
Project Number: MA-WJM-4801

A Study of Linear Programming Bounds for Spherical Codes

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Aaron J. Nahabedian

Nadia S. Zahid

Date: April 30, 2009

Approved:

Professor William J. Martin, Major Advisor

Contents

1 Introduction 4
1.1 A Natural Geometric Problem . 4
1.2 The Linear Programming Technique . 5
1.3 Equiangular Lines . 6
1.4 The Kissing Number Problem in 4 Dimensions 7
1.5 The 24-cell . 8

2 The Theory of Delsarte, Goethals and Seidel 10
2.1 Gegenbauer Polynomials . 10
2.2 Spherical Codes . 12
2.3 Linear Programming Approach . 14
2.4 An In-Depth Look at Equiangular Lines . 14
2.5 Musin’s Theorem . 16

3 A Practical Reformulation of the Linear Program 19
3.1 Analysis of the Delsarte, Goethals and Seidel LP 19
3.2 Restriction of Variables . 20
3.3 Restriction of Constraints . 20
3.4 Some Illustrative Examples . 22
3.5 Finding A Compatible Polynomial . 24

4 Software Implementation 26
4.1 Theory Behind the Program . 26
4.2 Description of the Code . 26

4.2.1 Specifying Pinpoints . 27
4.2.2 Finding Gε(x) . 28

5 Low-Dimensional Codes 30
5.1 A Study of Dimension Two . 30
5.2 A Study of the Dimension Three . 32

5.2.1 The Square Antiprism . 33

2

6 Conclusions and Future Work 36
6.1 A Study of the ‘Bumps’ . 36
6.2 The Dual Linear Program . 37
6.3 Improving the Mathematica Package . 37

A User Manual 39

B Library of Examples 41

3

Chapter 1

Introduction

This Major Qualifying Project deals with linear programming bounds for spherical codes.
In this chapter, we discuss the problem informally, drawing connections to a variety of
mathematical problems and applications. Sections 1.3, 1.4, and 1.5 discuss equiangular
lines, kissing numbers, and a very special 4-dimensional polytope, respectively. In Section
1.2 the linear programming technique developed by Delsarte, Goethals, and Seidel in 1977
is discussed, and a brief overview of the report is given.

1.1 A Natural Geometric Problem

Suppose you needed to set up radio towers around the span of the Earth, and the only
way they would be able to function properly is if they are placed 1,000 miles apart from
each other, when measured by the length of a secant joining them. We model this by a
3-D coordinate system with the origin at the center of the Earth. It follows that the unit
vectors in three-dimensional space, representing the displacement from the origin to the
base of two of these towers, form an angle, which we’ll view as the angle between those
towers. We can also consider the standard dot product between these two vectors. These
three measurements, the Euclidean distance between two towers along a secant through
the Earth, the angle formed by the unit vectors in three-dimensional space, and the inner
product of these two vectors, are essentially the same thing: any one of them is computable
from any other. In this report we freely switch from one to the other.

How many radio towers can you place around the globe of the Earth while achieving the
given condition? This is an optimization problem. The answer to this question lies within
what we call ‘bounds for spherical codes’. In order to compute the linear programming
bounds, the inner product is the most useful of the three measures described in the above
paragraph.

The Euclidean distance discussed above is the distance between any two towers, P and
Q on a secant through the Earth containing those two points. The following is the equation
that allows for the computation of the distance between two points P and Q in Euclidean

4

n-space: if
P = (p1, p2, p3,, pn)

Q = (q1, q2, q3,, qn)

then the distance between P and Q is:

d(P, Q) =
√

(p1 − q1)2 + (p2 − q2)2 + ... + (pn − qn)2

Suppose the points P and Q represent two separate radio towers and the point R repre-
sents the center of the Earth. The angle θ between these two towers is formed by the vectors
RP and RQ. We will denote the vector RP as ξ and RQ as η in our calculations. The inner
product can be calculated using

〈ξ, η〉 = |ξ||η| cos θ

so that

θ = arccos

(
〈ξ, η〉
|ξ||η|

)
.

The distance d′(P, Q) from P to Q along the surface of the Earth is

d′(P, Q) =
θ

2π
C ≥ d(P, Q)

where C is the circumference of the Earth. As discussed earlier these three elements are
closely related to each other as evidence by the above equations.

1.2 The Linear Programming Technique

Linear programming is a technique used to optimize a linear objective function when subject
to a finite number of linear equality and inequality constraints. Linear programming is a
way in which to achieve the best possible outcome in a given mathematical model. A linear
program (LP) can be expressed as follows,

min cT x
s.t. Ax ≤ b

where x represents the vector of variables, c and b are vectors of coefficients, and A is
a matrix of coefficients. The expression that is minimized is the objective function and the
inequalities are the constraints which specify a polyhedron over which the objective function
is to be optimized. Solving a linear programming problem gives a solution vector x and an
objective value cT x.

The founders of this subject are Leonid Kantorovich, who developed linear programming
problems in 1939, George Dantzig, who published the simplex method in 1947, and John
von Neumann, who developed the theory of duality in the same year. Leonid Khachiyan was
the first to show a linear programming problem to be solvable in polynomial time in 1979.

5

Narendra Karmarkar introduced the interior point method for solving linear programming
problems in 1984.

Linear programming is useful for many reasons. Practical problems in operations research
can often be expressed as linear programming problems. Also a number of algorithms for
network flow problems, and multi-commodity flow problems work by solving LP problems.
They are also extensively used in microeconomics and production management.

The linear programming technique used in this project is really of a rather different
nature: It became famous in the 1970’s and was formulated by Delsarte, Goethals, and
Seidel [4] in 1977. This followed Philippe Delsarte’s LP approach [3] to find the strongest
bounds for discrete q-ary codes [3]. He developed this approach which allowed for the very
efficient computation of upper bounds on the cardinalities of binary codes, more generally
subsets with restrictions in any association scheme. This approach was then adapted to a
quite different situation, namely spherical codes, by Delsarte, Goethals, and Seidel [4]. The
study of these linear programming bounds for spherical codes is the subject of our report,
which includes our understanding the linear programming approach developed by Delsarte,
Goethals, and Seidel, exploring spherical codes, developing a program in Mathematica which
implements their linear programming approach, and using that program to find upper bounds
on the size of spherical codes.

1.3 Equiangular Lines

The problem discussed in this section has a surprising connection to graphs, although it may
not be an obvious one at first, and is an important problem in relevance to algebraic graph
theory.

We begin by defining a simplex. A simplex in a metric space S, having distance function
d is a subset of S such that d(x, y) between any two distinct points of the simplex is the
same. In Rd a simplex can contain at most d + 1 elements. Take S = {ei : i = 1, · · · , n} and
observe this configuration lies in the (n − 1)-dimensional space {x | 〈1, x〉 = 1} where 1 is
the all-ones vector; so we really have d+1 vectors in Rd where d = n− 1. When considering
the same problem in real elliptic space, finding the maximum number of points in a simplex
is not as simple. When looking at this space, the points are represented by the lines through
the origin of Rd, and the distance between two lines is the square of the sine of the angle
that separates them. Therefore, a simplex in elliptic space is a set of lines in Rd such that
the angle between any two distinct lines is equal. This is how we define a set of equiangular
lines.

A line in Rd can be represented by the span of a unit vector x. Therefore, a set of lines
can be represented by a set of unit vectors Ω = {x1, ..., xn}. Ω is not unique, because −x
represents the same line as x does. More generally, we may apply any orthogonal matrix to
the vectors in Ω to get an equivalent set. So, given a set Ω of unit vectors representing a set
of equiangular lines where the angle separating any two distinct lines is θ, the following is
true when i 6= j,

〈xi, xj〉 = ± cos(θ)

6

. for some fixed θ.
An example of this is obtained in R8 by taking the 28 unit vectors,

xT
i =

√
1

24
(3, 3,−1,−1,−1,−1,−1,−1)

which is formed by any two entries being 3 and the remaining six being −1. For i 6= j,

〈xi, xj〉 = ±1

3
,

where the positive sign is taken if and only if xi and xj have the entry of 3 in the same
coordinate. So, this forms a set of 28 equiangular lines in R8. Note that all of these vectors
are orthogonal to 1, which means that they all lie in the 7-dimensional subspace 1⊥. This
means that there are 28 equiangular lines in R7. The best upper bounds for spherical codes
come from linear programming. In projective space, we use the Jacobi polynomials which are
essentially the even Gegenbauers Q0(x), Q2(x), Q4(x), . . . with substitution z = x2. The best
known method for obtaining a system of equiangular lines in Euclidean space is described in
an article written by Dominique de Caen, which also cites Seidel’s work. He was able to find
that for each d = 3 · 22t−1, with t being any positive integer, there exists a set of 2

9
(d + 1)2

equiangular lines in Euclidean d-space, where we observe the corresponding upper bound of
d(d+3)

2
for this number. This subject is further discussed in Section 2.4.

