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ABSTRACT 

 

It is no secret that robotic systems are expanding into or augmenting human roles. We have seen 

an increase in the number of autonomous vehicles, ride services, aerial and maritime vehicle 

companies. As these robotic systems are deployed in an essentially unbound environment, they 

are therefore more susceptible to adversarial attacks. Artificial Intelligence is enabling the 

progression of autonomous systems as we witness this with self-driving cars, drones, deep sea and 

space exploration. The increased level of autonomy provides new security exposures, which are 

different from conventional ones. As the Robot Operating System (ROS) has become a de facto 

standard for many robotic systems, the security of ROS becomes an important consideration for 

deployed systems. The original ROS implementations were not designed to mitigate the security 

risks associated with hostile actors. This shortcoming is addressed in the next generation of ROS, 

ROS 2 by leveraging DDS for its messaging architecture and DDS security extensions for its 

protection of data in motion. However, ROS 2 security only addresses a subset of the overall 

system and does not address new security consideration necessary for autonomous robotic systems.  

As a result, many questions emerge and can be categorized into performance tradeoffs, 

vulnerability analysis, and determining if trust metrics/solutions exist. Upon investigating a 

number of these questions, the results advocate for a holistic approach. 

Therefore, our focus is on a holistic approach for assessing system trust which requires 

incorporating system, hardware, software, cognitive robustness, and supplier level trust metrics 

into a unified model of trust. While there are extensive writings related to various aspects of robotic 

systems such as, risk management, safety, security assurance and so on, each source only covered 

subsets of an overall system and did not consistently incorporate the relevant costs in their metrics. 

This study was motivated by a need to address the demand for a holistic security architecture for 

autonomous systems. In this research, we have defined trust metrics for each of the layers in an 

autonomous robotic architecture. The resulting internal assurance model utilizes a Bayesian 

Network for scoring each subsystem based on security-enabled features. This Bayesian Network 

is used to determine the internal trust of an autonomous robotic system before it can be extended 

to an external entity. While this model is for static assessment, our future work looks to extend the 

base model approach to a dynamic operational one in which the defenders kill chain is introduced 



xiv 

into the model. While utilizing a Dynamic Bayesian Network model, mitigation strategies can be 

applied to reduce security risks and provide platform resiliency.
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CHAPTER 1  

 

 INTRODUCTION 

 
 

As robots increase their capabilities and expand into different markets, the 

question of security needs to be addressed. One of the first papers related to robotics, 

security, and privacy experimented with toys [1]. Historically, industrial robots were 

mostly used in the manufacturing environment where they were protected by physical 

barriers: walls and closed networks. However, autonomous robots, with a large array 

of sensors and open connectivity that span land, water, and air have no such physical 

barriers.  These systems will be the most susceptible to security vulnerabilities. This 

research provides an overview of the current state of ROS 2 security, evidence of 

exploits, a survey of trust metrics and a potential approach to a holistic security 

architecture for autonomous robotic systems. The need for a holistic approach led to 

this dissertation work that produced the following papers. 

The paper titled “Robot Operating System 2: The need for a holistic security 

approach to robotic architectures” [2] provides an overview of ROS 2 security, a 

security assessment and the tradeoffs between performance vs security for real-time 

systems. The paper discusses many attack vectors and system layers within a robotics 

system and the need for a holistic approach to security must be considered during the 

lifecycle of the system. 
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In a second paper titled “Credential Masquerading and OpenSSL Spy:  

Exploring ROS 2 using DDS security”,  we provide sound evidence that exploits can 

be achieved with ROS 2 on a Linux environment using RTI 5.3 DDS [3]. Two exploits 

are presented, the first uses the OpenSSL library to dump sensitive data and the second 

manipulates a configuration file, so that masquerading credentials can be used. This 

paper also presents a mitigation strategy against the exploits, but also makes the point 

that data in motion protection is only a small part of the overall system that needs to be 

protected.  

In the third paper titled “A Survey on Trust Metrics for Autonomous Robotic 

Systems”, we searched for other solutions that addressed the holistic security need for 

autonomous robotic systems. This holistic security approach needs to cover the system, 

hardware, software, cognitive/AI robustness, and supplier layers. Our research 

concluded that while solutions were presented, they only addressed small portions of 

the holistic model or did not address costs for reward or damage inflicted by 

adversaries. This led to our definition for trust metrics that covers each of the layers, 

based on standards and/or well-known values. 

In the final paper titled “Internal Cognitive Assurance Model for Autonomous 

Robotic Systems (ICAMARS)”, a new holistic security approach is defined. This paper 

introduces a scoring system for each of the system layers and components that depend 

on the system, hardware, software, cognitive/AI robustness, and suppliers’ layers using 

a Bayesian Network model for static security assessment. These scores are then used to 

reason about the posture of the system when interacting with external entities. This 

internal model allows the capability to further analyze and decouple from the normal 

external request, authenticate, authorize, and fulfill. We extend the model from static 
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assessment to a dynamic concept where threats can be handled in real-time using a 

Dynamic Bayesian Network (DBN) model. 

 

1.1 Background 

The Autonomous Robot Market is expected to rise from its initial estimated 

value of USD 6156.78 million in 2018 to an estimated value of USD 17748.47 million 

by 2026, registering a CAGR of 14.15% in the forecast period of 2019-2026 [4]. Of the 

autonomous robot market, ROS is enabling a number of platforms and security should 

be a focus area for the expected deployments of these systems. 

ROS is an open source project maintained by Open Robotics, that has expanded 

into industrial, military, agricultural and automotive robotics. Other work was 

underway for hardware base models to connect building blocks together at the physical 

level and be ROS compliant, but no funding was acquired to move forward [5]. Figure 

1-1 shows the progression for the global robot market using robot operating systems 

(ROS) reached a volume of 4.4 million units in 2018 [6]. 
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The Robot Operating System (ROS) 

The original version of ROS, now referred to as ROS 1, was developed as a 

distributed architecture using publisher/subscriber messaging between nodes. Figure 

1-2 is an example of a ROS messaging between two nodes using topics “Talker” as a 

publisher and “Listener” as a subscriber. The ROS Master sets up the topics to find each 

other. This is called a central message broker model where communication initialization 

is started and then each of the topics can communicate directly with each other. The 

parameter server is a service run on the Master to support global value storage. An 

example of global values are configuration parameters where they can be set or 

retrieved from the ROS network. ROS 1 provides no means of security, since this was 

a research platform to enable the building blocks for locomotion, manipulation, and 

navigation for robots. Indeed, vulnerabilities have been identified as the master node 

provides open ports that are scannable over the Internet [7]. 

 

Figure 1-1: Global ROS-based robot market volume 2018-2024  
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The Robot Operating System 2 (ROS 2) 

The second version of ROS, ROS 2, was introduced in 2014 but was first 

available as alpha code in the third quarter of 2015. ROS 2 has taken a different 

approach in its messaging layer and now employs industry standard Data Distributed 

Services (DDS), from the Object Management Group (OMG) to provide secure 

messaging.  The coupling of a real-time transport, Quality of Service (QoS) and security 

are gained from adopting the DDS standard within the ROS 2 framework. 

Figure 1-3 [8] shows that ROS 2 uses a similar model to ROS 1, but eliminates 

the central broker model component. DDS supports a set of discovery services that 

allows publishers and subscribers to dynamically discover each other without the name 

server bottleneck caused by a central broker.  A domain participant allows an 

application to join the global data space and each topic is a string that addresses the 

objects in the same space.  Each object is identified by a key where data writers and 

data readers are supported by pools of resources called publishers and subscribers. A 

data writer declares the intent to publish a topic and provides type-safe operations to 

Figure 1-2: ROS 1 Messaging using topics 
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write or send data. A data reader declares the intent to subscribe to a topic and provides 

type-safe operations to read or receive data. DDS uses the Real-Time Publish Subscribe 

(RTPS) protocol for its data transportation. The RTPS protocol is designed to run over 

multicast and connectionless best-effort transports such as UDP/IP.  The use of QoS 

profiles allows the RTPS communications layer to provide reliability in a lossy 

environment like wireless/cellular and provides support for real-time environments 

where critical processes are under time constraints to complete. 

ROS 2 Security Model 

In ROS 2 the DDS security model is utilized to protect the data in motion as shown 

in Figure 1-4 where the publisher and subscriber exchange data over a secure RTPS 

connection. As part of the model there are policies that control the behavior for 

how each entity in the global space interacts. Each entity, may it be a publisher or 

Figure 1-3: Data Distributed Service (DDS) Software Model 
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subscriber is supported by a security library that is made up of five plugins called 

authentication, access, cryptographic, logging and data tagging. 

 

 

A detailed technical description is provided in Chapters 2 and 3 which covers 

the secure messaging supported in the ROS 2 DDS implementations. 

1.2 Problem Statement 

Depending on the type of autonomous robotic system, these systems may enable 

processing of sensitive data and/or pose human risk if compromised. For example, 

autonomous vehicles are one of the fastest growing segments, where autonomy 

classification levels range from 1 to 5, where level 5 is fully autonomous. As level 5 is 

still a reach goal, we are witnessing more related accidents caused by the system not 

correctly detecting objects or having the reasoning maturity to deal with the 

uncertainties that humans encounter. As more and more of these vehicles push the 

envelope toward reaching level 5, adversaries will always be on hand to exploit the 

technology for reward. 

Figure 1-4: DSS Security Model 
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There are a number of problems related to securing autonomous robotic systems 

from adversarial threats. First, security is often an afterthought where products are 

augmented with security features that are more or less band aides for exploits. For 

example, password enforcement techniques like password length, complexity in pattern 

and expiration period. These stovepipe type solutions only cover bits and pieces of the 

overall systems, so protecting only a portion of the system will leave the other areas 

exposed. 

Second, autonomous robotic systems are often in the wild where they are 

susceptible to physical threats. Physical threats can be categorized as invasive, semi-

invasive and non-invasive that exploit side channels. These physical threats are 

discussed in Chapter 1. This is an important difference between autonomous robotic 

systems and conventional computer systems in which part of the security depends on 

the computer being protected within a physical construct and physical safeguards are 

implemented. Another difference between conventional computer systems and 

autonomous robotic systems is the use of a plethora of sensors that autonomous systems 

use to interact with their environment. These sensors are prone to spoofing attacks. 

Finally, autonomous robotic systems are driven by cognitive/AI algorithms 

which pose different types of threats such as, using tainted training data or spoofing a 

classifier to detect the wrong object. This topic is touched upon in Chapter 2, but details 

are discussed in Chapter 4 and 5. By examining these problem areas in a holistic 

security architecture model, this can reduce the number of threats depending on the 

implemented security features of the system.  
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1.3 Research Statement 

Since autonomous robotic system security is still maturing as opposed to 

conventional computer security, a number of questions have begun to emerge 

throughout the stages of this research. These questions first start with ROS 2 related to 

performance vs security and if that would affect the real-time constrains imposed by 

robotic systems. Is there a difference between using different algorithms and/or DDS 

features related to performance, throughput, and speed? By ROS 2 supporting DDS 

security what system elements were exposed or vulnerable in a robotic system? 

Another set of questions were related to DDS security and if that provided 

adequate security for the system. Within the software stack what components provided 

the most protection but allowed an adversary complete control of the system? 

Since DDS security is only protecting data in motion, does a solution exists that 

would cover the rest of the system? This was the key question that was the steppingstone 

to asking the following, what trust metrics are needed to define a holistic security 

architecture? This drove the next question; can a BN be used to support all the trust 

metrics and represent an internal security model. What are the benefits from creating 

an internal/external security model?  Another question, is a static model sufficient to 

assess an autonomous robotic system? From this static model, can it be extended to a 

dynamic model? 

1.4 Contribution of Research 

As the number of autonomous robotic systems being deployed increases, 

security should be considered up front. There has been limited literature related to 

robotic security that encompasses the holistic security architecture approach. This 
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research work contributes a security assessment of ROS 2, defines trust metrics and a 

means to assess an autonomous robotic system’s internal security posture using BN. 

Through this research, an internal holistic security model was defined to incorporate 

trust metrics for the system, hardware, software, AI robustness and supplier 

components. We explain how the static model can be extended to a dynamic model, 

where the dynamic model will allow the autonomous robotic system to react to threats 

in real-time. These reactions to threats can be viewed as both offensive/defensive 

postures so that resiliency can be achieved. 

1.5 Outline 

The following chapters address the research questions and background needed 

to answer these questions and achieve the research goal. In Chapter 2, the current state 

of security related to ROS 2 is discussed with a focus on robotic system security 

assessment and the comparison of performance versus security for different 

configurations of DDS. In Chapter 3, exploits are discussed as well as mitigation 

techniques. This chapter also address the need for a holistic security approach. In 

Chapter 4, we search for a holistic security approach for autonomous robotic systems 

and start to construct a definition for a holistic security architecture. We survey the trust 

metric space for viable values for our holistic security architecture.  Chapter 5, defines 

a solution using BN and a set of trust metrics to assess the internal static assurance. 

Chapter 6, discusses the future work related to extending these techniques to a dynamic 

model. Finally, the challenges and conclusions are provided in Chapter 7. 
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CHAPTER 2  

 

2 THE CURRENT STATE OF ROBOT SECURITY 

Robot Operating System 2: The need for a holistic security approach to 

robotic architectures 
 

2.1 Introduction 

Robot Operating System (ROS) 2 was introduced in 2014 but was first available 

as alpha code in 3Q2015. ROS 2 has taken a different approach in its messaging layer 

from its predecessor and now employs the industry standard called Data Distributed 

Services (DDS), from the Object Management Group (OMG). A new DDS security 

specification extension was released later in 2016 for secure messaging. 

ROS 2 is still in its early stages of development with Beta 1 released in 

December 2016, Beta 2 in July 2017, Beta 3 in September, and first release in December 

2017 called Ardent Apalone. The implementation of security functionality is being 

pushed out beyond the first release according to the ROS 2 road map [9]. This research 

is based on the ROS 2 Beta 2/3 code base and the early access release 5.3 of the Real-

Time Innovations (RTI) implementation of DDS with security extensions enabled for 

data protection in motion (DIM). This chapter applies to the Ardent Apalone release as 

well, since the underlining DDS implementation is based on RTI 5.3. 

As robotic systems are becoming more prevalent in today’s society where 

autonomous systems are interacting with humans, the need for securing these systems 

is becoming paramount. Historically, industrial robots were mostly used in the 
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manufacturing environment where they were protected by walls and closed networks. 

As robotic systems evolve, they are moving away from closed environments and toward 

open networks. Trend Micro published a research paper on vulnerabilities with 

industrial robots, where the network, controllers, and command/control were listed as 

attack vectors [10].  A class of autonomous robots with a large array of sensors and 

open connectivity that span land, water, and air will be the most susceptible to 

vulnerabilities. So, how are these systems different from computers or mobile devices 

and can the same techniques be used to secure them?  

Distributed computer security is well known using Transport Layer Security or 

internet protocol security for securing communications and access control for enforcing 

data protection using well defined labels. The computer security model is extended into 

the cloud where Gholami and Laure expand on cloud security, virtualization and 

container management for keeping sensitive data secure [11]. Computers in the 

distributed environment are mostly managed by system management run by a 

corporation or updated by the operating system (OS) and/or hardware manufacturer. 

As for mobile device security, only two prime players, Android and Apple, 

provide a single point for how applications are distributed, and the cellular providers 

have tight controls over the International Mobile Equipment Identity and International 

Mobile Subscriber Identity management. When the phone is turned on, it authenticates 

with the network at which point all activities are governed by the subscriber’s carrier 

policies. Despite these controls in place, Jover[12] was able to construct attacks on LTE 

and created location aware exploits using a software defined radio. 

In both cases, computers and mobile devices have standards and are managed 

by an entity to assist in the security model. Robots, on the other hand, have not had this 
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level of maturity or the standardization since the incorporation of security capabilities 

and system management is not well developed. The array of sensors and the cognitive 

layer also set robotics apart in comparison to mobile devices and computers. 

Section 2.3 explores the systematic security model for a new ROS 2 robotic 

system, including the potential risks associated with the cognitive layer. A detailed 

analysis is performed on the DDS Security Standard related to performance versus 

security models and how security is incorporated with ROS 2. Since ROS 2 and explicit 

attention to security issues are relatively new to robotics, there is a need to analyze the 

risks and benefits of incorporating security into a robotic system and how the inclusion 

of security impacts the system design. 

The rest of the chapter is divided as follows. We provide some background of 

ROS 2 in the “ROS 2 security background” section and the “systematic security review” 

section provides a systematic review of the ROS programming paradigm and the 

incorporation of security features. The “Advanced threats” section identifies several 

possible advanced attacks on a robotic system. The “performance versus security 

models” section presents some initial results showing how performance is impacted 

by several available security models and shows how the choice of a security model can 

be critical in real-time systems. Upon completing the analysis of the systematic security 

model for a new ROS 2 robotic system we present our conclusion in the “Conclusion” 

section. 

2.2 ROS 2 security background 

ROS 2 abstracts the complexities of the interface description language (IDL) 

used by the DDS implementation, while preserving a familiar ROS based application 
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programming interface to robot applications. In Figure 2-1 [13], the left portion of the 

diagram is a simple layering showing the DDS implementation at the bottom, followed 

by the mapping layer that performs the conversion between ROS messages and DDS 

IDL. Portable C can be used for different clients as well as C, Python, and native C. 

Other languages can be adapted by wrapping the client library and the specific 

application language logic. The right-hand side of the diagram shows a more detailed 

view of both static and dynamic paths that can be taken to generate the IDL. The 

dynamic path uses introspection that is not supported in Beta 2/3 but was in previous 

releases. For this reason, this uses only the static path referenced for the ROS 2 layer. 

In the Beta 2/3 release, the C development tools are more mature than Python 

or C for developing ROS clients. ROS 2 targets Linux (main development platform), 

macOS, and Windows as its supported platforms. In this chapter, the ROS 2 system 

model is described using Ubuntu 16.04, ROS 2 Beta 2/3, and RTI 5.3 DDS with DDS 

security. The underlying system has no additional security configurations. 
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Figure 2-2 illustrates a more detailed view of the RTI DDS implementation with 

security. The static and dynamic paths represent different mechanisms for invoking 

security. The static path utilizes the IDL and create_function_ptr and the dynamic path 

uses XML for both code generation and security enablement. 

 

 

Figure 2-1: ROS 2 software architecture including the layering to DDS. ROS: 

Robot Operating System; DDS: Data Distributed Services. 
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The new DDS security extension provides ROS 2 with the capability to protect 

data in motion. The DDS security extension relies on the public key infrastructure (PKI) 

utilizing hash, symmetric, and asymmetric cryptography. A couple of definitions 

related to security for background knowledge: 

Symmetric key cryptography [14] - An example of a symmetric key algorithm 

is the Advanced Encryption Standard  (AES), mostly used for bulk data encryption. The 

same key is used for cryptographic operations, encryption, and decryption of varying 

data length. Both block (chucks of data) and streaming (byte by byte or bits by bits) are 

types of symmetric ciphers. AES also provides different modes such as, the Galois 

Counter Mode (GCM) used for streaming and Cipher Block Chaining (CBC) for block 

transfers. Other modes are defined in NIST Recommendations SP 800-38A (CBC) [15] 

and SP 800-38D (GCM and GMAC) [16]. 

Figure 2-2: RTI software layers including security. RTI: Real-Time Innovation. 
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Asymmetric or public key cryptography [17] - Examples of asymmetric 

algorithms are Rivest, Shamir, and Adleman (RSA) and Elliptical Curve (EC) 

algorithms, mostly used for authentication, digital signature, or key exchange. A pair 

of keys are generated, one portion is public (shared with whomever data is being 

exchanged with) and the other portion is private (only the owner has access to it). In 

sign/verify operation, the private key is used to sign, and the public key is used to verify. 

In an encrypt/decrypt operation, the public key is used to encrypt, and the private key 

is used to decrypt. 

A Hash function [18] is logic that takes a message and reduces it into a digest 

where it becomes a one way function and cannot be reproduced without having the 

same data and algorithm. An example of a hash function is called the Secure Hash 

Algorithm (SHA-2). Hash functions are used to protect the integrity of the data from 

being altered. Using a Hash Message Authentication Key Code [19] falls under this 

category also, except that it uses a key as part of the hash algorithm. 

PKI  [18] is the set of systems/polices that provides the lifecycle management 

of the digital certificate. This includes the capability to issue, reissue, revoke, and store 

certificates. The certificate provides the authenticity that a public key is tied to a private 

key of the owner using the asymmetric key pairs. Components of the PKI are as follows: 

X509 certificate - A standard structure for data about the issuer, validation 

period, distinguished name (DN), and role that the public key will be used for. 

Registration authority (RA) - This can be performed automatically or in person 

depending on the policy for issuance. An example of automated registration is 

supplying an email address and receiving a certificate, meaning this is the lowest form 
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of validation about the person’s identity. In person registration, such as receiving a pass- 

port, is a more involved and credible way of ensuring a person’s identity. 

Certificate authority (CA) - Performs the actual digital signature function, once 

the correct data has been authorized by the RA. Once the CA has digitally signed the 

certificate, the certificate can be stored in a repository for others to obtain, similarly to 

a phone directory. 

Directory - A location where certificates and certificate revocation lists [20] are 

stored. 

 

TABLE 2-1: GOVERNANCE POLICY ELEMENTS 

Element T/F None Sign Encrypt 

Domain     

allow_unauthenticated_participants X    

enable_join_access_control X    

discovery_protection_kind  X X X 

liveliness_protection_kind  X X X 

rtps_protection_kind  X X X 

Topic     

enable_discovery_protection X    

enable_read_access_control X    

enable_write_access_control X    

metadata_protection_kind  X X X 

data_protection_kind  X X X 

 

The DDS security extension defines two policies [21] . 

Domain governance policy - The governance policy defines how the domains 

are enforced. Elements are defined for the Domain and Topics within the domain in an 

XML file structure. A Boolean of true or false is used to turn the feature on/off or 

enabling security using none for no security, sign for integrity using (AES128 GMAC 

or AES256 GMAC), and encryption for confidential protection using (AES128 GCM 

or AES 256 GCM) [16]. This is shown in Table 2-1. Enabling the security features using 
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the Boolean values provides protection from unauthenticated participants gaining 

access, checks to see if a participant is authorized to gain access, enables the discovery 

protection on topics, and it enforces authorization protection to publisher or subscriber 

topics. The protection kinds are explained in more detail in the “performance versus 

security models” section. The governance policy should be digitally signed by a CA to 

protect parameters from being altered. 

Participant policy - This defines the permissions for the domain participant and 

for binding the subject to objects using the DN found in the certificate. The policy 

defines the domains that can be joined, and controls read and write operations on topics 

and for data tag access. A set of permission rules for each topic to “allow” (determine 

who can read and/or write), “deny” (determine who is not allowed to read and/or write), 

and “catch all using default” (allow or deny) can be defined. The participant policy 

should also be digitally signed by a CA. 

The DDS Security Standard calls for two separate CAs. One is for identity or 

participant credentials and the other is to digitally sign the policies as shown in Figure 

2-3. There are five plug-ins defined by the standard: authentication, access, 

cryptographic, logging, and data tagging. 
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Depending on the vendor’s implementation of the security plug-ins, data 

tagging may be optional. These five plug-ins are used to support the DDS secure 

messaging, authorizing participant’s actions, and logging. 

Authentication - Identifies the participant (person or process) in the global data 

space using the X.509 certificate issued by the identity CA. Asymmetric algorithms that 

can be used are RSA [22] 2048 bits or Elliptical Curve Digital Signature Standard 

(ECDSA) [23] 256 bits. The Diffie–Hellman Key Agreement [24] is used to exchange 

symmetric keys using public keys. The DH key is 2048-bits modular exponential Group 

with 256-bits Prime as stated in the standard [25]. 

Figure 2-3: Data Distributed Services security deployment model. 
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Access - Provides the enforcement controls for what a participant can perform. 

Subject and Object controls using both policies as the access control list during DDS 

operations.  

Cryptographic - Provides the cryptographic operations for performing 

encryption/decryption, sign/verify, hashing, and key generation. Example algorithms 

have been mentioned in the policy section and user authentication section above. 

Logging - Provides the event tracking related to security operations and tasks 

being executed by a participant. Each event is time stamped. 

Data Tagging - The capability to add additional tagging information onto data 

samples from the data writer. 

Figure 2-3 shows the overall architecture of a secure DDS deployment model 

between two domain participants. The structure of the two CAs is shown in the center 

where one CA is for authenticating identity and the other used to digitally sign polices. 

Having two different CAs allows flexibility in the issuance process for identity and 

software signing. A validation process for issuing identity certificates is different from 

signing software, the RA process may request a face–to-face interview for identity 

issuance versus an auto RA to sign software. The certificates are shown with the key 

image and Governance/Participant polices are connected to the Permissions CA. DDS 

supports a set of discovery services that allows publishers and subscribers to 

dynamically discover each other. A domain participant allows an application to join the 

global data space and each topic is a string that addresses the objects in the same space. 

Each object is identified by a key where data writers and data readers are supported by 
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pools of resources called publishers and subscribers. A data writer declares the intent 

to publish a topic and provides type-safe operations to write or send data. 

A data reader declares the intent to subscribe to a topic and provides type-safe 

operations to receive data. An example of a publisher is a module that sends commands 

to a controller and a subscriber would be a module that receives those commands, this 

is referred to as pub-sub messaging. 

How each participant discovers and shares information is enforced by the 

Governance and Participant security policies mentioned above and the usage of security 

plug- ins. The transfer of data between two participants in the global data space is 

performed using a Real-Time Publish Subscribe Protocol (RTPS) [26]. The use of 

quality of service (QoS) profiles allows the RTPS communication layer to provide 

reliability and support for real-time environments where critical processes are under 

time constraints to complete. QoS profiles also enable the security parameters for the 

DDS security deployment model. When security controls are turned on, discovery (who 

is publishing, sequence numbering, and in-line QoS), reliability (heartbeat, ack, nack) 

metadata, and payload data can be encrypted, providing the highest security protections 

but may result in latency and poor efficiency. 

2.3 Systematic security review 

System requirements should be fully understood in terms of what needs to be 

protected with respect to performance goals. The focus of using ROS 2 with DDS 

security turned on within a robotic system is a very new topic. Determining what needs 

to be secure and how to design effective security while still achieving performance 

goals are questions that need to be addressed. In the “performance versus security 
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models” section, we demonstrate the effect that the choice of security model has on 

several performance measurements. A holistic security system approach is to 

understand the layering of the system and interactions with external entities. 

Vulnerability analysis should be performed in the same manner to expose the areas that 

pose higher risk and mitigate them. Thus, it is important when developing a system to 

determine what portions require what level of security. While adding DDS security 

provides protection for participants at the distributed network messaging layer, this 

alone is not a holistic robotics security model since portions of the system may be 

overprotected (resulting in lower performance) or under protected (resulting in 

unexpected vulnerabilities). 

Since adding DDS security is new in the context of robotic systems, it presents 

security (and potential performance) concerns due to the large amount of message traffic 

that results from ROS using the pub–sub paradigm as well as other concerns related to 

compromise at both hardware and software system elements. By taking a holistic 

security approach to developing ROS 2 based systems using the new DDS Security 

Standard, a number of concerns may be identified as potential risks. In Figure 2-4, the 

building blocks of a typical robotic system are shown with nodes, indicating that the 

potential security risks that have been discussed in the past are being analyzed 

presently or may fall into future research areas. The DDS Security Standard addresses 

the DIM model for data security but falls short in other areas. Security vulnerabilities 

are represented by non-invasive (observe/manipulate data but no physical harm to 

device), invasive (any method to acquire data), and semi-invasive (in between the non-

invasive and invasive cases) for hardware and application programming interface (API) 

misuse (insertion, evasion, denial of service), unvalidated input (parameter and scheme 
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validation), race conditions (denial of service), side channel), flow control (buffer over- 

flow and garbage collections issues), and security issues (access control, authentication, 

authorization, and cryptographic) for software. 

 

A QoS profile is used to set paths to the CA and participant credentials as shown 

in Figure 2-3. Once the governance and participant policies are defined and credentials 

have been issued, security is enabled. As part of the policies, each topic must be known, 

or a wild card can be used to express all topic behavior. In the ROS 2-layer, topic names 

will be used for either a publisher or subscriber. Using authentication, cryptographic 

and access plug-ins establish a secure session and checks that each participant is 

allowed to have data access in either a write or read capacity. In the global data space, 

each participant must first be authenticated to the domain and then discovered by the 

services. Identity and permission tokens are used during this discovery step. This allows 

the participants access to the specified domain within the global data space. A secure 

session is dependent on the policies and on how the RTPS protocol is protected to move 

data within the specified domain. 

Figure 2-4: Vulnerability analysis of a ROS 2 robotic system. ROS: Robot 

Operating System. 
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It is important to understand that robots take on different forms that are 

dependent on the functions they perform. For example, soft robots for manipulating 

delicate objects and autonomous vehicles operating on public roads have drastically 

different operating environments; consequently, they have drastically different security 

requirements as well. Depending on the type of robot and its functions, a security policy 

should be put in place for the PKI components and for how the individual validation 

processes are conducted. DDS security supports the concept of a plug-in framework but 

does not follow the logic of the Java Cryptographic Architecture or Cryptographic 

Application Interface, where each service provider needs to be digitally signed to ensure 

that it has been vetted. 

The DDS Security Standard specifically calls out algorithms or cryptographic 

modes for the implementation to support. These algorithms or cryptographic modes 

may not be the best practice choices. The security plug-ins provide the mechanism to 

authenticate the participants and protect the session data being exchanged between them 

using the Governance and Participant security policies. We identify the areas that might 

use the best practice approaches versus those being specified in the standard. 

For the authentication plug-in, a participant is issued a certificate based on one 

of the following types of algorithm/ key definitions, RSA 2048 or ECDSA 256 bits. The 

authors of SafeCurve state that using prime256v1 curves is not safe due to the elliptic-

curve discrete logarithm problem being difficult and the gap of implementing elliptic-

curve cryptography (ECC) security, exposing data to side channel attacks [27]. Other 

curves are offered to circumvent these shortcomings. 

For the cryptographic plug-in, AES_GCM and AES_GMAC are used for 

sign and encrypt functions, which are symmetric key operations. As discussed earlier, 
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processing symmetric key operations are low latency, especially when cryptographic 

modes are combined into an atomic operation. A number of published papers have 

investigated the exploits using AES_GCM [28] including forgery, [29] [30]recovery 

and timing attacks, [31] and nonce replay attacks [29].  AES_GCM is mostly discussed 

in the papers, but GMAC is a mode of GCM in which no plain text is supplied and the 

output is the authenticated field. 

Another concern is the use of MD-5 as stated in the standard for key hash on 

the data and datafraq of the RTPS encrypted packets. MD5 and SHA-1 from a collision 

set of attacks have been vulnerable, but from preimage attacks the standard states that 

no known vulnerabilities have been found. The paper called “Finding Preimages in Full 

MD5 Faster than Exhaustive Search” details a cryptanalytic preimage attack on the full 

MD5 [32]; also the National Institute of Standards and Technology (NIST) in 2005 

published that SHA-1 should not be used on future systems, which is a predecessor of 

MD5. NIST guidelines are pushing for new algorithms to be used while stating SHA-2 

is still safe but with the release of SH-3 in 2014. SHA-3 might be a better alternative 

that could be considered. 

The DDS Security Standard mentions the use of PKCS#11, which is a standard 

for interfacing with hardware security modules (HSM) for credential storage and 

cryptographic operations. The DDS Security Standard mentions the use of PKCS#11 

for credential storage, but not cryptographic operations, because hardware accelerations 

would help in latency issues and data. 

For the access control plug-in, a subject is the participant, and an object is the 

topic. This is similar to the role-based access control model found in common OSs. The 

enforcement of the permissions is done by checking the polices as discussed earlier. 
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Authentication and cryptographic plug-ins are used to establish keys used by the 

publisher and subscriber and using the permission token for the enforcement check. The 

standard does not discuss the role of who creates the policies and who submits them to 

be digitally signed by the CA. It seems that this role should be called the Security 

Officer. 

For the logging plug-in, this is associated with the authentication and access 

control plug-ins for its activation. Once a participant is authenticated, logging will 

begin. The following structure is for the built-in logging function: 

 

<topic_rule> 

<topic_expression>DDS:Security:LogTopic</topic_expression> 

<enable_discovery_protection>FALSE</enable_discovery_protection> 

<enable_read_access_control>TRUE</enable_read_access_control> 

<enable_write_access_control>FALSE</enable_write_access_control> 

<metadata_protection_kind>SIGN</metadata_protection_kind> 

<data_protection_kind>ENCRYPT</data_protection_kind> 

</topic_rule> 

 

Basically, if a participant is able to join the domain, it can write to the log file, 

but in order to read the log data a participant must have read access to the built-in topic 

name in its permissions policy. The built-in log data is protected by encryption. 

For the data tagging plug-in, this provides the capability to add additional labels 

on data; for example, security classification that can be used for access control. The 

concern here is the potential for misclassification of data by the writer since this is 

where the tags are being generated and associated with data. 
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The DDS Security Standard states that, before authentication and access control 

can begin, the RTPS protocol is initialized with a sequence number that may be 

susceptible to prediction number attacks [33]. Randomizing cannot be implemented 

using RTPS, since it is data centric. The authentication and access plug-ins need to 

check the sequence numbering for each of the messages being received or implement 

their own mechanism to mitigate prediction number attack. The RTPS specifications 

support endpoint checks, but no DDS built-in exists to access the underlying RTPS 

implementation for these checks. DDS built-ins are a predefined set of services 

supported by the vendor’s implementation to perform functions like discovering other 

participants on the network. So, in the case of DDS built-ins to check for prediction 

number attacks, this has not made it into a supported feature. 

An area of security concern is the system management console, where an 

administrative security panel is enabled and the administrator can view the network 

topology and potentially see sensitive data being sent over the network. This could be 

considered an insider threat where the administrator has rights, but not a need to know. 

Other services may have similar access to sensitive data and these threats need to be 

explored in the OS layer. 

2.4 Advanced threats 

We define several adversarial models for the robot threat classification from 

software, cognitive, and hardware (spoofing and side channels) attacks as shown in 

Figure 2-4. A robotic system is constructed by hardware components such as sensors, 

motors (including optical encoders), controllers (open or closed loop), communications 

capabilities, and newer designs are adding accelerators (field programmable gate arrays 
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(FPGA), graphic processing units (GPUs), HSMs), all of which may be entry points 

into the system. In fact, the problem is worse because each of the components in the 

hardware listed above may contain one or more CPUs, memories, or data storage 

devices, increasing the number of potential entry points into the system. A modern robot 

is truly a distributed system. The software stack for ROS 2 starts at the OS running 

DDS with security and integrating with the ROS 2 layer. The cognitive layer may run 

on top of the ROS 2 or as a node within the distributed system. The cognitive layer is a 

subscriber to sensor data and potentially consumes larger amounts of this data. It then 

interprets against its local knowledge base and acts once a decision has been made. The 

action state may lead to publishing data to a topic, for example, position and velocity 

for locomotion. The cognitive layer creates a new potential entry point for an attack 

vector as it effects the decision making and learning processes about the environment 

in which a robot operates. 

Software 

The OS supports the application logic, which are the ROS 2, DDS, DDS 

security, and all the device drivers for the robot hardware. As mentioned earlier, all the 

software threats can be exploited for potential attacks at this level. The IDL is type-safe, 

which helps with buffer overflow and memory vulnerabilities, but Security Technical 

Implementation Guide (STIG) should be considered to help with risks. STIGs are a set 

of guidelines/checklist for securely configuring an OS that helps mitigate against 

adversary attacks or can be extended to cover the network equipment including 

configuration of firewalls, routers, etc. 
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In software attacks, the security controls are abused to place malicious code on 

a platform, which may lead to hijacking or eavesdropping. For example, cache attacks 

are a form of eavesdropping. Since CPUs are denser with logic (multiple cores), the use 

of caches is expanding at different levels. As data is being processed on a computer 

system that data may be placed into multiple caches over time and may still be available 

once the processing is completed. The exploit is achieved by introducing a spy routine 

to capture the side channel timing variations of the highspeed interconnect fabric and 

exposing the leaked data from the cross-core communications. Data cache attacks have 

been exploited at the inter processor connected fabric, Irazoqui et al.[34] discuss how 

information is leaked. The DDS Security Standard does not provide protection for the 

hardware components listed above and the different types of attacks described. 

Cognitive layer 

Robots are performing more complex tasks with the use of machine learning 

(ML) algorithms. The cognitive layer is truly the brain of a robot like a human. Robots 

use the sensors to see, touch, hear, smell, and taste. The input data from the sensors are 

fed into the ML engines to perform tasks such as navigation, object avoidance, object 

tracking, and path planning; in other words, these sensors form the basis upon which a 

robot makes its decisions. More specifically, they use their sensors to construct a model 

of the world around them and to form the basis for decisions about locomotion and/or 

manipulation. Thus, attacking what is sensed may cause the robot to build an erroneous 

world model and then make bad decisions. These types of vulnerabilities are not 

covered by simply adding DDS security to the ROS 2 platform and protecting the 

messaging layer. 
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Adversarial attacks such as evasion and poison on ML are currently being 

researched, but no known solutions have been published. Perturbation of data is 

difficult to detect when large amounts of data are being compared between a known 

sample called trained data set and real data. The evasion attack [35] is geared toward 

misclassifying data as legitimate data and therefore bypassing the detection. In the case 

of poisoning [36], the training data is contaminated, so that the classifier is less reliable 

in the determination of the outcome. A black box technique was used on a number of 

remote ML services to poison the data that was trained locally, then substituted for the 

target [37]. Since the field of adversarial ML is new and a difficult problem to protect 

against contaminated data versus legitimate data, more research needs to be conducted. 

Side channel 

The sensors of a robotic system collect data from the environment and are 

processed by the cognitive layer. Thus, sensor error directly affects the decision-making 

process of the robot. Unlike system software, sensors are susceptible to spoofing attacks 

that include injecting fake signals. Most of these attacks fall into the non-invasive 

category. The paper “An Emerging Threat: Eve Meets a Robot” provided one 

example where an adversarial frequency pulse was sent to the sensor to spoof the 

navigation of the differential drive. Anomalous data might be due to “normal” sensor 

data, but it could also be due to an attack. From the robot’s perspective, it really does 

not matter the same mechanism that provides reliability also enhances security in some 

cases. The countermeasure for this was a fault tolerant sensor to ensure the data was 

correct. Akdemir et al.[38] presented a number of both passive and active attacks on 

sensors but also provide countermeasures that can be used to aid in risk mitigation [38]. 
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Similarly, motors and controllers can be affected by communication faults that 

may fall into the non-invasive category, since spoofing by timing, injection, and 

monitoring are the major grouping for these attacks. Naharro et al.[39] provided glitch 

attacks on an I2C based communications bus as an example for timing, injection, and 

monitor attacks, but also discussed a countermeasure using a frequency detector to 

mitigate the risk. The Luenberger  Observer was used to reconstruct the state of the robot 

where the sensors were spoofed with injected false signals [40]. Non- invasive attacks 

on both camera and Light Imaging, Detection, and Ranging (LiDAR) that help 

autonomous vehicles navigate were used to spoof (blinding and timing) the sensors 

Petit et al.[41], applied bright light to the camera, where the sensor was blinded and 

incapable of capturing a recognizable image. A countermeasure to blinding was 

configuring multiple cameras to provide a fault-tolerant vision system. Timing attacks 

on LiDAR signals were performed to spoof the sensor into unknown states. A 

countermeasure for timing attacks may involve adding redundancy or acquiring 

neighbor vehicle data in vehicle-to-vehicle communications. Dithering a LiDAR’s 

capture speed or signal pulses may also aid in providing countermeasures against timing 

attacks. 

