
1 
 

 

 

Melodic 

Munitions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Project Number: JR1 3333 

MM: A Major Qualifying Project Report: submitted to the Faculty of the WORCESTER 

POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of 

Bachelor of Science by 

Robert Banahan 

Joseph Chipman 

Dylan James 

Kyle Sarnik 

 

Approved: 

Professor Joshua Rosenstock, Major Advisor 

Professor David Finkel, Major Advisor 



2 
 

Table of Contents 

 

Title Page ……………………………………………………………….1 

Table of Contents………………………………………………………..2 

Abstract………………………………………………………………….5 

A. - Introduction……………………………………….………………...6 

B. - Melodic Munitions Concept Document…………….………………8 

C. - Evolution of Original Concept…………………….………………10 

 C.1 - Introduction……………...…………………………………10 

 C.2 - Evolution of Concept………...…………………………….10 

 C.3 - Goals Utilizing Sound………………………………...……17 

D. - Melodic Munitions Game Overview…………………….………..19 

 D.1 - Technical Overview…………………………………...…...19 

  D.1a - Design Goals……………………………….……….19 

  D.1b - Game Engine – Unity………………………………20 

  D.1c - Player State………………………………….……...24 

  D.1d - MIDI Implementation……………………….……...25 

 D.2 - Artistic Overview……………………………………...…...28 

  D.2a - Artistic Vision………………………………….…...28 

  D.2b - Concept Art………………………………………....31 

E. - Melodic Munitions Game Design…………………………….…...36 

E.1 - Composition Mode…………………………………………36 

  E.1a - Composition Mode Technical Design…………..…..36 

   E.1a.1 - Introduction………………………………....36 

   E.1a.2 - Patterns & Composition Storage……...….…36 

   E.1a.3 - Step Sequencer…………………………..….38 

   E.1a.4 - Piano Roll………………………………...…41 

   E.1a.5 - Import/Export & Other Features….......…….45 

E. 2 - Battle Mode…………………………………………...…...46 

  E.2a Battle Mode Technical Design…………………...…..46 

   E.2a.1 - Introduction……………………………..…..46 

   E.2a.2 - Playback/Beats…………………………..….47 

   E.2a.3 - Tempo…………………………………...…..48 

   E.2a.4 - GUI…………………………………...……..48 

   E.2a.5 - Monsters……….……………………….…...53 



3 
 

   E.2a.6 - Monster Attacks………………………….....54 

   E.2a.7 - Battle Sequence Implementation………...….56 

   E.2a.8 - Monster Pool……………………………..…57 

   E.2a.9 - Battle Sequences………………………...…..58 

E.2b - Battle Mode Artistic Design…………………..…….58 

   E.2b.1 - Level Design………………………..………58 

   E.2b.2 - UI Elements………………………...……….60 

E.3 - Upgrade Shop………………………………………………61 

  E.3a - Upgrade Shop Technical Design………..…………..61 

   E.3a.1 - Implementation…………………...…………61 

  E.3b - Upgrade Shop Artistic Design……………….……..63 

E.4 - Map Screen…………………………………………………64 

  E.4a - Map Screen Technical Design…………………..…..64 

   E.4a.1 - Introduction………………………………....64 

   E.4a.2 - Interface……………………………...……...64 

   E.4a.3 - Structure………………………………..…...65 

  E.4b - Map Screen Artistic Design………………………...65 

E.5 - Monsters……………………………………………………66 

  E.5a - Monster Technical Design…………………..………66 

   E.5a.1 - Implementation…………………...…………66 

   E.5a.2 - Monster Types……………………...……….67 

   E.5a.2 - Monster Modifiers……………...…………...70 

  E.5b - Monster - Artistic Design……………………...……72 

   E.5b.1 - Design Principles………………………..….72 

   E.5b.2 - Monsters and Animation……………..……..73 

E.6 - Instruments…………………………………………………78 

  E.6a - Instruments Technical Design………….…………...78 

   E.6a.1 - Introduction……………………..…………..78 

   E.6a.2 - Structure…………………………..………...79 

  E.6b - Instruments Artistic Design……………………..…..80 

   E.6b.1 - Introduction…………………………..……..80 

   E.6b.2 - Wind……………………………………..….80 

   E.6b.3 - String……………………………..…………85 

   E.6b.4 - Percussion………………………..…………91 

E.7 - Instrumentalists…………………………………………….98 



4 
 

E.7a - Instrumentalists Technical Design………….………98 

   E.7a.1 - Implementation………………………...……98 

  E.7b - Instrumentalists Artistic Design……………….……99 

   E.7b.1 - Introduction………………………..………..99 

   E.7b.2 - Modeling…………………………....……..100 

   E.7b.3 - Animation…………………………...……..102 

F. - Sound Design…………………………………………………….104 

 F.1 - Process of Composing Game Music…………...………....104 

 F.2 - Process of Creating Sound Effects…………………...…...106 

G. - Postmortem……………………………………………………....107 

 G.1 - Introduction………………………………...……………..107 

 G.2 - Success………………………………………...………….107 

 G.3 - Failure…………………………………...………………..108 

 G.4 - What We Learned………………………...………………109 

H. - Future Work………………………………………….…………..112 

H.1 Given an Additional Term……………………….………...112 

I. - Conclusion………………………..……………………………….113 

J. - Appendixes………..……..…………………………………..……116 

 J.1 - Appendix A………...….……………………….………….116 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Abstract 
 

 The goal of Melodic Munitions was to utilize user-generated compositions as a core 

game mechanic. Our team successfully created three separate game modes which balance free-

form musical creativity and intense battle mechanics: Battle Mode features original scenery and 

fully animated monsters/characters, Composition Mode features a custom musical composition 

interface, and the Upgrade Shop features a custom, branching unlocking system. Though we feel 

our core goal was met, our game remains open to the implementation of additional, more 

sophisticated, features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

A.  - Introduction 

 

 The initial creative force behind this project was Professor Joshua Rosenstock who came 

up with the original premise for the game itself and wished to form a team to adapt and transform 

it into a fully fleshed out game. Once our team was formed we set out to explore all the 

interesting possibilities Professor Rosenstock‟s original premise offered as well as what we 

wanted to achieve and get out of the project. Our team discussions, under the guidance of 

Professor Rosenstock, as well as Professor David Finkel, ultimately led to our final game design, 

Melodic Munitions. Our team consisted of: 

Dylan James 
Class of 2011, IMGD Tech 

 

Dylan James was one of the lead coders on the team working heavily on the composition 

and battle modes. He further worked on the map screen and instrumentalist implementation. 

Dylan was also responsible for administering the projects blog as the team‟s webmaster. He was 

also the team‟s calendar keeper, responsible for managing task lists, adding tasks to the blog, 

checking off completed tasks, and communicating with other team members about their progress. 

Kyle Sarnik 
Class of 2011, IMGD Tech 

 

 Kyle Sarnik was one of the team‟s lead coders working primarily on the upgrade shop as 

well as monster implementation within Battle Mode. Kyle was also the team‟s agenda maker, 

responsible for compiling agenda items, printing weekly agendas to each team meeting, and 

keeping meetings on track. In addition Kyle was also one of the team‟s project documenters, 

responsible for taking and collecting photos, videos, screen captures, and other artifacts of the 

ongoing design process. 

 

Robert Banahan 



7 
 

Class of 2011, IMGD Art 

 

 Robert Banahan was the lead instrument and instrumentalist modeler and instrumentalist 

animator. He also worked on the art for the Map screen as well as the Upgrade Shop. He was 

also the team‟s note taker, responsible for taking notes during group meetings and posting notes 

on the team‟s blog, and the person in charge of external relations, the spokesperson for the 

project responsible for outreach/communication with interested parties outside of the team and 

with the public. 

 

Joseph Chipman 
Class of 2011, IMGD Art 

 

Joseph Chipman was the lead monster modeler and animator throughout the project.  He 

crafted the artistic appearance and styles for the monsters in Melodic Munitions as well as 

creating the Battle Mode UI art.  He also designed the cityscape in which the player will confront 

the monsters. He was also one of the team‟s project documenters, responsible for taking and 

collecting photos, videos, screen captures, and other artifacts of the ongoing design process. 

With assistance from Brian Seney 
Class of 2013, CS/IMGD Tech 

 

Brian Seney headed up the sound design for Melodic Munitions. He compiled many of 

the instrument sounds featured in game. He also composed many sample musical sequences and 

patterns incorporated into the game as pre-composed patterns available for purchase. As a 

sophomore Brian Seney‟s involvement in the project would count as an ISP. 

 

 

 

 

 

 

 



8 
 

B. - Melodic Munitions Concept Document 

 

The basic premise of the game places the player in a world highly inspired and influenced 

by music. This world is populated by wildly original and dangerous monsters that must be 

defeated. The game presents the player with an interface with which they can compose rhythmic 

and melodic sequences. The player then utilizes their composed sequences to fight off oncoming 

monsters that are sensitive to one of the three classes of featured instruments in a battle mode. 

These different instruments are represented by animated avatars that “perform” the user-

generated sequences currently being played. At the outset, the player begins with a limited set of 

simplistic musical instruments available to them which, in turn, limit the complexity and 

diversity of their initial compositions. As they progress through the game a greater number of 

more complex instruments become available to them, enabling them to create more elaborate 

musical sequences to fight off more complicated monsters. 

Game Modes 

 

Composition Mode: This is the interface where players build their compositions using the 

instruments available to them. They can edit either individual measures or longer musical 

phrases. Players can save and load different patterns across applicable instruments and also be 

able to test different combinations of musical sequences for different instruments. 

Battle Mode: In battle mode players can utilize their composed musical sequences to 

fight off oncoming monsters. The player‟s sequences are represented by animated avatars 

playing a specific instrument. The player decides which sequences and which instruments are 

ideal in defeating the monsters, which are strong or weak against certain instruments or 

sequences of notes, in order to defeat all the monsters and win the battle. The player is able to 

switch between their different composed sequences for each instrument, as well as the 



9 
 

instruments themselves, in each avatar slot. Battles are arranged in a progression of series within 

a map screen. 

Upgrade Mode: A “shop” where players may redeem their points, accrued through 

playing through the single player campaign, to unlock more instruments to add to their ensemble. 

The instruments are divided into three sections based on the three instrument classes used in 

game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

C. - Evolution of Original Concept 
 

C.1 - Introduction 

The original concept for this MQP was introduced to the team by our advisor Professor 

Rosenstock (see appendix A). Using the concept document he presented to us as a base, we 

began to weigh the advantages, disadvantages, and opportunities that this proposal offered. 

Professor Rosenstock‟s original concept document would ultimately serve as the foundation for 

our further game design decisions; from that point on we discussed different changes we might 

want to make to the concept as well as other goals we contemplated trying to achieve through 

this MQP. What follows is the natural progression and evolution of our game as it transformed 

from abstract inspiration to actual game. 

C.2 - Evolution of Concept 

The first major change that was implemented was the removal of some kind of scoring 

system to determine the winner and instead focusing on possibly developing an online 

community for the game, the members of which would be able to vote and determine the winner 

in a specific battle. Ultimately we decided that we wanted the game to be more self-contained; in 

order to accomplish this goal we removed the idea of an online community and replaced it with a 

more single player/campaign focused game mode where players would use their own 

compositions to fight against advancing waves of monsters. 

After making that decision we developed a revised concept document which presented 

players with a variety of interfaces through which they could compose both rhythmic and 

melodic sequences. The player would have a variety of different instruments and sound sources 

at their disposal. While only some instruments would be available to the player at the outset, a 

greater number of instruments would become unlocked and available as they progress through 



11 
 

the game. The player would utilize these musical sequences, represented by an instrumentalist 

from their band playing each instrument, to fight off oncoming monsters. Certain monsters 

would be weak to certain instruments and the musical components of their compositions. Our re-

designed game concepts featured elaborations on our previous game modes: 

 Composition Mode – Consists of a single mode where players can compose original 

sequences. 

 Battle Mode – In battle mode players will utilize their composed musical sequences to 

fight off oncoming monsters. The player must decide which sequences and which 

instruments would be ideal in defeating the monsters, which are strong or weak against 

certain instruments or notes, in order to defeat all the monsters, score points, and win the 

battle. The player will be able to switch between their different compositions for each 

instrument during the battle. Battles would be arranged in a progression of series within a 

map screen. 

 Upgrade Mode – A shop where players may redeem their points to upgrade their 

ensemble. These upgrades may be new instruments, increases to the number of 

instruments the player can use at one time during a battle, or special characters which 

provide added bonuses. 

With this new game concept we attempted to further explore other options or features that 

could be included in the game. Many of these features revolved around the idea of determining 

in what fashion the player‟s compositions would defeat the monsters. Some of the ideas we 

considered ranged from: 

 Utilizing harmonious sequences to defeat monsters who fed on disharmonies 



12 
 

 Monsters being able to disrupt and alter a player‟s compositions which would need to 

be fixed on the fly 

 Monster requirements which influence the player to compose sequences which 

according to a specific song or musical genre/style 

 Removing the idea of monsters altogether and instead focus on the player using their 

sequences to attract as many audience members as possible, depending on the quality 

of their compositions 

 Having to win battles by composing in a certain key 

The idea of attracting audience members led us to recognize the fact that using some kind 

of objective system or AI to determine the quality of a player‟s composed sequences might be 

incredibly difficult and/or limiting. Even humans can have an incredibly difficult time in 

deciding what music is good and what music is bad and if we were to judge a players composed 

sequences objectively, on what basis or rubric would those judgments be made? We thought 

about setting up arbitrary guidelines (such as rewarded greater points for specific note 

structures/patterns), but we quickly realized those types of guidelines would be an incredible 

hindrance rather than a help; the player would be forced to compose essentially what the rules 

told them to compose, instead of allowing the player to freely compose as they please. This 

issue, how to properly determine the musical quality of a players sequences, would endure to be 

an important one throughout the rest of the evolution of the game concept as we debated whether 

our game should place priority on the act of freely being able to compose sequences or on the 

mechanics of actual battle mode gameplay. 

