx, αy, αz) is the orientation obtained
as anticlockwise rotations about the respective axes. It can also be expressed in the
camera frame as csk = (cx, cy, cz, αR, αP, αY) where (cx, cy, cz) is the position with re-
spect to the camera’s frame, and (αR, αP, αY) is the orientation specified with respect
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to the local roll-pitch-yaw frame (R̂, P̂, Ŷ) about the camera’s body (see Fig. 4.3). The
transformations from csk to bsk relate these expressions.

FIGURE 4.3: Specification of the camera frame (R̂, P̂, Ŷ) for orientation.
R̂ is normal to the lens extending from the front. P̂ extends horizontally
from left to right on the camera’s front body. Ŷ is obtained binormally

to the rest. © IEEE

All candidates in Sk are scored using a viewpoint quality metric Q(·). The next view
is set to the best-scoring candidate,

bTk+1 = argmax
s∈Sk

Q(s) (4.3)

We note that bsk represents the candidate viewpoints s in the base frame at step k of
which the highest-scoring candidate s∗ = argmaxs∈Sk

Q(s) becomes the chosen next
viewpoint bTk+1 to which the robot moves from steps k to k + 1.

The quality of an candidate viewpoint at step k is given by,

Q(sk) = λ · gain(sk)

∑
s∈Sk

gain(s)
− (1− λ) · cost(sk)

∑
s∈Sk

cost(s)
(4.4)

This is a convex combination of a gain term and a cost term, expressed as a proportion
of their search space totals. The parameter λ ∈ [0, 1) determines, for a particular view-
point, the relative weight between its gain and cost terms gain(sk)/ ∑s∈Sk

gain(s) and
cost(sk)/ ∑s∈Sk

cost(s), expressed as fractions of the candidate population totals—that
is, the aggregate values for every s ∈ Sk. Here, gain(sk) quantifies the relevant infor-
mation gain obtained from choosing sk as the next viewpoint. The function cost(sk)
offsets this gain and is the Euclidean distance between the current viewpoint and the
candidate sk. This penalizes the quality of a viewpoint on distance from the current
position. Therefore, a smaller value for λ prioritizes the highest-ranking viewpoint
candidates which are also near the current position.
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Entropy is computed for each measurement.

Occupancy probability is queried from the OctoMap grid.

Absolute information gain is the entropy decrease.

FIGURE 4.4: The absolute information gained (about the occupancy
state at a cell g) by moving from the viewpoint sk−1 to the viewpoint
sk corresponds to the decrease in information entropy about its occu-

pancy state. © IEEE

Hence, the parameter λ directly affects the distance traveled within a measurement
step and thus the exploration time. However, λ does not affect the NBV algorithms’
coverage performance in terms of feature reconstruction. In practice, for highly con-
strained spaces, it is preferable that the robot explores in short bursts, thus favoring
a reduced value for λ. Conversely, for highly spacious conditions, the distance con-
straints can be relaxed, allowing the robot to move to viewpoints further away, which
in turn favors an increased value for λ. In our evaluations, the parameter is set to
λ = 1

2 to give equal weight to the gain and cost terms, as the evaluation’s focus is to
assess the feature reconstruction capability. With that said, the parameter λ can be
readjusted to application-specific and case-specific needs, if necessary.

The gain(·) function is obtained by summing over the grid,

gain(sk) = ∑
g∈Gk

[
h(g | sk) · pϕ(g) · pv(g | sk)

]
(4.5)

Here, h(g | sk) is the information entropy decrease which measures absolute infor-
mation gain at a cell g after placing the next viewpoint at sk. The feature probability
pϕ(g) estimates the feature membership of the cell g, i.e., the chances of belonging to
the drawing. The visibility probability pv(g | sk) estimates the chance that the cell g is
visible from sk. The probabilities pϕ(g) and pv(g | sk) respectively penalize distance
from the desired feature (the drawing) and occlusion.

The entropy decrease h(g | sk) is obtained through the entropy function H(·) used in
information theory, as follows,

h(g | sk) = H
(
og | sk−1

)
−H

(
og | sk

)
(4.6)

The binary occupancy random variable og models whether the cell g is unoccupied
(og = 0) or occupied (og = 1). The information entropy H(og | sk) quantifies the
uncertainty of the binary random variable og denoting the occupancy of cell g. When
this information entropy decreases across two consecutive measurements, i.e., when
h(g | sk) > 0, then we have “lost some uncertainty” or “gained information” about
the occupancy state of the grid cell g, after the kth measurement from cell sk. This
procedure is illustrated as shown in Fig 4.4.
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Distance to nearest frontier cell is 

scaled via exponential decay.Frontier cells

FIGURE 4.5: The feature probability approximates the probability that
a grid cell g belongs to the desired feature. The frontier cells in this
case represent the cells that have been determined to be part of the

desired feature. © IEEE

The feature probability is modeled with exponential decay,

pϕ(g) = P
[
ϕg = 1

]
= exp

[
−αϕ distFk(g)2] (4.7)

The feature indicator random variable ϕg models whether the cell g belongs to the
drawing (ϕg = 1) or otherwise (ϕg = 0). The function distFk(·) returns the shortest
Euclidean distance from g to the nearest frontier cell in Fk. The parameter αϕ > 0 is
used to tune the exponential decay profile. Maximizing only the absolute information
gain between two consecutive viewpoints would lead to seeking novel information
about the state of the grid regardless of its relevance to the desired feature. Therefore,
new information gained about each cell must also be scaled by the cell’s probability of
belonging to the desired feature. This feature probability pϕ is approximated using the
assumption that cells near the desired feature have a higher probability of belonging
to the feature. This assumption is modeled using an exponential decay profile applied
onto the distance to the nearest frontier cell. We illustrate this computation as shown
in Fig. 4.5.

The visibility probability at cell g from candidate sk is,

pv(g | sk) = P
[
vg,sk = 1

]
= ∏

r∈Rk

P [or = 0] (4.8)

The binary visibility random variable vg,sk models whether the cell g is visible (vg,sk =
1) or otherwise (vg,sk = 0) from the candidate sk. An unobstructed view to the cell g
from a candidate sk must be must preferred. Raycasting is performed from sk to g,
whereRk contains all cells traversed by the ray. The probabilities that the ray cells are
unoccluded P [or = 0] are multiplied to yield pv(g | sk), i.e., the probability that the
cell g is visible from the candidate viewpoint sk. The above procedure is illustrated as
shown in Fig. 4.6.

During the search, all grid positions (bx, by, bz) within Sk are attempted for scoring.
For each candidate position, the orientation is searched by varying the angles αP

and αY. The C-NBV planner relaxes the angle αR to not overly constrain the motion
planner, since the normal direction about the lens has a comparably lesser effect on
the information gain in the acquired image. After determining the next viewpoint s∗k ,
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Non-occupancy probability is 

queried from the OctoMap grid.

Visibility is non-occupancy across the casted ray.

FIGURE 4.6: The visibility probability of a cell g from the candidate
viewpoint sk is computed as the probability pv that all their intermedi-

ate cells are unoccupied. © IEEE

the camera’s grid position (x, y, z) and orientation αP and αY are set accordingly. The
angle αR is determined by the motion planner, and the camera is moved to its new
pose.

With the quality metric Q(·) fully defined, a next viewpoint can be obtained, and the
procedure elaborated above repeats until the following stop condition is met:[

maxs∈Sk Q (s) < δQ
]
∨
[

card(Fk) = 0
]

(4.9)

That is, the routine stops once the optimal viewpoint quality falls below a certain
threshold δQ, or when the number of frontier cells reaches zero, whichever condition
is met first . This procedure is outlined in Algorithm 2.

This formulation is based on the object reconstruction algorithm developed in [64] as
well as the information gain approach in [65]. However, these formulations are not
well-adapted to our problem, and are either impractical (search spaces are too large
and NBV selection is too slow) or infeasible (scrap objects are often too large to fully
scan).

As presented above, we implement several modifications to reformulate these ap-
proaches for our requirements. We modify the frontier definition to focus on the
desired feature. We also generate constrained search spaces around specific frontier
cells to vastly decrease the search’s time and memory costs. To determine the NBV’s
orientation, we constrain its range by pointing the camera at the frontier cells.

4.5.3 Guided Next Best View (G-NBV) Algorithm

This planner implements specialized modifications to the previous algorithm to
radically increase performance. It does this by not only constraining the search, but
also explicitly guiding it along the feature. The planner thus uses feature information
to perform greedy optimizations.

Unlike the E-NVP planner, this algorithm does not assume that it explores a path.
However, by guiding its search along the feature, it retains the performance ad-
vantages of path exploration. Yet, its probabilistic NBV formulation is more robust
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Algorithm 2: Constrained Next Best View (C-NBV)

Input : Initial view containing part of the drawing.
Output : bDtotal,kstop , fully-reconstructed drawing cloud.
Initialize step, stopping condition, and viewpoint.
step k← 0
stop← False
bT0 ← InitialViewpoint()

Search the grid until viewpoint quality is exhausted.
while stop ≡ False do

Acquire, transform, concatenate, and filter clouds.
(bDtotal,k, bCtotal,k)← ProcessClouds(k)

Generate octree grid from cumulative clouds.
Gk ← GenerateGrid(bCtotal,k, bDtotal,k)

Determine and filter the frontier cells in the grid.
Fk ← GetFrontier(Gk)

Generate viewpoint search space around frontier.
Sk ←

⋃
f∈Fk

S( f )
Obtain next viewpoint with highest quality.

bTk+1 ← argmaxs∈Sk
Q (s)

Evaluate and update the stopping condition.
stop← maxs∈Sk Q (s) < δQ or card(Fk) = 0

k← k + 1
return bDtotal,kstop

against unknown space, occlusions, and adversarial geometries. In a sense, this car-
ries the performance advantages of the path exploration paradigm and the robustness
characteristics of the probabilistic NBV formulation.

We repeat the formulation of the C-NBV algorithm until after the frontier Fk is
determined. Despite the large performance improvements of the already reduced
frontier, the search space can still become being quite large. Consider the scenario
of a large object with a drawing traversing long parts of its surface. This produces a
long frontier with little overlap between the individual search spaces S(·), causing
the concatenated search space Sk to significantly grow.

To address this, the G-NBV planner reduces the frontier Fk into a single frontier cell f̂k.
For this, the frontier cells are clustered using a suitable voxel clustering method. We
use a connectedness-based clustering method, whereby any neighboring frontier cells
are lumped into the same cluster. Now, the frontier is composed of several clusters, of
which the nearest one (to the current pose) is chosen. The centroid f̂k of this nearest
cluster is computed and then used as the single-voxel frontier for generating the
search space.

This offers numerous performance advantages. First, by trimming the other clusters,
the planner explores any number of branches, one at a time, avoiding long and
exhaustive searches. Second, since there is only one frontier cell, then the entire
search space consists of a single geometric primitive around the cell, e.g., a sphere
around the centroid. This is a reasonable step, as frontier cells tend to surround the
current reconstructed drawing’s endpoints. Thus, searching around this centroid
would implicitly guide the planner along the drawing.
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A third advantage lies in determining orientations for the candidate viewpoints. This
is normally expensive as it drastically increases the search space, since for every
position there are several the camera orientations. We eliminate this problem entirely
by constraining the orientation from the candidate cell s to the frontier centroid f̂k,
thus predetermining the values for the angles αP and αY. This reduces G-NBV’s search
to only the grid positions, since αP and αY are predetermined and αR is delegated to
the motion planner. The search space is thus not only reduced cell-wise, i.e., attempt
only the search space around f̂k rather than around the entire frontier, but also pose-
wise, i.e., search only grid positions in the search space while constraining the camera
orientation.

This constraint is justified due to the localized information on the drawing. In
effect, high viewpoint qualities concentrate in the unknown space around the current
reconstructed drawing’s endpoints. Fixing the orientation towards the centroid
eliminates the exploration of alternatives where the gain is often marginal or negative.
By exploiting the drawing’s structure, the planner is able to rapidly select the next
viewpoint.

The G-NBV routine is summarized in Algorithm 3.

Algorithm 3: Guided Next Best View (G-NBV)

Input : Initial view containing part of the drawing.
Output : bDtotal,kstop , fully-reconstructed drawing cloud.
Initialize step, stopping condition, and viewpoint.
step k← 0
stop← False
bT0 ← InitialViewpoint()

Search the grid until viewpoint quality is exhausted.
while stop ≡ False do

Acquire, transform, concatenate, and filter clouds.
(bDtotal,k, bCtotal,k)← ProcessClouds(k)

Generate octree grid from cumulative clouds.
Gk ← GenerateGrid(bCtotal,k, bDtotal,k)

Determine and filter the frontier cells in the grid.
Fk ← GetFrontier(Gk)

Reduce the frontier set into a single frontier cell.
Fk ← GetClusters(Fk, ClusteringMethod)
Fk ← GetNearestCluster(Fk)
f̂k ← GetClusterCentroid(Fk)

Generate viewpoint search space around centroid.
Sk ← S( f̂k)

Obtain next viewpoint with orientation constraint.
bTk+1 ← argmax

s∈Sk

Q (s) s.t.bRk+1 = Rot(s, f̂k)

Evaluate and update the stopping condition.
stop← maxs∈Sk Q (s) < δQ or card(Fk) = 0

k← k + 1
return bDtotal,kstop
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4.5.4 Spatial Curve Reconstruction

By using any of the three aforementioned algorithms, we obtain the fully-reconstructed
point cloud bDtotal,kstop of the drawing. This cloud is used to generate a suitable cutting
path (along the drawing) that can eventually be used as a reference for cutting control.
We accomplish this task of converting unstructured point clouds to ordered paths, as
in the mapping (4.2), by using suitable spatial curve reconstruction methods. This is
the same class of fitting methods used in the Extrapolated NVP’s curve fitting step.
In effect, either of the corresponding methods (NURBS-based point-distance mini-
mization, or topological skeletonization) as explained in subsection 4.5.1 is suitable
for obtaining a cutting path from the fully-reconstructed drawing. More generally,
spatial curve reconstruction is researched extensively [101], [102] as is their use in
fitting unordered data [103]. Such methods are of special interest to our problem
within which fitting spatial curves on unordered 3-D point clouds is desired.

One common class of reconstruction methods formulate the problem as an optimiza-
tion over splines—common instances include B-splines, non-uniform rational basis
splines (NURBS), and Bézier curves. For example, there are iterative methods for
surface fitting [104] in the presence of obstacles, as well as reconstruction [105] of
self-intersecting lines. More complicated shapes have been reconstructed by partition-
ing them for further fitting using multiple curves. An alternative approach is using
principal curves [106], [107] that are based on principal component analysis. The
NURBS curves have desirable properties—they are memory-efficient and have a con-
figurable smoothness parameter. Fitting splines to a 3-D point cloud is a non-trivial
optimization problem with implementations such as in the Point Cloud Library [108].

Skeletonization algorithms instead are used to represent the connectedness of N-
dimensional binary shapes and can easily represent branching paths [109]. Such
methods are commonly implemented in thinning algorithms [110] for 2-D images,
but extend to 3-D [111] data. Conversely, the skeletonization method identifies the set
of points equidistant to at least two boundary points. In practice, this is the medial axis
of a 2-D set of pixels, or of a 3-D set of voxels. The skeleton obtained is a voxel-wide
representation of a mesh’s connectedness. The 3-D skeletonization implementation
as used is described in [112]. This gradually thins a point cloud (removing boundary
voxels) until it yields a voxel-wide skeleton.

Each fitting approach has particular advantages and limitations for spatial curve
reconstruction. One limitation of skeletonization comes from converting raw point
clouds into binary voxel occupancy grids whose resolution affects the skeleton’s accu-
racy. A finer leaf size for the voxel grid leads to better accuracy but with a robustness
trade-off as sparsely-sampled point clouds can lead to fragmented occupancy (discon-
nected voxels) wherein the skeleton is undesirably disconnected. Conversely, splines
are especially robust to noise and gaps in the point clouds wherein their functionality
extends to discontinuous meshes irrespective of the voxel grid’s resolution. This
trade-off is illustrated in Fig. 4.7 where an increase in leaf size causes a larger average
error in curve fitting for skeletonization yet negligible impact on average error for
the spline-based fitting. Nevertheless, skeletonization methods can efficiently yield
curves that are comparatively more robust across a wide variety of mesh geometries.

After the fully-stitched cloud is available, a spatial curve can be reconstructed using
either of the aforementioned techniques. When using skeletonization, we ensure all
medial axis points are fully-connected yet still accurate by choosing the smallest ap-
propriate grid resolution; smaller branches are also pruned. Alternatively, the NURBS



4.6. Simulations & Physical Experiments 41

Skeletonization Error NURBS Error

0 5 10 15 20
0

2

4

6

8

10
A
ve
ra
ge
P
os
iti
on
E
rr
or

(m
m
)

Leaf Size (mm)

FIGURE 4.7: The impact of voxel grid resolution (leaf size) on the
average skeletonization error versus average NURBS error in imple-

mentation. © IEEE

method can generate a global fit while minimizing its error by tuning the control
points, degree, or smoothness constraints. In implementation, some additional pre-
processing may be necessary depending on the application conditions. For instance,
noisy points that do not belong to the dominant curve can be filtered using statistical
outlier removal techniques. Furthermore, the point clouds may be downsampled to
reduce excess accumulation of sensory data.

4.6 Simulations & Physical Experiments

This section details the approaches taken to evaluate and compare our NVP algo-
rithms in simulation and in the physical experiments. Additionally, it defines the
benchmarking metrics and ground truths used for performance quantification.

4.6.1 Design of Realistic Simulation

The simulation is configured to mimic realistic conditions and outcomes. In effect, the
simulation’s camera model replicates the sensing properties of the D435 stereocamera
used in the experiment, e.g., image size, and sensory noise modeled after the D435’s
noise distribution found in its datasheet [113].

For a realistic evaluation of the NVP algorithms, the test objects must carry adver-
sarial features commonly found in the scrapyard. We select six feature categories or
challenges with which we evaluate our planners. These are:

1. Smooth surface without occlusion

2. Sharp occlusion between smooth surfaces

3. Smooth occlusion along a smooth surface
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4. Sharp transition between smooth surfaces

5. Highly nonsmooth surface with occlusions

6. Highly discontinuous surface

For this, we acquire high-detail 3-D scans of actual metal scrap pieces (see Table 4.1)
adequately selected and retrieved from our industrial collaborator’s shipbreaking
yard. We add two reference objects (cylinders) to examine the robustness of each
algorithm against a simple sharp self-occlusion.

4.6.2 Setup of Physical Experiment

The evaluation steps are standardized and replicated in both the simulated and
experimental environments. For this, both environments are configured to reduce
discrepancies between their conditions. The same red color for the drawing is used
on both the simulation objects and the physical objects. Furthermore, the camera
settings and the ambient lighting are kept consistent and maintained throughout the
experiments. In addition, the planners are evaluated and tuned fairly. All planners
share the same filter ξ, E-NVP uses δdistance = 1 voxel, and both NBV planners share
the parameters (λ = 1

2 , αϕ = 5).

More importantly, the physical test objects are direct feature analogs of the simulated
ones as shown in Table 4.1. This means that the NVP algorithms evaluated in either
the simulations or the experiments face the same types of challenges in each feature
category. For these reasons, the simulation and experimental results may be used
collectively to reliably draw conclusions on the performance of the NVP algorithms.

Note that for both evaluations, the objects were fixed and evaluated one at a time.
That is, for each object we first obtain a ground truth of the drawing using the method
at the end of this section. Afterwards, the three NVP algorithms are run sequentially
and all their results are collected in the same frame without moving the tested object.
We repeat these four procedures with every object until completion.

4.6.3 Benchmarking Metrics

The following metrics are chosen to assess and quantify the efficiency and robustness
of our viewpoint planners.

Number of Viewpoints

This counts the number of iterations in the exploration routine, which corresponds
to the number of viewpoints visited until termination. This excludes the initial
viewpoint, since it is an input to the exploration task used to generate the first round
of viewpoint candidates. For instance, nviewpoints = 1 means the robot moved to one
viewpoint from the initial pose, reached the stopping condition, and then terminated
the search.

This metric helps compare the number of steps taken by each NVP algorithm until
termination.

Total Duration

In our evaluations, we measure only the viewpoint planning time and exclude motion
planning and execution times as these are external processes. In other words, we
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partition the total exploration time into NVP processing time and motion-related
time. Let ∆t be this next view planning time which we call “Total Duration" in Tables
4.2 and 4.4. In our evaluations, this is computed as follows,

∆t = ∆texploration − ∆tmotion (4.10)

This metric allows us to directly compare the processing duration spent by each NVP
algorithm from the start of the exploration task until termination.

Average Step Duration

It is desirable to assess and compare the average processing time per iteration ∆t
taken by each NVP algorithm for a particular scenario. This is computed using the
previous two metrics, as follows,

∆t = ∆t/nviewpoints (4.11)

This allows us to more easily perceive the trade-off between number of steps and step
duration across each algorithm.