1.4 The Kissing Number Problem in 4 Dimensions

The kissing number problem in dimension d asks, “How many non-overlapping balls can
touch a given ball, of the same size, at the same time?”. The kissing number τd is the
maximum number of such balls, excluding the central ball, in dimension d. Although it may
seem easy, this problem is surprisingly hard. The answer to this question in dimensions one,
two and three are classical and well known. The solution in dimension three is 12, as shown:

In 1979 the answers to this question in dimensions eight and twenty-four, were discovered
based on the methods we will discuss in Section 2.5 [7]. However, it was proved that the
bounds given by Delsarte’s method [3] are not good enough to solve the problem in dimension

7

four. This problem remained a mystery until in 2003 when Oleg Musin was able to find a
solution to the problem by making some modifications to Delsarte’s method.

In 1979, A. Odlyzko and N. Sloane established that the kissing number in dimension four
is between 24 and 25 [7]. It is possible to produce a packing of 24 spheres around a central
sphere; an example of that is the 24-cell (and it is still not known if this configuration is
unique). In this case, however, as in the three-dimensional case, there is a lot of space that
is still left over. There is actually more space left over than for the case d = 3, which makes
the situation even less clear.

For d = 4, the linear programming method does not work as well as we would like; the
method yields that the bound for the kissing number is τ4 ≤ 26, and nothing better than
that. Oleg Musin was able to find a method which modifies the linear programming method
in a very clever way which yields better bounds. Musin lived in Los Angeles at the time,
but received his PhD in Mathematics from Moscow State University. Oleg Musin improved
the upper bound from 25 to 24, proving that τ4 = 24 [7]. He was able to prove this through
the use of a subtle trick. This is further discussed in Section 2.5.

The optimal kissing configuration for spheres in four dimensions is described as follows:
There are 24 vectors having two zero components and two components equal to ±1. The
notation for this is the following: (±1,±1, 0, 0) or (±12, 02). Each one of these vectors has
length

√
2 and the minimum distance between an two of them is

√
2. When properly rescaled,

these 24 points become the centers for a configuration of 24 non-overlapping unit spheres
all tangent to the unit sphere centered at the origin. It also implies that the bound for the
kissing number is at least 24. The convex hull of these 24 points yields the “24-cell”, which
is further discussed in the next section.

1.5 The 24-cell

The 24-cell is quite a beautiful convex regular 4-polytope and is also called an octaplex. It
is composed of 24 octahedra cells with six meeting at each vertex, and three at each of it’s
edges. It also consists of 96 triangular faces, 96 edges, and 24 vertices. The figure below is
an image of a 24-cell.

8

We now give another description of the 24-cell. The vertices of our 24-cell are centered
at the origin in four-dimensional space and are of two types. First, they are 8 vertices which
are obtained by permuting the entries of the vector

(±1, 0, 0, 0)

and 16 vertices of the following form:(
±1

2
,±1

2
,±1

2
,±1

2

)
.

These 16 vertices are then split into two separate groups: those having an even number
of minus signs and then those having an odd number of minus signs. Any two of these three
groups of eight form a set of 16 vectors whose convex hull is isometric to a 4-cube. Since the
configuration is known to be unique, there is an orthogonal matrix M such that the mapping
v 7−→

√
2Mv sends these 24 vectors to the twenty-four vectors described at the end of the

previous section.
Many examples of configurations in dimension three are explored in Appendix B.

9

Chapter 2

The Theory of Delsarte, Goethals and
Seidel

The best bounds in coding theory are usually those which are obtained through linear pro-
gramming techniques. These ideas were developed by Delsarte [3], and the extension of
this theory to spherical codes was developed by Delsarte, Goethals, and Seidel [4] a few
years later. In this chapter, we give an overview of the 1977 paper [4] by P. Delsarte, J.-M.
Goethals and J. Seidel.

Gegenbauer polynomials form an important family of orthogonal polynomials and are
central to the linear programming bound we study. They are discussed in the first section
of this chapter. The next section of the chapter introduces spherical codes; in it we give
some basic parameters of spherical codes and introduce notation. The linear programming
approach developed by Delsarte, Goethals and Seidel is outlined in Section 2.3. The final
section of the chapter includes examples where the linear programming approach is applied.

2.1 Gegenbauer Polynomials

Gegenbauer polynomials are one of the basic tools necessary to compute bounds for spherical
codes. They are a family of orthogonal polynomials, denoted {Qk(x) : k ∈ N} where each
Qk(x) is in one variable x, which is defined for a fixed dimension, d ≥ 2.

Theorem 2.1.1 ([4]) For fixed d ≥ 2 the Gegenbauer polynomial Qk(x) of degree k is
defined by

`k+1Qk+1(x) = xQk(x)− (1− `k−1)Qk−1(x),

`k =
k

d + 2k − 2
, Q0(x) = 1, Q1(x) = dx.

10

According to this definition the next few Gegenbauer polynomials are:

2Q2(x) = (d + 2)(dx2 − 1),

6Q3(x) = d(d + 4)((d + 2)x3 − 3x),

24Q4(x) = d(d + 6)((d + 2)(d + 4)x4 − 6(d + 2)x2 + 3),

120Q5(x) = d(d + 2)(d + 8)((d + 4)(d + 6)x5 − 10(d + 4)x3 + 15x)

Example 2.1.2 ([4]) The following is an example of a few polynomials in dimension 3:

Q1(x) = 3x,

Q2(x) =
1

2
(3 + 2)(3x2 − 1) =

15

2
x2 − 5

2
,

Q3(x) =
1

6
(3)(3 + 4)((3 + 2)x3 − 3x) =

35

2
x3 − 21

2
x,

Q4(x) =
1

24
(3)(3 + 6)((3 + 2)(3 + 4)x4 − 6(3 + 2)x2 + 3) =

315

8
x4 − 135

4
x2 +

27

8
,

Q5(x) =
1

120
(3)(3+2)(3+8)((3+4)(3+6)x5− 10(3+4)x3 +15x) =

693

8
x5− 377

4
x3 +

165

8
x

The following is a graph of these polynomials:

We said that the Gegenbauer polynomials are “orthogonal polynomials”. This means that
these polynomials are pairwise orthogonal with respect to some prescribed inner product on
the vector space of all polynomials. The sort of inner product we consider is built from a
weight function as follows.

11

Definition 2.1.3 ([4]) Let [x1, x2] be an interval in the real line called the interval of or-
thogonality. Now let W : [x1, x2] → R be a function on that interval; W must be strictly
positive on the interior (x1, x2), and it can also be zero or go to infinity at the end points.
It is also necessary that W satisfies the requirement that, for any polynomial f , the inte-
gral

∫ x2

x1
f(x)W (x)dx is finite. A function W meeting these requirements is called a weight

function.
Now, given any x1 and x2, along with a function W , we will define an inner product on

polynomials by

〈f, g〉 =

∫ x2

x1

f(x)g(x)W (x)dx.

This operation is easily seen to be linear in each of its arguments. The two polynomials, f
and g, are orthogonal when their inner product is zero.

For our application, we consider polynomials on the interval [x1, x2] = [−1, 1] and weight

function W (x) = (1− x2)
d−3
2 . We find,∫ 1

−1

Qk(x)Qi(x)(1− x2)(d−3)/2 dx = adQk(1)δk,i

where ad is some positive constant, and δk,i is the Kronecker delta.
Now there turns out to be one Qk(x) of degree k for each k. So {Qk(x)}∞k=0 is a basis

for the vector space of polynomials. Therefore, each F (x) is uniquely expressible as a linear
combination of Q0, Q1, Q2, . . .

