

To my parents and grandparents
for their unconditional love

i

Acknowledgements

There are many people that have earned my gratitude for their contribution to my time

as a Ph.D. student. More specifically, I would like to thank three groups of people, without

whom this thesis would not have been possible: my dissertation committee members, my lab

mates, and my family and friends.

My Advisor

First and foremost I want to thank my advisor Raghvendra V. Cowlagi. It has been an

honor to be his first Ph.D. student. It all started in Fall 2013 when he offered me such a great

opportunity to make my life a difference. On the academic level, Raghu taught me funda-

mentals of conducting scientific research in the control area and gave me research directions.

Under his supervision, I learned how to define a research problem, find a solution to it, and

finally publish the results. On a personal level, Raghu inspired me by his hardworking and

passionate attitude and he always believed in me like nobody else. To summarize, I would

give Raghu most of the credit for all his contributions of time, ideas, and funding to make

my Ph.D. experience productive and stimulating.

Dissertation Committee Members

Besides my advisor, I would like to thank the rest of my dissertation committee mem-

bers (Michael A. Demetriou, Jie Fu, and Andrew Clark) for their great support and invaluable

advice. I am thankful to Prof. Demetriou for his crucial remarks that shaped my final dis-

sertation. Thanks Prof. Fu for her inspiration and valuable discussions. Thanks Prof. Clark

for agreeing to serve on my dissertation committee on such a short notice and his insightful

comments.

ii

My Labmates

I would like to thank my lab mates for their continued support. This dissertation would

not have been possible without the intellectual contribution of Ruixiang Du, Jie Fang and

Benjamin Cooper. They also have been great friends, so many valuable discussions and

comments topics ranging from life to academic. Thanks Haocheng Li for all his passionate

math lectures. Thanks Jighjigh Tersoo-Ivase for many fun during my first year.

My Family and Friends

I owe a lot to my parents, who encouraged and helped me at every stage of my life, and

longed to see this achievement come true. I deeply miss my grandparents, who are not with

me to share this joy. Thanks my brother Lin and sister Boya for their support. Special thanks

to Yang Song and all my friends outside WPI for accompanying me in this special period of

my life.

iii

Abstract

Motion-planning is an essential component of autonomous aerial and terrestrial vehi-

cles. The canonical motion-planning problem, which is widely studied in the literature, is of

planning point-to-point motion while avoiding obstacles. However, the desired degree of ve-

hicular autonomy has steadily risen, and has consequently led to motion-planning problems

where a vehicle is required to accomplish a high-level intelligent task, rather than simply

move between two points. One way of specifying such intelligent tasks is via linear tempo-

ral logic (LTL) formulae. LTL is a formal logic system that includes temporal operators such

as always, eventually, and until besides the usual logical operators. For autonomous

vehicles, LTL formulae can concisely express tasks such as persistent surveillance, safety

requirements, and temporal orders of visits to multiple locations.

Recent control theoretic literature has discussed the generation of reference trajectories

and/or the synthesis of feedback control laws to enable a vehicle to move in manners that

satisfy LTL specifications. A crucial step in such synthesis is the generation of a so-called

discrete abstraction of a vehicle kinematic / dynamic model. Typical techniques of generat-

ing a discrete abstraction require strong assumptions on controllability and/or linearity. This

dissertation discusses fast motion-planning and control techniques to satisfy LTL specifica-

tions for vehicle models with nonholonomic kinematic constraints, which do not satisfy the

aforesaid assumptions. The main contributions of this dissertation are as follows.

First, we present a new technique for constructing discrete abstractions of a Dubins ve-

hicle model (namely, a vehicle that moves forward at a constant speed with a minimum turn-

ing radius). This technique relies on the so-called method of lifted graphs and precomputed

reachable set calculations. Using this technique, we provide an algorithm to generate vehicle

reference trajectories satisfying LTL specifications without requiring complete controllabil-

ity in the presence of workspace constraints, and without requiring linearity or linearization

iv

of the vehicle model.

Second, we present a technique for centralized motion-planning for a team of vehicles

to collaboratively satisfy a common LTL specification. This technique is also based on the

method of lifted graphs.

Third, we present an incremental version of the proposed motion-planning techniques,

which has an ”anytime” property. This property means that a feasible solution is computed

quickly, and the iterative updates are made to this solution with a guarantee of convergence

to an optimal solution. This version is suited for real-time implementation, where a hard

bound on the computation time is imposed.

Finally, we present a randomized sampling-based technique for generating reference

trajectories that satisfy given LTL specifications. This technique is an alternative to the

aforesaid technique based on lifted graphs.