During this early stage of concept development we also wanted to try and incorporate a 

multiplayer or co-op mode and spent time developing different ideas based on our various 



13 
 

options for how to defeat monsters. Some of these ideas included having one player‟s 

compositions be translated into a monster; other players would be able to battle against these 

monsters, of which the only way to defeat them is to compose a sequence similar to the pattern 

that originally created the monster. Another idea was to have two players take turns in 

composing sequences in some kind of co-op mode. 

The bulk of our remaining time actually developing the game concept revolved around 

elaborating on the different ways of altering and enhancing the mechanic by which sequences 

can destroy monsters. Mechanics such as real-time editing of disrupted patterns and attracting 

audience members were ultimately dropped in favor of monsters that would be weak to certain 

instruments as well as having monsters with prerequisites only able to be satisfied by special 

effects of different and upgraded instruments. 

Our original goal was for each monster to have a specific requirement which would be 

satisfied by either an individual instrument or a special effect of an upgraded instrument. This 

goal led us to consider different musical components and notations we could use to generate a 

list of possible monster/instrument requirements and interactions. This included the use of 

certain notes, pitches, volumes, and keys. These monster/instrument interactions would be 

further enhanced by having upgraded and improved instruments unlocked in the shop. Some 

examples of this would be an electric guitar which, when played, would cause lighting to strike 

and ground flying monsters allowing them to take damage, or a monster that had to be driven out 

of the ground using drums. Examples of our initial monster designs include: 

 Monster that obscures part of the field 

 Monster that, when destroyed, spawns two smaller monsters 

 Monster that requires an instrument slot to be empty 



14 
 

 Monster that can change form thus changing its requirements for defeat 

 Monster that is a bomb which explodes if it reaches the player 

 Monster that attacks the player‟s instrumentalists 

 Monsters that take more damage if notes are being played up or down a scale 

 Other monsters which relied on programmatic mechanics such as being weak to 

certain notes, certain instruments, and speed of notes 

During this time we also thought about what other features and content we would want 

available in the upgrade shop such as the use of different types of notes, how many beats are 

available in a measure, unlocking more instrumentalist slots, and special instrumentalists. In 

terms of unlocking instruments the shop would utilize a tier based system. The player would 

begin the game with only simple percussion instruments, followed by pitched instruments, and 

then ultimately multi-note instruments. 

Having fleshed out many of these design decisions we revisited the idea of a multiplayer or 

co-op mode based on our current concept framework and came up with four main ideas: 

1. A cooperative Boss Battle Mode where three players would control a single 

instrument each which they would compose for. The synergy of their respective 

compositions would be paramount in defeating the boss monster. 

2. A cooperative mode where players take turn composing the same sequence, which is 

then used to fight waves of monsters. 

3. Purely an online community where players could upload and share their original 

compositions. 

4. A multiplayer mode which allowed players to design their own monsters for others to 

face or a versus mode where one player controls the type of monsters to be spawned 



15 
 

in a given wave and the other player composes sequences accordingly to combat the 

monsters. 

Half way through the design process our team decided to focus on devoting the bulk of 

our attention towards the single player/campaign mode of the game and put possible multiplayer 

and co-op game modes on the back burner. However, in order to not abandon some form of 

multiplayer completely, we decided on our top two options for multiplayer should we have 

enough time to work on and implement it. These top two options were: 

1. Player Monsters vs. Player Compositions – One player controls/creates monsters 

and sends them against another player‟s compositions. 

2. Co-op Mode – Where each of three players controls, and composes for, a single 

instrument tree. Each player would be responsible for composing for certain 

monsters during a battle. 

In conjunction with deciding on our top multiplayer options, and shifting more of our 

focus towards the single player/campaign, we decided to make sure our game wasn‟t becoming 

too ambitious. To accomplish this we transitioned from adding additional game features and 

parameters, to streamlining our already established design features and, from there, deciding 

what else we felt was missing or needed to be revised or implemented to make the game 

complete. 

The largest change that came as a result of this streamlining was the reclassification of all 

instruments into three classes based on instrument type: wind, string, and percussion. In addition 

to this, we moved away from specific instruments having specific effects required for specific 

monsters, and redesigned each class of instruments to have one or two special effects shared by 

all instruments within that class with increasing levels of effectiveness to combat more difficult 



16 
 

monsters. Accordingly, the concept of arbitrarily unlocking “upgraded” versions of certain 

instruments in the Upgrade Shop was abandoned and, instead, each class of instruments was 

arranged in the form of a tree with simple instruments at the top and more advanced instruments 

at the bottom. 

The branching structure of the instrument trees required us to reconsider the relationship 

between winning battles and unlocking things in the store. In order to address this issue we 

decided that at certain points in the progression of the game the player would receive credits 

which would allow them to unlock instruments further down an instrument tree. In addition to 

this credits system we would also implement some kind of scoring system based on how 

efficiently and quickly a player won a battle. A player‟s score would reward them additional 

currency that could be spent unlocking other things in the upgrade shop such as pre-composed 

patterns and additional instrumentalist slots. 

At this time there were concerns over how interesting the game was to actually play and 

the level of player responsibility and interaction during battles. To counter this we contemplated 

other mechanics which would give interaction between the player and their instrumentalists more 

importance. The solution we arrived at was to incorporate some kind of fatigue system for each 

instrumentalist; in this way players would be forced to manage their instrumentalists during a 

battle encouraging greater player interaction. 

To promote even more variety we intended different battles to feature wind, string, or 

percussion monsters more heavily. Accordingly, we also decided to limit the number of 

instrumentalists a player could bring to a battle. Further, we restricted any given instrumentalist 

to be able to play instruments from only one tree, thus causing the player to have to consider how 

many instrumentalists of a certain instrument class they want to bring to a battle based on the 



17 
 

battle focus; too much of the wrong instrument class or too little of the correct one could lead to 

defeat. 

The other large design feature implemented at this time was a global time slider during 

battles. The tempo slider would only adjust the speed of the player‟s compositions and would 

allow for the implementation of other monster types sensitive to the density of notes within a 

certain period of time. The slider would also affect the rate at which instrumentalists become 

fatigued. 

 Arguably our largest and most impactful design decisions occurred very early on in the 

design process as we took a couple of the overall ideas from Professor Rosenstock‟s original 

concept proposal and built a new game around them with the introduction of monsters. The 

remainder of the design process revolved around flushing out the properties of monsters and 

instruments and their relationships, and what impact these relationships and game mechanics 

could have on a potential multiplayer mode. As time passed we decided that our best course of 

action would be to simplify the features and attributes we had already decided on instead of 

trying to add more and more complex elements; as a result we streamlined all of the existing 

features and placed multiplayer on the back burner. 

C.3 - Goals Utilizing Sound 

Our goal for this project was to create a musical experience that is accessible to players of 

all musical backgrounds.  A large portion of the game is based on user creation of short musical 

phrases: “patterns,” which can then be mixed and combined to fight off enemies.  An adept 

musician will immediately be able to compose very interesting music using the engine, which 

was designed to facilitate composition.  However, those without any musical training can still 

experience everything the game has to offer.  A variety of pre-made patterns are available for 



18 
 

purchase in the in-game shop, which bridges the gap between performance and composition.  For 

example, a novice player might buy some patterns which sound cool, and combine them in a way 

that sounds pleasing to them.  Then, if the player is sufficiently curious, they can modify their 

existing, pre-made patterns, and even compose new ones.  The availability of pre-made patterns 

goes a long way towards introducing beginners to the world of music.  On the other hand, 

players can only purchase pre-made patterns, and that is also a successful way to play the game.  

No restriction is placed on how creative (or not) a player must be to play and enjoy the game. 

 As far as composed sounds go, the goal was to create a variety of tunes that would 

emphasize the range of instrument types available.  Different instruments play different sounds 

when unlocked or clicked, which introduces players to their different timbres.  Percussive 

background tracks set the mood for the game.  Overall, the sound design is meant to be only a 

supplement to the real sound designer, which is naturally the player. 

 

 

 

 

 

 

 

 

 

 

 



19 
 

D. - Melodic Munitions Game Overview 

D.1 - Technical Overview 

D.1a - Design Goals 

Many aspects of our game were unique and hadn‟t been done before – music games are a 

new trend though composition games are near non-existent, user-generated functional content 

hasn‟t seen much development, and battles based off user compositions is a totally new concept. 

Because of all this, even the game design decisions we had made were uncertain, meaning things 

were always subject to rapid or drastic changes. In order to be able to keep up with these 

changes, a key goal of our design was to remain flexible and forward-compatible with any 

changes that were to come. Another factor in these changes was that we also wanted the project 

to be open to improvements or additions later. This was heavily reflected in our prototyping and 

initial testing of game mechanics, though it still remained important throughout the rest of the 

development. As always, some final decisions need to be made near the start, but since we 

weren‟t exactly sure on certain pieces and mechanics, even these early decisions needed to 

remain flexible. As such, a lot of the decisions made that show through in the final version of the 

project are still there for their flexibility. 

 Another goal was to keep the game open to the players influence. One of the biggest 

places this shows through is in the ability for the user to create their own music which would 

then be played back during a battle. Aside from affecting the game design, this also brings 

multiple new technical tasks, requirements, and considerations to the table, including an interface 

for the user to compose the music, a process to store and retrieve user compositions, a system to 

play back user compositions, an interface to select which compositions they want to use, and 



20 
 

how to translate the compositions playback into game play damage or effects. Some other things 

the player could change which we had to take into consideration when designing the technical 

aspects included the player controlled tempo and the future possibility of player controlled 

battles. These player controlled factors all influenced the way that the technical aspects needed to 

be designed, as the real flow and progression of the game was unpredictable. 

D.1b Game Engine – Unity 

When we first started this project, one of our first decisions to make was which game 

engine we should use. This would affect the rest of the project and had to fit any of our possible 

requirements. We needed to start with something and switching later on could cause an issue. 

Unity posed us multiple advantages with very few drawbacks. 

Advantages 

 Rapid Development 

 Since we were doing a game that was unique in many aspects, we figured that we 

would need to do lots of prototyping and we would probably be making frequent 

changes. We needed an engine that made prototyping easy and could support quick 

changes. 

 Unity is well known for the ability to get something working quickly. Unity 

provides a good base of functionality in addition to component driven development and a 

scene/object based environment. Though many engines provide a lot of basic 

functionality to their engines, Unity makes it very easily accessible. Unity‟s editor allows 

you to define game objects in a clearly laid out GUI by allowing you to directly 

manipulate the scene graph and provides a live preview of the scene. It also provides a 

GUI to easily interact with the objects you put in your scene by allowing you to visually 



21 
 

attach scripts and modify their settings. This allows you to get something working 

quickly, but also to modify the settings in your functionality on the fly (even while the 

game is running) in a graphical interface. Both of these features are crucial to rapid 

prototyping. 

 Unity provides live previews of the scene and the game can be run instantly at the 

click of a button. You can also easily compile the project to an executable or web 

application that can be distributed for easy play testing.  

 Unity allowed us to quickly develop functionality, to easily tweak aspects of said 

functionality, and to rapidly deploy and test our project. This provided us an environment 

well suited to the rapid prototyping we would need to be doing. 

 Simple Asset Integration 
 

Another appealing feature of Unity is its asset integration. Unity handles the 

importing of models and other resource files on the fly with a simple drag and drop 

interface and automatic importing. This allowed us to quickly and easily bring in any 

assets that we built in Maya or Photoshop without a hassle and without having to rebuild. 

Since Unity directly imports the source Maya or Photoshop files, they can be opened 

directly, edited, and saved, and Unity will update those changes on the fly. It also 

provided very quick and simple access to any settings necessary with those imports. This 

simple asset integration greatly helped us to prototype quickly and to make changes as we 

went. 

 Networking 

Initially we hoped to have some form of multiplayer implemented into our game. 

Though this did end up getting cut in the long run, we wanted an engine which would 



22 
 

support this fairly well, even if it was something that would be added on later. Unity 

provides relatively easy-to-use networking support, and it is implemented in a way which 

doesn‟t require major changes to be made to the way the game is technically 

implemented. Even if we were to implement multiplayer in the future, we didn‟t have to 

worry about it much while working through our single player version. Implementing our 

game in such a way that would support multiplayer later did not require much overhead 

or extra work as we went along – and it could fall into place later if we decided to do it. 

With many other engines, multiplayer requires a lot of planning and design to go into the 

entire process, while with Unity we didn‟t have to worry about it too much. 

 Platforms 

One of Unity‟s big advantages is the cross platform development. The same 

projects built for PC can be built to Mac, the Web Player, Android, iOS, etc. We wanted 

this to be a widely accessible game, so this was very attractive to us. 

 With our initial design, we wanted to support web deployment of our game. We 

were hoping to make our game easily accessible on the web to make it widely available. 

Unity supports web deployment through their Web Player. It is a simple plug in to install 

into most browsers, very similar to Flash. Unity allows you to build your game like you 

would a desktop application and later deploy it to the Web Player. The only factors you 

have to consider are that certain features are unavailable in the Web Player. 

 Programming 

 Unity scripting can all be done in a familiar Visual Studio or MonoDevelop 

environment using the standard languages C# and JavaScript. The engine API is well 

integrated into these environments and very well documented. The scripts you build can 



23 
 

contain public variables which are accessible right inside the Unity Editor, allowing you 

to drag and drop object references or quickly change certain properties of objects. While 

we were doing the project, Unity also added more functionality for debugging your 

project at runtime through MonoDevelop. All of these things make programming in 

Unity much more user-friendly than other engines. 

Disadvantages 

 Web Player MIDI Support 

Though we were initially really looking forward to leveraging the Web Player and 

the possibility of deploying our game to the web, we later ended up having to choose 

against it. The Web Player doesn‟t support .DLL references, and as such our MIDI 

system would not work on the Web Player. We decided that MIDI brought us more 

advantages and it was worth the cut, but it would‟ve been nice to do both. 

 It was unclear to us whether it was possible to somehow write our own MIDI 

scripts in such a way that we could still deploy to the Web Player, but this was not the 

first thing on our list and we didn‟t have time. This may still be a possibility. 