Total Displacement

We measure the spatial configuration of the chosen viewpoints independent of the
robot’s motion plan, by summing the displacement magnitudes between viewpoints.
Specifically, let (pk)

nviewpoints

k=0 be the sequence of viewpoint positions, indexed in the
order they were visited. This includes the initial viewpoint, since we sum the magni-
tudes between viewpoints. The total displacement dtotal is,

dtotal =
nviewpoints

∑
k=1

∥pk − pk−1∥2 , (4.12)

This allows us to compare the transient behavior of each algorithm, alongside the
magenta polygonal chain connecting all visited viewpoints in Table 4.5.

Coverage

We use point cloud coverage as a measure of correctness for the reconstructed draw-
ings resulting from the use of each NVP algorithm. For our evaluations, we define
the coverage of a cloud bC over a ground truth cloud bG as,

coverageG(
bC) =

card
[

vox(bC) ∩ vox(bG)
]

card
[

vox(bG)
] (4.13)

Here vox(·) voxelizes the clouds in a common and precise grid to determine their
overlap, and card(·) is the cardinality which returns the number of voxels. The cloud
bG represents the ground truth to which bC is compared and over which coverage
is obtained. We emphasize that both clouds must be expressed with respect to a
common base frame b.
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In our evaluations, bC is the final reconstructed drawing bDtotal,kstop and bG is accepted
to represent the actual drawing in point cloud form. We discuss the method used to
generate bG in the next subsection. We report coverage results in Tables 4.2 and 4.4 in
two formats. The first shows the number of voxels in the ground truth cloud, while
the second is a percentage.

4.6.4 Ground Truth Generation

For the purposes of coverage calculation, the ground truth cloud bG ideally represents
a perfect reconstruction of the drawing in the form of a point cloud. We must obtain
a good approximation for this ideal within the limitations of our stereocamera. For
this, we must scan the object’s local region which contains the drawing. The NVP
algorithms are meant to automate this procedure of picking viewpoints. However, to
improve the ground truth, we manually pick good viewpoints for the robot. The robot
stays in place at each viewpoint to scan the same region repeatedly. The obtained
images are averaged until the discrepancy between iterates of this average cloud falls
below a preset threshold. This threshold is expressed as a proportion of the occupancy
grid’s voxel size. This procedure is briefly sketched in the following pseudocode.

define GenerateGroundTruth() :
Initialize ground truth cloud bG
while UserInput() :

Move the robot to the next viewpoint
Initialize cumulative moving average (CMA)
while Error < Threshold :

Acquire image point cloud
Update CMA for this viewpoint
Update error between last two CMAs

Concatenate latest CMA with bG
return bG

We use this user-assisted procedure in both simulations and experiments to generate
near-optimal drawing reconstructions for each test case within the sensory limitations
of the stereocamera. This reconstruction has very little noise and can serve as a
ground truth for coverage calculations.

4.7 Results

In this section, we present and discuss the results obtained from the evaluations in
simulations and experiments.

We tabulate our results for the aforementioned benchmarking metrics in Table 4.2
for the simulations and Table 4.4 for the experiments. In addition, in Table 4.3 we
visualize for each planner, some of its simulation results: viewpoint displacement,
poses, and output cloud coverages. Finally, in Table 4.5 we display the experimental
output of our exploration and reconstruction task (using G-NBV for planning) against
each physical test object. We show the full reconstruction of the desired feature to
demonstrate the effectiveness of our feature-based NVP paradigms in a real-world
scenario.

We discuss the significance of our results and the nuances between our planners in
the following subsections.
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4.7.1 Exploration Efficiency

The planners exhibit different transient properties while exploring each object cate-
gory. In general, we observe that the E-NVP average step duration is shorter—fitting
and extrapolation is relatively quick—yet the planner often requires more iterations
to fully explore the feature. In contrast, the NBV planners finish in less views but
often take more processing time per step to search their grids.

For E-NVP, the average step durations are fairly consistent during successful runs
across object categories. This means that the E-NVP total duration is largely affected
by the number of steps in the exploration routine. This implies that its total duration is
grows with the feature’s size on the object: longer drawings on larger objects require
more steps to be fully explored and thus increase total duration. This is observed for
object category 1 which features the longest drawing. This sensitivity to feature size
is expected, since E-NVP typically gains less information per step when compared
to the NBV planners. Both the C-NBV and the G-NBV planners are less affected by
feature size (meaning number of steps) and more by the total grid size (meaning
average step duration) and by the scene’s complexity (e.g., in categories 2, 5, and 6).

The total displacements and viewpoint poses reveal that E-NVP plans in a more
conservative and predictable manner and can be seen to move along the drawing.
By contrast, the NBV planners tend to pick views with much larger information gain
without much consideration for their positions.

In terms of total duration, the G-NBV planner is shown to be up to around ten
times faster than the C-NBV, especially in large scenes requiring a larger grid. This
is expected since C-NBV’s frontier definition and search space generation make it
much more sensitive to grid size. Even with its feature-based constraints, the C-
NBV planner is the slowest in every category. This further justifies the greedy and
aggressive constraints used by G-NBV to speed up exploration.

4.7.2 Robustness against Adversarial Features

Adversarial features such as occlusions, nonsmoothness, and discontinuities affect the
reconstruction effectiveness of each planner differently. In the absence of adversarial
features (category 1) all methods perform quite well. Even with smooth occlusions
(category 3) and unoccluded sharp transitions (category 4), coverage scores are almost
perfect for all planners, and the drawing is fully reconstructed.

However, we observe coverage degradation in certain scenarios. E-NVP fails to fully
reconstruct the drawing against sharp occlusions (category 2). The coverage score
of 86.2% on category 2 in the experimental results is not to be interpreted as high,
since it missed the portion of the drawing behind the occlusion anyway, meaning
this is still considered a reconstruction failure. Both NBV planners are unaffected
by difficult occlusions and manage to fully reconstruct the drawing in categories 2
and 5. We also see this on the sharply occluded portion of the experiment’s basket
(category six), where E-NVP failed only on the occluded portion, while the NBV
planners manage to overcome it and fully scan the drawing.

On that note, all planners perform quite well against surface discontinuities where
voxel sizes are increased to reduce the disturbance inflicted by the gaps. The lower
score of 83.9% for C-NBV in the simulation’s category 6 is not due to surface disconti-
nuities, but to grazing incidence.
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This effect occurs when the ray incidence is nearly parallel to the object surface.
Grazing incidence dilutes the sampling density at which point the image obtained is
noisier, distorted, and poorer in information. This effect occurs in the simulation’s
category 6 for both NBV planners, as can be seen by the viewpoint poses and the
suffering coverage near the extremities. The NBV planners may suffer suboptimal
viewing angles since this optical disturbance is unmodeled by their viewpoint quality
metric. E-NVP avoids this problem by maintaining an orientation quasi-normal to
the surface and thus guarantees better viewing angles. Finally, we note that both
NBV planners achieve similar coverage, meaning that the greedy approach of G-NBV
comes at little coverage costs.

4.7.3 Planner Preference and Selection

To summarize the behavior of each planner, E-NVP extrapolates from the feature,
C-NBV’s search is constrained by the feature, and G-NBV’s search is guided by
the feature. Furthermore, each planner exhibits its own transient characteristics,
strengths, and failure modes, which make it perform better or worse in particular
scenarios.

If fast exploration is not a requirement, it is appropriate to use the C-NBV planner
when the feature and scene are more complicated. The C-NBV planner searches more
exhaustively due to its larger frontier and search spaces. Using G-NBV in exceedingly
complicated scenes may yield the typical disadvantages of greedy optimization.

For simpler and smaller objects, E-NVP iterates quickly, handles gaps exceptionally
well, and does not exhibit grazing incidence. Also, E-NVP works more predictably in
confined spaces as its viewpoint displacement follows the drawing more conserva-
tively, which is not guaranteed by the NBV planners.

E-NVP should be avoided when the application faces frequent occlusions and exotic
surfaces. Occlusions trigger premature termination for E-NVP, as it poorly distin-
guishes between surface edges and drawing extremities. Meanwhile, objects with
contorted surfaces may cause reachability issues with the E-NVP planner which
tries to remain normal to the surface. The NBV planners overcome both issues by
exploring more permissively. E-NVP is also limited to two extremities per feature.
The NBV planners handle branches arbitrarily. G-NBV’s frontier reduction makes it
especially suited for this.

While each of the three algorithms exhibits particular strengths and weaknesses,
G-NBV offers well-rounded advantages in terms of efficient scanning and effective
drawing reconstruction, making it most suitable for our domain application in metal
recycling. For other applications requiring feature-driven exploration, it is best to
study the particularities of each problem to select a more appropriate NVP algorithm.

4.8 Discussion

In this section, we discuss specific application scenarios of the proposed methods and
the associated parameters.
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FIGURE 4.8: Test object featuring a branched drawing with four ex-
tremities. © IEEE

4.8.1 Performance against Branched Drawings

In a shipbreaking environment, the cuts are kept as simple as possible to maintain
safety and control over the cutting operation and its outcomes. Although simpler cut-
ting paths are preferred, it is still worthwhile to test against branched drawings—that
is, drawings with more than two extremities.

The E-NVP method explicitly models the drawing as a curve and by design ex-
pects—and is therefore limited to—two extremities and thus cannot operate on
branching curves. In contrast, the C-NBV and G-NBV methods operate at the voxel
level. Accordingly, they have no conception of a branch (nor of a curve), but instead
search through individual voxels in the space. This suggests that the NBV methods
are capable of handling any number of branches, since as mentioned, they process
the surface as voxels, regardless of branching. These algorithmic distinctions can be
verified in the pseudocode listings of each of the methods in Section 4.5.

We demonstrate the above remarks in simulation on a test object with a 4-extremity
branched drawing. The test object (a simple cylinder) and its branched drawing are
shown in Fig. 4.8. We test each of the viewpoint planners against this test object.

The local surface reconstruction of each method is shown in Fig. 4.9. As expected, the
E-NVP recovers only two extremities of the branched drawing. In contrast, both the
C-NBV and the G-NBV methods, recover the entirety of the branched drawing.

4.8.2 Behavior of the NBV Algorithms near Corners

Frontier-based NBV approaches may sometimes risk trapping the viewpoints near a
surface corner. The purpose of our NBV algorithms is to map the object’s local surface
containing the desired feature, not the full object nor its surroundings. In practice, the

FIGURE 4.9: Local surface reconstructions around the branched draw-
ing. © IEEE
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robotic arm almost never needs to explore the object surface close enough that it risks
trapping the camera in a corner. Nevertheless, we discuss how such a scenario may
occur and how to avoid it. While our NBV algorithms maximize (per viewpoint) the
information gain relevant to the desired feature, there is a distance tradeoff between
absolute information gained and relevant feature information:

1. To maximize the information gained per viewpoint, the camera is incentivized
to be placed away from the object surface. This avoids corner fixation.

2. To capture relevant feature information, the camera must remain close enough
to the desired feature. This may lead to corner fixation.

Our NBV algorithms’ tendency to avoid corner fixation is related to its preferred
distance from the surface, which can be tuned using the decay factor αϕ in (4.7). By
increasing αϕ, viewpoints closer to the surface are preferred. Conversely, lowering
αϕ prefers more distant viewpoints. The tendency to avoid being trapped in corners
can therefore be amplified or relaxed by decreasing or increasing αϕ, respectively. A
scenario where the camera may get trapped in a corner would involve the desired
featured passing through deep corners of very large objects. By sufficiently lowering
αϕ, the planner can avoid trapping the camera in a corner.

4.9 Conclusion

This chapter develops a feature exploration and reconstruction methodology for ex-
ploring an unknown feature carrying a desired characteristic (e.g., a color), located on
an unknown object’s surface, which lies in an unknown scene. This component serves
a broader robotic system designed for automated cutting in metal scrap recycling. The
component requires only an initial view containing a portion of the desired feature,
and is expected to fully explore and reconstruct it. The underlying methodology is
developed around next view planning to determine the next viewpoint given current
scene information.

For this, we present three feature-driven next view planners that exploit the feature
information collected from the scene, to rapidly and adeptly plan the next view.
The first planner relies on fitting a curve to the feature from which the next view is
extrapolated. The second is a probabilistic formulation on a voxel occupancy grid on
which the search for the next view is constrained using feature information. The third
repurposes the previous algorithm with greedy optimizations to guide the search
directly via feature information. We evaluate our planners both in simulation and
experiments and discuss their notable strengths and weaknesses. We note that our
third planner is most suited for scrap cutting. Nevertheless, the other planners retain
advantages in specific scenarios. We believe that the feature-driven paradigm for
exploration as examined in this chapter can also be useful outside of scrap cutting for
applications which require feature reconstruction in uncertain environments.
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TABLE 4.1: Feature Categories and Test Objects for the Simulation and the Physical Experiments © IEEE
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TABLE 4.2: Simulation Results: Evaluating Benchmarking Metrics for each NVP Algorithm on all Object Categories © IEEE

Challenge
(category)

Planner
(algorithm)

Viewpoints
(steps)

Total Duration
(sec)

Avg. Step Duration
(sec/step)

Total Displacement
(cm)

Coverage
(voxels)

Coverage
(%)

Smooth Cylinder
Category 1

Extrapolated NVP 9 61.9 6.9 144.6 197/199 99.0
Constrained NBV 4 808.0 202.0 48.5 197/199 99.0
Guided NBV 4 38.6 9.6 67.8 197/199 99.0

Sharp Cylinder
Category 2

Extrapolated NVP 8 43.4 5.4 88.3 372/569 65.4
Constrained NBV 4 417.5 104.4 87.7 569/569 100
Guided NBV 3 43.4 14.5 66.0 568/569 99.8

Round Tank
Category 3

Extrapolated NVP 6 30.1 5.0 149.5 82/82 100
Constrained NBV 3 153.3 51.1 81.8 82/82 100
Guided NBV 3 41.6 13.9 68.1 82/82 100

T-Piece
Category 4

Extrapolated NVP 4 18.0 4.5 81.7 179/182 98.4
Constrained NBV 4 463.5 115.9 88.7 179/182 98.4
Guided NBV 3 47.0 15.7 53.7 177/182 97.25

I-Beam
Category 5

Extrapolated NVP 6 29.0 4.8 90.0 234/532 44.0
Constrained NBV 5 549.0 109.8 108.4 525/532 98.7
Guided NBV 3 56.4 18.8 10.5 501/532 94.2

Basket
Category 6

Extrapolated NVP 8 46.0 5.7 94.1 153/155 98.7
Constrained NBV 2 187.7 93.8 11.82 130/155 83.9
Guided NBV 2 50.6 25.3 23.9 145/155 93.5

Note: The Extrapolated NVP planner backtracks to the initial point after finding the first endpoint. As a result, it records an additional step: the revisited viewpoint.
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TABLE 4.3: Visualizing Viewpoints, Displacement, and Coverage for each NVP against Four Simulated Objects © IEEE

Algorithm 1: E-NVP Algorithm 2: C-NBV Algorithm 3: G-NBV
Viewpoints Coverage Viewpoints Coverage Viewpoints Coverage
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The magenta graph shows the displacement between views while the green rays show their poses.
For coverage, recovered voxels are in green while missed ones are in red.
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TABLE 4.4: Experimental Results: Evaluating Benchmarking Metrics for each NVP Algorithm on all Object Categories © IEEE

Challenge
(category)

Planner
(algorithm)

Viewpoints
(steps)

Total Duration
(sec)

Avg. Step Duration
(sec/step)

Total Displacement
(cm)

Coverage
(voxels)

Coverage
(%)

Smooth Cylinder
Category 1

Extrapolated NVP 8 24.3 3.0 119.5 265/270 98.1
Constrained NBV 1 31.4 31.4 21.7 268/270 99.3
Guided NBV 1 18.7 18.7 22.3 267/270 98.9

Sharp Cylinder
Category 2

Extrapolated NVP 5 19.4 3.9 51.9 144/167 86.2
Constrained NBV 3 561.2 187.1 93.7 162/167 97.0
Guided NBV 2 68.1 34.1 62.0 165/167 98.8

Round Tank
Category 3

Extrapolated NVP 4 13.1 3.3 67.3 324/329 98.5
Constrained NBV 3 252.4 84.1 89.4 320/329 97.3
Guided NBV 3 106.2 35.4 63.8 314/329 95.4

T-Piece
Category 4

Extrapolated NVP 5 25.0 5.0 29.5 109/111 98.2
Constrained NBV 2 178.5 89.3 44.7 110/111 99.1
Guided NBV 1 28.4 28.4 38.7 111/111 100

I-Beam
Category 5

Extrapolated NVP 1 9.6 9.6 28.1 92/425 21.6
Constrained NBV 6 1015.8 169.3 122.9 410/425 96.5
Guided NBV 7 153.3 21.9 167.7 407/425 95.8

Basket
Category 6

Extrapolated NVP 4 6.8 1.7 32.3 117/171 68.4
Constrained NBV 4 358.4 89.6 105.3 163/171 95.3
Guided NBV 3 112.0 37.4 91.2 166/171 97.1

Note: The Extrapolated NVP planner backtracks to the initial point after finding the first endpoint. As a result, it records an additional step: the revisited viewpoint.
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TABLE 4.5: Experimental Output: Reconstructions using the Guided NBV Planner and Corresponding Generated Cutting Paths © IEEE
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Chapter 5

Autonomous Oxy-fuel Cutting

A S covered in Chapter 4, we develop viewpoint planning algorithms for gener-
ating the cutting path along the surface of a given input object. In this chapter,

we assume that this path is available and focus on the autonomous cutting (using an
oxy-fuel torch) along this path on the object surface. In sectors such as manufacturing
and metal recycling, automating the industrial process of metal cutting would yield
substantial improvements to productivity and safety. We propose a vision-based
framework to automate metal cutting based on oxy-fuel torches, a cutting technology
widely used in industry. Our framework enables a robot—equipped with a cutting
torch and an eye-in-hand RGB camera—to autonomously execute a cut along a given
cutting path. We achieve this in three automated tasks: vision system calibration,
metal surface conditioning, and torch combustion control. The visual feedback is
obtained from the camera observing the torch flame and heated region behind a
tinted visor. These image frames are processed to extract meaningful features such
as the heat pool’s convexity and intensity. Using these features, we model the de-
sired conditions for visual calibration, surface conditioning, and combustion control.
During calibration, the vision system is configured to the current scene and setup
by detecting the torch flame’s centroid and its baseline intensity. Afterwards during
conditioning, the metal surface is preheated to adequate conditions for initiating
combustion. Finally during the cutting phase, we assume that the cutting path is
given to the robot, and that it can follow the path by keeping the torch tip orthogonal
to the surface. Our vision-based control algorithm automatically determines the
speed of moving the torch by visually observing the metal surface’s heated region
and maintaining desired combustion conditions. We evaluate our framework in
physical cutting experiments using a 1-DOF robot that autonomously cuts steel plates
of different thicknesses. Our system successfully executes the cuts relying purely on
vision without prior knowledge of the plate thicknesses.

Keywords: Autonomous metal cutting, oxy-fuel cutting, vision-based control, calibration,
surface preheating, robotic cutting.

Notice: The work in this chapter is under review (as of July 2023) at the IEEE/ASME
Transactions on Mechatronics (TMECH) and is subject to IEEE Copyright upon accep-
tance. An earlier version of this work is accepted at the 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) [114] and is subject to IEEE
Copyright.
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FIGURE 5.1: The proposed vision-based control algorithm enables
the 1-DOF cutting robot to autonomously cut steel plates of different
thicknesses. Left: Third-person view of the robot during control.
Center: Eye-in-hand view of the metal surface showing the heat pool.
Right: Processed stream of the eye-in-hand footage focusing on the

shown heat pool. © IEEE

5.1 Introduction

Robotics and automation in industrial applications can offer numerous advantages
such as increasing the productivity of the overall economy [115], improving the occu-
pational safety of workers [116], and reducing the global ecological footprint [117]. In
particular, industrial operations pertaining to processing metals are likely to gain im-
portance since the demand for major metals is projected to increase significantly [45]
throughout the current century. Among these is metal cutting—a key operation in
sectors such as manufacturing and metal scrap recycling—whose automation can
reduce operational costs [118]. For instance, this can improve the production of
recycled steel, which is more efficient than processing iron ores [20] into primary
steel. While there are a variety of metal cutting media (e.g., laser, water-jet, plasma)
each with their own advantages, limitations, and robotic setups [49], we focus on
automating oxy-fuel gas cutting, which is a thermal medium based on combusting
the metal surface. As mentioned in [118], oxy-fuel cutting is particulary effective
against thick sections of carbon steel—and its affordability in this regard is pertinent
for metal scrap cutting and recycling.

In this chapter, we formulate a vision-based framework for enabling robots (equipped
with an oxy-fuel torch and an eye-in-hand RGB camera) to autonomously cut metal
surfaces (Fig. 5.1) along a specified reference cutting path. This framework consists
of three core tasks:

1. Vision system calibration: Identifying the ignited torch’s flame centroid and
baseline intensity, visual features explained in later sections.