The Gegenbauer expansion associated with the polynomial F (x) is defined as follows:

F (x) =
∞∑

k=0

fkQk(x),

for the defined Gegenbauer coefficients fk.

2.2 Spherical Codes

In this section we describe some basic parameters of spherical codes. Spherical codes are
of course essential to our study and we now define them: a spherical code is simply any
non-empty finite subset of the unit sphere in Rd.

A finite non-empty set X of unit vectors in Euclidean space Rd has several characteristics
of interest to us: the dimension d(X) of the space spanned by X, its cardinality n = |X|,
and degree s(X).

The number of values assumed by the inner product between distinct vectors in X is the
degree s(X):

s(X) = |A(X)|, A(X) = {〈ξ, η〉; ξ 6= η ∈ X}.

Sets X may have the property that A(X) is contained in a prescribed subset A of the
interval [−1, 1). Sets who have this property are what we call spherical A-codes. We seek

12

upper bounds on the size n = |X| of an A-code X. The most powerful known upper bounds
for the size of spherical A-codes are derived using the concepts of linear programming and
Gegenbauer polynomials.

Definition 2.2.1 ([4]) Let A be a subset of the interval [−1, 1). A spherical A-code, is a
non-empty subset X of the unit sphere in Rd satisfying 〈ξ, η〉 ∈ A, for all ξ 6= η ∈ X.

Through this definition, it is interpreted that a spherical A-code can be described as a
set of unit vectors who have angles from the set {arccos ξ | ξ ∈ A}.

Example 2.2.2 ([4]) A set X is antipodal if for all ξ in X, −ξ is also in X. This yields
that A′(X) = −A′(X), for A′ := A ∪ {1}. The antipodal codes on Ωd are in one-to-one
correspondence with the sets of lines through the origin of Rd.

Example 2.2.3 The following is an example in three dimensions. Let A = [−1, 0], so the
angle between any two points will be between π and π

2
. The optimal configuration on this

interval is the octahedron:

{(−1, 0, 0), (1, 0, 0), (0,−1, 0), (0, 1, 0), (0, 0,−1), (0, 0, 1)}

Note that the inner product between any two vectors will be either −1 or 0. Both of these
values lie within the interval A.

13

2.3 Linear Programming Approach

Delsarte, Goethals, and Seidel developed the following approach for finding linear program-
ming bounds.

Definition 2.3.1 ([4]) A polynomial F (x) is said to be compatible with the set A when for
all α ∈ A, F (α) ≤ 0.

Theorem 2.3.2 ([4]) Let F (x), with Gegenbauer coefficients f0 > 0 and fk ≥ 0 for all k,
be compatible with the set A. Then the cardinality, n, of any A-code X satisfies n ≤ F (1)/f0.

We omit the proof in order to focus on the application of this theorem.
Suppose your have some function F with non-negative Gegenbauer coefficients and f0 =

1, such that F is non-positive within A. If this is true, then F evaluated at 1 is an upper
bound on the size of a spherical A-code. The goal is to minimize F (1) while keeping F (x)
compatible with A.

Using Theorem 2.3.2, we can generate a linear programmming problem (“linear program”
or simply “LP”) as follows:

min F (1)
f0

s.t. F (α) ≤ 0 ∀α ∈ A
f0 > 0, fk ≥ 0 for k = 1, 2, . . .

Notice that there are uncountably many constraints and countably many variables. This LP
is further analyzed in Section 3.1.

The following example demonstrates Theorem 2.3.2.

Example 2.3.3 ([4]) Let A be a subset of the interval [−1, β], where β is within the range
of −1 ≤ β < 0. The polynomial F (x) = x − β is compatible with A, and the first few
Gegenbauer coefficients satisfy these conditions: f0 = −β > 0, and f1 = 1/d > 0. Recall
that Theorem 2.3.2 states |X| ≤ F (1)/f0 for any A-code since our F (x) is compatible with
A. In this case we obtain the bound

|X| ≤ (1− β)

−β
= 1− 1

β
.

For example when d = 2 and β = −1/2, we get |X| ≤ 3 and the optimal solutions are
equilateral triangles. More generally, an A-code of the given dimension r ≤ d achieves this
bound if and only if it is an r-dimensional regular simplex, with β = −1/r.

2.4 An In-Depth Look at Equiangular Lines

De Caen describes the construction of the equiangular lines as follows [2]: let G be a graph,
having Seidel adjacency matrix S. This means that Sxy = −1 when vertices x and y are

14

adjacent to each other, Sxy = 1 when x and y are distinct and non-adjacent, and Sxx = 0
for all x. If θ is the smallest eigenvalue of S, then it follows that M := I − 1

θ
S is positive

semidefinite. Also, it has rank d = n − m where n is the number of vertices and m is the
eigenvalue multiplicity of θ. Therefore, M can now be represented as a Gram matrix of n
unit vectors x1, ..., xn in real d-space. The inner product, 〈xi, xj〉 = ±1

θ
for i and j distinct.

The lines, or 1-dimensional subspaces, which are spanned by these xi’s will have constant
pairwise angle arccos(1

θ
).

By simply reversing this process we are able to find a large equiangular set of lines in
Euclidean space by finding a graph whose Seidel adjacency matrix has the smallest eigenvalue
of large multiplicity.

Theorem 2.4.1 ([2]) For each d = 3 · 22t−1, with t any positive integer, there exists an
equiangular set of 2

9
(d + 1)2 lines in Euclidean d-space.

The graphs used in the construction of equiangular lines refer to the theory of quadratic
forms over GF (2), which is discussed in De Caen and Van Dam’s 1999 article, “Association
schemes related to Kasami codes and Kerdock sets” in the journal Designs, Codes, and
Cryptography.

Let V be a vector space over GF (2). If Q : V → GF (2) is a quadratic form, then its
polarization B(x, y) := Q(x + y) + Q(x) + Q(y) is an alternating bilinear form. It is also
important to note that B can only be non-singular if V has even dimension. Therefore,
assume that dim(V) = 2t for some positive integer t. If Q polarizes to a non-singular B,
then Q must be of one of two types χ(Q) = ±1, where Q has exactly 22t−1 +χ(Q)2t−1 zeroes.
Now we let B1, B2, ..., Br be a set of alternating bilinear forms on V . If Bi+Bj is non-singular
for all i 6= j then the set is called non-singular. A non-singular set has r ≤ 22t−1, and when
equality holds it is called a Kerdock set. These maximal non-singular sets exist for all t.

Now we can describe the graphs that occur when constructing equiangular lines. Let K
be a Kerdock set of alternating forms on V , where dim(V) = 2t. The graph Gt will have
as vertex set all pairs (B, Q) where B belongs to K and Q polarizes to B. Two vertices
(B, Q) and (B′, Q′) are declared adjacent precisely when B 6= B′ and χ(Q + Q′) = −1. The
eigenvalues of the Seidel adjacency matrix S(Gt) are as follows:

θ1 = 23t−1 + 22t − 1

with multiplicity one;

θ2 = 23t−1 + 2t − 1

with multiplicity 2q − 1 where q := 22t−1;

θ3 = 22t + 2t − 1

with multiplicity q − 1;

θ4 = −2t − 1

15

with multiplicity (q − 1)(2q − 1).

Example 2.4.2 The following is an example of the values of θ1 up to θ4 when t is equal to
2:

θ1 = 23(2)−1 + 22(2) − 1 = 47

with multiplicity one;

θ2 = 23(2)−1 + 22 − 1 = 35

with multiplicity 2q − 1 where q := 22(2)−1 = 8;

θ3 = 22(2) + 22 − 1 = 19

with multiplicity q − 1;

θ4 = −22 − 1 = 3

with multiplicity (q − 1)(2q − 1).

The ordinary adjacency matrix A and the Seidel matrix S are related by the following
equation S = J − I − 2A.

We can now see that the eigenvalue θ = θ4 is the smallest eigenvalue of S(Gt) and it
has a very large multiplicity. The rank of M = I − 1

θ
S is d = 3q − 1 and the graph has

2q2 = 2
9
(d + 1)2 vertices. Following the procedure described above, we can now find a set

of 2
9
(d + 1)2 equiangular lines in Euclidean d-space, whenever d = 3q − 1 = 3 · 22t−1 − 1 for

some positive integer t. This completes our summary of the construction of De Caen.
The best constructions come from regular two-graphs where the Seidel adjacency matrix

has just two distinct eigenvalues. Thus far there has been nothing better asymptotically
than multiplying a constant and d

√
d.