 GUI Implementation 

 Another major hurdle that Unity brought us was in developing GUIs. Unity 

support for GUIs is fairly simplistic and not as well developed as the other parts of the 

engine are. A lot of the stuff we needed to do could still be implemented manually but it 

would‟ve been nice if common tasks like dragging and dropping were built into the 

engine better. A lot of game engines don‟t have great GUI features, so Unity‟s not alone 

here, but it could still use some work. 

 



24 
 

 

D.1c - Player State 

As is the case with most games, information about the player‟s progress needed to be 

stored. In our case, we needed to keep track of their battle progress, unlocked instruments, 

unlocked instrumentalists, patterns they had created, their progress on the battle map, and their 

money. Since this would be relatively constant across a single game session, and needed to be 

persistent across the different game modes, we decided to implement this as a singleton class. 

This way, there could only ever be one, but we could implement  ways to change it for new 

games or loading games. 

 For the most part, this class just contained lists of the necessary information like unlocks 

and saved patterns. Since it also held onto the amount of money and such the player had, it made 

sense to put the unlocking logic here as well; Other menus could ask the PlayerState to try to 

unlock a certain instrument or instrumentalist through one of its methods. If the PlayerState had 

the necessary currency, the item would be unlocked and the player‟s currency reduced. 

 The other job that this class played was the saving and loading of games. We made sure 

most of the data was simple, by using things like the type of instrument unlocked as opposed to 

the instrument object itself, and just serialized it to XML using the .NET Serialization methods. 

This allowed us a quick and easy way to store the game state to a file and to retrieve it from a 

file. The player would not need to be able to save during a battle, so saving this state object was 

enough. 

 The biggest problem here became the map progress. The map was implemented in such a 

way that the PlayerState kept a reference to the entire Map object, and the progress was stored 

into the information on each battle. This was done to keep the map flexible, so that custom maps 



25 
 

or multiple maps could be implemented later. This ran us into a few issues, as we then had to 

store all the data contained in the Map as well, but forced us to update the Map to a cleaner 

implementation anyway which was less reliant on instantiated objects. This allowed us to 

implement a more flexible Map, which would be editable and customizable in the future.  

D.1d - MIDI Implementation 

When we realized we wanted to provide more flexibility with the users compositions, one 

of the big things we wanted to add was the ability to have different length notes. In order to 

support this, our initial system of using audio clip samples of instruments would need to have an 

extremely large number of samples. This would take lots of work to obtain all the samples, and 

would make our software much larger. The alternative was to use MIDI. 

 MIDI provides a way to play notes of a standard set of pitches on a variety of different 

instruments with any desired length. This provided us an easier way to do more flexible play 

back, but had both advantages and disadvantages. 

 The main advantage was ease of use. We no longer had to record individual samples of 

different instruments, pitches, and lengths. It provided us with a standard set of instruments and 

pitches and allowed us to play notes of any length. This greatly increased the scope of audio that 

we could play back and came relatively easily. 

 There were still a few disadvantages though. The biggest problem was that it took away 

the ability for us to be able to use the Unity Web Player. MIDI is provided by the operating 

system and requires method calls which are not supported by the Web Player. Since it is 

provided by the operating system, it is there for operating system dependent. Different operating 

systems implement their own versions of MIDI, so each one sounds slightly different – giving us 

variable and less predictable results. 



26 
 

 Another large disadvantage was the fact that we would have to write code to do the MIDI 

handling, which isn‟t supported by Unity as well as we would‟ve hoped. It is doable through 

using methods provided by .NET, but this restricts us from the web player and is much less 

convenient than using Unity functions to just play back an audio file. A system would have to be 

put in place to handle all the MIDI messaging and setup. 

 Since MIDI uses Note On messages to start playing notes and Note Off messages to stop 

playing notes, we needed a system which would handle both the beginning and the end of any 

notes that were played. This was mentioned in the Patterns section of the paper, and we were 

able to address it relatively easily with the system we still had in place, but it required some extra 

work. 

 Though there were a few disadvantages we had to address, the advantages still 

outweighed the cost – sampling all those instruments would have been a lot of work if it was 

even possible; Using MIDI would save us a lot of time and effort, even if it still required some 

implementation and restricted our use a little bit. 

MIDI Message Handling 

In order to address the issue of the low level MIDI handling and message passing, we 

needed to implement a system that would interact with the operating systems MIDI interface and 

our game. Though this was doable, it would take a significant amount of time to implement, and 

would require some testing. We knew that Unity supported .NET libraries even in the free 

version, so we looked around for a library which would do this for us. Since .NET is common, 

we figured someone would have made a MIDI library already which we could use. 

 We ended up finding a library online called the C# MIDI Toolkit 

(http://www.codeproject.com/KB/audio-video/MIDIToolkit.aspx). It is available under the MIT 

http://www.codeproject.com/KB/audio-video/MIDIToolkit.aspx


27 
 

License, so it is free to use. It provides a set of .NET DLLs which we could plug into Unity, and 

provides a relatively simple interface to the MIDI system. It also provided more functionality 

than we needed, making it flexible moving forward if our requirements changed. Using this 

tackled one of the large disadvantages of MIDI – implementing a system to interface with it. 

This library provided us with an easy interface to use, and fit well with the code that we already 

had – we just needed an interface between it and the rest of our code. 

MIDI Manager 

To address the issue of interfacing with the C# MIDI Toolkit from our code, we 

implemented a MIDI Manager class. The normal use of MIDI involves sending different 

commands to a certain device. These commands are most commonly turning notes on and off, 

but also switching voices and other effects. The MIDI Manager handled obtaining a MIDI output 

device through the C# MIDI Toolkit, and provided methods for the common MIDI functions. 

 Most of our game just wanted to play certain notes with certain voices, and stop those 

notes afterward. In order to address this, we made a function for each one – playing a note and 

stopping a note. These functions had parameters for a pitch, a voice, and optionally a channel, 

and would convert that data into MIDI commands for Note On/Offs and voice changes 

appropriately through C# MIDI Toolkit. This way, the rest of our game didn‟t really need to 

worry about much. Since the parameters that were being passed (pitch and voice) were things 

that were already relevant to the battles anyway, this was a good abstraction that removed any 

extra information from having to be passed around. 

 

 

 



28 
 

D.2 - Artistic Overview 

D.2a - Artistic Vision 

Our artistic vision for Melodic Munitions wasn‟t something that was immediately 

apparent at the beginning of the project. Instead, it was something that developed over time as 

the concept and defining features of our game evolved and took shape. Once we developed our 

core game mechanics and features into what they are now, we then were able to judge what 

artistic and conceptual qualities would best fit those features, as well as add to the overall quality 

and experience of the game itself. 

 The largest issue that governed the development of our artistic vision was the nature of 

our monsters. Our original conceptualizations involved monsters looking like the instruments to 

which they were weak. As we expanded upon our monster ideas to also incorporate different 

qualities, such as flying, our designs for the monsters took on additional, other-worldly features. 

Ultimately we decided that a vibrant and cartoonish artistic style would best fit these kinds of 

monsters. 



29 
 

 

Screenshot featuring the exaggerated, rich, and cartoony style of the monsters and environment. 

 The other area where our decision of a cartoonish style would have the most impact was 

the level designs for Battle Mode. We reasoned that because the creation and use of music was 

such an important element of our game, then it would make sense for it to also be an important 

element within the world of our game itself. We further reasoned that in a world where music 

and instruments would seem to have such importance, then that theme would shine through in 

nearly every aspect about the world, including the setting. Thus, in the city level of Battle Mode, 

buildings would be inspired by, and incorporate into their design, as many different instruments 

and musical concepts as possible. 



30 
 

 

Screenshot of the city environment and the incorporation of instruments into building design. 

 This cartoonish style of the monsters and the setting is balanced by the fairly realistic 

depiction of the instruments as well as the instrumentalists. Because we had always intended to 

include real instruments in the game it made the most sense that the people who inhabit our game 

also be human to be able to play those instruments. The specificity inherently involved in 

recreating real life instruments, with all their detail and complexity, and creating and animating a 

humanoid model, presented intriguing artistic challenges which the artists wished to tackle. 



31 
 

 

        Rendered image of a trumpet      Initial modeling process for the humanoid instrumentalist 

 We felt that when both elements are combined, the monsters/setting and 

instruments/instrumentalists, the game is given an overall holistic artistic balance which 

successfully refrains from pushing the game too far in either direction.  

D.2b - Concept Art 

This section is dedicated to concept art drawn during the design process of Melodic 

Munitions.  We discussed several possible features that could be implemented into the game before 

programming and art construction began, as well as during the creation of the game.  Along the way, 

the artists drew concept art in an attempt to clarify the ideas that the team discussed.  In some cases, 

this concept art was also used as reference material to create the art assets. 



32 
 

 
These were two versions of sample monsters for the game during its early stages of 

conception.  From the start, the idea arose to create monsters that incorporate musical elements into 

their design.  In each picture, the creatures on the left were the more direct approach to this idea: 

using musical symbols to design the monsters.  On the right side of each picture is an alternate 

approach to this design: make known creatures that somehow incorporate musical symbols into their 

physical form. 

 



33 
 

These were early designs of what the battle mode of Melodic Munitions might look like.  

Many variations on the HUD are displayed here, and there are also a few ideas presented that were 

not implemented into the game.  For example, originally there were only a few instruments, and each 

had unique properties.  The guitars, for instance, were going to be effective on flying enemies by 

calling down lightning.  The monsters (Cacos) displayed here were not developed into much of a 

style yet. 

 

On the left, we have early ideas for the fast-note monster, which would later become 

Bibibibi.  The idea was to have a window or treasure chest that blocks some attacks before opening 

up and becoming vulnerable.  On the right are early concepts for the “goon” enemies.  Although 

Horngoon and Bongoon are similar to their final forms, Targoon experienced a redesign from this 

banjo shape to a more traditional guitar shape. 



34 
 

 

This is an early sketch of a block of Harmony City.  Some of the simpler ideas presented here 

were actually implemented in the game, most notably the piano-shaped building.  Other ideas 

presented here but not implemented include tuba fire hydrants and trumpet cars. 

 

One of our ideas was to have a bestiary that fills with information about each new Caco 

monster that the player came across.  It would detail some basic information about the monster‟s 

battle stats, as well as some text underneath that info.  The flavor text partially details the Caco‟s 



35 
 

history or design and partially reveals how to combat the Caco.  For example, it says here that 

Horngoon falls to instruments that it resembles (i.e. horns or trumpets). 

 

This sketch gives an idea of what the battle screen is going to look like.  The instrumentalists 

are pictured on the bottom with fatigue bars, the buttons to change different aspects of that musician. 

 

 

 

 

 

 

 

 

 

 

 



36 
 

E. - Melodic Munitions Game Design 

E.1 - Composition Mode 

E.1a - Composition Mode Technical Design 

E.1a.1 - Introduction 

The composition mode was one of the components of our game whose design changed 

partly through the process. Initially we designed a simple step sequencer with fixed-duration 

notes, but soon realized that this was excessively limiting on the player. Undoubtedly, players 

would want more flexibility in their compositions and to be able to do more with it than this 

system allowed. To address this, we later redesigned the composition mode to be more like a 

piano roll with arbitrary note durations. Another change in our design came up later when we 

decided that we wanted to allow users to share their compositions with friends, requiring import 

and export functionality. 

E.1a.2 - Patterns & Composition Storage 

 One of the key aspects of the game play was for players to be able to compose a musical 

pattern in the composition mode, and play it back during a battle to attack monsters. In order to 

be able to get data between the Composition Mode and the Battle Mode, we needed some sort of 

data structure for the musical data that the player was creating. These patterns would need to be 

able to be saved between sessions and exported to XML so that the user could share them with 

friends. 

 Because our design kept changing, the way our patterns were stored had to change as 

well. We weren‟t sure how the play back might change, so we knew the resulting note structure 

was probably going to change a lot as well. It was initially just a pitch to be played, but we soon 



37 
 

realized that more data would be needed, and we would need different types of notes. Because 

we knew that changes like this were likely to happen, we kept the general idea of a pattern 

separate from the idea of the individual notes which make it up. 

The basic idea behind a pattern was to store a set of note structures for a set of beats. This 

basically came down to being an array of arrays of notes, with some tags like what instrument 

class it was made for and a name. The first array would represent the different beats in the 

pattern, while the arrays of notes would contain the notes to be played in that beat. 

 The most basic type of note was a simple struct which only contained a pitch (an 

enumeration value). Once we started using MIDI and variable duration notes, a duration variable 

was added as well. This structure was the foundation for the storing of the patterns, as it was 

small and simple. When serialized to XML, it was human-readable. When we were initially 

using samples for note playback, this data was fine, but when it came to playback through MIDI, 

we realized more information would be useful. 

When playing notes in MIDI, two messages are sent: one to indicate the start of the note 

(NoteOn), and one to indicate the end of the note (NoteOff). As such, we realized that there 

needed to be a distinction so that we could generically pass the notes to the MIDI system and let 

it handle the on and off values itself. To do this, we made two MIDI note structures – 

NoteOnMessage and NoteOffMessage. When playing the data through MIDI, these structures 

were more useful, and could be constructed from the simpler note structures.  

 This made us realize that our patterns were being used in two different ways, so we 

developed different types of patterns for each scenario.  The simple example we started with 

ended up turning into how we stored patterns, and we started referring to it as a StoredPattern. 

This pattern structure was very simple and could easily be written to and read from XML. At the 



38 
 

time of playback though, MIDI data was necessary, which we did not want to be creating on the 

fly, so we decided a second pattern structure was necessary. 

 This structure is what we referred to as a LoadedPattern, as it was a version of the data 

we loaded from a StoredPattern and used at runtime. The basic idea here is that it would provide 

access to both simple note structures and MIDI note structures for each beat in the pattern. It also 

came to include other data such as pricing, names, and what type of pattern it was written for. 