2. Metal surface conditioning: Maintaining the lit torch over the initial position of
the cutting path, preheating the metal surface for combustion.

3. Torch combustion control: Automatically determining the velocity of the torch
along the specified cutting path to maintain the desired combustion conditions.

This vision-based approach draws inspiration from the manual techniques of skilled
cutting workers, particularly those within ship-breaking yards that we surveyed. The
workers visually track the location of the torch flame through a tinted visor at all times.
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The process starts by placing the torch at the initial point of their desired cutting
path and maintaining its position until the surface is determined to be sufficiently
preheated. This is accomplished by tracking the formation and evolution of a heat
pool (a bright blob) on the metal surface until it reaches desirable conditions for
combustion (known intuitively from experience). Afterwards, the worker moves the
torch along the cutting path and adjusts their speed to maintain this desired state of
the heat pool until reaching the end of the path.

Along similar lines, our vision-based framework (Fig. 5.2) extracts meaningful fea-
tures from the processed visual input to capture the location and properties of the
torch flame and identify when the surface is sufficiently preheated for combustion.
Furthermore, the heat pool’s visual characteristics (shape, size, brightness, and color)
are encoded using two features: the heat pool’s convexity and intensity. These two
features describe the heat pool’s combustion state, which is tracked for updating the
torch’s speed along the cutting path during combustion cutting.

The main contributions of this chapter are:

• Devising a novel framework for fully-autonomous oxy-fuel metal cutting rely-
ing only on visual feedback.

• Modeling desired conditions for autonomous vision system calibration and
metal surface conditioning.

• Designing a vision-based control algorithm for executing combustion cutting
using an oxy-fuel torch.

• Evaluating our calibration, conditioning, and control in physical cutting experi-
ments using a 1-DOF robot.

To the best of our knowledge, this chapter presents the first methods that automate
the calibration, conditioning, and control of oxy-propane-based cutting, and therefore,
provides a significant step towards autonomous metal cutting.

We emphasize that our framework formulates the torch control problem in task space
and is therefore decoupled from the robotic manipulator’s motion planning and
control tasks. In particular, we declare the following assumptions.

1. The desired cutting path is fully-specified and known to the controller; this
can be predetermined by a cutting path generation algorithm as in our prior
work [55] and in Chapter 4.

2. The robot can keep the torch orthogonal to the metal surface while traversing
the cutting path by adjusting its pose via conventional motion planning and
control.

FIGURE 5.2: Overview of the proposed method. The vision system is
calibrated autonomously to provide vision feedback used for control-
ling the torch velocity along the reference cutting path. Generating the
path is addressed in our prior work [55] as well as in Chapter 4. © IEEE
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Thus, given a specified cutting path, our vision-based framework enables the robot
to determine the torch’s cutting speed, which refers to the tangential velocity of the
torch flame as it traverses the cutting path (refer to Fig. 5.3 for a visual representation).
The torch flame’s speed along the cutting path is crucial for successful cutting. In
general, a fixed (open-loop) cutting speed does not ensure proper cutting, as is shown
in our experimental results. In contrast, our experiments demonstrate that successful
cuts are obtained by updating the (closed-loop) cutting speed per the metal surface’s
combustion state—as practiced by skilled metal cutting workers. Our experiments
reveal that our framework yields successful and fully-autonomous cutting of steel
plates of different thicknesses by relying purely on vision without a priori knowledge
of the thicknesses.

5.2 Related Work

In this section, we review existing work covering the automation of cutting and
welding operations, as well as visual calibration for specific tasks.

5.2.1 Automation of Cutting Operations

The automation of a particular cutting operation depends heavily on the employed
cutting modality. In effect, [49] reviews a variety of cutting technologies alongside
their conventional robotic setups and industrial applications. Common cutting media
include machining, laser cutting, plasma cutting, oxy-fuel (gas) cutting, water-jet
cutting, ultrasonic cutting. The preference for a particular cutting medium depends
on domain-specific parameters, for instance, cost-effectiveness, material type, and
cutting speed.

For most of these cutting media, there is a rich variety of methods to enable their
automation using robots. For instance, existing methodologies covers the enabling
of robots for machining [52], [119], custom-tool mechanical cutting [120], laser cut-
ting [71], [121], plasma-arc cutting [122]–[125], hybrid induction plasma cutting [53],
and contact arc cutting [126].

The automation of metal cutting operations using the oxy-fuel gas cutting modality
(which this chapter addresses), by contrast, is sparsely covered in the literature. The
most relevant work is in [54] wherein a reactive control architecture is developed
for a gas cutting robot that trims substandard metal strips from conveyor-fed sheet
metal. This control architecture employs an extensive array of sensory modalities
and instrumentation tailored for strip cutting. Nevertheless, it does not cover more
general cutting requirements—which this chapter addresses using a vision-based
framework.

In more traditional and structured settings, CNC-based oxy-fuel cutting [127], [128]
are employed extensively. However, these require the prior and complete specification
of the cutting task’s parameters, such as cutting speeds. In this way, automated oxy-
fuel cutting is narrowed to fully-specified task parameters and predefined geometries.
Nevertheless, in [118], the advantages of the oxy-fuel cutting medium are highlighted
and can be further increased via improved automation. We believe that this chapter
is a contribution towards this goal.

To the best of our knowledge, this is the first work on automated oxy-fuel cutting
whose general-purpose formulation is independent of robot geometry. Furthermore,
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it relies purely on visual feedback and does not require prior specification of the metal
thickness or cutting speeds.

5.2.2 Automation of Welding Operations

Welding is an operation that is related to metal cutting and existing work covering
its automation extensively employs visual sensing. In [89], recent advancements in
vision-based automated welding are reviewed along with particular applications such
as seam tracking, deformation detection, and weld pool monitoring. In effect, vision-
based sensing and control carries particular advantages such as non-invasiveness,
simplicity, and inexpensiveness.

For improving welding performance, a common strategy is the processing of visual
features pertaining to the welding process. Among these is the processing and
tracking of weld seams. For example, in [76], welding seam features for vision-based
welding control are obtained using an active vision system and extracted using image
processing techniques. Weld seam features can be used for automatic multi-pass
route planning [129] in metal active gas (MAG) arc robotic welding. Furthermore,
for improving the seam tracking stability and precision, the vision stream can be
denoised [79] using optical filters tailored to the welding process’s light spectrum.

Other approaches may use additional task-specific visual features, e.g., both the weld
seam and the weld pool that forms on the surface. For instance, in [130], the weld
seam and weld pool are extracted from images using a special-purpose Canny edge
detection algorithm. These features are then used to obtain characteristic welding
parameters. In addition, the weld pool’s centroid can also be used as in [131] to
improve the real-time tracking accuracy of the weld seam. Furthermore in [132],
a vision-based method is used for seam gap measuring and seam tracking, and a
controller is developed to regulate the weld pool’s formation, welding current, and
wire feed rate.

Weld pool features extracted from imaging are often used to improve welding per-
formance. For example, [133] uses X-ray imaging to analyze the weld pool flow
patterns by tracking particles in order to enhance its flow and the predictability of
the welded component’s microstructures, which affect its end-use quality. [134] uses
active contours for weld pool boundary composition to overcome the interference of
arc light and spatters during welding. In tungsten inert-gas (TIG) welding, [135] ex-
ploits the metal alloy’s characteristics for improved image processing and pattern
recognition. The weld pool’s image is simplified via a weighted median filter, a
statistical threshold, and a projection, after which a neural network detects the pool’s
edges. For real-time torch position control, [136] uses Kalman filtering on weld pool
images to adjust the torch’s position and improve seam tracking accuracy. [137] uses
a charge-coupled device (CCD) camera’s feedback filtered through specialized lenses
and processed for use in control.

Weld pool analysis and control through the use imaging and image processing tech-
niques can be employed to enhance specific aspects of the welding process—such as
improved flow patterns and precise torch positioning.

The extraction of weld pool features from imaging is a common practice that can
be used to optimize welding performance. For instance, in [133], X-ray imaging is
employed to track particles and analyze the flow patterns of the weld pool, thus
improving its flow and enhancing the predictability of the microstructures of the
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FIGURE 5.3: Illustration of the cutting control formulation showing
the tangential motion along the reference path. © IEEE

welded component, which ultimately impacts its end-use quality. In [134], the in-
terference of arc light and spatters during welding can be overcome using active
contours to compose the weld pool boundary. In Tungsten Inert Gas (TIG) welding,
the characteristics of the metal alloy can be leveraged [135] to facilitate and enhance
image processing and pattern recognition. Specifically, a neural network model is
used to detect the pool’s edges whereby the weld pool’s image is preprocessed using
a weighted median filter, a statistical threshold, and a projection. In [136], the torch’s
position is adjusted and the seam tracking accuracy is enhanced during real-time
torch position control by employing Kalman filtering on weld pool images. Elsewhere
in [137], special-purpose lenses are utilized to filter the feedback from a CCD camera,
which is then processed and used for control.

These vision-based methodologies are tailored for robotic welding and its control. As
such, their specific techniques are not transferable oxy-fuel cutting and do not address
the latter’s particular requirements. In this chapter, we develop such a vision-based
framework for the automation of oxy-fuel cutting.

FIGURE 5.4: The oxy-fuel cutting operation shown as a sequence of
tasks: calibration, conditioning, and control. © IEEE
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5.3 Vision-based Autonomy Framework

In this section, the oxy-fuel cutting problem is formulated and our vision-based
framework is delineated.

5.3.1 Cutting Problem Formulation

Referring to Fig. 5.3, the goal of autonomous oxy-fuel cutting is to move the torch’s
flame jet along a reference spatial path on a metal surface, such that the cut is success-
ful and efficient. To this end, the robot must ensure that the torch flame is adequate for
cutting and that the metal surface is sufficiently preheated for combustion. Cutting
workers achieve these by visually tracking the flame and heat pool. In the same spirit,
the robot achieves these via the tasks of visual calibration and surface conditioning.
Specifically, the calibration task identifies the flame’s centroid in the image frame and
its baseline intensity, both of which are used downstream. After moving the torch to
the initial position on the metal surface, the conditioning task monitors the formation
and evolution of the heat pool until it is adequate for combustion cutting. Afterwards,
the control task begins and the robot regulates the surface heat pool’s combustion
state while traversing the cutting path by moving the torch at an appropriate velocity.

We assume that this path is given, i.e., it is predetermined by a suitable cutting path
generation method. For instance, this planning task is achieved in our prior work [55]
and in Chapter 4 via active vision techniques to obtain the desired cutting path and
the surrounding surface normal estimates on the metal surface. Furthermore, the
torch’s pose is associated with two cutting parameters: the cutting angle (i.e., the
torch’s orientation relative to the metal surface) and the standoff distance (i.e., the
offset between the torch tip and the metal surface). These parameters are generally
kept fixed during an operation and their values are tailored to the specific needs
of a particular cutting scenario. Given these parameters, a standard path planning
algorithm can generate the reference path for the end-effector. In this chapter, the
torch tip is assumed to be kept normal to the surface while moved along the given
path and its standoff distance is maintained at 0.5 in. from the surface.

We instead focus on determining the cutting speed, i.e., the velocity at which the torch
is moved along this path. Moving the torch at adequate cutting speeds is essential
for successful cutting. In effect, our experiments in section 6.6 provide examples
(see Fig. 5.13) illustrating the outcomes of inappropriate cutting speeds on the metal
surface. We emphasize that our vision-based framework does not use any a priori
information about the plate thickness or temperature and relies purely on visual
feedback (similar to what the cutting workers do). As such, the reference path is a
sequence of torch tip poses to visit (which can be provided by a motion planner),
wherein our novel torch controller determines the rate at which to traverse these
poses, expressed as the velocity along the tangent vector (see Fig. 5.3).

The torch controller sets the acceleration along the path’s tangent vector (updating the
velocity) using visual feedback from the RGB camera. Expressing the control action
along the local tangent vector decouples the torch control problem from the robot
motion planning problem. In general settings, the tangential motion commands can
be resolved into joint space via the system’s inverse kinematics using conventional
trajectory planners and kinematic solvers. In our experiments, however, we focus on
torch control in isolation (in task space) and as such we use a 1-DOF robotic system
wherein the tangent vector coincides with the robot’s motion.
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5.3.2 Vision-based Scheme for Oxy-fuel Cutting

To address the aforementioned oxy-fuel cutting problem, our framework leverages
visual feedback. This framework is summarized in Fig. 5.2 and its tasks are sequenced
in Fig. 5.4. Here we present an overview of the three main tasks: Calibration, Condi-
tioning, and Control. We will then present their implementations in Sections 5.4, 5.5
and 5.6.

Vision System Calibration

After ignition, detect the torch flame and validate the conditions necessary for initi-
ating the calibration routine to ensure that the vision system’s calibration is reliably
and satisfyingly completed. Our vision-based system monitors the flame features
and determines the calibration state, preventing the system to prematurely engage,
e.g., when the flame fluctuates or when there is excess noise in the image frame. It
also reports in real time which aspects are preventing the calibration stage to finalize.
Upon successful calibration, the system records the torch flame’s centroid and its base-
line intensity (defined in Section 5.4.3) in the image frame to be used in subsequent
(downstream) computations.

Metal Surface Conditioning

Following calibration, the torch is moved to the preheat position (the initial position
on the cutting path) wherein the torch flame begins to heat the metal surface. As
the heat pool forms and evolves, its features are monitored until the transition
conditions are all determined to be reached. Upon successful conditioning, the
surface is sufficiently hot for transitioning to the combustion phase and thereby the
torch control task.

Vision-based Torch Control

With the surface sufficiently heated, the robot transitions into the combustion phase
by engaging the oxygen bypass lever. In doing so, the robot enters the torch control
loop and traverses the cutting path by regulating the velocity to maintain the desired
pool combustion. Specifically, the heat pool’s combustion state is obtained from visual
feedback and its desired value is tracked by adjusting the torch’s velocity. Upon
reaching the end of the cutting path, the cutting operation is completed and the flame
is turned off.

5.4 Visual Feature Extraction

To obtain visual feedback throughout the tasks of the vision-based framework, visual
features pertaining to those task must be extracted. The visual characteristics of the
torch flame and the heat pool are of particular interest, such as their size, shape,
brightness, and color. Specifically, the camera images are processed (simplified and
filtered) after which the features are extracted. This section develops two primary
features: heat pool convexity (related to shape) and heat pool intensity (related to size,
brightness, and color). From these, other task-specific features can be derived. For
instance, during torch control, these two pool features are computed and combined
to describe the pool’s combustion state s.
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FIGURE 5.5: The raw RGB image from the camera, its red channel,
green channel, blue channel, and processed version. © IEEE

5.4.1 Image Processing

The image is simplified such that the heat pool’s features are emphasized. The features
of interest are visual surrogates for shape and temperature. In the heat pool, the color
distribution of light emissions can be used to estimate a relative temperature profile.
This is because visible light of higher frequencies is emitted at higher energy states.
While color-based temperature estimations are found with varying sophistication [80],
[138], [139], we adopt the heuristics that follow.

We restrict the RGB color space to four discrete colors listed in order of decreasing
temperature: blue, green, red, and black. In this discretized color space, blue light
emissions correlate with the highest temperatures (higher electromagnetic frequency),
green light with moderate temperatures (intermediate frequency), and red light with
the lowest temperatures (lower frequency). Black denotes low light emissions and
thus negligible temperatures. This phenomenon is confirmed in the heat pool footage.
Consider in Fig. 5.5 the raw camera image and its color channels. The highest heat
intensity is nearest to the flame center, and decays with distance. In effect, the blue
channel’s highest brightness is nearest to the pool center, whereas the green and red
channels include moderate and lower temperature portions of the pool.

With this, the raw image is processed as follows:

1. Binary-threshold each channel using high cutoffs.

2. Color each channel’s non-zero pixels (red, green, blue).

3. Eliminate channel overlap via XOR operations.

4. Merge the channels, yielding a segmented heat pool.

These are specified more precisely in the procedure ProcessImage shown below.

define ProcessImage(image M) :
(θR, θG, θB)← (240, 240, 240)
for each channel k ∈ {R,G,B} do

for each pixel (i, j) ∈ Mk do
if Mk[i, j] < θk then Mk[i, j]← 0

else Mk[i, j]← 255

MR ← MR ⊕MG (XOR operation)
MG ← MG ⊕MB (XOR operation)
return M

This simple and efficient channel-wise thresholding procedure emphasizes the pool’s
geometric and thermal information. The shape and size of the pool is preserved and
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its color information is quantized as the image contains only four colors. This enables
efficient representation and tractable reasoning about the heat pool, its features, and
its combustion state. In addition, the thresholding eliminates unnecessary features
from the image and effectively reduces background noise. Further noise rejection
steps are elaborated in Section 5.4.3.

5.4.2 Heat Pool Convexity

Utilizing the processed image, we design a measure of the pool’s shape using its
convexity. During cutting, when the pool’s shape is relatively more convex, then the
surface conditions are more adequate for combustion. Conversely, when the pool’s
shape is more concave or exhibits significant convexity defects (see Fig. 5.6), then the
surface conditions are more adverse for combustion. This is since a higher relative
convexity is indicative of heat that is more concentrated in the heat pool. While
there are sophisticated approaches to quantify a closed contour’s convexity [140], we
compute the area ratio between the pool contour against its convex hull.

Formally, let K be the blue (innermost) contour in the heat pool in the image; this is
a set of pixel coordinates of the simple closed curve. We define the pool convexity
as c = |K|/| conv K| where |K| denotes the area of the blue contour and | conv K| the
area of its convex hull. This yields the following desirable properties: (1) c ∈ (0, 1]
where c = 1 is a perfectly convex shape. (2) A higher value of c denotes a higher
convexity and thus correlates with a higher combustion state. (3) The ratio c is
invariant to pool’s size or color, it only quantifies its shape. More precisely, it is
dimension-invariant, pose-invariant, and color-invariant. In practice, restricting the
contour K to the hottest layer in the pool, i.e., the pool’s blue channel, yields more
robust convexity values. Moreover, K is retrieved computationally as the largest
contour closest to the torch flame centroid (obtained previously from the calibration
step).

5.4.3 Heat Pool Intensity

The pool intensity is designed to convey, from the processed image, the pool’s color
and size. The processed image M (in array form) contains pixels p considered tuples
(xp, yp, cp) of the pixel coordinates and color. The design and computation of the pool
intensity i are delineated below.

1. Weigh all pixels p based on color (black, red, green, blue).

This captures size (total non-zero pixels) and color (via weights) to approximate
the relative temperature differences in the quantized color space. The weight w(p)
assigned at a pixel p depends on its color cp which can be black, red, green, or blue.

w(p) =


0, if cp = “Black”
wR, if cp = “Red”
wG, if cp = “Green”
wB, if cp = “Blue”

(5.1)

The weights wR < wG < wB are constants. We recall that blue pixels are signifi-
cantly hotter than green pixels, which are hotter than red pixels; and black pixel are
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FIGURE 5.6: Demonstrating the pool convexity value (in white) along
with the blue layer’s convex hull (in magenta). Left: The pool has
significant convexity defects (deviations from its convex hull), reflected
in its low pool convexity of 0.7795. Center: The pool has moderate
convexity defects and has a pool convexity of 0.9044. Right: The
pool has negligible convexity defects and has a high pool convexity of

0.9845. © IEEE

considered to have negligible heat. In our case, (wR, wG, wB) = (0.01, 0.04, 0.16) to
approximate the nonlinear temperature differences between colors.

2. Weigh all pixels p via a radial decay function g(p) centered at the torch flame’s
centroid (xc, yc), obtained from calibration.

This approximates the nonlinear radial decay effects of heat transfer, i.e., the heat
at a pixel decays quickly with distance from the torch flame’s centroid. Moreover,
this radial decay provides robustness against noise (Fig. 5.7) and undesirable effects
such as: (1) light pollution, (2) sudden sparks, slag, or streaks, and (3) residual heated
regions away from the heat pool. Here, a bivariate Gaussian function is appropriate
as it models radial exponential decay using simple parameters. We observe the effect
of weighing via Gaussian decay in Fig. 5.7. The 2D Gaussian function g(p) assigns a
decay factor to each pixel based on its distance from the torch flame centroid (xc, yc),
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FIGURE 5.7: The Gaussian radial decay (leftmost image) is centered at
the torch flame’s centroid. In the various scenarios shown (top images),
the decay reduces unwanted effects and noise (bottom images), as well
as scales the intensities based on the distance from the torch flame’s

centroid. © IEEE

which is determined at calibration. This is defined as:

g(p) = exp

[
−
(xp − xc)2

2σ2
X

−
(yp − yc)2

2σ2
Y

]
(5.2)

Here, σX and σY determine the radial decay rate in each axis. In our case, σX = σY = 30 px
(see the Gaussian in Fig. 5.7).