We illustrate the proposed techniques using numerical simulation examples. We demon-

strate the superiority of the proposed techniques in comparison to the existing literature in

terms of computational time and memory requirements.

v

Contents

1 Introduction . 1

1.1 Literature Review . 2

1.1.1 High-level Tasks in Motion-planning 2

1.1.2 Low-level Trajectory Generation in Motion-planning 3

1.1.3 Motion-planning for Satisfying LTL Specifications 5

1.2 Thesis Overview and Statement of Contributions 8

1.2.1 Overview . 8

1.2.2 Contributions . 10

2 Motion-planning for a Nonholonomic Vehicle . 13

2.1 Problem Formulation . 13

2.1.1 Vehicle Model . 13

2.1.2 Workspace partition . 14

2.1.3 LTL−X specifications . 15

2.2 Lifted Graph . 17

2.2.1 Edge Transition Costs in GH . 19

2.3 Product Transition System . 22

2.3.1 Route-Planning Algorithm . 25

2.4 Numerical Computation of Edge Transition Costs 27

2.5 Illustrative Numerical Simulation Results . 34

2.5.1 Discussion . 39

3 Motion-planning for Multiple Nonholonomic Vehicles 43

3.1 Problem Formulation . 43

3.1.1 Regions of Interest Graph . 44

3.1.2 Global LTL−X specifications . 45

3.2 Multi-Vehicle Motion-planning . 46

vi

3.3 Illustrative Numerical Simulation Results . 49

4 Incremental Motion-Planning . 55

4.1 Illustrative Examples and Discussion . 60

4.1.1 o . 62

5 Sampling Based Motion-Planning . 66

5.1 Problem Formulation . 66

5.2 LTL Satisfaction by State Trajectories . 67

5.3 Proposed Solution to Problem 3 . 69

5.3.1 Description of Subroutines . 71

5.3.2 Sampling Heuristic . 74

5.4 Numerical Simulation Examples . 75

5.4.1 Example Neglecting Kinematical Constraints 75

5.4.2 Examples with Fixed-Wing Aircraft Model 77

5.4.3 Example with Quadrotor Aircraft Dynamical Model 81

5.5 Extension to Multiple Vehicles . 83

6 Conclusions and Directions of Future Work . 85

vii

List of Figures

1.1 Illustration of cell decomposition and the associated graph. 4

2.1 Example of a lifted graph (the vertices (3, 2) and (5, 2) of the lifted graph are

drawn twice for clarity of the diagram). 18

2.2 Conceptual illustration of the sets R, Q(·) and S(·) for H = 2. The large

arrows indicate the existence of admissible state trajectories as described in

the text preceding (2.6). 20

2.3 Conceptual illustration of the proposed route-planning approach. 23

2.4 Pseudo-code for executing a modified form of Dijkstra’s algorithm on the

product automaton. 27

2.5 Illustration of canonical traversals (adjacent and opposite) and local coordi-

nate axes systems. In (a) and (b), the green- and red colored dotted lines

indicate, respectively, the entering and exiting faces of traversal of the cell. . 28

2.6 Tile library for H = 2, auto-generated using a MATLABr script. 30

2.7 Tile library for H = 3, auto-generated using a MATLABr script. 30

2.8 Application of the proposed approach: illustration of the effects on the resul-

tant path of changes in the control input constraint. The numerical values ρ

are in dimensionless distance units, where 1 unit is equal to the side of a cell

in the uniform decomposition. 35

2.9 Application of the proposed approach: illustration of the effects on the re-

sultant path of changes in the initial state. Here, the LTL−X specification is

φ3 (described in text). The numerical values of position coordinates and of ρ

are in dimensionless distance units, where 1 unit is equal to the side of a cell

in the uniform decomposition. 36

viii

2.10 Additional examples that illustrate the significant impact of nonholonomic

motion constraints on the manner in which the given LTL specifications are

satisfied (details in text). 38

3.1 Conceptual relationship between the various graphs involved. 45

3.2 An instance of Problem 1. Here, ROIs λ1 and λ2 are indicated in red (cells 19

and 27, respectively), and ROIs λ3 and λ4 are indicated in gray (cells 10–12

and 16–18, respectively). 46

3.3 Pseudocode description of the proposed incremental algorithm for solving

the multi robot task/path planning problem. 49

3.4 Solutions to the motivating example in Fig. 3.2. The yellow- and blue-

colored cells indicate, respectively, the paths planned for the first and second

vehicle (additional details are in Section 5.4). 52

3.5 Illustration of motion-planning for 4 vehicles. The LTL specification is sim-

ilar to that of the example in Fig. 3.2. Here, ROIs to be always avoided are

indicated in gray, and ROIs to be eventually visited are indicated in red (or-

der of visit is not relevant). The base locations are indicated in green, and

the paths found for each vehicle are indicated in yellow. 53

3.6 Illustration of motion-planning when temporal synchronization is important.

The paths of the two vehicle are indicated with yellow- and blue-colored cells. 54