During battles, we needed access to the simple note structures so we could use it to attack the 

monsters, but we also needed the MIDI data to be able to play back the audio. This structure 

allowed us to do both. This structure could be created from one of the stored patterns by creating 

MIDI note structures from the simple ones in the stored pattern. Each simple structure would be 

turned into a pair of MIDI note structures – a NoteOnMessage stored at the beat the note starts 

on and a NoteOffMessage stored on the beat the note would end on (based off the duration). This 

way, we could just query the current beat to get the data to attack monsters with, any notes that 

should be turned on, and any notes that should be turned off. This way, we did not have to loop 

through all the notes in the pattern to see which notes we would need to turn off every time the 

beat changed – all the NoteOff positions were precomputed and could be accessed in constant 

time.  

E.1a.3 - Step Sequencer 

The first basic design we came up with was a simple step sequencer – a common standard 

in the music industry. The idea is to have a two-dimensional grid for the user to interact with. 

Going side to side along the screen (x-axis) represents time and going up and down (y-axis) 

represents the pitch. Each square represents a note of the selected pitch, y, to be played at the 

given time, x, for the duration of that square. Clicking a square will toggle it on or off. Step 



39 
 

sequencers generally play back the sequence as it is being edited, looping the pattern repeatedly. 

There is also a sort of playback head which indicates which part of the pattern is being played 

back so the user can connect the visual representation and the audio playback. 

 

 

An example step sequencer. The orange squares represent toggled on notes. The yellow 

bar represents the playback head. When the head gets to a new column, all toggled notes in that 

column will be played. 

Source: http://making-music.blogspot.com/2010/02/step-sequencer-wok-blip2000-pc.html 

http://making-music.blogspot.com/2010/02/step-sequencer-wok-blip2000-pc.html


40 
 

 

Our prototype step sequencer in Unity. Lighter gray squares represent toggled on notes. 

The column of X‟s represents the playback head. 

Implementing this simple step sequencer in Unity was fairly straightforward – though it 

wasn‟t fully polished or complete since we moved on to a more sophisticated piano roll later in 

the project. This step sequencer had two features besides the basic functionality of a step 

sequencer – instrument selection and pattern saving. Instrument selection would simply change 

which instrument was playing back the pattern, which would in turn change what type of 

instruments would be allowed to play back the pattern. Saving the pattern simply stored it in the 

users available patterns so that they could use it during a battle. 

The step sequencer grid was made up GUI.Buttons provided by Unity. A two-

dimensional array of Booleans was used to store the toggle state of the each square and we kept 

another array to map the vertical dimension to pitch numbers. We then would push the playback 

head forward one beat after the appropriate interval of time had passed, and play any notes that 

needed to be played on that beat. We would check the column in the two-dimensional array for 

any toggled on notes, find the appropriate pitch from the pitch map, and use this (combined with 

the currently selected instrument) to construct a Note object which could be passed to the MIDI 

system and then played. 



41 
 

E.1a.4 - Piano Roll 

After realizing that fixed-duration notes were too limiting, we decided to change the 

composition mode to a piano roll – another music industry standard which is more sophisticated. 

Piano rolls follow a similar layout to step sequencers; They have time going increasing left to 

right (x-axis) and pitch increasing from top to bottom (y-axis). The main difference is that 

instead of toggleable buttons in a grid shape, it is a continuous background which the user 

“paints” squares over – the user clicks the beat in which a note should start, and drags it to the 

right for the desired duration.  In our case, they snap to predefined intervals, limiting the user a 

little bit, but avoiding the problem of having to deal with an infinite resolution of beats. After 

they have placed a note, they can right click it to remove it. The big difference here is really that 

the user can now define different length notes. This brings many more possibilities and makes 

the composition system much more flexible. 

 



42 
 

One version of our Piano Roll implementation. The darker gray squares are toggled on 

notes, with different durations. The green line represents the playback head. 

As you can see in the above image, we also decided to add some other features to the 

composition mode as our idea evolved. The biggest change was the availability of more notes – 

we widened the range to three octaves of notes feeling that this gave the user more flexibility 

without being extremely overwhelming. We also chose to include accidentals (sharps) to the set 

of usable notes, allowing the user access to every pitch in the three octaves. We also included a 

slider in the top right for the playback tempo of the pattern as the user is editing it, allowing them 

to see how the pattern would sound at different speeds. There are also additional buttons for 

creating new compositions, opening ones they had made previously for editing purposes, and 

exporting their compositions.  

 Allowing these new features, namely the dragging and right clicking functionality, 

required new technical implementation, as the controls provided by Unity did not include this 

functionality. We divide the pieces up into parts that could be done with functionality provided 

by Unity, and merged them together to make something that would seem like the appropriate 

controls. 

New Data Structures 

We needed two new data structures for the implementation of the Piano Roll. 

 Mouse Data 

Firstly, we needed to store information about what the mouse was doing. We could 

get access to where on the screen the mouse was, but this would need to be mapped to a 

specific square on the grid so we knew which note to activate and when. As such, we made a 

data structure, PianoRollMouseInfo, which would store the beat and the pitch where the 

mouse was. This would be stored each draw call, therefore updating as the mouse moved. 



43 
 

Then, when a mouse event occurred, the latest information could be grabbed from the 

PianoRollMouseInfo, and we could update the underlying musical data accordingly. 

 Note Info 

Unlike our previous note storing, we now also needed to store information about 

which grid square the info corresponded to, and where it should be drawn. This meant that 

our data structure needed to keep of the screen space in which it needed to be drawn. Also, 

now that we were dealing with durations, information about the lengths of notes had to be 

stored as well. The Piano Roll would keep a list of all the notes that the player had added. 

Drawing & Updating 

As we did before with the Step Sequencer, we divided the Piano Roll up into a grid of 

rectangles. During each draw call, we would loop through each of the rectangles in the grid. 

First, we used GUILayoutUtility.GetRect() to get a rectangle in screen space of the appropriate 

size, reserving space for that grid square. We would then detect if the mouse was currently 

positioned over that square, and if so we would update the current MouseInfo to match the data 

of the current grid square. We would then draw a GUI.Box corresponding to the grid square to 

make it visible to the user. 

 If any sort of mouse event was fired, we would handle it here. There were four events we 

were interested in: Left mouse down, left mouse drag, left mouse up, and right mouse down. In 

the case of mouse dragging, we realized that we needed to keep data about the note being 

dragged. To accomplish this, we kept a NoteInfo class variable which represented the current 

drag as the note that the drag was representing. All left click events would modify or access this 

note. 

 



44 
 

 Left Mouse Down 

In this case, the mouse had just been clicked down. We would create a new 

NoteInfo, which represented the shortest duration note, in the box that the mouse was 

currently over (Current MouseInfo stored above). 

 Left Mouse Drag 

In this case, the mouse had already been clicked and the user was dragging. The 

only change should be the duration of the note. We would check the current box the 

mouse was over from the MouseInfo stored above, and compare it to the current 

NoteInfo. If this was a logical extension of the note (being dragged to the right to 

increase duration, no change in pitch), we would modify the note‟s duration to match the 

position of the mouse. 

 Left Mouse Up 

In this case, the user is letting go of the mouse, so we would just store the current 

NoteInfo in the list of notes the player had added. 

 Right Mouse Down 

In this case, the user was right clicking to delete a note. Therefore, we would just 

remove the note corresponding to the box in the MouseInfo from the list of notes the 

player had added. 

After handling any mouse data, we would continue the draw cycle. The next step was to 

loop through all the notes the player had added, and draw their GUI.Boxes appropriately, in a 

different color than the background grid squares. Since we were handling the mouse data and 

events manually, we did not need interactive controls. Next we would draw the play head by 

drawing a texture in the column of the currently playing beat. Lastly, we would draw the 



45 
 

GUI.Box for the note the user was currently dragging, in another different color so the user could 

see what they were dragging and distinguish it from the rest of the notes. 

 Since most of the logic was covered in the GUI Draw calls, not much more had to be 

done in the Update calls. The only logic that needed to be handled here was to check if it was 

time to proceed to the next beat. If so, the appropriate data would be updated, and we would 

check for new notes by looping through all the NoteInfos added by the player. If any of them 

started on the new beat, they would be played by constructing a NoteOnMessage and passing it 

through the currently selected Instrument. If any of the NoteInfos ended on the new beat, a 

NoteOffMessage would be constructed and passed through the currently selected Instrument. 

(See the MIDI Implementation section for more details on Instruments and playback) 

E.1a.5 - Import/Export & Other Features 

The composition mode kept growing and also had some other features added to it besides 

just the Step Sequencer/Piano Roll logic. 

Saving 

The first, most obvious functionality we needed was the ability for the user to save the 

composition that they just made. This just meant converting the NoteInfo data we had been 

storing for that session into a StoredPattern and since the data structures were fairly simple, it 

was a straightforward process. The only other data we needed were an instrument to bind it to 

and a name; We would select the instrument type for the StoredPattern based off the instrument 

that the user had been composing with, and prompted them for a name. 

Import/Export & XML 

 We eventually created functionality for the Composition Mode to allow the user to 

import and export the patterns they were creating. We wanted the user to be able to share 



46 
 

patterns with friends, and this seemed like the easiest way to do it. We had originally envisioned 

a sort of community which would allow transfer of patterns, but this was a step towards that 

anyway. 

 Since the StoredPattern structure and the Note structure which made it up were both very 

simple structures, they were simply serialized to and deserialized from XML using the standard 

.NET System.XML.Serialization.XmlSerializer. The resulting .xml files are stored in a 

“Patterns” folder in the game directory. At startup, this folder is searched for .xml files. Any files 

which are found are deserialized and made available for purchase in the store. If a user would 

like to share a pattern they made with a friend, they can open it and export it to .xml, then send 

them the resulting file in their patterns folder. 

Playback Tempo 

 During our project, we ended up implementing a tempo mechanic to the playback during 

battles. Since the users patterns could end up being played back at various tempos during the 

battle, we decided that they should be able to listen to their compositions at different tempos in 

the Composition Mode. As such, we added in a slider which would vary the speed of playback, 

though this information is not stored to the pattern.  

E.2 - Battle Mode 

E.2a - Battle Mode Technical Design 

E.2a.1 - Introduction 

The main “conflict” of our game is the Battle Mode. After composing patterns, unlocking 

instruments, and purchasing instrumentalists, players bring all these to a battle against the 

computer. The battle follows a typical survival concept where monsters spawn and move towards 



47 
 

the player‟s end of the field. The monsters have a certain amount of health and the player must 

use their instrumentalists to play music at the monsters in order to damage them.  After doing 

enough damage, the monsters will be defeated. If a monster is not defeated by the time it gets 

close enough to the players end of the field, the player will lose a life. If the player runs out of 

lives, they lose the battle. If the player manages to defeat all the monsters in a certain battle, then 

they win and receive some amount of money and credits to unlock instruments. 

 

A screenshot of Battle Mode. 

 This battle concept includes a bunch of systems and mechanics which needed to be 

designed and implemented including the following. 

E.2a.2 - Playback/Beats 

 In order to keep things moving, we needed a system to manage the musical beats and to 

trigger our instrumentalists. We made a Game Object to handle the timing and beating of the 



48 
 

game, which we named the PlaybackManager. The PlaybackManager kept a current BPM, or 

beats per minute. Every update loop, it would check how much time had passed. If enough time 

had passed for it to be time for the next beat, it would inform all the instrumentalists. The 

instrumentalists would check for notes in the new beat and attack using them, and send any 

necessary updates to the MIDI system. This centralized beating system made sure that all the 

instrumentalists stayed together and updated together. This also allowed us to control the speed 

all in one place.  

E.2a.3 - Tempo 

 During our testing, we realized that we wanted the game to be more dynamic and 

engaging, and wanted to provide the player with some more choices and alternatives. One thing 

that occurred to us is that we could change the tempo that the playback was being done. Turning 

the tempo up would allow the instrumentalist to play notes faster, therefore dealing more damage 

to the monsters. Since we had already implemented a fatigue system, we realized that this would 

balance itself out – the instrumentalists would run out of stamina just as fast as they were 

playing. This created an interesting mechanic in which the player could try to kill a lot of 

monsters in a panic by turning up the tempo, but then they would be out of stamina and have to 

wait to regenerate. They could also aim to take advantage of the increasing stamina regeneration 

speed by turning up the tempo and wiping out all the monsters, and then having a break to 

regenerate.  

E.2a.4 - GUI 

In order for the player to be able to interact with these different instrumentalists, their 

instruments, and the patterns they were playing, we needed a GUI for the player to use. We 

originally had buttons under each instrumentalist for each of the things the player may want to 



49 
 

change, but this clearly wasn‟t easy enough to use. Instead, we decided to implement a selection 

based card system standard to RTS games, while still displaying the stamina of each 

instrumentalist on the field. 

 

Screenshot of the player GUI for controlling instrumentalists. 

Selection 

 The first issue to address was selection. We wanted to have a lot of space on the screen 

for the options the user would have, so we decided it made the most sense to only have on 

instrumentalist‟s full data and options shown at a time. To do this, the player needed to be able to 

select from the instrumentalists. 

 The most intuitive way to do this was to allow them to click on them. This was fairly 

easy in Unity, as each Game Object has an OnMouseDown method which is executed when the 

Game Object is clicked. We used this hook to capture clicks on the instrumentalists, and would 

then set this as the selected instrumentalists. 



50 
 

 We also implemented a selection indicator by creating a Game Object with a selection 

indicator model, and moving it around. Every time the selection changed, we would move it to 

the position of the selected instrumentalist to indicate the selection. 

Status Card 

 Once the player had selected an instrumentalist, there were a few different things they 

would want to see or actions they would want to take. These were all implemented in a status 

card type fashion which is typical among RTS games. The idea is that the player will want to 

mainly be interacting with what they have selected, so it can take up a lot of screen space and 

display lots of information and buttons or other actions. 

 Instrumentalist View 

The most obvious thing shown on the status card is a live render of a front view of 

the instrumentalist the player has selected. This was done to give the player another 

indication of the instrumentalist they have selected, the instrument they are playing, as 

well as to give the player a better feel of the instrumentalists. In our early testing, we 

noticed that we were constantly looking at the back side of the instrumentalists and felt 

sort of disconnected. This view from the front provided another look at the 

instrumentalist and helped to make the player feel more connected to their choices. 