3. Sum all weighted pixels p into an unscaled intensity I.

Using the aforementioned definitions, an absolute sum yields the unscaled intensity
defined as I = ∑p∈M g(p)w(p). At calibration, we average the unscaled intensity I
over a time window (see Section 5.5.1) to obtain a baseline intensity value Ical against
which all subsequent intensities can be scaled.

4. Scale the sum I by the baseline Ical, apply a saturation cutoff Ĩsat, and normalize
to yield the pool intensity i.

Let Ĩ = I/Ical be the intensity expressed relative to the baseline Ical. This expresses
the intensities with a physical meaning, for instance Ĩ = 1 is an intensity equal to that
of the torch flame, while Ĩ = 5 is an intensity five times greater. This simplifies the
interpretation of intensity values and the tuning of desired intensity values. To design
the pool combustion state, the pool intensity must be normalized for combination
with the pool convexity. For this, a saturation intensity Ĩsat is set to be greater than
the maximum values of Ĩ observed during trial cutting runs. In our experiments
Ĩsat = 10, i.e., intensity saturates at 10 times the baseline. We thus normalize the pool
intensity as i = min( Ĩsat, Ĩ)/ Ĩsat with i ∈ (0, 1].
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FIGURE 5.8: During visual calibration, the formulated predicates in
Section 5.5.1 can detect a variety of anomalies, some of which are
shown. For example, the anomalies of a weak flame or background
light pollution can be detected when the c1 predicate is false. The
image shown for the unstable flame anomaly overlays two consecutive
frames, showing the flame’s flickering detected via a high gradient
(c4 ≡ F). The desirable flame scenario is achieved when all predicates

are true (ck ≡ T). Here, ck = Ccal,k. © IEEE

5.4.4 Heat Pool Combustion State

As the purpose of the controller is to maintain a sufficient combustion for cutting, the
visual feedback must be designed to describe the heat pool’s combustion state. We
note that excessive combustion indicates an overly slow torch velocity, while deficient
combustion indicates an overly fast velocity, and an adequate velocity leads to a
desired combustion state. The extracted visual features must then reflect this negative
relationship between cutting speed and combustion state. As such, the visual feedack
provided to the controller is a heat pool combustion state descriptor s computed from
the camera’s RGB feed.

Finally, the pool combustion state descriptor is defined as s = λc + (1− λ)i where
the relative emphasis on pool convexity or pool intensity is tuned with λ ∈ [0, 1].
This yields a desirable normalized state descriptor s ∈ (0, 1]. In our experiments,
we set λ = 1

2 . This descriptor, by design, captures the positive relationship between
convexity and combustion state (whereby a higher convexity indicates more concen-
trated combustion), and the positive relationship between intensity and combustion
state (whereby a higher intensity indicates a stronger combustion). These modeling
choices are heuristic-based yet provide a sufficiently accurate and efficient visual
feedback signal for the control in Section 5.6.

5.5 Visual Calibration & Surface Conditioning

In this section, we cover the visual calibration and surface conditioning procedures
as well as their predicates for initiation and transition to combustion, respectively.

5.5.1 Vision System Calibration

During autonomous calibration, to ensure an acceptable input on which the vision
system is calibrated, we require a particular set of predicates, i.e., Boolean variables
Ccal,k, to be true. These initiation conditions in the image input, necessary for starting
the calibration procedure, are specified below.

1. Single contour

A proper torch flame is concentrated in a single blob. Conversely, a multiplicity of
blobs in the processed image indicates noise, light pollution, or other undesriable
effects. As such, the set of contours CM in the processed image M must be a singleton.
This is expressed as Ccal,1(t) ≡ (card CM = 1) where card is the cardinality.
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2. Green-blue color profile

A proper torch flame must only consist of green and blue colors in its RGB channels
after thresholding. In actuality, when the torch flame has red content in its color,
this generally indicates impurities which can be due to uncleaned torch tip, faulty
equipment, excess propane flow, or excess proximity to the metal surface. This
condition is expressed as Ccal,2(t) ≡ (MR = 0) wherein the red color channel of the
processed image contains only zeroes.

3. High convexity

The torch flame must be sufficiently convex to ensure a focused and concentrated
flame adequate for calibration (and cutting). This is expressed as the Boolean variable
Ccal,3(t) ≡ (c(t) > θc) where the convexity value c(t) is compared against the
preconfigured threshold θc (in our experiments, θc = 0.95).

4. Low intensity gradient

The torch flame should be sufficiently stable during calibration and must not flicker
or fluctuate. This is expressed as the predicate Ccal,4(t) ≡ ( d

dt i(t) < δi) where the
torch flame’s intensity gradient d

dt i(t) is approximated using finite differences and
the threshold δi is preconfigured (in our experiments, δi = 0.2).

Finally, these predicates must simultaneously true for an adequate calibration of the
vision system. The Boolean function Ccal(t) ≡

∧
k Ccal,k(t) is a conjunction of these

predicates and, when true, indicates acceptable calibration conditions.

When Ccal(t) is true throughout a time window Tcal (preconfigured), the calibration
procedure is initiated. Throughout Tcal, the centroids of the blue channel MB (indicat-
ing the blue region in the flame) are collected and averaged into the calibrated flame
centroid (xc, yc). Similarly, the absolute intensity I(t) (computed from the processed
image M) is collected and averaged into the baseline intensity Ical. Additionally, the
torch flame’s size can be recorded as the average number of nonzero pixels Ncal in
the processed image. In our experiments, the time window is Tcal = 50 frames.

If any of the predicates fail during calibration (Fig. 5.8), then the calibration is halted
and the reason is specified for troubleshooting. In doing so, the autonomous operation
never proceeds without an adequate calibration of the torch flame.

5.5.2 Metal Surface Conditioning

After calibration, the torch is then moved to the preheat position to begin heating
the surface and forming the heat pool. Since the torch flame centroid obtained,
the location of the heat pool is now known to the vision system. The heat pool is
monitored as it evolves to detect when it is adequate to transition to the combustion
phase and torch control task—essentially signaling that the preheating is complete. In
the same manner as the calibration step, this adequacy is described by the following
predicates.

1. Concentric colors

A proper heat pool must have concentric colored regions in the processed image. That
is, the red layer contains the green layer, which in turn contains the blue layer. This
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FIGURE 5.9: During surface conditioning, the predicates in Sec-
tion 5.5.2 can detect a variety of anomalies, some of which are shown.
For example, the anomalies of excess sparks or excess slag can be
detected when the c2 predicate is false. The desirable flame scenario is
achieved when all predicates are true (ck ≡ T). Here, ck = Ccon,k. © IEEE

recursive inclusion can be expressed as the predicate Ccon,1(t) ≡ (NB ⊂ NG ⊂ NR)
where Nk is the set of nonzero pixels in the channel k. This detects distortions or
anomalies in the pool that must be corrected before control.

2. Red color proportion

An adequately heated surface yields a heat pool with a sufficient (but not exces-
sive) proportion of red color. This indicates that the surface surrounding the torch
flame is desirably heated. This requirement can be expressed as the predicate
Ccon,2(t) ≡ ( cardNR

cardN ∈ [θRL, θRU]) where the thresholds θRL, θRU are preconfigured (in
our experiments, [θRL, θRU] = [0.45, 0.70]) and the set N = NR ∪NG ∪NB.

3. High convexity

The heat pool must be sufficiently convex to ensure concentrated heat for adequate
combustion cutting. This is expressed as Ccon,3(t) ≡ (c(t) > θc) where the convexity
value c(t) is compared against the preconfigured threshold θc (in our experiments,
θc = 0.95).

4. Heat pool size

The heat pool on the metal surface must be large enough, indicating that a sufficiently
wide area on the surface is hot enough to sustain combustion cutting. This can be
measured relative to the torch flame size Ncal, thus giving it a physical meaning. This
predicate is expressed as Ccon,4(t) ≡ ( cardN

Ncal
> θN) where θN is the preconfigured

size threshold (in our experiments, θN = 8.5).

All predicates Ccon,k must be true to indicate surface conditions that are adequate
for transitioning to the combustion phase and the torch control task. The Boolean
function Ccon(t) ≡

∧
k Ccon,k(t) is a conjunction of these predicates and, when true,

indicates acceptable transition conditions. When Ccon(t) is true throughout a time
window Tcon (preconfigured), then the combustion phase is started and the robot
enters the torch control loop. In our experiments, the time window is Tcon = 1 sec.

If any of the predicates fail during surface conditioning (Fig. 5.9), the reason is
specified for troubleshooting, and the controller does not start without adequate
conditioning.

5.6 Vision-based Torch Control

The combustion control task assumes that calibration and conditioning are completed,
meaning that the torch flame’s centroid and baseline intensity are determined (so that
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FIGURE 5.10: Block representation of the 1-DOF robotic system, its
components, and its perception and control pipelines.

combustion state s is computable) and that the metal surface is sufficiently preheated
for combustion to take place.

5.6.1 Modeling Assertions

The controller is designed under the following assertions:

The pose transform between the torch flame and camera is fixed.

The camera is rigidly attached to the torch, observing its tip from a fixed viewpoint
throughout cutting and keeping the torch flame stationary in the image frame. After
calibration, the torch flame’s centroid in the image frame does not change.

The pool combustion state and torch speed have a negative relationship.

The pool combustion state is highly-correlated with the pool’s temperature. A faster
torch speed reduces the amount of heat transferred to the local metal surface, thereby
yielding a lower pool temperature and therefore a lower pool combustion state.
This is also confirmed empirically using a cutting torch and metal plates. The pool
combustion state drops at higher torch speeds, and increases at lower ones. Note that
the combustion state is taken to be an instantaneous measure of the most immediate
pool, and does not concern residual heated regions elsewhere on the surface.

There exists a desired speed at which the desired combustion state is maintained.

This results from the negative relationship between combustion state and torch speed.
Moving the torch too fast produces a deficient pool combustion, yielding poor or
no cuts. Conversely, moving too slow produces an excessive combustion, yielding
inefficient and badly textured cuts. There is a range of intermediate speed values
yielding adequate combustion among which exists a desired pair for speed and
combustion state.

5.6.2 System Variables

We formally define the variables for heat source’s tangential velocity and the heat
pool combustion state as follows:

• v(t) ∈ R≥0 is the tangential velocity of the heat source (torch flame centroid)
on the reference cutting path.

• s(t) = ϕ(v(t)) ∈ R>0 is the pool combustion state in the image frame, where ϕ
models the map from v to s.
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FIGURE 5.11: Steel plates of varying thicknesses are clamped and
secured before cutting. The 1-DOF robot equipped with its camera
and cutting torch is installed, connected to oxy-propane sources and to
its computer communications. The system can then receive feedback
from the camera to perform the aforementioned vision-based control

and cut the plate. © IEEE

• s∗ is the desired state and v∗ is the desired velocity.

The function ϕ : v 7→ s maps from the torch velocity to the combustion state and thus
admits the following conditions:

1. ϕ is strictly positive: ϕ(v) > 0, ∀v ∈ R≥0. This is since s > 0 due to c, i > 0 as
defined in Section 5.4.4.

2. ϕ is monotonically decreasing with respect to v: d
dv ϕ(v) < 0, ∀v(t) such that

lim
v→∞

ϕ(v) = 0. This is in accordance with the second modeling assertion.

3. ϕ admits the desired-velocity constraint ϕ(v∗) = s∗ in accordance with the third
modeling assertion.

5.6.3 Control Law and Stability Proof

The control input is the tangential acceleration v̇(t) updating the velocity v of which
the state s is a function. We thus control combustion state via acceleration. The
implication of ϕ(v∗) = s∗ is that by tracking s∗, the torch is moved at the desired
velocity v∗. Let es(t) = s∗ − s(v(t)) be the combustion state error with respect to
the desired state s∗. Its dynamics are: ės(t) = − d

dv s(v)v̇(t). Apply the control input
v̇(t) = −kes(t) with k > 0 being a strictly positive gain. This results in the desired
behavior of accelerating when s is excessive and decelerating when s is deficient.
Substitute the control input in the dynamics equation to obtain: ės(t) = kes(t) d

dv s(v).
We prove stability using the Lyapunov candidate function V(es) =

1
2 e2

s , computing
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FIGURE 5.12: After a cutting experiment, a LED strip is placed along
the cutting path to inspect the cut and its overall quality. © IEEE

its derivative:

V̇ (es(t)) = es ės = ke2
s (t)

d
dv s(v) < 0, ∀es(t) ̸= 0 (5.3)

The previous result is true for all non-zero error states since k > 0, and e2
s (t) > 0, and

d
dv s(v) = d

dv ϕ(v) < 0. The controlled system is thus asymptotically stable.

We note that the desired combustion state s∗ is determined experimentally. Specif-
ically, an adequate range of combustion states is found for a particular setup and
would not change across cutting sessions. After a certain number of trials, a precise
value for the desired state s∗ is determined.

5.7 Autonomous Cutting Experiments

We evaluate our vision-based framework for autonomous cutting in physical cutting
experiments performed using a 1-DOF robot, a cutting torch, oxy-propane gas, and
steel plates. The physical setup is shown and annotated in Fig. 5.11. In our robotic
setup, the camera is mounted at a fixed pose towards the torch tip. The camera lens
is covered with a tinted visor used to dim the scene and focus on the flame, as is
typically done by skilled cutters. This also prevents image saturation due to the
extreme brightness of the flame and pool. The actuators are a stepper motor setting
the torch’s linear motion, and a linear actuator engaging the oxygen bypass. Using
ROS [97], the system communications are distributed across a microcontroller for
the low-level actuator control and a computer for image processing and high-level
control. The computer is connected to the camera and the microcontroller, while the
torch is connected to oxygen and propane tanks. The interaction of these components
during the control loop is summarized in Fig. 5.10.

5.7.1 Experiment Workflow

The experiment workflow follows the oxy-fuel cutting sequence in Fig. 5.4. After
setup, the experiment begins by igniting the cutting torch and setting the oxy-propane
pressures; these are done manually. When an adequate torch flame is detected (as in
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FIGURE 5.13: The illuminated cuts of each mode (right) for each plate
thickness (right), the reference path length (bottom), and the cutting
success ratio (left), defined as the length proportion of the path that is

successfully cut, rounded to the nearest tenth. © IEEE

Section 5.5.1), calibration is started and the robot identifies the torch flame’s centroid
and its baseline intensity. Next, the robot moves the torch flame to the initial location
on the metal plate to preheat the surface. Once the surface is sufficiently preheated
(as in Section 5.5.2), the robot is entered into autonomous combustion control. The
robot engages the oxygen bypass and autonomously sets the torch speed based on its
vision-based control. In these experiments, the reference cutting paths for the robot
are straight lines along the plate’s surface. After cutting, the bypass is disengaged
and the torch is turned off. A representative experiment is shown in Fig. 5.14.

5.7.2 Cutting Results

The experiments are performed on steel plates of thicknesses (0.250, 0.375, 0.500) in.
We conducted experiments with three cutting modes to compare the outcomes of
our automated vision-based algorithm against that of constant torch speeds: (1) a
constant torch speed of 0.2 cm/s (referred to as ‘slow cuts’); (2) a constant torch speed
of 3.2 cm/s (referred to as ‘fast cuts’); and, (3) controlled speed determined by the
algorithm. After the cut is performed on each plate by each mode, the plate is cooled
down and each cut is illuminated for clear inspection by placing a LED strip behind
the plate along the cutting path (see Fig. 5.12).

In addition, the controller’s performance is examined in time-series plots (Fig. 5.15)
wherein the following quantities are logged: (1) torch position, (2) torch velocity, (3)
acceleration input, (4) pool convexity and intensity (and when combined, combustion
state), and (5) their desired values. These are all plotted with normalized values.
Pool convexity, intensity, and combustion state are normalized by default. Position is
normalized by its maximum value reached at the cutting path’s end. Velocity and
acceleration are normalized by their maximum values vmax and v̇max imposed as
safety constraints on the controller; though these values are never attained.
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FIGURE 5.14: In this representative experiment, the robot au-
tonomously calibrates the vision system, conditions the metal sur-
face, and controls the torch motion to complete the cut on the steel
plate. Key frames are labelled A through J to discuss important events

throughout the experiment. © IEEE

All autonomous cuts are performed with these parameters: gain k = 200, pool
convexity reference c∗ = 0.95, pool intensity reference i∗ = 0.25, maximum velocity
vmax = 2.0 cm/s, maximum acceleration v̇max = 0.8 cm/s2. While the problem
is noisy, the controller converges in every case and successfully tracks the desired
combustion state.

5.7.3 Discussion of Autonomous Experiments

Referring to Fig. 5.14, the robot autonomously performs the cut as follows. As
the torch pressures are being configured (frames A through C) the visual feedback
is monitored and the calibration predicates are tracked. Once the flame stabilizes
(frame C) and all calibration predicates are true, the vision system is calibrated, and
the robot moves the torch flame to the initial cut location (frame D) for preheating.
The heat pool forms (frame E) and gradually grows (frame F) until all conditioning
predicates are true (frame G). The robot then begins the combustion phase (frame H)
and controls the torch motion (frames I and J) until the cut endpoint is reached.

5.7.4 Discussion of Cutting Results

Referring to Fig. 5.13, one may intuitively expect the slow cuts to fully penetrate each
plate along the cutting path. In actuality, moving the torch too slowly accumulates
heat excessively in regions surrounding the cutting path thereby re-sealing portions
of the cut with creeping deposits of heated steel (cut success ratios 0.4 and 0.9). Note
that the 0.250 in. plate is thin enough that the excess heat combusts these surrounding
regions yielding the wide cut (ratio 1.0). Nevertheless, slow cuts are wasteful in time
and resources in addition to yielding substandard cut textures. The fast cuts instead
tend to extinguish the heat pool before the cut’s completion (ratios 0.6 and 0.8) due to
diminishing heat accumulation, fault of moving the torch too quickly. The effects of
moving too slow or too fast are aggravated on thicker plates due to a larger material
volume surrounding the cutting path. In our vision-based formulation, these faults
translate to combustion states that are excessive (slow cuts) or deficient (fast cuts).

By contrast, the autonomous cuts are clear and successful in every case (ratios 1.0).
Without knowing the plate thicknesses, the controller adjusts the torch velocity
towards a stable region to converge and maintain the combustion state near its
desired value (see Fig. 5.15). In effect, Fig. 5.13 shows the resulting successful cuts
against each of the plate thicknesses.
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5.8 Conclusion

In this chapter, we formalize the oxy-fuel cutting problem and develop a vision-
based framework for autonomous cutting. The vision feedback describes the heat
pool’s combustion state using its convexity and intensity. We devise predicates
for autonomously calibrating the vision system and conditioning the metal surface.
Afterwards, our vision-based controller updates the torch velocity along the cutting
path. Our experiments demonstrate the successful autonomous cutting of steel plates
(varying thicknesses) with a 1-DOF robot using purely visual feedback.

While our framework addresses autonomous combustion cutting, further work is
required to evaluate our methods on 2D and 3D cuts. Furthermore, this approach is
limited to combustion cutting (where the metal is predominantly burned, e.g., with
carbon steel) and does not directly address the less common fusion cutting (where
the metal is predominantly melted, e.g., with aluminum).
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FIGURE 5.15: Time-series plots of the autonomous experiments (com-
bustion cutting phase) for each plate. The left column row shows both
pool features, whereas the right column combines them into combus-
tion state. The legends for each column are on the topmost row. © IEEE
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Chapter 6

Task State Monitoring

T HE vision-based framework developed in Chapter 5 restricts the robot actions
to task states tailored to the oxy-fuel cutting operation. This chapter focuses

on monitoring these task states for the purpose of either validating the robot actions,
or detecting anomalies. The industrial operation of oxy-fuel metal cutting via gas
torches involves tasks such as ignition, preheating, and combustion along the target
surface. Automated oxy-fuel cutting systems are exposed to risks and anomalies
that can lead to incorrect actions and safety hazards. In this chapter, we develop a
classifier for online task state estimation to assess the cutting robot’s actions, detect
anomalies, and reduce the risk of hazards. Using representative footage from our
robotic cutting experiments, we curate an image dataset labeled with four types of
cutting task states. Using deep learning methods, we design and train a convolutional
neural network model for classifying the cutting task state from input images. The
classifier architecture is optimized for rapid inferences during online estimation. After
evaluation, our classifier achieves an overall accuracy of 93.8% with high inference
speeds on two types of representative hardware. Our ‘Oxy-fuel Cutting Task State’
(OCTS) dataset is available at doi.org/10.5281/zenodo.7734951.

Keywords: Task state estimation, anomaly detection, oxy-fuel cutting, deep learning, convo-
lutional neural networks, image dataset, multinomial classification.

Notice: The work in this chapter is accepted at the 2023 IEEE International Conference
on Automation Science and Engineering (CASE) and is subject to IEEE Copyright.