The classical CPU, memory, and data storage are well known for hardware 

vulnerabilities using non-invasive techniques, such as monitoring electromagnetic 

radiation (EMI) that can be used to detect data leakage. EMI attacks can be viewed as 

acquiring CPU state by monitoring radiation signals or in the case of semi-invasive/ 

invasive attacks, EMI could be used to induce CPU errors. Attacks on memory range 

from noninvasive to semi- invasive, a simple example is to remove non-volatile memory 

from the computer and put it into a different computer to read out its contents. Freezing 
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memory prolongs data retention when moving from one system to another. Attacks on 

data storage range from utilities to extract or recover data from a hard drive or reading 

data directly from the media. 

Hardware accelerators are being used in robotics more frequently where off-

loading processing logic is performed. FPGAs are a universal catch all device that can 

be programmed using gate level logic or IP cores to create custom System on Chip 

processors. GPUs are gaining traction with the use of ML algorithms for processing 

large amounts of data in parallel. Depending on the type of hardware acceleration, a 

number of potential risks can make the system susceptible to attacks that may fall into 

all three hardware categories. By analyzing both EMI and Power signals, a number of 

techniques can be used to acquire sensitive data, this includes the simple power 

analysis, differential power analysis, differential electromagnetic analysis, and simple 

electromagnetic analysis [42] [43]. 

2.5 Performance versus security models 

In order to get a better perspective of how security protection features effect 

system performance metrics, we focus on a simple system involving internode 

communications and examine what is being protected by the Governance policy related 

to the DDS_RTPS messaging as shown in Figure 2-5. The blue boxes represent 

elements of the DDS domain and some of these boxes have a 1:N relationship. The 

orange boxes are the policy protection elements and the red boxes are a subset of the 

message box that can provide finer protection control on the metadata (sub- message 

header and elements) and/or data protection (sub-message element that includes a 

serialized payload). 



34 

Applying protection around the orange and red boxes may be important because 

in some environments, these data elements are considered sensitive data and can be 

exposed to threats via side channels or directly. Table 2-1 shows that the orange and red 

boxes can have a protection value of NONE, SIGN, or ENCRYPT on each element. The 

Discovery_protection_kind and Liveliness_protection_kind are related to the 

participant and endpoint blue boxes in Figure 2-5. 

Discovery provides a complete picture of the domain, including other 

participants, readers, and writers. It helps to configure the communications with other 

writers and readers using transport, address, and port data. Discovery is supported by 

two protocols called Simple Participant Discovery Protocol (SPDP) and Simple 

Endpoint Discovery Protocol (SEDP). SPDP supports how participants are found and 

once found, they use SEDP to exchange data about the endpoints. From the discovery 

data, an adversary could create a network topology and in effect provide location maps. 

Again, depending on security requirements having the SIGN value provides only 

integrity protection and not confidentiality, so the data is still in the clear. The 

ENCRYPT value provides confidentiality protection where data is ciphered then 

integrity protected (Encrypt then MAC) operation. 

Liveliness provides the mechanism for checking if participants are alive and the 

communication path is working. The alive check is performed by entity built-ins using 

the Liveliness QoS and Globally unique entity identifiers (GUID). Liveliness QoS 

defines how and when to test the communication paths between participants. A 

heartbeat is sent to each participant to ensure that they are still active and within the 

messaging a history cache is kept determining what data has changed. A writer’s history 

cache is used to store and manage data objects, this also incorporates the change cache 
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where created, modified, or deleted data records are kept. A reader must have the most 

up to date information related to the data object and the liveliness mechanism provides 

 

 

that synchronization of the data between both writers and readers. The 

Liveliness_protection_kind can be either Sign or Encrypt depending on the security 

requirements. A potential risk of exposing the GUID in the clear is that it could allow 

an adversary to masquerade itself to collect data. With access to history and change data, 

an adversary could simply make changes in the data without any checks. 

The rtps_protection_kind is related to the orange box called message. The 

rtps_protection_kind provides protection on the entire message including the message 

Figure 2-5: The Governance policy protection elements related to DDS_RTPS messaging. 

RTPS: Real-Time Publish Subscribe Protocol; DDS: Data Distributed Services. 
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header, sub-message header, and all the sub-messages elements. Instead of protecting 

the entire message using rtps_protection_kind, a finer control can be achieved, shown 

in the red boxes with metadata_protection_kind and data_protection_kind as two 

independent operations. 

The metadata_protection_kind provides protection on the sub-message header 

and the sub-message element that includes the GuidPrefix, EntityId, SequenceNumber, 

SequenceNumberSet, FragmentNumber, FragmentNumberSet, VendorId, 

ProtocolVersion, LocatorList, Timestamp, Count, and ParameterList elements. The 

data_protection_kind is only protecting the serialized payload sub message, so 

depending on the security requirements different levels of protection can be achieved 

using the Governance policy. A description of each element can be found in the RTPS 

specification [44]. 

In order to analyze the performance of the example application using different 

security models, a utility was used to capture latency, throughput, and speed. Linux 

utilities such as the time, perftest, and top commands provide the execution time, CPU 

utilization, or cache utilization. However, the performance data captured only relate to 

one publisher or subscriber client and there is no support to capture network or security 

enabled metrics. Therefore, since ROS 2 is a pub/sub messaging platform, the common 

tools in Linux were unable to obtain the data results that were desired. 

A toolset for determining messaging performance in a pub/sub environment 

should be able to measure the time a publisher sends a message and the time a subscriber 

sends a reply, this is referred to as latency. The proper throughput measurement tool 

measures the number of packets sent/ received in a specific time. The measurement rate 

that packets are received is called the speed. 
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Having a utility to capture performance metrics for latency, throughput, and 

speed while also providing configuration for security is difficult, but RTI Perftest 

provides these features [45].  RTI Perftest is a command line utility that provides 

latency, throughput, and speed measurement data using RTI DDS messaging and the 

DDS security for security enablement/configuration. RTI Perftest supports different 

configurations for messaging types, data block size, and security options. Four security 

options are defined as (1) secureEncryptDiscovery, (2) secureSign, (3) 

secureEncryptData, and (4) secureEncryptSM. These four options correspond to the 

Governance policy protection kinds as described earlier. Both discovery and liveliness 

kinds are combined into the secureEncrytDiscovery and secureSign is used for the 

rtps_protection to only support the sign value. The secureEncryptData is the data 

protection for the serialized payload and secureEncrptSM is the metadata protection. 

A number of experiments were conducted on a Lenovo W541 running Kubuntu 

16.04 with RTI DDS 5.3, DDS security, and the OpenSSL 1.0.2g. Two terminal 

windows were used, one to execute a publisher and the other to execute the 

corresponding subscriber. The block size used was 63KB, because if the block size was 

larger RTI Perftest would switch over to an asynchronous mode. Since RTPS supports 

UDP transport, its maximum datagram size is 64KB, so 63KB was chosen as the largest 

block size that could be handled without effecting the messaging mode and transport. 

The allowed execution time was kept at 100 seconds to be consistent across the 

experiments. The latency measurements are one way, so these data results would need 

to be doubled to calculate a roundtrip estimate. We also wanted to observe the 

differences in the encryption algorithm and in key size, both RSA key length of 2048 

bits and ECC 256 bits using prime256v1 curves were used. 
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Figure 2-6 to Figure 2-8 shows the performance matrix related to latency, 

throughput, and speed. Figure 2-6 shows the latency performance results between no 

security enabled in the blue color, the magenta color represents the EC 256 bits, and the 

green color represents RSA 2048 bits. With no security enabled the latency on average 

was about 257 μs, EC was at 1385 μs and RSA was at 1343 μs. 

Approximately 700 packets were transmitted in 100 seconds with no security 

enabled compared with 160 and 143, respectively, for EC and RSA encrypted packets. 

This means that the overhead to enable security is 137% in latency performance and 

132% in number of packets transmitted. 

Figure 2-7 and Figure 2-8 shows the results for the throughput and speed 

performance tests comparing no security, EC, and RSA. The throughput rate for no 

security enabled was 69,769 packets/s at a speed of 35163.7 Mbps compared with 

14522 packets/s at a speed of 7319.3 Mbps for EC and 14241 packets/s at a speed of 

Figure 2-6: A comparison between plain versus full security 

enabled using RSA 2048 bits and ECC 256 bits. 
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7177.7 Mbps for RSA. This means that the overhead to enable security is 132% in 

throughput and speed. 

 

Table 2-2 shows the different permutations from the four security options 

related to ECC and RSA implementations. The Governance file was changed, so that 

all tests had the same elements configured: 

Figure 2-7: A comparison between plain versus full security 

throughput enabled using RSA 2048 bits and ECC 256 bits 

Figure 2-8: A comparison between plain versus full security speed enabled 

using RSA 2048 bits and ECC 256 bits. RSA: Rivest, Shamir, and Adleman. 
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allow_unauthenticated_participants = false,  

enable_join_access_control = true,  

enable_discovery_protection = true,  

enable_read_access_control = true,  

enable_write_access_control = true 

RSA µsec = RSA Latency µsec 

RSA p/sec = RSA Throughput packets/sec 

RSA Mbps = RSA Speed Mbps 

ECC µsec = ECC Latency µsec 

ECC p/sec = ECC Throughput packets/sec 

ECC Mbps = ECC Speed Mbps 

SEDis = secureEncryptDiscovery 

SS = secureSign 

SEData = secureEncryptData 

SSM = secureEncryptSM 

 

 

TABLE 2-2: PERFORMANCE SECURITY OPTIONS FOR RSA AND ECC 

RSA 

µsec 

RSA 

 p/sec 

RSA 

Mbps 

ECC 

µsec 

ECC 

 p/sec 

ECC 

Mbps 

SEDis SS SEData SSM 

1343 14241 7

177.7 

1

385 

1

4522 

7

319.3 

T T T T 

9

29 

2

1035 

1

0602.1 

9

35 

2

0619 

1

0392.4 

T T T F 

1

138 

1

6456 

8

294.1 

1

082 

1

7506 

8

823.5 

T T F T 

5

35 

3

7665 

1

8983.2 

5

47 

3

6811 

1

8552.9 

T T F F 

1200 16729 8431.4 1214 16397 8264.1 T F T T 

656 27305 13762.1 710 27291 13754.9 T F T F 

761 26250 13230.2 755 26711 1

3462.7 

T F F T 

320 59381 29928.4 317 60807 30647.2 T F F F 

1420

  

14265 7

189.6 

1361 13687 6

898.7 

F T T T 

761 26250 1

3230.2 

1086 20493 1

0328.7 

F T T F 

1011 19906 10033.1 1069 18818 9

484.5 

F T F T 
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RSA 

µsec 

RSA 

 p/sec 

RSA 

Mbps 

ECC 

µsec 

ECC 

 p/sec 

ECC 

Mbps 

SEDis SS SEData SSM 

552 37070 1

8683.3 

598 34035 1

7153.7 

F T F F 

1180 16749 8441.6 1212 16784 8459.3 F F T T 

752 26734 13474.2 758 26054 1

3131.7 

F F F T 

614 28125 1

4175.1 

6

56 

2

8608 

1

4418.5 

F F T F 

257 69769 35163.7 264 71775 36174.7 F F F F 

 

RTI 5.3 only supported the rtps_protection_kind to have the value NONE or 

SIGN. All other protection_kinds in the Governance policy support NONE or 

ENCRYPT. Depending on the security requirements enabling the five protection kinds 

provides a higher level of security protection, but a performance penalty is incurred. 

The difference between using ECC versus RSA showed a slight improvement in 

latency, but in throughput and speed the difference was more pronounced. Having the 

discovery and liveliness protections enabled showed a minimum increase over having 

no security enabled. Having the encrypted data, discovery, and liveliness protections 

with a signed RTPS message was an increase in latency of 113% compared with no 

security. Adding the meta protection increases the latency by 36%. The tradeoffs 

between performance and security models can be drawn from Table 2-2 where the 

last line in the table represents no security and the first line represents full security 

enabled. 

An additional set of experiments were conducted using a remote machine over a 

wireless network. A Lenovo L450 was used with the same software stack as the W541. 

The wireless router used was the AUSIS RT-AC66U with support for (802.11AC). We 
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looked at the latency, throughput, and speed for no security, full security using either 

RSA or ECC with the same key material as the above experiment. In order to get a 

better perspective on performance, we adjusted the packet data block size from 1K to 

63K1 in powers of 2n. In Figure 2-9, the X, Y, and Z coordinates relate to latency, 

throughput, and speed and the color bar represents the block size. Table 2-3 shows the 

values for Figure 2-9. 

 

TABLE 2-3: REMOTE DATA TRANSFER MEASUREMENTS 
Measurements Plain Data Encrypt using ECC 256 

bits  

Encrypt using RSA 

2048 bits 

Block size (B) 1K → → 

Latency (µsec) 14613 18751 19588 

Throughput 

(packets/sec) 

2422 1742 1987 

Speed (Mbps) 19 13 16 

    

Block size (B) 2k  → → 

Latency (µsec) 23255 39139 22366 

Throughput 

(packets/sec) 

1497 933 1122 

Speed (Mbps) 23 15 18 

    

Block size (B) 4k → → 

Latency (µsec) 53349 54328 61270 

Throughput 

(packets/sec) 

686 566 1122 

Speed (Mbps) 21 18 17 

    

Block size (B) 8k → → 

Latency (µsec) 65816 91531 104085 

Throughput 

(packets/sec) 

374 318 306 

Speed (Mbps) 23 20 20 

 
1 Overhead that prevented 64k 
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Block size (B) 16k → → 

Latency (µsec) 158481 430446 90079 

Throughput 

(packets/sec) 

159 151 28 

Speed (Mbps) 20 19 4 

    

Block size (B) 32k  → → 

Latency (µsec) 52947 123340 130292 

Throughput 

(packets/sec) 

98 79 129 

Speed (Mbps) 24 20 33 

    

Block size (B) 63k → → 

Latency (µsec) 208883 280883 290675 

Throughput 

(packets/sec) 

29 29 48 

Speed (Mbps) 18 13 24 

RSA: Rivest, Shamir, and Adleman. 

 

With block sizes, less than 8K the grouping was toward the right with a lower 

latency and centered for throughput and speed. As the block size increased so did the 

movement toward longer times and lower throughput and speed. The results were 

linear, but in some cases, it took longer than 100 s to complete the test, because of the 

reliability QoS being used. This QoS ensures that no packets were lost in the 

communications, thus resulting in extending the latency duration and reducing the 

throughput. 
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The following observations were made as a result of the experiments performed. 

While conducting the remote experiment, if we took the single machine configuration 

and just ran the command statements as is, the RTPS/DDS would try each of the 

network interfaces which prolonged the time for discovery. The “-nic” flag was used to 

direct the flow over a given IP address range for the network, for example, 192.168.1.*. 

To keep the measurements between the single and dual machine configurations the 

same, we did not add additional flags to improve the performance gain. Our goal was 

to observe the behavior of performance related security models. The ROS layer was not 

Figure 2-9: A comparison between plain versus security performance using a 

remote system and varying packet block size (1–63K). 
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included since this is only translation from ROS messages to DDS and most of the 

performance characterization was related to network communications and enabling 

security/cryptographic features. Future work to be considered is to add additional 

network traffic, enable logging and data tagging, and configure additional participants. 

Another focus area could be performance tuning and determining if no security vs full 

security can be driven down under the 137% overhead. 

2.6 Recommendations 

The following areas are not covered by the standard but should be addressed 

during the product life cycle. From an overall system view starting at the hardware level, 

a root of trust should be incorporated so that both hardware and software are initialized 

to a known state. A self-test should be reflected in upstream layers and should be tied 

back to attestation measurements for both hardware and software. Another concern is 

the supply chain of where sourced components are acquired, this may introduce backdoor 

exposure (This is further discussed in Chapter 4 under the hardware and supply chain 

sections). Trusted providers would mitigate some risks. Moving to the software side, the 

OS is open to a number of attacks where DDS and DDS security are running, so 

protecting the process and data should be considered at deployment. A potential open 

threat not addressed by DDS are attacks stemming from spy processes. A malicious spy 

process may be smuggled into the software ecosystem using an untrusted source. The 

spy processes would exploit leakages from other processes and even cryptographic 

libraries to recover sensitive information such as encryption keys. In Chapter 3, we 

provide two exploit examples where the first is an OpenSSL spy (dumps sensitive data) 

and the second, a credential masquerading using a configuration file. 
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2.7 Conclusion 

Robotic security is a new and increasing concern and is not as mature as security 

for computers and mobile devices. There are many potential holes in the security 

architecture of a robotic system that need to be analyzed with respect to the threats 

unique to robotic systems. In this chapter, we covered the ROS 2 security model using 

the DDS security extension and have identified potential security concerns that are not 

mitigated by DDS Security Standard. A system vulnerability analysis was described 

using a taxonomy for both the hardware and software components of robotic systems. 

The OMG provides the specifications for the DDS [46] and RTPS [44] and a number 

of vendors are supporting both standards. ROS 2 and DDS security extension is new 

and introduces a number of security concerns. The five security plug-ins were discussed 

with respect to potential concerns. The performance degradation was evident when 

adding security features to protected data in motion as demonstrated in the performance 

versus security model. Table 2-4 is a comparison of measurements performed when 

security is fully enabled versus not enabled at all. There is a considerable difference 

between the two and further analysis should be conducted regarding performance 

versus the security model. Algorithm and key size made little difference compared to 

data protection features. 

 
 

TABLE 2-4: SECURITY MEASUREMENT COMPARISON 
 Security 

Enabled 

Latency 

(average µsec) 

Throughput 

(average 

packets/sec)  

Speed 

(average 

Mbps) 

Plain 260 70772 35669 

Full 1363 14382 72485 
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An advanced set of threats were described related to hardware and the cognitive 

layer using ML. The DDS Security Standard does not cover the advanced types of 

threats. 

The ROS 2 security model is flexible in segmenting domains and participants 

to topics, so inherently ROS 2 allows being selective about what security techniques 

are applied to various portions of the robotic system. Thus, the question of applying 

security to everything or nothing in a robotic system can be addressed using two level 

enforcement for access control, that is, using the Governance and Permissions policies. 

However, it is essential to perform vulnerability analysis to determine risks and how 

they should be mitigated in a specific robotic architecture. The communications 

vulnerabilities of the robotics system that were raised in earlier papers can be mitigated 

using ROS 2 with DDS security; however, this is only a part of developing a secure 

robotic system [1] [47] [48]. We note that future work can be done to address the overall 

security of robotic systems. ROS 2 security is a start, but as shown from a holistic point 

of view many levels remain exposed. 

What we learned from Chapter 2 is that ROS 2 and DDS security do not provide 

adequate security coverage for an autonomous robotic system and enabling security has 

adverse effects on performance. Chapter 2 also covered a number of advanced attacks 

that need to be addressed in a holistic security architecture. In the next chapter, we 

provide examples of exploits and mitigation techniques around the ROS 2 and the DDS 

security model. This research provides evidence that only securing one element of the 

system does not protect the rest of the system and a holistic approach is needed. 
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CHAPTER 3  

 

3 THE ISSUES WITH ROBOTIC SECURITY 

 Credential Masquerading and OpenSSL Spy:  Exploring ROS 2 using 

DDS security 

 

3.1 Introduction  

Modern robots are constructed with sensors, controllers, communications, 

motors, hardware accelerators as well as software forming a cognitive layer for 

processing and controlling the robot. Autonomous robots are often fully autonomous, 

putting their software and hardware all in one location, providing an adversary with a 

complete system with little, if any, physical security.  

This makes physical attacks on robots much easier than attacks on corporate 

managed computers, since systems are typically under system management and are 

physically protected by the building that houses them. As robots move from factory 

floors into society this physical protection is removed making systems more vulnerable.  

To address security in robotic systems, ROS 2 with DDS security allows online 

data in-motion encryption with access control protection. DDS security is dependent on 

the OpenSSL library and on a security configuration file that specifies sensitive data 

location. DSS Security assumes that the underlying Operating System (OS) is secure 

and that the dependencies are consistent, but ongoing integrity checks are not 

performed.  However, off-line and on-line exploits can involve software or hardware 
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attacks, especially when robots are out in the wild. Research is in the early stages of 

investigating autonomous vehicle security [49] [50], artificial intelligence and robotics 

[51] while others are looking at the performance related to security [52] and creating 

isolation containers from memory restrictions using ARM Trustzone [53]. However, 

these approaches tend to focus on individual security threats and ignore viewing the 

threat environment as a whole; that is, taking what we refer to as a holistic approach to 

autonomous robot security.  An example vulnerability analysis can be found in [51]. 

Operating systems are generally known for being susceptible to various types 

of exploits; a common one being the exploitation of privilege escalation [54] [55] [56] 

to gain access. The use of secure and trusted boot code mitigates some of these potential 

threats, but only up to the OS layer.  In Linux, the OpenSSL library executes in the user 

space, so the application space is vulnerable to many exploits. These exploits include 

buffer overflow, timing attacks, and injected malware, just to name a few. 

This chapter identifies exploits in the user/ application space related to 

OpenSSL and the property configuration file for the ROS 2/DDS security usage model.  

Several technologies are examined that potentially mitigate these vulnerabilities. 

We describe four different scenarios where these types of attacks affect the 

behavior of the system.  

 

• In use case one, we have a swarm of drones that are performing a surveillance 
mission around a building. Each night at the same time the drones are 
dispatched. We will call this the spy intercept scenario. The drones have been 
infected by the adversary’s altered OpenSSL library and now the data is being 
streamed to a remote server where all the data is being dumped.  The adversary 
now has the capability to review the mission, data captured from the drones and 
can determine where potential schedule gaps of surveillance exists.  

• In use case two, an adversary has placed an altered OpenSSL library on the 
platform and is able to siphon data from a sensor. In this example, a camera 
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mounted on the robot can send data to a remote server for the adversary to view, 
this is called stealing services. 

• In use case three, an autonomous vehicle can be repurposed.  An adversary has 
altered the OpenSSL library on a vehicle and now has access to the keys. This 
means that control of the vehicle can be achieved for late night runs when owner 
is asleep. The car can be returned without being noticed. 

• In use case four, the configuration file is altered by the adversary to change the 
credentials in the property file, this will enable the adversary to take control of 
the robot platform without being noticed. The property configuration file and 
OpenSSL library manipulation can occur on the same platform to provide 
additional control to the adversary. 

 

The above use cases are a set of examples of OpenSSL or property file 

exploits. The list of exploits can grow and will enable an adversary to have control of 

an autonomous platform. 

3.2 Summary of Results 

Exploiting the usage of OpenSSL  

In this paper, we show that a compromised OpenSSL library can intercept 

sensitive information while victim participants believe they are sending secure 

publisher and subscriber messages. In ROS 2/DDS, security on a Linux system is 

enabled by having an interface between the vendor’s security plugins and the OpenSSL 

library. The Governance and Participant policies define the security behavior within the 

domain. These behaviors also define the protection kinds to be used and therefore, the 

cryptographic algorithms associated with any communications. The vendor’s security 

plugin implementation is proprietary and how or what functions are being called from 

within the OpenSSL library is also unknown. However, by replacing the original 

OpenSSL library with an altered “spy” OpenSSL library, the interactions between 

participants become visible. Using this approach, we demonstrate that information can 
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be captured on a victim machine. While the demonstration presented here was done 

locally, a remote server can be utilized where all information is sent to it for post 

processing or data manipulation, as in a Man in Middle attack. As autonomous robots 

tend to have many, if not all, of their nodes on a single platform this type of exploit can 

be a severe threat. To thwart this type of attack, we identify mitigation techniques that 

may be applied for detecting unknown spy processes in the Linux user space software 

stack. 

Manipulating the configuration file for misuse 

Another exploit we explore is the misuse of the ROS 2/DDS security property 

file where security credentials are configured. This attack involves an adversary 

manipulating the property data using masquerading credentials. A single unprotected, 

configuration file supports the credentials of the CA’s Certificate (authentication and 

document sign), participant’s certificate and private key, as well as the signed 

Governance and Participant’s policies. These configuration files point to locations on 

the file system where the sensitive data is located, and changes to these files are 

undetected; meaning that an adversary can substitute their own credentials. Depending 

on the CA’s issuing policy, an email can be the simplest form of authentication for 

issuance, so an adversary can get their own credentials from the initial CA versus just 

replacing the configuration file with adversary data. The private keys are base 64 

encoded using a privacy enhanced mail (PEM) format [57], depending on the security 

policy these can be password protected. However, there is no difference between how 

the security plugin checks for an illegal set of configuration parameters versus a 
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legitimate set; therefore, an adversary can change the credential parameters without 

detection. 

3.3 Background 

The Robot Operating System (ROS) 2 uses the Data Distribution Service (DDS) 

[58] as the transport layer. An extension to DDS is the DDS Security Standard, which 

provides the data protection layer on the Real Time Publisher Subscriber (RTPS) [59] 

data. DDS security [60] is implemented by a vendor’s security plugin. The standard 

specifies five Security Plugin Interfaces (SPIs): Authentication, Access Control, 

Cryptographic, Logging and Data Tagging. 

Authentication and Cryptographic operations are defined in the standard, but 

the implementation is dependent on the vendor. There are no test vectors or compliance 

tests for the security plugin implementation. The standard simply defines specific 

algorithms for authentication and cryptographic operations – OpenSSL [61] is a 

common cryptographic library for providing these algorithms.  

When ROS 2 is built on top of a DDS implementation it must have all its 

dependent paths configured. The build process must include a path to OpenSSL or 

another cryptographic library. In the case of using RTI 5.3 DDS with support for DDS 

security on Linux, the security plugin is configured to use OpenSSL native.   

An XML or YAML (Yet Another Markup Language) structured file is used to 

define the parameters for the security plugin. These parameters are the Certificate 

Authority’s public keys, for identity and policies, signed Governance and Permission 

policy files, and the participant’s certificate and private key. The file path for each of 

the parameters is also set in the property configuration file. Each of the policies 
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(Governance and Permission) enables a protection kind on the message data. Available 

protection kinds are discovery, liveliness, RTPS, metadata and data. An explanation of 

these protection kinds can be found in [51] [60]. The policies also define the access 

control for the domain, which includes the nodes, as well as determining who has write 

or read authorization. 

To use a DDS implementation with ROS 2, the environment is setup by 

configuring the paths for the DDS implementation; on Linux this is done in the users 

bashrc file. The DDS configuration includes the path to the OpenSSL library. Next, the 

DDS environment and ROS 2 are compiled with the DDS. Since the OpenSSL library 

can be updated by upstream providers for Linux, this library lives in user space. In most 

cases, the OpenSSL library is used as a dynamic shared library so that changes to the 

OpenSSL library are independent of the application. In the case where the OpenSSL 

library is a static shared library both DDS and ROS 2 must be recompiled to take 

advantage of any new patches or updates. 

 How each participant discovers and shares information is enforced by the 

Governance and the Participant security policies. The transfer of data between two 

participants in the global data space is performed using the Real Time Publish Subscribe 

protocol (RTPS) [59]. The use of QoS profiles allows the RTPS communication layer 

to provide reliability and support for real-time environments where critical processes 

are under time constraints to complete. QoS profiles or property files also enable the 

security parameters for the DDS security deployment model. When security controls 

are turned on, discovery (who is publishing, sequence numbering and in-line QoS), 

reliability (heartbeat, ack, nack) metadata and payload data can be encrypted providing 

the highest security protections. The usage of the protection kinds corresponds to what 
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types of cryptographic algorithms are called. In order to exchange data between 

participants in a secure manner, each participant is initially issued an identity certificate 

using a public key algorithm. The authentication plugin performs the initial setup for 

key exchange and that is followed by security controls performed by the cryptographic 

plugin. The following set of cryptographic equations are given as reference (DDS 

Security Standard) and are discussed in the attack overview section. 

For the authentication plugin, a participant is issued a certificate based on one 

of the following types of algorithm/key definitions, RSASSA-PSS 2048 or ECDSA 256 

bits.  

RSASSA-PSS is defined as [62]: 

 

 𝑛 = 𝑝 ∗ 𝑞  (3-1) 

 

Where n = is the modulus, p and q = are prime numbers, and d = is the private exponent. 

The modulus n specifies the key length in bits. The message m, is encrypted using the 

private key to produce a digital signature, s. 

 𝑅𝑆𝐴𝑆𝑆𝐴 − 𝑃𝑆𝑆 − 𝑆𝐼𝐺𝑁 = ((𝑛, 𝑑), 𝑚)  (3-1a) 

 

To verify the digital signature, the public key, e = is the public exponent is used to 

decrypt the message. 

 𝑅𝑆𝐴𝑆𝑆𝐴 − 𝑃𝑆𝑆 − 𝑉𝐸𝑅𝐼𝐹𝑌 = ((𝑛, 𝑒), 𝑚, 𝑠) (3-1b) 

 

 

ECDSA is defined as [63]: 

 

 𝑄𝑎(𝑥, 𝑦) = 𝑑 ∗  𝐺  (3-2) 
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where d = private key, G = field of points, and Q (x, y) = public key curve 

point 

 

Sign operation: 

 

 𝑟 = 𝑥 𝑚𝑜𝑑 𝑛  (3-2a) 

 

where r is part of the signature pair, n = integer order of G 

 

 𝑠 = 𝑘−1(𝑧 − 𝑟𝑑)   (3-2b) 

 

where k= random integer, z = left most bit of the hash 

 

Verify operation 

 

 𝑤 = 𝑠−1𝑚𝑜𝑑 𝑛 (3-2c) 

 𝑢1 = 𝑧 ⋅ 𝑤 𝑚𝑜𝑑 𝑛 and 𝑢2 = 𝑟 ⋅ 𝑤 𝑚𝑜𝑑 𝑛  (3-2d) 

 (𝑥, 𝑦) = 𝑢1 × 𝐺 + 𝑢2𝑥 𝑄𝑎  (3-2e) 

 

where r = x mod n 

Key Agreement is used to exchange symmetric keys using public keys. The DH key is 

2048-bits MODP Group with 256-bits Prime or ECDH + prime 256 v1 as stated in the 

standard [60].  These are considered ephemeral keys which are temporary and only for 

the session. 

 

ECDH is defined as [64]: 

 

 (𝑥𝑘, 𝑦𝑘) = 𝑑𝑎𝑄𝑏 (3-3) 

 

where 𝑄𝑏 = public key of user2 
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 (𝑥𝑘, 𝑦𝑘) = 𝑑𝑏𝑄𝑎 (3-3a) 

 

where 𝑄𝑎 = public key of user1 

  

𝑥𝑘= shared secret between user1 and user2 is used to exchange symmetric 

keys. 

For the cryptographic plugin, AES_GCM and AES_GMAC are used for 

authenticated encryption and decryption functions that are symmetric key operations. 

Symmetric key operations are low latency, especially when cryptographic modes are 

combined into an atomic operation. AES_GCM is a popular algorithm, but GMAC is a 

mode of GCM in which no plain text is supplied and the output is the authenticated 

field.  GCM -128 and GCM -256-bit keys are specified in the standard. 

 

Authenticated Encryption is defined as [65]: 

 

 𝐶 = 𝑃 ⊕ 𝑀𝑆𝐵(𝐸(𝐾, 𝑌)) (3-4) 

 

where C = ciphertext, P = plaintext, MSB = Most Significant Bit, E = 

encryption of Y using K = key 

 

 𝑇 = 𝑀𝑆𝐵(𝐺𝐻𝐴𝑆𝐻(𝐻, 𝐴, 𝐶)  ⊕  𝐸(𝐾, 𝑌))  (3-4a) 

 

where T = tag, H = hash, A = additional authenticated data, C= ciphertext, IV 

= nonce 

 

Authenticated Decryption is defined as [65]: 

 

 𝑇 = 𝑀𝑆𝐵(𝐺𝐻𝐴𝑆𝐻(𝐻, 𝐴, 𝐶)  ⊕  𝐸(𝐾, 𝑌)) (3-4b) 
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 𝑃 = 𝐶 ⊕ 𝑀𝑆𝐵(𝐸(𝐾, 𝑌)) (3-4c) 

 

A hash function is called the Secure Hash Algorithm (SHA -2). Hash functions 

are used to protect the integrity of the data from being altered. Using a Hash Message 

Authentication Key Code HMAC falls under this category also, except that it uses a 

key as part of the hash algorithm. 

 

 SHA-2 is defined as [66]: 

 

 SHA-2 = (M)  (3-5) 

 

 HMAC is defined as [67]: 

 

 𝐻𝑀𝐴𝐶 = (𝐾, 𝑀) (3-6) 

 

The OpenSSL library has two functions, one is for the cryptographic algorithm 

operations and certificate support, the second is for client and server support for the 

secure socket layer / transport secure layer. The OpenSSL command line executable is 

in the /usr/bin directory on Ubuntu Linux. The directory /usr/lib/ssl points 

to /etc/ssl/openssl.cnf, which defines how certificates are created. Under the ssl 

directory are the certs, misc, and private directories. The certs directory has several 

certificates, the misc directory handles the certificate generation and private is owned 

by root as the key store. The header files are in the /usr/include/openssl 

directory and the shared, libssl and libcryto libraries are in the /lib/x86_64-

linux_gnu directory. The OpenSSL software layers are illustrated in Figure 3-1: 

OpenSSL Architecture, starting with a set of abstracted higher level APIs, followed by 
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the lower level APIs and supporting utilities and the hardware interface being at the 

lowest  [68]. 

 

Figure 3-1: OpenSSL Architecture 

 

The RTPS protocol standard defines the message structure for data exchange 

and the DDS Security Standard defines the new RTPS message wrappers that conform 

to the RTPS messages[60]. The wrappers provide the protection on the message 

structure using encryption, message authentication and/or digital signatures. 

When security is enabled the RTPS messages are transformed with special 

wrappers and still conform to the protocol standard. Figure 3-2: Secure Transform of 

RTPS messages [60] shows a regular message stack on the left and the secure 

transformation on the right. Depending on the protection kind being specified the secure 

wrappers can be applied at the RTPS message, meta sub-message and/or at the payload 

sub-message levels. 

The rtps_protection_kind provides protection on the entire message including 

the message header.  Instead of protecting the entire message, a finer control can be 

achieved using the metadata_protection_kind and data_protection_kind as two 

independent operations. 
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The metadata_protection_kind provides protection on the sub-message header 

and the sub-message elements that includes the GuidPrefix, EntityId, 

SequenceNumber, SequenceNumberSet, FragmentNumber, ragmentNumberSet, 

VendorId, ProtocolVersion, LocatorList, Timestamp, Count, and ParameterList 

elements. The data_ protection_kind is only protecting the serialized payload, so 

depending on the security requirements different levels of protection can be achieved 

using the Governance policy. 

As shown in Figure 3-2: Secure Transform of RTPS messages, the 

SRTPS_PREFIX is used to wrap a complete RTPS message and the sub-messageId is 

set to 0x33. This is followed by SEC_PREFIX, that is used to wrap a RTPS sub-

message and the sub-messageId is set to 0x31. The SecurePayload has a sub-messageId 

set to the value 0x30. The counterparts to the prefixes are the postfix messages that 

provide a method to validate the authenticity of the RTPS sub-messages. The 

SEC_POSTFIX has a sub-meesageId of 0x32 and the SRTPS_POSTIX has the sub-

messageId of 0x34. The SecureDataHeader contains the cryptographic transformation 

information and is followed by the information that authenticates the result from the 

cryptographic transform. 
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Figure 3-2: Secure Transform of RTPS messages 
 

The set of defined built-ins in the DDS Security Standard are used to enable the 

interoperability between vendors. Section 7 of the DDS Security Standard defines the 

mappings of Entity Id values for the secure built-in data writer and data reader. 

Mappings for built-in participants, CryptoTransformationKind and 

CryptoTransformKeyId are defined in section 8, and key material is defined in section 

9 [60]. 
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Table 3-1 shows the list of partial values that are transmitted during the RTPS 

message exchange. 

 

 

TABLE 3-1: MAPPING VALUES USED IN THE SECURE TRANSACTIONS 
Mapping Name Name Value 

Entity Ids 

Mapping 

SEDPbuiltinPublicationSecureWriter {{ff,00,03}, c2} 

 SEDPbuiltinPublicationSecureReader {{ff,00,03}, c7} 

 SEDPbuiltinSubscriptionSecureWriter {{ff,00,04}, c2} 

 SEDPbuiltinSubscriptionSecureReader {{ff,00,04}, c7} 

 BuiltinParticipantMessageSecureWriter {{ff.20,00}, c2} 

 BuiltinParticipantMessageSecureReader {{ff.20,00}, c7} 

 BuiltinParticipantStatelessMessageWriter {{00.20,01}, c3} 

 BuiltinParticipantStatelessMessageReader {{00.20,01}, c4} 

 BuiltinParticipantVolatileMessageSecureWriter {{ff,02,02}, c3} 

 BuiltinParticipantVolatileMessageSecureReader {{ff,02,02}, c4} 

 SPDPbuiltinParticipantsSecureWriter  

 

{{ff, 01,01}, c2} 

 SPDPbuiltinParticipantsSecureReader  

 

{{ff,01 01}, c7} 

   

Member  PID_IDENTITY_TOKEN 0x1001 

 PID_PERMISSION_TOKEN 0x1002 

 PID_PARTICIPANT_SECURITY_INFO  0x1005 

 PID_PROPERTY_LIST 0x0059 

   

Cryptographic CRYPTO_TRANSFORMATION_KIND_NONE              {0, 0, 0, 0} 

 CRYPTO_TRANSFORMATION_KIND_AES128_GMAC       {0, 0, 0, 1}     

 CRYPTO_TRANSFORMATION_KIND_AES128_GCM        {0, 0, 0, 2} 

 CRYPTO_TRANSFORMATION_KIND_AES256_GMAC       {0, 0, 0, 3} 

 CRYPTO_TRANSFORMATION_KIND_AES256_GCM        {0, 0, 0, 4}     

 

3.4 Attack Overview 

As discussed in Chapter 3, the five security plugs are provided by the vendor as 

object code that treats the OpenSSL library as a black box. Thus, to understand how the 

security services use the OpenSSL library, we examined the OpenSSL library to see 

what cryptographic functions were being called. The cryptographic functions are 
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defined in the security standard, but since OpenSSL has two different levels of API, as 

shown in Figure 3-1: OpenSSL Architecture, we needed to add dump routines to save 

data that is normally internal to OpenSSL library operation into files and use that data 

to identify the use of specific OpenSSL function calls. This process is not trivial as for 

some cryptographic functions there are initial, update and final sets of API calls to 

complete a single cryptographic operation. 

Our first step was to add these dump routines into the cryptographic functions, 

specifically gcm128, hmac, e_aes, evp_digest, and ech_key. Since the property file 

already had the identity key values in the local directory there was no need to add 

additional dump routines in the code. The dump routine used was the hexdump function 

found in the OpenSSL library test code but modified for writing to a local file. In most 

cases the output from the individual routines were modified to match the hexdump 

function parameters. For example, static void hexdump (File *f, const char *title, 

unsigned char * s, int l) was the modified dump routine and for working with big 

numbers the format was converted to BN_bn2hex(). The basic function call was 

hexdump (stdout, “title”, variable, variable length). This call was placed into each of 

the above files and within each initial, update and final API function. Figure 3-3 shows 

the flow of cryptographic operations performed during authentication between two 

parties along the horizontal path and how data protection is performed is shown in the 

vertical path.   
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As part of the authentication, a common shared secret is established using a key 

exchange algorithm (equations 3-3 and 3-3a), this value is hashed and used within the 

CryptoKeyFactory, CryptoKeyExchange, CryptoTransform and LogOptions data 

structures for identity and authentication token exchange (see tables 36, 37, 38 and 39 

of  [60]). As a final step, the participant will digitally sign the data using his/her private 

key (all equations in 3-1 or 3-2 depending on algorithm and equation 3-5 for the hash 

operations). As part of the dump routines this data is captured to reveal the sensitive 

data, such as shared secret, message token parameters and private keys used to digitally 

sign the token data. 