To achieve this, we created a second camera which moves to the currently 

selected instrumentalist the same way that the selection circle does. Using Unity cameras 

Camera.pixelRect property and manual Camera.Render method, we were able to 

manually render this instrumentalist camera over the rest of the GUI during the status 

cards OnGUI method.   



51 
 

 

Close up screenshot of instrumentalist rendered over the GUI. 

 Status Indicators 

One of the important functions of the status card is to show the current status of 

the selected instrumentalist. On the left hand side, a set of indicators show the type of 

instrumentalist, the instrument they are playing, the pattern they are playing, and a bar 

representing their fatigue. (Details on the fatigue bar are given in the following Stamina 

section, as both use the same functionality)  This gives the player all the information they 

need to know about the current state of the instrumentalist. 

 Tabs & Changing Actions 

Another important function of the status card was to enable the player to make the 

changes to the instrumentalist that they needed. This came down to three things: 

swapping instrumentalists, changing instruments, and changing patterns. Since the player 

would be doing this one by one and many choices would be available for each thing they 

wanted to change, we decided to go with a tabbed layout. We created three buttons, one 



52 
 

for each thing they would want to swap. Clicking on a button would change the large 

right side of the status card to the clicked context – i.e. clicking the instrumentalist button 

would display a set of instrumentalists to choose from. Since certain actions wouldn‟t 

make sense at certain times, like trying to select a pattern without having an instrument, 

we would only enable the buttons which were applicable. 

We weren‟t sure if some options would want to be displayed in different ways 

than others, or if new types of things would come around, so we abstracted the panels. 

Basically, the status card would keep track of three HUDPanel objects, which was an 

abstract class. Clicking the three context buttons would change which one was the 

currently active one, and the status card would just draw whichever was active. This 

would allow us to change the functionality of each one individually, and make it easy to 

plug in new ones later if necessary.  

 Play/Stop 

Through play testing, we realized that commonly the player would click on an 

instrumentalist just to stop it from playing, or start it again with what it had already been 

playing. In order to make this much easier than changing patterns and such, we 

implemented a simple play and stop button. 

Stamina 

Even when the player had a specific instrumentalist selected, they would want to see the 

fatigue of the instrumentalist. Most of the other important information, like what type of 

instrumentalist was there and whether they were playing, could be determined by looking at the 

instrumentalist on the field, but the stamina could not. 



53 
 

 To resolve this, we decided to display this information on the GUI at all times. Making 

another analogy to RTS games and health bars, we decided to put stamina bars underneath the 

instrumentalists at all times. Since we would want to use these bars in other places, like on the 

status card, we made our own control for displaying a percent. 

 Basically this was a class which had a texture for each of the end caps of the bar, a 

texture for the empty middle of the bar, a texture for the fill, a fill percentage, and a rectangle in 

which to draw it all. It then had a public Draw method which would draw the appropriate data in 

the current rectangle. This was reusable in both situations. 

 In order to draw them in the right place, we would use the main camera to convert the 

position of each instrumentalist to a screen point, and then modify it slightly to get it out of the 

way. We would then use this screen point as the center for the rectangle of the stamina bar 

control, and set its percentage each update. 

Tempo 

One other thing we needed to include on the GUI was a way to change the tempo. This 

was implemented as a simple slider control which was provided by Unity. 

Lives 

 Another thing we need to display on the GUI was the players current lives, to let them 

know how they were doing and how many monsters they could still let by without losing. 

E.2a.5 - Monsters 

 In order for the game to be a challenge, we needed something for the player to fight. As 

mentioned before, the game would keep spawning monsters for the instrumentalists to defeat. 

They would move towards the player, and if they got close enough, would take a life away. 

There were multiple different variations and types of monsters, which will be described in a later 



54 
 

section. Here we will talk about the logic pertaining more to the battle – spawning and 

management. 

Monster Spawning 

 The first thing we needed to do was to spawn the monsters. We were thinking that in the 

future we may want to have other options such as allowing other players to spawn the monsters 

in a multiplayer mode, so we had to keep this system flexible. To do this, we created a 

RemoteMonsterSpawner class. This class basically held onto a list of prefabs of monsters that it 

could instantiate. This list would be pre-populated with all the types of monsters we had, and 

would be constant across all battles. It had a method SpawnMonsters which took a list of types – 

the types of the monsters to spawn. It would check its list of prefabs for monsters of that type and 

actually instantiate them into the battle. This allowed us to simply pass types of monsters to 

spawn when we wanted to spawn them, which could be reused if a player wanted to spawn 

certain types of monsters.  

Monster Management 

Throughout the battle, something would have to keep track of all the monsters. To do 

this, we created a MonsterManager. This object would keep track of all the currently living 

monsters. When they were spawned, the MonsterSpawner would add them to the list, and when 

they were killed the monsters would remove themselves from the list. This also allowed us to 

easily apply global effects and distribute attacks to all the monsters at once. 

E.2a.6 - Monster Attacks 

As stated before, each time the instrumentalists play a note, they attack the monsters. 

This system needed to be handled in such a way that the monsters could respond to all the 

different factors that went into attacks. As we didn‟t know if we would want to add different 



55 
 

factors later, such as the duration of the note or some other sort of damage factor, we needed to 

keep the system flexible and forward-compatible. To do this, the attacking was handled as a 

series of steps. Each step would handle a NoteAttack structure which represented the attack. At 

each step, the relevant factors could be factored in, modifying the NoteAttack, and passing it 

along until it reached the monsters. In this way, we could even change the flow of the steps and 

insert a new one if it was necessary, without directly affecting every other step in the process. 

Note Attack 

 The different steps needed some sort of standard way to communicate and pass data 

between each other. In order to do this, we came up with the NoteAttack. It was a simple 

structure which contained some information about the attack and its properties. It carried 

information such as the pitch of the note, the instrumentalist and instrument which played it, and 

the base damage it would deal. At each step, this could be modified if necessary – mainly the 

damage.  

 Step One: Instrumentalist – Generation 

The first step was to generate the NoteAttack. When the instrumentalist went to 

play the next note, it would create a new NoteAttack based off its current instrument etc, 

filling in all the information. This would then be passed along to the next step. 

 

 Step Two: Monster Manager – Distribution 

 

The next step along the way was the MonsterManager. Mentioned previously, this 

object handled all the references to the living monsters. The instrumentalist would pass 

the NoteAttack to the MonsterManager, which would in turn distribute it to all the 

individual monsters. If there were any sort of global effects going on, they could be 

handled here, before the NoteAttack was distributed to each monster. 



56 
 

 Step Three: Monsters – Response 

 

Once the monsters got the NoteAttack, they would respond to it. Another half step 

which was later added in was the monster‟s modifiers. Some monsters had special effects 

on them which would alter the way that they would take damage – shielding or reducing 

damage from certain types of attacks. After the monster received the attack, it would 

distribute it to all its modifiers, before it itself responded to the NoteAttack by taking 

damage 

E.2a.7 - Battle Sequence Implementation 

 

 In order to get different battles going, we needed some sort of system to handle the events 

of a battle. We needed some logic to figure out which monsters to spawn and when which would 

then make the appropriate calls to spawn them. Like the rest of the project, we wanted to keep 

this flexible. This was especially important here because we wanted to be able to implement 

many different battles. We needed some way for us to easily build multiple different battles 

without scripting in every monster spawn, as we aimed for having lots of monsters in each fight 

and multiple different fights. 

 We were also hoping that this would still somehow be reusable to a multiplayer 

extension. We wanted another player to be able to play the monster side of things and to select 

monsters to spawn. If we structured it the right way, we could use the same monsters for balance 

but let them choose timing and such, so this was another consideration we kept in the back of our 

minds. 

 Another goal we hoped for was to create battles which wouldn‟t always be the same. 

Many games with timed scripts tend to get boring as you always expect the same thing to 

happen. We wanted our game to be more dynamic and allow the battles to be a little bit different 



57 
 

each time to keep the player on their toes. We still wanted to have a similar overarching flow of 

each battle so that we would still have some control over the balance of the game.  

 To build battles where we could script some sort of (somewhat) dynamic battle 

progression without having to script individual monster spawns, we decided to implement a 

sequenced system that was based on groups of monsters instead of individual monsters.  

 

E.2a.8 - Monster Pool 

 

 The first concept we came up with, was the idea of a MonsterPool. The basic idea was 

that we would create a group of monsters, or a pool, which would contain any number of types of 

monsters. At run time, the game would pick randomly from this pool at some interval and spawn 

a monster of the randomly selected type. 

 This provided us with a system that could be used both in single-player mode and multi-

player mode. The same pool which was used during a single-player battle could be provided to 

the monster player in a multi-player game. The player could be allowed to select a monster from 

the pool at the same interval that the single-player game would do the selections. 

 While designing battles, we realized that we wanted to add one additional element. In 

some cases, we would want some monsters in the same pool, but for one of them to be rarer than 

another. We didn‟t want to hard code this as a separate MonsterPool on a different timer, as it 

would just appear consistently – we wanted some randomness. To do this, we decided to 

implement a weighting system. Each monster in the pool would have some weight associated to 

it, making it more or less common to spawn. This idea still carried over to multiplayer fairly well 

and we came up with two solutions. One idea was that we could force the player to follow 

certain ratios through cool downs on monster spawns which followed the weights. Another idea 

was to give them a certain number of each monster in each pool which followed the weights. 



58 
 

 

E.2a.9 - Battle Sequences 

 

 In order to turn these into more elaborate battles than just one set of monsters spawning 

all the time, we needed to come up with some sort of way to sequence these pools together.  

 The idea we came up with was to make a battle out of groups of MonsterPools. During 

the sequence of the battle, we would turn MonsterPools on, and later turn them off. While they 

were active, they would continue to spawn their monsters randomly at their assigned interval. 

Once all the pools had been turned off and all the spawned monsters were defeated, the player 

would win. 

 This system provided a simple abstraction away from individual monsters and let us 

script more dynamic groups of monsters. As a result, the battles felt more dynamic by making 

them little bit different each time they were played. This also gave us an extensible system which 

could be reused for multi-player; we wouldn‟t have to build a new set of battles – we could reuse 

the same ones as the single-player game. 

E.2b - Battle Mode Artistic Design 

E.2b.1 - Level Design 

Originally, we were planning a large range of venues for the game to take place in.  

Places we talked about included a forest, the open sea, and the laboratory of the scientist that 

built all of the monsters.  Due to time constraints, only one environment is included in this 

version of Melodic Munitions. 

This environment is an urban location that contains several city blocks that have 

buildings inspired by musical instruments.  There are buildings with piano keys as balconies or 

sun roofs, some buildings are bongo drums, and others are trumpets.  Originally, we only had 

piano buildings in the city, and the city was only one block in length.  To make the city slightly 



59 
 

more believable, the city was expanded to 3 blocks wide and 3 long and the other kinds of 

buildings were added. 

 

 

 

A screenshot of the musically inspired city level. 

The street lights in this area had to be recognizable and plausible as street lights. They 

are, however, supposed to somewhat resemble quarter notes to extend the musical theme. On one 

side of the city, there is also an unusual red and pale green building that is designed like a drum 

set. This building, the Harmony Museum, is meant to be a major landmark for the city that 

makes it recognizable. The drum set fit perfectly within this design as the different drums 

involved in the set allowed for an interesting model that the player would likely notice.  The pale 



60 
 

green coloring on a good deal of this building also contrasts it from the other brightly-colored 

structures of the city.  

 

The Harmony Museum model, influenced by a drum set. 

E.2b.2 - UI Elements 

In battle, we needed some visual indicators to tell how the player was doing.  Along the 

bottom of the screen, there is a row of square slots that will display a picture of each of the 

musicians the player has in the field.  In these boxes, the players will also see each musician‟s 

fatigue bar, which will indicate how much energy that instrumentalist can spend before tiring 

out.  The box also displays three different buttons that the player can use to adjust that slot.  One 

will swap the instrumentalist performing in that spot with another one, one changes the pattern 

he is playing, and the last will exchange his instrument.  The settings are displayed like this so 

that the player would not have to pause the game and interrupt the flow of the music to keep 

playing. 



61 
 

 

Screenshot featuring the UI features during Battle Mode. 

E.3 - Upgrade Shop 

E.3a - Upgrade Shop Technical Design 

E.3a.1 - Implementation 

In the original design, the store was conceived to allow players to purchase miscellaneous 

items such as pre-composed patterns, new instrumentalists, and other things that that didn't fit 

into the primary gameplay. Players collect money from playing the battles that they can use to 

purchase items at the store. The purchasable patterns were introduced to allow players with little 

or no musical background to have some good sounding compositions to play with. As the design 

incorporated the use of a limited number of instrumentalists for the player to use during battles, 

the store also became the method of acquiring new instrumentalists. 

The basic GUI elements provided by Unity slightly limited the design of the store 

interface. It would have been preferable to have a list where the user could see all the items and 

their prices, select one, and use a "Buy" button to purchase the selected item. Since Unity does 



62 
 

not currently feature a List element, a more creative solution was required. The final 

implementation utilizes a scrolling view that consists of vertically listed Unity Toggles. These 

toggles display the item name and price and a small checkbox that could be toggled on and off. 

The use of toggles allows the user to select any number of items from the list, and a single button 

at the bottom of the scrolling view displays the total and allows the user to purchase all of the 

selected items. If the player does not have enough for the selected items, the button is disabled. 

Unity did not provide a simple way to disable GUI elements, so a simple Box is drawn in place 

of the button while it's disabled. This is the commonly used method for most of the GUI 

elements in the game. Most items could only be purchased once, so these items also needed to be 

disabled in the list. For this, another Box is used to replace the toggle checkbox and a Label to 

replace the toggle's text. Additional instrumentalists can be purchased any number of times. 