6.1 Introduction

The global economy of the future is projected to become increasingly automated.
The industrial sector is particularly subject to pro-automation market pressures such
as falling prices of automation systems [141]. However, scaling up the automated
economy comes with its unique challenges. In particular, the rising importance
of workplace safety [142] imposes stricter safety requirements in the design and
adoption of automated systems [143]. This is emphasized in the automation of
hazardous work that is highly-exposed to risk, such as metal cutting and welding.
In parallel, there is considerable incentive to automate the difficult processes of oxy-
fuel cutting [118] and welding. In existing work, the focus is often to achieve some
autonomous functionality while safety is not sufficiently addressed.

In this chapter, we develop a classifier for task state estimation to monitor automated
oxy-fuel cutting systems and detect anomalies for the benefit of increasing workplace

https://doi.org/10.5281/zenodo.7734951
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FIGURE 6.1: The classifier interprets the environment percepts and
provides the perceived task state to the cutting robot. When the inter-
nal and perceived task states match, the robot actions are validated
and executed. Upon disagreement, an anomaly is declared and cutting

operations are halted. © IEEE

safety. For this, we curate an image dataset of oxy-fuel metal cutting scenarios, rep-
resentative of key task states in oxy-fuel cutting. The images are obtained from a
series of recorded cutting experiments performed with a torch-equipped robot that
cuts steel plates. These images are then labelled into distinct task state classes, identi-
fied by their dominant visual feature (‘Torch flame’, ‘Preheating pool’, ‘Combustion
pool’, and ‘Not applicable’). Using this data, we adopt a deep learning approach
for capturing the data’s feature hierarchy via a convolution neural network (CNN)
model.

The purpose of this classifier is to monitor live oxy-fuel cutting operations. The
classifier receives online vision data and infers the cutting task state, providing an
interpretation to the robot (Fig. 6.1). When the classifier’s interpretation and the
robot’s internal task state agree, an anomaly is unlikely and the robot proceeds with
its actions. Conversely, a discrepancy between them suggests the occurrence of
an anomaly in which case cutting operations are halted for safety inspection and
response. The aim is to help validate the robot’s actions for the detected task state. By
monitoring the task environment and signaling discrepancies with the robot’s actions,
the classifier adds one layer of safety.

The core contributions of this chapter are:

1. Creating an image dataset for oxy-fuel cutting task states, obtained from auto-
mated cutting experiments.

2. Developing a CNN model to classify the task state from input images with high
inference speed.

3. Evaluating the classifier’s performance against a separate test set previously
unseen by the classifier and identifying its strengths and limitations.

To the best of our knowledge, this is the first study in the literature focusing on
vision-based state estimation of oxy-fuel cutting operations. Furthermore, the work
in this chapter publishes the first dataset [144] in the literature covering the task states
of oxy-fuel cutting and the first treatment in developing an appropriate classifier for
these task states.
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FIGURE 6.2: Sequence of events (labeled in black) and tasks (labeled
in color) in vision-based autonomous oxy-fuel cutting. Conceptually,
the robot is equipped with a vision sensor and cutting torch and must
cut the target object along the desired cutting path. The cutting events
are the instances that trigger the cutting tasks. The footage shown
is retrieved from vision-based cutting experiments using our 1-DOF

cutting robot. © IEEE

6.2 Related Work

Industrial processes using welding, cutting, and laser tooling are studied using a vari-
ety of instrumentation and techniques to extract higher-level perceptual information
from lower-level sensory data. Often, the processed area (which may exhibit a heat
pool or melt pool) is monitored and characterized to model or predict its effect on
process quality, anomaly and defect detection, or penetration depth. Non-learning
based techniques can be used to characterize combustion such as using spectral
analysis [145] or for the efficient operation of industrial furnaces using classical image
processing [146] and 3D instrumentation [147]. However, these approaches are often
limited to processes that can be explicitly modeled.

More recent advances focus on applying learning-based approaches to infer task-
relevant information while generalizing to a broader range of input scenarios. Indeed,
the aim of learning-based applications to is to enable or improve industrial pro-
cesses by monitoring for errors and ensuring that the goal states are reached. Such
data-driven and learning-based methods are successfully applied to a wide vari-
ety of media: gas tungsten arc welding (GTAW) [148]–[152], gas metal arc welding
(GMAW) [153], [154], submerged arc welding [155], variable polarity plasma arc weld-
ing [156], laser welding [157]–[159], wire-arc additive manufacturing (WAAM) [160],
[161], wirefeed laser additive manufacturing [162], and orthogonal metal cutting [163].

In effect, neural network models are used abundantly for such industrial processes.
While diverse neural architectures are adopted, convolutional neural networks [150],
[151], [154], [157], [159], [161], [162], [164], [165] are most encountered in these
applications. Often, pre-trained models are used or adapted such as the ResNet
architecture for its deep convolutional layers and residual connections [158], [160].
Other approaches applied include generative adversarial networks [153], ensemble
methods [152], autoencoders [163], vision transformers [149], transfer learning [148],
and extreme learning machines [156].

In practice, while the problems encountered can exhibit similarities, they also carry
distinct challenges due to the particularities of their tooling and the differences in
their data. These domain-specific distinctions not only suggest preference for certain
learning models, but also inform about auxiliary techniques that exploit domain
knowledge. For instance, X-ray imaging can reveal more information for certain weld
defects [159], [164]. Similarly, problem-specific advantages arise with other auxiliary
techniques such as multimodal sensing [153], [157], [160], multisource sensing [152],
image preprocessing [148]–[151], and acoustic sensing [154].
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The following problems in prior work are most related to ours. For GTAW and
weld pool image data: penetration classification (3 classes) in [152] and prediction
in [151]; pool classification (2 classes, 6 classes) for defect identification in [148]; and,
penetration state classification (4 classes) for penetration recognition in [149]. For
GMAW and weld pool image data: pool state classification (4 classes) for defect
detection in [153]. For WAAM and melt pool image data: pool state classification
(4 classes) for anomaly detection in [161].

While there are similarities, our problem is distinct for the following reasons:

1. The industrial process is oxy-fuel metal cutting producing a heat pool from
combustion, not a weld pool or melt pool.

2. The image data is particular to the oxy-fuel cutting medium and its associated
events and tasks.

3. The problem is to classify the cutting task state for monitoring the robot actions’
safety and correctness.

4. The classifier’s inference time must be sufficiently low for online estimation,
thus constraining its design and architecture.

Moreover, the aim of task state estimation is to enable higher-level reasoning about
the robot’s actions from lower-level data. For instance, [166] applies this strategy to
robot contact tasks, extracting high-level action grammars from low-level trajectory
data. To the best of our knowledge, this is the first work applying deep learning to
automated oxy-fuel cutting for classifying its task states.

6.3 Problem Formulation

This section delineates the problem elements: the process and tooling of oxy-fuel
cutting, the events and tasks relevant to its automation, and the role of task state
estimation.

6.3.1 Oxy-fuel Cutting

The operation of oxy-fuel cutting consists of manipulating a cutting torch along a
metal surface to cut through it along a desired path. The torch flame is produced by
burning an oxy-fuel gas mixture, where the fuel is typically acetylene or propane.
Material removal is usually achieved via a combustion reaction with the metal (most
commonly carbon steel). This requires the metal surface to be sufficiently preheated
using the torch flame. During preheating, the heated region on the metal surface
exhibits the formation of a heat pool. This apparent bright blob is an accumulation
of heat where combustion is most intense. Upon sufficient preheating, combustion
is intensified by increasing oxygen flow and the torch is moved along the desired
cutting path at an adequate velocity to maintain adequate conditions for combustion
and material removal.

6.3.2 Automated Cutting

The oxy-fuel cutting process is complex and involves several events and tasks. Its au-
tomation may be tackled via different approaches, depending on the sensing modality
and the desired degree of autonomy. We focus on vision-based automated cutting
due to the visual stimuli produced by the heat pool and the vision-based tracking
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inspired by the techniques of skilled cutting workers. This requires a representation
of the cutting problem tailored to the vision-based approach of its automation.

The sequence of events and tasks during vision-based automated oxy-fuel cutting
is illustrated in Fig. 6.2. The key events during the cutting process are: (1) Ignition:
The torch flame is ignited and focused; (2) Preheating: The flame is positioned at
the surface; and, (3) Combustion: Oxygen flow is increased via a lever. Accordingly,
the cutting system executes these tasks: (1) Calibration: Calibrate the vision system
against the torch’s flame; (2) Conditioning: Heat the surface to combustion conditions;
and, (3) Control: Regulate the torch motion for combustion cutting.

6.3.3 Task State Estimation

The above sequence of tasks for vision-based cutting, while effective, executes under
the assumption of ideal operational conditions. When the expected cutting event is
detected, the task state is updated and the robot continues onto its next action. In
practice, oxy-fuel cutting operations are exposed to various potentials errors, risks,
and hazards.

We enumerate instances of potential failure modes: ignition may fail; the flame may
not be correctly focused; calibration may fail due to excess noise; combustion may
fail fault of insufficient conditioning; faulty oxy-fuel tooling and leaks; excess sparks,
slag, fire, or other anomalies; electronic or mechanical failures, and software errors;
among others.

Such failures would manifest as anomalies in the image frame and the heat pool.
While the automated system possesses internal state of its actions, it lacks external
state of its environment. As such, under anomalous conditions the cutting agent’s
actions may be incompatible with the state of its environment. Under such cases,
there may occur inefficiencies, failures, hazards, and dangers without intervention.

To address this, the cutting system tasks must be monitored and validated. This
can be achieved using a classifier that infers from the robot’s visual input one of
four task states identified by their dominant feature in the image: ‘Torch flame’,
‘Preheating pool’, ‘Combustion pool’, and ‘Not applicable’. This classifier is trained
on representative footage, labeled with the desired task states. During cutting, the
robot would check its internal task state with the classifier before taking action (see
Fig. 6.1). Using this task state estimation, the robot gains some external awareness
and performs safer cutting operations.

6.4 Oxy-fuel Cutting Dataset

To train and test the task state classifier, we develop a dedicated dataset that captures
the particularities of automated oxy-fuel cutting. This need is reinforced due to the
lack of relevant datasets that are publicly available. Our ‘Oxy-fuel Cutting Task State’
(OCTS) dataset can be accessed at doi.org/10.5281/zenodo.7734951.

6.4.1 Data Collection from Cutting Experiments

Using our automated setup shown in Fig. 6.3, we perform cutting operations (as in
Fig. 6.2) on steel plates. The area of interest on plates is recorded using the robot’s
eye-in-hand RGB camera. In total, 50 experiments across 11 sessions are recorded
using the Intel RealSense D435 yielding 142,671 collected images. Some cuts are

https://doi.org/10.5281/zenodo.7734951
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FIGURE 6.3: The 1-DOF cutting robot performs cutting experiments
wherein its RGB camera records the affected area on the steel plates.
We note that the camera is mounted at a fixed pose towards the torch
tip and that its lens is covered with a tinted visor (as is worn by skilled
cutters). This tinted visor dims the scene, focuses on the flame and the
pool, and prevents image saturation due to the extreme brightness of

the flame and the pool. © IEEE

TABLE 6.1: Summary of the Data Collection Parameters © IEEE

Total Experiments 50 Frames Collected 142671

Footage Recorded (min) 119 Frame Dimensions (px) (640, 480)

Recording Rate (fps) 20 Frame Channels (R,G,B)

completed without fault (Fig. 6.4), while others are subjected to diverse failure modes.
Depending on the severity of the failure, cuts are either fully completed, or partially
completed due to interruptions. In this manner, the footage spans a broad range of
representative, varied, and diverse cutting conditions. The data collection parameters
are summarized in Table 6.1.

6.4.2 Data Labels & Classification Problem

The classification problem is based on identifying the prominent element in the
image: the torch flame (TF), the preheating pool (PP), or the combustion pool (CP). In
addition, the label NA corresponds to ‘Not applicable’ where no dominant element
is identified. This indicates cutting conditions outside the range of normalcy and
is treated as an anomalous state. The cutting task state in an image is identified by
its associated dominant element as summarized in Table 6.2. When the dominant
element in the image frame is the torch flame (TF), the nominal task is to calibrate the
vision system; when it is the preheat pool (PP), to condition the surface; and when it
is the combustion pool (CP), to control the torch motion. When no dominant element
is found (NA), the corresponding task is to halt cutting operations for inspection and
response. In addition, a mismatch between the detected element (perceived task state)
and the robot’s intended action (internal task state) constitutes anomalous behavior.
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TABLE 6.2: Summary of Labels and their Associated Task States © IEEE

Label Element Nominal Task State

TF Torch flame Calibrate the vision system.

PP Preheating pool Condition the metal surface.

CP Combustion pool Control the torch motion.

NA Not applicable Halt the cutting operations.

Sample data for each class is also shown in Fig. 6.5. As such, the problem is structured
as a multinomial classification with four labels: {TF, PP, CP, NA}. In our dataset, each
image is labeled with one of these four labels according to the prominent element in
the image and its associated task state.

6.5 Model Design

In this section, we detail the architecture of our CNN-based model and its input
data’s preprocessing.

6.5.1 Model Architecture

The purpose of the model is to classify input images into one of the aforementioned
four cutting task states. The subject and contents of the image data incorporate a
large variety of geometrical and chromatic interrelationships between the features of
the torch flame, the heat pool, and the surrounding environment. Accordingly, it is
non-trivial to express its intricate feature hierarchy via explicit feature engineering.
When considering the various model choices for image classification [167] and their
respective advantages, we find that CNN models are adequate for our problem given
their established capabilities for feature engineering.

Additionally, given our constraints on inference speed for online monitoring require-
ments, we consider the effects of design parameters on neural network expressivity
and performance [168], [169]. In particular, we desire a CNN architecture that is large
enough for enabling the model to express a sufficient amount of variations within the
data and thus yield a satisfactory prediction accuracy. At the same time, the model’s
architecture must be small enough for rapid inference during online monitoring.

By factoring this tradeoff between prediction accuracy and inference speed during
design iterations, we adopt the architecture shown in Fig. 6.6. Our neural network

FIGURE 6.4: Sequential footage from a particular experiment is shown
at intervals of 200 frames (or 10 second). This particular cut is executed

without fault. © IEEE
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FIGURE 6.5: Sample frames for each class from various experiments.
We note the importance of covering variations of the key elements and

ambient conditions. © IEEE

model ŷ = f (X,θ) maps the input X ∈ R3×640×480 which are 3-channel RGB images
of size 640× 480, to the output ŷ ∈ R4 which are the class scores, given the mapping
parameters θ, i.e., the model weights. Our network f (expressed in functional form)
is composed of four functional blocks,

f = B4 ◦ B3 ◦ B2 ◦ B1. (6.1)

At the input, we begin with two convolutional functional blocks B1 and B2 composed
as follows:

B1 = Pool11 ◦ Drop11 ◦ σ ◦ Conv12 ◦ σ ◦ Conv11
B2 = Pool21 ◦ Drop21 ◦ σ ◦ Conv22 ◦ σ ◦ Conv21

(6.2)

Here, Conv are convolutional layers, Pool are max-pooling layers, Drop are dropout
layers (for regularization), σ is the Sigmoid Linear Unit (SiLU) activation function,
and the operator ◦ is function composition. The blocks B1 and B2 are followed by a
fully-connected functional block B3,

B3 = Drop33 ◦ σ ◦ Dense33 ◦ Drop32 ◦ σ ◦ Dense32 ◦
Drop31 ◦ σ ◦ Dense31 ◦ Vec

(6.3)

where Vec vectorizes its input into a 1D vector, and Dense are fully-connected layers.
Finally, the output block B4 = Dense41 contains a single dense layer. The hyperpa-
rameters of each block’s layers as well as the transformation of the data along the
architecture are indicated in Fig. 6.6.

6.5.2 Data Preprocessing

Within our image data, the regions that are more pertinent and crucial are those
containing information about the torch flame or heat pool. Accordingly, regions

Drop32

rate=0.3

Input

Image


Conv11

ker=7×7

Conv12

ker=7×7

Drop11

rate=0.2

Pool11

size=2×2

Conv21

ker=11×11

Conv22

ker=11×11

Drop21

rate=0.2

Pool21

size=2×2

Vec

dim=1

Dense31
Drop31

rate=0.4

Dense32 Dense33
Drop33

rate=0.2

Dense41
Output

Scores

32@640×4803@640×480 32@640×480 32@320×240 16@320×240 16@320×240

307200×1 1024×1 256×1 4×164×1

SiLU SiLU SiLU SiLU

SiLU SiLU SiLU

16@160×120

FIGURE 6.6: The architecture of our neural network. Our model is
composed of two convolutional blocks (blue and green), one dense
block (orange), and one output block (red). The respective hyper-
parameters of each block are indicated therein and the state of the
data (channels, rows, and columns) are displayed along its mappings
between layers. The stride of all convolutional layers is (1, 1). All

activations are Sigmoid Linear Unit functions. © IEEE
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FIGURE 6.7: The preprocessing is demonstrated on samples from each
class. © IEEE

within the image that are relatively brighter are of higher interest, whereas those that
are relatively dimmer contain information that is less relevant to our task, i.e., noise.
For these reasons, we process the input images (Fig. 6.7) using thresholding to nullify
regions of low interest. At the same time, the thresholding must preserve the desirable
bright regions in the image. For instance, binary-thresholding (resulting in a binary
image) would lose much of the essential information in the bright regions required to
reliably discriminate between scenarios. As such, we adopt a one-sided channel-wise
thresholding method as specified in the procedure ProcessImage below.

define ProcessImage(image X) :
(αR, αG, αB)← (175, 150, 225)
for each channel c ∈ {R,G,B} do

for each pixel (i, j) ∈ Xc do
if Xc[i, j] < αc then Xc[i, j]← 0

return X

In each individual channel c ∈ {R,G,B}, the pixel values are zeroed when they
fall below the thresholds αc, and unchanged otherwise. By performing exploratory
data analysis on the training data, we determine the threshold values (175, 150, 225)
to sufficiently eliminate noise while preserving relevant information. We note that
thresholds are applied channel-wise since the proportion of noise is different across
channels, motivating distinct values for αc.

6.6 Training & Evaluation

We delineate our model’s training and evaluation below.

6.6.1 Model Training and Data Augmentation

Our dataset comprises of 50 experiments recorded at different times-of-day. We split
our data into training and testing sets experiment-wise, i.e., we consider 38 recorded
experiments for training and 12 for testing, yielding a train-test split of around
(78%, 22%) or (111745, 30926) images. Through this mutually-exclusive sampling
from experiments, we emphasize the learning of key features in the torch flame and
heat pool across all experiments and discourage the model from learning the noise,
conditions, and background effects unique to each experiment. Additionally for train-
ing, we sample our experiment sets across the range of times-of-day to train the model
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FIGURE 6.8: Confusion matrices of the model’s prediction on the test
dataset. The diagonals indicate the correct predictions whereas the
off-diagonal terms indicate misclassifications. Red, yellow, and green
cells indicate label-wise concern that is major, minor, and negligible
respectively. Left: The matrix is expressed with absolute count. Center:
The matrix is expressed relative to the true label totals (row-by-row),
thereby showing class recall on the diagonal. Right: The matrix is
expressed relative to the predicted label totals (column-by-column),

thereby showing class precision on the diagonal. © IEEE

on varied ambient conditions (e.g., lighting, temperature) that are affected by the time-
of-day. To further increase our model’s robustness against noise in our dataset, we
apply several randomized techniques for augmenting our training data. Specifically,
we introduce subtle variations in the images by randomizing the following image
parameters: shearing, brightness, contrast, saturation, and Gaussian blurring. During
training, we minimize the empirical risk as in minθ

1
N ∑N

k L[yk, f (Xk,θ)] where L is
the categorical cross-entropy loss function, N is the number of training samples, Xk
is the kth training input, and yk is its true label. While there are many suitable opti-
mization methods [170] for this minimization problem, we use the adaptive moment
estimation (Adam) algorithm [171].

6.6.2 Model Testing and Evaluation

After testing on the 12-experiment test set, we evaluate our model to assess its
output’s validity and coherence with our modeling assumptions. Our evaluation
metrics for this state classification task are overall model accuracy (Table 6.3) both on
the entire test set and its individual experiments, as well as the confusion matrices
(Fig. 6.8) showing class-wise prediction count, recall, and precision. We thus assess
our assumption that the task states {TF, PP, CP, NA} are visually distinguishable in our
dataset, which would be reflected as sufficiently large diagonal terms in the confusion
matrix.