Figure 3-3: DDS security data dump flow 
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The vertical path is used to perform integrity and confidentiality data protection. 

From the hashed data branch to applying an integrity check using HMAC (equation 3-

6), the data is then transformed using AES_GCM (all equation in 3-4).  The key 

computation and cryptographic transformations formulas (see table 73) in the DDS 

Security Standard [60] provides key convolutions and transforms. The dump routines 

reveal all the data and keys used during these cryptographic operations. The output data 

from each of the dump routines must be converted from hex to ASCII to show the 

human readable data being exposed. Even though some of the sensitive data is transient, 

an adversary can still manipulate the data and expose a threat as discussed in the use 

cases above. 

To confirm our data dump routines and modified OpenSSL Library performed 

as desired, we tested in two different environments. The first test environment was 

configured using a Lenovo W541 computer with Linux Ubuntu 16.04. The OpenSSL 

library used was 1.0.2m, but newer releases can also be used. The Real-Time Innovation 

(RTI) 5.3 DDS with security and RTI Perftest 2.4 [69] were used to compile and run 

the tests. Wireshark 2.4.6 was used to capture the RTPS packet network traffic. The 

OpenSSL source files were downloaded from OpenSSL.org, modified, and compiled. 

The files were extracted in the /usr/src/opensll-1.0.2m directory. All the changes were 

done in the /crypto directory and gcm128 was under the /crypto/modes directory. 

To verify that the modified OpenSSL libraries were still working correctly, 

outputs were compared to the downloaded OpenSSL test vectors. The following 

commands were used to compile and test: 

 

1. /usr/src/openssl-1.0.2m$. /configure shared (creates lib* and openssl files) 

2. /usr/src/openssl-1.0.2m$ sudo make (compile) 
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3. /usr/src/openssl-1.0.2m$ sudo make test (test) 

 

Each of the dump routines were checked against the test vectors or against the 

standards being followed by the OpenSSL developers. For example, RFC 7027 for the 

brain pool curve test vectors. The matching of the dump routine to the test vectors gave 

confidence that the dump routines and formatting were providing the same results from 

a known reliable source. Now that the OpenSSL library has been compiled and tested, 

we compiled against the RTIPerftest. For this to occur we first directed the path to our 

OpenSSL by creating a symlink: ln -s /path/to file /path/to/symlink and by changing the 

bashrc file RTI_OPENSSLHOME = /usr/src/openssl_1.0.2m. RTIPerftest compiled 

using: ./build.sh –platform x64Linux3gcc5.4.0 –secure –openssl-home 

/usr/src/openssl-1.0.2m.  

Our next step was to collect data using Wireshark, saving only those 

transactions that used the RTPS protocol to reduce the amount of network traffic data 

collected. We ran the publisher and subscriber using no security to give us a baseline 

with the following commands in two console terminals: 

 

1) ./bin/x64Linux3gcc5.4.0/release/perftest_cpp -pub -datalen 63000 -

executionTime 1 

2) ./bin/x64Linux3gcc5.4.0/release/perftest_cpp -sub -datalen 63000 

 

In Figure 3-5 is the result of no security shown using Wireshark. 
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We use the following commands to run with discovery and liveness protection 

kind using encryption: 

1) ./bin/x64Linux3gcc5.4.0/release/perftest_cpp -pub -datalen 63000 -

secureEncryptDiscovery -executionTime 1 

2) ./bin/x64Linux3gcc5.4.0/release/perftest_cpp -sub -datalen 63000 -

secureEncryptDiscovery 

 

From our dump routines there should be several files that have been created in 

the specified directory paths, Figure 3-5 shows the output from Wireshark where the 

top blue highlight is one of the secure wrappers as shown in Figure 3-2. The lower blue 

highlight is the expanded view that represents the encoding of the SecurePayload with 

a value of 0x30 using a crypto_transformation with AES-GCM 256 that correlates to 

value {0, 0, 0, 4} as shown in Table 3-1. The payload is followed by a closing post sub 

message with a value of 0x32.  

 

 

 

 

 

 

Figure 3-4: Wireshark detailed view into RTPS protocol transaction using 

secureEncryptDiscovery enabled 
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Figure 3-7 shows the dump routine file that was generated showing the GCM 

key, iv and final tag. These values can be used to decrypt the messages if they are not 

already in the clear in another file, like the digest output file. 

Figure 3-5: Wireshark plain run of publisher and subscriber transaction 
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Figure 3-6: Output from dump routine that shows key, iv and final tag 

 

Figure 3-7 shows the output from an AES_GCM 256 bit script to decrypt the 

data using the key, iv and final tag [70]. We show that by obtaining the relevant 

algorithm parameters that decryption is validated by the auth_ok_ = true and plain 

text being showed between the brackets in figure 7. 

 

 

Figure 3-7: Output from gcm decrypt script 
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In the ecdh file this is the data captured from the key exchange between 

publisher and subscriber. Figure 3-8 shows the public, private and shared secret key 

being dumped. 

Figure 3-8: ECDH handshake between two participants to reveal the shared secret 

key 
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The second test environment was configured using a Lenovo L450 with Ubuntu 

18.04, RTI DDS with security 5.3.1, ROS 2 Bouncy Bolson release and SROS enabled. 

We used the same OpenSSL Library as in the first test environment, release 1.0.2m that 

was modified. We copied the files into their respective locations. The results from our 

data dump routine revealed the plaintext for the “Hello World" example using SROS 

as shown in Figure 3-9, running the talker and listener nodes. 

Figure 3-9: SROS example of talker and listener 
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From our output dump routines, we can exploit the DDS security and view the 

data being exchanged between two parties. An adversary can easily replace the 

libcrypto.so.* and libssl.so.* files in the /lib/x86_64-linux_gnu directory using an 

escalated privilege exploit. The dump routine can be easily extended to write the data 

to a remote server. Validation was performed using Ubuntu 16.04 on a ThinkPad® 

model L450, where the files libcrpto.1.0.0 and libssl.1.0.0 were in the /lib/x86_64 

directory. These files were replaced with our spy libraries and symlinks were created 

to libcrypto.so and libssl.so from these two libraries. 

 

libcrypto.so.1.0.0 -> libcrypto.so 

libssl.so.1.0.0 -> libssl.so 

 

We copied the openssl file into /usr/bin, which provided the configuration 

needed to capture the data being used by RTI DDS security plugin. 

The basic concept of using DDS security is to have all participants use public 

key and have the policy rules digitally signed. This level of trust is established at the 

Certificate Authority since both identity and document certificates are issued by a single 

entity. Depending on the deployment model different CAs can issue identity and 

document signing operations. The validation in a two-party exchange is performed by 

having the chain of trust, this means that the issuing CAs public key must be available 

during a public key validation operation. When security is enabled, each participant 

must have their identity credentials and the signed Governance and Permission files on 

the same platform. Since autonomous systems are self-contained, the credentials and 

policy rules are also stored on the platform. A property file defines all the participants 

(publisher and subscriber) credentials, identity CA’s public key file, document signed 

CA’s public key, and signed policy rules (Governance and Permission) located within 
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a directory. An example of a property file is shown in Figure 3-10 where the credential 

locations are defined. The security plugin is defined at the top of the file, followed by 

the CA certificate and PEM data. The domain Governance file location is defined 

followed by the participants (publisher and subscriber). In each of those sections the 

permission file location is defined and as well as the private key locations. This example 

is for a dynamic linking security property file and a static method can be used but would 

need to be compiled into the code. 

Figure 3-10: Property file example for a publisher and subscriber 
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Since changes in credentials and locations will occur, the static method is less 

flexible since this requires the program to be compiled for each change.  In this example 

the CA’s publisher, subscriber and signed files are known by the security plugins, since 

these files are parsed for the required information to perform authentication, 

authorization and cryptographic operations using the parameters with them.  

However, no checks are performed on these files, so that manipulation of the 

parameters or the files themselves can be achieved by an adversary.  An adversary can 

masquerade the credentials with their own set or change the policy rule files with system 

parameters / topic names to be self-signed. We see this as a serious vulnerability, since 

a property file can be altered and no checks are in place to detect the tampering or 

credentials being replaced. 

3.5 Evaluate Mitigation Options 

We will evaluate several technologies that might mitigate one of the two 

vulnerabilities and provide a recommendation for both. The first technology is the 

Trusted Platform Module, the second being the Security Services for DDS security 

plugins using ARM TrustZone and the recommendation is the combination of Integrity 

Measurement Architecture (IMA)/Extended Verification Module (EVM) with the 

TPM. 

Several industries are using the Trusted Platform Module (TPM), part of the 

Trusted Computer Group (TCG) to establish root of trust for the PC/Server market. This 

is being extended into the mobile and Internet of Things as proposed by GlobalPlatform 

[71] and the Industrial Internet of Things Security Framework [72].  The introduction 

of using TPMs in robots is still a novel thought. Trusted boot is the process of taking 
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measurements during the boot process from firmware to Operating System (OS) and 

validating the measurements against a known good set of values by a 3rd party. The 

TPM is a small microprocessor like a smart card but has a different structure for how 

hash values are stored in platform configuration registers (PCR). Figure 3-11 shows the 

TPM 2.0 structure with support for newer algorithms including Elliptic Curve 

cryptography and SHA 256 bit. 

 

Figure 3-11: Trusted Platform Module 2.0 

 

The TPM functionality can be implemented in software as well but eliminates 

the hardware protection features found in some manufacture’s products. In either case, 

static or dynamic root of trust measurements are up to the OS executing. In the case of 

static case PCR (0 to 7) are used in the boot process from Power on Reset (PoR) to OS 

and in the dynamic case PCR (17 to 20) when the x86 instruction halts the processor 

into a known state [73].  Table 3-2 provides the layout structure for the TMP as shown 

below [73] [74].  

 

 

TABLE 3-2: PLATFORM CONFIGURATION REGISTER LAYOUT 

PCR Number PCR Value 

0 BIOS 

1 BIOS Configuration 

2 Option ROMs 

3 Option ROM configuration 
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4 MBR (master boot record) 

5 MBR configuration 

6 State transitions and wake events 

7 Platform manufacturer specific measurements 

8 to 9  Static operating system 

10 Integrity Measurement Architecture (IMA) 

11 to 15 Static operating system 

16 Debug 

17 DRTM and launch control policy 

18 Trusted OS start-up code (MLE) 

19 Trusted OS (for example OS configuration) 

20 Trusted OS (for example OS Kernel and other 

code) 

21 as defined by the Trusted OS 

22 as defined by the Trusted OS 

23 Application support 

24  

 

 

The purpose of the trusted boot using a TPM was for network admission, 

meaning that before the computing node was granted access to the network it was 

validated against Policy Enforcement Point and Policy Decision Point entities. The 

TMP is used to store the hash values collected during the boot process and then digitally 

sign a quote (all the hash values) that was sent within a Tunneled Network Connection 

protocol. The known good values or golden measurements were stored and validated 

by a 3rd party verifier and the result of the compare were sent to the PDP to remediate 

or allow the compute node to gain access. The remediation process for example, is to 

update the compute node with the latest software patches or image. Once updated the 

compute node would validate and gain network access. This remediation process only 

works for systems with network access. Other models are using the TPM for secure 

boot like, bitlocker in Windows. In TPM 1.2 the chip did not offer any physical 

protection and defense was weak. In some vendor implementations the TPM 2.0 has 

physical protection at the die level that adds a tamper resistant mesh, this helps with 
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hardware side channel attacks. The TPM can be used to validate specific application 

PCR values, but this needs to be implemented with custom software to generate and 

validate the values. 

We have discussed the trusted boot process of using a TPM for establishing a 

root of trust during system bring up. We now move into a concept called Trusted 

Execution Environment.  The ARM TrustZone provides the memory management to 

be partitioned and restricted for secure applications. ARM has been working toward 

Security Services for DDS security plugins using ARM TrustZone [53] [75].  Figure 

3-12 shows a flow from normal to secure world where the SecureLib (new name 

libddssec) communicates to the security libraries running in restricted memory space. 

The architecture Cortex-A (applications 32/64-bit architecture) and for Cortex-M 

(embedded 32-bit architecture) the TEE layer might be removed with direct firmware 

communications.  The exception levels, EL0 - user space application, EL1 - privileged 

OS, EL2 - Hypervisor, and EL3 - firmware/security monitor. Cortex-A supports 

TrustZone with Memory Management Unit and the Cortex-M supports TrustZone with 

Memory Protection Units (MPU).  Physical memory is divided into Normal or Secure 

by setting NS bit within the Translation Lookaside Buffer (TLB) for all system memory 

on an A architecture, where the MPU is programmed for different regions. Physical 

memory size on an M architecture is 4GBytes, where on the A architecture it can grow 

by adding RAM. Secure world has access to Normal, but not the reverse. A context 

switch is performed from normal world to secure by a calling an API. The M35P is an 

interesting chip with claims for anti-tamping protection against side channel attacks. 

While the trusted execution environment vendors make claims that they are 

secure, researchers who are continuously scrutinizing TEEs have discovered several 
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vulnerabilities. There is a position paper that points out limited functionality within the 

secure region for: no mechanism to verify execution code, no defense within the secure 

region, no detection mechanism, and no mitigation when compromised [76].  Other 

work has been focused on side channels, power management and cache timing attacks 

on ARM processors with TrustZone [77] [78] [79].  Intel has its version called Software 

Guard Extensions (SGX), but this has been compromised by leveraging the speculative 

execution bug [80].  Also, from a performance point of view, it was covered in [51] that 

enabling security added latency, as well as throughput and speed overhead to each of 

the transactions. By performing context switches between the normal and secure 

worlds, this will surely add additional performance penalties for saving the state data 

to registers, startup, teardown, and data validation process between the worlds; this is a 

consideration for real-time constraints. Since the SecureLib work that ARM is working 

on is to enable the security plugins to live in the secure world, this would help mitigate 

against the OpenSSL dump routine during execution time but does not cover the data 

at rest or off-line attacks, for example a cold boot attack [81]. 
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Our recommendation on Linux is to use IMA/EVM, since this technology has 

been up streamed and supported in the kernel [82]. IMA maintains a run time integrity 

list and is anchored to PCR 10 in the TPM. By extending the PCR 10 for each file listed 

in the policy, each measurement is aggregated into a value. This makes an attack 

difficult since all the sequences and values must be known to reconstruct the result. 

Features of IMA include [83]: 

Collect – measure a file before it is accessed. 

Store – add the measurement to a kernel resident list and, if a hardware Trusted 

Platform Module (TPM) is present, extend the IMA PCR 

Attest – if present, use the TPM to sign the IMA PCR value, to allow a remote 

validation of the measurement list. 

Appraise – enforce local validation of a measurement against a “good” value 

stored in an extended attribute of the file. 

Protect – protect a file's security extended attributes (including appraisal hash) 

against off-line attack. 

Audit – audit the file hashes. 

Figure 3-12: Security Services for DDS security plugins using ARM TrustZone 
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Table 3-3 shows a full software stack that includes the platform trusted services 

used to request quotes from the compute node, trusted software stack used as the 

interface for TPMs, IMA/EVM and the rest of the trusted boot as mentioned above [83].  

 

TABLE 3-3: FULL STACK OF PTS, TSS, TPM AND BOOT PROCESS USING TCG 

SPECIFICATIONS 

Software Layer Specification Interface 

Application PTS OpenPTS, TPM-Tools 

Libraries TSS TrouSerS 

Linux Kernel TPM-2 IMA, EVM, TPM Driver 

Boot BIOS GRUB-IMA, TBOOT 

Hardware TPM Software TPM 

 

By using the features of IMA, store and protect, the two templates below 

provide an example for each. Store provides a hash for the file to be generated, while 

protect adds a signature. An example of using an ima-ng template [83]: 

 

PCR     template-hash                     filedata-hash                           filename-hint 

10 91f34b5c671d73504b274a919661cf80dab1e127 ima-ng 

sha1:1801e1be3e65ef1eaa5c16617bec8f1274eaf6b3 boot_aggregate  

 

Another example using an ima-sig template [83]: 

 

PCR     template-hash      filedata-hash       filename-hint         file-signature 

10 f63c10947347c71ff205ebfde5971009af27b0ba ima-sig 

sha256:6c118980083bccd259f069c2b3c3f3a2f5302d17a685409786564f4cf05b3939 

/usr/lib64/libgspell-1.so.1.0.0   0302046e6c10460100aa43a4b1136f45735669632ad ... 

 

Additional information can be found in the kernel.org [84] about the IMA 

template management module. Protection against offline attacks is provided by the 

trusted boot and the IMA/EVM as well. Since IMA is a run time process, files are being 

checked constantly for changes. Having both OpenSSL and the property file under this 

type of control will mitigate several attacks, like the ones we demonstrated above. 
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3.6 Conclusion 

We have presented two attack vectors related to ROS 2/DDS security and have 

identified four different use case scenarios that are plausible. In each use case the 

adversary was able to obtain control of data or direct manipulation of the platform using 

the modified OpenSSL library and/or the configuration file with credential 

masquerading.  In the first and second use cases, the data was either decrypted by 

possessing the correct keys or directly reading the plaintext data from the dump 

routines. In the third and fourth use cases, either having the possession of the keys 

and/or credential masquerading could have achieved success by the adversary. 

This paper presented the two attack vectors and compared technologies to help 

mitigate the risks. Even when files have been downloaded and checked with a hash, 

that one-time check does not provide the safeguards against ongoing threats. We believe 

that IMA/EVM can help mitigate against these threats, since it is a runtime and offline 

security set of features to protect files. The trusted boot does provide checks on the 

lower levels of the software stack to enable the OS to boot with a root of trust 

mechanism. While the SecureLib running in ARM TrustZone is an interesting 

protection mechanism, it only accounts for two of the five DDS security plugins. The 

need for a holistic security solution still needs to be considered for robotic architectures 

since the new movement is toward autonomous. Enabling a TPM within a robotic 

platform and how attestation will be performed are new concepts that need to be 

extended beyond the traditional mechanism of trusted boot. 

We believe that research is still in early stages to using TPMs in robotic systems. 

Some robotics system TPM considerations are; how it will be managed, who will 

perform the attestation, who owns the golden measurements and what types of 
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remediation will be put in place are still unknown. Robots are not IoT devices like some 

industry vendors are claiming and that a one solution cannot be for all. Robots are 

moving into a cognitive learning phase where limited data is needed to learn and evolve 

within their environments. This is quite different from an IoT device. 

The next chapter discusses a trust metric survey that was conducted to determine 

if a security solution already exists for autonomous robotic systems. This survey also 

helped to flush out the definition of what a holistic security architecture should look 

like. For the holistic architecture, each of the system, hardware, software, Cognitive/AI, 

and supplier layers are explored to determine what are meaningful trust metric values 

and what techniques can be used for modeling the security architecture. 
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CHAPTER 4  

 

4 SEARCHING FOR A SOLUTION  

A Survey on Trust Metrics for Autonomous Robotic Systems 

 

4.1 Introduction 

We have surveyed the trust metric space related to evaluating systems, hardware 

components, software components, cognitive-layer robustness as well as vulnerabilities 

introduced in the supply chain and have come to realize that no current set of metrics 

for assessing system trust fully spans any system architecture, let alone autonomous 

robotic systems. The overall complexity of performing assessment and the complexity 

of identifying potential security problems are bad enough in a controlled environment; 

now add high-value targets in an unconstrained environment and they get much worse. 

Defining trust metrics for system security is difficult [85] leading many 

practitioners to only define metrics for small portions of an overall system.  This 

approach, while making the assessment of a system more tractable, can result in security 

vulnerabilities being undetected. Existing approaches to evaluating trust rapidly 

become computationally intractable due to the large number of interrelated variables 

that must be considered. Thus, there is a need to come up with a way to make evaluating 

system’s trust more computationally feasible.  

We also observed that many approaches tend to focus on a small stovepiped set 

of problems which are more-or-less tractable. While that body of work provides a useful 
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foundation, it omits several factors that are important to consider when taking a holistic 

approach to trust evaluation. For example, neither loss (the cost of damage from an 

exploit) nor reward (the benefit of exploit) costs were addressed for all facets of a 

system, even though these costs have an effect on the level of trust that can be assigned 

to a system.  In our opinion, there is a need to have a secure base before trust can be 

extended with external entities by evaluating an internal representation. A secure base 

is the set of security features (hardware and software) supported by the platform.  Once 

those features are understood, the system can internally analyze and evaluate how to 

react to external stimuli such as external requests received through network interfaces.  

In essence, this internal evaluation relies on a model of the security features and how 

those features interact to detect and/or mitigate requests that may have malevolent 

intent. Such a model requires metrics to rate the level of trust for the best possible 

security posture. The metrics used in this model help establish the chain of trust 

depending on the configuration and features of the autonomous robotic system. 

Autonomous robotic systems, such as autonomous vehicles operating within a 

dense population environment, can be very complex. Such a robotic system is typically 

constructed from many individual components including hardware (CPUs, sensors, 

actuators, accelerometers, systems of systems), software (firmware, OS, services, 

cognitive layer, application specific logic), and AI components (learning algorithms). 

These components may be sourced through one or more supply chain vendors. The 

integration of all these components becomes a complex problem that significantly 

effects the trust model.   

For example, components of a system may be open source, Commercial Off the 

Shelf (COTS), or custom built. An individual component may work as designed, but 
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when integrated with other components the behavior of the composite system may be 

unexpectedly altered in a way that exposes security side channels. We believe that a 

holistic trust metric that accounts for these complexities is beneficial to determining the 

security posture of a robotic system. 

So, there are two main problems in the art that must be addressed.  One is simply 

defining trust and determining ways of establishing the level of trust that can be 

attributed to a system and/or components of a system.  The other is bounding the 

computational complexity of a system trust mode such that the problem can be solved 

in a reasonable amount of time with reasonable resources. 

There are many definitions of the word “Trust” in the context of system security.  

One definition that captures the essence of the term is that “trust” is “the firm belief in 

the competence of an entity to act as expected such that this firm belief is not a fixed 

value associated with the entity but rather it is subject to the entity’s behavior and 

applies only within a specific context at a given time” Azzedin and Maheswaran [86].  

In their earlier work, Castelfranchi and Falcone define the concepts of internal 

vs external, or global trust, with regard to the cognitive social trust model[87]. They 

further breakdown internal trust into two areas called reliance and disposition, where 

the former is the ability, competence, and self-confidence; the latter being the 

willingness, persistence, and engagement to fulfill a task. The external, or global, part 

of the trust model is to have the opportunity, for the quickest fulfilment of the resources 

and the success without having interferences and adversities. Other work validates the 

concepts of internal vs external trust as an example of work from internal trust Devitt’s 

model [88] and Henshel, et al.[89] contribution validates the need to separate trust into 

two categories. 
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It is important to differentiate these two types of trust concepts when modeling 

the behavior of autonomous systems as further decomposition can be made in the 

security validation and protection architecture. Viewing trust from an internal and 

external perspective can enable the decision process to be different when analyzing the 

security capabilities of an autonomous system. A system that has more security 

capabilities might be better suited for requests being made from an external entity vs 

one that has less capabilities. This type of internal rational is different from today’s 

computer security models where no introspection is performed on the decision being 

made from an external request. Today’s computer security model is to authenticate first 

then authorize; once authenticated the process or application is granted access to fulfill 

the request. The term introspection is the capability to look inside and analyze or debug. 

Most literature focuses on external communications from the perspective of an 

agent interacting with another, or a group of agents. This interaction builds a trust 

evaluation mechanism based on prior evidence and ratings from external entities, or 

recommenders. Hearing from multiple sources builds confidence about an outcome or 

decision that others have made. Therefore, that accumulated evidence can sway a choice 

or further aide in a choice. Some trust rating systems targeting the use of referrers, or 

recommenders, are discussed in [90], [91], [92], and [93]. However, it is necessary to 

be cautious when applying these evaluation techniques to an autonomous system.   

Historically, the notion of trust is defined based on what is being trusted. For 

example, only focusing on the individual system architecture, hardware, or software 

layers of a system. In general, trust is assessed by comparing features of the thing being 

assessed to a set of guidelines, and this comparison may be done at a high (abstract) or 

low (detailed) level. High level assessments tend to be qualitative in nature, while lower 
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assessments tend to appear quantitative. However, one problem that arises from 

performing assessment at low levels is that an ad hoc picking of features or weights can 

result in even low-level assessment being fundamentally qualitative. Further, applying 

low level assessment techniques to large portions of a system can become expensive, 

both in terms of engineering time and computational resources.  

Our motivation for this work is to construct a security assessment framework 

that first performs the equivalent functions of static analysis and later have the 

capability to be extended into the form of dynamic analysis for autonomous robotic 

systems. Security assessment can be performed at the system level using Common 

Criteria methodology as one approach, which is a static approach that has many 

paper/human tasks. Alternatively, software uses automated tools to perform 

static/dynamic analysis.  By mimicking the automated analysis tools in the software 

model, this can be leveraged for our consideration. 

The term static analysis is common in today’s software development process 

since the analysis is performed during development/testing or during build cycles. 

These static analysis tools support many flavors of development languages, such as 

C++/C, Java, and Python.  They work by scanning the source code for potential bugs 

or security vulnerabilities against a set of rules. These pattern rules can check for syntax 

issues, buffer overflow issues, and null pointer dereferences to name a few. Some tools 

can perform the same analysis on object code. Common tools like Coverity and 

Veracode perform these types of analysis. To extend the static analysis for software, 

there are dynamic tools that perform similar functions, but at runtime.  These dynamic 

tools look for flow control failures, memory errors, and race conditions to name a few. 

A common tool like Valgrind performs these types of analysis.  Taking the concept of 
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both static and dynamic analysis to determine potential security risks on an autonomous 

robotic system, needs to encompass the holistic architecture model, and not just 

software. 

It is our belief, that developing a security analysis tool to perform a system-level 

trust assessment is a way that provides useful results in a tractable manner. A more 

comprehensive security posture can be created when internal and external interactions 

are separated, but not decoupled. A self-assessment can be performed on an external 

request or goal before being fulfilled. This internal checking may uncover potential 

vulnerabilities, misbehavior, or lack of ability to perform a task.  

Representing an internal system model may require a large amount of data and 

may become computationally complex. A Bayesian Network (BN) is a probabilistic 

graphical model where nodes and arcs define the casual inference using probabilities. 

Using a BN is one potential solution, as it satisfies the local Markov property where the 

joint probability is reduced to a compact form, allows the combining of supporting 

evidence or negating hypotheses. This helps to reduce the computational complexity 

issue. We also bound the problem by limiting the number of parent nodes in the model. 

The goal of this chapter is to survey the current techniques for evaluating trust, 

and to extend them in a structured way both to account for the complexities of 

autonomous robotic systems and to minimize subjectivity. Chapter 4 is structured as 

follows: section 4.2 discusses the search results; the trust metric evaluation for layers 

system, hardware, software, Cognitive/AI, and supply chain can found in sections 4.3, 

4.4, 4.5, 4.6, and 4.7. Section 4.8 describes the assessment of the techniques used in 

security assessments and this is followed by a solution outline in section 9. We conclude 

our findings with developing new trust metrics for an autonomous robotic system. 
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4.2 Search Results 

So, how does one evaluate or assess trust?  In order to perform assessment, there 

needs to be a metric, or set of metrics, that correlate well with trust and a tractable 

methodology to evaluate the metric(s). This has generally been done by assigning 

weights to features and then combining those weights in some way to develop a score 

that is presumed to correlate with the level of trust assigned to the system being 

evaluated. 

Trust evaluation can be viewed at different levels for computer systems. At the 

top is the system level architecture, which then breaks down into other individual 

categories. For purposes of this discussion, we focus on, without limitation, the 

hardware and software subsystems of the overall system.  This structure is shown in 

Figure 4-1 where the three circles represent the different levels.  

For evaluating trust in a computer system, the Trusted Computer Evaluation 

Criteria (TCEC) standard was created in the 80’s which disclosed a methodology for 

evaluating computer systems known as the “Orange Book.” The Orange Book defined 
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four primary levels, where A was the highest, followed by B, C and D (being no 

security). Around the same time another standard was introduced called the Information 

Technology Security Evaluation Criteria (ITSEC) which defined seven levels (E6, the 

highest to E0, no security). The levels of ITSEC were mapped to the Orange Book 

levels that included all the associated sub-levels. The Canadian government created 

their own version of a security standard and so, to minimize proliferation of standards, 

the International Standards Organization created the Common Criteria (CC) standard 

that tried to harmonize these different standards into one, called ISO-15408. The CC 

has levels ranging from E7 (highest) to E0 (no security). The higher levels of evaluation 

incorporate formal methods for system behavior verification, auditability of 

development artifacts and certified 3rd party lab testing. 

Using these standards, systems are evaluated based on the architectural features 

they contain.  A system architecture can be evaluated by reading the description of the 

features required by a trust level and comparing those features to the features of the 

system being evaluated.  Conversely, if a system designer wanted to achieve a desired 

Figure 4-1: Different approaches to trust at system, hardware, or software levels 
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level of trust, those descriptions provided a list of required features to achieve that level. 

Since this approach has some level of industry acceptance, it is desirable to capture 

elements of this method of scoring system-level trust and expanding on it to capture 

additional elements determined to be important as well. 

 As is the case at the system-level, similar approaches exist for evaluating trust 

in the software components of a system.   When evaluating software systems, different 

methodologies have been proposed to ensure a secure software development lifecycle 

process (SDLC). This means that security tasks are included in the development process 

and not as an afterthought. These tasks may include code review, vulnerability analysis, 

white hat testing, and utilizing code scanning software for static and dynamic analysis. 

Incorporating these techniques in the development process is less expensive than 

finding security vulnerabilities after release. Some examples of SDLC are the software 

assurance maturity model (which is derived from the capability maturity models), the 

software security framework, the System and Software Integrity Levels from ISO-

15026, and the Common Criteria (CC). Following an SDLC process requires tightly 

integrating the process into the organization’s software development philosophy and 

training their software development resources. Depending on the level that each of these 

development processes use, a set of tasks are checked off to ensure that they were 

completed. Software is then evaluated based on these development processes and, as an 

artifact of the process, the results can be audited. 

As we saw at the system level, existing methodologies for trusted software 

development also rely on formalizing a set of criteria that are applied to the software 

development process.  Again, these criteria form an industry-accepted basis for creating 

a trust metric that is based on objective criteria. 
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Not surprisingly, hardware development is taking steps similar to those used in 

software development to ensure trust in the hardware development process.  This is 

logical since, in modern hardware design, software tools are commonly used to 

synthesize (or at least customize) hardware components using a variety of hardware 

design/description languages and other computer aided design tools. Different 

methodologies are used at this level including the DARPA-led "Trust in Integrated 

Circuits” program where ICs are manufactured in certified labs to ensure their pedigree, 

as well as incorporating defined security tasks into the hardware development lifecycle. 

Indeed, some Electronic Design Automation (EDA) tools are now incorporating 

security tasks into their tool suites. For example, Mentor Graphics TrustChain provides 

a unique id that is embedded in the chip and enables tracking in the chip’s lifecycle. 

These methodologies provide an evaluation mechanism for assessing how/if security 

considerations are being incorporated into the hardware lifecycle.  

Thus, the existing art provides some examples for which trust evaluation occurs 

at the system, hardware, or software levels. While these previous approaches focus on 

evaluating on a specific level, this may create gaps in the overall security posture of a 

system. For example, GreenHills INTEGRITY separation kernel was evaluated at EAL 

6+ (only software was evaluated) but included a configuration with an embedded 

PowerPC and PCI card. This evaluation only examined a small portion of an operating 

system that did not include other services like device drivers or application logic that 

would be part of a system architecture. Nor was hardware included that might expose 

side channels into the kernel itself. Traditionally, we have focused the evaluation of 

trust on just the hardware and software levels of the computer system, but with new 

autonomous robotic systems, this needs to change.   
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Autonomous robotic systems are different from computer systems in general 

since they may have multiple compute nodes, and are a system of systems, which may  

include sensors, actuators, and AI operating in unconstrained environments. So, what 

is a holistic approach to defining a set of security metrics for evaluation? It is our 

recommendation that incorporating metrics for the system, hardware, software, AI, and 

supplier, defines a good basis for evaluation. Further, by developing a computationally 

tractable methodology for trust evaluation that includes metrics spanning all these 

systems, we form a foundation that can be extended to include additional system aspects 

not discussed herein. 

Figure 4-2 shows an example of an autonomous robotic system broken down 

into components. The left side of the figure represents the software layers including the 

cognitive or Artificial Intelligence (AI) layer, which is expressly identified as a 

component of the system. The right side represents the hardware layers and the “supply 

chain”, which may influence any part of the system. Components like sensors and 

actuators are linked to IoT devices since these devices have similar trust issues. Several 

components did not have a direct mapping to a specific category and were placed into 

a major grouping (system, hardware, software, AI robustness or supply chain).   

Figure 4-2: Mapping search results to each robot component for trust metrics 
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For each system component, we searched relevant terms to generally identify 

the existing art using terms like BNs, trust metrics, risk assessment, and vulnerability 

assessment for autonomous robotic systems. Other terms were added for each system 

specific aspect. We then categorized that art according to its primary contribution(s) to 

modeling the system architecture aspect that were conducive to our goals. The primary 

contributions were further analyzed to extract the main points that aligned to our 

objectives, while discarding unrelated findings in a second pass. The litmus tests that 

we targeted were related to the method(s) for utilizing trust metrics: how were the 

metrics created, were the metrics linked to standards or recognized bodies of work, and 

did the findings prove successful. Those that passed were incorporated into this 

document, which are further analyzed in section 4.3. 

We began our search for trust metrics by attempting to identify those 

methodologies currently existing in the art that have already been proposed for 

evaluating trust, even if those methodologies only solved a portion of what we see as 

the overall problem.  In that investigation, we specifically looked for trust evaluation 

methodologies applied at the system level, as well as methodologies applied at the 

hardware, software, cognitive/AI, and supply chain levels of a system design. 

4.3 System Level Trust Evaluation 

To identify methodologies used for evaluating trust at the system level, we 

searched for papers focused on trust metrics, autonomous systems, BNs, 

trustworthiness, system security, resilient systems, and security evaluation. From these 

parameters the results are broken down into four groupings: risk assessment, trust with 
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a human in the loop  [94], a trusted boot scheme [95], and standards (that included 

frameworks and security evaluation methodologies [96] [97] [98] [99] [100] .  

We summarize some of the system search results that are attractive to 

incorporate into our holistic security model. These findings include the need to: support 

attack paths, determine behavioral states of an autonomous system, and integrate the 

concepts of trust, resilience, and agility. The system model should also incorporate 

attributes for physical protection and safety, since these elements will be needed for 

autonomous robotic systems that are exposed to and interact with humans. In the 

remainder of this section, we briefly describe what these various techniques are, how 

they work, what they do well relative to our goals, and any shortcomings of the 

technique when applied to autonomous robotic systems. 

In our research we found that techniques fell loosely into two categories: graph-

based assessment techniques that incorporated metrics and system security assessment 

techniques. Exemplary graph-based techniques are found in the work of Shetty[101], 

Henshel et al.[102], and Cho et al.[103]. 

For example, Shetty presents a technique to categorize attack paths (a chain of 

exploits) utilizing a BN where exploit impact, cost of exploit, and the degree of 

difficulty is determined  [101]. An attack graph is a visual representation of potential 

paths that an attacker can take or has taken to achieve a successful goal. It is important 

to autonomous robotics systems because defense strategies can be used to block the 

threat ahead of a potential attack. 

What is it - Shetty’s Cyber RIsk Scoring and Mitigation (CRISM) tool is 

described as interfacing with the Common Vulnerability Scoring System (CVSS) and 

the National Vulnerability Database (NVD) to create trust metrics. These metrics are 
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derived from the CVSS base score as low (0 to 4), middle (4 to 7), and high (7 to 10). 

The base score reflects the severity of a vulnerability based on its intrinsic 

characteristics like the exploitability (attack vector) or the impact to the data’s 

confidentiality, integrity, and availability. A further explanation is given in the software 

section below. 

How does it work – As a first step, an attack graph is generated from network 

scans, internal enterprise vulnerability tests, internal enterprise vulnerability database 

(s) for how the systems are connected and network topology. Essentially, this step is to 

create the topology of how components are connected in the network-based system 

architecture. The National Vulnerability Database (NVD) is a repository which 

provides CVSS base metrics on Common Vulnerabilities and Exposure (CVE) entries. 

Once a vulnerability is discovered, it is assigned a unique CVE Identifier. For example, 

CVE-2014-7173, a brief description (FarLinX X25 Gateway through 2014-09-25 

allows command injection via shell metacharacters to the files 

sysSaveMonitorData.php, fsx25MonProxy.php, syseditdate.php, iframeupload.php, or 

sysRestoreX25Cplt.php) and a score of 9.8. The score is derived from the CVSS base 

metric, including the exploitability (attack vector) and impact (confidentiality, integrity, 

availability).  Only system component vulnerabilities that are associated with the attack 

graph are reported. NVD assigns metrics that are based on CVSS base scores (low 0 to 

4), middle (4 to 7), and high (7 to 10) but only the impact scores are used. A risk 

probability is calculated depending on the lifecycle of the vulnerability (not yet 

discovered, discovered, patch available, patch not applied, patch applied, etc.). By 

combining the risk probability and CVSS impact score, a set of values can be 

constructed using the information from the attack graph/topology where component 
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security metrics are categorized by attack paths with attributes that include the impact, 

cost, and degree of difficulty. A risk assessment tool is created that captures the 

attacker’s exploits. 

What does it do well – From CVSS base metrics (see Software Metric section) 

NVD assigns a ranking low, middle, and high for vulnerability risks. This provides an 

established set of data sources and metrics for known attack vectors and paths taken, 

which are then assessed using a BN. This concept of risk metrics can be extended into 

different layers of a robotic system using BNs. 

Shortcomings - CVSS/NVD provides a good framework for systems where the 

attack vectors are known, but since autonomous systems are relatively new, the attack 

vectors are not yet completely known. Yet, many parts of a current robotic system can 

already use this information to at least assess parts of a system.  Furthermore, CRISM 

provides a framework for including these attacks as they are discovered. 

Henshel et al., presented a cyber security risk assessment model that 

characterized “Trust” as human (users, defenders, and attackers) behavior and all other 

as “Confidence” (hardware and software). 

What is it - Trust in humans had two categories, the first being inherent (part 

of the individual that is further broken into behavioral and knowledge/skill 

characteristics) and the second being situational (external to the individual). These two 

categories define how mental states affect risk and impacts the levels of trust [89]. The 

human factor was being incorporated into a cybersecurity risk framework/model called 

Multi-Level Risk Assessment Parameterization Framework [102] using BNs. 

How does it work - The risk assessment taxonomic parameterization 

framework (i.e., MulRAP Framework) is applied by first identifying the complex 
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system in question. The complex system is then deconstructed into its functional 

components and processes. The level of deconstruction is determined by the granular 

specificity of the risk assessment question. The functional components and processes 

(i.e., system/risk parameters) are then characterized based on the environmental context 

of the risk assessment question and the known vulnerabilities of the complex system in 

question. A BN allows the factors that contribute toward high-risk situations to be 

identified. These risks are identified as type of activity from a country, threat index for 

the country, risk prior to defense, risk after defense, potential access, and network 

component compromised. Two scenarios (risk of a database being compromised, one 

with low to medium risk level and the other with high) were given that demonstrated 

the outcomes from the BN. 

What does it do well – Henshel et al., does a good job of identifying the various 

elements that go into evaluating trust assessments from human factors and 

incorporating them into an evidence-based model. It combines information from human 

factors, and it provides a model for capturing evidence-based causal relationships 

between elements.   