4.1 Illustration of proposed implementation of the H-cost framework with incre-

mental planning . 56

4.2 Pseudocode description of the proposed incremental algorithm for solving

the H-cost optimal path problem. 58

4.3 Illustrative example of solution of the H-cost optimal path problem using

incremental path repair. 61

4.4 Illustration of replanning in response to changes in the environment. 64

ix

4.5 Illustrative example: during intermediate iterations, feasible solutions are

available, whereas the solution cost is reduced. 65

5.1 Pseudocode description of the proposed sampling based algorithm for solv-

ing the task/path planning problem. 70

5.2 Pseudocode description of the Update random tree subroutine. 73

5.3 Pseudocode description of sampling heuristic subroutine. 74

5.4 Workspace (a) and product space (b) for the example in Section 5.4.1. . . . 76

5.5 Performance of sampling heuristic for the example in Section 5.4.1. 77

5.6 Results for Example 1. 78

5.7 Simulation results for specification φ1 in Example 1 with the fixed wing air-

craft model (5.1). 79

5.8 Simulation results for specification φ2 in Example 2 with the fixed wing air-

craft model (5.1). 80

5.9 Simulation results for specification φ3 illustrating trajectories conditional on

properties of the environment. 81

5.10 Simulation results for specification φ3 illustrating quadrotor trajectories con-

ditional on properties of the environment. 82

5.11 Performance of sampling heuristic for specification φ3. 82

5.12 Simulation result for specification φ1 = 3λ1 ∧3λ2 ∧3λ3. 84

x

List of Tables

2.1 Number of vertices in the lifted graph, for various values of the parameter H ,

and the time required to record the graph topology. 39

2.2 Execution times for the numerical simulation examples discussed in Section 5.4.

The blank entries for τ 0
search and τ 1

search for H = 3, 4 indicate that the search

returned failure after a finite number of iterations, and no route was found. . 40

xi

Chapter 1

Introduction

The demand for higher degrees of autonomy in unmanned aerial and terrestrial vehicles

(UXVs) widens the scope of onboard guidance from the traditional task of optimal waypoint

navigation to higher-level tasks involving intelligent decision-making. We discuss the role of

linear temporal logic (LTL) specifications in formulating such higher-level tasks, and report

a new guidance algorithm capable of satisfying LTL specifications on aircraft motion.

LTL is a formal system, similar to the commonly used propositional logic system. In

addition to the standard operators and, or, and not, LTL includes temporal operators such

as always, eventually, and until. In contrast to propositional logic, LTL can be used

to express properties of an infinite series of computations, which is useful for expressing

vehicular tasks such as persistent surveillance. LTL has been used in software design for the

specification of “correct” behaviors of algorithms [1, 2]. Software algorithms can be exam-

ined to determine if they meet given LTL specifications, using so-called formal verification

methods such as model checking [3].

More recently, LTL has been applied for specifying behaviors of dynamical systems,

and in particular, behaviors of mobile vehicles [4–6]. For robotic vehicles such as UXVs,

high-level intelligent “tasks” as well as properties of safe behaviors, e.g. “perform persistent

surveillance in region A until a target is found, then report data to region B, never fly in

region C, and finally return to base” can be formulated with LTL specifications. Trajectory

generation and tracking algorithms are then required to plan and execute UAV motions to

satisfy these specifications. The state-of-the-art approaches to control subject to LTL speci-

fications do not suffice to address the needs of aircraft kinematic and dynamic constraints.

1

1.1. LITERATURE REVIEW

1.1 Literature Review

Motion-planning and control for UXVs is extensively studied in the literature. In what

follows, we use the term trajectory to refer to a locus of points in the state space of the

vehicle model, and the term route or the term path to refer to a discrete representation of a

trajectory (e.g., a sequence of waypoints or regions). The term route-planning (synonymous

with path-planning) is the process of finding a sequence of regions in the workspace that

enclose the vehicle’s desired trajectory. The term motion-planning refers to route-planning

to satisfy a higher-level task requirement, along with the generation of a lower level reference

trajectory to execute the planned route. The following are highlights of the various topics

studied in this literature.