6.6.3 Results and Discussion

In general, our model performs reliably, achieving an overall accuracy of 93.814%
(Table 6.3). Moreover, its accuracy on individual test sets ranges from 88.725% and
above, and lies within [90.574%, 96.665%] for two-thirds (8/12) of them. In particular,
it distinguishes the NA class quite well (with a precision of 98.2% and a recall of 95.9%)
despite its intra-class variation (see Fig. 6.5) suggesting that it can confidently identify
anomalous conditions during cutting.
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We study the misclassfications (Fig. 6.8) of concern deemed major (red, 2% or more),
minor (yellow, within [0.5%, 2%)), and negligible (green, less than 0.5%) expressed
relative to the true label totals (center matrix) and predicted label totals (right matrix).
Major concern occurs mainly during inter-class transitions, for instance, when the
cutting task transitions from having a torch flame (TF) to preheating (PP), or from
preheating (PP) to combustion (CP). In addition, the NA class is concentrated before ig-
nition (no torch flame) and after combustion (the heat pool and torch flame gradually
extinguish) wherein no dominant element can be identified; these constitute transi-
tions from NA to TF and from CP to NA. Confusion during transitions is reasonable
since even human experts struggle to distinguish these transitional images. More so,
our results suggest that each transition should have its own respective class and thus
more refined labeling.

For assessing inference speed, we evaluated our model on the test set using two
representative types of hardware: a special-purpose GPU (NVIDIA A100 Tensor
Core) and a mid-range consumer CPU (Intel Core i5-5257U). These respectively
represent optimistic and pessimistic estimates of the inference speed, depending
on the deployed model’s computing hardware. We compute the average time of
inferring one image at a time across all test images, resulting in an average inference
time of 1.46 ms (GPU) and 1.25 s (CPU). In either case, the model’s inference is
sufficiently fast for prompt anomaly detection and safety response.

6.7 Conclusion

In this chapter, we develop a task state classifier for improving the safety of automated
oxy-fuel cutting. For this, we curate a labeled dataset by conducting automated
cutting experiments using a 1-DOF robot. Our CNN-based model is composed of
four functional blocks (each containing its own layers): two convolutional blocks,
one dense block, and one dense output block. We preprocess the inputs using one-
sided channel-wise thresholding to eliminate noise and preserve the desirable image
contents. We train and evaluate our model and achieve an overall accuracy of 93.814%
with sufficient average inference speed on both a high-end GPU (1.46 ms) and a mid-
range CPU (1.25 s). Nevertheless, our model struggles with inter-class transitions
motivating the need for more refined classes in future work.
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TABLE 6.3: Evaluation results showing the model’s overall accuracy and class-wise recall against the testing data © IEEE

Test Set Total Inputs Correct Outputs Model Accuracy TF Recall PP Recall CP Recall NA Recall

S13 312 312 100.00 − − − 100.00
S19 4806 4569 95.069 53.846 100.00 99.242 96.613
S21 2482 2365 95.286 97.541 95.602 94.953 95.210
S25 2909 2581 88.725 100.00 68.916 87.520 97.978
S29 1509 1498 99.271 100.00 − − 99.265
S34 2472 2239 90.574 97.020 77.215 98.535 94.754
S36 2984 2716 91.019 99.539 78.980 97.853 98.361
S38 2321 2060 88.755 95.556 73.849 97.306 90.022
S40 5277 5101 96.665 97.802 99.208 96.097 92.745
S45 2682 2586 96.421 99.689 96.712 98.419 91.605
S47 1532 1426 93.081 97.458 79.076 98.000 97.073
S49 1640 1560 95.122 98.537 90.864 98.792 95.943

OVERALL 30926 29013 93.814 91.276 87.509 96.555 95.910

Note: Class recalls marked with “−” indicate no data instances of the corresponding class in the particular experiment set.
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Chapter 7

Safe Structural Disassembly

W HILE in Chapters 4–6 the focus is the cutting operation itself—its path, exe-
cution, and monitoring, respectively—instead, this chapter focuses on the

higher-level problem of sequencing cuts on large structures for safely disassembling
them. Disassembly and fragmentation are key operations in the dismantling and
recycling of decommissioned structures such as aircraft, vessels, and buildings. Often,
such operations are hazardous requiring careful planning for safe execution based
on the experience and intuition of workers and forepersons. We propose and devise
an algorithm for the automated sequencing of cuts to disassemble large structures.
Using feedback from physics-based simulations and a mathematical model for safety,
our algorithm performs sequential decision-making yielding the order of the cuts on
the structure and the corresponding safe standing positions of the cutter (representing
a worker or a robot). Our goal is to determine a sequence of cuts and cutter locations
to maximize safety for the cutter and the environment. We establish the optimal
solution via exhaustive searching, and design a greedy decision scheme to reduce
the search runtime. Using our evaluations in simulation, we compare our greedy
decision scheme against exhaustive searching and random searching, concluding that
it satisfices the goal with high safety scores and low runtime.

Keywords: Structural disassembly, sequential decision-making, algorithmic cut sequencing,
safety modeling, physics-based simulation.

Notice: The work in this chapter is accepted at the 2023 IEEE Conference on Decision
and Control (CDC) and is subject to IEEE Copyright.

7.1 Introduction

In contemporary industry, priority is often given to activities of synthesis such as
production, assembly, construction, and packaging. These can be contrasted with
activities of fragmentation such as dismantling, deconstruction, demolition, and
unpacking. In light of the Circular Economy [172] and sustainable development [173],
there is a growing importance of the end-of-life handling of products and structures,
such as refurbishing and material recovery. In effect, the processes of disassembly,
deconstruction, dismantling, and recycling are of particular interest to decommis-
sioned vessels [21], aircraft [174], [175], buildings [176], offshore platforms [177] or
other large structures. However, the disassembly of such large structures involves
difficult and hazardous operations often citing concerns over occupational safety
and environmental impact as in the ship recycling industry [178], [179]. Much of
these hazards and liabilities arise due to the economic incentives on both the demand
and supply sides. As discussed in [180], companies wishing to dispose their aging
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FIGURE 7.1: Example cutting plan from a shipbreaking yard pre-
pared by a worker and foreperson to disassemble a large steel struc-

ture. © IEEE

vessels prefer the affordability of low-cost labor in developing countries wherein the
competitive landscape prioritizes employment and profit over safety and regulation.
The automation of such disassembly operations can help reduce the exposure to
risks and hazards by improving occupational safety and decreasing the dependence
on low-cost labor for dangerous tasks. For instance, these productivity and safety
benefits are explored in robot-assisted building deconstruction [181].

This chapter is motivated by the need to break down large structures using gas torches
into smaller units as seen in shipbreaking and metal scrapyards. In these unstructured
and hazardous environments, an incorrect sequence of cuts can lead to a variety of
dangers such as: fragments falling on the worker; the structure tipping over due
to a shifting center of gravity; the structure collapsing on the worker, among other
risks. As such, workers and forepersons agree on a cutting plan prior to conducting
any cuts. These plans are primarily derived from the experience and intuition of the
skilled workers and forepersons as well as general safety guidelines (see Fig. 7.1).

Nevertheless, safety planning can be improved by reducing the dependence on
subjective assessment and intuition, thereby empowering workers and safety teams
with automated sequencing and computational evaluation techniques. In effect, by
utilizing physics-based simulations and safety modeling, the algorithmic generation
of cutting sequences would enable more concrete evaluation of cutting scenarios.
Thus, cutting sequences can be generated based on physical laws and can then be
refined before execution through the domain knowledge and experience of workers
and forepersons. We believe that our automated decision scheme is a step in the
direction of improving the safety planning of structural disassembly.

In this chapter, we tackle the sequential decision problem of selecting the order of
cuts on input structures of varied shapes and sizes. We assume that the cut locations
are determined a priori and provided to our algorithm, which then sequences these
cuts for a safe operation (Fig. 7.2). Here, safety is related to protecting the cutter (a
human worker or a robot) from hazards by keeping them as far away from falling
segments.

In our formulation, the structure is modeled as a linkage where its segments are
considered links connected to each other via (rigid) joints. Here, the action of cutting
is to disconnect two links at a particular joint. Our algorithm gives a series of
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FIGURE 7.2: Conceptual diagram illustrating the sequential decision
problem of structural disassembly. The input is a partitioned object
with segments and cutting locations. At each step k, the decision agent
selects a cut to execute until the structure is fully-disassembled. Each
choice impacts the safety of the environment whereby the resulting
sequence (B,D,C,A) can be assessed. The goal is to find a sequence
that maximizes overall safety in the environment, i.e., the cutter and

their surroundings. © IEEE

decisions each of which is selecting one of these joints and disconnecting it. The
cuts are performed in physics-based simulations wherein the safeties of the decision
outcomes are computed to provide feedback to the decision agent. The number of
decisions (chosen cuts) is thus equal to the number of joints n, resulting in n steps
to completely fragment the object into its constituent segments. The goal is then to
choose a sequence of cuts that fully disassembles the structure while maximizing
safety. Here, safety considers dynamic factors which concern the structure’s physics as
it falls in the environment, as well as geometric factors which concern the proximity of
moving segments (i.e., hazards) to the cutter’s location. These constructs are precisely
defined in the mathematical model developed in Section 7.4.

This decision problem can be stated as a combinatorial optimization, where the
objective is to find the sequence maximizing safety from a finite and discrete set of
cutting sequences. Here, exhaustive search scales factorially with the input size n (the
number of choices, i.e., joints) becoming intractable for larger inputs. As such, we
develop a greedy decision search to prune large parts of the search space and satisfice
the problem’s goal.

The core novel contributions of this chapter are:

• Devising an algorithm for the sequencing of cuts on partitioned structures for
safely disassembling them.

• Formulating a mathematical model for safety that incorporates both dynamic
and geometric factors.

• Evaluating the decision agent’s performance and runtime in simulation against
diverse test objects.

We emphasize our assumption that the input structure is partitioned a priori into
constituent segments. This can be accomplished by either manually partitioning the



92 Chapter 7. Safe Structural Disassembly

object (in practice, based on the experience of workers and safety forepersons as in
Fig. 7.1), or by utilizing a volumetric partitioning algorithm such as [182] which is
skeleton-based, [183] which is search-based, or [184] which is convexity-based. We
instead focus on developing a decision scheme for algorithmically disassembling
such partitioned structures while maximizing safety for the environment and the
cutter. In turn, the cutter’s ideal location is computationally prescribed at each step
depending on the state and on the cutting tool’s reach. We elaborate the specifics of
our modeling and procedures in Sections 7.3–7.5.

7.2 Related Work

In this section, we review existing work in sequencing algorithms and approaches for
product disassembly as well as planning methods for building deconstruction.

7.2.1 Disassembly Sequence Planning

There is extensive work in disassembly sequence planning for the end-of-life handling
of industrial products. [185] reviews the recent developments of robotic applications
in product disassembly, distinguishing between predefined disassembly processes
and more adaptable and flexible disassembly schemes. Many optimization-based
approaches are applied for the disassembly process on general product structures. For
instance, [186] uses multi-objective optimization to maximize parallelism, ergonomics,
workload balancing, while minimizing disassembly time and product rotation count.
[187] formulates the problem as an extended AND-OR graph while considering
practical constraints such as reuse probability and environmental impacts. [188]
represents the problem as a precedence graph and minimizes the total disassembly
cost via integer programming. Other optimization schemes incorporate human–robot
collaboration [189], [190]. Elsewhere, evolutionary [191] and genetic algorithms [192],
[193] are applied extensively for multi-objective optimization under constraints.
Hybrid approaches are also observed such as using genetic algorithms and AND-OR
graphs [194], using genetic algorithms and fuzzy logic [195], or integrating several
cognitive functions with a knowledge base [196]. In addition a wide variety of Petri
net representations are used to model the process and resolve it using optimization-
based approaches [197], [198] or fuzzy inference [199]. In addition, more specialized
methods are tailored to a particular range of products such as electronics [200]–[202].

While these approaches address sequence generation for disassembling a variety
of product structures, they do not consider the transient effects of the structure’s
disassembly and its impacts on the safety of its surroundings. In part, this is due to
the structured setting of the product’s disassembly and the comparatively smaller
scale of the objects (e.g., consumer electronics). Instead, our algorithm targets the
breakdown of large structures, which expose the cutter and surrounding environment
to hazards. To the best of our knowledge, we present the first work that targets safety
maximization during disassembly by considering the dynamic and geometric factors
of the structure’s breakdown.

7.2.2 Building Deconstruction Planning

A related area of research is the deconstruction of buildings and its planning. [203] sur-
veys many aspects related to the life-cycle of buildings and mentions uses and ex-
amples of automated planning for deconstruction. In addition, [204] reviews key
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problems associated with building demolition and the opportunities for automation
to mitigate their effects. In the case of planning, multi-objective optimization schemes
are applied with great variety for selective disassembly planning [205] and decon-
struction strategy planning [206]. For automated prefabrication, [207] presents a
method comparing source and target structure configurations with known parts to
sequence their disassembly and reassembly. Such deconstruction plans contrast with
more lower-level task planning as in robot-assisted deconstruction [181], [208] and
refurbishing [209].

In recent developments, Building Information Modeling (BIM) systems are exploited
to obtain structured representations of building parameters for deconstruction plan-
ning [210]–[214] and for deconstruction waste management [215]. However, BIM
representations require considerable explicit modeling and are available mostly for
newer and highly-organized construction projects. In contrast, many deconstruction
projects involve aging structures which lack a BIM representation. Moreover, many
large structures are not buildings and are incompatible with the semantics of BIM
systems. In effect, 3D imaging [216] is a flexible alternative to obtaining structure
representations.

In many of these planning techniques, building deconstruction is tackled statically
without considering the kinetics of falling fragments. This is due to the highly-
structured and highly-regulated nature of the construction industry where it can be
assumed that mechanized operations can safely execute the disassembly plans via
established procedures. Additionally, in the case of BIM, disassembly plans can be
generated with great precision since much of the building components and param-
eters would be explicitly known. In contrast, scrapyard environments are highly
unstructured and hazardous requiring workers to thermally cut structures using gas
torches. Here, the kinetics of structural disassembly are crucial for occupational safety.
To the best of our knowledge, we present the first such algorithm to maximize safety
during structural disassembly.

7.3 Problem Formulation

Our structural disassembly problem involves the following elements:

1. The environment (3D space) containing the partitioned input structure, the
cutter’s position, and the available decisions, i.e., the remaining cutting locations
on the structure;

2. The dynamics of the environment given the chosen decisions; and

3. The safety function to score decisions.

We recall that the structure is partitioned into nlinks segments. Its topology can be
represented as a kinematic chain with nlinks links (the segments) and n joints (the
cutting locations). In addition, the physical properties of each link are known (and
configured in simulation).

Formally, the environment state at decision step k is sk which describes the object’s
state and the cutter’s position ck ∈ R3. Here, the object’s state encodes the geometric
and dynamic information of each structure segment at step k. This would include,
for instance, each segment’s shape, size, pose, mass, and so on. The state sk thus
describes at step k the properties of each segment and the cutter’s location ck. A
decision is to select and disconnect one of the structure’s joints. We denote the
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decision at step k as ak ∈ Ak. Here, Ak is the set of available decisions, i.e., the joints
that have yet to be disconnected. Accordingly, a decision sequence can be expressed
as a = (ak)

n−1
k=0 = (a0, . . . , an−1). Note that the decision sequence bijectively maps the

decision steps k to the joint indices j, that is, a : {k}n−1
k=0 ↔ {j}n−1

j=0 .

The dynamics of the environment can thus be expressed as sk+1 = f (sk, ak) where
f maps to the next state sk+1 given the decision ak taken at the current state sk. In
our case, f is a physics-based simulation where selecting a cut (decision ak) at a
particular scene (current state sk) leads to motions in the scene. Once all entities in
the simulation cease to move, the next state sk+1 (i.e., the resultant scene) is realized.
This is in agreement with safety practices in the scrapyard, where cuts are performed
on the structure after it stabilizes and its pieces cease to move. Now, the safety of
a decision can be measured using a safety function S : Ak → [0, 1] that maps from
decisions to the unit interval. Specifically, the safety function scores the decision ak
based on its outcome and transition to sk+1, i.e., S(ak) is a function of sk+1 and the
transition from sk to sk+1. We now define the safety of a decision sequence a as the
weighted geometric mean of its individual decision safeties S(ak), as in:

S(a) =
n−1

∏
k=0

S(ak)
λk = S(a0)

λ0 · · · S(an−1)
λn−1 (7.1)

The weights λk are expressed as a proportion, i.e., λk ∈ [0, 1] and ∑n−1
k=0 λk = 1. These

weights λk are assigned such that the worst-case decision awc = argminak∈a S(ak)

has a corresponding weight of λwc whereas all remaining weights λk ̸=wc = 1−λwc
n−1

are uniform. By setting λwc = 1
2 , the sequence safety is penalized by the worst-

case decision irrespective of the sequence length. In doing so, the sequence safety
can assess and compare sequences of any length yet remains skewed by its most
dangerous decision. By design, this multiplicative formulation heavily penalizes the
sequence safety for unsafe decisions. For instance, one strictly unsafe decision with
S(ak) = 0 would result in a strictly unsafe sequence S(a) = 0. This is a desirable
modeling choice due to the sequential nature of the problem (non-episodicness)
given the permanent harm inflicted by potential hazards. Note that λwc quantifies
the weight of the worst-case decision, meaning that a higher λwc leads to a more
conservative measure of sequence safety.

Finally, the goal is to maximize the sequence’s safety:

a∗ = argmaxa S(a) = argmax
a0,...,an−1

n−1

∏
k=0

S(ak)
λk (7.2)

In the next sections, we define our safety model S as well as our decision algorithm
to determine the cutter’s position ck and the decisions ak.

7.4 Safety Model

The safety S(ak) of a decision ak is modeled in such a way to capture the dynamic
and geometric outcomes of the transition from sk to sk+1, This starts when the cut is
made and stops when all segments in the scene stop moving.
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FIGURE 7.3: Illustrating the computational elements of the safety
model. A decision ak is simulated wherein motions begin at tk and
end at tk+1. The environment space R3 is partitioned into unsafe
(U ), immobile (I), and free (F ). The safety model considers both
dynamic effects (aggregate motion of the structure) and geometric
effects (proximity of moving segments to the cutter position ck). The

cutter’s ideal position ck is computed algorithmically. © IEEE

We define the safety S(ak) as:

S(ak) = Sd(ak) Sg(ak) (7.3)

where Sd(ak) is the dynamic safety and Sg(ak) is the geometric safety. We note that
each of S, Sd, and Sg map decisions to the unit interval, i.e., Ak → [0, 1].

By design, Sd captures the kinetic outcomes of cutting the structure, i.e., the ‘intensity’
of the segments’ motion. In contrast, Sg captures the kinematic outcomes of cutting
the structure, i.e., the ‘closeness’ of the segments’ paths as they fall relative to the
cutter’s position. These modeling choices are based on the following assertions for
decision safety:

• The decision is safer when the aggregate motion of the segments in the scene
has a lower magnitude.

• The decision is safer when the aggregate traversal of the segments in the scene
is further from the cutter’s position.

Both Sd and Sg are formally defined below accordingly.

7.4.1 Dynamic Safety

While there are many ways to express the magnitude of the segments’ aggregate
motion, we wish to concisely capture inertial effects during motion. As such, a
straightforward choice is to use the kinetic energies of each segment.

We first define the time interval t ∈ [tk, tk+1] wherein the transition from sk to sk+1
takes places and the segments start (t = tk) and stop moving (t = tk+1). Now, we
define Ti(t) and Ui(t) to be the kinetic and gravitational potential energies of each
segment i ∈ {1, nlinks} as well as their totals T(t) = ∑i Ti(t) and U(t) = ∑i Ui(t).
We note that the total mechanical energy T(t) + U(t) in the scene is conserved for
t ∈ [tk, tk+1] since dissipative forces (e.g., friction, air resistance) are negligible. As
such, we can define the normalized energies T̃(t) = T(t)

T(t)+U(t) and Ũ(t) = U(t)
T(t)+U(t) .

These capture the ratios of kinetic and potential energies respectively. Stated differ-
ently, they capture the instantaneous ratio of mechanical energy due to motion and to
non-motion.
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We would like Sd to increase with a larger ratio due to non-motion, i.e., when the
structure is disassembled more gently. We thus define dynamic safety as follows:

Sd(ak) = min
t∈[tk ,tk+1]

Ũ(t) (7.4)

As Sd is the minimum of Ũ(t) across the transition from sk to sk+1, Eq. (7.4) yields
the desired properties of mapping to [0, 1] and of decreasing with higher aggregate
motion. The relationship between the energies (Ũ, T̃) and the decision ak is im-
plicit whereby the decision’s outcome determines the energy values through the
aforementioned manner.

7.4.2 Geometric Safety

In addition to dynamic safety, we wish to consider the proximity of the segments’
traversal relative to the cutter’s location during the transition interval t ∈ [tk, tk+1].

For this, we partition the environment space R3 into three sets (Fig. 7.3): the unsafe
space U , the immobile space I , and the free space F . These three spaces are defined
as follows.

The unsafe space U contains all points visited by moving object segments during
the transition interval t ∈ [tk, tk+1] after a decision ak. This can be expressed as
U =

⋃
t∈[tk ,tk−1]

V(t) where V(t) =
⋃

i=1 Vi(t) is the set of points contained within all
moving segments at time t and Vi(t) is the set of points contained within the moving
segment i at time t. Thus, U represents the collision set in the environment containing
all points visited by moving segments throughout their motions.