Shortcomings – The focus of the paper was on the parameters for defining 

human characteristic in a cybersecurity model. The framework/model was discussed in 

another paper as referenced above, but while a direct mapping between humans and 

machines (human characteristics to machine characteristics) may be invalid, the 

methodology applied for assessing trust is beneficial. By breaking down human trust 

further between inherent and situational characteristics, this provides the basis for 

reducing risk. 
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Cho et al. presents a technique using Petri Nets that covers trust, resilience, and 

agility for multi-domain environments called TRAM. The focus is mainly toward 

human and machine conflict. 

What is it - TRAM consists of trust (security and dependability), resilience 

(fault-tolerance, recoverability, and reconfigurability), and agility (Service Level 

Agreements (SLA)) elements for measuring system quality in a multi-domain 

environment. This multi-domain environment consists of hardware, software, network, 

human factors, physical environments, and the effects of behavior at a component or 

system level for an overall service. 

How does it work - A Petri network diagram in Figure 4-3 shows where metric 

values, assessments, and threats are links of relationships. Tw refers to trustworthiness 

of a system with Tw= (Tr, T, Rs, A) where Tr is the degree of threat, T is perceived trust, 

Rs is resilience, A is agility of the system, and metrics range from [0,1] Cho et al.[103].   

Figure 4-3: A Petri net representation of the relationships between metric 

attributes, assessments, and threats. 
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What does it do well – – The TRAM model ties the relationship of Trust to 

other variables like resiliency and agility.  Autonomous robotic systems will need to 

support the concept of resilience and agility, since they may defend themselves from 

threats and still be able to function in a limited capacity. 

Shortcomings – – While the paper claimed that the TRAM system included 

hardware and software assessment, no further definition was included nor was there an 

explanation about where these modules came from. In autonomous robotics systems, 

hardware can refer to a number of things including compute modules, sensors, and 

actuators.  These are not simple extensions to a conventional computer system 

connected to a network.  While regular Petri network diagrams can be applied to threat 

models, they do not provide a mechanism for evidence-based reasoning about 

uncertainty.  Informed decisions or reasoning can take place when data is available to 

support a hypothesis; this is called Evidence-based reasoning, but reasoning about 

uncertainty is represented as probabilities.  Therefore, the concept of linking the 

relationships between actors can be applied in a BN to provide a better security 

assessment in the presence of uncertainties. 

System security assessment assures that the security requirements are met in the 

implemented system. The techniques for the assessment can range from a checklist of 

tasks to having a formal verification process driven by an independent lab. From our 

research we found that commonly used system security assessment techniques are 

Federal Information Processing Standard FIPS 140-3 and Common Criteria (CC). The 

additional benefit of CC is the mapping to safety standards, as discussed below.   

An underlying assumption in many of the sources we reviewed was that 

computing devices are assumed to be housed within a controlled physical location and 
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managed. Since autonomous robotic systems are not in such an environment, and may 

be exposed to physical attacks (invasive attacks involving physical manipulations on 

semiconductors like microprobing, and  non-invasive attacks where side channel 

leakage can occur like power analysis) [2], this assumption is invalid and this type of 

system will need system level protection.  System level protection can range from the 

highest level of security, tamper protection with countermeasures, to lowest level, 

evidence of tampering. Two specifications that do address the higher level of protection 

requirements are FIPS and CC.  

What is FIPS? – The Federal Information Processing Standard FIPS 140-3 is 

a standard (levels 1 to 4, level 4 being the highest) for approving cryptographic 

modules, but the development lifecycle methodology for achieving levels 3 and 4 are 

complex (fully documented and formal design including testing) and require fully 

vetted modules that undergo security analysis by independent labs.  FIPS Level 1 is the 

minimum set of security requirements that uses at least one approved algorithm or 

security feature. Level 2 builds on one by adding the tamper evidence requirement, such 

as a seal or coating that when broken provides visual evidence of tamper. Security Level 

3 is intended to have a high probability of detecting and responding to attempts at 

physical access, use or modification of the cryptographic module. Security Level 4 

provides the highest level of security, the physical security mechanisms provide a 

complete envelope of protection around the cryptographic module with the intent of 

detecting and responding to all unauthorized attempts at physical access. Security Level 

4 cryptographic modules are useful for operation in physically unprotected 

environments. 
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How does FIPS work – FIPS validation requires fully vetted modules that 

undergo security analysis by independent labs and the implementation of algorithms 

are tested against a known set of algorithm values. At higher levels, the certifying 

module undergoes a series of exploits by the lab to ensure that there are safeguards in 

the system that are present and that these safeguards work against the expected attack 

vectors. Attack vectors can range from environmental stress testing including 

temperature (low and above operational levels) and physical testing, which attempts to 

break into the tamper protected envelope by any means. If the module can successfully 

defend against these different scenarios, it is deemed as passing. The cost and time 

frame to achieve certification depends on a number of factors and of course the level 

being tested against. The timeframe can take from 6 to 24 months; Government 

recovery costs range from $4k for level 1 to $11k for level 4, but does not include lab, 

consultant, and own internal team and development costs.  A process flow for FIPS 

begins with block 1 in a five-block serial process flow. In block 1, the implementation 

under test undergoes activities like contract with lab, identify what to validate, perform 

a gap analysis (FIPS requirements and current product), fix, update and extend to 

support FIPS algorithms, prepare documentation for certification, and prepare for 

testing can take place. Block 1 can take from 3 to 18 months.  In Block 2, the request is 

submitted for review pending and this can take up to six weeks followed by Block 3. In 

Block 3, a review is performed where questions and answers can be exchanged for a 

duration of two to three weeks. Block 4 is the coordination period where corrections 

and revision of documents take place; this period can take from 1 to 6 months. Block 5 

is the approval, which can take a week for the certificate. 
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What does FIPS do well – FIPS 140-3 standard provides a methodology for 

security evaluation depending on the level of features/functions that a module supports.  

This is a well-documented process with a number of certified labs that support the 

evaluation. The algorithms also support a set of known good results that are used during 

the implementation and testing phases. This methodology can be extended in the 

autonomous robotic system space for covering security modules and tamper protection. 

Shortcomings of FIPS – This relies completely on the human-based vetting 

process which is time consuming and expensive. Another shortcoming is that the 

criteria are static, once assessed, always assessed.  There is no way to account for 

“unexpected” attacks or for having the system reason about what may or may not be an 

attack. A final point is that the standard defines a set of requirements to achieve a level 

of evaluation that only targets the cryptographic modules and the small Target of 

Evaluation (TOE), but this may miss higher levels of side channels. 

Like FIPS, the Common Criteria (CC) provides a framework for information 

technology security evaluation and defines a common evaluation methodology to 

achieve an international recognized certification. 

What is it – CC defines the Evaluation Assurance Levels (EAL) are from 1 to 

7, with EAL 7 being the highest level. EAL 1 (functionally tested), EAL 2 (structurally 

tested), EAL 3 (methodically tested and reviewed), EAL 4 (methodically designed, 

tested, and reviewed), EAL 5 (semiformal designed and tested), EAL 6 (Semiformal 

verified design and tested. Formal methods and systematic covert channel analysis 

required.), EAL 7 (Formally verified design and tested. This level requires more formal 

methods and systematic covert channel analysis required) [104]. Level 4 is the highest 
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level that is mutually recognized by the Common Criteria Recognition Arrangement 

(CCRA).  

How does it work – CC defines a process flow for deliverables and 

certification. A first step in the process flow is to define the security product and market 

segment for the product. This will be matched to a Protection Profile (PP) that is used 

for the type of product or requirements for the needed security solution, which is like a 

request for proposal. The next step is to define a Target of Evaluation (TOE). This 

defines the security features that the product supports. A protection profile is created to 

document what the TOE is for the certification. Defining the Security Target (ST) is the 

next step, which defines the security properties of the TOE like functionality and 

assurance components; the ST can target multiple PPs. The ST and implementation 

documentation is provided to an accredited third-party lab. The lab evaluates if the ST 

meets the PP through testing and makes the decision for the evaluation. The lab 

performs two evaluation tests called Security Functional Requirements (SFRs) and 

Security Assurance Requirements (SARs). ST establishes the SFR for the product 

evaluation depending on the individual security features and the SARs for assurance 

claims. The SAR describes the measures taken during development and evaluation to 

ensure that the security functionality claims comply. The lab tests determine if the 

claims being made are valid. The final step is based on the test findings where the lab 

assigns an evaluation assurance level. In the case of higher assurance levels, formal 

evidence must be submitted with the documentation. Depending on the EAL, the time 

and cost can range considerably. Dale, in 2006 presented a briefing that provided the 

following correlation between the levels:  EAL 1 = 0, EAL 2 = $100 to $170k and 4 to 
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6 months; EAL 3 =  $130 to $225K and 6 to 9 months; EAL 4 = $175 to $750k and 7 

to 24 months;  EAL 5 = $750 to $2M and 24 to 48 months [104].  

What does it do well – CC has been recognized internationally as a (ISO -

15408) standard for information technology. This standard can be applied to a number 

of different IT devices, which helps with autonomous robotic systems. A fully 

documented development lifecycle is required, and at higher assurance levels will 

undergo an analysis (protection mechanisms) from an independent 3rd party certified 

lab.  Other standards for safety have been mapped to these assurance levels, as is 

discussed below. 

Shortcomings- Currently CC is being utilized toward IT equipment and will 

need to include complex systems like autonomous robotics systems where not only the 

OS will be considered, but sensors, actuators and AI must be part of the certification 

process. Similar to FIPS, CC may only define a small TOE part of the system and 

potentially expose other parts of the system. Also, like FIPS, this captures a static 

assessment of the TOE and does not account for uncertainty.  

Both FIPS and CC have evolved from a need to assess cryptographic modules 

and are early examples of approaches for scoring certain systems and system 

components. Another linkage is the Orange Book assessment guide for higher levels 

systems. 

FIPS is geared toward cryptographic modules but addresses the tamper 

protection mechanisms. CC, on the other hand, is targeted toward system level 

assurance where tamper protection is included in the higher assurance levels. There is 

a continuous effort in mapping safety and security specifications, since each have 

similarities in the development process, but more importantly security is becoming a 
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requirement. A general specification on, IEC 61508, spans into the medical, machinery, 

automotive, rail, process industry and nuclear domains. The  European Union is taking 

steps toward creating workgroups to address the mapping of safety and security [105].   

Like FIPS and CC, such specifications aid in quantitatively assessing systems and 

components, as they provide a basis for scoring systems and components.    

Since autonomous robotic systems can be incorporated into a number of 

industries, the current safety standards are used to map back to a CC standard. 

Schmittner and Ma presented a paper that discusses the mapping of Automotive Safety 

Integrity Level (ASIL) to CC EAL levels [106] as shown in Table 4-1. 

TABLE 4-1: COMPARISON OF INTEGRITY AND ASSURANCE LEVELS 

ASIL  EAL 

ASIL A ~ EAL3 

ASIL B ~ EAL4 

ASIL C ~ EAL5 

ASIL D ~ EAL 6 

 

Table 4-2 shows the layering of the different safety specifications (automotive, 

general grouping, aviation and rail) and the mapping to Common Criteria for security 

[106] [107] [108].  At the top row is the automotive standard ASIL that Schmittner and 

Ma mapped to CC as shown in Table 4-1, where Quality Management (QM) represents 

that risk is not unreasonable and no safety measure is needed. The mapping also had 

ASIL-D being the highest degree of hazard injury and highest degree of rigor applied 

in the assurance. Mapping ASIL to General and Rail safety standard, Safety Integrity 

Level (SIL) where SIL 1 is the lowest and SIL 4 being highest. These safety standards 

are then mapped to aviation standard D0-178, where Design Assurance Level DAL 

implies A (Catastrophic), B (Hazardous and Sever -Major), C (Major), D (Minor), and 

E (No Effect). These safety standards are aligned with FIPS 140-3 and CC EALs.  CC 



106 

supports in between levels by adding the plus symbol, which means that partial 

categories were fulfilled for a specific category. All these techniques are, at root, doing 

the same thing. The problem is that they do not really capture the details of how a 

system actually operates (complexity/granularity rapidly becomes intractable using this 

methodology). The problem is that the assessment is a bit divorced from reality for an 

autonomous system. If it is available, it is beneficial, but it will not be available for 

everything.  Using it as evidence supporting trust makes sense, but it is only part of the 

solution. 

 

TABLE 4-2: MAPPING SAFETY AND SECURITY SPECIFICATIONS 
Domain Domain Specific Assurance Levels 

Automotive (ISO 26262) QM ASI

L-

A 

ASI

L-B 

ASI

L-C 

ASI

L-

D 

ASI

L-+ 

 

General (IEC-61508) - SIL

-1 

SIL

-2 

SIL

-3 

SIL

-4 

  

Aviation (DO-178/254) DAL-

E 

DA

L-

D 

DA

L-C 

DA

L-B 

DA

L-

A 

  

Railway (CENELEC 

50126/128/129) 

- SIL

1 

SIL

2 

SIL

3 

SIL

4 

  

FIPS 140-3 L1 L2 L3 → L4 → → 

CC (ISO 15408) EAL1 EA

L2 

EA

L3 

EA

L4 

EA

L5 

EA

L6 

EAL7 

 
 

The main value in these approaches is their identification of areas that need to 

be assessed in a comprehensive model for a robotic system, and their proposed 

methodology for assigning qualitative “weights” based on component (system) 

characteristics. Using CC EAL levels 1 to 5 can be looked at for a base set of system 

level metrics to cover the security and potential safety assurance. We also need to 

consider resiliency and how the system will react when threats are encountered. Cho et 

al. discussed resiliency in their TRAM research as these concepts should be considered. 
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4.4 Hardware Level Trust Evaluation 

A robot has many hardware components from processing data to sensing the 

environment. The processing of data is performed by a microprocessor and other 

accelerator devices. Sensors and actuators perform the locomotion, manipulation, and 

navigation functions in a robot. This integration between the hardware components can 

be defined as direct or decoupled communications. This means that in the case of direct 

communications, the data is exchanged between client and server with no blockers, so 

that a response is provided as a direct means of the request, which is similar to a 

command-response manner. In the case of decoupling communications, there is a 

broker as an intermediate step to exchange data for which the widely used protocol is a 

publisher/subscriber format. The broker is the man in the middle that needs to know all 

the entities in the publisher/subscriber network in order to route the messages between 

source and destination. This might impact trust differently as compared to the direct 

communications approach. Sensors provide the basic capabilities for autonomous 

systems to collect data from the environment in order to make decisions. Each hardware 

component is constructed from a single Integrated Circuit (IC) or a set of ICs that 

provide the functionality for data processing, sensing or actuator controller logic. ICs 

are made up of electronic circuits like, transistors, capacitors, resistors, etc., that make 

up the digital or analog functional logic. ICs that are designed for microprocessor, 

graphics engines, or digital processing logic can have many millions of transistors.  In 

order to design these complex ICs, software used to design, develop, and test are called 

Electronic Design Automation (EDA) tools. EDA tools provide a number of 

functionalities like logic synthesis (converts Verilog or Very High-Speed Integrated 

Circuit Hardware Description Language (VHDL) to netlists), place and route (uses 
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netlist to find optimal locations for wires and transistors), simulation (takes the netlist 

as a description of the circuit logic and mimics its behavior), and verification (design 

rules for the netlists). So why is it important to have hardware trust? 

In order to establish a secure foundational base for autonomous robotics systems 

a concept called the hardware root of trust is used to form a trusted base for all secure 

operations. Hardware root of trust is the concept to boot from an immutable point in the 

software stack used on computer systems today. This concept assumes that the 

hardware is free from potential vulnerabilities, but from our point of view hardware 

trust should also look back at the design origin of the ICs. This level of trust needs to 

be considered for the holistic security model, since underlying vulnerabilities like 

trojans and malware can be introduced in the IC design phase. 

A robot’s hardware is likely a combination of COTS and custom electronics 

from a variety of sources.  The components on these electronic assemblies, in turn, 

come from a variety of sources.  We generally assume that the things we buy do what 

they are supposed to do – i.e., an 802.11 chip does 802.11 wireless communications.  If 

it does, we are happy.  However, when evaluating the amount of trust that can be placed 

in a system, we also need to acknowledge that we have no idea what else it might do, 

and if any other possible functions may result in system vulnerabilities. Security at the 

chip level is taken into consideration and finding a set of trust metrics is one component 

to a holistic security architecture.  
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Each of these hardware components is constructed of Integrated Circuits (ICs) 

that may have single purpose or combined purpose where multiple functions are placed 

on a single die. An example of this structure is shown in Figure 4-4 which illustrates an 

example of a common robot sensor, called an inertial measurement unit (IMU).  This 

sensor component includes an ARM-based CPU as well as a motion processing unit, or 

MPU chip. From the block diagram of the MPU, shown on the left of Figure 4-4, we 

see that the MPU is itself a complex system in addition to the ARM CPU.  The arrow 

points to an exploded view of the internal design (consisting of two dies integrated into 

a single package). One die houses a 3-Axis gyroscope and a 3-Axis accelerometer. 

Another die houses a 3-Axis magnetometer, “the MPU-9250 is a 9-axis Motion 

Tracking device that combines a 3-axis gyroscope, 3-axis accelerometer, 3-axis 

magnetometer and a Digital Motion Processor™ (DMP) all in a small 3x3x1mm 

Figure 4-4: IMU board with a motion processing unit 



110 

package” [109] [110]. Thus, even in a simple sensor there may be a large amount of 

complexity in which there are several places where trust can be compromised even in 

a $35 COTS part. 

The process to create an IC is very complex, starting with Electrotonic Design 

Automation (EDA) tools and ending in a foundry. Figure 4-5 [111] shows the top line 

as the design flow and the lower line being potential points in the process to alter or 

inject trojans in the design. Counterfeiting is the illegal forgery of an original part. 

While it poses an economic threat to the legitimate owner of the Intellectual Property 

(IP), and possibly a reliability threat for the component, a true forgery should not be 

any different electrically than the original part. However, since the authorized 

manufacturer of the part being counterfeited has no control over the counterfeit, this 

provides a counterfeiter an opportunity to insert logic that can compromise trust.  These 

are only a couple of possible threats that can occur at different points in the IC lifecycle. 

Acknowledging that there are potential vulnerabilities in the design and 

manufacturing process, there have been a number of initiatives related to trusted IC 

development including the Trusted Foundry—the proposed approach is to split the 

Figure 4-5: The top line is the IC design flow and the bottom line represents the 

injection points. 
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foundry functions into two [112]. One foundry would create the fine layer of transistors 

with detailed leads to connect them and the second vetted foundry would do the less 

fine wiring with connections to the outside world. This split benefits trust in two ways, 

1) not having a single point of knowledge and 2) it creates a second validation point. 

We view the foundry as a supply chain trust metric and focus on the IC design in this 

section. 

To identify methodologies used for evaluating trust at the hardware level, we 

searched for papers focused on BNs, trustworthiness, sensor trust, and IC trust. From 

these parameters the results were categorized into two groupings, the first being the IoT 

and Sensor where Mozzaquatro el al.[113]  and Thamburu el al.[114] discuss IoT 

cybersecurity framework and management system for them. In addition to the first 

grouping is the work from Lu and Cheng [115] and Boudriga [116] that focused on 

identifying bad sensor behavior in a wireless network. The second grouping was related 

to hardware trust metrics, where Kimura presents a technique for determining a design 

integrity trust metric for hardware design by evaluating five different characteristics 

(signal, logical, power, function and structural integrity) [101]. We focus on Kimura’s 

work, since this supports our discussion above with vulnerabilities in the design phase. 

This is important for autonomous system because hidden threats can be exposed at the 

design phase and in the supply chain section below, we cover the foundry portion of 

the IC process as a set of split metrics. 

What is it- Kimura presents quantifying metrics for hardware designs called 

“Development of Trust Metrics for Quantifying Design Integrity and Error 

Implementation Cost". An evaluation of design integrity is accomplished by looking at 

five different characteristic domains (Logical Equivalence, Signal Activity Rate, 
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Structural Architecture, Functional Correctness, and Power Consumption) of the design 

and then aggregating their measured deviations from expected characteristics together 

to arrive at a single value Design Integrity (DI) metric. This technique can be leveraged 

in two ways, one being a metric for design integrity used by the IC provider to ensure 

that no unauthorized functions were introduced when the device progressed through 

foundry and also allows validating the output from the foundry. A consumer of the IC 

can use the design integrity metrics to determine the differences between actual and 

expected designs by obtaining the needed information. In each case the Design Integrity 

approach provides a metric to measure the quality of the design and a methodology to 

reduce potential exposure to IC threats.  An Error Implementation Cost (EIC) measure 

is developed as a technique to quantify errors and to allow error ranking and rating. A 

final Trust Measure metric is calculated that includes an estimate of design’s integrity 

and reference design quality or characteristics. In the case of the IC provider, they 

would all have content as an output of the product lifecycle, and in the case of the IC 

consumer, they would have limited information, so the reference quality is a variable 

to address the subcategory content. 

How does it work- Figure 4-6 [117] shows the breakdown into the sub layers 

of the design. The Design Integrity (DI) trust metric accounts for the signal activity rate, 

logical equivalence, power consumption, functional correctness, and structural analysis 

[118]. The integrity of a design can be defined as the amount of deviation observed 

between reference and sample designs. For the case of black box IP, a reference 

specification is usually provided, such that a behavioral model can be constructed, or 

layout reverse engineering conversion tools can be used to derive netlists.  
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• Signal activity rate is the number of times the evaluated element changes state 

over the duration of a given test scheme. Signal rate evaluates data, I/O and logic 

signals using equation 4-1. 

 

 
SRintegrity =

SRexpected − ΔSRdist

SRexpected
 

(4-1) 

  
 

where 0 ≤ 𝑆𝑅𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 ≤ 1 and the differences between actual and expected is the 

Δ𝑆𝑅𝑑𝑖𝑠𝑡 value. This can be used by either the provider or consumer of the IC. 

 

• Logical equivalence is the degree to which the logic state points of the design can 

be compared to the original reference. This is best suited for the IC consumer case 

where they may have access to a netlist to ensure that they have a clean chip. A tool 

like Cadence Conformal can be used to check the difference between netlists and 

depending on the differences result, this is the deviation score. LEintegrity can now be 

expressed as the ratio of Equivalent Points to the Total Comparison Points as shown 

in equation 4-2. 

 

 
LEintegrity =

PointsEQ

PointsCOMPARED
 (4-2) 

 

  where 0 ≤ 𝐿𝐸integrity ≤ 1 

 

• Power consumption measures how closely the actual design aligns to the original 

reference from a power perspective. Power consumption is comparing the 

simulation tests to actual tests for each power test point using equation 4-3. 

 

 
Pintegrity =

Pexpected − ΔPdist

Pexpected
 

(4-3) 

  
 

where that 0 ≤ 𝑃𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 ≤ 1 and the differences between actual and expected is 

the 𝛥𝑃𝑑𝑖𝑠𝑡 value. This can be used by either the provider or consumer of the IC. 

 

• Functional correctness is the difference between the actual and expected results in 

order to verify correct design. Tests can range from exhaustive testing to ones that 

only provide corner and basic coverage. Fintegrity, is evaluated by observing the 

number of errors that occur, εobserved, for a given verification test scheme and 

TPtotal is the total verification test points used for verifying the design 

functionality, this is shown in equation 4-4. 

 

 
Fintegrity =

TPtotal − εobserved

TPtotal
 (4-4) 

 

where 0 ≤ 𝐹𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 ≤ 1. This can be used by either the provider or consumer of 

the IC. 



114 

 

• Structural analysis looks at the architectural components regarding gate level net 

lists for comparison and/or leaf cells using equation 4-5,  

 

 𝑆integrity = 1 − ΔS (4-5) 

  
 

where Δ𝑆 is the differences between actual and expected number of modifications 

found. This can be used by either the provider or consumer of the IC. 
 

 

The integrity of a design can be defined as the amount of deviation observed in 

a one-to-one mapping for each of the subcategories defined above where the actual vs 

expected is compared to the reference specifications, simulation, and testing results.  In 

Kimura’s [118] the subcategories are analyzed individually and normalized, then 

accumulated together, for a single set of metrics. The DI trust metric considers the 

design integrity plus the reference design quality. The reference design quality is the 

set of design artifacts that are obtained. These can range from fully synthesized 

behavioral models, being the highest reference confidence, to the data sheet, being the 

lowest.  Figure 4-7 shows the trust metric ranges within 0 to .19 being the lowest range 

and with 1 the highest. Equation 4-6 is used to calculate the Trust Measure. 

 

 TM = DI ∗ R (4-6)  

Figure 4-6: Breaking down the design into subcategories 
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where DI is the Design Integrity and R is the Reference Design Quality. 
 

 

What does it do well – From the design validation point of view these 

subcategories represent the areas that are prone to the injection type of attacks and 

forensic analysis for counterfeits. Therefore, having a trust metric based on hardware 

design properties provides a degree of assurance that an IC has been validated between 

the expected design/simulation and the as built or actual. As shown in Table 4-3 [118] 

where the test cases of the five subcategories are quantified, the Design Integrity metric 

is calculated and the Figure of Deviation (FOD) is calculated. The top and bottom boxes 

are inductions that no malice hardware injected faults were detected, the orange one 

being all signal bits being inverted on the output and the two yellow ones being a 

counter added to trigger a XOR operation. The other yellow one being an add function 

with a bit-wise inverter. These were determined by having a test fixture where the 

expected results were compared to the actual ones. 

Figure 4-7: Trust scaling for hardware components 
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This furthers the need to have the foundry be represented in the supply chain 

metrics that cover the other types of attacks that were mentioned above. The focus of 

IC design and accelerators, like FPGAs, are most prominent in autonomous robotic 

systems. The use of trust metrics for design integrity is vital for the holistic security 

model. 

Shortcomings - While the set of values shown in Figure 4-7 represents a Trust 

Metric for hardware design quality, it only covers the logic design part of the process – 

it does not address the foundry or the design flaw costs that were also discussed in 

Kimura[118].  As stated, before the IC provider has all the knowledge and artifacts from 

the development process and this methodology can be applied in house, the consumer 

of the IC will need to be more resourceful in obtaining knowledge about the design. 

In general, relatively few entities are designing the actual components, and more 

are using COTS devices.  Thus, the importance of obtaining components from sources 

with integrity increases.  In the example of the IMU, a complete board is provided by 

Sparkfun that may contain components of unknown provenance or a potential risk for 

compromise in the signal paths. Another potential danger in using a quick to get, cheap 

and off the shelf component, is that it may work in the prototype phase as desired but 

TABLE 4-3: TEST CASES FOR THE DESIGN INTEGRITY ANALYSIS 
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using the prototype component in a production phase will increase the risk of a flaw, 

like a Sparkfun board. This causes reliability issues and may expose inherent security 

flaws. As part of the hardware component metrics, the need to incorporate the loss and 

reward values must also be factored in an overall trust model. These two values are 

described in more detail in the software section. The trust scaling does provide a good 

set of metrics for the hardware components because it focuses on the design elements. 

4.5 Software Level Trust Evaluation 

To identify methodologies used for evaluating trust at the software level, we 

searched for papers focused on BNs, trustworthiness, and security. From these 

parameters the results are categorized into two groupings, standards and the usage of 

the Common Vulnerability Scoring System (CVSS). We highlight some of the software 

search results that are attractive to incorporate into our holistic security model. 

Software in a robotic system extends from firmware to kernel/Operating System 

(OS) into middleware and application layers. Software can also be embedded into 

controllers or using device driver logic within the OS to enable hardware components 

and can be found embedded in sensors (such as the MPU-9250 mentioned above) or 

actuators. Software need not only be logically correct but may also need to support 

temporal constraints. This means that the OS supports a preemptive scheduling on time-

bounded tasks, so that the task is completed within a time constraint. The time bound 

processing is called real-time, and this term can be further broken down into hard or 

soft, where in the case of hard real-time, there is no tolerance for a delayed response 

and in the case of soft, there are tolerances. Software has far reaching effects at different 

levels of the stack; therefore, security for it must be taken into consideration. 
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Software metrics provide a quantitative means to assess or measure the 

efficiencies in the software development lifecycle, where requirements, design, 

implementation, testing, and documentation are the different phases. We focus on the 

implementation since code is an output of this phase. The remaining phases will be 

considered as part of the supplier chain. The reason why software security metrics are 

important at the implementation phase is because the code exposes the underlying 

vulnerabilities. Metrics are used to assess the software assurance against 

vulnerabilities/weakness from an attack and finding a set of trust metrics is another 

component to a holistic security architecture. 

As an example, consider that the software running on any given robot today is 

likely a combination of open source and COTS code modules obtained from a variety 

of public and private sources. For example, OpenSSL is a well-established 

cryptographic library that provides a number of data protecting functions that are 

embedded within many operating systems.  If it works as expected in a system, we tend 

to think it is ok, providing the level of security the industry associates with OpenSSL.  

However, an important assumption underlying the security of communications using 

OpenSSL is an assurance of the physical security of trusted nodes.  For example, in 

Chapter 3 I demonstrated a spy process that can capture encrypted data, as well as the 

necessary decryption keys, and send them to a remote service without the user knowing 

their system has been compromised. This demonstrates that even a well-known library, 

like OpenSSL, can be compromised if the physical hardware is compromised.  Since in 

an autonomous robotic system nodes may be captured, an assumption of physical 

security may be invalid [3].  
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In our research results we came across a number of standards that define metrics 

for vulnerabilities, whether in misuse, misconfiguration, or in a weakness of 

implementation. These are described as follows Common Vulnerability Scoring System 

(CVSS), Common Configuration Scoring System (CCSS), Common Misuse Scoring 

System (CMSS), and Common Weakness Scoring System (CWSS). Since these are 

derived from the CVSS standard we will discuss these as a group and will compare 

them below. 

 

 

 

What is it - We first start with CVSS, which is the main standard related to the 

National Vulnerability Database (NVD) that is a repository which provides Common 

Vulnerabilities and Exposure (CVE) entries. The Common Vulnerability Scoring 

System is a standard for assessing known vulnerabilities [119]. The next standard CCSS 

[120] is derived from CVSS but deals with the misconfiguration class of vulnerabilities. 

Vulnerabilities from misconfiguration can be described as a software feature that 

enables changing settings. For example, changing access control settings on a directory 

Figure 4-8: Comparison of CVSS, CCSS, CMSS and CWSS scoring specifications 
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where Read/Write permission is given to other/everyone via file manager can leave 

sensitive data exposed, if not used properly. This type of security exposure is deemed 

a configuration vulnerability.  Like CCSS, CMSS [121] is derived from CVSS but deals 

with the misuse class of vulnerabilities.  A misuse vulnerability is built into the software 

as a feature where the intended feature can expose a security vulnerability. For example, 

a web link can lead to a malicious site in a messaging application by clicking on the 

link. The software design feature was to allow a user to follow a link, but not protect 

against potential exploits. Our final standard, called CWSS is also derived from CVSS 

but deals with the weakness class of vulnerabilities. CWSS is a part of the Common 

Weakness Enumeration (CWE) project, co-sponsored by the Software Assurance 

program in the office of Cybersecurity and Communications of the U.S. Department of 

Homeland Security (DHS) [122]. An example of a weakness is given by CWE-290 

(authentication bypass spoofing), which is caused by an improperly implemented 

authentication scheme.  A spoofing weakness can be caused by only checking the IP 

address of a client that can be spoofed by the attacker and not using a DNS lookup as 

the source. A comparison between each of the outlined specifications is that CVSS is 

based on a vulnerability that is known and CWSS can be used as an assessment metric 

for software assurance. 

How does it work – Basically each standard has three groups called Base, 

Temporal, or Attack Surface, which is unique to CWSS and Environmental. The Base 

Group has two metric subgroups: exploitability defines the complexity to achieve the 

exploit and the impact defines the result of the exploit. The Temporal group defines the 

time dependent attributes for the exploit in CVSS, CCSS and CMSS. In CWSS instead 

of having the Base/Exploitability and Temporal categories, some elements are placed 
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into an Attack Surface group. The Environment group defines the surrounding specific 

attributes for the exploit.  In the case of CCSS and CMSS, both Perceived Target Value 

and Collateral Damage Potential are defined whereas in CWSS a business impact is 

specified in the Environmental Group. Figure 4-8 shows the comparison of the four 

different types of scoring specifications overlaid on to each other. 

Each standard has a set of equations for calculating a score and an example of a 

known vulnerability using the CVSS scoring. As discussed earlier the National 

Vulnerability Database (NVD) is a repository which provides CVSS base metrics on 

Common Vulnerabilities and Exposure (CVE) entries. Once a vulnerability is 

discovered, it is assigned a unique CVE Identifier. In this example, the CVE-2019-

15786 Detail ROBOTIS Dynamixel SDK through 3.7.11 has a buffer overflow via a 

large rxpacket is given with the following parameters. 

Using the following vector /AV: N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H, a base 

score is calculated with a 9.8 result being critical. This vector is broken down into the 

following structure where: 

 

• Attack Vector = Network 

• Attack Complexity = Low, Privileges Required = None 

• User Interaction = None 

• Scope = Unchanged 

• Confidentially = High 

• Integrity = High 

• Availability = H 

 

A calculator can be used to obtain the same value score with these parameters. 

The specification, examples and calculator are located at the FIRST website [119], the 

calculator breaks down the three groups into a set of values where metrics are assigned 
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and an overall score is the result. The scores rank from 1 to 10, with 10 being a high 

severity. For CVSS, the base score is only used in the CVE and NDS entries. 

What does it do well – CVSS provides a set of metrics for known 

vulnerabilities and is used in many types of analysis tools we found in our search. The 

base impact set of metrics are common values that were used in most of our research 

results. As for CCSS and CMSS, they provide a set of metrics for Collateral Damage 

Potential and the Perceived Target Value. These two metrics represent the damage 

caused by an attack and the reward. These values provide insight into the assessment 

of an attacker’s goals and should be included as part of the trust metric for the different 

layers of an autonomous robotic system. Finally, CWSS provides a set of metrics for 

potential weakness in software and hardware that can be used for software assurance. 

In fact, a number of software tools are using CWE metrics for static and dynamic 

analysis and the NVD is also using this metric in conjunction with CVEs. CWSS 

provides a set of metrics that can be used in the software layers for the holistic security 

metrics. 

Shortcomings – While CVSS and CWSS are targeted toward conventional 

known software vulnerabilities, autonomous robotic systems are a new topic for this 

standard. However, limited vulnerabilities have been found using this technique.  As 

for CCSS and CMSS, while these contributing type vulnerabilities can be found in the 

CWSS and CVSS as the two complementary specifications, CCSS and MCSS maybe 

redundant.  

From the number of categories and sub-categories from each of the scoring 

specifications, it seems that impact, collateral damage, and perceived target value are 

the three most important attributes for calculating a trust metric. The other categories 
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and sub-categories are attributes related to supporting/describing the exploit as to when 

and where. 

From the CWSS specification, technical impact scoring provides a better set of 

definitions with their corresponding coefficients that are used in the equations to derive 

the category numerical value for assessment (Critical, High , Medium, low and None 

(1, .9, .6, .3 and 0) [122]. 

From CCSS and CMSS the collateral damage provides coefficient metrics that 

are: none: 1, low: 1.25, low-medium: 1.5, medium-high:1.75 and high: 2 [120] [121].  

From CCSS and CMSS the perceived target value metrics are: low: 0.8, 

medium: 1.0, and high: 1.2 [120] [121]. 

Several articles were found that used attack graphs and utilized CVSS metrics 

for determining security flaw vulnerabilities. These articles picked a small portion of 

the system or looked at a network configuration that was software centric. Current 

approaches of combining CVSS scores have at least two limitations: they lack support 

for dependency relationships between vulnerabilities, meaning they may be ignored or 

modeled in an illogical way. The other limitation is that they focus on successful attack 

probabilities only (Cheng et al.)[123].    

Frigault et al.[124] and Xie et al.[125], present two techniques where the CVSS 

scores are used as metric values in a BN. The CVSS scores and BN usage model are 

similar to the technique from Shetty as discussed earlier. Xie et al., extends the usage 

model by incorporating noisy gates to assist in uncertainty in real-time security analysis. 

Each node in a BN requires a distribution which is conditioned on its parents. To model 

the child node’s effects from each independent parent node, a combined influence can 
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be achieved by using logic gates (e.g., AND, OR and etc.). The term noisy reflects the 

fact that the logic gate combination is probabilistic and not deterministic. 

Frigault et al., presents a technique to measure the overall network security by 

combining CVSS, attack graph, and BN. This technique is further extended into a 

Dynamic BN where temporal events are represented in the model. 

What is it – An overall metric is developed for network security using a set of 

CVSS base scores that are converted into probabilities which are assigned to the paths 

in an attack graph for an overall assessment value. Both the attack graph properties and 

probabilities are used in a BN and are extended into a DBN for time-based events. 

How does it work – An annotated attack graph is first generated and then a BN 

is derived from the data in the attack graph. The nodes of the BN represent exploits and 

conditions derived from the attack graph. Each node represents a probability derived 

from the CVSS score. Conditional Probability Tables (CPT) represent the causal 

relationships between exploits and conditions. A BN inference model can reason about 

if an attacker can reach their goal by any condition. A DBN was also presented that 

utilized the temporal scores in CVSS for the vulnerability, which showed the time-

based activities in exploit maturity, remediation level, and report confidence [124]. 

What does it do well – This approach combines the CVSS (for known attack 

vectors and paths taken) metrics into probabilities, so that CPT are constructed and 

utilized in the BN, then extended into a DBN. The use of causal inference is a good 

method to understand relationships and potential uncertainty. 

Shortcomings – The scoring mechanism is based on a known attack graph and 

CVSS score metric but does not consider the attacker’s experience/knowledge about 

the environment. Using CVSS as the only metric is one method of achieving the 
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construction of the BN. This is limited to one data point that states an existing exploit 

is already found in the NVD and new ones are unaccounted. Since robotic systems are 

a new domain, the entries in the NVD are limited. 

Xie et al., presents a technique that extends the CVSS scores and BN usage 

model by incorporating noisy gates to assist in uncertainty in real-time security analysis. 

Real-time security analysis in this context is related to observations from an Intrusion 

Detection System (IDS) sensor providing false or negative readings or a file system 

integrity checker such as Tripwire that alerts to a file being changed. The term 

uncertainty is related to an attack being successful, the uncertainty of an attacker’s path 

choice, and/or the uncertainty from imperfect IDS sensors. 

What is it - The CVSS scoring metrics allow security analysis tools to define 

potential exploits in the pre-deployment phase, but how does one account for 

uncertainties? A BN model is presented that separates three uncertainties in real-time 

security analysis: the uncertainty on attack success, the uncertainty of attacker choice, 

and the uncertainty from imperfect IDS sensors. 

How does it work – Using CVSS metric scores (Base and exploit in the 

temporal category), the CPT are structured from these values. An attack from an 

attacker is defined as the physical path (attacks can only occur by following network 

connectivity and reachability; this is the physical limit for attack) and the attack 

structure (attacks can only happen by exploiting some vulnerability, with pre-conditions 

enabling the attacks and post-conditions as the consequence (effect)). A tripwire node 

is created to sense the detection of an attack, for example from an IDS sensor.  The use 

of  the Noisy AND/OR logic are utilized for the conditional events that the attacker 

must take in order to achieve the vulnerability or goal [125].  
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What does it do well – The use of tripwire and Noisy AND/OR logic is used 

for the conditional events. The combination of these two logics enables switching for 

real-time events/analysis. These two logics can be extended into the autonomous 

robotic layers of the BN for triggering on time events. 

Shortcomings - Real-time security analysis is a far more imprecise process than 

deterministic reasoning. We do not know the attacker’s choices, thus there is the 

uncertainty from unknown attacker behaviors. Cyber-attacks are not always guaranteed 

to succeed, thus there is the uncertainty from the imperfect nature of exploits. The 

defender’s observations on potential attack activities are limited, and as a result, we 

have the uncertainty from false positives and false negatives of IDS sensors [125]. 