 The backend of the store uses a simple list of objects that are subclassed from an abstract 

class to represent the different types of items available in the store. One such type of item is the 

buyable composition patterns. The patterns are collected from another class that imports them 

from XML, wrapped in an appropriate store item class and added to the list. When an item is 

purchased, the GUI controller calls a Purchase method that all the item classes implement. In the 

case of the patterns, the Purchase method adds the pattern to a list of unlocked patterns in a class 

that stores all of the player information. A similar Purchase method exists for instrumentalists, 

which when invoked instantiates a new copy of an instrumentalist that it references and adds it to 

the player info class. 

 The store implementation is quite simple. The simplified GUI components in Unity 

presented some challenges but for the most part the store followed the same patterns used for 

many of the other GUI elements in the game. 



63 
 

 

E.3b - Upgrade Shop Artistic Design 

 The major artistic component of the Upgrade Shop is the icons to represent instruments, 

both locked and unlocked. Each instrument has its own Shop icon which represents its unlocked 

state. When an instrument is unavailable its icon will be greyed out with an image of a padlock 

dissolved over it. Each individual instrument icon was drawn in Adobe Photoshop CS5 by 

coloring over a screenshot of the instrument‟s model. Instead of individually creating an 

unlocked and locked icon for each instrument, a general „Locked‟ image, featuring the padlock, 



64 
 

was created in Photoshop with the same dimensions as the instrument icons. This general 

„Locked‟ image was then overlaid each instrument icon as a new layer, with its transparency 

adjusted, to achieve the desired effect of an instrument-locked icon. 

 

Examples of an unlocked and locked icon for the Trombone. 

E.4 - Map Screen 

E.4a - Map Screen Technical Design 

E.4a.1 - Introduction 

 The map was one of the most straightforward parts of our game which did not change too 

much as we went through our iterations of design. From the beginning, the idea was fairly 

consistent. Players would progress through a tree of battles, where they must win a battle to 

unlock the next ones. Players would be able to progress down different paths which could 

possibly end in the same place. They would also be able to replay battles they had already won 

for repeated rewards. 

E.4a.2 - Interface 

The interface to the map was really just an image with buttons on top of it to represent the 

battles. These battles could be one of three states: unavailable, unlocked, or completed. To 

represent this, the button would just have three states to match, each with different graphics. We 

ended up making the button look “clickable” when it was unlocked or completed, with a green 

circle icon for completed battles and yellow circle icons for unlocked battles. Locked battles 

were represented with a button which did not look clickable and had a red circle icon. 



65 
 

 

E.4a.3 - Structure 

 

 For the structure of the map, we implemented it as a tree/graph structure. The nodes of 

this tree were the battle structures themselves, containing the information on the monster pools in 

the battle and whether or not the player had completed this battle. To enable multiple paths, 

nodes needed to be capable of having multiple children. To enable converging paths, nodes 

needed to be able to have multiple parents. 

 To determine the state of the battle, we simply traverse the tree, starting from the root. 

We initialize all the battles to a locked state and then start the traversal. At each node we check 

whether it had been completed. If so, we set its state, and unlock its children. We then continue 

the traversal through the nodes children. Any nodes that are unreached remain locked. 

E.4b - Map Screen Artistic Design 

 The main map screen was also drawn in Adobe Photoshop CS5 and features a total of 

eighteen battles. The main setup of the map begins on a small island which serves as the location 



66 
 

for the initial battles when the player is still learning the game. Once the player has a general 

understanding of the game mechanics the battles then shift to the larger, main island on the map. 

Once there, the battle progression branches out into different paths with each path featuring an 

emphasis on a certain instrument class. 

 The islands on the map are designed to reflect the fact that our game features only one 

city level. Accordingly, the islands essentially constitute a single giant city spanning the entire 

surface of the islands.  

E.5 - Monsters 

E.5a - Monster Technical Design 

E.5a.1 - Implementation 

The monsters are implemented in a way similar to the template method pattern. There is 

an abstract class Monster that contains the game object methods and basic behavior for 

initializing, updating, and removal of the object. These methods control the basic movement and 

animation of the monsters. Additionally, these methods call a number of other virtual methods 

that contain more variable behaviors such as how they respond to a note attack, or additional 

initialization behaviors. These methods can be overridden by the other monster type 

implementations that derive from this class. 

The Monster class also maintains a list of MonsterModifiers; these are objects that can be 

added to and removed from monsters that, when applied, alter the behavior in some way. These 

modifiers also have a set of template methods for initialization, updating, and responding to 

notes, which are subsequently invoked after their respective counterparts in the Monster class. 

Finally, the Monster class contains several fields that describe certain attributes of the monster, 



67 
 

such as health, movement speed, and the percentage of damage taken from each instrument class. 

These are accompanied by a set of public methods that define some common behavior; for 

example, adjusting the health based on the base received damage value and its associated 

instrument class, or adjusting the movement speed based on a movement speed multiplier.  Once 

again, inheriting monster classes can manipulate these values to allow variation among the 

different monster types. 

E.5a.2 - Monster Types 

For each of the envisioned monster types, there is an associated subclass of Monster that 

defines their specific behavior. 

Basic Monster 

The BasicMonster class contains the behavior for the most basic monster types of each of 

the three instrument classes. Each of these monsters share the same behavior with the exception 

that they take damage differently depending on their type. For example, the basic percussion 

monster takes full damage from percussion attacks, but significantly less damage from strings 

and wind attacks. The behavior script for these monsters inherits directly from the Monster class. 

The variation in receiving damage is not controlled in the script, but is achieved by modifying 

the initial values for the previously mentioned damage multipliers inherited from the Monster 

class. These values can be easily changed for each of the monster prefabs in the Unity Editor. 

The basic monster class does however implement the behavior for slowing the monsters when 

they are attacked by a wind note, as well as applying damage to the monster when attacked. The 

rest of the behavior for the basic monsters is inherited from the Monster class. 

Most of the other monster types are essentially evolutions of these basic monsters and 

thus share much of the basic monster's behavior, so many of them are derived from the 



68 
 

BasicMonster class. Because of this, the BasicMonster class also implements a 

BasicNoteResponse method that contains the shared behavior for responding to notes (this is 

essentially all of the basic monster behavior). BasicMonster overrides the template method from 

Monster for responding to notes so that it simply invokes the BasicNoteResponse method. 

Classes that inherit from BasicMonster can then override that method again with new behavior 

and simply call the BasicNoteResponse for the common behavior. 

Flying Monster 

The flying monsters were originally designed to essentially be flying versions of the basic 

monsters. With this in mind, the behavior script for the flying monsters implements a 

FlyingMonster class that inherits from BasicMonster. The flying monster retains all of the 

behavior of the basic monster, but adds behavior for flying. The FlyingMonster class makes use 

of a FlyingModifier, which is a type of MonsterModifier. The modifier contains all of the logic 

for making the monster fly, which is discussed in detail in the Monster Modifiers section. A 

modifier was used for the flying behavior in case there needed to be any variation in the flying 

behavior itself or the monsters that used the flying behavior. The FlyingMonster instantiates a 

new FlyingModifier with parameters for flying speed and "flying health" (discussed in detail 

elsewhere). A simple isFlying flag, declared in the Monster class, is used to determine if the 

monster is flying or grounded. The FlyingModifier contains its own note response, so whilst 

flying the FlyingMonster ignores note responses, and once grounded it reverts to the 

BasicNoteResponse behavior. 

Defensive Monster 

The DefensiveMonster class describes the behavior for the set of monsters that shield 

other monsters from certain note classes. The DefensiveMonster also derives from 



69 
 

BasicMonster, and only adds additional behavior. Implementing this monster identified several 

design problems. The first problem required the affected monsters to change how they responded 

to notes. This problem was solved using a type of MonsterModifier called DamageModifier. 

This modifier is also discussed in more detail in its own section. 

The second problem required the DefensiveMonster's presence to affect not only the 

existing monsters, but new monsters that spawned after the DefensiveMonster. For this problem,  

an OnMonsterSpawn event was added to the Monster abstract class that gets called for all 

monsters currently on the field every time a new monster is spawned. The method is passed a 

reference to the newly spawned monster. The DefensiveMonster implementation of the 

OnMonsterSpawn method first checks that the new monster is not itself, and then applies new 

DamageModifiers to the new monsters. The DamageModifiers are also applied to the existing 

monsters when the DefensiveMonster is initialized by querying the MonsterManager, which 

keeps a list of active monsters. This implementation also allows the effects from multiple 

defensive monsters to stacked, or applied over each other. The DefensiveMonster also 

implements a death event that all of the modifiers it applied listen for. This event is fired when 

the DefensiveMonster is killed, causing the DamageModifiers to remove themselves. 

The DefensiveMonster uses a simple set of public fields that determine the defensive 

bonus it applies for each instrument class. These fields can be varied at the prefab level similar to 

the BasicMonster's damage multiplier fields. 

Fast Tempo Monster & Slow Tempo Monster 

One of the monster designs includes a pair of monsters that take more damage from faster 

tempos or slower tempos. The behaviors for these monsters are defined in FastTempoMonster 

and SlowTempoMonster respectively. These are similar enough to be described together. 



70 
 

FastTempoMonster inherits from BasicMonster but overrides the note response method. 

When a note is received, it applies a modifier to the damage. The modifier starts at 1.0 so that the 

first note does normal damage. After the damage is applied, the modifier is multiplied by a value 

greater than 1. The result is that each successive note increases in damage. There is also a timer 

that resets the modifier to 1, as well as itself, after a specified period of time. This timer is 

constantly running and resetting. If the monster receives notes faster than the timer resets the 

modifier, then each additional note received before the timer resets does additional damage. 

The SlowTempoMonster works exactly the same way. It inherits from 

FastTempoMonster and the only difference is that the modifier is divided from the received 

damage. Playing notes too quickly results in the notes doing increasingly less damage. 

E.5a.3 - Monster Modifiers 

An abstract class MonsterModifier was defined to allow monster behavior to be altered at 

run time. As mentioned in Monsters Implementation, the modifiers use several template methods 

that allow the monster to which they are added to be manipulated on certain events. These allow 

additional behavior to be executed during initialization of the monster, during the update call, 

and while responding to a note. There is an additional method that is invoked when the modifier 

is removed, and the constructor can be used to execute additional behavior when the modifier is 

added to a monster. Several subclasses of MonsterModifier were created that implement 

different behavior modifications. 

Flying Modifier 

The FlyingModifier adds flying behavior to a monster. It contains parameters for flying 

speed and flying health. The speed is multiplied by the monster's ground speed, allowing them to 

move faster or slower when flying, and the health determines how much wind damage the 



71 
 

monster can take before being knocked to the ground. When the monster is initialized, the 

FlyingModifier offsets the height of the monster's model so it appears above the ground, and 

adjusts the monster's movement speed. When the modifier responds to a wind class note, it 

adjusts the flying health. During the update call the modifier checks if the flying health is 

depleted, in which case it tells the monster to remove itself from the monster. This invokes the 

remove method, which resets the monster's height and speed. The modifier also maintains a 

simple isFlying flag that allows external classes (including the monster itself) to know whether 

or not it's currently flying. 

Damage Modifier 

Another type of modifier is the DamageModifier. This is a simple modifier that alters the 

damage a monster receives from a single instrument class. The DamageModifier is instantiated 

with a specific instrument class and a multiplier value. This value is multiplied to the existing 

damage multiplier of the monster for the specified instrument class. This is achieved by 

accessing a map implemented in the Monster abstract class that contains a key for each of the 

three instrument classes and an associated multiplier value. When the DamageModifier is 

removed it divides the value by its own multiplier value to restore the original value. 

The DamageModifier contains additional methods for handling death events for the 

DefensiveMonster. When the DefensiveMonster instantiates DamageModifiers, it invokes a 

method that adds a new death event handler to the DefensiveMonster. This event handler invokes 

another method in DamageModifier that removes itself from the monster it's added to. The use of 

the event handler is only to allow the DefensiveMonster to more efficiently remove the 

DamageModifiers it creates. 

 



72 
 

E.5b - Monster Artistic Design 

E.5b.1 - Design Principles 

The monster designs were created to be visual representations of musical symbolism.  For 

the purpose of conceptualization we imagined that all of these monsters were created by a mad 

scientist who wanted to terrorize “Harmony City.”  Following this motive, we decided that most 

of the monsters would resemble or include various symbols used in music, both abstract and 

concrete. 

Abstract musical symbols include various marks commonly used on written 

compositions.  Some, such as quarter notes, are extremely simple in design.  Symbols like the G-

clef, on the other hand, are a bit more complex.  Sometimes, the musical symbolism might not be 

as obvious on certain monsters as it is on others, but it still exists.  Regardless, using these 

designs allowed artists to focus on creativity in construction of the monsters.  

 

Symbols and other musicaly iconography, such as these musical notes, were a large 

influence on the visual design and „look‟ of the game. 

More concrete examples were also included on some monsters.  Certain monsters in the 

game were designed to resemble certain musical instruments, most notably some of the early-

game monsters.  This was initially used to help telegraph the weaknesses of early monsters that 

the player would encounter.  Sometimes, though, concrete designs were used to visually display 



73 
 

an idea.  This principle was not limited to musical instruments, either, since some of the 

monsters have other forms related to sound, such as a microphone or a set of headphones.  

Expanding into these more visual examples allow artists some more ideas to work with. 

Overall, the monsters were meant to represent music or sound.  Their form, in terms of 

story, is used to make the citizens of the city afraid of the very theme of their world.  In terms of 

art design, it is used to allow the artists to use abstract marks creatively.  The monsters might be 

a threatening force in the world, but they also often possess cartoony styles to draw in the player 

with captivating, colorful designs. 

E.5b.2 - Monsters and Animation 

 All monsters were modeled and animated in Autodesk Maya 2010 and 2011.  The 

monsters were each shaped individually to present a wide variety of obstacles for the player to 

defeat.  The design of each monster is meant to convey information to the player about how to 

defeat the monsters without resorting to the bestiary. 

As a general rule of thumb, if string instruments are the main ones involved in fighting 

the monster, then it will be green.  Percussion-weak monsters will mainly be purple, and orange 

or brown signifies foes that are weak to wind instruments. 