The immobile space I contains the points of all segments that remain immobile
throughout the transition interval t ∈ [tk, tk+1] after a decision ak. These are the
stationary segments, which are not hazards. The free space F contains the points that
remain unoccupied throughout the transition interval t ∈ [tk, tk+1] after a decision ak.
These are safe and empty locations that have not experienced collisions.

Using these definitions, we distinguish the unsafe space U from the safe space
S = U ∁ = F ∪ I . As such, the indicator function 1S : R3 → {0, 1} partitions the en-
vironment into unsafe positions where 1S (x) = 0 and safe positions where 1S (x) = 1.
This safety indicator function expresses the safety of a position in the environment.

We algorithmically determine an ideal position ck for the cutter as described in Sec-
tion 7.5. This ck represents the prescribed location that the cutter should cut from. In
actuality, the cutter may stray from their ideal position and we thus represent their po-
sition as a random variable x ∈ R3. We model x to follow a unimodal and symmetric
distribution centered at its mode (the cutter’s ideal position ck) and with radial decay.
The intent is to decrease the probability of the cutter’s presence as ∥x− ck∥2 grows.
For this, a trivariate Gaussian distribution with mean ck and covariance matrix r3I3 is
appropriate. With x ∼ N (ck, r3I3), we obtain its probability density function p(x) by
evaluating the multinormal PDF with mean ck and covariance r3I3.

p(x) =
1

r3
√
(2π)3

exp
[
− 1

2r2 ∥x− ck∥2
2

]
(7.5)

Finally, define the geometric safety Sg(ak) as:
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FIGURE 7.4: The cutter’s ideal position is computed as the locus point
in the free space (x ∈ L ∩ F ) that is maximally-distant from the unsafe

space U . © IEEE

Sg(ak) = E[1S (x)] =
∫

x∈R3
1S (x) p(x) dx (7.6)

In this manner, Sg(ak) represents the cutter’s expected safety in the environment after
decision ak given their ideal position ck. Also since 1S (x) ∈ {0, 1}, Sg maps to [0, 1]
as desired. Moreover, the parameter r can be interpreted as a ‘radius’ wherein the
cutter’s safety is most crucial. A smaller r decays the safety scores rapidly prioritizing
the safety nearest to the prescribed position. Conversely, a larger r decays the safety
scores more slowly giving added consideration to regions further away from the
prescribed position.

In implementation, the formulation is discretized as follows: the segments’ kinematic
and kinetic information are sampled from the simulation as time-series data; the
set S and its indicator function 1S are implemented as a binary voxel grid; and the
Eqs. (7.4) and (7.6) are approximated using discrete sums.

7.5 Decision Algorithm

With the safety function S defined and the decision goal (a∗, S∗) established in
Eq. (7.2), we now describe the procedures and schemes used to solve the decision
problem.

7.5.1 Cutter’s Ideal Position

The decision agent not only generates a disassembly sequence, but also specifies the
cutter’s prescribed position for each cut (Fig. 7.4). In effect, the safety model requires
this position ck as seen in Eq. (7.5). We emphasize the advantage of simulating
the environment dynamics: the ability to observe the cut’s outcome first and then
decide where the best position to cut from should have been. In this way, the cutter’s
ideal position is determined a posteriori. Specifically, the decision agent attempts and
simulates a cut ak, measures its outcome sk+1, and then determines ck, i.e., the safest
position to cut from. Here, we specify a procedure to compute ck given the decision
ak and its outcome sk+1.
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define ComputeIdealPosition(ak, sk+1, m) :
(F , I ,U )← GetPartitions(sk+1)
L ← GenerateLocus(ak, m)
ck ← argmax

x∈L∩F
dist(x,U )

return ck

After the cut, we retrieve from sk+1 the space’s partitioning into unsafe (U ), immobile
(I), and free (F ) as defined in Section 7.4.2. The cutter’s position locus L contains all
candidate ideal positions and depends on the cutting margin m > 0 defined by the
cutting tool’s length.

For instance, the cutting torch used in shipbreaking is around 2 m long, giving the
cutter a margin of m = 2 m. We model the cutter’s locus as a sphere centered at the
joint location of ak with radius m. We wish to position the cutter in the free space
furthest from the unsafe space. This is expressed as the point in L∩F with maximum
distance from U , or argmaxx∈L∩F dist(x,U ).

We do not consider the case of segments so large that L ∩ F = ∅ wherein the
cutter cannot safely reach the joint within a radius m. In such cases, the object must
be re-partitioned in a reasonable manner to enable safer cutting. In a discretized
implementation, one can rank the candidates by distance and select the furthest that
is feasible in terms of cutting ergonomics. Now, a decision ak can be evaluated as
follows.

define EvaluateDecision(ak) :
sk+1 ← SimulateDecision(ak)
ck ← ComputeIdealPosition(ak, sk+1, m)
Sk ← ComputeSafety(ak, ck, r)
return (Sk, ck)

The procedure SimulateDecision represents the physics simulator which loads the
environment containing the input paritioned model and computes the outcomes of
the cut ak. The procedure ComputeSafety implements Eqs. (7.3)–(7.6).

7.5.2 Decision Search Schemes

We develop three alternative searches: exhaustive (ES), greedy (GS), and random (RS).
For each search, the input is the partitioned object with n joints and the output is the
solution (a, S, C) containing the decision sequence a, its safety S, and the sequence
C of ideal positions. In addition the parameters r (see Section 7.4.2) and m (see
Section 7.5.1) are specified based on application requirements.

ES finds the optimal solution a∗ of Eq. (7.2). Both ES and RS provide a basis of
comparison for computational complexity and safety performance. GS approximates
a∗ by optimizing locally ak = argmaxa∈Ak

S(ak). The schemes are specified in Algo-
rithms 4–6. We note thatA is the set of all decision sequences. These are permutations
(without replacement) of the structure’s n joints yielding a cardinality of n! sequences.
We recall that Ak is the set of remaining decisions available at step k. The cardinality
of Ak is n− k and its contents depend on Ak−1 and ak−1 (for k > 0).
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Algorithm 4: Exhaustive Decision Search
Input : Partitioned structure with n joints.
Output : Decision sequence a, its safety S, and cutter ideal positions C.
Parameters : Safety radius r and cutting margin m.
Initialize safety for the solution sequence: S← 0
Iterate over all possible decision sequences.
for all acand ∈ A do

Iterate over each decision per sequence.
for each ak ∈ acand do

(Sk, ck)← EvaluateDecision(ak)

Compute the candidate solution components.
Scand ← ∏n−1

k=0 Sλk
k , Ccand ← (c0, . . . , cn−1)

Accept candidate solution upon improvement.
if Scand > S then

(a, S, C)← (acand, Scand, Ccand)

return (a, S, C)

7.5.3 Asymptotic Performance

We express the computational complexity as the total decision evaluations C(n) for
an input size n (number of decisions). A decision evaluation refers to a call to the
EvaluateDecision routine which involves simulating the decision, computing its
cutter’s ideal position, and computing its safety. ES as indicated in Algorithm 4
performs n × n! evaluations. Even with efficient implementation, e.g., memoiza-
tion (storing reusable states), these reduce to C(n) = ∑n−1

k=0
n!

(n−k−1)! ∈ O(n!) eval-

uations. GS runs C(n) = ∑n−1
k=0 (n− k) = n(n+1)

2 ∈ O(n2) evaluations and RS runs
C(n) = n ∈ O(n) evaluations.

7.6 Evaluation in Simulation

We implement our decision environment using the simulator Gazebo [98] to evaluate
our decision agent’s performance using each of the search schemes against different
inputs.

7.6.1 Simulation Environment

In our simulations, the object segments are considered rigid bodies connected as a
kinematic chain. A cut is implemented as an instantaneous disconnection between
two segments. Our simulations model rigid-body dynamics, gravitational and fric-
tional forces, and collisions. A simulated experiment consists of loading the input
object, executing cuts per the decision agent, and updating the environment’s state
until a solution for the object’s full disassembly is chosen. We test our implementation
on the 12 partitioned objects (Fig. 7.5). We illustrate the decision outputs of each
decision scheme against the object 5B in Table 7.1 and in Fig. 7.6.

7.6.2 Simulation Results

As can be seen in Fig. 7.6, ES and GS yield similar decisions for object 5B differing
only in their second and third decisions which are permuted. In contrast, RS can yield
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Algorithm 5: Greedy Decision Search
Input : Partitioned structure with n joints.
Output : Decision sequence a, its safety S, and cutter ideal positions C.
Parameters : Safety radius r and cutting margin m.
Iterate over each decision step of the solution.
for k← 0, . . . , n− 1 do

Initialize safety for the current decision: Sk ← 0
Iterate over all currently available decisions.
for all acand ∈ Ak do

(Scand, ccand)← EvaluateDecision(acand)
Accept candidate decision upon improvement.
if Scand > Sk then

(ak, Sk, ck)← (acand, Scand, ccand)

Compute the solution’s components.
a← (a0, . . . , an−1), S← ∏n−1

k=0 Sλk
k

C← (c0, . . . , cn−1)
return (a, S, C)

Algorithm 6: Random Decision Search
Input : Partitioned structure with n joints.
Output : Decision sequence a, its safety S, and cutter ideal positions C.
Parameters : Safety radius r and cutting margin m.
Iterate over each decision step of the solution.
for k← 0, . . . , n− 1 do

Randomly select a currently available decision.
ak ← randAk
(Sk, ck)← EvaluateDecision(ak)

Compute the solution’s components.
a← (a0, . . . , an−1), S← ∏n−1

k=0 Sλk
k

C← (c0, . . . , cn−1)
return (a, S, C)

highly-dangerous decisions where large chunks of the structure tumble dynamically.
In effect, the safeties of its worst decisions are S1 = 0.28 and S3 = 0.48.

More generally, we summarize in Table 7.2 the decision agent’s performance for
each search scheme against each test structure. We note the safety of each scheme’s
solution S(a) and its search cost C(n) measured as the number of decision evaluations
(see Section 7.5.3). For example, ES computes for object 3A the optimal sequence
a∗ with safety S(a∗) = 0.7116 using C(3) = 18 decision evaluations. Similarly, GS
computes the greedy solution a† for object 3A and its safety S(a†) = 0.6989. The
random solution is uniformly-sampled, and therefore we compute its expected safety
and worst-case safety, which for object 3A are E[S(a)] = 0.6776 and S(awc) = 0.6495
where awc = argmina∈A S(a).

We simulate all n! sequences for each n-segment structure in order to compute the
safety S(a∗) of the optimal sequence, the expected safety E[S(a)] of the uniformly
sampled sequence, and the safety S(awc) of the worst-case sequence.



7.6. Evaluation in Simulation 101

TABLE 7.1: Outputs for object 5B showing the sequence and its
safeties © IEEE

Scheme Sequence a Decision Safeties Sk

Exhaustive (4, 2, 3, 5, 1) (0.79, 0.76, 0.78, 0.63, 0.65)
Greedy (4, 3, 2, 5, 1) (0.79, 0.76, 0.71, 0.62, 0.64)

Random (2, 1, 5, 3, 4) (0.79, 0.28, 0.74, 0.48, 0.99)

TABLE 7.2: Simulation results of each scheme’s cost and perfor-
mance © IEEE

Input Exhaustive Greedy Random
(Obj, n) C(n) S(a∗) C(n) S(a†) C(n) E[S(a)] S(awc)

(3A, 3) 18 0.7116 6 0.6989 3 0.6776 0.6495
(3B, 3) 18 0.8402 6 0.8378 3 0.8150 0.7505
(3C, 3) 18 0.8104 6 0.8097 3 0.7561 0.7149
(3D, 3) 18 0.7628 6 0.7270 3 0.7180 0.6470
(4A, 4) 96 0.9226 10 0.9050 4 0.9045 0.8950
(4B, 4) 96 0.8053 10 0.7980 4 0.7268 0.6480
(4C, 4) 96 0.7934 10 0.7858 4 0.7402 0.5661
(4D, 4) 96 0.8053 10 0.7929 4 0.7797 0.6701
(5A, 5) 600 0.8571 15 0.8467 5 0.7365 0.5259
(5B, 5) 600 0.6849 15 0.6838 5 0.5599 0.4538
(5C, 5) 600 0.8068 15 0.7367 5 0.6652 0.5322
(5D, 5) 600 0.8602 15 0.7861 5 0.7680 0.6990

7.6.3 Discussion of the Results

We directly compare in Table 7.3 the performance of GS against that of ES and RS. We
compare the greedy solution against the optimal solution via the ratio of their safeties
S(a†)
S(a∗) . Furthermore, we compute the relative improvement of the greedy solution’s
safety against that of the random solution’s expected and worst-case safeties. For
our 12 test objects, the greedy solution a† yields a safety that is on average 96.72%
of the optimal sequence’s safety S(a∗). In some cases, the greedy solution is near
optimal where S(a†)

S(a∗) > 99% such as with objects {3B, 3C, 4B, 4C, 5B}. Moreover, the

greedy solution a† performs on average 6.10% better than uniformly-sampled random
searching and 17.83% better than the worst-case sequence, the latter of which would
yield potential risks and hazards. In addition, our results reveal that some objects are
inherently safer to cut where decisions weakly impact the safety outcomes, e.g., for
object 4A the solution a† is only 0.05% safer than random and 1.10% safer than the
worst-case sequence. Conversely, some objects are inherently much more dangerous
to cut (4C, 5A, 5B, 5C) where decisions greatly impact the safety outcomes, e.g., for
object 5B the solution a† is 18.12% safer than random and 33.64% safer than the worst-
case sequence. Our results suggest that GS yields significantly safer decisions than
RS, sometimes achieving near-optimal safety using only O(n2) decision evaluations.
For illustration with n = 5 as in object 5B (Fig. 7.6), the GS solution is found in 15

evaluations, instead of 600 as with the ES solution.
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TABLE 7.3: Evaluation of the greedy scheme’s performance © IEEE

Input Greedy vs. Exhaustive Greedy vs. Random
(Obj, n) S(a†)/S(a∗) S(a†)−E[S(a)]

S(a†)
S(a†)−S(awc)

S(a†)

(3A, 3) 98.22% 3.04% 7.07%
(3B, 3) 99.72% 2.72% 10.42%
(3C, 3) 99.91% 6.62% 11.71%
(3D, 3) 95.31% 1.24% 11.01%
(4A, 4) 98.09% 0.05% 1.10%
(4B, 4) 99.09% 8.92% 18.79%
(4C, 4) 99.05% 5.81% 27.96%
(4D, 4) 89.92% 1.67% 15.49%
(5A, 5) 98.79% 13.01% 37.89%
(5B, 5) 99.84% 18.12% 33.64%
(5C, 5) 91.32% 9.71% 27.76%
(5D, 5) 91.38% 2.30% 11.07%

Mean 96.72% 6.10% 17.83%

7.7 Conclusion

This chapter formalizes the safe disassembly of large structures as a sequential de-
cision problem for which we develop an algorithm to maximize the safety for the
cutter and the surrounding environment. By simulating a decision’s outcomes, the
agent partitions the environment into safe and unsafe. Thereafter, an ideal position
for the cutter is prescribed and the decision’s safety is measured. Safety is modeled
to capture the decision’s dynamic outcomes, i.e., the structure’s resulting kinetics, as
well as the geometric outcomes, i.e., the motion’s proximity to the cutter’s prescribed
position. We design three decision search schemes to find a solution consisting of the
decision sequence, its safety score, and the sequence of prescribed cutter positions.
These schemes are tested in simulation against 12 partitioned objects wherein their
safety performance and computational costs are measured. Our results show that the
greedy decision search satisfices the problem with considerably less computational
cost than exhaustive searching. In essence, our greedy algorithm: (1) scales better
with input size n by computing O(n2) rather than O(n!) decision evaluations; (2)
yields good solutions (sometimes near-optimal); (3) is noticeably better than random
selection (sometimes drastically); and, (4) is significantly better than the worst-case
choice. In future work, it is worth incorporating more realistic dynamics and decision
parameters to reduce the sim-to-real gap.
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FIGURE 7.5: The 12 partitioned test objects are shown with their label
indicating the number of cuts (e.g., 3A has n = 3) and their structural

height. © IEEE



104 Chapter 7. Safe Structural Disassembly

FIGURE 7.6: The decision outcomes of each search scheme is demon-
strated on object 5B. We note the difference in safety outcomes between
the random scheme and the other schemes. The safety scores can be

found in Table 7.1. © IEEE
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Chapter 8

Broader Impacts

I N developing the components (Chapters 4–7) of our proposed framework (Chap-
ter 3), we endow robotic systems with the autonomy to perform some of the

operations within metal scrap recycling. Accordingly, our research would empower
future developments in automated systems for metal scrapping and related appli-
cations. As of our treatment, this technology is in its research stage wherein the
emphasis is on fundamentals and on the development of basic techniques—all of
which can be employed towards the future implementation of engineered systems.
As this work is nascent, it is non-trivial to reliably unveil ethical issues deriving from
its application in larger socio-economic contexts. In performing and providing an
anticipatory ethical analysis [217], we highlight the potential benefits, concerns, and
risks that may result from the advancement, commercialization, and deployment of
this research. While such projections may be speculative, we nevertheless inform
ethical and policy considerations towards the promotion of morally desirable uses of
autonomous and intelligent systems.

Keywords: Automated metal scrap recycling, future of work, technological unemployment,
autonomous and intelligent systems, robot ethics, applied ethics, anticipatory ethics.

8.1 Beneficial Impacts

In forecasting the outcomes of our research, there are substantial beneficial impacts
that may arise. In effect, the introduction of a human–robot collaborative workflow
into scrapyards could eventually reduce many of the industry’s inherent problems as
mentioned in Chapter 2. Below, we enumerate and elaborate some salient benefits.

Improved bridging of basic and applied research in robotics.

The development of our proposed framework draws from a wide reach of research
domains within robotics and intelligent agents. In retrospect, the motivation of our
framework stems from applied research for domain-specific objectives within metal
scrap recycling. However, the adversity of the scrapyard goes beyond application
and invites the design of novel and fundamental techniques tailored to the unique
challenges of the target environment and its operations.

In doing so, our research adapts, utilizes, and contributes to fundamental areas of
research—e.g., active perception, vision-based control, learning-based process mon-
itoring, sequential disassembly—while simultaneously enriching applied contexts
such as environmental robotics, robotic recycling, industrial robotics, robotic metal
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cutting, and field robotics. Through this, research societies benefit from the cross-
pollination of ideas and the increased exposure and diversification of techniques.

In this manner, basic researchers would be exposed to novel challenges and problem
structures inspired from and motivated by the aforementioned applied contexts.
Conversely, applied researchers could extend or specialize existing fundamental
techniques by adapting and tailoring them to their targeted domains.

Increased partnerships between academia and industry.

Our research targets functionalities that would address problems encountered in
industrial contexts. In effect, applied research that overlaps with the interests and
needs of specific industrial sectors would attract opportunities for collaboration and
partnership. For illustration, our own work stems from and builds upon a collabo-
ration between academia (our research group, the Manipulation & Environmental
Robotics Lab) and industry (our corporate partner, European Metal Recycling Ltd.).

Such partnerships can lead to mutually beneficial outcomes wherein academic re-
search and industrial practice intersect and provide their respective strengths. In
particular, research groups can provide research output in the form of publications
and patents. Aside from intellectual property, researchers can lower the risk of
investment by demonstrating the fundamentals of the technology in the lab at an
early stage. In doing so, the industrial partner can better manage financial risk in
their investments in novel and emerging technologies. Conversely, the industrial
partner can provide domain knowledge and empirical insights that emphasize the
most important and impactful research directions. Furthermore, corporate partners
provide research funding in directions deemed beneficial per their operational needs.

Furthermore, academia–industry collaboration can lead to much wider involvement
downstream as the research matures. Upon successful demonstration of the funda-
mental techniques and early prototypes, the research efforts would mature into a
development stage that may involve larger engineering teams and system integrators.
Through this, the methodologies designed in the research stage can evolve at a much
faster pace through various stages of technological readiness [218], from feasibility
assessments and technology demonstrators leading up (upon success) to the deploy-
ment and commercialization of reliable systems. In this way, industrial participation
can accelerate the attainment of the technological and economic benefits that novel
methods can yield.

Improved preservation of national security.

As mentioned in Chapter 2, there is incentive for the domestic scrapping and disposal
of decommissioned military vessels. This is particularly emphasized when retired
naval vessels contain elements that can be weaponized. In effect, while many retired
vessels are no longer economically viable to operate, they nevertheless can incor-
porate warship designs, weapon systems, or nuclear material. For instance, retired
nuclear submarines are scrapped domestically [219] to avoid the uncontrolled circu-
lation of nuclear material. By introducing automated metal scrapping systems, the
domestic scrapping capacity in domestic shipbreaking yards would be increased. As
a result, matters of national security can be preserved while the burden of maintaining
inefficent naval vessels can be addressed earlier.

https://wp.wpi.edu/merlab/
https://wp.wpi.edu/merlab/
https://uk.emrgroup.com/
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Increased global competitiveness of the American shipbreaking industry.