Our search results showed that these techniques provide a basis for the 

assignment of scores, and in aggregate, they provide coverage of many things important 

to score. They miss a few things that can be easily added, including the need to 

incorporate loss and reward values into their security assessments. The discussion of 

asset value and loss were represented in Cheng et al.[126] with regard to security 

measurements for situation aware cyberspace. We view that loss and reward should be 

part of the risk calculations to provide a better qualitative assessment. By capturing the 

coefficients for impact, cost of loss and reward value, these will be utilized in a trust 

model that represents the software components related issues. For those things that need 

to be added, there is not enough experience with robotic systems to form a basis for 

assignment of scores, but the methodology is helpful. 
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4.6 Cognitive/AI Level Trust Evaluation 

An autonomous robotic system may have one or more AI algorithms running 

on its system for it to operate within an environment that has many uncertainties. Often, 

the robot must learn and adapt to the stimuli from the environment. For example, having 

an autonomous robot in the household as a caregiver aide or assistant. An adversarial 

attack can alter the robot’s behavior by mischaracterizing objects like medicine or 

producing wrong monitoring results for the patient. This is only a small window of the 

possibilities of scenarios where an AI is being deployed and having assurance about the 

implementation is needed, especially in critical and safety applications. 

To identify methodologies used for evaluating trust at the Cognitive or AI level, 

we searched for papers focused on cognitive, trust metrics, BNs, and AI robustness. 

From these parameters the results were categorized into three groupings: standards 

[127] [128], techniques for detecting adversarial attacks [129]-[130] and accuracy vs 

adversarial training. We highlight some of the Cognitive/AI search results that are 

attractive to incorporate into our holistic security model. AI certainly is not new; it has 

been around since the mid-1950s when John McCarthy used the term Artificial 

Intelligence and invented the LISP programming language. The path of AI has taken 

different twists along the way with expert rule base systems as one form, to neural 

networks that mimic the brain, and currently the combination of these two called 

symbolic AI. In order to handle complex data for AI models to be useful the community 

is leveraging Convolution Neural Networks (CNNs). CNNs use a form of deep learning 

that is targeted toward image and natural language domains. Reinforcement learning is 

another form of Deep Neural Networks (DNN)s targeted toward path planning, while 

perception and motion are often associated with autonomous mobile platforms. The 
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new focus of research is AI adversarial attacks, the classification of data being 

poisoned, evasion attacks, and black box attacks to name a few. For every attack, a 

remedy may arise to counter, but this takes time and there needs to be a method to 

identify these types of attacks. In the case of autonomous mobile robots, an AI/learning 

layer opens up new types of attack strategies that more conventional attacks do not.  

AI logic often comes from open or COTS sources and determining the 

robustness to adversarial attacks needs to be considered for the system trust model. If 

these AI implementations have not been subjected to some adversarial data training, the 

lack of testing with different types of data sets will lead to an untrustworthy 

implementation. The need for a robustness metric is required, so that certain 

implementations can be used in high assurance scenarios. Adversarial attacks have been 

discussed in the literature related to poison (tainting the training data), white/black/grey 

box (using physical and alternative training models), and evasion (misclassification by 

spoofing).  A large portion of research has been geared toward image-based data sets; 

however, testing should be expanded into other domains. Since AI robustness and 

adversarial attacks are new, our research has come up with a mixed bag of results that 

are grouped into possible solutions: the first group is adding adversarial data to the 

training cycle, the second group is using a value or utility function to assist in a distance 

measurement functions, and the third group is using linear bounds as constraints.  We 

first describe the types of attacks to provide an overview for why AI robustness metrics 

are needed, since this is an evolving field. 

An example of a poison type of attack is in spam filters, where emails are filtered 

for characteristics of being spam. What looks like a normal email is used to train the 

spam filter’s algorithm to include the extra words to be recognized in its knowledge 
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base. This process then causes the spam filter to flip what would normally be seen as a 

good email into a bad one. 

White, black, and grey box attacks are related to an adversary having different 

levels of knowledge about the system. In the case of white box, the adversary would 

have full disclosure about the algorithm, including the weights and all data used during 

training. An example of a white box attack is in object recognition systems like 

handwritten symbols in an image where a 1 can be recognized to be a 7 with small 

modification of the image. A black box case is where the adversary has no knowledge 

of the algorithm or data. An example of a black box attack is subjecting the model being 

attacked to different inputs and acquiring the outputs, the adversarial knowledge that is 

obtained can be transferred into a substitute model for further exploitation.  In the case 

of grey box attacks, the perturbation of a pixel can cause misclassification of an image 

like in the stop sign example discussed below.  

A simple case of evasion attacks is to manipulate the test data so slightly that it 

does not change the classification boundary and in the spam filter case the email is 

obfuscated so that it passes detection. These are only a few examples of adversarial 

attacks.  

To assist in adversarial defenses, DARPA has a new program called 

Guaranteeing AI Robustness against Deception (GARD) that was announced in early 

2019. GARD goals are to come up with metrics that measure adversarial perturbation 

and the capability to defend against several attacks. Figure 4-9 shows a cycle of attacks 

and resulting defenses but points out that these defenses, do not generalize to new 

attacks. For example, each attack corresponds to a single defense, represented in Figure 
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4-9, where the bottom left-hand side starts with an attack and right-hand side is the 

related defense  [131]. 

 

 

Figure 4-9: Single Attack vs Defense for Machine Learning 

 

Machine learning classifiers are tuned to make decisions from training data, like 

an algorithm being able to recognize a stop sign from an image data set. There are 

different types of classifiers that span predictive, binary, nearest neighbor, support 

vector machine, and deep learning to name a few. These classifiers create boundary 

lines from the data they receive that helps recognize the object that it was trained for. 

Adversarial perturbation changes the boundary line, and this leads to 
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mischaracterization of the object. This is seen in Figure 4-10 where the tight boundary 

that distinguishes between the data types are shown  [131]. 

Figure 4-10: Creating defense boundaries 

 

 An adversarial example is recognizing a stop sign, but when the sign is slightly 

changed a mischaracterization occurs and, in some cases, causes grave danger. In 

Figure 4-11 a normal stop sign is seen on the left, but, on the right, slightly changing 

the text on the sign causes a resulting mischaracterization of the sign as indicating a 45-

mph speed limit [132]. 

 

Figure 4-11: Altered text on stop sign 
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Another adversarial example is targeting neural network policies in 

reinforcement learning called adversarial policy. The policy is a set of action rules the 

agent can take as a function of state and environment.  This policy causes the multi-

agent environment to generate seemingly random and uncoordinated behavior. This 

behavior can be seen in Figure 4-12 where the victim (in blue) is against a normal 

opponent on the top and an adversarial opponent on the bottom [133]. 

 

Figure 4-12: Adversarial policy in deep reinforcement learning 

 

Based on the above we take a deeper look at these adversarial examples. In the 

stop sign example shown in Figure 4-11, the left-hand side is recognized as x and 

classified originally as target t = arg-max F(x). The right-hand side is a new desired 

target where t′ not equal to t. This is called x′ a targeted adversarial example if arg-max 

F(x′) =  t′ and x′ is close to x  given a distance metric [134].  Another type of adversarial 

example is called the Fast Gradient Method (FGM), which is a one-step algorithm that 

takes a single step in the direction of the gradient. 𝑥′ = 𝐹𝐺𝑀(𝑥) = 𝑥  +  ∈

𝑠𝑖𝑔𝑛(∇x  𝐽(𝜃,𝑥,𝑦)), where θ is the parameters of a model, x is the input to the model, y 

is the targets associated with x, J(θ,x,y) is the cost used to train the neural network and 
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∈ controls the step size taken [135]. The cost function can be linearized around the 

current value of θ and obtain an optimal max-norm constrained perturbation. To 

determine where boundary lines are placed, a number of techniques are used for 

distance metrics in order to differentiate between x and x’, original and perturbed data.  

We highlight three techniques, first is Minkowski’s general formula, second is Lipchitz 

continuity and the third is an activation function for finding or determining distance 

functions. 

The minimum distance of a misclassified nearby adversarial example to x is the 

minimum adversarial distortion required to alter the target model’s prediction, which is 

referred to as the lower bound. A certified boundary guarantees the region around x that 

the classifier decision cannot be influenced from all types of perturbations in that 

region. In other words, the robustness is being able to detect perturbation as close to x 

as possible and in some cases, this is an approximation or an exact guarantee to 

determining the lower boundary point. In order to evaluate the distance, sometimes 

called distortion or error between x’ and x, the generalized Minkowski’s formula is 

used to calculate the distance metric within p-norm space. For p-norm when p=1, this 

is a Manhattan distance, when p=2 is the Euclidean distance, and p=∞ a Chebyshev 

distance. This is shown in Figure 4-13 below. 

𝐷(𝑋, 𝑌) = (∑|𝑥𝑖−𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝
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Figure 4-13: Minkowski's distance metric for p-norm 

 

Another technique that is used is called the Lipchitz continuity for determining 

distortion between measured space. The equation of | f (X1 – f (X2) | ≤ K | X1 – X2 |, 

where two metric spaces are given and if there exists a real constant where K ≥ 0, for 

all x1 and x2 , K is referred to the Lipchitz constant.  

The activation function technique is when a neuron or node fires in a Neural 

Network (NN) that allows the input data to pass (directly or transformed) to the output 

stage depending on the layer depth. Activation functions can be linear or non-linear, 

where the latter can handle more complex data types. Rectified Linear Unit (ReLU), 

hyperbolic tangent, sigmoid, and arctan are several types of activation functions. In 

relations to digital circuits, this is the rising edge that turns a gate on or off, but with 

different ranges and signal characteristics. NNs have building blocks that are used to 

transform data from input to output nodes or to different layers. A Pooling block 

reduces the number of parameters and computation in the network by reducing the 

spatial size of the data represented. A Residual block feeds the next layer but also 

supports a jump in layers from 2 to 3 hops away and a Batch normalization blocks 

provides a standardized technique for inputs to the next layer, so that a reduction in 

training cycles and learning process can be achieved. A newer technique is used by 

applying two linear bounds on each activation function where the output of each layer 
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is constrained by these two terms. We present some of our search results that utilize 

some of these techniques to determine an approach to finding a robustness metric in 

three different groupings. 

One group tried to dwarf adversarial attacks by increasing the accuracy of the 

model using the p norms, so that both adversarial and training data combined would be 

used to train the model. But the findings from Tsipras et al.[136], Nakkiran[137], and 

Su et al.[138] pointed out the need to differentiate between the two types of training 

(classifier and adversarial) and not make the classifier so tuned to adversarial data, 

because the model’s overall accuracy decreases.  

In another group of findings, the authors Weng et al.[139] derived their work 

from Hein and Andriushchenko’s[140] using Extreme Value  vs Mean Value Theory 

and Lipchitz continuity for determining lower and upper bound approximation for 

adversarial detection. Weng et al, presents the Cross Lipschitz Extreme Value for 

nEtwork Robustness (CLEVER) for determining a robustness metric.  

What is it – CLEVER is a technique for determining the lower bound of a 

neural network that achieves a robustness metric against adversarial attacks. In other 

words, it determines the minimal distortion level to achieve an adversarial attack from 

the original data. 

How does it work – This is the intuitive explanation of how finding the lower 

bound is performed using Lipchitz continuity in the paper. In Figure 4-14 the function 

value g(x) = fc(x) - fj(x) near point x0 is inside a double cone formed by two lines 

passing (x0; g(x0)) and with slopes equal to ± Lq, where Lq is the (local) Lipschitz 

constant of g(x) near x0. This means that the function value of g(x) around x0, for 

example g(x0 + δ) is bounded by g(x0) given δ (adversarial perturbation) and Lq 
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(Lipschitz constant).  When g(x0 + δ) is decreased to 0, an adversarial example is found 

and the minimal change of δ is the distortion difference between adversarial example 

and original data) is given by g(x0)/ Lq [139]. The cross Lipschitz constant is the cross 

terms fc(x) - fj(x) of the function. 

 

 
Figure 4-14: Lower bound explanation 

 

There are two algorithms that are defined the first algorithm is for targeted 

attacks and the second is the same except for removing the target class that suites the 

non-targeted attacks. The goal of the targeted attack is to make the model misclassify 

by predicting the adversarial example as the intended target class instead of the true 

class. The untargeted attack does not have a target class, but instead it tries to make the 

target model misclassify by predicting the adversarial example as a class, rather than 

the original class. Targeted was defined as three different classes called random target, 

least likely, and top-2. The random target class is defined as randomly selecting a target. 

The least likely class is the lowest probability when predicting the original example. 

The top-2 class is the highest probability except for the true class, which is usually the 

easiest target to attack. Basically, sample a set of points within a circle boundary using 
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Lp=2 as in step 4, then find the max value and store that in S for each group of points 

or batch. In step 9, a maximum likelihood estimation is performed on the reverse of the 

Weibull distribution parameters (a Cumulative Distribution Function (CDF) has a finite 

right endpoint (denoted as aw). The right endpoint reveals the upper limit of the 

distribution, known as the extreme value. This equation is the inverse Weibull 

distribution, where G(y) is the CDF of max y’s or limit distribution and aw, bw and 𝑐𝑤 

are the location, scale and shape parameters, respectively.  

G(y) = exp {− (
aw−y

bw
)

cw

}, where y < aw and when y > aw, it becomes 1.  

The extreme value is exactly the unknown local cross Lipschitz constant [139].  

 

To illustrate this further Figure 4-15 [139] is a two-dimensional space with three 

hyperplanes and the two balls (p norm) are bounded by a radius. The three hyperplanes 

wix+bi = 0 divide the space into seven regions (with different colors). The red dash line 
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encloses the ball B2(x0;R1) and the blue dash line encloses a larger ball B2(x0;R2). A 

sampling is done within the two ball spheres as to finding the max y’s. 

 

Figure 4-15: Illustration of the algorithm 

 

What does it do well – CLEVER provides a means to approximate a formal 

guarantee on AI robustness by finding the lower bound on an implementation for 

detecting adversarial perturbation. This is useful in understanding the security limits of 

AI algorithms that run on autonomous robotic systems. CLEVER is attack-agnostic, 

works for large neural networks, and it is computationally feasible.                                                                                                                                                                                                          

Shortcomings – CLEVER was validated using image data and tested against a 

few other adversarial examples. This small sampling of tests needs to be expanded into 

a larger test space for this to be considered a generalized solution. However, it does 

provide a step in the right direction to a qualitative metric for AI robustness against 

adversarial attacks. 

A third group leveraged the work of CLEVER as an approximation for defining 

a lower bound on adversarial perturbation detection, where CROWN (another detection 

technique) extends to create an exact certification for general activation functions in 
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DNN. This same research group proposes the CNN-Cert, a certifying framework to 

accommodate general DNNs [141]. This technique focuses on using two linear bounds 

constrained on activation functions for each output layer. 

What is it – Boopathy et al., presents a framework for certifying robustness in 

neural networks with guarantees on adversarial attack detection. This framework is 

called CNN-Cert for Convolution Neutral Networks, but the authors state that it can 

support a number of other architectures including max-pooling layers, batch 

normalization, and residual blocks, as well as general activation functions [141]. 

How does it work – Let f(x) be a neural network classifier function and x0 be 

an input data point. They use σ (·) to denote the coordinate-wise activation function in 

the neural networks. Some popular choices of σ include ReLU:σ(y) =max(y,0), 

hyperbolic tangent: σ(y) =  tanh(y), sigmoid: σ(y) = 1/(1+e−y) and arctan: σ(y) = 

tan−1(y). The symbol ∗ denotes the convolution operation and Φr (x) denotes the output 

of r-th layer building block, which is a function of an input x. Also, denote Φr−1 as the 

input of activation layer. The superscripts denote index of layers and subscripts to 

denote upper bound (U), lower bound(L). The general form of the equation is as 

follows: 

𝐴𝐿
0 ∗ 𝑥 + 𝐵𝐿

0  ≤  𝚽𝐫(𝐱)  ≤  𝐴𝑈
0 ∗ 𝑥 + 𝐵𝑈

0  , where 𝐴𝑈
𝑟 , 𝐵𝑈,

𝑟  𝐴𝐿
𝑟 , 𝐵𝐿,

𝑟  are constant 

tensors related to weights and bias as well as the corresponding parameters in the linear 

bounds of each neuron [141]. This general form is applied to the different residual 

blocks, pooling layers, and batch normalization layers by deriving the linear upper and 

lower bounds using the right-hand and left-hand sides of the general equation. CNN-
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Cert was tested against different image datasets using MMIST and CIFAR (consists of 

60000 32x32 color images in 10 classes) using 4 to 7 layers and different filters. 

What does it do well – CNN-Cert provides a guarantee to finding a certifying 

robustness region or the minimal distortion detection using linear bounds on outputs. 

CNN-Cert was tested against different image datasets using MMIST and CIFAR using 

4 to 7 layers and different filters with > 11% improvement in performance as compared 

to CLEVER. Since CNN is a form of DNN, this technique can be applied to different 

autonomous robotic algorithms to determine the certified region or lower bound. 

Shortcomings – Similar to the comments above on CLEVER, since this is from 

the same research group. 

From the two different approaches for determining a certified region for 

detecting adversarial perturbation, one being an approximation and the other being an 

exact guarantee in AI DNNs, we can derive a rating for AI implementations.  By using 

these lower boundary techniques, a minimum distortion level is established. From this 

point we can define ranges for rating AI implementations against these known values. 

To better illustrate this concept the following Figure 4-16 shows a center region as equal 

to the certified region, and each subsequent ring is corelated to the rating or strength of 

the AI implementation using a distance function. Let x be the certified region and y be 

the AI implementation, we can use the p-norm distance equation to determine the 

differences for adversarial perturbation detection. We call Rm the AI Robustness Metric 

for rating the strength of an AI implementation. 

 

Rm = || x- y||, where y > 0 and 0 < Rm ≤ 1 
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As one moves further away from the certified region the rating should 

decrease, within 1 being the lowest 

 

The capability to detect the smallest perturbation distortion near x (original) 

provides a higher robustness metric score. In the case that CLEVER score is attack-

agnostic, a higher score number indicates that the network is likely to be less vulnerable 

to adversarial examples; the same applies to CNN_Cert [142]. So, with finding the 

lower bound, one can start to formulate a way to express a rating system for how AI 

robustness metrics can be applied to different AI implementations. Since each defense 

technique has a distance/error from the certified area (boundary) where perturbations 

can be detected, we can consider these values as trust metrics in a continuous set of 

ranges between [0,1] as part of the holistic trust model.  

Unlike some of the other measures we have seen so far, this is still an area that 

is less mature.  However, in the spirit of the previous discussions, we can consider a 

system with no “defenses” against attack a more vulnerable system then one that 

defends itself against multiple types of attack.  Therefore, for our purposes we can 

consider it the same way we are considering other metrics. AI trust metrics and costs 

Figure 4-16: Robustness distance metric 
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will need to be fused together for a set of metrics that will be considered for the holistic 

model. 

Another important element to consider is the training and test data that is being 

used and how this is being protected for distribution. The supplier of AI components 

should have a repository of this data, but how is this protected and how is the 

authenticity of the data checked? The AI component vendor will need to be considered 

under the supplier trust metrics category as well, since the training and test data will 

need to be obtained for validation/certification. 

4.7 Supply Chain Level Trust Evaluation 

A supply chain is defined as set of resources and processes that upon placement 

of a purchase order begins with the sourcing of raw material and extends through the 

manufacturing, processing, handling and delivery of goods, and related services to the 

purchaser [143]. Supply chain vendors touch many components of an autonomous 

robotic system. Fundamentally, these vendors supply all the components used in a 

system, with individual vendors supplying anything from a single hardware or software 

component (including AI) to a complete system. Therefore, to ensure the 

trustworthiness of a system, each of the components or systems must come from entities 

that are reputable, provide reliable products, support services, and follow best security 

practices. The system, hardware, software, and AI layers in our holistic security 

architecture may present security risks from their suppliers. We believe that the supplier 

is an important entity to incorporate into the holistic security architecture. 

A supplier can produce either a whole system or a system of systems as a 

component within a larger system. A security threat at the system level can be viewed 
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in this example as a drone manufacturer called DJI where backdoor exploits were found 

that could divert drone data to a remote server or control it. The problem with DJI’s 

backdoors, however, is that hackers or government actors can install malware through 

these backdoors for cyberspying [144]. This is compounded by the fact that this 

technology likely has a Remote Access Trojan (RAT) embedded in it [144]. 

For the hardware level as we discussed in the evaluation of hardware section, 

security threats can come in the form of malicious insertions where add, delete or 

modifications of gates can occur at the foundry. For example, a hardware attack 

technique is called TrojanZero where the researchers were able to insert additional gates 

into the design without being detected, using standard power analysis at post 

manufacturing testing phase [145]. They were able to create low probability of 

triggering a detection with the additional gates as well as enabling backdoor entry. The 

success of TrojanZero was predicated on using 3rd party testing service for the IC, where 

the attacker at the foundry had knowledge about the design and testing methodology.  

A similar hardware attack example can be applied at the Printed Circuit Board (PCB) 

level where malicious insertion can happen at the raw card manufacturer as discussed 

by Russ and Gatlin[146].   

A software supply chain has several attack vectors that may span from insider 

malware injection into the code itself, abusing the code signing mechanism, malware 

injection into the software update mechanism or service, attacking open source directly, 

and attacks the distribution service like application stores. Some of these examples are 

CCleaner, SimDisk and ShaowPad where state actors attacked the supply chain and for 

code signing abuse attacks like ShadowHammer, Naid/MCRat and BlackEnergy 3.  

Examples of update services being attacked were Flame, CCleaner and Adobe pwdum. 
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Several examples of opensource being affected were RubyGems backdoor and 

JavaScript backdoor. A survey was performed that outlined the software supply chain 

security threats that included the examples mentioned above called “ Breaking trust: 

Shades of crisis across an insecure software supply chain” by Herr et al.[147]. As a 

supplier of software product or service, the software development methodologies must 

be reviewed with the emphasis on secure assurance engineering as discussed in Section 

2. 

Since the topic AI/Cognitive algorithms for autonomous robotic systems is new, 

we have to consider the attack vectors at the supply chain. AI is a little different from 

software since training data, adversarial training data, robustness data, and the models 

themselves need to be considered as part of the packing or hosting services and delivery 

of these components. Another consideration is 3rd party components being infected with 

malware or created potential backdoor exploits that are integrated into the base solution. 

There is a clear need to implement security controls in the supply chain assessment and 

formulating a supply chain trust metric will need to account for this feature.  

To identify methodologies used for evaluating trust at the supply chain level, 

we searched for papers focused on supply chain trust metrics, vendor trust metrics, and 

supply chain risks. From the search parameters the results were categorized into two 

groupings: standards and different approaches to defining supplier trust metrics [148]. 

We highlight some of the supply chain search results that are attractive to incorporate 

into our holistic security model. 

One standard, called ISO 28001, provides a guide for best practices for 

implementing supply chain security, assessments, and plans [143]. Figure 4-17 shows 

a high-level ISO 28000 security management system for a supplier and ISO 28001 
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provides an eight-step methodology for security risk assessment and development of 

countermeasures [149]. A description of the security management is first discussed and 

followed by the eight-step methodology for risk and countermeasures. 

• A security management policy includes the organizations charter and goals 

toward security and the security controls framework. The goals may consist of 

the overall threat and risk management framework, comply with legislation, 

regulatory and statutory requirements aligned with the business segments, and 

clearly document the overall policy/goals and communicate to stakeholders both 

internal and external including 3rd party.  

• The security planning and risk assessment is geared toward if an event occurs 

what are the steps and process for the crisis. An event can be a physical failure 

threats and risks (incidental damage, malicious damage or terrorist or criminal 

action) and an operational threats and risks (security controls, human factors, 

equipment safety and business impact to operations). 

• The Implementation and operations are defined as the infrastructure to support 

the security controls for the business, create a chain of command, communicate 

and train personnel and fully documented the policies, objective, and 

procedures. The operational controls as well as data controls should be 

implemented with archiving or off-site capability in case of an emergency or 

security incident. Within the operational and data controls there should be key 

management controls. 

• Checking and corrective action should be taken that affects the security 

performance measurement and monitoring of the systems, security related 

failures, controlling the records and audit. 

• The organization shall have periodical reviews of the security management 

systems and implement improvements when necessary.   

Figure 4-17: Components of a security management system using ISO28000 
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The eight-step methodology for security risk assessment and development of 

countermeasures is defined as a vulnerability assessment or analysis and the steps to 

perform the analysis are described below. 

• Step one- is the consider the security threat scenarios, so that each scenario is 

broken down and analyzed 

• Step two – From the analysis determine the consequences and classify them 

• Step three – Rate each scenario and associated security incidents with a 

probability of success 

• Step four – Create a security incident scoring for the business 

• Step five – From the security scenarios and incident create countermeasures 

• Step six – Take results from five and implement them 

• Step seven – Evaluate step six 

• Step eight – repeat the process 

 

A supplier that does not support a security management system will be exposed 

to a number of vulnerabilities. Autonomous systems are complex, depending on the 

functions that they perform. For example a vehicle can have 70 to 100 embedded 

processors and a plethora of sensors for object detection/navigation, not including the 

communications network [150] [151]. Many of the components are COTS and open 

source software is commonly used. The following packages are the top open source 

projects used in autonomous vehicles: Autoware, Apollo, EB Robinos & EB Robinos 

Predictor, NVIDIA® DriveWorks, and OpenPilot [152]. A new autonomous operating 

system is open sourced based on ROS 2 called Apex [153].  Therefore, supply chain 

trust metrics are important, and several factors should be considered when selecting a 

set of quantitative values for assessing supply chain trust. 

Combining the security best practices as mentioned above within the attributes 

that a supplier might be rated against are shown in Figure 4-18 [154]. In addition, the 

following items should also be included in the supplier assessment: the quality of the 

product/services, reliability, and maintainability of the product/deliverables. Finally, 
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supplier assessment should include the security of the item that also includes the 

organization security plan, security incidences (including history), any penalties that 

have been incurred, and financial stability. This combination provides a supplier trust 

metric that covers the autonomous robotic system layers at a system level or at the 

individual component level. A Supplier Assessment Management System (SAMS) 

provides objective measurement criteria for supplier performance in eight major 

categories.  

 

 

As a result of our research for supplier trust metrics, the SAP score card is 

presented as an example set of values to be used for metric values. 

Figure 4-18: Supplier Assessment Management System (SAMS): 8 Categories of 

Assessment 
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What is it – A description of a supplier assessment score cards are presented by 

Systems, Applications and Products (SAP) and Northrop Grumman (NG) [154] that 

utilizes a framework called the Supplier Assessment Management System (SAMS). 

How does it work –The eight categories in the SAMS framework are rated with 

the following values, using SAP values: blue= 100 to 91, green=90 to 75, yellow=74 to 

51 and red=50 to 0. NG Supplier Scoring on each category is performed using these 

metrics: Unsatisfactory < 2, Marginal 2 to 2.7, Satisfactory 3.75 to 2.76, and Excellent 

4 to 3.76. 

What does it do well – This provides a set of metrics that can be used for the 

supply chain vendors related to a system level or individual component level of an 

autonomous robotic system. By using the numbering of the SAP score card and 

reference labels from NG score card, the result is a combined set of trust metric values 

that can be used in our model. 

Shortcomings – While this provides a good set of metrics for the supplier 

vendor, this will also need to cover the AI components that have been described above. 

The topic of security will need to be introduced to suppliers that are not familiar with it 

and the security management system. 

We have covered the layers of an autonomous robotic system that included the 

system, hardware, software, and cognitive layers that will have a supply chain trust 

metric associated with its components in the holistic security model. By combining the 

architecture layers and supply chain trust metrics we capture the origins of the 

components and reveal the risk beforehand vs after system deployment. 
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4.8 Assessment Techniques 

From our search results for each individual evaluation layer of the holistic 

architecture, several assessment techniques have been discussed. These assessment 

techniques have ranged from pen and paper assessment of items on a checklist to 

visualization/automating the assessment process using graphic tools in both a static and 

dynamic manner. For simple systems pen and paper works well but falls apart quickly 

as complexity (and accounting for system interactions) increases. The reason we are 

talking about assessment techniques is that having metrics is only one part of the puzzle.  

The next part is evaluating a system based on those metrics. Performing the evaluation 

can be done in a number of ways, as for visualization/automating there are different 

techniques that have been applied, including the use of Attack Graphs, Fault Trees, 

Petri Nets, BNs, and DBNs.  

The first assessment technique is the Attack graph for visually representing the 

asset and target related to the security domain. 

What is it: Attack Graphs/Trees are conceptual diagrams showing how an asset, 

or target, might be attacked. These graphs are generated by an analyst/automation that 

has obtained data from host scanning tools and network diagrams that includes 

connectivity between hosts. The paths are assessed and ranked from attacker to target 

using the connectivity connections. 

How does it work: Attack trees are multi-leveled diagrams consisting of one 

root, leaves, and children. From the bottom up, child nodes are conditions which must 

be satisfied (true/false) to make the direct parent node true; when the attack condition 

at the node is true, the attack is complete. Each node may be satisfied only by its direct 

child node. An example of an Attack Graph/Tree is shown in Figure 4-19 [155] [156] 
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which demonstrates how an attacker is able to conduct a series of exploits on Secure 

SHell (SSH). The SSH is used to encrypt network services like remote command-line, 

login, and remote command execution. The sshd is the daemon service for SSH and the 

bof is the buffer overflow on a sequence of host computing devices. The sshd_bof 

exploit, acquires user privileges (user) on each box. This example shows the sequence 

of exploits and the preconditions (a set of system properties that must exist for an 

exploit to be successful and in this case the sshd being executed on the host) that are 

necessary for a successful attack. 

What does it do well: An easy way to represent potential attack vectors is using 

a tree diagram that can be automatically generated using analysis tools. This will need 

to be extended for the autonomous robotic system security architecture. This will be 

considered as part of the NVD data being assessed for the robotic system when CVEs 

are available. 

Shortcomings: An attack graph can be exhaustive (all possible outcomes must 

be known) for analyzing attack vectors. As the number of nodes grows, it becomes 

difficult both in resources and time to perform the analysis. However, the simplicity of 

these graphs makes it ideal for security assessment, when isolating the network paths 

and reduced nodes to analysis. 

Figure 4-19: An example of an Attack Graph 
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The next technique is similar to an Attack graph but is called a Fault tree. 

What is it: Fault Tree is a top-down, failure analysis in which an undesired state 

of a system is analyzed using Boolean gates to combine a series of lower-level events 

[157]. One method of creating a Fault Tree is by following the steps for a Method Of 

Cut Sets (MOCUS) [158]. MOCUS provides a deterministic result that requires less 

resources to calculate the top event’s probability, thus reducing error and improving 

performance. 

 

1. Create a table where each row of the table represents a cut set, and each column 

represents a basic event in the cut set.  

2. Insert the top event of the Fault Tree in the first column of the first row.  

3. Scan through the table, and for each Fault Tree gate:  

a. If the gate in an AND gate, then insert each of its input in a new column.  

b. If the gate is an OR gate, then insert each of its input in a new row.  

4. Repeat step 3 until all the gates in the Fault Tree is explored and the table only 

contains the basic events.  

5. Use Boolean laws to remove all redundancies within the table.  

 

How does it work: The Fault Tree Analysis method is mainly used in safety 

and reliability engineering to understand how systems can fail, to identify the best ways 

to reduce risk, and to determine/estimate failure event rates or a particular system level 

(functional) failure. In the case of security, the same example from the Attack graph 

Figure 4-20: An example of the Fault Tree 
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above is reconfigured for a Fault Tree analysis as shown in Figure 4-20 [156] [157], 

where the gates (AND/OR) are used. 

What does it do well: Fault Trees provide a visual graph of the system that 

represents relationships between events and their causes. While this is a common model 

for fault analysis, it can still be used for assessing trust in a system. As seen by the 

figures, the comparison between an Attack graph and a Fault tree is similar. 

Shortcomings: In utilizing Fault Trees, a large tree needs to enumerate all 

possible sequences of failures in a complex system and has limitations. These 

limitations are a result of the exhaustive computational resources required to produce 

an output for all sequences of failure. Classic Fault Tree models that are combinatorial 

like, Attack and Fault Trees, do not support situations that have complex dependencies 

at the system or sub system levels. These dependencies are failure characteristics such 

as functional dependent events and priorities of failure events. 

The Petri net technique is different from the first two, because it can represent 

dependencies transitions with arcs in behavioral control where in the other two cases 

this was not feasible.  

What is it:  A Petri net is a graphical tool for describing the control flow 

behavior of concurrent processes in systems, which was introduced in 1960’s. 

How does it work: Petri Net is a directed bi-graph and is defined as a 5-tuple 

N = (P, T, F, W, M0), where P is finite set of places, T is a finite set of transitions, F is 

a set of arcs, W is a weight function and M0 is an initial marking. Transitions (events 

that may occur) are represented by bars and places (conditions), which are represented 

by circles. The directed k-weighted arcs (a measure of the arc multiplicity) describe 

which places are pre- and/or postconditions for which transitions (signified by arrows). 
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The state of a process is modeled by tokens in places and a state is also called a marking, 

as shown in Figure 4-21 [159]. Petri nets are concurrent, nondeterministic models, 

meaning that they can support multiple transitions of events at the same time and the 

firing of the events can occur at different orders. This example can be shown in Figure 

4-21 where T1 is splits into p2 and p3 paths. 

What does it do well: PN’s are intuitive and model concurrency (partial order) 

well. PNs have been adapted to supporting temporal events and probabilities by 

different extensions. By supporting these extensions this becomes a very useful 

modeling tool. 

 

Shortcomings: The disadvantages of a PN are that the size of the nets for 

modelling very complex systems become difficult to validate because the number of 

reachable markings blows up, making it analytically intractable. In other words, PNs 

are considered state space models that allow complex interactions at the system and 

sub-system levels but are prone to the state space explosion problem. The state space 

explosion problem is the size of a state space with respect to the structural scale of a 

PN and has a tendency of growing exponentially.  

Figure 4-21: An example of a Petri Net 
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The next technique is different from the others with regard to using probabilities 

and undirected paths for inference. BN provides the capability to reason about the 

domain once a joint distribution is constructed that includes prior evidence. 

What is it: BN are Probabilistic Graphical Models (PGM) that represent 

causality inference using variable conditional dependence. A DBN extends a BN by 

relating variables to each other over adjacent temporal steps. BNs use the underlying 

Bayes Theorem as explained below that is followed by an example. 

How does it work: To propagate the level of belief in a hypothesis that is put 

to the network, that level of belief can be formulated to indicate the level of trust that is 

placed in a system based on the evidence that supports (or negates) the hypothesis. For 

example, from Bayes Theorem:  

𝑃(𝑋|𝑌) = (𝑃(𝑌|𝑋) ∗ 𝑃(𝑋)) / P(Y), which is the Posterior = (Likelihood * 

Prior) / Evidence). Posterior is after an observation has occurred, Likelihood is the 

probability that the event will happen, and Prior is the data before it is 

observed/evidence set where something is known. 

The following example, shown in Figure 4-22, applies a Bayesian analysis to 

two different boards, the one on the left is a low-cost hobbyist processor board with an 

Arduino-like processor (overseas manufacturer and open source software) versus a TI 

MSP430 development board (US manufacturer, reputable suppliers, etc.). The 

microprocessor trust metric and supplier trust metric nodes have a causal relationship 

with the board. The conditional probability table is constructed by the first column 

being hardware trust metric using values (none, low, low to medium, medium to high 

and high), while the second column is the supplier trust metric with values for each row 

(unsatisfactory, marginal, satisfactory, and excellent). The probabilities are shown in 
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the next two columns corresponding to the different processors. By intuition, the TI 

MSP430 provides a higher trust level than the Arduino-like chip, since the manufacturer 

is US-based, the supplier evaluation ratings and its hardware design integrity are higher 

as well. These were compared to the Arduino-like processor where the supplier did not 

have a rating and did not have complete design artifacts (back to the hardware trust 

metric for Logical Equivalence, Signal Activity Rate, Structural Architecture, 

Functional Correctness, and Power Consumption). By setting evidence on a node, one 

can reason about the outcome in a downward path, so setting the supply chain node to 

unsatisfactory will cause the board node to change by observing its state. In the case of 

the evidence being set on the bottom node, the two top nodes will change accordingly. 

This effect of change when evidence is set is known as inference and BNs provide this 

capability.  

What does it do well: Bayesian Networks are able to perform casual inference 

and reason with uncertainty. When reasoning with uncertainty, the BN model can 

update the posterior probabilities of other states of the system when evidence is set.  

This technique is well suited for autonomous robotics system because of their nature in 

uncertainty and having the capability to reason about new evidence gained from sensors 

about tasks or environment. 

Shortcomings: There is no standard method for constructing a BN. However, 

there are techniques for determining if the model has been constructed correctly. 

Each of these techniques has both pros and cons associated with them as 

enumerated above. There have been three prongs to the development of these 

techniques. The first prong being the ongoing work to extend trees and PN by increasing 

their capabilities after they were first introduced in 1960’s. The second prong, being a 
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combined approach, where pre-preprocessing is done in (trees and PN) and post-

processing is completed in BNs. The third prong being an only BN usage model for 

security analysis. 

 

In addition to the approaches described above, we also observed that attack 

graphs combined with CVSS base metrics were common methods for security 

assessment. Others have used PNs to cover a small portion of the architecture, while 

others are using AI techniques to perform prediction on security outcomes. A common 

problem with these techniques is that they do not support uncertainties that may arise 

from autonomous robotic systems.  

On the other hand, BNs provide a number of benefits over these other 

approaches. These include the casual inference where reasoning can be performed from 

observations and the compactness of information can be encoded into joint probability 

Figure 4-22: A BN example of two microprocessors 
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distributions. In fact, the efficiency of inference algorithms can be seen as a main reason 

for the success of BNs, since querying general graphs is an NP-hard problem [160], 

[161] [162]. Another strength of BNs is their ability to update the model, i.e., compute 

a posterior distribution when new information is available [162]. Using a BN with the 

associate metrics is one potential assessment solution for autonomous robotic systems. 

4.9 A Solution Outline 

We outline a solution that takes a number of the autonomous robotic system 

layers and brings them together to form a holistic trust model.  This trust model is 

different from other approaches because we are proposing a complete solution from a 

security perspective, eliminating the gaps left by other techniques in the evaluation of 

system, hardware, and software layers. Our model also includes AI robustness attributes 

and supply chain characteristics. The overall complexity of the space and the security 

problems are bad enough in a controlled environment, now add high-value targets in an 

unconstrained environment where they get much worse. The unconstrained 

environment makes the problem computationally intractable using earlier approaches. 

Thus, there is a need to come up with a way to make assessment more computationally 

feasible. 

A probabilistic approach to analysis using BNs provides a natural way to reason 

about uncertainty. BN-based models allow for efficient factorization of the set of 

system states, without the need for an explicit representation of the whole joint 

distribution; moreover, they have the additional advantage of inference algorithms 

available for the analysis of any posteriori situation of interest (i.e. evidence can be 

gathered by a monitoring system) [163]. Bayesian Inference simplifies the way to 
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reason about a complex domain problem like security for autonomous robotic systems. 

Our survey findings did reveal some usage of BNs, but these researchers did not define 

address complete systems, nor did they include cost values (collateral damage and 

perceived target value) in their work.  Our goal is to expand this work and apply it to 

more complex autonomous systems. 

In order to represent an autonomous robotic system architecture and assess the 

security of it, we have discussed the different layers (system, hardware, software, 

Cognitive/AI, and supplier chain) as independent trust metrics. These individual trust 

metrics account for the different levels depending on the security features supported by 

the autonomous robotic system and may be expanded to cover other elements of 

importance.  