Example 2.4.3 One way that equiangular lines are formed is when the internal angles of a
polyhedron are congruent to each other. Equiangular lines exist in various polyhedra, such as
the tetrahedron whose diagonal lines are equiangular. There is an image of the tetrahedron
in Appendix B.

2.5 Musin’s Theorem

The kissing number, τd, is the maximum number of spheres of radius 1 that can touch the
unit sphere simultaneously in d-dimensional Euclidean space.

Musin’s improvement to Delsarte’s methods [3] allows the function F (t) in Theorem 2.3.2
to creep above the x-axis within the interval A = [−1, 1

2
], but only “opposite to the given

sphere”, which means only when close to t = 1.
The result is as follows:

16

Theorem 2.5.1 ([7]) Fix a parameter t0 in the range −1 ≤ t0 < −1
2
. If,

F (t) =
∑
k≥0

fkQk(t)

is a non-negative combination of Gegenbauer polynomials (fk ≥ 0 for all k, with f0 > 0) and
if F (t) ≤ 0 holds for all t ∈ [t0,

1
2
], while F ′ < 0 for t ∈ [−1, t0], then the kissing number for

Rd is bounded by

τd ≤
1

f0

max{h0, h1, ..., hµ},

where hµ is the maximum of

F (1) +
m∑

j=1

F (〈e1, yj〉)

over all configurations of m ≤ µ unit vectors yj in the spherical cap given by 〈e1, yj〉 ≤ t0
whose pairwise scalar products are at most 1

2
. Here µ denotes the maximal number of points

that fit into the spherical cap.

The following is a sketch of Musin’s proof for τd < 25.
Musin produced a polynomial of degree 9 satisfying the assumptions of his Theorem 2.5.1

with t0 ≈ −0.608:

F (t) = Q0(t) + 2Q1(t) + 6.12Q2(t) + 3.484Q3(t) + 5.12Q4(t) + 1.05Q5(t)

= 53.76t9 − 107.52t7 + 70.56t5 + 16.384t4 − 9.832t3 − 4.128t2 − 0.434t− 0.016.

This was found through discretization and linear programming, and these methods have
already been used by A. Odlyzko and N. Sloane.

Now, in order to evaluate hm, the arrangements of m points y1, ..., ym in the spherical cap
must be considered, C0 := {y ∈ S3 : 〈e1, y〉 ≤ t0}. The points have a minimum angle of 60◦;
we have π/3 = arccos(1

2
) given by 〈yi, yj〉 ≤ 1

2
, and this distance is larger than the radius

arccos(−t0) of the spherical cap. We know that in an optimal arrangement for a given m we
cannot move one or more of the points towards the center of the cap while maintaining the
“minimum distance” requirement, because of the monotonicity assumption on F (t). Musin
derives strong conditions from this on the combinatorics of optimal configurations.

An example is for m ≥ 1 the center −e1 of the spherical cap is contained in the (spherical)
convex hull of the m points yi. When m ≥ 2 each point has at least one other point at a
distance of exactly π/3. This yields that:

h0 = F (1) = 18.774

h1 = F (1) + F (−1) = 24.48

h2 = maxφ≤π/3

{
F (1) + F (− cos(φ)) + F

(
− cos

(π

3
− φ
))}

17

and it follows that

h2 ≈ 24.8644.

Oleg Musin’s breakthrough in this method is a piece of great progress related to the
packing of spheres in high-dimensional space.

18

Chapter 3

A Practical Reformulation of the
Linear Program

Now that a background on the theory of Delsarte, Goethals and Seidel has been presented,
we can begin to explain how we adapt that theory into a problem that can be solved by
a computer. The linear programming problem (LP) that they derive has infinitely many
variables and constraints. In order to write a program to find upper bounds on A-codes,
we need to develop a way to approximate this LP with only finitely many variables and
constraints.

In this chapter we examine the LP derived in Section 2.3. We reformulate this LP so
that it can be solved using standard software. Examples are provided to show the limitations
inherent in the reformulation, and techniques are developed to avoid them.

3.1 Analysis of the Delsarte, Goethals and Seidel LP

In order to construct an optimization problem that will give upper bounds on the size, n, of
a spherical A-code, we use Theorem 2.3.2. Without loss of generality, we may set f0 = 1 so
that n ≤ F (1)

f0
= F (1). We now get the following LP:

min F (1)
s.t. F (α) ≤ 0 ∀α ∈ A
f0 = 1, fk ≥ 0 for k = 1, 2, . . .

with F (x) =
∑

k≥0 fkQk(x), where Qk(x) is the kth Gegenbauer polynomial for a given
dimension d. The problem with solving this LP directly is that it has countably many
variables (f0, f1, f2, ...) and, in a general application, uncountably many constraints (one
constraint for each point α ∈ A). In the following sections we show how to restrict these to
finite amounts. By doing this we may lose both feasibility and optimality, only the former
of which we are able to repair.

19

3.2 Restriction of Variables

Any optimal polynomial will be of finite degree, but this degree is not known a priori. This
is why it is necessary to have infinitely many variables in the LP. To get an LP with finitely
many variables, we simply restrict the number of variables we put into the LP by setting
fk = 0 for k greater than some given m. The LP then becomes:

min F (1)
s.t. F (α) ≤ 0 ∀α ∈ A
f0 = 1, fk ≥ 0 for k = 1, 2, . . . ,m

fk = 0 for k > m.

The LP now has m variables. Unfortunately, with this restricted degree, a feasible polynomial
may not even exist. If so, a greater degree must be used. Even if an optimal polynomial can
be found, there may exist a better polynomial of a higher degree than m. To see if this is
the case, the solution vector of the LP must be inspected. For example, if m = 5 and for
some A the LP gives a solution vector of f = (f0, f1, f2, f3, f4, f5) = (1, 1

2
, 0, 0, 1

3
, 1

4
) then it

is worth considering increasing m, since it is known that the optimal polynomial is of degree
at least five, but may be of higher degree. If m is increased to 12 and the solution vector
becomes (1, 1

2
, 0, 0, 1

3
, 1

4
, 1

8
, 0, 0, 0, 0, 0) then there is good evidence that m = 6 is sufficient,

since the last few entries are zero.

3.3 Restriction of Constraints

The LP now has m variables, but it still has uncountably many constraints. To solve this,
we choose a finite subset P of A. In our LP, we use this finite P in place of the interval A.
The LP then becomes:

min F (1)
s.t. F (p) ≤ 0 ∀p ∈ P
f0 = 1, fk ≥ 0 for k = 1, 2, . . . ,m

fk = 0 for k > m.

Since P is finite, the LP now has finitely many constraints and variables, and is therefore in
a form that can be solved with standard LP software.

We refer to P as the set of “pinpoints”. This set has an intuitive meaning. We need
F (α) ≤ 0 for all α ∈ A, but this restriction will require infinitely many constraints. We
therefore designate finitely many of the points in A to have constraints. These points are
the “pinpoints”. These points, which we choose to be spread out somehow evenly along A,
should be sufficient to “pin down” F (x) in A. Since F (x) is a polynomial, there should not
be any “wild” behavior of the function in-between pinpoints. This restriction of A to P
means that the solution of this LP will give un upper bound on the size of a P -code (the
inner product of any two points must be in P). We will use this bound of the P -code to
approximate the bound for the A-code. This will be shown in Section 3.5.

20

It is not enough that we require the pinpoints to be spread evenly along A. We also
require that the endpoints of every maximal interval in A be included in P . For example, if
A = [−1,−1

2
] ∪ [−1

3
, 0] ∪ [1

4
, 1

2
] then {−1,−1

2
,−1

3
, 0, 1

4
, 1

2
} is required to be a subset of P . To

see why, consider a convex quadratic polynomial crossing the x-axis at −1 and 0.

This polynomial is certainly negative between these two points. For a higher degree polyno-
mial, this requirement ensures that the polynomial will not go above (and stay above) the
axis near the endpoints of the interval. For example, if A = [−1, .55], and we did not place
a pinpoint at x = .55, then the polynomial may look something like this:

21

The polynomial is positive from x = .5 to x = .55.