“Goons” 

 

Horngoon, Bongoon, and Targoon are the game‟s basic enemies, the first and most 

common set of monsters the player is introduced to.  Because of this, their designs are something 

that the player can easily identify by what instrument they can use to defeat it.  We molded them 

into the shape of the instrument that is meant to vanquish each kind of enemy, a method that flat-

out tells them to use that instrument with this monster approaching.  Each monster is also colored 

in that instrument‟s matching color.  Thus, Horngoon is an orange bugle, Bongoon is a purple 



74 
 

bongo drum, and Targoon is a green guitar with four strings.  The wide eyes were added to 

introduce the cartoony design. 

 

The beginning monsters Bongoon, Targoon, and Horngoon. 

                                      

Bomb 

 

This toy bomb activates near the end of 

battle.  It marches toward the players and detonates 

after a certain amount of time.  As the player must 

play a lot of notes at once to keep the bomb from 

blowing up on the band, it was most appropriate to 

color the bomb purple for percussion.  The bomb 

marches forward with a stride, and its wick shrinks 



75 
 

up until the moment the bomb is supposed to blow up. 

Micropus 

 

This creature is a microphone with eight tentacle-like cords 

coming from underneath him.  It uses those tentacles as a means of 

propulsion by wiggling them.  When it moves around, the 

Micropus‟s arms reach out and pull back in one at a time.  If it floats 

still, then it pulls up the tentacles and strikes them all out at once 

while bobbing up and down.  When the micropus is beaten, it will 

fall head first.  The green coloring was due to the perceived 

versatility of the string instruments.  

 

Sprorb 

 

The Sprorb is our concept for the spring enemy, a combination of the words “spring” and 

“orb”.  The spring is a very light shade of green, which is meant to signify that string instruments 

actually WILL NOT work on this monster.  The spring was also constructed with exactly five 

coils to represent a musical staff, which is made of five horizontal lines.  The ball inside the 

spring furthers the message to use drums or wind instruments on it by being pink, which is meant 

to be a color in-between purple and orange.  The Sprorb‟s spring actually retracts and extends 

like a spring normally would, and it uses it to bounce forward.  When defeated, the orb flies out 

of its spring as both tumble to the ground. 

Bibibibi 

 

The name of this hornet-like monster is a reference to how one should deal with this 

monster.  This is the monster the player must defeat by playing notes quickly.  It zigzags around 

frantically and flaps its wings rapidly before it starts to hear notes.  The headphones attached to 



76 
 

its head are its shield against incoming notes.  

When it ought to take damage, the headphones 

inflate to protect Bibibibi from the next note 

played.  After enough hits, the headphones fly 

off and leave this monster vulnerable to 

attacks.  Defeat tumbles Bibibibi forward and 

reels the headphones backwards. 

  

Burnbrush 

 

We wanted to include a monster 

that was on fire, and we eventually came 

up with Burnbrush, a burning tree.  His 

appearance overall is vastly different 

from the other monsters, since he is 

meant to appear much creepier.  His 

body slowly lumbers toward the band, 

hesitating to recover from each step.  

When wind instruments blow Burnbrush out, he reels back for a moment before igniting himself 

again.  After being damaged enough, his branches shrivel up, and Burnbrush falls over. 

 

 

 

 



77 
 

Goooooob 

 

In contrast to Bibibibi, 

this monster is the one that is 

suspectible to playing a long 

drawn-out note.  Its design was 

intended to be related to 

Bibibibi somehow.  The team 

thought of making this one 

some kind of slime monster.  

Since Bibibibi looks a lot like a 

bee, Goooooob was designed into 

a robotic butterfly that controls the giant slime blob.  The butterfly‟s wings are made of G-clefs, 

the musical symbol often used at the beginning of treble notes, because the G-clef looks like it 

could be an intricate wing design.  The butterfly pushes up and brings the blob with it at first, 

and it pushes the blob down during its descent.  During a long note, however, the butterfly loses 

focus and begins to fall, nearly flattening the blob.  When defeated, the blob will wrap itself 

around the butterfly and then shrink to non-existence. 

Undertone 

 

The burrowing monster was a concept proposed early in the game‟s development to give 

variety to the different enemies the player would face.  Such a monster would be digging through 

the ground to attack, but the player would need a way to know it was coming.  To send this 

signal, the monster would need some kind of indication or “flag” to signify its approach.  



78 
 

Therefore, this monster was designed as an eighth note, a musical note that wears a flag on the 

top of its tail.  The eighth note was then given a set of drill arms to burrow in the ground. 

E.6 - Instruments 

E.6a - Instrument Technical Design 

E.6a.1 - Introduction 

 

 The instrument unlocking tree was another straightforward part of our game which stayed 

consistent through our design process. It was also fairly similar to our map implementation, as it 

was a tree of instruments that the player could unlock. The main difference here was that there 

were three different independent trees – one for each type of instrument: wind, string, and 

percussion. The player would begin with one of each type of instrument unlocked. They would 

then progress down the tree towards different instruments. This is very similar to a standard skill 

tree found in role playing games. 

Interface 

 Since this is a relatively standard interface, we didn‟t really need to decide much in terms 

of how the interface would look. We would display icons of the different instruments available to 

the player. When they could unlock them, they would be shown with a green border indicating 

that they could be unlocked. The player would then clock on these outlined icons to unlock them. 

Instruments which they could not unlock would be shown grayed out with a padlock icon over 

them. 

 We then realized that it would be more visually intuitive if the instruments were only 

available if the player had the points to unlock them. This way, the nodes would stay highlighted 



79 
 

in green while the player could unlock them, but once they were out of points they would go 

back to a locked state so the player understands that they cannot unlock any more instruments. 

 

The instrument trees for the three instrument classes. 

 

E.6a.2 - Structure 

 

 The structure for the instrument unlocking tree was very similar to the tree used in the 

map implementation. Each node was an instrument and whether or not it was unlocked. Each 

node could have multiple children, but multiple parents were not necessary. Each node had three 

states: unlocked, available, and locked. 

 To determine the state of the instruments, we traverse the tree from the root. We start by 

setting all the instruments to a locked state and then begin traversing the tree. When we reach a 

node, we check whether it has been unlocked or not. If so, we set its state, and we set its children 

to available if the player has enough points to unlock them. We then continue the traversal by 

examining the children of this node. Any nodes which are unreached remain locked.  

 



80 
 

E.6b - Instrument Artistic Design 

E.6b.1 - Introduction 

The number of instruments featured in Melodic Munitions equals forty-four in total, all of 

which were modeled and textured using Autodesk Maya 2011. These forty-four are divided into 

three classes based on which family of instrument it belongs.  

E.6b.2 - Wind 

Bottles                                                                            Pan Flute 

        

 

 

 

 

 

 

 

 



81 
 

Recorder                                                             Clarinet 

           

Flute 

 

 

 

 

 

 



82 
 

Oboe                                                                     Bassoon 

          

 

 

 

 

 

 

 

 

 

 



83 
 

Saxophone                                            Bugle 

              

Trumpet                                                                                            Whistle 

        

 

 

 

 

 



84 
 

French Horn                                        Trombone 

   

Tuba. 

 

 



85 
 

E.6b.3 - String 

Three String Guitar 

 

Guqin 

 

Harp                                                         Ukulele 

     

 



86 
 

Banjo 

 

Acoustic Guitar 

 

Mandolin 

 



87 
 

Electric Guitar 

 

Bass Guita 

 

  

 

 

 

 

 

 

 



88 
 

Erhu                                                              Viola 

                       

 

 

 

 

 

 

 

 

 



89 
 

Violin                                                      Contrabass 

       

 

 

 

 

 

 

 



90 
 

Cello 

 

 

 

 

 

 

 



91 
 

E.6b.4 - Percussion 

Sticks                                             Bongo Drum 

     

Tambourine 

   

 

 

 



92 
 

 

Tomtom 

 

Crash Cymbals                                                    Snare Drum 

  

 

 



93 
 

Bass Drum 

 

Drum Set 

 



94 
 

Timpani  

 

Triangle 

 



95 
 

Chimes 

 

Glockenspiel 

 



96 
 

Xylophone 

 

Marimba 

 



97 
 

Xylorimba 

 

Vibraphone 

 

 



98 
 

E.7 - Instrumentalists 

E.7a - Instrumentalist Technical Design 

E.7a.1 - Implementation 

The player has a certain number of spots in which they can place instrumentalists, so they 

are only allowed a certain number of instrumentalists on the field at any given time. 

Instrumentalists come in three different types, one for each type of instrument, and they can only 

play the instruments of their type. At any time, the player can switch what instrument the 

instrumentalist is playing. The instrumentalist can then be assigned a pattern of their type, which 

they repeatedly play until they are told to stop. Each note they play then “attacks” the monsters 

and can deal damage or have other effects. 

Fatigue 

After testing our concept a bit, we realized that it would be possible for the player to have 

all their instrumentalists constantly playing lots of notes, and therefore always be dealing lots of 

damage to the monsters. There was no incentive to stop or slow down the notes, and no reason 

for the player to choose any other path. In order to balance the game, we came up with a 

fatigue/stamina system. 

 Each instrumentalist starts with a certain amount of stamina. Every time they play a note, 

they lose some of this stamina. If their stamina reaches zero, the instrumentalist becomes 

fatigued and can no longer play. If the instrumentalist does not play any notes for a certain 

amount of time, they start to regenerate their stamina. The longer the instrumentalist isn‟t 

playing, the faster they regenerate. 



99 
 

 This mechanic made the Battle Mode more interactive. It forced the player to actually 

turn off instrumentalists at times and to think about when each instrumentalist should be playing. 

This gave the player more decisions to be making during the battle and made the battles more 

engaging. 

Swapping 

 Since some instrumentalists could become fatigued, there were different types of 

instrumentalists, and only so many instrumentalists could be used at a time, we decided to 

implement an instrumentalist swapping mechanism. The player brings all the instrumentalists 

that they have unlocked to a battle, though only a few can be used at a time so the rest stay “in 

reserve”. At any time, the player can swap one of their reserved instrumentalists into one of the 

spots on the field. This allows them to give instrumentalists breaks and to rotate between their 

instrumentalists. Again, this gives the player more decisions to make and makes the battle more 

engaging. 

E.7b - Instrumentalist Artistic Design 

E.7b.1 - Introduction 

The Instrumentalists are the virtual avatars which play the instruments the player has 

selected during each battle. During these battles the player will have a limited number of slots of 

which they can assign instrumentalists to. Each instrumentalist specializes in playing instruments 

from a single instrument class; the color of each instrumentalist‟s uniform corresponds to which 

class of instruments that instrumentalist is capable of playing: orange for wind instruments, green 

for string instruments, and purple for percussion instruments. 

 

 



100 
 

E.7b.2 - Modeling 

 A single Instrumentalist model was created using Autodesk Maya 2011 through a process 

of polygonal extrusions according to reference images. The reason for designing the 

instrumentalist more realistically as opposed to cartoonish is because its creation presented a 

unique and valuable artistic challenge. The model was designed to look like it was wearing a 

marching band uniform. Once completed, the single model was subsequently textured three 

different times to match up with the three distinct instrument classes; in each case the 

instrumentalist‟s uniform was colored to match its corresponding instrument class.  

 



101 
 

Fully Textured Wind Instrumentalist 

 

 

Fully Textured String Instrumentalist 



102 
 

 

Fully Textured Percussion Instrumentalist 

E.7b.3 - Animation 

 Each of the three textured Instrumentalist models was saved to its own individual Maya 

file, which would serve as the repository for all instrument playing animations for each class. In 

order to animate the instrumentalist playing each instrument individually, instruments of a 

specific class were imported into the Instrumentalist file one by one. From there the instrument 

would be parented/connected in some fashion to the Instrumentalist model so there would be a 



103 
 

reference of where the instrument was during animation and where it would need to be placed 

once imported into the game. Whenever applicable, the same Instrumentalist animation was used 

for as many instruments within a certain class as possible in order to be as efficient as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

F. - Sound Design 

F.1 - Process of Composing Game Music 

In the game, there are three basic types of player-controlled musical instruments: winds, 

percussion, and strings.  These categories can be broken up into respective subcategories: 

brass/woodwinds, pitch/battery percussion, and orchestral/modern strings.  Each of the 

subcategories has a unique feel, and a type of music that they thrive in.  A major part of the game 

is focused on purchasing new instruments and upgrades for the player to use in different ways.  

Therefore, a major part of the sound design was based on that store.  The player can purchase 

each of the six instrument subcategories in the shop; when an instrument is purchased, a short 

tune is played relevant to the instrument‟s traditional style.  For example, if the player purchases 

a brass instrument, powerful brass chords will begin to play.  Similarly, if the player acquires a 

woodwind instrument, a light fugue-like melody will begin, initiated by the bassoon, and 

eventually flowing to the rest of the woodwind section.  Each of the six instrument subcategories 

has one of these „purchase tunes,‟ which may give the player incentive to purchase each type of 

instrument, just so they can have heard each of the melodies. 

 Two percussion tracks were composed to suit various purposes.  One is based primarily 

on battery percussion, such as the bass drum and toms, and the other utilizes pitch percussion 

instruments, like the marimba and glockenspiel.  The sounds are about twenty seconds long; 

much longer than the purchase tunes, and can be easily looped to greater lengths.  The tracks are 

primarily meant to be heard in the background as the player navigates the menus and makes 

selections before a battle. 

 As this is an interactive game, each battle can go one of two ways: victory or defeat.  

Therefore, the music reflects this.  If the player succeeds in a level, a short, cheery melody will 



105 
 

play that exemplifies their success.  In the tune, the brass section creates an unresolved sound, 

only to resolve it to a major („happy‟ sounding) chord.  The tension-release vibe is similar to the 

challenge the player experiences; difficulty during the level, and then liberation when the level is 

finished successfully.  On the other hand, if the player loses a level, a markedly different melody 

plays.  The distant sounds of the ocean can be heard below a slow, plodding bass melody.  Minor 

(„sad‟) chords complete the picture of loss and defeat.  Fortunately, the player can always try 

again, and achieve a more musically satisfying end to the level. 