For the past two decades, at least 97% of the global tonnage in scrapped metal from
shipbreaking is processed [220] in the yards of the five leading ship recycling coun-
tries—Bangladesh, China, India, Pakistan, and Turkey. In contrast, the American
shipbreaking sector only accounted for around 0.3% of that global tonnage. By in-
troducing automated metal scrapping systems alongside skilled cutting workers in
American scrapyards, the operating costs of scrapping can be reduced and shipbreak-
ing productivity overall would increase. Such improvements in cost-effectiveness
and productivity would increase the global competitiveness of the domestic ship-
breaking sector. Furthermore, in addressing the industry’s problems mentioned in
Section 2.1.3, such increased competitiveness would reduce the dependence of the
domestic shipbreaking industry on U.S. government.

Reduction of occupational fatalities and hazards.

According to the International Labour Organization [221], shipbreaking is amongst
the most hazardous occupations worldwide with alarming rates of occupational
fatalities, injuries, and work-related diseases. This is especially the case in less
regulated shipbreaking yards where safety regulations are poorly enforced and
precautions are scarcely implemented. In effect, between 2009 and 2022, there are 440
recorded worker fatalities [222] in South Asian shipbreaking yards. By introducing
automated metal scrapping systems in the workflow of shipbreaking workers, there
would be improved occupational safety. In particular, automated systems can reduce
the worker’s exposure to hazards and furthermore reduce the associated risks by
distancing them from more dangerous aspects of the work. In this way, the rate of
work-related fatalities, injuries, and diseases in scrapyards can be reduced and the
well-being of workers can be enhanced.

8.2 Concerning Impacts

Despite the many potential benefits of introducing automation into the workflow of
metal scrapping and shipbreaking yards, there are valid concerns of adverse impacts.
We discuss these concerning impacts below.

Displacement of less skilled metal scrapping workers.

By integrating automated systems into a collaborative workflow with scrap cutting
workers, their labor productivity would increase. As such, a smaller number of
workers that supervises and collaborates with robots would be able to process a larger
throughput of scrap tonnage. While it could be assumed that scrapping demand
would increase sufficiently to also increase the demand for workers, there remain
concerning effects. According to [223], the adoption of robots at work can impact low-
skilled labor with increasing technological unemployment and depreciating wages.
Conversely, for high-skilled labor, automation can lead to decreasing unemployment
and appreciating wages. However, the difference between low-skill job loss and
high-skill job creation is shown to vary by country. In the short term, a substantial
number of less experienced and less skilled workers would be inevitably impacted
with job loss or displacement. While transitioning to higher-skilled work may be
possible for some, it would be infeasible for a subset of these workers—even under
optimistic forecasts.
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FIGURE 8.1: The adoption of robotic systems in the scrapyard envi-
ronment may displace a substantial proportion of the less experienced

and less skilled workers.

For illustration, we consider in Fig. 8.1 the scenario of increased adoption of auto-
mated systems in the scrapyard. The workers are ranked in decreasing order of their
skill and experience, from experts to apprentices. Likewise, the volume of scrap that
needs to be processed is ranked in decreasing order of difficulty. Typically, workers
would process scrap pieces in accordance with their experience and skill. Experts
would address cutting in the more difficult and hazardous scenarios, whereas less
experienced workers would handle on the less complex cutting scenarios. In this
sense, while the more experienced workers may enjoy greater productivity and safety,
improved working conditions, and appreciating wages, some of the less experienced
workers would endure technological unemployment.

Disrupted transfer of implicit knowledge and skill.

Metal scrap cutting is a highly kinesthetic activity where most learning and skill ac-
quisition occurs via practice under the feedback and supervision of more experienced
workers. Following from the previous concern, the displacement of the less experi-
enced workforce in the scrapyard could result in the disrupted or reduced transfer
of implicit know-how and skills. Upon the eventual retiring of the older and more
experienced workforce, there would be a knowledge gap in the future generations of
workers. This loss of tacit knowledge—in its most pessimistic forecast—could result
in the use of automated systems whose work is poorly understood. In doing so, the
dependence on poorly-understood technology could have detrimental consequences.

A related phenomenon is observed with robotic surgery and its impact [224] on
traditional surgical practice and its training. More generally in [225], the disruption
of expert mentorship in pursuit of greater productivity can hinder the learning of
future generations, which may inevitably lead to structural problems in the future
supply of expert labor.
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Technological unemployment in Hispanic communities.

Within the United States, the Brownsville ship canal in Brownsville, TX is the primary
scrapping hub [27] for the American shipbreaking sector. According to the United
States Census Bureau [226], over 90% of Brownsville’s population are of Hispanic or
Latino origin as of July 2022. As such, the consequences of technological unemploy-
ment would asymmetrically impact the workforce with most of the displacement
occurring in the Hispanic communities. Accordingly, we highlight the potential harm
that widespread and unregulated automation in the scrapping industry may have on
employment equity.

8.3 Potential Risks

In addition to the aforementioned concerning impacts, we examine further poten-
tial risks that—while particularly speculative—concern the global economy and its
ecological footprint at a scale large enough to merit consideration.

Incentivization of the premature scrapping of vessels.

From the point of view of ship-owning parties, the incentive to scrap an aging vessel
depends on a complex interactions of factors. Nevertheless, for the sake of discussion,
we can reduce the decision-making to the following simplified dynamics:

‘Scrapping incentive’ = ‘Projected losses’− ‘Scrapping cost’

The implication of the above relation is that a ship-owning party is more inclined to
scrap a vessel when the projected future losses of operating are higher. Furthermore,
the ship-owning party is less inclined to scrap a vessel when scrapping costs are high.
While this relation neither accurately nor precisely models the scrapping incentive
of a ship-owning party, it nonetheless illustrates a straightforward aspect of the
underlying financial management—in the interest of facilitating discussion.

With this, we can speculate on the effects of automation in shipbreaking yards. Auto-
mated metal scrapping systems would increase scrapping capacity and productivity,
which may decrease overall scrapping costs. Assuming given projected losses for
a particular vessel, the reduction of scrapping costs would increase the scrapping
incentive of the ship-owning party. Accordingly, the vessel may be prematurely
scrapped, meaning that an otherwise functional ship that may serve additional years
is being recycled earlier than necessary fault of shifted financial incentives.

While this scenario is speculative in nature, it remains plausible in accordance with
the observations that follow. During our on-site survey of the aforementioned ship-
breaking yard, which took place in July 2021, the fallout of the COVID-19 pandemic
had been affecting global shipping and maritime economics. In effect, we observed
the scrapping of vessels that were described by on-site personnel as being in relatively
favorable condition. One possible explanation is that the spillover of market uncer-
tainty during COVID-19 may have increased the projected loss of operating older
vessels and would have thereby increased scrapping incentives—despite a relatively
unchanging scrapping cost. A related effect can be observed with the influence of
government subsidies [227] on ship scrapping decisions and its tendency to increase
earlier scrapping of vessels.
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FIGURE 8.2: By sponsoring a critical number of metal scrapping ap-
prenticeships, the tacit knowledge of the operations can be sustainably

preserved across future generations of workers.

While this evidence is anecdotal in nature, it nevertheless supports the plausibility
of scrapping incentives shifting as mentioned previously. In essence, excessively
premature scrapping may have adverse economic and ecological impacts.

8.4 Recommendations

Following from the aforementioned concerns and risks, we provide insights and
recommendations that may help in attenuating their effects.

Sponsorship of apprenticeships to preserve knowledge transfer.

To prevent or reduce the potential loss of knowledge transfer within metal scrap
cutting, the industry may rely on apprenticeship, coaching, and mentoring. In effect,
these learning modalities are effective vectors [228] for the transfer of tacit knowledge
across generations—dating back to medieval craft guilds [229]. The importance of
apprenticeship is examined in a variety of professions for transferring skills and tacit
know-how such as in hairdressing [230], cuisine [231], [232], advanced academic
literacy [233], and technical know-how [234].

As such, rather than unregulated automation, the industry can sponsor a critical
number of apprenticeships, yielding the scenario illustrated in Fig. 8.2. These ap-
prentices would learn and improve their tacit know-how and skills in metal scrap
cutting under the guidance and supervision of more senior scrap cutting experts. By
preserving a nucleus of human expertise and know-how, the industry can protect
itself from loss of knowledge transfer and from the undesirable scenario of relying on
machines whose work is poorly understood.

Correction of incentives using fiscal policy and taxation.

In response to the aforementioned potential risk of premature scrapping due to the
automation-induced shifting of incentives, the use of fiscal policy and taxation may
be used as a measure of control over such incentives. In effect, national regulators are
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identified [235] as the shipbreaking industry’s agents of responsibility towards the
implementation and enforcement of national and international recycling standards.
Taxation is commonly used within this sector to influence the business dynamics and
investment behavior of the scrapping industry’s stakeholders.

For instance, the Chinese government has utilized tax adjustments [178]—via the
issuing of tax refunds—to increase the processing of scrapped ships. Moreover, tax
waivers are noted as potential incentive structures [236] for encouraging ecologically
sound practices within shipbreaking.

As such, using our previously mentioned simple description of scrapping incentive,
we consider the effects of a tax penalty against the premature scrapping of ships.

‘Scrapping incentive’ = ‘Projected losses’− (‘Scrapping cost’ + ‘Tax penalty’)

By designing a tax penalty in accordance with the number of years a ship is be-
ing scrapped prematurely, the scrapping incentive of a ship-owning party can be
dampened until the vessel has sufficiently depreciated to merit decommissioning and
scrapping. In doing so, the potential economic and ecological damage of premature
scrapping may be attenuated.

8.5 Further Considerations

In this section, we present more general considerations towards the ethical design of
autonomous systems that are intended to operate alongside workers in complex and
adverse environments—wherein safety-critical factors take precedence.

Worker participation in automation design

In developing the automation system featuring human–robot collaboration, it can be
argued that involving the workers during design iterations can yield tangible benefits
across the different implementation stages—from R&D to commercialization. Similar
attempts are made within the framework of participatory design [237] in applications
such as human–robot interaction [238] as well as in social robotics [239].

The worker can provide domain-specific expertise and tacit knowledge not readily
available to researchers and system developers. But more so, the worker can rou-
tinely review the overall automation framework and may propose amendments or
alternatives for greater improvements in practicality and in ergonomics. Experienced
workers, in particular, can anticipate design flaws that could lead to inefficiencies,
failures, or—most importantly—hazards and dangers. Such experienced workers can
recall and refer to particular scenarios that they have encountered, and can extrapolate
potential situations wherein the proposed solution would fail.

Furthermore, by providing workers with agency in the human–robot collaborative
solution, they can empower themselves by identifying and proposing design con-
figurations in which they can provide more value. In doing so, workers would be
gradually introduced and progressively incentivized to learn robot-enabled opera-
tions, but also to innovate in such human–robot collaborative workflows, interface
designs, and operational processes.

As mentioned in Section 8.2, the unchecked displacement of workers would have
detrimental consequences in terms of both unemployment and knowledge transfer



112 Chapter 8. Broader Impacts

disruption. With the aforementioned provisions, workers would not only be protected
against technological unemployment, but can also preserve the tacit knowledge
of their craft across generations while progressively evolving it through inventive
collaborative workflows as well as pragmatic uses of automated solutions.

Fieldwork for understanding and developing broader impacts

In Chapter 2, we highlight the importance of fieldwork as a means to better under-
stand the problem domain, refine research objectives, and uncover crucial details for
developing the relevant technological solution. Here, we emphasize the additional
benefits of fieldwork pertaining to the analysis, understanding, and implementation
of broader impacts. In effect, many of the key insights argued in this chapter derive
from the on-site field research conducted in the aforementioned shipbreaking yard.
Such fieldwork enables researchers to better understand the contextual role of the
technological solution and its relationships to various stakeholders in the target do-
main. In doing so, the solution may be developed in ways that are more compatible
with the target industry’s occupational dynamics.

Additionally, a broader impacts study supported with evidence collected from the
field would rely on less assumptions taken by the researcher. As such, the anticipated
factors in the broader impacts study may be covered with greater breadth and depth
while also retaining higher levels of confidence. In contrast, a study without suffi-
cient evidence from the field would rely on assumptions deprived from the direct
experiences of stakeholders in the targeted industry.

Holistic safety analysis for contextualizing the technological solution

In designing an automated system for safety-critical operations, it is of great impor-
tance to understand the wider context within which the system operates. In this
regard, conducting a holistic safety analysis of the problem domain, its environment,
and its operations enables the researchers to understand—and potentially model—the
various risks and hazards therein. For instance, Chapter 2 reviews a variety of oc-
cupational hazards within the scrap cutting environment, ranging from exposure to
CBRN materials to kinetic hazards (e.g., falling pieces, residual explosive substances).

Within the particularities of the automation framework proposed in Chapter 3, the
improvements in worker safety provided by the robotic system consist mostly in
distancing the worker away from kinetic hazards as well as the heat-affected zone of
oxy-fuel cutting. In contextualizing the automated system with regards to safety, its
benefits as well as its limitations are more clearly understood. This allows for more
conscious safety planning on a broader organizational level, where limitations can be
targeted more lucidly. It is worth emphasizing that—from the point of view of the
researcher—a major source of findings with regards to safety arise from observations
and interactions during fieldwork.

Characterization of the technological risks

Following from the previous point on safety, the automated solution itself is not
without its technological risks. In effect, the design and development of an automated
system entails several assumptions which limit the extent of its use in the target
domain. In deploying the system beyond its intended use, a variety of risks can arise.
For instance, simplifications are often assumed during the modeling of a process
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to allow for tractable reasoning. Moreover, such simplified or reduced models may
cover a large extent of scenarios. However, there will inevitably be scenarios in which
there are model mismatches, that is, unmodeled factors such as higher-order and
highly nonlinear dynamics, or external disturbances and noise.

With this in mind, the relevant stakeholders—e.g., researchers, workers, and safety
forepersons—must be well-informed about the nature and extent of such techno-
logical risks. To this end, quantified assessments of risk that are coarse or overly
general are insufficient, while the additional understanding of failure modes becomes
desirable. It is not only important to estimate the likelihood of failure, but to also
capture indications of what may cause, correlate with, or result from such failures.

As such, it is beneficial to have higher levels of mechanistic insight into these failures.
For example, models with white-box characteristics would be more interpretable,
wherein the properties of, and relations with risks and hazards are more apparent.
In contrast, models with black-box characteristics—despite often achieving higher
performance—are lacking in interpretability, whereby their internal complexity may
obfuscate the desired risk analysis.

With these in mind, a safety assessment can cover and characterize different types
of technological risks. For instance, there are ‘interpretable’ risks whose failure
modes are well-understood allowing for safety response protocols to be developed
around them. These contrast with risks that are more poorly understood and that
are less quantifiable and less predictable—similar to the distinction between risk and
Knightian uncertainty [240] in economics. Additionally, there may be risks that are
unanticipated or very low-probability events with severe consequences—comparable
to the notion ‘black swan’ events, especially as applied to AI systems [241].

While interpretability and explainability are important facets in the design of intel-
ligent agents [242], they take priority in the context of safety-critical systems. For
these reasons, system developers must carefully deliberate in the tradeoff between
performance and interpretability. For instance, a set of classical methods may be
more apt for the most safety-critical tasks despite their potentially lower accuracy. In
tandem, potentially better performance from learning-based methods should be not
be used at the expense of safety considerations.

8.6 Conclusion

With this anticipatory analysis, we have highlighted the potential benefits, concerns,
and risks of adopting automated scrapping systems. Furthermore, we argued for
recommendations to partially address some of these concerns and risks. Accordingly,
technological progress within automated metal scrap cutting could be received—and
potentially informed—with better preparedness and direction towards more sus-
tainable socio-economic outcomes. Finally, we presented further considerations for
broader impacts that may be extendable to the ethical design of other autonomous
systems; especially ones to be operated in adverse environments alongside workers.
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Chapter 9

Conclusion

I N this dissertation, we designed a framework and its underlying methods for the
purpose of endowing robotic systems with autonomous functionalities tailored

for the scrap cutting tasks of the metal scrapyard. To this end, we introduced the
metal scrap recycling industry and its problems as well as the opportunities and
challenges pertaining to its automation. Additionally, we provided many critical
insights through the on-site surveying of a representative shipbreaking yard and its
operations. From these, we formulated our research objectives and formalized the
specific research problems of our proposed framework. These problems are: ‘Cutting
path generation’, ‘Autonomous oxy-fuel cutting’, ‘Task state monitoring’, and ‘Safe
structural disassembly’.

In our framework, we designed a human–robot collaboration workflow and ar-
gued its advantages in leveraging the unique strengths of both the worker and the
robot—whose configuration is described. We furthermore presented our framework’s
architecture, its components, and the interaction between them. Accordingly, we
supplied a review of these components’ underlying methods and techniques, namely:
Viewpoint planning, vision-based control, neural network-based classification, and
sequential decision-making. Through these, we designed, developed, and evaluated
our methodologies for the aforementioned specific research problems. Afterwards,
we performed an anticipatory ethical analysis highlighting the broader impacts of
this research in terms of benefits, concerns, and potential risks—as well as suggesting
recommendations for attenuating some of these concerns and risks.

Ultimately, through our treatment of developing robot autonomy targeting metal
recycling and its operations, we demonstrated the motive and advantage of using a
diverse cognitive architecture for taming the difficulty within adverse environments.

9.1 Summary of the Proposed Methods

For cutting path generation (Chapter 4), we proposed feature-driven next view plan-
ning—alongside human–robot collaboration—as an effective active vision scheme for
generating cutting paths on arbitrary object surfaces. To this end, we devised three
next view planning algorithms and evaluated their performance both in simulation
and in physical experiments against six categories of object surfaces. In particu-
lar, our third algorithm (G-NBV) achieved successful, efficient, and robust feature
reconstruction against all test objects.
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For autonomous oxy-fuel cutting (Chapter 5), we proposed a formal treatment of the
cutting problem for the purpose of its automation. We designed a strategy for vision-
based torch control inspired by the cutting techniques of skilled cutting workers in
the surveyed scrapyard. The visual feedback consists of processing the eye-in-hand
view of the heated region on the surface to extract meaningful features for cutting.
These are heat pool convexity and intensity which distill the pool’s shape, size, color,
and brightness. These features are used to express the pool combustion state, which
is tracked during control to reach its desired value by appropriately regulating the
torch’s motion. We evaluated our control scheme in physical experiments achieving
the successful cutting of steel plates having different thicknesses.

For task state monitoring (Chapter 6), we motivated the need to estimate the task
state of an automated cutting system—for the purpose of monitoring its process and
improving its safety. To this end, we curated our open-access ‘Oxy-fuel Cutting Task
State Image Dataset’ using footage from 50 recorded cutting experiments. With this
dataset, we designed and implemented a convolutional neural network model for
classifying input images into one of four task states. We evaluated this classifier
against test data, achieving an overall accuracy of 93.8%. In addition, we achieved
fast inference speeds on two representative computing hardware, thus demonstrating
the classifier’s feasibility for online monitoring.

Finally, for safe structural disassembly (Chapter 7), we presented the problem formu-
lation on partitioned input structures. For this, we designed a mathematical model for
safety that considers both the dynamic and the geometric effects of moving segments.
Accordingly, we devised our decision algorithm that makes use of physics-based
simulations to assess the outcomes of a decision and thereafter measure its safety.
We developed a greedy decision search scheme to overcome the growing number
of decision evaluations (relative to input size) while maintaining acceptable safety
scores. The performance of our greedy scheme is compared against exhaustive and
random schemes against 12 simulated structures. Our evaluations demonstrate that
our greedy scheme obtains decision sequences efficiently and with high safety scores.

9.2 Recommendations for Future Research

In light of the insights gained through conducting this research, we share the follow-
ing recommendations. For robotics research targeting applied and domain-specific
settings—especially environmental robotics—it is critical to analyze the target domain
and gain an accurate understanding of its unique needs and challenges prior to the
up-scaling of framework designs and methodologies. Researchers and practitioners
should emphasize ‘problem definition’ [243] and integrate it into ‘problem solving’.

To this end, we recommend the surveying of the target domain’s operations through
on-site fieldwork. This would enable the deconstruction of a larger entangled problem
towards the identification of specific research problems. Furthermore, by understand-
ing the specific needs of each task, the researcher can more easily assess the adequacy
of chosen methodologies. In doing so, the research objectives would become more
relevant and effective towards achieving the wider needs of the target domain.

More generally, while robotics is increasingly diverse [244], we further advocate
for the interdisciplinarity [245] of its research. Through collaboration, robotics re-
search—with its expanding technological convergence [246]—would more inclusively
reflect society’s possibilities and values [247] towards brighter futures.
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