3.4 Some Illustrative Examples

Example 3.4.1 Take A = [−1, 1
2
] in dimension three. Set the degree of F (x) to be three

(that is, set m = 3). Suppose we are restricted to four pinpoints. A natural choice of these
would be P = (−1,−1

2
, 0, 1

2
). The LP for this problem is

min F (1)
s.t. F (−1) ≤ 0

F
(
−1

2

)
≤ 0

F (0) ≤ 0
F
(

1
2

)
≤ 0

f0 = 1 f1, f2, f3 ≥ 0

Recall that, in dimension three, the first four Gegenbauer polynomials are Q0(x) = 1, Q1(x) =
3x, Q2(x) = −5

2
+ 15

2
x2, and Q3(x) = −21

2
x + 35

2
x3. Substituting these into F we get

min f0 + 3f1 + 5f2 + 7f3

s.t. f0 − 3f1 + 5f2 − 7f3 ≤ 0

f0 − 3
2
f1 − 5

8
f2 + 49

16
f3 ≤ 0

f0 − 5
2
f2 ≤ 0

f0 + 3
2
f1 − 5

8
f2 − 49

16
f3 ≤ 0

f0 = 1, f1, f2, f3 ≥ 0

22

Solving this LP gives us a solution vector of

f =

(
1,

7

5
,
8

5
,
24

35

)
,

with the optimal polynomial

G(x) = f0q0(x) + . . . + f3q3(x)

= −3− 3x + 12x2 + 12x3.

The objective value of our LP is G(1) = 18. This is an upper bound on the size of a spherical
P -code for A. We cannot yet say that it is a bound for the A-code, since we do not yet know
if G(x) ≤ 0 for x ∈ A (we will deal with this problem later).

We know that the optimal configuration on the interval A = [−1, 1
2
] is the icosahedron,

which has 12 points [8] (see Appendix B), so either the method we have described does not
work very well, or we need to do something else to find a better bound. If we increase the
degree of the polynomial to four (i.e. set m = 4) and do the same as above, we get a
polynomial of

G(x) = −15

7
x− 15

7
x2 +

60

7
x3 +

60

7
x4

with an objective value of G(1) = 90
7
≈ 12.8571. Increasing the degree incrementally, it can

be seen that there is no change to the objective value until we reach m = 10, when we get a
value of 1207470

99071
≈ 12.1879. So increasing the number of variables in the LP by just one can

sometimes make a large difference on the bound we get for the P -code.

Example 3.4.2 Consider the interval A =
[
−1,

√
2

4+
√

2

]
≈ [−1, .261204]. The optimal config-

uration on this interval is the square antiprism, which has eight points (see Appendix B and
Section 5.2.1). We will use a polynomial of degree four on three constraints. The pinpoints
will be placed evenly along A at P = {−1,−0.368398, 0.261204}. Solving this LP gives a
solution vector of f = (1, 0.74714, 0.541421, 0.209384, 0). The optimal polynomial is

G(x) = −0.353553 + 0.0428932x + 4.06066x2 + 3.66421x3

and the objective value is G(1) = 7.41421. We now run into a different problem than the
one we encountered in Example 3.4.1. We know that the optimal configuration for A =[
−1,

√
2

4+
√

2

]
has eight points. Is the LP telling us that this configuration does not exist?

Certainly something is wrong here. A plot of G(x) with the pinpoints highlighted,

23

shows us that G(x) > 0 at some points in A. The constraints of the finite LP have been
satisfied, but not those of the original LP. To remedy this we need to develop another tool.

3.5 Finding A Compatible Polynomial

Recall Definition 2.3.1: F (x) is compatible with A if F (α) ≤ 0 ∀α ∈ A. As we have seen in
the previous example, when we restrict the LP to P instead of A we cannot always ensure
that G(x) will be compatible with A. We need a way to make G(x) compatible after we find
it through the LP.

We will define ε to be the maximum value that G(x) achieves in A. If ε ≤ 0 then all
of the constraints of the original LP are satisfied, so we can confidently take G(x) to be an
optimal polynomial for the given degree. If ε > 0 then G(x) is not compatible with A. Now
we consider the polynomial

G(x)− ε = (1− ε) + f1Q1(x) + . . . + fmQm(x).

This polynomial is certainly compatible with A. The problem now is that we do not have
the zeroth term f0 = 1, which was required in the original LP. We now scale the entire
polynomial to achieve this constraint by taking

Gε(x) =
G(x)− ε

1− ε
.

This transformation has the effect of shifting G(x) to below zero, and then rescaling to get
f0 = 1. It must be noted that in practice ε is usually very small, so 1−ε will be very close to

24

one. The shifting and scaling of the polynomial will not be dramatic, but it is still necessary
to achieve a true upper bound.

Example 3.5.1 Returning to Example 3.4.2, we find that the local maximum of G(x) occurs
at the point x = −0.733476. We take ε = G(−0.733476) = 0.353667 and we find that

Gε(x) =
G(x)− 0.353667

1− 0.353667
= −1.0942 + 0.066364x + 6.28261x2 + 5.66923x3

A plot of Gε(x) shows that the curve does indeed lie below the x-axis in A.

Our revised bound is Gε(1) = 10.924. This bound is now consistent with the antiprism. It
must be noted that in general practice, when many more pinpoints are used, ε is very small,
and so the scaling factor of 1

1−ε
is close to one. Indeed, if we were to use the same interval

A but on 50 pinpoints, we find that ε = 0.000632252 and that Gε(1) = 8.48819, proving
optimality of the antiprism.

25

Chapter 4

Software Implementation

With an LP now in a form that can be solved using software, we wish to do just that. We
want to write a program that, when given a few user specified-inputs, will give information
on an A-code, such as an optimal polynomial, a solution vector and an upper bound.

In this chapter we discuss the concept behind the package; what we want it to accomplish
and why we chose to write it in Mathematica. We then give an idea of how the package han-
dles a typical problem; specifically, how pinpoints are chosen and how ε is found. Throughout
the chapter we provide a running example to help describe the functionality of the package.

4.1 Theory Behind the Program

Mathematica is a computational software program. It was initially conceived by Stephen
Wolfram and was developed and released by Wolfram Research in 1988. We created our
package using the WPI liscense of Version 5.2 of this software. We wrote a Mathematica
package that will take the following user input: dimension d, polynomial degree m, number
of constraints |P | and interval A. There are functions included in the package that will give
a solution vector f , an optimal polynomial Gε(x), an upper bound Gε(1), as well as many
other desired outputs. A user is able to download the package and an accompanying tutorial
worksheet from the Mathematica website at http://library.wolfram.com/.

We chose to write our package using Mathematica because of its ability to do a large
amount of exact rational arithmetic. If A is input with exact rational endpoints, then f will
be rational. Unfortunately, since it may be impossible to find ε exactly, if G(x) is of a high
enough degree, it is not always possible to find an exact rational expression for Gε(x).

4.2 Description of the Code

In our package, we define the Gegenbauer polynomials recursively, as described in Theorem
2.1.1:

`k+1Qk+1(x) = xQk(x)− (1− `k−1)Qk−1(x),

26

`k =
k

d + 2k − 2
, Q0(x) = 1, Q1(x) = dx.

From this we construct a list {Q0(x), . . . , Qm(x)} which, in our package, will be a function
of x that serves the purpose of F (x). Note that in Mathematica all lists are enclosed in curly
brackets, and this notation will be used throughout this chapter.

4.2.1 Specifying Pinpoints

The LinearProgramming function of Mathematica takes in lists of coefficient vectors as the
objective function and as the constraint matrix. This is why {Q0(x), . . . , Qm(x)} serves as
F (x). To generate the constraint matrix, we first need a way to place the pinpoints. We use
the following algorithm to do this:

Input: a collection of intervals A and a desired size of P .
Set P0 = ∅.
if A is finite then

return A.
else

Let {s1, . . . , si} denote the subintervals of A, and let {|s1|, . . . , |si|} denote their lengths.
Add the endpoints of sj to P0, for j = 1, . . . , i.

Calculate
{
|s1|
|A| , . . . ,

|si|
|A|

}
.