 A large number of in-game patterns were also created to increase the depth of the store.  

Therefore, a player without any musical knowledge can still buy pre-made musical tracks to use 

in the game.  This flows from our desire to make the game not only musically pleasing, but 

musically accessible to people of all ages and backgrounds.  Some of the patterns follow from 

standard musical devices.  For example, there are pre-composed patterns that play major scales, 

minor scales (both natural, harmonic, and melodic), and chromatic scales.  This can serve to 

teach the interested player basic music skills and terminology.  Other patterns have a percussive 

feel, such as basic snare and bass drum beats.  These patterns have no tonality, meaning they can 

fit together with a variety of styles and other tracks.  A few select groups of patterns were 

composed to fit together.  For example, the patterns “P54Guitar” and “P54Bass” are in the same 

key and time signature, and complement each other.  Another group of patterns are synth chords 

that sound very ethereal, creating an interesting sound for the player to work with.  As a whole, 

the patterns were designed to represent a variety of different styles that can draw the player into 

composing their own, unique patterns. 

 

 



106 
 

F.2 - Process of Creating Sound Effects 
 

Similarly to the composed songs, the sound effects reflect the unique timbres of the 

different instrument types.  Each instrument type has a designated sound effect that plays when 

the player clicks on an instrumentalist mid-battle.  For example, the standard button click effect, 

as well as the battery percussion „click‟ sound, is a bass drum layered with a subtle „tick‟ noise.  

The combined effect is more substantial than either of the individual sounds combined.  For 

other examples, the woodwind „click‟ sound is a brief mordent (a shorter trill); the string section 

plays an open fifth on the „pizzicato strings‟ MIDI setting.  Each of the click sounds are designed 

to be short and light, so not to detract from the rest of the music playing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 
 

G. - Postmortem 

 
G.1 - Introduction 
 

Like every other group effort or project we each have done in the past during our college 

careers, this MQP was a powerful learning experience. In this section we would like to share 

what we thought were some of the highlights of working on this project and what we were 

ultimately able to take away from it. In addition, at the beginning of the design process there 

were a plethora of other ideas and game features we considered working towards which 

ultimately had to be dropped, most of which documented earlier in this paper. If given another 

term we certainly would like to work towards implementing some of these features, some 

technical and some purely aesthetic, that we feel would further enrich the gaming experience. 

 

G.2 - Success 
 

One thing that the team was successfully able to utilize was the use of prototypes.  We 

were able to implement the basic mechanics of the game that we had planned to add, including 

using a variety of monsters and allowing the player to create his or her own melodies.  The song 

creation did not quite have the depth that we hoped to include, however, since we had originally 

planned to have a more sophisticated scoring system implemented.  Some of our monsters do 

change how the player is meant to play music in this game, such as Bibibibi and Goooooob 

altering the tempo required for each of them.  We planned, however, to include similar kinds of 

monsters, such as one variety that must be defeated by playing notes that ascend the scale.  Our 

monster implementation turned out well, but we did hope for a bit more. 

 

 



108 
 

G.3 - Failure 

We had several ideas for how to include a multiplayer mode.  One plan was to simply 

have two bands actually battle each other, using their musical talents to vanquish the other band.  

This idea was scrapped because we thought that having the two bands play music against each 

other would result in a lot of noise.  A spinoff to this scheme was that players could convert their 

performances for multiplayer battles into swarms of monsters.  This way, the multiplayer mode 

could become extra levels for players to compete against and create.  Another idea we concocted 

was a mode where two bands would play, one after another, and an audience would input their 

votes for which band gave a better performance in that mission.  On that same note, we also 

thought about a feature that allowed players to upload their performances to a database, where 

other people who played Melodic Munitions could give the group a score.  By judging other 

groups and receiving judgment, the bands / players might rise in rank and gain special 

instruments. 

Unfortunately, we never got around to creating a multiplayer mode for Melodic 

Munitions.  We did not have time to implement this feature, and we could not fully agree on the 

best route to take with the multiplayer.  If we took the route where other people could judge how 

a player did, then the possibility existed that somebody could try to smear the player‟s score for 

personal reasons.  Also, we lacked the time necessary to both create a computer AI that could 

objectively judge “good music” and to implement a conversion between what the player 

composed into monsters.  Because of all this, we dropped the multiplayer feature of Melodic 

Munitions altogether for this iteration. 

 

 



109 
 

G.4 - What We Learned 

Dylan James 

Working on this project taught me a lot about a few different topics but my most notable 

lesson was about prototyping and abstraction; I learned a lot about how to set up early prototypes 

that would be flexible and extensible to future design changes. I needed to start working on the 

project early on in the design, but because it wasn't concretely defined yet. As such, I had to set 

up prototypes of certain functionality, while keeping other pieces abstract for future features. I 

spent a lot of time abstracting different functionality into packages which could interconnect. 

These packages were replaceable if we wanted to change any of the functionality, or even 

removable if we didn't have time to implement the full scope of the project. Though I was 

keeping the implementation flexible and abstract, I started to learn that too much abstraction led 

to its own problems. Keeping things flexible at both higher and lower ends of the code made 

parts of it confusing, vague and unclear. Because I had to keep jumping back and forth on 

different aspects of the project, I would sometimes forget how some of the pieces functioned and 

would have to relearned them. I started to realize that I needed to develop things in some sort of 

middle ground because throwing out some code occasionally was better than spending time 

trying to work with such a complex design. 

Kyle Sarnik 

While working on this project, it quickly became apparent that team collaboration was 

going to be a challenge. The lack of proper version control software limited our ability to 

efficiently consolidate all of our work. Most significantly, this limitation resulted in slower 

development of our art-tech pipelines. This also led to times where the development of some 

things would end up waiting on others, and overall reduced the amount of things that could be 



110 
 

done in parallel. These limitations have demonstrated the need for strong collaboration and clear 

communication. Using Unity Pro, which offers better support for version control, might have 

helped alleviate the problem. It also demonstrated the need to develop iteratively; to get the 

pipelines in place and to get as many of the major hurdles or unknowns working early on before 

spending time to improve them. In other words, don‟t put these significant milestones off until 

the last minute. Better planning and a stricter design outline would have been beneficial in this 

regard. While these considerations were always in the back of our minds throughout the entire 

project, it goes to show just how difficult they can be to adhere to, and that they really can make 

a big difference. 

 

Robert Banahan 

 I think one of the fortunate things about working on this project is that both Joey and I 

were able to play to our respective creative and artistic strengths due to the fact that our game 

concept and design uniquely allowed for it. I felt more comfortable modeling from reference and 

Joey felt more comfortable modeling purely creative and original things and so we were both 

able to put forth our best effort within the style we were the more passionate about. I think Joey 

did a really good job on translating the technical mechanics of the monsters into interesting 

visual designs, as well as really being able to bring the monsters alive through their animations. 

Conversely it would be fun to get to model real life instruments in addition to the challenge of 

creating a humanoid character entirely in Maya. One of the other larger things I took away from 

working on the game is a greater depth of knowledge concerning animation using ik handles and 

joint orientations. It was something that I had never previously looked into or known much about 

but can play a huge role in determining the quality of your animations. 

 



111 
 

Joseph Chipman 

 I have personally learned that Unity dislikes deformers, which led to some reworking of 

animation rigs.  I first encountered this problem when I tried to animate Sprorb.  If you simply 

try to stretch a spring by scaling it, then the width of said spring also changes.  When a real 

spring compresses, the space between coils decreases, but the coils stay the same width.  I did 

manage to do that at one point by using a coiled NURBS curve and a wire deformer.  The 

animation looked great when I played it in Maya, but when we imported Sprorb to Unity, the 

spring no longer compressed.  The orb of Sprorb, however, still moved up and down, since that 

part was a simple translation.  In the interest of time, I simply squashed and stretched the spring 

portion. Burnbrush‟s IK handles also failed to bend the skeleton after he was imported into 

Unity, despite the fact that you attach IK handles to the joints of the skeleton.  Apparently, Unity 

seems to dislike animations that aren‟t directly attached to the skeleton joints or 

models.  Perhaps, someday, either Unity will be able to accept new ways of deforming objects, 

or Maya will provide game-engine-friendly animation settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 
 

H. - Future Work 

 

H.1 - Given an Additional Term 

 If given an additional term the first thing we would do is design more levels and dynamic 

and complex battles for the player. Having new and more diverse battles would further 

complement the other game modes. It would allow us to introduce additional items in the 

upgrade shop as well as allow the player to further experiment in composition mode. 

 The next largest thing we would like to accomplish is some kind of multiplayer mode. 

Multiplayer was one of the initial features of our game which was unfortunately more and more 

marginalized as the project went on and our design moved farther away from the initial concept. 

However, despite this persistent marginalization, multiplayer was something we consistently 

gave thought to and tried to flesh out if we were ever to implement it. Accordingly, if given an 

additional term, we would decide which of our top two multiplayer ideas, battling user-created 

monsters or a co-op mode, we would like to pursue and do as much as we could to implement 

that feature. 

 Farther down the priorities list would be introducing additional monsters with more 

complex and dynamic requirements to be defeated, and perhaps a more diverse array of 

instruments. We knew we would be limiting ourselves if we didn‟t try to include instruments 

from other cultures, hence our use of the Erhu and Guqin, both traditional Chinese instruments. 

However, if given more time we would definitely like to include instruments from other cultures 

to diversify our instrument trees. 

 

 

 

 

 



113 
 

I. - Conclusion 

 

  The fact that our initial concept was inspired by Brazilian samba schools helped to create 

the foundation for our game and would endure to be of great importance. Since Professor 

Rosenstock was able to immediately present us with a premise for a project, with which all the 

team members were on board, it proved immensely helpful in the early days of the project as it 

allowed us to immediately begin refining the core gameplay aspects that we wanted to achieve. 

Subsequently, though our game is considerably different from Professor Rosenstock‟s initial 

concept, the spirit of the Brazilian samba schools is still embodied in our game of which without 

it the creation of Melodic Munitions would have been impossible. 

 The design of Melodic Munitions presented some interesting challenges towards the 

coders as modern day music games have yet to utilize and capitalize on user-generated content 

never mind incorporating such content into battles. As a result, the technical components of the 

game were designed to be as open as possible to further changes and improvements. This 

technical philosophy is reflected in the evolution of the game‟s compositional interface as well as 

the implementation of saving and loading compositions, as well as translating musical patterns 

into damage and incorporating a tempo slider in Battle Mode. 

For the artists arguably the largest force of artistic influence can be attributed to the 

ongoing evolution of our game‟s basic design itself. As artists we looked at what the most 

important mechanics of our game were and tried to craft our artistic style, not just around them, 

but so that our style would also complement the type of experience we were trying to achieve 

through those mechanics. 

Once we looked over our final game design and saw instruments that carried with them 

special effects and original monsters whose visual design was influenced by musical properties 



114 
 

and iconography, we naturally leaned towards a more cartoony style rather than a more realistic 

one. However, that decision wouldn‟t prove to be all-encompassing as we had also decided to 

feature human characters and real world instruments in the game in the game as well. What we 

ended up with was a style which wasn‟t entirely cartoony or entirely realistic, but rather an 

amalgamation of both to create the world of Melodic Munitions. 

  One of the bigger struggles we had throughout the design process was the 

implementation and utilization of sound as a fundamental aspect of gameplay. The struggle 

broke down into a back and forth between whether we wanted to allow for completely free 

composition, at the risk of significantly watering down gameplay, versus having more rigid 

limitations on composition to foster more dynamic gameplay but at the cost of unrestricted 

creativity. What we ultimately decided was to keep compositional limitations at a minimum and 

focus on player creativity, allowing the player to dictate what they wanted to compose and what 

they felt like listening to throughout the entire game. 

 Overall nearly all of the things we set out to accomplish as part of this project were 

ultimately accomplished. All three game modes were fully realized and all important art assets 

were successfully integrated into the game. In addition, all relevant technical features and 

elements essential to the functioning of the three game modes and many of the art assets were 

successfully devised and implemented, itself a tribute to the careful design and implementation 

philosophy of our coders. The only blemish would be the unfortunate exclusion of some kind of 

multiplayer or co-op mode. Just as user-generated compositions can be seen as the next step in 

music games, competitively matching creative wits or the collaboration of mutual creative efforts 

are the next steps from the experience we have established in Melodic Munitions. Regardless, we 

feel that the musical gaming experience Melodic Munitions does achieve is certainly one that can 



115 
 

help pave the way for a new genre of musical games revolving around singular unique player 

experiences and invigorating player creativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

J. - Appendixes 

J.1 - Appendix A 

 

Professor Rosenstock‟s Original Concept Proposal 

 

“Interactive Social Instrument/Music Composition Game Concept Document” 

This project is inspired by Brazilian samba schools - large ensembles of musicians that 

perform competitively in parades. 

The basic game concept presents the player with an interface with which they can 

compose rhythmic musical sequences. Different instruments or sound sources are represented by 

animated avatars that “perform” the sound being played. At the outset, the player has a very 

limited set of musical options, such as a character banging two sticks together. As they progress 

through the game, the players build ever larger ensembles of virtual performers and gain access 

to a wider palette of sounds and more compositional parameters, enabling them to create more 

elaborate musical sequences. 

Game modes 

Composition mode - This is the interface where players build their compositions and play them 

back. This might be broken down into 2 sub-modes: in the first, players build short rhythmic 

phrases. In the 2nd, players combine these phrases into longer sequences. 

Battle mode - Players are matched by the system with an opponent who is at an equal experience 

level. The two compositions are played. Members of the community vote and comment to 

determine the “winner” of the battle. Players gain points by winning competitions, as well as by 

voting (giving them incentive to participate in the voting). There are leaderboards with featured 

compositions, players, and judges. 

Upgrade mode - A “shop” where players may redeem their points to upgrade their ensemble. 



117 
 

These may be new characters (ie an electric guitar player), expansions of existing characters (3 

guitar players, which gives access to more guitar sounds/tracks/licks), or special boss characters 

(Jimi Hendrix character, who can actually be “played” more interactively/with greater control 

than the normal rhythm characters). 

 