With each individual trust metric and its associated level, we also need to 

account for the collateral damage that may result from an attack on that part of the 

system, as well as the perceived target value of that element. In other words, we need 

to account for the adversary’s actions and by combining these values with the trust 

metric we get the general probability equation: 

TM = LV*AER* AED*ATA,  

where TM = trust metric, LV = level value, AER = probability of adversary exploit 

reward and AED = probability of adversary exploit damage, ATA = likelihood of an 

adversary taking action to exploit.  

The combination of these values provides a set of metrics that can be assigned 

to each corresponding component in the system. The BN will provide the casual 

inference by linking these components and the values for the conditional probability 

tables. A full joint distribution is defined as the product of the conditional distribution 
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of each node. This is shown in the equation below where the left-hand side is the joint 

distribution, the center is the conditional probability (using the chain rule), and the 

right-hand side is the conditional probability given the parents. 

P(x1 … xn) = ∏ P(xi| x1 … x(i−1))
𝑛

i −1
= ∏ P(xi|parents(xi))

𝑛

i−1
 

 

In general, a trust metric for a given level is created as a function, fi, where fi = 

Factor 1 * Factor 2 * … * Factor N.  The number of metric values is a function of the 

granularity of the analysis, and generally ranges from 3 to 7 with 5 being a reasonable 

tradeoff between resolution and complexity.  From these factors, a trust metric, T, is 

derived by normalizing the fi over the range, so T = 0 ≤ |fi| ≤. 1. 

For example, at the system level trust metric, we start with the related CC’s EAL 

1 to 5 levels and combine them with cost/reward/likelihood values, this provides five 

levels for the system metric and each having a cost/reward/likelihood value, then that 

is normalized. 

STn = EALn * AERn * AEDn *ATAn, where n is the level 

 

ST = system trust metrics ranging in a discretized continuous set from [0, 1] 

where 1 is the highest and zero the lowest trust set. Where five levels will be defined 

for the range. The other layers HW, SW, AI and Supply chain follow the same pattern. 

Next, we take the hardware design integrity values from the hardware 

evaluation section and do the same for the cost/reward/likelihood values. 

 

HWT = hardware trust metrics will have a range [0, 1]. 

 

Next, we take the software base metric in the software evaluation section and 

do the same with the cost/reward/likelihood values. 
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SWT = software trust metrics will have a range [0,1]. 

 

Since cognitive/AI is a new area and using the distance metric seems to fall into 

the same thought process as the others, we come up with five levels with a range 

between [0,1] in which the closer to the certified area signifies greater protection/risk 

than moving further away where perturbation is easier to detect. 

AR = AI robustness trust metrics will consist of five levels of distance error + 

cost values ranging in a discretized continues set from [0, 1] where  ¬ [0,1], so that 0 

is the lowest and 1 becomes the highest trust metric level. 

Next, we take the supplier chain metric in the supply chain evaluation section 

and do the same with the cost/reward/likelihood values. 

 

VT = Supply chain trust metrics will have a range [0,1]. 

 

Finally, we take these individual trust metrics that represent the system levels 

and sum the different parts into a whole system trust metric. The following equation 

represents the joint distribution over all variables, where  𝑃(𝑋𝑖  |𝑃𝑎(𝑋𝑖) is the 

conditional probability distribution (CPD) for each variable in the network. 

 

𝑃(𝑆𝑇, 𝐻𝑊𝑇, 𝑆𝑊𝑇, 𝐴𝑅, 𝑉𝑇) =  ∏ 𝑝(𝑋𝑖|𝑃𝑎(𝑋𝑖)

𝑖

 

 

By using the above equation, we can reason about outcomes of the network 

while making observations. This allows the intractable problem to be computationally 

feasible using Bayesian Inference.  BNs fulfill the local Markov property, so that each 

variable is conditionally independent of its non-descendants given its parent variables. 

This property reduces the joint probability to a compact form by using the chain rule. 
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4.10 Conclusion 

We surveyed the trust metric space to determine if a set of security metrics were 

well defined and covered a complete robotic system (the results were in Section 2). A 

mind map of a robot system broke down the different layers into system, hardware, 

software, cognitive layer, and supplier chain to provide a holistic security view. Our 

findings showed that system level trust metrics are difficult and complex, and several 

research papers scaled the problem to a small set of components or just a specific area 

of a system.  Table 4-4 is a summary of the findings that cover a holistic system trust 

model.  

 

TABLE 4-4: SUMMARY OF TRUST METRICS 
Trust Level Trust Metric Recommendation Values Comment 

System EAL 1 to 5 [0,1] Security and Safety  

Hardware Hardware Component [0,1]  

Software Base Impact [0,1]  

AI Robustness Distance Metric  [0,1]  

Supply Chain NG Scorecard [0,1]  

 

We believe that using the Bayes Inference is the correct choice to build on, since 

it provides several benefits to overcome uncertainties for a complex system like an 

autonomous robotic system. By using Bayesian Inference, we also remove the 

intractable problem to a computational feasible one. We provide a brief set of 

definitions for each of the CPD nodes that will represent the joint distribution in a BN. 

As autonomous robotic systems become more popular, the standards that govern 

them should consider the usage of trust metrics for security. Several standards like the 

IEEE global initiative on Ethics and the EU’s regulatory work on ethics are targeting 

the bias/transparence for AI systems, but little is being said about the security of these 
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systems. It is our belief that this survey will help establish a set of security metrics that 

the ethics groups can utilize.  

Another consideration for security trust metrics is the autonomous vehicle 

space. The industry is seeing a movement in the autonomous vehicle space where the 

Society of Automotive Engineers (SAE) has defined a scale for automation. Level 0 is 

fully human controlled, and level 5 is fully automated. We are witnessing the gradual 

paradigm shift to more technology being incorporated into the vehicle as the goal of 

level 5 is being realized. Even with these advancements there have been several 

accidents where life was lost/injured. As these systems shift to more AI capabilities, 

this will increase the attack vector for nefarious actors.  

In the next chapter a BN is shown where the trust metrics are defined and used 

to model an autonomous robotic system with security features. The next chapter also 

discusses how this model can be used for an internal assurance model. 
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CHAPTER 5  

 

5 A SOLUTION 

Internal Cognitive Assurance Model 

 

5.1 Introduction 

In order to construct a Bayesian Network that enables reasoning about system 

security, one requires domain knowledge and credible metric values.  

Bayesian Networks use the Bayes rule in that P(a|b) is the posterior, or degree 

of belief in a given b.  Likewise, P(b|a) is the likelihood that the event will happen given 

that a has happened.  In our context, P(a) is the prior or initial evidence accumulated 

about event a, and P(b) is the marginal probability of observing the evidence.  This 

marginal probability, P(b), acts like a normalization constant. This can be restated as 

Posterior = Likelihood * Prior / Evidence and is the familiar Bayes Rule:  

 

 
P(𝑎|𝑏) =

𝑃(𝑏|𝑎)𝑃(𝑎)

𝑃(𝑏)
 (5-1) 

 

In our previous research work in Chapter 4, we discussed our survey into trust 

metrics that allowed taking a holistic security view which included system, hardware, 

software, cognitive trust, robustness, and supplier layers in an autonomous robotic 

system design.  

We highlight some of the results that were discovered during our research in 

Chapter 4. At the system level some of the attractive features to incorporate into our 
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model, are the need to categorize attack paths, determine behavioral states of an 

autonomous system and integrate the concept of trust and resilience. The system model 

should also incorporate attributes for physical protection and safety, since these 

elements will be needed for autonomous robotic systems that are exposed to and interact 

with humans. Additionally, a robot has many hardware components from processing 

data to sensing the environment, and these must also be accounted for in our model. 

All hardware components must be integrated together, but security threats like 

hardware trojans, reverse engineering and counterfeiting, can compromise a system 

design at different points in the hardware lifecycle. Software in a robotic system extends 

from firmware to kernel/Operating System (OS) and above to applications. Software 

security vulnerabilities can come in many forms, but most exposure can be reduced in 

the development, testing and deployment phases. Having proper design methodologies, 

practices and controls provides multiple security checkpoints. An autonomous robotic 

system may have one or more AI algorithms in its cognitive layers to allow operating 

in environments having many uncertainties. AI opens a number of exploits that are not 

commonplace in other systems. Several adversarial attacks have been discussed in the 

literature related to poison (tainting the training data), white/black box (using physical 

and alternative training models), and evasion (misclassification by spoofing). 

Additionally, the supply chain through which components are procured touches nearly 

every component of an autonomous robotic system. Therefore, to ensure the 

trustworthiness of a system, each of the components or systems, must come from an 

entity that is reputable, provides reliable product, support services and follows best 

security practices. Often ignored, the supply chain is also prone to many vulnerabilities, 
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such as injecting malware into a component’s development cycle, allowing counterfeit 

parts to be introduced into the production cycle and security keys being compromised. 

Our conclusion was that several papers presented stove pipe solutions but did 

not cover the holistic view that we are trying to achieve.  Other takeaways were related 

to techniques in the models or metrics that captured some elements that could be reused 

but did not accountant for costs (reward and loss) and uncertainty that in the wild, an 

autonomous robotic system might reasonably experience.  

Although researchers have demonstrated the utility of BNs for assessing various 

aspects of the overall security of a system, we extend this approach in several ways.  

We define an internal assurance model by focusing on different layers called system, 

hardware, software, AI robustness and Supply chain vendor(s).  In combination, these 

layers make up a holistic model of the security architecture that is incorporated into a 

Bayesian Network. We believe that this approach is superior given the alternative of 

simply relying on the OS to determine the security posture of the system. The OS is a 

large attack surface and is prone to a number of vulnerabilities. Most OSs do not support 

the concept of resiliency where under attack concern features shutdown to not allow the 

system to still function in some capacity. In the Bayesian Model we have separated each 

of the layers to have their own individual scores, but they are coupled together to 

provide a system assurance level that is dependent of the security features.  

The rest of the chapter is divided as follows.  First, we provide some background 

on Bayesian Networks in section 2. In Section 3 defines the methods for calculating 

each of the trust metrics used in our model. Section 4 presents the Bayesian Network 

models that is broken down into each layer of the system and Section 5 shows how this 
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methodology extends into a Dynamic Bayesian Network model where time-based 

events can be handled. We conclude in Section 6. 

5.2 Background on Bayesian Networks 

 

We focus on the use of Bayesian Networks for several reasons. First BNs are a 

natural representation for causal inference; second, they support incorporating 

uncertainties using probabilistic distributions; third they are able to accommodate 

missing data; fourth they are more accurate than Fault Trees for assessments since they 

explicitly represent the dependencies between events and updating probabilities. 

Finally, BNs can convert otherwise intractable problems into tractable ones by 

efficiently encoding the joint distributions for large number of variables. 

Bayesian Networks are Probabilistic Graphical Models (PGMs) that represent 

the qualitative and quantitative relationships between a set of variables or nodes in a 

model structure. In this PGM model, arrows represent relationship dependencies 

between nodes, and each node contains probability distributions, or conditional 

probability tables (CPTs), that are used to represent the qualitative strength of those 

dependencies. Both qualitative and quantitative information can be used to define the 

probability distributions captured in the CPTs. 

A BN is structured from a set of nodes (which represent random variables) and 

nodes are defined as a Parent or a Child. For example, if two nodes A and C are 

connected to node B, the random events from A and C are said to be conditionally 

independent, but conditionally dependent when given an event at B. This means that 

knowledge of event A occurring cannot influence C’s outcome and similarly event C 
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occurring cannot influence A. In other words, P(A,C|B) = P(A|B), P(C|B). This 

relationship can be stated as A ⫫ C|B.  Figure 5-1 shows three forms of conditional 

independence (Cascade or Casual Chain, Common Parent or Common Cause and V-

Structure or Common Effect). These node configurations represent the qualitative 

relationships within a BN. 

A Causal Chain implies that the probability of  C, given B, is the same as the 

probability of C, given both B and A (i.e. knowing that A has occurred does not make 

any difference to our beliefs about C if we already know that B has occurred)) [164]. 

Common Cause captures the notion that both A and C have a common cause, B. 

Common Effect implies that both A and C are marginally independent (A and C are 

independent while ignoring B) but become conditionally dependent given information 

about B, the effect. 

 

 

 

We clarify some terms that may be confusing like unobserved, observation, 

evidence, variable/node, information/influence flow and active trail for this section. In 

a BN, the term “unobserved” refers to missing or hidden data. While much literature 

uses the term “unobserved,” some authors use the terms “latent” or “hidden” 

synonymously, since data is not observed. This can be caused by data being unable to 

Figure 5-1: Types of Conditional Independence 
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be observed directly or it is completely missing. Similar to the unobserved, the 

observation term refers to a set of findings, but some authors use the terms finding or 

evidence interchangeably [165]. Different information sources are not always perfect; 

therefore, the observation can be uncertain and inaccurate. The term evidence is defined 

as hard or virtual, where a finding on a variable refers to an instantiation of the variable. 

A usual way to enter an observation in a BN is shown in Figure 5-2, which illustrates 

the propagation of evidence in belief updating. 

 

In BN, a node is a representation of a variable and two variables are connected 

via an edge. Once connected they are able to influence each other through information 

or influence flow. Moreover, the influence flow of more than two variables is called an 

active trial when not blocked or observed.  Examples of active trails are shown in Figure 

5-3 [166] where an undirected path is active if a Bayes ball travelling along it never 

encounters the “stop” symbol.         The top row shows unobserved nodes, and the 

bottom has shaded nodes as observed. From left to right are the influence flows starting 

first with (a) causal chain, next (b) the common cause, then (c) the common effect and 

finally, (d) the parent to child. 

  
Figure 5-2: Evidence update flow 
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 Figure 5-3: The ten rules of Bayes Ball 

 

Direction dependent separation, also called d-separation, is important to 

understand network behavior and independence properties.  D-separation is a criterion 

for deciding if a set A, of variables is independent of another set C, given a third set B. 

If the variables are connected, it implies dependency and if not, independence is 

implied. If there is no information flow or active trail, between any nodes of A and C 

given B, they are considered d-separated. Similar to Figure 5-3, Figure 5-4 shows four 

different scenarios for d-separation from left to right. The Causal Chain (a) where the 

active trail from A to C is blocked if B is observed and B acts like a flow control value. 

Similar to (a), but (b) is the Evidential effect where information flow is from C to A via 

B, only if B is unobserved otherwise B observed blocks. In (c) the Common cause is 

where A can influence C if B is not observed, otherwise B observed blocks (Observing 

blocks the influence flow between effects and makes it inactive). In (d) the Common 

effect is where A cannot influence C if B is not observed, otherwise B does not block 

(This is backwards from the other cases where observing an effect activates influence 

flow between possible causes this makes it active) [167]. 
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In a Bayesian network, a variable, X, is conditionally independent of all other 

variables if it is Markov blank (given a BN, let X and Y be two variables and Z be a set 

of variables that does not contain X or Y.  If Z d-separates X and Y, then X ⫫ Y|Z). The 

Markov Blanket of a node is the set containing the node’s parents, children, and co- 

parents [168] and is the only knowledge needed to predict the behavior of that node and 

its children [169]. Figure 5-5 illustrates the Markov Blanket of node X6 which includes 

nodes X3, X4, X5, X8, X9, and X10. 

 

 

 

Figure 5-4: Four scenarios for d-separation 
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A conditional probability is the probability of event A occurring, given on a 

condition that event B occurred. The joint probability is the probability of events A and 

B happening simultaneously. A CPT is the decomposed representation of the joint 

probabilities and is used to display the conditional probabilities. There are different 

methods for developing the quantitative values for each node’s random values and these 

are represented in the CPT. A node’s random value can be either discrete or continuous, 

for example a discrete value can be T or F, which may represent a probability of 0.5 of 

either value occurring. The sum of the probability values of the possible outcomes must 

equal 1, whereas a continuous value is a range of values between [0,1], where 0 ≤ value 

≤ 1. These values can be acquired from domain experts, elicitation from domain users 

(interviews, case studies, and observations), and/or data driven (machine learning).   

Figure 5-5: An example of a Markov Blanket 



172 

BNs fulfills the local Markov property so that each variable is conditionally 

independent of its non-descendants given its parent variables [170]. This property 

reduces the joint probability to a compact form by using the chain rule in equation 5-2. 

In Bayesian Networks (a member of joint distribution can be calculated from 

conditional probabilities using the chain rule). 

 

P(x1 … xn) = ∏ P(xi| x1 … x(i−1))
𝑛

i −1
= ∏ P(xi|parents(xi))

𝑛

i−1
 (5-2) 

 

In the following example the nodes “Designer,” “Manufacturer,” Sensor,” “Infected” 

and “Intermittently Operating” are shown in Figure 5-6 and are represented in the joint 

distribution as: 

 

P (M, D, S, I, IO) = 

P (M), P (M|D), P (S| M, D), P (I| S, M, D), P (IO| S, M, D) 

 

From the above Figure 5-6, we have two casual cases, where the manufacturer, 

distributor and sensor nodes create a common effect and sensor, infected and 

intermittently operating create a common cause. These two cases were covered above 

where influence flow can be active or inactive depending on which nodes are observed. 

Applying the chain rule, the joint distribution reduces to the following: 

 

Infected Intermittently 
Operating 

Manufacturer 

Sensor 

Distributor 

Figure 5-6: Local Markov example of a sensor set of nodes 
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P (M, D, S, I, IO) = 

P (M), P (D), P (S| M, D), P (I| S), P (IO| S) 

 

The local Markov property means that each variable is conditionally independent of its 

non-descendants given its parent variables. In the case of D and M they are D ⫫ M since 

D is a non-descendant of M and the reverse is also true. In the case of I being 

independent since S is the parent and D and M are non-descendants, so I ⫫ D, M| S is 

true. In the case of IO being independent since S is the parent and D and M are non-

descendants, so IO ⫫ D, M| S is true. 

 

In large BNs the joint probability distribution of the model is equal to the 

probability of X given its parents (refer to equation 5-2), this reduces the computation 

since most nodes have fewer parents relative to the overall network.  In other words, 

the full joint distribution needs Kn parameters, where K is the number of values for the 

variable and n is the number of variables in the BN. This means that the network grows 

linearly, for n variables, the order of magnitude is expressed as O(m Kn) vs O(Kn) for a 

BN having m(parents) < n (variables). This compact representation makes the 

computation problem tractable. 

Back to referencing Figure 5-6, we expand on this network to formulate a BN 

with initial CPT values as an example of bringing the pieces together as shown in Figure 

5-7. We combine the types of reasoning discussion with this illustration below. The 

Figure 5-7: Sensor BN example 
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values in each CPT were randomly chosen for the purpose of an example, which covers 

diagnostic, predication, intercausal, and combined reasoning.  On the bottom of Figure 

5-7, variables Infected and Intermittently Operating have both the same set of values 

and on top Manufacturer and Distributor are slightly different with a bias toward 

reputable for Distributor. The Sensor node is the conditional dependency of 

Manufacturer and Distributor values for the sensor in a reliable or not reliable set of 

states. In actuality it is important to choose these values from experts or good sources, 

since the bias of reasoning is built on this foundation. 

Once the joint probability distribution is known, queries can be made on subsets 

of variables. How reasoning can be performed is determined by the technique that is 

used. Figure 5-8 [164] shows the different types of reasoning that can be performed 

when PGMs are used.  Even though BNs are directed graphs, data flow can occur in 

both directions. To illustrate this concept both 8A and 8B are opposite flow directions 

from each other. 

Figure 5-8: Types of reasoning 
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In the diagnostic reasoning case, reasoning occurs in the opposite direction from 

symptom (evidence) to cause (query) shown by the blue circle and two yellow circles 

in Figure 5-8 (a).   For example, in Figure 5-7, if observing intermittently operating, 

one’s belief can be updated that the sensor is not reliable, and the manufacturer is not 

reputable. We set the evidence on intermittently operating and the manufacturer node 

changes from .5/.5 (reputable and non-reputable) to 68.89 % being non reputable. 

In order to illustrate the calculation performed by the BayesiaLab tool, which 

generated the results for these reasoning examples. A closer look at how setting 

evidence at IO will affect the M node in a reverse information directional flow from 

bottom to top. The question being asked is what is the probability of M given IO?  A 

representation of the question is shown in the below equation using Bayes equation 5-

1. 

 

 𝑃(𝑀|𝐼𝑂) =
𝑃(𝐼𝑂|𝑀)𝑃(𝑀)

𝑃(𝐼𝑂)
 

  

 

We first need to solve for a couple of the terms: P(IO|M), P(S) and P(IO) in the equation. 

 

 

Finding P(IO|M), we need to first find P(S|M) using the following equation, P(M) ==1 

and the sensor CPT values for non-reliable. 

 

P(S|M) = P(M)P(⌐D) *.88748 + (P(M)P(D)*.1 

   =1*0.09436×0.88748 +1* 0.90564×0.1 

   = 0.1743 

 

Using the result of the above, this gets fed into the equation below and using IO CPT 

table value for sensor being not reliable. 

 

P(IO|M) = P(S|M) *P(⌐IO) +P(⌐S|M) *P(IO) 

= 0.174× 0.00314 + (1 – 0.174) × 0.99686 

=0.8236 
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Using the CPT values for sensor, where S will be the corresponding value in the table 

for each associate pair. 

 

P(S) = P(M)P(D)*S +P(⌐M)P(D)*S +P(M)P(⌐D)*S +P(⌐M)P(⌐D)*S 

 

=0.5*0.90564*0.1 + 0.5 *0.90564*0.55466+ 0.5*(1-0.90564) *0.88748+ 0.5*(1-

0.90564) *0.81249 

0.3766 

 

Using the result from P(S) above we can now find P(IO) value. 

 

P(IO) = P(S)*P(⌐IO) +P(⌐S) *P(IO) 

=0.3766× 0.00314 + (1 – 0.3766) × 0.99686 

   =0.6225 

 

Using Bayes equation and the supporting terms, the result is the following where the 

calculated is approximately 1 % close to the BayesiaLab tool produced result.  

 

P(M|IO) = (0.8236×0.5)/0.6225 = 0.6614822 

 

In the case of prediction reasoning, reasoning from new information about 

causes can lead to new beliefs about effects. This is shown in Figure 5-8 (b) where 

evidence is set on the blue node and queries can take place on yellow nodes. For 

example, a user may tell a technical support person that they are having issues with a 

specific sensor from a manufacturer. Even before any symptoms have been assessed, 

the technical support person already predicts that specific sensor has an issue and that 

he/she will increase the chances of the user having sensor problems and the chances 

that the sensor will exhibit other symptoms, such as the sensor being infected, or sensor 

is working intermittently are increased. To illustrate prediction reasoning in Figure 5-7 

when the initial setting for the distributor, sensor, infected and intermittently operating 

are (.9056, reputable, .6188 reliable, .5321 false, and .5321 false) respectively. When 

evidence is set on distributor being non reputable, the model is updated with (1, non-

reputable, .85 non reliable, .8686 true, and .8686 true) respectively. 
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First set the initial values by using the below equation, P(D) ==1 and the sensor CPT 

values for reliable. 

 

P(S|D) = P(D)P(⌐M) *S + P(D)P(M)*S 

   =1*.5×0.43534 +1* .5×0.9 

   = 0.66767 

 

Since both I and IO have the same value in their CPT table a single equation will be 

used where P(I|D) or P(IO|D) are the same. 

 

P(I|D) = P(S|D) P(I) + P(⌐S|D) P (⌐I) 

   = 0.6676 3 × 0.14214 + (1 – 0.6676) × 0.85786 

  = 0.5698 

P(IO|D) = P(S|D) P(I) + P(⌐S|D) P (⌐I) 

   = 0.6676 3 × 0.14214 + (1 – 0.6676) × 0.85786 

  = 0.5698 

 

Now in the predictive reasoning evidence is set on P(D) == non-reliable and nodes S, I 

and IO change to different values. P(D) ==1 and the sensor CPT values for non-reliable. 

 

P(S|D) = P(D)P(⌐M) *S + P(D)P(M)*S 

= 1*.5 × 0.8874 + 1*.5* 0.8124 

= 0.8499 

 

P(I|D) = P(S|D) P(I) + P(⌐S|D) P (⌐I) 

= 0.8499 × 0.99686 + (1 – 0.8499) × 0.14214 

= 0.8686 

 

P(IO|D) = P(S|D) P(I) + P(⌐S|D) P (⌐I) 

= 0.8499 × 0.99686 + (1 – 0.8499) × 0.14214 

= 0.8686 

 

In the intercausal reasoning (Explaining away) cases, reasoning is having 

exactly two possible causes of a particular effect. In Figure 5-8 (c) evidence is set on 

the blue nodes while querying the yellow node. As an example of the intercausal 

reasoning, the manufacturer (building the sensors) is independent of the distributor 

(selling the sensor).  For example, a user that has purchased the sensor from a distributor 

does not change the probability of the sensor being built by the manufacturer. However, 

if we know that the user purchased a sensor then the chances that the sensor came from 

a specific manufacturer and distributor are increased. In the case of intercausal 
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reasoning using Figure 5-7,  we set evidence on both distributor and sensor to be 1 on 

non-reputable and not reliable, this changed the manufacturer from .5/.5 for non-

reputable and reputable to .4779 and .5221, having very little change. 

In calculating the equation for finding the probability of M given both S and D 

and setting both sensor and distributor to one. The sensor CPT table is used for the two 

values where distributor is not reputable. Since M and D are independent, the presence 

of one may make the other more or less likely, this is shown with the very little 

difference in M. This yields the following: 

 

P(M|S^D) = S*D*⌐CPT_value + S*D*CDT_value 

    = 1*.09436*.88748 + 1*.09436* .81249 

    = 0.1604 

 

In our final type of reasoning, this brings diagnostic, predictive and intercausal 

together called combined. Since, in BNs any node can be queried and nodes may have 

evidence set, this allows any combination to be achieved. In Figure 5-8 (d), evidence is 

set on the two blue nodes and the yellow node is queried.  To illustrate this combined 

case, the evidence is set on both distributor and intermittently operating to be 1 non-

reputable and true. When the sensor is queried, this changed to being .9755 not reliable. 

The use of BNs and applying these reasoning strategies allows a more insightful 

analysis of the domain space of interest. 

At this point we have a notion of nodes and arcs and what they mean, we have 

a notion of probabilities, and we have a notion of reasoning. The next step is a 

methodology for constructing the network. The following is an algorithm for 

constructing a Bayesian Network from Pearl, 1988[171]:  

 

1) Choose a set of relevant variables {Xd} that describe the problem.  
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2) Choose an order for the variables [X1, X2, ..., XD] 

3) For each variables Xd from d=1 to D: 

  a) Create a Node for Xd.  

b) determine the minimal set of previous nodes from 1 to d-1 on which Xd depends. 

These are the Parents of Xd : Parents(Xd).  

P(Xd | Xd1,..., Xdm) = P(Xd | Parents(Xd)) 

Such that {Xd1,..., Xdm} ⊆ {X1, ..., Xd-1 } 

c) Define the Conditional Probability Table (CPT) for Xd 

 

We leverage this algorithm below when we discuss the models in section IV. 

The following examples provide evidence that using a Bayesian Network (BN) 

based technique for assessment, risk management, evaluation and analysis of threats is 

a reasonable approach. Each example presents a different twist on how data is being 

generated for the conditional probability tables needed to construct a BN. All utilize 

BNs for quantifying uncertainty and providing evidence-based reasoning in a variety 

of different application areas. We briefly describe what these examples are by the 

following topics, why BNs, how were the values created, an overview of how it works 

and what is the crux of the example. 

Prabhakaran, et al., present an example of a BN for sensor safety assessment 

used in Unmanned Aerial Vehicles (UAV). 

What is it – Prabhakaran, et al. presents a safety assessment for Unmanned 

Aerial Vehicles (UAV) where the sensors are analyzed for faults or failures, since 

critical sensors affect the total functionality of the system and failures can make the 

system unsafe [172]. Typically, safety assessment for aerial vehicles uses Fault-tree 

analysis or Markov models, however in this case the authors used BayesiaLab’s 

software to construct a Bayesian Network model that reasons about the analysis and 

sensor performance (output data to ensure operational functionality). 
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Why use BN- The authors believe that using a BN in a safety assessment has 

its advantages, for example using both priori and posterior information, deals with 

incomplete data sets, easy to find the causal relationships between the data and is highly 

efficient in a reasoning algorithm that is mature. 

How were the values created- Sensor data was generated using 

MATLAB/Simulink for modeling the ground speed Vg from input values including 

yaw angle, airspeed, windspeed, and wind direction. A set of constraints were added to 

distinguish between safe and unsafe values.  The output from the MATLAB model 

created a database with 160 samples, from which some data is used for learning and the 

other for test.  

Overview – The BayesiaLab tool provides two paths to generating a BN, the 

first being a Machine Learning (ML) approach where data is fed into the tool to create 

the model and the other being a manual process where experts create the model. The 

author’s tried both approaches, where the ML approach left data nodes unattached in 

the model because the data was uncorrelated to the defined target node. The other 

method is the knowledge-based approach where an expert defines the nodes and the BN 

structure. A more detailed sensor BN was created manually with expert knowledge 

where the target nodes called safe, unsafe, and partially safe were linked to six sensors, 

gyro, ground speed, angle of attack, differential pressure, static pressure, and heading 

angle. The BN model was used to reason about the safety of UAV for ground speed. 

What is the crux – The authors have implemented a BN for System Safety 

Analysis (SSA), where the research goal was to monitor the safety critical sensor 

outputs and ensure successful UAV sensor performance. The BN simulation model 

provided successful results, which the authors suggest can be expanded into a larger 
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model for all the sensors in the UAV for real-time safety checks (using the ML approach 

with defined target nodes). As the authors have stated, using BN lends itself to modeling 

both hardware and software. We agree with that observation, since we are considering 

using it for the holistic security architecture that includes these layers. 

Ramakrishnan presents a BN example for security risk management looking at 

insider and external cyber-attacks. 

What is it – Ramakrishnan, applies Bayesian Networks to further expose the 

complexities of risk factor interdependencies, providing a quantification of risks and 

decision support for risk management. He examines some cases related to the risk of 

data loss from the perspectives of insider and external cyber-attacks.  

Why use BN- Ramakrishnan states that BNs can capture the complex 

interdependencies among risk factors and can effectively combine data with expert 

judgment. BNs can provide rigorous risk quantification and true decision support for 

risk management. 

Overview- The major groupings of the BN’s nodes were system security 

controls, phishing controls, and network controls for the data leakage BN. Three 

different BNs were generated for best, moderate, and worst-case scenarios for data 

leakage related to control effectiveness. Another three set of scenarios (best, moderate 

and worst) were presented that added nodes, vulnerability, controls, web server 

compromise, web server access, logging infrastructure and attackers’ action. Table 5-1 

shows the data used in the BN for the different scenarios.  When the security operation 

center (SOC) team’s skills and responsiveness were set to high, the loss amount went 

down from $33 M to 7M as the best case, in the moderate case (11.5M) and in the worst 

case a maximum loss of 33M was concluded. The BN provided the casual 
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interdependencies and relationships that helped define the risk factors being created 

from different perspectives  [173]. 

 

TABLE 5-1: DATA FOR SECURITY RISK ASSESSMENT 
Scenario Control 

Effectiveness 

Probability of 

Data Leakage 

(approximate 

Risk 

Rating 

SOC Team 

Response 

Effectiveness 

Loss Amount 

(in Millions of 

US Dollars) 

Best • Very 

effective 

controls with 

a few 

extremely 

effective 

controls 

• Data loss 

prevention 

(DLP) in 

block mode 

• Employee 

awareness 

high 

85 percent 

unlikely. 

13 percent 

extremely 

unlikely. 

Less than 1.5 

percent likely 

Low High 7.5 

Moderate • Moderately 

effective 

controls with 

a few not 

effective 

controls 

• DLP in 

monitor 

mode 

• Employee 

awareness 

medium 

91 percent likely. 

7.9 percent very 

likely. 

Less than 1.4 

percent unlikely 

Medium Medium 11.5 

Worst • Not 

effective 

controls with 

a few 

controls 

slightly 

effective 

• No DLP 

• Employee 

awareness 

low 

68 percent very 

likely. 

30 percent 

extremely likely. 

Less than 1.5 

percent likely 

High Low 33.5 

 

What is the crux – The BN approach helps to identify, understand, and quantify 

complex interrelationships and can help make sense of how risk factors emerge and are 

connected, and how to represent control and mitigate them. This work parallels our 
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thinking that as the defenses increase the risk/damage should also decrease. This all 

depends on the skills/resources that are available, for example on an autonomous 

robotic system. 

Atoum and Otoom presents a BN example for cyber security risk assessment 

and identifying risk reduction for financial investments. 

What is it- Atoum and Otoom create a Bayesian Network called the Holistic 

Cyber Security Implementation Framework (HCS-IF) where their proposed model (13 

nodes) analyzes and quantifies information security risks caused by several threats. The 

term holistic is used in an abstract manner to articulate that security encompasses at the 

national level. This cyber security framework helps security managers identify potential 

risks as well as where investment dollars should be allocated to reduce risks. In the 

HCS-IF, the supportive evidence values toward cyber security objectives are mainly 

the controls, the strategic moves, the requirements, identified goals and the Cyber 

Security Strategy (CSS). 

Why use BN- BN was used to formally validate the ability of the Holistic Cyber 

Security Implementation Framework of [3] (H-CS-IF) to achieve the required security 

level utilizing a set of controls that have an effect on each other.  In the HCS-IF, the 

supportive evidence values toward cyber security objectives are mainly: The Controls, 

the Strategic Moves, the Requirements, Identified Goals, and the CSS. Unfortunately, 

to our knowledge, there is no direct way to calculate the probability of each component. 

Therefore, we depend on domain knowledge and expert expectation [174]. 

Overview- A thirteen node BN had the following labeled nodes Cyber Security 

Strategy, Audit, Business, Requirements, Controls, Framework Controls, Goals, 

Strategic Moves, Governance, Prioritization, Change Control Board, Strategic Controls 
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and at center was the Strategic Objective. By taking the current CSS as the prior, one 

could manipulate a set of transform nodes (all remaining nodes above) to achieve an 

outcome result of a security level. The evidence was set on several nodes to show that 

the target node identified as the security objective was able to be influenced by the other 

linked nodes. In the first scenario, the assigned metrics on network nodes were set by 

experts, for example the CSS node had values set to holistic at .91 and non-holistic set 

to .09 where the security objective node had a .88 security level [174]. In the second 

scenario, the evidence was set on Business, Framework, Governance, Audit, and 

Strategic Controls not being achieved, this set the security objective to .28 level.  The 

BN showed that the transform nodes can influence the target node and as a result 

provide an outcome of a new security level. The proposed BN is able to give direction 

to the security managers in the early stage of the cyber security implementation, at 

design time 

What is the crux – The results showed that the proposed model worked and 

could be used by security managers for guidance. The BN model was used as an 

assessment tool to help guide the budget and resources to where the threat level was 

greatest. As knowledge is obtained about the security effects on autonomous robotic 

systems, the design phase budget and resource can be shifted to the appropriate layers 

of the architecture. 

De Wilde presents a BN example for health care data breach security risk assessment. 

What is it- De Wilde presents her research into creating a Bayesian network 

that  predicts the probability of a data breach caused by a group of insiders in a health 

care organization given certain prior indicators and preventive measures and test its 

usefulness in practice [175]. The indicators will be related to malicious and accidental 
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insider threats and focus on the motivation, capability, and opportunity of a group of 

insiders. A malicious insider attack can be characterized by the motivation and 

capability of the attacker and the opportunity to perform the attack. In general insiders 

do not have a reason to make mistakes and therefore the accidental insider threat can 

be characterized by the (lack of) capability and the opportunity to perform the attack. 

These elements can be observed before a data breach occurs and therefore are called 

“prior indicators” of a data breach. Each element can be divided into specific prior 

indicators related to the insider threat. This model can also be used to determine which 

measures should be taken to minimize the probability of a data breach. 

Why use BN- In the context of security and privacy however, there is limited 

information available on how BNs can be created and used in practice. This research 

contributes to this by developing a model that combines observed prior indicators of a 

data breach and measures taken by an organization to predict the probability of a data 

breach in a health care organization as a kind of risk assessment. The model combines 

both malicious and accidental insider threats posed by a group of insiders. When 

changing the observations, the probabilities for different scenarios can be determined. 

In this way the best combination of measures to minimize the probability of a data 

breach given certain prior indicators can be identified. 

How were the values created- De Wilde created her own values based on 

literature that covered insider threats. 

Overview- Four different types of BN were looked at to support the data breach 

model structure, these were BN, Multi-Entity Bayesian Network (this combines First-

Order Logic with BNs for representing and reasoning about uncertainty with domain 

rich content), Dynamic Bayesian Network and a BN based on attack graphs. The 



186 

decision was made that the BN was the most useful one, because it provided the ability 

to make data breach predictions with limited CPT data. It was also decided that discrete 

nodes would be used, since it is not clear how continuous nodes can be used effectively 

in BNs and the tool AgenaRisk is mostly designed for discrete values. The basic model 

is built by having two parent nodes called measures that point to prior indicator nodes 

and a child node called data breach, which had a child node called posterior indicators.  

Three iterations of a Bayesian network model are described called alpha (mobile device 

case), beta, and gamma where the main idea is to detect insider data breaches. The 

nodes in the BN are simple values of true, false, a coarse ranking (low, medium, or 

high), negative, neutral, positive and employee or employer owned device (none, 

personal, personal + staff) [175]. 

In the Alpha mobile device case, the model has two use cases. The first being 

to determine the probability of a data breach caused by a group of insiders who lose 

employee or employer-owned mobile devices or misuse the mobile devices. The second 

use case is to help health care organizations determine which additional measures they 

should take to protect themselves against data breaches caused by insiders. Using the 

basic model, the data breach node has two parent nodes, Mobile device misuse and 

Mobile device loss since these are the threats in the mobile device case and these will 

have Low, Medium, and High states. In the Alpha model additional nodes were added 

to the base model nodes measures (Policy protection level, Accident protection level) 

and prior indicators (motivation, job type, attacker opportunity) to name a few. 

In the Beta case model, the Alpha model is updated and validated where Misuse 

is further defined as not returning the devices when needed and/or copying personal 

data to private mobile devices. The Beta model can, similar to the Alpha model, can be 
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used to determine the data breach probability for one specific organization. To validate 

the model a focus group was surveyed as well and an interview with a security officer 

was conducted. From the data collected the Alpha model was modified by removing 

the competitive advantage node, renaming six nodes, and changing CPT values. The 

Alpha model was renamed to Beta to reflect the changes. 

In the Gamma model, the Beta model was further validated for its usefulness 

and effectiveness by using it in practice. Three different data protection employees in 

different Dutch hospitals were interviewed and the data breach assessment was 

performed with them. As a result of the interviews, changes were made to the model.  

Specifically, the Mobile device misuse and Mobile device loss changed to Boolean 

values (other changes included name change and nodes changes in measures). 
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A general case model is shown in Figure 5-9 that can be extended to other use 

cases. 

 
 

What is the crux – Bayesian networks can be used to predict the probability of 

a data breach, but also to detect a data breach. The research focuses on prediction, but 

also demonstrates how the BN can be extended to include the possibility for detection. 

De Wilde has stated that the values in the CPT should be obtained from experts to make 

the models more meaningful. We agree with this statement that obtaining CPT values 

from experts provides a more meaningful and realistic BN. We have sourced our values 

from credible source standards and/or industry known. 

Henshel, et al., presents a BN example for cyber security risk assessment that 

includes the human factor as an attacker/defender. 