Multiply these by |P | and round up:
{⌈

|P ||s1|
|A|

⌉
, . . . ,

⌈
|P ||si|
|A|

⌉}
Distribute that number of points evenly along each corresponding subinterval.
Add the placed points to P0.
return P0.

end if

The P0 obtained from the previous algorithm will be the set of pinpoints P used in the
LP. If A is finite, then we do not need to find P ; A can be used for the constraints. This
algorithm begins by making sure P includes the endpoints of every subinterval in A. The
subintervals are determined by the way in which A is defined. For instance, if A is input
as [−1, 0] then the algorithm will begin by adding {−1, 0} to P0. On the other hand, if A
is input as [−1,−.4] ∪ [−.6, 0] then the algorithm will begin by adding {−1, .6, .4, 0} to P0.
An interval can be input in this manner if some specific points are desired to be used as
constraints. This will also cause a greater concentration of pinpoints to be placed within
[-.6,-.4], as this region appears in multiple subintervals of A. After these endpoints are added
to P0, the algorithm then distributes the remaining points evenly along A, and then adds
these to P0.

A set A is entered as a list of intervals and single points. As the code is explained, an
example interval of

A = [− 9

10
,−3

4
] ∪ [−1

2
] ∪ [−2

5
, 0] ∪ [

1

10
,
2

5
]

27

will be used, with m = 8. This interval is specified in Mathematica as {{− 9
10

, −3
4
}, {−1

2
},

{−2
5
, 0}, { 1

10
, 2

5
}}. Running the previous algorithm on this interval, with a desired P of size

15, we find that the lengths the subintervals are { 3
20

, 0, 2
5
, 3

10
} and that they get {3, 0, 8, 6}

pinpoints each. Distributing these out we get

P0 =

{
− 9

10
,−33

40
,−3

4
,−1

2
,−2

5
,−12

35
,−2

7
,− 8

35
,− 6

35
,− 4

35
,− 2

35
, 0,

1

10
,

4

25
,
11

50
,

7

25
,
17

50
,
2

5

}
Notice that |P0| = 18. This is because of the rounding up that is done in choosing how many
pinpoints to place. It is also because of the subinterval of length zero at −1

2
. Since this

subinterval does not contribute to the length of A, it is not taken into consideration when
choosing how many points to place in each subinterval and an extra point is added on top
of the desired 15.

4.2.2 Finding Gε(x)

The next step in our package is to set up and solve the LP, which is done easily now that
we have P0. After setting up the constraints, we use the Mathematica LinearProgramming
function to get a solution vector f . In our example interval, the solution vector is

f = {1, 22021553820

26047002169
,

6282568590714

10028095835065
,

8495863800

26047002169
,

291299502560

2370277197379
, 0, 0, 0,

983449600000

63320262272839
}.

The LinearProgramming function only outputs the solution vector. Since F (x) is rep-
resented now by the coefficient vector of F (x) = {Q0(x), . . . , Qm(x)}, to find the optimal
polynomial for the LP we take

f · F (x) = f0Q0(x) + . . . + fmQm(x) = G(x).

The LP has an objective value of

f · F (1) = f0Q0(1) + . . . + fmQm(1) = G(1).

In dimension three, for a degree eight polynomial, F (1) = {1, 3, 5, 7, 9, 11, 13, 15, 17}. For our
example we get the polynomial

G(x) =
345744000000

26047002169
x8 − 645388800000

26047002169
x6 +

498382746300

26047002169
x4 +

148677616500

26047002169
x3

−2807754183

1370894851
x2 − 23141908440

26047002169
x− 108668628

1370894851

with

G(1) =
14150611629

1370894851
≈ 10.322

The next step in our package is to find Gε(x). This is done using the following algorithm:

28

Input: A and G(x)
Calculate G′(x), the derivative of G(x).
Find all real x such that G′(x) = 0 and x ∈ A. Call these x1, x2, . . . , xi.
Take ε = max{G(x1), G(x2), . . . , G(xi)}.
if ε > 0 then

return Gε(x) = G(x)−ε
1−ε

.
else

return Gε(x) = G(x)
end if

Since G(x) is a polynomial, finding the derivative is simple. Recall Section 3.3: since all
endpoints of A are pinpoints, ε will always be a local maximum in the interior of A (i.e.
G(x) will never be positive on an endpoint of A).

This is the step at which we may lose rationality. If G(x) is of degree greater than or
equal to six, then G′(x) is of degree greater than or equal to five. Because of this, it will not
always be possible to find the roots of G′(x) exactly. Mathematica must employ numerical
methods.

Returning to our example interval A, using our package we find that the local extrema
of G(x) occur at x1 = −0.845167, x2 = −0.379143, x3 = −0.184345, and x4 = 0.235995. We
find that

ε = max{G(x1), G(x2), G(x3), G(x4)}
= max{−0.0494678,−0.0204761, 0.000298193,−0.272789}
= 0.000298193.

Using this ε we are able to find

Gε(x) = −0.0795903−0.888732x−2.04873x2+5.70975x3+19.1397x4−24.7852x6+13.2778x8

and
Gε(1) = 10.325.

While this is only a small change from G(1) = 10.322, in some cases the transition from
G(x) to Gε(x) is very important, as we saw in Example 3.5.1.

29

Chapter 5

Low-Dimensional Codes

With a working Mathematica package, we wish to see how the outputs from the package
relate to known examples in dimensions two and three. Instead of looking at upper bounds
on single intervals, we wish to see how an upper bound will change in relation to a change
in the size of an interval.

In this chapter we study known configurations in dimensions two and three. Looking at
the output of the program developed in Mathematica reveals some intriguing results, and
we investigate these. We conclude the chapter by proving optimality of a configuration on
eight points in dimension three.

5.1 A Study of Dimension Two

A configuration of points is simply a placement of those points on the unit sphere. An
optimal configuration is one such that a different placement of the same number of points
cannot result in larger minimum angle between any two points. Equivalently, this means
that a different configuration cannot result in a smaller interval A of inner products.

In two dimensions, the optimal configurations are the regular polygons. For instance, if
we take A =

[
−1,−1

2

]
, all points must be at least arccos

(
−1

2

)
= 120◦ = 2π

3
radians apart.

This restriction is clearly optimized on the vertices of an inscribed equilateral triangle, as
shown.

30

A different configuration of three points cannot have an interval with a lower right endpoint
than −1

2
. Increasing the angle between any two points will decrease the angles between some

other pair, and a larger interval will result.
As the length of the interval is increased, another point cannot be added until A = [−1, 0]

is reached. Now, every point must be at least 90◦ = π
2

radians apart. This restriction is
optimized on the vertices of an inscribed square. This pattern will continue, with every
regular polygon being an optimal configuration. From this we can observe that a valid
upper bound for n = |X|, where X is a spherical A-code for the interval A = [−1, x], in two
dimensions is k(x) = 2π

arccos(x)
.

The question then becomes how well the linear programming bound compares to this.
To answer this we define

h(x) = Gε(1) for A = [−1, x].

This function will show us how the upper bound changes as A changes. Plotting h(x) (using
a polynomial of degree ten) in pink against k(x) = 2π

arccos(x)
in yellow, we get the following

graph:

31

From this we observe that the LP bound is indeed better than the k(x) bound. We also
see that the curve of h(x) is not smooth. There are points at which the second derivative of
h(x) increases quickly, and it “bumps” up to meet k(x). Upon observation we notice that
these bumps correspond exactly to the optimal configurations of the regular polygons. There
is a bump at x = −1

2
, x = 0 and so on. We can also see that h

(
−1

2

)
= 3 (triangle) and

h(0) = 4 (square), etc.
At a certain point, h(x) will cross k(x) and will stay above it. The point where this

cross occurs is related to the degree of the polynomial used to solve the LP. A higher degree
polynomial will have better results for larger values of x. We believe that the location of
this crossing will increase as the degree increases. These bumps also eventually stop being
visible for larger values of x. Our experiment show that a higher degree polynomial will yield
better results, with more bumps being visible.

5.2 A Study of the Dimension Three

Moving from two dimensions to three dimensions, we expect things to get more complicated.
Indeed, we do not have a simple elementary function with which to bound h(x). There are
also cases where a configuration on k points will have the same inner product interval as
a configuration on k + 1 points. For example, the interval A = [−1, 0] allows the optimal
configuration of the vertices of the octahedron. If we take any configuration on five points,
we can not do any better than this same A. The optimal configuration on five points is
simply the same as on 6 points with an arbitrary point removed. A library of configurations

32

(not all optimal) in three dimensions is given in Appendix B.
If we graph h(x) in three dimensions we get the following:

From this graph we can see that there is not a bump at every single point. We can only see
bumps where h(x) equals 4 (the tetrahedron), 6 (the octahedron) and 12 (the icosahedron).
These configurations are three of the platonic solids. The dodecahedron has 20 points, but
the curve is too steep at that point to observe a visible bump, even upon zooming in on
that point. We believe that there should be a bump there, though, since the dodecahedron
is known to be optimal on 20 points [8]. The remaining platonic solid, the cube, which
has eight points, also does not have a bump. The reason for this is shown in the following
subsection.

5.2.1 The Square Antiprism

While most of the platonic solids form optimal configurations in three dimensions, oddly
enough the cube does not. The cube, with vertices at(

±
√

3

3
,±

√
3

3
,±

√
3

3

)
has minimum angle

arccos

[(√
3

3
,

√
3

3
,

√
3

3

)
·

(√
3

3
,

√
3

3
,−

√
3

3

)]
= arccos

(
1

3

)
which corresponds to the interval A =

[
−1, 1

3

]
. Interestingly, we can find another configura-

tion on eight points with a smaller interval. This configuration is the square antiprism.

33

Imagine looking down on a cube and rotating the bottom face by π
4
. The points on the

top face now have a greater angle between adjacent points on the bottom face. Now we
begin to move these two faces together (remember that these points are still inscribed in a
unit sphere). As these faces grow closer together, the angles between adjacent point on each
face grow larger, while the angles between points adjacent on opposite faces grow smaller.
As some point these values will be the same. If we determine when this happens, we will
have found a configuration of eight points that has a larger minimum angle than the points
of the cube, and thus a smaller corresponding interval A.

We will call this value t. To find it, consider the following drawing of the vertices:

This figure is an image of this rotated cube, looking down through the z-axis from a vantage
point of (0, 0, 10). The top face of this figure is on the plane z = t. The bottom face is on
z = −t. The bottom face is rotated by π

4
. For ease of calculations we will find t on these

points and scale to a unit sphere at the end. We want the distance between adjacent points
on the top face to be equal to the distance between points adjacent on opposite faces. We

34

set up this equation and solve for t:

d [(1, 0, t), (0, 1, t)] = d

[
(1, 0, t),

(√
2

2
,

√
2

2
,−t

)]
√

(1− 0)2 + (0− 1)2 + (t− t)2 =

√√√√(1−
√

2

2

)2

+

(
0−

√
2

2

)2

+ (t− (−t))2

√
2 =

√
2−

√
2 + 4t2

√
2 = 4t2

4
√

2

2
= t

Now that we have t, we need to scale all of the points so that they lie on the unit sphere.
Since all of the points are the same distance from the origin, the scaling factor will be the
norm of one of the points:∣∣∣∣∣

(
1, 0,

4
√

2

2

)∣∣∣∣∣ =

√√√√1 +

(
4
√

2

2

)2

=

√
1 +

√
2

4
= k

Finally, to find the maximum dot product between two points on this configuration:(
1

k
, 0,

t

k

)
·
(

0,
1

k
,
t

k

)
=

t2

k2
=

√
2

4

4+
√

2
4

=

√
2

4 +
√

2
≈ .261204.

We have therefore found a configuration of eight points on the interval A = [−1, .261204],
which is better than the configuration of the cube, on A =

[
−1, 1

3

]
. Refer to Examples 3.4.2

and 3.5.1 for more information on this configuration.
The question now becomes: why is there not a bump in h(x) at x = .261204? We have

an optimal configuration there on eight points. For that matter, why is there not a bump at
every integer value of h(x)? There are bumps in dimension two at every integer value, cor-
responding to the regular polygons. There exist optimal configurations on 7, 8, 9, . . . points
in three dimensions, but these configurations do not produce bumps. Somehow, information
about certain configurations lie within the Gegenbauer polynomials. The question of why
the bumps appear, and exactly where they appear in higher dimensions, remains an open
problem.

35

Chapter 6

Conclusions and Future Work

Our main goal in this project was to write a Mathematica package to find the upper bounds
on the size of spherical codes. In order to complete this task it was necessary to first study
and understand the 1977 paper by Delsarte, Goethals, and Seidel [4] which describes their
linear programming technique. This technique allowed the generation of a linear program
with countably many variables and uncountably many constraints. We then were able to
manipulate and reformulate this technique to compute our linear programming bounds.
We also looked into several applications of this technique, including: the kissing number,
equiangular lines and the 24-cell. Ultimately, our Mathematica package was developed to
allow a user to enter any specified collection of intervals, a dimension, the degree of the
polynomial, and the number of constraints they desire. Given this input, the program
outputs for the user an optimal solution vector, an optimal polynomial, and the upper
bound, as well as a few other things.

In carrying out this project we came across several relevant areas of study that branch
off of the main subject, and could possibly be studied in the future. Several open problems
we came across, which are directly relevant to this project, are discussed in the sections that
follow.

6.1 A Study of the ‘Bumps’

The discovery of the bumps, which are discussed in Chapter 5, opened many questions
unanswered in this project. The general question that is left unanswered is, why do these
bumps exist and what do they mean? The more intriguing result of this discovery is the fact
that these bumps correspond to the optimal configurations of polygons in two-dimensions
and polyhedra in three-dimensions. The graph of the objective function in dimension two
seems to rise up and intersect the graph of the arccosine function, which is also the upper
bound on the objective function, at several points. These points correspond to the optimal
configurations of the polygons. In three dimensions the graph of the objective function, once
again, rises at several points forming bump-like shapes. The points at which this occurs are
the optimal configurations of certain Platonic solids. It is important to point out that h(x)

36

is determined entirely by Gegenbauers and therefore the Gegenbauers somehow “encode”
the polygons. By looking further into the occurrence of these bumps it may be possible to
find an answer to these questions.

6.2 The Dual Linear Program

The Delsarte, Goethals, and Seidel “LP” is not really an LP and does not necessarily admit a
strong duality theorem (although there is a weak form of duality). By making the number of
variables and number of constraints finite, we have approximated their optimization problem
by one which enjoys strong duality. If a follow-up project tries to understand these duals
and takes their limit as m → ∞ and |P | → ∞, then one may gain insight not only into
spherical codes but also into Lagrangian Duality.

6.3 Improving the Mathematica Package

In the future, it is possible for a more robust Mathematica package to be developed. The
program that is developed in this project is the first of its kind that we know of available
to the public. Clearly, it is possible to make it more computationally efficient and have
more options for the user in the future. A study of the numerical issues can also be carried
out in the future. The dual linear program, discussed in the previous Section 6.2, could
also be implemented into the software. Taking care of these details within the Mathematica
package that we developed in this project would allow for it to be more powerful, and these
developments are left open for the future.

37

Bibliography

[1] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups (3rd ed.).
Springer-Verlag, New York (1999).

[2] D. de Caen. Large equiangular sets of lines in Euclidean space.
The Electronic Journal of Combinatorics. 7 (2000).

[3] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips
Res. Reports Suppl. 10 (1973).

[4] P. Delsarte, J.-M. Goethals, J. J. Seidel. Spherical codes and designs. Geom. Ded. 6
(1977), 363-388.

[5] C. D. Godsil. Algebraic Combinatorics. Chapman and Hall, New York (1993).

[6] C. D. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New York
(2001).

[7] F. Pfender and G. M. Ziegler. Kissing Numbers, Sphere Packings, and Some Unex-
pected Proofs. Notice of the AMS. 51 (2004).

[8] N. J. A. Sloane. “Spherical Codes”. http://www.research.att.com/ ˜njas.