Figure 5-9: General model 
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What is it- Henshel, et al., create a MulRAP framework that is a universal 

approach for parameterizing complex systems, facilitating the detailed characterization 

of the network structure and explications of the relationships between the nodes 

(components or assets) and edges (processes) [102]. The parameterization process can 

be applied to any high-level concept (e.g., risk, vulnerability, resilience) quantitatively 

after defining, quantifying, and validating the relationships and inherent network 

properties. The goal of the parameterization process, as should be of any modeling 

endeavor, is to identify the minimum number of necessary and sufficient information-

rich variables in order to accurately describe the emergent properties of a complex 

system. 

Why use BN- Bayesian Networks provide a solution for studying classical 

cause-and-effect relationships. Since it combines graphical analysis with Bayesian 

analysis, it provides a more intuitive way to represent causal relationships. Bayesian 

networks are widely used to construct risk models to solve complex risk assessment 

problems. 

How were the values created- The CPTs were populated by experts in risk 

assessment and cybersecurity. The experts were made up of 30 Cyber Security 

Collaborative Research Alliance (CSecCRA) researchers that participated over a year 

in consultation. 

Overview- A BN is created incorporating variables representing critical risk-

inducing and risk-mitigating human and cultural factors into a proof of concept. The 

introduction of human factor parameters is incorporated into the model by two sets of 

skills, attacker and defender and integrates a country-based modifying threat factor. The 

use of empirical data from the studied SQL injection attacks was incorporated into the 
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model. In comparison to using theoretical assumptions, the empirical evidence provided 

a view into the effects of the network on the overall risk. The model shows that by 

including human factors this contributed to altering risk in cyber networks, detailing 

the potential impacts and effects of human actors on risk posture, strategy, and response. 

The model captures the SQL injection attack on a highly sensitive database server and 

an evaluation is performed on the risks parametrization and validation of the empirical 

data obtained in the experiment on a virtual network testbed. 

What is the crux- An advantage of modeling cybersecurity risk using Bayesian 

networks instead of statistical techniques is that they allow identifying the factors which 

contribute the most towards detecting high risk situations. The authors used empirical 

data vs theorical, which provided a comprehensive knowledgeable view of how 

network changes affected the overall risk analysis. Like this example of using BNs, we 

are also using empirical data acquired from standards and other known sources for our 

model. 

Herland, et al., presents a BN example for smartphone personal data security 

assessment. 

What is it – Herland, et al., present a Bayesian Network that models security 

risks, consequences, impacts of Finland’s smartphone users’ personal data being 

compromised. 

Why use BN- Herland, et al, looked at different techniques such as Markov 

chains and Petri nets but concluded that they are not suitable for causal relationship 

analysis, as they become large, complex and confusing [176].  BNs were found to be 

an effective method for documenting and analyzing causal knowledge of domain 
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experts. The model lends itself well to different types of sensitivity analysis, which 

would be especially useful when analyzing potential controls and mitigations for risks. 

How were the values created- Their BN model uses a knowledge-based 

approach due to a lack of available data. First, information is reviewed from the 

literature in order to determine the known assets and risks related to smartphone use. 

Then a two-stage expert interview process was completed where the first stage gathered 

information to build a qualitative model and in the second stage, this model was 

validated for dependencies, impacts and quantitative values and correctness. 

Government, network, application, organizational security, telecom operator, and smart 

phone development experts were interviewed to populate the CPTs. 

Overview- In the BN model each risk node is defined as (True or False) and 

each consequence as negligible, low, medium, or high. The model included the 

following nodes (Network spoofing attack, malware, phishing, sniffing on legitimate 

network, shoulder or eavesdropping, loss or theft of device, unauthorized physical 

device access, vendor backdoor, surveillance on network level, and unintentional data 

loss). These nodes, all focused on the consequence of leakage of personal or 

confidential data. The model results showed that malware, phishing, loss or theft of 

device and unintentional data disclosure were among the most common threats for 

leaked data. Using a BN was essential for domain experts to reason about information 

security risks for smartphones because it allowed different scenarios to be analyzed, 

and the model could be easily extended.  

What is the crux- The outcome of the study was a BN model that demonstrated 

that the most important risks in Finland’s smartphone personal data security included 

traditional security risks such as malware and phishing, general risks such as loss or 
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theft of device, and new risks such as unintentional data disclosure through legitimate 

applications.  BNs were suitable for information security risk assessment because they 

were flexible in model construction that could be used for various kinds of analysis. 

The resulting model lends itself well to different types of sensitivity analysis, which is 

useful when examining risks potential controls and mitigations. We concur that using 

BNs provides a flexible method for asking questions about the security posture of the 

systems once the model has been setup with realistic data. 

From these different examples, there is strong evidence that suggests BN’s are 

effective in causal reasoning about risk assessments, analysis, and evaluation of security 

threats. In a number of examples, it was expressed that obtaining CPT values was 

difficult, since no data was available, while in others cases a simple boolean approach 

was taken. A number of examples also expressed that expert knowledge was obtained 

to define the values or construct the BN. Although these researchers have demonstrated 

the utility of BNs for assessing various aspects of the overall security of a system, we 

extend on the base approach of using BN for security by one that models the internal 

state of an autonomous robotic system with respect to its configuration. Another 

difference is that we utilize specific metrics from specification and standards that 

incorporate more meaningful information about the values that are associated with 

variables. Lastly, our approach includes vulnerabilities associated with system, 

hardware and software levels, supply chain vendors, AI robustness and a resilience set 

of elements. In our opinion, this model supports the construction of a holistic security 

model that can react to threats. 
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5.3 Methods to calculate the metrics 

 To construct this holistic security model that incorporates the elements 

discussed above, we utilize a BN that uses empirical data for its CPT values. In order 

to construct a BN, we need the values for the CPT of each node. To acquire these values, 

we use our previous research results where we identified sources for assessing trust at 

the system, hardware, software, AI robustness, and supply chain levels. We take those 

values and formulate our own metrics, that include the impact, cost of damage and 

perceived target cost for each layer of the system. These metrics will become the basis 

for the CPT of each node in the BN.   

 

System trust metric calculation: 

 

From our previous research work in Chapter 4 we defined a generic equation 

for calculating the trust metric for each layer, that was defined by the following 

equation 5-3: 

Ɐx Ɐy Ɐz Ɐα at (x, y, z, α TMn) => L(xn) ^ R(yn) ^ D (zn) ^ A(αn)  (5-3) 

 

          

 {

0 ≤ 𝑥 ≤ 1
0 ≤ 𝑦 ≤ 1
0 ≤ 𝑧 ≤ 1
0 ≤ 𝛼 ≤ 1

 

 

trust metric = level value n * probability of adversary exploit reward n * probability of 

adversary exploit damage n * likelihood of adversary taking action n 

 

 Where the level value can be constructed from a number of parameters specific 

to that layer and n defines the levels associated with each of the parameters. For 

example, a level value can be high, adversary exploit reward can be high, the adversary 
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exploit damage can be high, but the adversary taking action to exploit maybe low. The 

trust metric parameters are independent of each other, but for simplicity in the tables 

below the parameters will be aligned with the associated levels. This means that when 

the level value is high, each of the remaining parameters will be high. The likelihood 

for an adversary taking action to exploit will not be shown in the calculations below, 

since this is being kept at a probability of 1 for the rest of the discussion. The probability 

of 1 represents that the adversary will also try to exploit. 

We first define the equation for our system metric as shown in equation 5-4. 

Where En is the common criteria evaluation assurance level (EAL), Cn is the cost for 

development to achieve that level, Tn is the time it takes to achieve that level, CDP is 

the Collateral Damage Potential that an adversary can cause from an exploit, PVT is 

the Perceived Target Value is the reward that an adversary can gain from the exploit 

and L is the likelihood that an adversary will exploit. The cost and time variables are 

controlled by the assurance level being targeted, the deliverables to meet the 

requirements, the gates for verification/validation, independent 3rd party lab for 

validation and by the certifying entity. 

 

𝑆𝑦𝑠𝑆𝑐𝑜𝑟𝑒(𝑛) =  (𝐸𝑛 ∗ 𝐶𝑛 ∗ 𝑇𝑛 ∗ 𝐶𝐷𝑃𝑛 ∗ 𝑃𝑇𝑉𝑛 ∗ 𝐿𝑛)    (5-4) 

 

At the system level of trust metrics, we will use the first five levels of common 

criteria specification since it provides a basis for assigning values that is widely known 

and used to evaluate system security trust.  CC also correspond to FIPS and safety 

specifications as shown in Table 5-2.  
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TABLE 5-2: MAPPING SAFETY AND SECURITY SPECIFICATIONS 
Domain Domain Specific Assurance Levels 

Automotive 

(ISO 26262) 

QM ASIL-A ASIL-B ASIL-C ASIL-D ASIL-+  

General 

(IEC-61508) 

- SIL-1 SIL-2 SIL-3 SIL-4   

Aviation 

(DO-

178/254) 

DAL-E DAL-D DAL-C DAL-B DAL-A   

Railway 

(CENELEC 

50126/128/1

29) 

- SIL1 SIL2 SIL3 SIL4   

FIPS 140-3 L1 L2 L3 → L4 → → 

CC (ISO 

15408) 

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7 

 

In calculating the system trust metric, the cost to certify and time to certify will 

be multiplied into each of the levels, this will differentiate each level. Dale, presented 

a briefing in which the cost and time to assess different EALs was collected from >250 

evaluations completed or in the evaluation process among 14 different laboratories 

[104].  As estimates for different EALs, Dale determined these parameters.  

 

EAL 1 = 0 

EAL 2 = cost $100 to $170k and 4 to 6 months 

EAL 3= $130 to $225K and 6 to 9 months 

EAL 4 = $175 to $750k and 7 to 24 months 

EAL 5 = $750 to $2M and 24 to 48 months 

 

The values for the Collateral Damage Potential are obtained from both the 

Common Configuration Scoring System and the  Common Misuse Scoring 

Specification [120] [121] as shown in Table 5-3. 

 

TABLE 5-3: COLLATERAL DAMAGE POTENTIAL VALUES 
Metric Value Description 

None 1 There is no potential for loss of life, physical assets, 

productivity, or revenue.  

Low 1.25 Successful exploitation of this vulnerability may result in slight 

physical or property damage or loss. Or there may be a slight 

loss of revenue or productivity. 



196 

Low-

Med 

1.5 Successful exploitation of this vulnerability may result in 

moderate physical or property damage or loss. Or there may be 

a moderate loss of revenue or productivity.  

Med-

High 

1.75 Successful exploitation of this vulnerability may result in 

significant physical or property damage or loss. Or there may be 

a significant loss of revenue or productivity.  

High 2 Successful exploitation of this vulnerability may result in 

catastrophic physical or property damage or loss. Or there may 

be a catastrophic loss of revenue or productivity. 

 

The values for the Perceived Target Value are obtained from both the Common 

Configuration Scoring System and the Common Misuse Scoring Specification [120] 

[121] as shown in Table 5-4. 

 

TABLE 5-4: PERCEIVED TARGET VALUE 
Metric Value Description 

Low .8 The targets in this environment are perceived as low value by attackers. 

Attackers have low motivation to attack the target system relative to other 

systems with the same vulnerability.  

Med 1 The targets in this environment are perceived as medium value by 

attackers. Attackers are equally motivated to attack the target system and 

other systems with the same vulnerability.  

High 1.2 The targets in this environment are perceived as high value by attackers. 

Attackers are highly motivated to attack the target system relative to 

other systems with the same vulnerability.  

 

We adjust Table 5-4 to have five values instead of three by continuing the 

sequence as shown in Table 5-5. This is to discretize each element that goes into the 

metric into the same number of levels to have a 1-to-1 relationship with the other values. 

 

TABLE 5-5: ADJUSTED PERCEIVED TARGET VALUES 
Metric Value Description 

None .4 The targets in this environment are perceived as no value by attackers. 

Attackers are not motivated to attack the target system.  

Low .6 The targets in this environment are perceived as low value by attackers. 

Attackers have low motivation to attack the target system relative to other 

systems with the same vulnerability. 

Low-

Med 

.8 The targets in this environment are perceived as low to medium value by 

attackers. Attackers have low to medium motivation to attack the target system 

relative to other systems with the same vulnerability. 

Med-

High 

1 The targets in this environment are perceived as medium to high value by 

attackers. Attackers are equally motivated to attack the target system and other 

systems with the same vulnerability. 
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High 1.2 The targets in this environment are perceived as high value by attackers. 

Attackers are highly motivated to attack the target system relative to other 

systems with the same vulnerability. 

 

Table 5-6 is the likelihood of the adversary taking action to exploit. The 

likelihood is a function that a threat exists and that the threat can successfully exploit 

the component or system. The likelihood values are aligned with Table 5-3 and Table 

5-4. 

 

TABLE 5-6: THE LIKELIHOOD OF AN ADVERSARY TAKING ACTION 
Metric Value Description 

None .2  

Low .4 The likelihood of the adversary taking action to exploit is low 

Low-

Med 

.6  

Med-

High 

.8  

High 1 The likelihood of the adversary taking action to exploit is high 

 

In order for our data to fall within a probability range of [0,1] a couple of 

techniques can be used to manipulate the data to ensure it is normalized into this range. 

These common techniques are the min-max or z score for data normalization.  

The equations for min-max, where 𝑣′ is the new value of each entry in the data, 

𝑣 is the old value of each entry in the data, newmax and newmin are the boundary values 

within the data and max and min are the values of a respectively. This is used to 

scale the values in an array, for example from [0,1] range. 

 
𝑣′ =

𝑣 − 𝑚𝑖𝑛𝑎

𝑚𝑎𝑥𝑎 − 𝑚𝑖𝑛𝑎

(newmaxa − newmina) + newmina 

 
(5 -5) 

 

 

The method to normalize values is called z-score where x is the random value 

with a mean of µ and the standard deviation σ. If the z-score equals zero, it is on the 
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mean and if it equals 1, it is 1 standard deviation above the mean. This is used during 

the execution of the MATLAB code below to normalize the values. 

 

 
z =  

(𝑥 −  µ)

𝜎
 (5 -6) 

  

By simply plugging the values from the tables into eq. 3 will generally not result 

in a range of values between 0 and 1.  Therefore, to obtain a system score it is necessary 

to normalize and interpret the results of eq. 3 to obtain a system score 

Calculating these values EAL *Cost (Upper and Lower range) * Time (Upper 

and Lower range) * Collateral Damage Potential * Perceived Target Value into a range 

that has been normalized interpolated using MATLAB code shown below: 

 

% How to calculate the system score using cc*cost*tm*C*P values 

cc = [.2, .2, .2, .2, .2]; %set values 

costh = [2e6, 750e3, 225e3, 170e3, 0]; 

costl = [750e3, 175e3, 130e3, 100e3, 0]; 

timeh = [48, 24, 9, 6, 0]; 

timel = [24, 7, 6, 4, 0]; 

c = [2, 1.75, 1.5, 1.25, 1]; 

p = [1.2, 1, .8, .6, .4]; 

 syt = cc.*cost[h,l].*time[h,l].*c.*p; 

display(syt) 

nsyt = normalize(syt,’range’); 

display(nsyt) 

xq = 0:.20:1; 

vq = interp1(nsyt,xq,’pchip’); 

vq1 = normalize(vq,’range’); 

display (vq1) 
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To illustrate the need to perform the normalization and interpretation as shown 

in Figure 5-10, the output from the code above is shown for nsyt, in blue as first 

normalization of the calculation. The line vq is the interpreted operation and vq1 is the 

normalized as shown in yellow that falls between [0,1].  

 

 

 

Figure 5-10: Outputs from calculations 
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To continue, the high and low values from the tables above are shown as the 

upper and lower bound (blue and yellow solid lines) in Figure 5-11. A 10% delta is 

taken from each respectively and those are the dash lines. The ten percent is to 

accommodate for the uncertainty. 

 

The calculation methodology discussed above is applied to the system, 

hardware, software, and supply chain metrics.  

 

The resultant definition for the system level metric is shown in Table 5-7.  

 

TABLE 5-7: NEW SYSTEM METRICS 
Metric Value Description 

Sys1 0 to .40 This is the lowest trust level, damage, reward to 

exploit, with no cost and time 

Sys2 .41 

to .60 
 

Sys3 .61 

to .76 
 

Sys4 .77 

to .89 
 

Sys5 

+ 

.9 to .1 This is the highest trust level, damage, reward, with 

highest cost and duration to achieve. 

 

Figure 5-11: Upper and Lower Bounds with tolerances 
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Hardware trust metric calculation: 

 

We first define the equation for our hardware metric as shown in equation 5-7. 

Where TMn is the hardware design trust metric, CDP is the Collateral Damage Potential 

that an adversary can cause from an exploit and PTV is the Perceived Target Value is 

the reward that an adversary can gain from the exploit. 

 

  𝐻𝑊𝑆𝑐𝑜𝑟𝑒(𝑛) =  (𝑇𝑀𝑛 ∗ 𝐶𝐷𝑃𝑛 ∗ 𝑃𝑇𝑉𝑛 ∗  𝐿𝑛)   (5-7) 
 

 

Kimura presents the development of Trust Metrics for quantifying design 

integrity. The Design Integrity (DI) trust metric accounts for the signal activity rate, 

logical equivalence, power consumption, functional correctness, and structural 

analysis. TM = DI * R, where DI is the Design Integrity and R is the Reference Design 

Quality (what artifacts are available from the design) [118] as shown in Table 5-8. 

 

TABLE 5-8: HARDWARE DESIGN TRUST METRICS 
Metric Value Description 

None 0 to .15 Where this is the lowest level of trust 

Low .16 to .33  

Low-

Med 

.34 to .51  

Med .52 to .70  

Med-

High 

.71 to .89  

High .9 to 1 Where this is the highest level of trust 

 

 

We extend both Collateral Damage Potential and Perceived Target Value to one 

more placement in the sequence in order to align with Table 5-8 values. Using equation 

5-7 and the procedure outline above, we can create a hardware score by combining the 
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hardware variables TM (Upper and Lower range) * Collateral Damage Potential * 

Perceived Target Value. The normalized result is shown in Table 5-9.  

 

TABLE 5-9: HARDWARE METRICS 
Metric Value Description 

None 0 to .15 Where this is the lowest trust level, 

damage, and reward to exploit 

Low .16 

to .33 
 

Low-

Med 

.34 

to .51 
 

Med .52 

to .70 
 

Med-

High 

.71 

to .89 
 

High .9 to 1 Where this is the highest trust level, 

damage, and reward to exploit 

Software trust metric calculation: 

 

We first define the equation for our software metric as shown in equation 5-8. 

Where TIn is the Technical Impact from a potential software vulnerability, CDP is the 

Collateral Damage Potential that an adversary can cause from an exploit and PTV, the 

Perceived Target Value is the reward that an adversary can gain from the exploit. 

 

  𝑆𝑊𝑆𝑐𝑜𝑟𝑒(𝑛) =  (𝑇𝐼𝑛 ∗ 𝐶𝐷𝑃𝑛 ∗ 𝑃𝑇𝑉𝑛 ∗ 𝐿𝑛)  (5-8) 

 
 

We selected the technical impact score from the Common Weakness Scoring 

System (CWSS) specification, since this is more detailed than confidential, integrity 

and availability as in the other specifications [122]. The technical impact covers the 

potential result of an exposure, whereas in the other specifications a vulnerability must 

be known, this is shown in Table 5-10.   
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TABLE 5-10: CWSS TECHNICAL IMPACT METRICS 
Metric Value Description 

None 0  Where low sensitive data is exposed 

Low .3 Where low sensitive data is exposed 

Med .6  Where medium sensitive data is exposed 

High .9 Where highly sensitive data is exposed 

Critical 1 Where tasks cannot be performed 

 

Using equation 5-8 and the procedure outline above, we can create a software 

score by combining the software variables TI * Collateral Damage Potential * 

Perceived Target Value. The normalized result is shown in Table 5-11. 

 

 

TABLE 5-11: SOFTWARE METRICS 
Metric Value Description 

None 0 to .35 Where this will indicate no impact, no damage, and no reward for exploit. 

Low .36 to .53 Where this will indicate low value to impact, damage, and reward for 

exploit 

Low-

Med 

.54 to .71 Where this will indicate low value to impact, damage, and reward for 

exploit 

Med-

High 

.72 to .89 Where this will indicate high medium value to impact, damage, and reward 

for exploit 

High .9 to 1 Where this will indicate high value to impact, damage, and reward for 

exploit. 

 

Supplier trust metric calculation: 

 

We first define the equation for our supplier metric as shown in equation 5-9. 

Where Supn is the supplier trust metric, CDP is the Collateral Damage Potential that an 

adversary can cause from an exploit and PTV is the Perceived Target Value is the 

reward that an adversary can gain from the exploit. 

 𝑆𝑢𝑝𝑆𝑐𝑜𝑟𝑒(𝑛) = (𝑆𝑢𝑝𝑛 ∗ 𝐶𝐷𝑃𝑛 ∗ 𝑃𝑇𝑉𝑛 ∗ 𝐿𝑛 ) (5-9) 

 

Northrop Grumman (NG), presents its supplier score card [154] with defined 

metrics related to a framework called Supplier Assessment Management System 
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(SAMS). Within the same document a Systems Applications and Products (SAP) 

supplier score card is found. For the supplier trust metrics, we will use the SAP range 

and the NG evaluation categories, as shown in Table 5-12. 

TABLE 5-12: SUPPLIER TRUST METRICS 
Metric Value Description 

Unsatisfactory 0 to 50  

Marginal 51 to 74  

Satisfactory 75 to 90  

Excellent 91 to 100 Where this is the highest level of trust 

 

Using equation 5-9 and the procedure outline above, we can create a supplier 

score by combining the supplier variables Sup * Collateral Damage Potential * 

Perceived Target Value. The normalized result is shown in Table 5-13. 

 

TABLE 5-13: SUPPLIER METRICS 
Metric Value Description 

Unsatisfactory 0 to .51 Where this will indicate unsatisfactory rating level of trust, damage, and 

reward to exploit. 

Marginal .52 

to .70 

Where this will indicate the minimal level of trust, damage, and reward 

to exploit. 

Satisfactory .71 

to .89 
Where this will indicate the next highest level of trust, damage, and 

reward to exploit. 

Excellent .9 to 1 Where this will indicate the highest level of trust, damage, and reward to 

exploit. 

 

 

AI robustness trust metric calculation: 

 

As presented in our previous survey research work in Chapter 4, AI introduces 

different types of attack vectors. The focus is on AI adversarial attacks, the 

classification of data being poisoned, evasion attacks and black box attacks to name a 

few. For every attack, a remedy may arise to counter, but this takes time and there needs 

to be a method to identify these types of attacks. In the case of autonomous mobile 

robots, an AI/learning layer makes a system susceptible to new types of attack strategies 
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which more conventional attacks may not consider. This leads to a different approach 

that was taken with the AI robustness calculations since the approaches for evaluating 

AI robustness are very different than those used at the system, hardware, software, and 

supply chain metrics.   

An adversarial example is when x is recognized and classified as the original as 

target t = arg-max F(x) and a new desired target where t′ not equal to t, this is called x′ 

a targeted adversarial example if arg-max F(x′) =  t′ and x′ is close to x  given a distance 

metric [134]. The minimum distance of a misclassified nearby adversarial example to 

x is the minimum adversarial distortion required to alter the target model’s prediction, 

which is referred to as the lower bound. A certified boundary guarantees the region 

around x that the classifier decision cannot be influenced from all types of perturbations 

in that region. In other words, the robustness is being able to detect perturbation as close 

to x as possible and, in some cases, this is an approximation or an exact guarantee to 

determining the lower boundary point. In order to evaluate the distance, sometimes 

called distortion or error, between x’ and x, the generalized Minkowski’s formula is 

used to calculate the distance metric within p-norm space.  The generalized 

Minkowski’s formula is shown in equation 5-10. 

We select Minkowski’s formula to calculate the distance metric for p-norm 

when p=1, is a Manhattan distance, when p=2 it is a Euclidean distance, and when p=∞ 

it is a Chebyshev distance. In equation 5-10, the distance formula represents a 

generalized approach for distance measurements. 

 

 

𝐷(𝑋, 𝑌) = (∑ |𝑥𝑖 − 𝑦𝑖|𝑝
𝑛

𝑖=1
)

1
𝑝
 

 

(5-10) 
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By using these lower bound techniques (CLEVER and CNN-Cert), a minimum 

distortion level is established and from this point we can define ranges for rating AI 

implementations against these known values. To better illustrate this concept the 

following Figure 5-12 shows a center region equal to the certified region and each 

subsequent ring are correlated to the rating or strength of the AI implementation using 

a distance function. Let x be the certified region and y be the AI implementation, we 

can use the p-norm distance equation to determine the differences for adversarial 

perturbation detection. 

As one moves further away from the certified region the rating should decrease with 1 

being the lowest. 

 

 

We first define the equation for our AI Robustness metric as shown in equation 

5-11. Where Dn is the distance from the lower bound (certified area) of detecting an 

adversarial attack. As the distance is closer to the certified area it becomes more 

Figure 5-12: Robustness distance metric 
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difficult to detect, therefore, resulting in higher risk. The supplier must provide the 

testing results where these distance values can be obtained from or provide the testing 

logic, so that others can validate these values. CDP is the Collateral Damage Potential 

that an adversary can cause from an exploit and PTV, the Perceived Target Value is the 

reward that an adversary can gain from the exploit. 

 

  𝑎𝑖𝑟𝑆𝑐𝑜𝑟𝑒(𝑛) =  (𝐷𝑛 ∗ 𝐶𝐷𝑃𝑛 ∗ 𝑃𝑇𝑉𝑛 ∗ 𝐿𝑛)  (5-11) 
 

 

Using equation 5-11 and the MATLAB code below to simulate the distance 

function, we can create an AI robustness score by combining the AI variables D* 

Collateral Damage Potential * Perceived Target Value. The normalized result is shown 

in Table 5-14. The procedure below loops 5 times for each of the variable levels where 

distance is the err function of 1 – e. The variable e represents 3 digits over the range of 

0 to 1 in .01 steps. The result of this procedure produces peaks for the 5 variables levels 

and those are used for the values in Table 5-14, this is shown in Figure 5-13. 

 

E = .1e-3 :0.01:1; 

err = 1-e; 

c = [2, 1.75, 1.5, 1.25, 1]; 

p = [1.2, 1, .8, .6, .4];  

cnt=0;  

air = zeros(1,500); 

for j=1:5 

    for i= 1:100 

        cnt = cnt+1; 

        air(cnt) = err(i).*c(j).*p(j);         

    end    

end  
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nait = normalize(air,’range’); 

 

 

From plotting nait we obtain the nominal values for our metrics. The five peaks 

in the graph represent the distance from the lower bound but, in order to align with the 

rest of the metrics, we subtracted from 1 making the most robust closer to one. The five 

nominal values also align with CDP and PTV values in equation 5-11. The nominal 

values are then multiplied by 10% (+/-) to give an upper and lower boundary at each 

level, so the new AI robustness metrics are shown in Table 5-14.  

 

TABLE 5-14: AI ROBUSTNESS METRICS 
Metric Value Description 

None 0 to .30 Where this will indicate farthest away, no damage and no reward for exploit. 

Low .31 to .49 Where this will indicate low value for robustness, damage, and reward for 

exploit 

Low-

Med 

.50 to .71 Where this will indicate low medium value for robustness, damage, and 

reward for exploit 

Med-

High 

.72 to .89 Where this will indicate high medium value for robustness, damage, and 

reward for exploit 

High .9 to 1 Where this will indicate high value for robustness, damage, and reward for 

exploit 

 

By using distance formulas one can determine a trust metric. Each defense 

technique has a distance/error from the certified area (boundary) where perturbations 

Figure 5-13: AI Robustness results 



209 

can be detected, we can consider these values as trust metrics in a continuous set of 

ranges between [0,1]. Unlike some of the other measures we have seen so far that this 

is still an area that is less mature but apply the same technique to derive metrics. 

 

5.4 Trust Models using Bayesian Networks 

 

The need to use a Bayesian Network in the context of trust and causal inference, 

is part of reasoning [177].  By using causality, several questions can now be asked about 

the security posture of an autonomous robot system using BNs, but most importantly 

the robotic system can act on the knowledge it has from an internal point of view. Some 

questions to postulate against are: does having vendors that are more reliable than others 

decrease risk; do manufacturers that follow a security-aware development process 

reduce risk vs ones that do not; and if the platform supports a specific security 

configuration, can it be trusted to process an increased level of sensitive information? 

In the algorithm to create a BN, we have completed the quantitative portion by defining 

the metrics for our CPTs in the previous section and now we start to define the nodes 

of the BN is this section. We use a research platform for creating and analyzing the 

causality of the Bayesian Network. 

The models and simulations are created in a product called BayesiaLab [178], 

where a supported workflow is shown in Figure 5-14. BayesiaLab is a graphical desktop 

application that can run on Apple, Windows and Linux platforms and it provides 

functions like supervised machine learning, unsupervised machine learning, knowledge 

modeling, observational inference, casual inference, diagnosis, analysis, simulation, 
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optimization, and visualization in 2D/3D formats. Formulas can be utilized as well as 

different probability distributions.  

 

Figure 5-14 : BayesiaLab workflow process for Bayesian Network. 

 

The methodology for assessing assurance involves applying an assurance score 

and a reputation score at each level of the system, so that the child layer has knowledge 

about its parent layer.  The assurance score utilizes the trust metrics defined earlier, 

which includes the reward and damage values for each of the components that make up 

the system. The reputation score reflects a value to account for errors that may arise 

during the bootup of the system or during operational state execution. The collective 

assurance score is used by the system to assess external requests in order to properly 

fulfill it in a secure manner. This also reflects on the security posture of the system, 

meaning can the system support the request from a security point of view if the system 

is configured correctly to support the request and what are the potential risks. Utilizing 

the assurance and reputation scores goes deeper into the security model then the 

authentication/authorization controls that are used in conventional systems today.  

The following BN example shown in Figure 5-15, Figure 5-16 and Figure 5-17 

has two different microprocessors being used, where Figure 5-15 illustrates the initial 



211 

conditional distributions for the three nodes. In Figure 5-16 and Figure 5-17, the nodes 

have discrete values and are represented by solid circles and continuous values are 

drawn with a broken circle. The first microprocessor is a RISC-V (overseas 

manufacturer and open sourced), the other is an Intel x86 with Trusted eXecution 

Technology (TXT) (USA based manufacturer, reputable suppliers, etc.). The 

microprocessor trust metric and supplier trust metric nodes have a common effect 

causal relationship with the microprocessor node. The conditional probability table is 

constructed by the first node being the hardware trust metric using values from Table 

5-9, and the second node is the supplier trust metric with values from Table 5-13. The 

probabilities are shown in the boxes to the right of the diagram. By intuition, the Intel 

x86 with TXT provides a higher trust level than “other” (the RISC-V) chip, since the 

manufacture is USA based, followed the supplier check list ratings and its hardware 

design integrity was higher as well. These were compared with “other” (RISC-V) 

processor where the supplier was marginal, and the design integrity was low-med rating 

and did not have complete design set of artifacts.  
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In Figure 5-16, we first set the observation for both the hardware trust metric 

and supplier metric as shown in the green bars on the right-hand side, the 

microprocessor effect is shown in blue.  

By setting both values for hardware and supplier to having low to medium 

design quality and marginal rating for the supplier, we infer that the microprocessor 

node changes to the “other” type in the model. We can reason about the microprocessor 

assurance where the conditional probability is dependent given both hardware design 

and the supplier qualities. In Figure 5-17, we set the observation at the microprocessor 

Figure 5-16: RSIC-V open source processor 

Figure 5-15: Initial conditional distributions 
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node (selecting the Intel TXT processor) first as shown by the green bar and both 

hardware (hardware design quality is set at 62.61%) and vendor trust metrics (vendor 

quality is set at 47.2%) as shown in blue bars. We can deduce that having an Intel TXT 

processor from both design quality and supplier is a lower risk than having a lower 

design quality and a marginally rated supplier. This is the posterior on both hardware 

and vendor metrics given observation on the microprocessor. The tool allows a 

unidirectional path for causal inference.  

 

By understanding the autonomous robotic system configuration, programming 

logic can determine the best optimization for how an external request can be handled 

by selecting various parameters within the BN. Utilizing the tool, we can look to find 

the best solution for achieving the Intel TXT as the target using the target optimization 

function, the results are shown in Figure 5-19. The best solution was having both 

microprocessor trust metric and microprocessor vendor trust metric set to high and 

excellent in green. The initial values were set in yellow at (.6297, .6853) and the best 

solution at (.95, .9), respectively. A list of solutions is given where the best solution had 

the posterior probability at 25 percent, marginal likelihood (joint probability) at ~12 

Figure 5-17: Intel TXT processor 
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percent, likelihood (evidence) at ~15 percent and Bayes factor (quantifies the impact of 

observing the Target State) at ~ 1.2. This is followed by three solutions ranked by a 

score. 

By using these types of capabilities, we can further explore the effects of how 

both the design quality and supplier affects the security posture of the systems. This 

provides insight into potential risks that may not have been visible before.  We utilize 

these concepts for an autonomous robotic system example. 

 

Figure 5-18: Autonomous Robotic System Model 

Figure 5-19: The result from running a target optimization function 
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We first define an autonomous robotic system with security features and then 

describe the model using the trust metrics defined above. An autonomous robotic 

system is shown in Figure 5-18 that is a Knightscope K5 product that is modified to 

support security features [179] [180].  

 

These security features including the following: 

 

• Anti-tamper volume protection for the system planar, that houses an Intel i7 

Trusted Execution Environment (TEE) microprocessor and associated 

components like memory, cryptographic modules, and security manager logic. 

The tamper protection supports countermeasures against physical probing, rapid 

environmental temperature changes, voltage, and timing induced attacks. A 

battery source is supported to protect against offline attacks. 

• A Linux OS variant that is stripped-down with security features like SELinux 

Mandatory Access Control (MAC) policy, signed audit subsystems, vetted 

device drivers and removal of a direct root account. 

• ROS 2 and RTI DDS are supported. DDS security is supported for Data in 

Motion protection. 

• Fault tolerance is supported, so that continuous processing is available for 

operational resiliency.  

• Cryptographic keys are supported in a Battery Backed up or Physical 

Unclonable Function (PUF) version. 

• Trusted Platform Module 2.0 is supported. 

• Secure Boot for Firmware and OS is supported where both confidentially and 

integrity or only integrity are implemented. 

• Trusted Boot is supported utilizing Integrity Measurement Architecture (IMA) 

and Extended Verification Module (EVM) for offline file integrity protection. 

• Hardware Cryptographic Module (HSM) is supported with Commercial 

National Security Algorithm Suite (CNSA Suite). These are the new quantum 

resistant algorithms. 

• Data at Rest is supported utilizing the HSM and on-board 1T NAND flash 

storage. 

• Camera sensors are redundant to protect against AI attacks. 

• AI robustness metric have been validated on algorithms used for navigation and 

object recognition. 

• Supervisor logic is supported to monitor the anti-tamper sensors and monitor 

system resources for anomaly behavior. 

• Working with the supervisor logic, the Cognitive logic supports the 

offense/defense and resiliency logic. The offense/defense logic analyzes the 

data produced in the supervisor logic module to take an offense/defense position 

when resources are being exhausted in an abnormal behavior by shutting down 

the offending process or limiting resources for the process. This same logic 
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interrogates external requests by understanding the resources it has and applying 

a best approach to fulfilling it. On the defensive side it takes input from the 

National Vulnerability Database (NVD) feed and determines what 

vulnerabilities are pertinent to the system configuration and how to handle those 

threats. 

• Secure software updates are supported with confidentiality and integrate or only 

integrity protection. 

 

Other features: 

• Each of the supply chain vendors are highly regarded and meet the criteria for 

an excellent trust metric score. 

• The system, hardware, software, and AI also have developed their components 

to meet the highest trust metric scores in each individual category. 

 

We also define a set of operational states that a robot experiences during its 

lifecycle, but these can be modified or extended to different systems.  Referring to 

Figure 5-20, the first state is called initialization where the system is setup by loading 

the platform firmware, OS, services/application software and platform keys. If the 

loading of data is highly sensitive, this will need to be done in a secure environment 

and with the anti-tamper components armed. In the personalization state, the system 

components are configured, and any additional required keys can be brought on the 

platform via the platform keys in a secure manner. The benefit of having keys brought 

on the platform vs generating on the platform is that they can be recovered. 

Configuration can consist of an IP address for home servers where data can be 

uploaded, and software updates can be downloaded. User IDs and policies can also be 

configured in this state.  In the maintenance state, the robot can undergo a number of 

actions related to repairs of broken components, updates for both hardware/software 

components, recharging its power source and calibration. Calibration maybe self-

induced with a scheduled time for it to occur or can happen by a service person after a 

repair. Calibration is the process to algin a component within a tolerance range using 
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equipment or process that provides repeatability results. After a maintenance action is 

performed, the robot can transition to operational or end-of-life state. The operational 

state is defined as the normal operating condition of the overall system and from this 

state the robot can transition to maintenance state to end-of-life. The end-of-life state 

enables an entity to achieve data and/or clear all sensitive data. 

  

 

We showed a small example of a Bayesian Network, described the autonomous 

robotic system security features, and would like to expand the view to present the 

internal layers of the autonomous robotic system. There are a number of steps or 

guidelines that need to be taken in order to construct a BN for a security assessment. 

First create the corresponding nodes for the hardware components of a robotic system, 

this should include the hardware design and vendor metrics for each of the components. 

The next step is to add the software nodes to the BN model, this also includes the 

software and vendor metrics. If security features are supported, they must also be 

included as part of hardware and software components. If Cognitive/AI components are 

supported, these nodes should be layered in the model above the OS layer. An AI 

vendor should provide robustness parameters, but in the event they do not, they should 

provide testing models/dataset so that one can obtain them from running validators like 

Figure 5-20: A Robot's lifecycle states 
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CLEVER or CNN-Cert. The accuracy, supervisor, and maintenance layers will need to 

be defined by the underlying hardware/software/security features. Once the model is 

constructed and the nodes are defined with their corresponding CPT values, one can 

start to set the appropriate evidence for the nodes. By defining an assurance level of a 

target node, the BN model can be used to simulate the outcomes of the evidence set on 

the nodes or using the optimization technique as discussed above, they could set the 

desired values to obtain the results. Each of the layers should have a corresponding 

assurance level, so that by setting the security features as evidence on several nodes, 

this in turn will change the other nodes. By running the simulation, the result on the 

target node will change to the level that was selected. A target node is considered a 

dependent variable in traditional modeling approaches. 

 Figure 5-21 provides an example BN that applies the trust metrics outlined in 

section 5.3 with the security features/functions of the autonomous robotic system 

described above. Starting from the right, in blue, is the firmware layer, yellow/orange 

Figure 5-21: A Bayesian network of an autonomous robotic system’s internal 

assurance model 
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is the OS, red is the cognitive/services layer, green is the accuracy (robot control system 

and AI algorithms) followed by purple as the maintenance logic and teal is the 

offense/defense or supervisor control logic. Each of the layers have independent scoring 

related to the configuration and supported security features of the system.  

The assurance score and a reputation score are propagated into each level so that 

the child layer has knowledge about its parent layer. These scores can be used to control 

the overall assurance level for the system. For example, a robot that needs to support a 

high assurance level, high loss of damage and high reward to exploit would select each 

of the layers to a high assurance score. Of course, the assurance scores are based on the 

physical hardware and what security features are enabled. To add additional assurance 

at the platform and accuracy layers a set of fault tolerant features can be enabled. Once 

the security posture is assumed to be a specific level, the offense and defense controller 

can take actions on a process that it has determined is abnormal. The CVE database can 

be used to determine if any knowledge can be obtained for this abnormal behavior or 

take precautionary steps to prevent an event. The cognitive layer interacts with the 

offense/defense controller to ensure that the system can function within certain limits. 