38

Appendix A

User Manual

Load the package using the command

<< NameOfPackage‘

using the file name that you saved the package as. For the problem that you wish to solve,
you must first enter in the dimension, the degree of the polynomial, and the number of
constraints as follows:

d = ;
polydegree = ;
pinpoints = ;

A collection of intervals is specified using curly brackets. For example, the set A =
[−1,−.5]∪ [0, .5] must be defined by {{−1,−.5}, {0, .5}}. Even if a single interval is desired,
a double set of curly brackets is still required. For example, the set A = [−1, 0] must be
defined by {{−1, 0}}. The collection of intervals specified need not be disjoint. The previous
interval could also be defined as {{−1, .4}, {.8, 0}, {.5}}. Notice that single points can also
be specified. This will ensure that a pinpoint is placed at that point.

The functions in the package take only the interval A as input. Dimension, polynomial
degree and number of pinpoints must be specified beforehand, and these values will hold for
all functions until they are changed.

Some important functions in the package are:
Allowable[A] gives the set of pinpoints that will be used in the LP. If a specific point is

desired, that single point should be added to A.
Fvector[A] gives the solution vector of the LP.
Fpoly[A] gives the optimal polynomial to the LP, G(x).
Fobjective[A] gives G(1).
FepsMax[A] gives the ε value of G(x).
Fepsilon[A] gives Gε(x), the polynomial compatible with A.
EpsilonPlot[A] shows a graph of Gε(x)
UpBound[A] gives Gε(1), the upper bound on the size of the A-code.

39

A tutorial worksheet is also included with the package. When loaded it will prompt you
to specify the dimension, polynomial degree and number of pinpoints. It will then take you
through all of the functions included in the package.

40

Appendix B

Library of Examples

Rhombic Dodecahedron (the Voronoi cell for fcc lattice), center at origin.

6 vertices of the form1 (±1, 0, 0) and 8 vertices of the form (±1/2,±1/2,±1/2)

1Following N. Sloane’s convention, we use the phrase “of the form” to indicate that one should include
the entire orbit of this vector under the action of the symmetric permuting coordinates

41

Truncated Octahedron, (the Voronoi cell for bcc lattice).

24 vertices of the form (±1,±1/2, 0)

Tetrahedron 3 Dimensions, 4 points (vertices)

(σ, σ, σ),
(−σ, −σ, σ),
(−σ, σ, −σ),
(σ, −σ, −σ)

where σ = 1√
3
.

42

Octahedron 3 Dimensions, 6 points (vertices)

(1, 0, 0),
(−1, 0, 0),
(0, 1, 0),
(0, −1, 0),
(0, 0, 1),
(0, 0, −1)

Square Antiprism 3 Dimensions, 8 points
Twisted cube or square antiprism
The edge length is =

√
2.

43

(1, 0, 1

2
3
4
),

(−1, 0, 1

2
3
4
),

(0, 1, 1

2
3
4
),

(0, −1, 1

2
3
4
),

(1

2
1
2
, 1

2
1
2
, − 1

2
3
4
),

(1

2
1
2
, − 1

2
1
2
, − 1

2
3
4
),

(− 1

2
1
2
, 1

2
1
2
, − 1

2
3
4
),

(− 1

2
1
2
, − 1

2
1
2
, − 1

2
3
4
)

Cube 3 Dimension, 8 points

(1, 1, 1),
(−1, 1, 1),
(1, −1, 1),
(−1, −1, 1),
(1, 1, −1),
(−1, 1, −1),
(1, −1, −1),
(−1, −1, −1)

44

Icosahedron 3 Dimension, 12 points
Have edge length 2, forming five sets of 3 mutually centered vertices.

(0, ±1, ±1+
√

5
2

),

(±1, ±1+
√

5
2

, 0),

(±1+
√

5
2

, 0, ±1)

These vectors are normalized so that they have length one, yielding the following:

(0.85065, 0, −0.52573),
(0.52573, −0.85065, 0),

(0, −0.52573, 0.85065),
(0.85065, 0, 0.52573),
(−0.52573, −0.85065, 0),

(0, 0.52573, −0.85065),
(−0.85065, 0, −0.52573),
(−0.52573, 0.85065, 0),

(0, 0.52573, 0.85065),
(−0.85065, 0, 0.52573),
(0.52573, 0.85065, 0),

(0, −0.52573, −0.85065)

45

Cuboctahedron 3 Dimensions, 12 points

(0, 1, 1),
(0, 1, −1),
(0, −1, 1),
(0, −1, −1),
(1, 0, 1),
(1, 0, −1),
(−1, 0, 1),
(−1, 0, −1),
(1, 1, 0),
(1, −1, 0),
(−1, 1, 0),
(−1, −1, 0)

Dodecahedron 3 Dimensions, 20 points

46

(0, 1√
3 1+

√
5

2

,
1+
√

5
2√
3

),

(0, − 1√
3 1+

√
5

2

, −
1+
√

5
2√
3

),

(0, 1√
3 1+

√
5

2

, −
1+
√

5
2√
3

),

(0, − 1√
3 1+

√
5

2

,
1+
√

5
2√
3

),

(
1+
√

5
2√
3

, 0, 1√
3 1+

√
5

2

),

(−
1+
√

5
2√
3

, 0, − 1√
3 1+

√
5

2

),

(−
1+
√

5
2√
3

, 0, 1√
3 1+

√
5

2

),

(
1+
√

5
2√
3

, 0, − 1√
3 1+

√
5

2

),

(1√
3 1+

√
5

2

,
1+
√

5
2√
3

, 0),

(− 1√
3 1+

√
5

2

, −
1+
√

5
2√
3

, 0),

(1√
3 1+

√
5

2

, −
1+
√

5
2√
3

, 0),

(− 1√
3 1+

√
5

2

,
1+
√

5
2√
3

, 0),

(1√
3
, 1√

3
, 1√

3
),

(− 1√
3
, − 1√

3
, − 1√

3
),

(1√
3
, 1√

3
, − 1√

3
),

(− 1√
3
, − 1√

3
, 1√

3
),

(1√
3
, − 1√

3
, 1√

3
),

(− 1√
3
, 1√

3
, − 1√

3
),

(1√
3
, − 1√

3
, − 1√

3
),

(− 1√
3
, 1√

3
, 1√

3
)

47

Regular Snub Cube 3 Dimension, 24 points
Coordinates are all the even permutations of the following vertices: (±1,±ξ,±1

ξ
) where,

ξ =
1

3
(

3

√
17 + 3

√
33− 3

√
−17 + 3

√
33− 1

These vectors are normalized so that they have length one.

48

(.85034, .46232, .25135),
(.85034, −.46232, −.25135),
(.85034, .25135, −.46232),
(.85034, −.25135, .46232),
(−.85034, .46232, −.25135),
(−.85034, −.46232, .25135),
(−.85034, .25135, .46232),
(−.85034, −.25135, −.46232),
(.25135, .85034, .46232),
(−.25135, .85034, −.46232),
(−.46232, .85034, .25135),
(.46232, .85034, −.25135),
(−.25135, −.85034, .46232),
(.25135, −.85034, −.46232),
(.46232, −.85034, .25135),
(−.46232, −.85034, −.25135),
(.46232, .25135, .85034),
(−.46232, −.25135, .85034),
(.25135, −.46232, .85034),
(−.25135, .46232, .85034),
(.46232, −.25135, −.85034),
(−.46232, .25135, −.85034),
(.25135, .46232, −.85034),
(−.25135, −.46232, −.85034)

49

Truncated Cube 3 dimensions, 24 points
Archimedian Solid with edge length

√
2− 1.

((
√

2− 1), 1, 1),

((−
√

2− 1), 1, 1),

((
√

2− 1), −1, 1),

(−
√

2− 1, −1, 1),

((
√

2− 1), 1, −1),

((−
√

2− 1), 1, −1),

((
√

2− 1), −1, −1),

((−
√

2− 1), −1, −1),

(1, (
√

2− 1), 1),

(− 1, (
√

2− 1), 1),

(1, (−
√

2− 1), 1),

(− 1, (−
√

2− 1), 1),

(1, (
√

2− 1), −1),

(− 1, (
√

2− 1), −1),

(1, (−
√

2− 1), −1),

(− 1, (−
√

2− 1), −1),

(1, 1, (
√

2− 1)),

(− 1, 1, (
√

2− 1)),

(1, −1, (
√

2− 1)),

(− 1, −1, (
√

2− 1)),

(1, 1, (−
√

2− 1)),

(− 1, 1, (−
√

2− 1)),

(1, −1, (−
√

2− 1)),

(− 1, −1, (−
√

2− 1))

50