The internal state of the system must be sound and known if external interaction is to 

take place, the external request can be scrutinized and therefore, extend the trust model 

with the entity. Having the supply chain vendors also being part of the system model 

helps establish the pedigree of the components. The ISO9000 is a standard that follows 

the documentation of component provenance and quality assurance. 

The methodology for assessment is largely applied on the hardware and 

software (including AI) design for the components, the integrated system, and the 

supplier (both at component and system levels). We describe each layer of the Bayesian 
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Network model, but only focus on a single layer in detail since the same methodology 

can be applied to the other layers. 

Firmware 

 

The firmware layer is the very first layer of the system stack where hardware 

and software interact when power is applied to the system. In this example, we assume 

that the system vendor has loaded initialization and personalization values into the 

system at a secure manufacturing site to achieve high assurance levels. The firmware 

Figure 5-22: Firmware Layer set of nodes 
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layer nodes represent system, hardware, software, and supplier entities as shown in 

Figure 5-22. 

 

From the top we have a supplier vendor and the hardware design metrics for the 

microprocessor and the system board. These are shown in Figure 5-23 with their 

respective probabilities. The set of nodes for the microprocessor and system board are 

both common effects. The microprocessor was introduced in the example above, but in 

the context of the larger BN the ability to differentiate the types of processor is needed. 

Here we defined the Intel TXT and AMD Trusted Zone as having a higher security 

level than regular Intel and AMD processor types. We have an “other” field for all other 

types of processors. The system board represents the supported feature of fault tolerance 

as being enabled or not. 

Figure 5-23: Microprocessor and System board related nodes 
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A set of parent-nodes for the Trusted Platform Module are the TPM vendor and 

the hardware design trust metric. The firmware has a similar set of parent nodes that 

are related to the software trust metric. These are shown in Figure 5-24 with their 

respective probabilities. The set of nodes for TPM and firmware are both common 

effects. Here we defined the TPM as being present/enabled or not available for trusted 

boot and other functions. The firmware can have a configuration of secure boot with 

confidentially or secure boot with integrity or no protection at all. For high assurance 

levels having the firmware encrypted and/or signed is a requirement. Having a Read 

Only Memory (ROM) helps with kicking off everything with a mini bootloader that is 

immutable. If this is enabled on the system planar that helps with the firmware 

decryption and validation before it is loaded, and the secure boot chain can start from 

the ROM up the software stack. By having the Trusted Platform Module being present, 

a trusted boot process can also be activated so that both secure and trusted boot 

functions can be performed at each software layer.   
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In order to achieve higher assurance levels a set of features must be supported 

by the platform and these include hardware protection against physical and side channel 

attacks. A set of nodes that captures the protection configuration are shown in Figure 

5-25 with their respective probabilities, where common effect is being used. The system 

protection node uses the system trust metrics that captures the different levels of 

assurance protection and collects input from the microprocessor, system board, type of 

protection, TPM, and key store nodes. The type of protection node covers the tamper 

levels including tamper protection, tamper evidence or none are defined. These are high 

level definitions, but the BN can be expanded to include more details. The different 

types of keys stores are defined as (Battery Backed RAM (BRAM), Physical 

Unclonable Function (PUF), fuse based and none. It is important to understand the 

differences between the key stores, since key management and maintenance may 

become an issue if the policy were to have the keys wiped due to a tamper, resulting in 

consequences. 

Figure 5-24: Firmware and TPM related 

nodes 
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Figure 5-25: Secure protection nodes 
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As part of the system protection node there is an active monitor node, where 

inputs from different sensors are monitored for tolerance levels since these levels will 

put the system into a countermeasure state if any of the trip levels are reached. The 

active monitoring functionality is directly related to the type of protection that is 

configured. Tamper protection inputs from system resources and system vitals are fed 

into the active monitor. System resource are capturing the volume trigger, velocity 

check (number of Power on Reset cycles), voltage, clock glitch check, temperature, 

light (X-Ray or other types), and Joint Test Action Group (probing). This is an example 

list, but again the node can be modified to include several sensor types. The system 

vitals are defined as none, outside or with specification. 

The remaining set of nodes are primarily related to firmware assurance score 

and the booting of the firmware. The firmware assurance score represents the elements 

of the secure configuration to meet the desired assurance level, but takes into account a 

reputation node where if an error has occurred this is tracked as being a negative rating 

vs a positive one with no error. The set of nodes in Figure 5-26 shows a causal chain 

where the data flow determines if the system should boot depending on the assurance 

score. To obtain a firmware assurance score the configuration evidence parameters 

must be set to the appropriate level and if no errors are indicated the boot image can be 

executed.  

Figure 5-26 depicts the error generated node defined as (True or False) and the 

reputation node defined as (Positive or Negative). The firmware assurance node is 

defined by the system trust metrics since this supports both hardware and software 

components as a system. The boot node is simply a (true or false) choice, and the 
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firmware node is reflective of the post boot behavioral states (normal, slow, not 

responding or not executed). 

 

 

 

 

 

Figure 5-26: Firmware assurance score 
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We have described all the nodes for the firmware layer and would like to 

simulate the BN by setting the firmware assurance as the target with value of high. We 

now need to set the observation on the following nodes shown in Figure 5-27 and Figure 

5-28 in green. Figure 5-27 represents casual inference changes on the remaining nodes: 

• Microprocessor = Intel with TEE 

• Keystore = BBRAM 

• TPM = Present 

• System Board = Fault Enabled 

• Type of Platform Protect = Tamper protection 

• Firmware image = Secure Boot Encrypted 

• Active System Monitor = None 

 

Figure 5-27: The result of the nodes when the observed nodes in green are set. 
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In Figure 5-29 is the result of the target’s posterior direct effect on the target 

node shown by a tornado diagram. The 16 nodes are represented on the left-hand side 

minus the 7 nodes that had their evidence set. The x-axis is the probabilities for each of 

the levels for the firmware assurance score where the yellow indicates the highest at 

81.64% probability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-28: Firmware Assurance target set to high, that results in a posterior 

distribution. 
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In Figure 5-30 is the result of the target’s posterior direct effect on the target 

node shown by a parameter sensitivity analysis as a distribution function. This 

decomposes the marginal distribution over the number of scenarios where the joint 

distribution was defined.  Using the same evidence set above, the probability of 

firmware assurance = high ranges from 0.001% to 92.96%, with a mean value of 

83.04%. By tweaking the inputs, the assurance level can be adjusted to reflect the 

security features supported by the platform. 

Figure 5-29: Posterior probability analysis of firmware assurance score 
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The firmware is the first layer of the stack that enables the underlining 

protection configuration parameters. The firmware assurance score is an input into the 

OS layer as the next layer to execute. The score provides evidence to the OS layer that 

the system can support a set of security features and the boot process executed with a 

reputation rating. In modern systems the firmware boots with very little information 

being relayed on the next layers. 

Operating System 

 

The OS image node has parents that are both the metrics for the supplier and the 

software itself. The OS image can also support its protection as being encrypted, signed 

or none. The Boot OS has the values of true or false, depending on the input from 

Figure 5-30: Firmware Assurance set to high with observations set on green 

nodes 
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firmware assurance score, and how the firmware is operating (performance 

characteristics). If the Boot OS is enabled the system memory is monitored for 

performance characteristics. 

If the TPM is present and a Linux OS is used, the Integrity Measurement 

Architecture (IMA)/Extended Verification Module (EVM) features can provide 

protection to files above the OS layer from being manipulated. This also helps with 

offline attacks on the files since hash values and digital signatures are used and stored 

in the TPM.   

Like the firmware layer, the OS has an error/reputation node so that past 

performance can be analyzed before booting the next layer. Figure 5-31 shows the OS 

layer nodes and Figure 5-32 is a representation of the CPT values. Depending on the 

OS boot process system, memory characteristic should be known for each of the 

Figure 5-31: The OS layer set of nodes 
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configurations and if the utilization is outside the known values, the system will be able 

to determine the process ID of the offender. We do not consider the authorization 

mechanism and if other policies like Security-Enhanced Linux (SELinux) are used to 

lock down the system. The model can be easily expanded to include these features. We 

do assume that mandatory access control (MAC) is supported on most modern OSs. 

The OS assurance score builds on the firmware assurance score by adding the additional 

security features such as the OS image being protected, the support for IMA/EVM, 

system memory being monitored and the firmware’s reputation. The OS assurance 

score is sent onto the cognitive layer as the next layer to be executed.  

Cognitive Layer 

 

The cognitive layer is a set of nodes for determining the health of the system 

and can adjust resources accordingly. The cognitive layer is also part of the resiliency 

logic in teal, but the different colors make it easier to see the difference between them. 

Some of the functions that the cognitive layer performs are related to observing the 

Figure 5-32: OS Layer monitor nodes 
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behavior of the system, like making sure that correct package protection is being used 

for the known vendor updates, or for external communications that the correct 

protection mechanisms are being utilized. 

 The other key responsibility of the cognitive layer is to interact with the 

resiliency layer to determine the course of action when evidence is presented to act. 

Where the cognitive and resiliency layers live and run is an implementation question, 

but having them being separated from the firmware and OS layers isolates the logic 

from being attacked. The cognitive layer receives an assurance score from the OS layer 

to set its policy for that level.  

The Cognitive layer/service image node is a common effect where both the AI 

robust trust metric and the vendor metric represent the quality and effectiveness of the 

image. Once the OS is finished executing it starts booting the required services. As part 

of the cognitive services boot process an interaction will take place for checking the 

services under the IMA/EVM protection and ensure that they were brought up correctly. 

For example, if DDS security for external secure communications is utilized, the 

different protection kinds will be analyzed to ensure that they correspond to the 

assurance score. This technique was discussed in the mitigation for ROS 2’s security 

vulnerability [181].  Other secure protocol mechanisms can be used and added to the 

model. If any issues do arise from the boot process the error and reputation nodes will 

be updated, this will be reflected in the assurance score.  Figure 5-34 shows the 

Cognitive layer nodes and Figure 5-33 is a representation of the CPT values. 
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Figure 5-34: The Cognitive layer CPT values 

Figure 5-33: The Cognitive layer nodes 
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Offense/Defense or Supervisor Logic Layer 

 

The Offense/Defense, Resiliency, or sometimes called the Supervisor layer 

provides logic to act on one or more nodes that might be constructed to counter a threat. 

The Cognitive node is presented within this set of nodes, as it is the node that makes 

the decision to determine best course of action with the evidence that it has been 

presented from the Supervisor layer. 

The Supervisor has a couple of input streams that are related to a resource 

monitor that determines if power, memory, and CPU utilization are being consumed 

correctly by a process’s characteristics. The log data can be analyzed for anomalies and 

alerts from external vulnerability databases like the Common Vulnerability and 

Exposure (CVE), which can be incorporated into the supervisor’s knowledge base. The 

entries will need to be matched up against the system configuration to ensure that the 

correct data is being correlated to the platform’s policy. 

Active Monitor is another input, when tripped from a physical attack the 

mitigation could delete platform keys. This would then degrade the system to a limited 

level of capabilities and should be considered a dire step. All other types of threats if 

detected, should have a countermeasure such as shutting down resource, blocking 

processes or isolating them. If supported, the IPS/Firewall will be controlled to 

open/close ports based on security policies and the application profiles. Application 

profiles have been used in different industries, which describes the resources required 

to run the application or dependent security features/protocols. 

Depending on the application/service error and reputation status, if it is flagged 

for having a negative reputation it could get quarantined using the Input/Output 
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Memory Management Unit (IOMMU), or other isolations mechanisms. In the extreme 

case the process could get killed for alleviating resources and memory space. 

Unique to autonomous systems is the capability to know where it is in the world 

coordinate system. The conversion between world and robot coordinates may fall into 

several accuracy faults. The notion is to have the cognitive layer be the governing body 

that assists in the overall mission of navigation by looking at the bigger picture of the 

environment and goals. This is analogous to a captain and crew, where the crew for 

autonomous systems are the sensors. Navigation logic, drive system and cognitive layer 

are the captain function. Figure 5-35 shows the Supervisor layer set of nodes and Figure 

5-36 are the corresponding CPT values.  

 

Figure 5-35: Resiliency Layer set of nodes 
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Accuracy Layer 

 

A robot must provide the assurance that its accuracy in world and local 

coordinates must be trustworthy within an environment. Different types of sensors 

provide real-time data about the environment and the robot must plan and act on this 

data. The data is represented in both world and robot/local coordinates and accuracy 

related to locomotion, manipulation and/or navigation must be precise. Figure 5-37 

shows an accuracy layer in green nodes. We first assume that firmware, OS, and 

cognitive layers were started with an assurance score level that is determined by the 

security features in hardware and software. This base provides a root of trust for upper 

layer dependency, but the security posture must be viewed as a holistic system and not 

at individual layers.  

Figure 5-36: Supervisor Layer CPT values 
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A basic autonomous robotic system is constructed by these sets of nodes. A 

robot must sense its environment for it to plan and act within it. The environment node 

provides a type of class for where the robot is located (land, air, and water), but this can 

be extended into other domains. The sensor is generic to represent a plethora of types. 

Associated with it, is the trust metric and vendor trust metric for the quality of the sensor 

and vendor rating. To increase the accuracy data a fault tolerance scheme can be 

designed to collect from multiple sensor sources. This is where the aggregation logic 

node is relevant since this collects data from each of the same sensors and performs the 

summing of data. Fault tolerant is an important feature to sensor data since it is hard to 

attack multiple targets at the same time. The aggregation node is defined as continuous 

since its values are in three range measurements. A controller logic is associated with 

Figure 5-37: Accuracy Layer set of nodes 
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an actuator to perform locomotion of the robot platform or manipulation of the robot 

end effector. The position logic, feedback error, controller and actuator nodes represent 

a closed loop control system, mostly common in robots. The feedback error is a 

continuous node with values ranging in four groups that define the error margins. The 

controller has values that describe its feedback loop mechanism, and the actuator has 

values that describe its behavior when operating. The world accuracy error is relative 

to the world coordinate system and transform functions.  

As part of this layer the AI algorithms perform the functions of navigation, 

locomotion, and manipulation. The AI robustness metric scores the certified boundary 

that the algorithms detect adversarial attacks. The distance closer to the certified area is 

the most robust and furthest away is least. Attacks on these AI algorithms are becoming 

a norm and having a metric to determine its effectiveness is needed in autonomous 

systems. The reputation node supports the rating from the accuracy errors, so that 

retained values can be analyzed for decisions.  Figure 5-38 shows the CPT values for 

the Accuracy Layer set of nodes 
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Maintenance Layer 

During the lifecycle state an autonomous robotic system must perform 

operations to replenish its batteries, update its software, perform calibration, or repair a 

component. We capture these operations in our model to determine if any abnormal 

activity is commencing or being detected. Figure 5-40 shows the maintenance layer set 

of nodes and Figure 5-39 shows the CPT values.  

 

 

 

Figure 5-38: Accuracy Layer CPT values 
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 In order to perform any of the maintenance functions the autonomous system 

must complete its current task if one has been initiated or try to suspend it depending 

on the request. This will place the system under direct control of the maintenance state. 

For power replenishment the robotic system should have a map were to go, as an 

Figure 5-40: Maintenance layer CPT values 

Figure 5-39: Maintenance layer set of nodes 
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authenticated and authorized supply station will be desired. The model provides the 

metrics for both the power station supplier vendor and for the power station equipment, 

hardware or system metrics can be used for this node. By having known sources, this 

eliminates potential security risk, like skimming ATM machines, where personal data 

is stolen. 

Depending on policies, software updates may not be available in a dynamic 

manner, where anytime an update is released it automatically gets propagated down to 

devices.  The question of how these systems will be managed is still a research topic.  

The model does provide the capability to support updates in three flavors of packaging 

(secure encrypted, secure signed and none). A package handler will be used to distribute 

the payload to the appropriate system level, being firmware, OS, or cognitive layers. 

For component replacement, the system might be required to be shut down. This 

will take an authorized request to perform this action. Both nodes Authentication and 

Authorization will check that validation has been performed. A manifest will need to 

be updated with a record of the service (what was done, by whom and timestamped) 

that was performed. This will keep a rolling log of maintenance events; this could be 

placed under IMA/EVM control. 

Calibration is another function that is performed while in maintenance state, this 

can happen at a predefined date/time or after component replacement. Calibration can 

also happen after an update to system parameters. It is important to ensure that the 

system is intact from an assurance point of view. Different scenarios can be envisioned 

for how these systems will be maintained (in the field or local service shop).  
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We now reflect on the holistic model that was shown in Figure 5-21 where setting 

evidence on the following nodes and a target node with Accuracy Assurance Score 

being High: 

 

• Type of Platform = Tamper Protection 

• System Board = Fault Enabled 

• Microprocessor = Intel_with_TEE 

• Key Store = BBRAM 

• Firmware image = Secure Boot Encrypted 

• Active System Monitor = None 

• OS Image = Secure Boot Encrypted 

• Cognitive Layer/Services image = Secure Boot Encrypted 

• TPM = Present 

 

The following is the result of the model changing its node values to reason about 

the target node being set to high. Figure 5-41 show the green bars as being observations 

and the shaded box on the upper left corner is the target node. Figure 5-42 is the target 

posterior probability as a tornado diagram for the total effects on the Accuracy 

Assurance Score node. The bottom line is the probabilities in the x-axis and y-axis is 

the value range for each node. We learned that by setting the nine node values for the 

supported security features, a desired target node level was achieved. These nodes 

represented the influence that they had on the remaining network, since the information 

had to flow from the parent nodes to the target node. We can assess the assurance level 

at the individual layer or at the system level by assigning a different target node value 

and seeing how the data flow effects the target node. By doing so, we can assess what 

security features have more impact on the desired assurance level. The tornado diagram 

in Figure 5-42 will change accordingly to provide a visual representation of the effects 

of the settings. Depending on the environment the autonomous robotic system is 

operating in and what data is being processed, this model can be adjusted accordingly 

to provide an assurance level. If the desired level is not met, security features will need 
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to be incorporated to achieve higher assurance levels. This model also provides a reach 

back into the supplier/vendor organization that contributes to the assurance level of the 

component or system. 

We have defined an internal assurance model for autonomous robotic systems 

where security features provide an assessment for the level of security. This knowledge 

helps to reason about the different threats and countermeasures.  Some of the concepts 

are new and have been adapted to old methodologies that have been proven in the 

security world.  
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Figure 5-41: BN node values when target and observation nodes are set 

Figure 5-42: Posterior Probability Analysis for the Accuracy Assurance score 

being set to high 
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5.5 Conclusion 

We have defined several metrics that have incorporated not only integrity, but 

also the monetary value of loss from the damage incurred and the reward of an 

adversary attack.  A Bayesian Network has been created to represent the assurance 

scores using these new trust metrics at each layer covering system, hardware, software, 

Al robustness, and supply chain security features. This holistic architecture provides a 

base for an internal assurance trust model in autonomous robotic systems. Al algorithms 

are becoming relevant within autonomous systems and as part of the system security 

measures must be in place to deter threats from adversarial attacks. AI robustness is a 

new concept, but research is pointing toward distance measures to provided/certify 

assurance from threats.  By breaking the security model into two parts, internal and 

external, this provides the capability to reason about the interactions and analyze the 

resource interactions as casual inference. This approach can be leveraged for how 

processes may affect the overall system at a task-by-task level. An offense/defense 

controller is added as another layer to address abnormal behaviors and can be reasoned 

from a holistic point of view. This resiliency enables an autonomous system to 

potentially still function while under attack or defend itself from attacks.  

A full BN model was presented, but the firmware portion of the model was 

described in detail. The results provided show the differences between the assurance 

scores. By setting evidence on the nine nodes to high, a high assurance score was 

achieved by the target node. The sensitivity diagram gave a representation of the 

distributions. A full BN model tornado diagram was shown when each layer assurance 

score was set to high.  By creating a full BN, the questions posed earlier can now be 



247 

addressed. By creating an assurance score at each layer, the robotic system can 

determine its security posture before interacting with an external entity. The trust 

metrics defined in section 3 consider levels of damage and exploit reward, so if the 

supported security features meet the highest levels, the attackers will incur a higher cost 

to achieve an exploit with regard to both time and money. The offense/defense 

controller can take the appropriate actions if the correct controls and data are provided 

to plan and act accordingly. Other questions may arise from this paper’s approach 

compared to traditional computer security and the reliability of a system. 

A traditional computer system is mostly protected in a physical structure such 

as buildings and under system management whereas, an autonomous robot is in an 

environment which must sense, plan and act accordingly.  As discussed in the above 

section, the accuracy layer is germane to a robotic system and this is quite different 

from a traditional computer system. This paper presented the concept of security layers, 

integrity metrics, offense/defense controller, AI Robustness and assurance scores 

related to system, hardware, software, cognitive and supply chain vendors. This is 

different to a reliability study where components are verified by mean time failures. 

Another element that is being discussed in the industry are ethics and how well behaved 

or provable AI systems are. In order to have the ethics discussion, autonomous systems 

must have integrity and assurance at the security level before behavioral policies can 

be followed.  This BN model can be leveraged to address the ethical questions. 

In the next chapter, we propose that the same scoring system can determine the 

security posture when external dynamics are influencing the internal state of the system. 

This concept is discussed where a Dynamic Bayesian Network model is presented 

related to a defenders’ attack chain. 
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CHAPTER 6  

 

6 FUTURE WORK  

Dynamic Bayesian Network  
 

 

We have presented the static model above and would like to address the 

dynamic model in our future work. This chapter addresses the dynamic model using a 

Dynamic Bayesian Network (DBN).  By enabling a dynamic model that can react in 

real-time, several questions can now be asked about the security posture of an 

autonomous robot system using a DBN, but most importantly, the robotic system can 

act on the knowledge it has from an internal point of view. Being cognizant of this 

knowledge, the robot can reason about the actions it can take to provide the highest 

level of assurance.  

A Dynamic Bayesian Network (DBN) is an extension to a BN structure that is 

repetitive, time sliced, and used for modeling dynamic systems in state space.  A DBN 

is defined to be a pair of Bayesian Networks (B0 ,B→), where B0 represents the initial 

distribution P(Z0), and B→ is a two-time-slice Bayesian Network, which defines the 

transition distribution P(Zt+1|Zt) [182]. The set Zt is commonly divided into two sets: 

Xt (hidden states) and Yt (observed). The result of unrolling the 2TBN is a DBN joint 

distribution shown in equation (6-1), where P(xt|xt−1) defines the time dependent 

between states, P(yt|xt) defines the observed node dependency related to the time slice 

t, and P(x0) is the initial probability distribution in the time series. 
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P(x1 … xt, y1 … yt ) = ∏ P(xt| x𝑡−1)

𝑡−1

t=1
∏ P(yt| x𝑡)

𝑡−1

t=0
 P(x0) 

 

(6-1) 

 

An example of a DBN is shown in Figure 6-1 where three variables are represented in 

a time series [183]. 

 

To address why DBN was chosen over other state space techniques we 

compared it to the Hidden Markov Model (HMM) and the Kalman Filter Model (KFM).  

A DBN provides a more generalized graph structure, which allows hidden states in 

terms of random variables where joint probabilities can be obtained at each time step 

by unrolling the DBN. An HMM is different from a DBN, because a single random 

variable defines the state space and in the case of KFM, all CPD must be gaussian 

distributions. This is only addressing the non-extension version of KF. Both HMM and 

KF use only chain structures. 

By extending the BN model that was described above, we consider the temporal 

aspect of the problem where offense/defense action time events are related.  We first 

define the notation of kill chains that an adversary will take to exploit the system from 

both cyber and physical perspectives. The top path is the cyber kill chain with following 

steps and the bottom describes the physical view as shown in Figure 6-2 [184]. Both 

Figure 6-1: An example of a three variable DBN 
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cyber and physical kill chains start with reconnaissance. This first step is taken to 

understand how the system or component may work. 

During reconnaissance, knowledge can be acquired through obtaining 

schematics, part lists, or monitoring inputs and outputs. Based on the reconnaissance 

step an adversary will construct one or more weapons to expose the vulnerabilities. 

These weapons may come in a myriad of forms such as malware, sniffing attacks, and 

brute force attacks to name a few. Once executed an observation, or C2 step, is used to 

determine if the attack was successful and at what cost, or did it fail to achieve its goal.  

In the physical kill chain, the steps are similar. Instead of a purely software-

based attack, signals on buses at the execution and observation steps may be probed, 

perturbed, or injected to perform the exploit. The results of the combined steps are 

instantaneous; therefore, an adversary can determine what works or does not in this 

repeated cycle. Since this type of attack requires physically interacting with the system 

being attacked, the hardware may be damaged.  Therefore, having a number of units 

helps, which will also ensure same behavior across units.  As autonomous robots 

become commodity items, it is not unreasonable to expect nefarious actors to stage this 

type of attack. 

 

 

Figure 6-2: Cyber and physical kill chains 
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To counter an attacker’s threats there are countermeasures that a defender 

creates. The countermeasures can be acquired by white hat attackers (ethical hackers), 

vulnerability analysis, or by existing exploits. A defender’s lifecycle is shown in Figure 

6-3 [185].  Prevention indicates basic tools (like firewalls/ Intrusion Detection Systems 

(IDS) and Endpoint Segmentation). Detection uses automated methods like machine 

learning to build knowledge. Prediction uses machine learning to understand the 

anomalies. Lastly, containment takes the decision made from prediction and adds 

controls. The defender lifecycle is a continuous flow as more knowledge is acquired 

about the dynamic network traffic. 

 

 

From the above, we define a defender’s kill chain where detect, inference, 

mitigation, and breach are steps for countering a threat in a continuous flow. Tying this 

back to the BN in Figure 5-21, the nodes/layers defined a number of security features 

for detecting threats. However, these features were dependent on system support. The 

inference is connected to the cognitive layer, which includes the offense/defense set of 

features and how mitigation can take part in the protection of the system. The internal 

security assurance model can change accordingly to an external request; this will help 

with the mitigation strategy if and when a threat is detected. Again, depending on the 

security features of a system, breaches may occur over time. The defender’s simple 

block diagram and transition matrix are shown in Figure 6-4 [185] [186]. 

Figure 6-3: A Defender's Lifecycle 
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To simplify the diagrams alpha, beta, epsilon, and mu define the inference rate, 

mitigation rate, vulnerability loss rate, and breach rate respectively. The transition from 

detecting a threat to understanding what the threat is/means is the inference rate in time 

slices. The transition from inference (knowing what the threat is) to migration (handling 

it with countermeasures) is the migration rate in time slices. The transition from 

inference (knowing what the threat is) to determining that no migration strategy is 

available is the breach rate. This assumes that security features are limited. The 

vulnerability loss rate is the ratio of vulnerabilities over the total number of threats 

detected/mitigated. Using the generic equation for differential equations provides a 

mathematical understanding of the change for each of the transitions where alpha, beta, 

epsilon, and mu are the functions related to equation  𝑓(𝑥) = 𝑑𝑦/𝑑𝑥. To simplify the 

transition table the values are numeric. 

A simple model helps to explain the need for DBNs related to Autonomous 

Robotic Systems (ARSs). The transition matrix defines the relationship between the 

different blocks and interactions. A DBN and associate set of nodes are shown in Figure 

Figure 6-4: Defender's chain and transitions 
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6-5 and Figure 6-6. In Figure 6-5 ARS (t) and (t1) are the time steps that get propagated 

over time events. 

 

Figure 6-6 shows the DBN nodes and their initial values. 

 

Figure 6-5: A Dynamic Bayesian Network for ARS 

Figure 6-6: A set of nodes that define the different 

rates 
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 When the DBN is run over one thousand-time steps as shown in Figure 6-7, the 

number of vulnerabilities mitigated starts to increase as shown by the red curve.  

As the number of time steps increases as shown in Figure 6-8, the number of 

breaches increases. This is intuitive, but still makes the point that over time when 

confronted by an adversary that has the means (resources and money), the systems will 

eventually be broken. 

Figure 6-7: DBN run for 1K time steps 



255 

 

 

An expanded view of a DBN is shown in Figure 6-9 where four different time 

events are shown to illustrate that taking Figure 6-5 model above can be expanded into 

a more meaningful representation of a DBN. The DBN considers the temporal events 

such as detecting a threat, determining what actions should take place, what mitigation 

Figure 6-9: DBN with 4-time events 

Figure 6-8: DBN run at longer time steps 
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mechanism is best for the threat, documenting threat records, and determining if a 

breach has taken place.  
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CHAPTER 7  

 

7 CONCLUSION 

 

The goal of this research was to create an internal assurance model for 

autonomous robotic systems using a Bayesian Network that would assess threats and 

provide resiliency depending on the platform supported security features. The internal 

assurance model provides a holistic security view into the system, hardware, software, 

Cognitive/AI, and supplier layers along with their associated trust metrics that were 

derived from standards and well-known sources. The trust metrics also take into 

account the adversary’s reward and damage costs for potential threats. 

To accomplish the research goal, a number of questions had to be addressed and 

challenged. We began by understanding the autonomous robotic system and the current 

offerings related to security. Since our research determined that ROS was a leading 

middleware/framework used by a number of industries, we focused on ROS 2 for its 

support of DDS.  

The question raised regarding ROS 2 supporting DDS security: What system 

elements were exposed or vulnerable in a robotic system? Chapter 2 discussed the 

system security review and explained the different types of threats that are exposed. 

The vulnerability analysis used a taxonomy for both the hardware and software 

components. An advanced set of threats were described related to hardware and the 

cognitive layer using ML. It was determined that the DDS Security Standard does not 
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cover these advanced types of threats and leaves a number of areas exposed to threats. 

DDS covers the data in motion (DIM) protection by encrypting messages between 

nodes, which is only a part of the overall security of a robotic system. 

The next set of questions related to ROS 2 were related to performance vs 

security, the real-time constraints, and the difference between using DDS security 

features or different cryptographic algorithms. The performance versus security model 

showed that adding security features to protected data resulted in a performance 

degradation. This performance degradation was evident when configurations ranged 

from no security to full security configuration. Table 2-4 showed a comparison of the 

measurements performed when security is fully enabled versus not enabled at all. In 

revealing the considerable difference between the security levels effect on performance, 

it was concluded that further analysis is required. Algorithm and key size made little 

difference compared to data protection features. 

 
 

TABLE 7-1: SECURITY MEASUREMENT COMPARISON 
 Security 

Enabled 

Latency 

(average µsec) 

Throughput 

(average 

packets/sec)  

Speed 

(average 

Mbps) 

Plain 260 70772 35669 

Full 1363 14382 72485 

 

 

Can security be applied to everything or nothing in a robotic system. The ROS 

2 security model is flexible in segmenting domains and participants to topics, so 

inherently, ROS 2 allows the ability to be selective about what security techniques are 

applied to various portions of the robotic system. The question at hand can be addressed 

using two-level enforcement for access control, such as the Governance and 
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Permissions policies. Some challenges were experienced in answering the performance 

vs security question. Since the protocol is using RTPS as discussed in Chapter 2, we 

needed a way to configure security and block size in a consistent manner for 

repeatability.  We first looked at Linux tools like Perf and Tops, but these did not 

support the security functions or address the publisher/subscribe protocol. One tool that 

was available is called Message Queuing Telemetry Transport (MQTT) which is a 

lightweight broker-based software stack. However, it did not cover our needs, nor did 

it match the RTPS protocol. At the time of the research, we found that RTI developed 

a RTI Perftest for performance measurements on DDS messages with enabled security, 

but this was in early stages of development. We leveraged the software to the best of 

our ability and were able to successfully compile and run the software against our 

version of DDS. Not all the security features were initially supported, but shortly the 

RTI developer was able to support our needs and respond to our support questions in a 

timely fashion.  

Questions arise related to DDS security and if it provided adequate security for 

the system. At the software stack: what components provided the least protection, but 

allowed an adversary complete control of the system? In acquiring knowledge of ROS 

2/DDS, we were able to develop several exploits that were covered in Chapter 3. Two 

attack vectors related to ROS 2/DDS security were presented and we have identified 

four different use case scenarios that are plausible. In each use case, the adversary was 

able to obtain control of data or direct manipulation of the platform using the modified 

OpenSSL library and/or the configuration file used for credential masquerading. 

Several mitigation techniques were covered, but even when files have been downloaded 

and checked with a hash, that one-time check does not provide the safeguards against 
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ongoing threats. We concluded that using a TPM with IMA/EVM at the OS layer can 

help mitigate against these threats, since runtime and offline security set of features 

protect the files. Enabling a TPM within a robotic platform and performing attestation 

are new concepts that need to be extended beyond the traditional mechanism of trusted 

boot in traditional computer platforms. Several challenges were met during this 

research that were related to understanding the inner workings of OpenSSL and how 

the DDS security plug-in implementation was using the library calls. The DDS security 

plug-ins were a black box; in order to understand how the plug-ins were being used, we 

had to investigate the DDS Security Specification. This led to understanding the 

cryptographic algorithms being used at the appropriate time. We modified the OpenSSL 

library and peppered the different layers with hex dump routines until we understood 

the specific layers that were being used. We took the hex dump routine outputs and 

verified them against known good vectors to validate the correct sequence of logic. This 

drove the use of Wireshark with RTPS support, which allowed us to inspect the network 

traffic. It was difficult to understand how the puzzle was put together, but this was 

overcome once patterns became clear. The unraveling exposed sensitive data or the 

golden nuggets that were sought. Another set of challenges were related to validating 

this concept on a clean system with the change in Linux between 16 and 18. This was 

overcome by a large amount of testing and understanding the difference between the 

two versions related to the crypto libraries.  

Since DDS security is only protecting data in motion, and we provided evidence 

of exploits against it, does a solution exists that would cover the rest of the system? 

What trust metrics are needed to define a holistic security architecture? In order to 

answer these questions, we surveyed the trust metric space to determine if a set of 
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security metrics were well defined and covered a complete robotic system. The results 

were covered in Chapter 4. A mind map of a robot system broke down the different 

layers into system, hardware, software, cognitive layer, and supplier chain to provide a 

holistic security view. Our findings showed that at the system level trust metrics are 

difficult and complex. Several research papers scaled the problem to a small set of 

components or just a specific area of a system.  Table 4-4 is a summary of the findings 

that cover a holistic system trust model.  The largest challenge of our investigation was 

sifting through the large amount of information, drilling down on the details for the 

specific focus areas, and structuring the content into a document. 

TABLE 7-2: SUMMARY OF TRUST METRICS 
Trust Level Trust Metric Recommendation Values Comment 

System EAL 1 to 5 [0,1] Security and Safety  

Hardware Hardware Component [0,1]  

Software Base Impact [0,1]  

AI Robustness Distance Metric  [0,1]  

Supply Chain NG Scorecard [0,1]  

 

Can a BN be used to support all the trust metrics and represent an internal 

security model. What are the benefits from creating an internal/external security 

model? Our findings confirmed that using the Bayesian Inference is the correct choice 

to build on, since it provides several benefits for overcoming uncertainties for a 

complex system like an autonomous robotic system.  

To address these questions, in Chapter 5 a Bayesian Network was created to 

represent the assurance scores using the new trust metrics at each layer covering system, 

hardware, software, Al robustness, and supply chain security features. We have defined 

several metrics that have incorporated not only integrity, but also the monetary value 

of loss from the damage incurred and the reward of an adversary attack. This holistic 

architecture provides a base for an internal assurance trust model in autonomous robotic 
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systems. Al algorithms are becoming relevant within autonomous systems and as part 

of the system, security measures must be put in place to deter threats from adversarial 

attacks. AI robustness is a new concept, but research is pointing toward identifying 

certified boundaries where perturbations can be detected. These certified regions 

provide a means to assign trust metrics for measuring the strength of AI models. The 

training data must also be protected from poison attacks, since this needs to be 

distributed for validation purposes. 

By breaking the security model into two parts, internal and external, this 

provides the capability to reason about the interactions and analyze the resource 

interactions as casual inference. This approach can be leveraged for how processes may 

affect the overall system at a task-by-task level. An offense/defense controller is added 

as another layer for how abnormal behaviors can be reasoned from a holistic view. This 

resiliency enables an autonomous system to potentially still function while under attack 

or defend itself from attacks.  

A full BN model was presented, but only the firmware portion of the model was 

described in detail to avoid redundancy. The results provided showed the differences 

between the assurance scores and what evidence is needed to achieve the highest score. 

The sensitivity diagram gave a representation of the distributions. A full BN model 

tornado diagram was shown when each layer assurance score was set to high.  By 

creating a full BN, the questions posed earlier can now be addressed. Further, creating 

an assurance score at each layer, the robotic system can determine its security posture 

before interacting with an external entity. The trust metrics defined in Chapter 5 section 

3 consider levels of damage and exploit reward, so if the supported security features 

meet the highest levels the attackers will incur cost (both time and money). The 
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offense/defense controller can take the appropriate actions if the correct controls and 

data are provided to plan and act accordingly. Other questions may arise from this 

chapter’s approach compared to traditional computer security. The difference is that a 

traditional computer system is mostly protected in a physical structure like buildings 

and under system management, whereas an autonomous robot is exposed to many 

elements in the environment. The autonomous robotic system must sense, plan, and act 

accordingly within this environment to perform the tasks or jobs given. 

There were a number of challenges with this research goal, the first was to 

define the trust metrics and the appropriate values. Defining the trust metrics and 

appropriate values took several iterations of calculations, during which MATLAB 

helped with the visualization of the results. The second challenge was finding a tool 

that was rich in features. Three such tools we reviewed were GeNIe, SamIam, and 

BayesiaLab. The BayeiaLab tool was feature rich over the others and had a number of 

positive reviews from other researchers. The third challenge was building the full BN; 

we begin by creating the individual standalone models to understand how things 

worked. This led to tying the individual layers together so that we can see how a score 

can be propagated into the next layer.  The rule in constructing BN is to keep the parent 

nodes down to a reasonable number as the CPT tables get large quickly, which this took 

several iterations to reduce the size of the tables. The fourth challenge was 

understanding the results related to causal inference when the model was stitched 

together. In a simple set of five nodes, one can understand the different cases of 

inference as explained in the chapter, but when the number of nodes increases it 

becomes more complex. To help alleviate the complexity issue, the tool allowed 
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defining a target node and setting the evidence on parent nodes to see the different 

observations occurring at each step. 

The last question is “can a static model be extended into a dynamic model”? 

To address this question, Chapter 6 discussed anticipated future research into using a 

DBN for this purpose.  

Since both attacker and defender actions are time dependent, using a DBN 

addressed the temporal relationships. We do see a path forward on this front, which will 

enable an autonomous robotic system to have a real-time internal trust assurance model 

for interacting with external entities. This will allow a finer security control model of 

the system and support resiliency to threats; this all depends on the platforms security 

features. 

From the evidence supporting this research we can concluded the following: 

1) Autonomous robotic system security is still a new field and conventional 

security is not the same. 

2) ROS2/DDS security is a step forward but doesn’t address the holistic 

approach as covered in this research. 

3) Researchers have created stovepipe solutions, assessment methods, and 

techniques which only address specific parts of the overall system. These 

leave gaps in securing the overall system.  

4) The contribution of this research has created a new set of metrics that 

provide a harmonized assessment method for a holistic security system 

model. 

5) BN as an assessment technique was the right choice and this was proven by 

existing research. We simulated a test case using BN that showed good 
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results in the static model scenario. It was shown that starting from a static 

model and moving to a dynamic one could be done. 

6) Our paper titled “Robot Operating System 2: The need for a holistic security 

approach to robotic architectures” has received considerable activity in this 

new autonomous robotic system security field. The paper titled “Credential 

Masquerading and OpenSSL Spy: Exploring ROS 2 using DDS security” 

has also been noticed.  

As a closing remark, I am eager to move forward in advancing the security 

standards of autonomous robotic systems. It is my hope that the standards created as a 

result of this research be incorporated into the security assessment methodologies. 
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