1.1.1 High-level Tasks in Motion-planning

Vehicle routing algorithms address the high-level task of optimally touring a set of

target locations [7, 8], i.e. generalized versions of the traveling salesperson problem. These

problems are formulated as combinatorial optimization problems [9] (e.g. optimal tour on a

graph). In stochastic-dynamic VRPs, a policy is determined, rather than a single tour [10,11].

Recently, the incorporation of vehicle kinematic characteristics have been investigated for

vehicle routing problems [12, 13].

Coverage and coordination algorithms address the high-level task of deploying mul-

tiple autonomous vehicles over a region for the purposes of, say, surveillance or information

gathering [14–16]. These problems are analyzed with tools from computational geometry

(e.g. Voronoi diagrams for coverage control) and graph theory (e.g. for analyzing vehicle

communication network topologies). The vehicle models considered are typically simple

kinematical models.

We focus on high-level tasks described by LTL specifications, which we discuss in

greater detail in Section 1.1.3.

2

1.1. LITERATURE REVIEW

The point-to-point motion-planning problem refers to trajectory generation where the

high-level task is to move from a prespecified initial point to a prespecified destination point

while avoiding obstacles in the environment. Hierarchical approaches are often used to sep-

arate this problem into a geometric route-planning problem, followed by a continuous tra-

jectory optimization problem [17–24]. The route-planner is mainly concerned with obstacle

avoidance, and is usually formulated as a discrete optimization problem of finding a path

with lowest cost in a graph. The trajectory planner then attempts to find a control inputs for

the vehicle to execute the geometric path found by the route planner.

Three broad ideas have emerged in geometric path-planning [25, 26]: roadmaps, and

cell decompositions, and artificial potential fields. The proposed technical approach is based

on cell decompositions [26, Ch. 5], [27]. These involve a partitioning of the environment

into convex, non-overlapping regions called cells. A cell is classified either as FREE (if it

contains no obstacles), or FULL (if it contains no free space). A graph G is associated with

the cell decomposition, such that each FREE cell is represented by a vertex, and geometric

adjacencies of the FREE cells are represented by edges. A path from a pre-specified initial

cell to a pre-specified goal cell in the graph G then corresponds to a sequence of FREE cells

from the initial cell to the goal cell in the graph G (see Fig. 1.1). Triangular and trape-

zoidal decompositions [26, Ch.6], [28] are widely used exact cell decomposition techniques

for environments with polygonal obstacles, whereas quadtree-based methods [29–31] (that

employ recursive decompositions of MIXED cells into four subcells until all cells are either

FREE or FULL), are popular approximate cell decomposition techniques. Path planners using

multiresolution cell decompositions have also been proposed, for instance, in [32–34].

1.1.2 Low-level Trajectory Generation in Motion-planning

Variational optimal control theory has investigated trajectory optimization for aircraft

and spacecraft with applications of the Minimum Principle [35–39]. The domain of opti-

mization is typically a space of piecewise continuous functions of R+. The optimization is

3

1.1. LITERATURE REVIEW

1

2

4

10

5

9

8

7

6

3

11

(a) Trapezoidal decomposition [25].

1

7

6

5

4

3

2

8 10

9

11

(b) Associated topological graph.

Figure 1.1: Illustration of cell decomposition and the associated graph.

subject to constraints, including those of an ordinary differential equation that describes the

evolution of a dynamical system (e.g., aircraft motion).

Well-known examples in trajectory optimization include the problem of finding a short-

est path for a vehicle with constant speed and a fixed minimum turn radius [40–43] (also

known as the Dubins vehicle) and the so-called Zermelo navigation problem of finding a

heading profile to minimize time of traversal for a vehicle moving in a drift field [35,44,45].

Trajectory optimization problems with state inequality constraints typically do not admit

closed-form analytical solutions, and numerical methods are employed [46, 47]; application

examples can be found, for instance in [44, 48–51]. Optimal control theory has also been

applied to find minimum-time speed profiles on pre-specified geometric paths [52–55] with

input- and vehicle dynamical constraints. Feedback optimal control techniques other than

LQR [56] are typically variants of dynamic programming [57, 58].

References [52–55] discuss time-optimal trajectory planning along pre-specified geo-

metric paths for specific vehicle dynamics. Other related works in the literature include [59],

which uses a special history-based cost; [60], which deals with kinodynamic planning for

robotic manipulators; [61], which uses a hybrid model to describe the motion of a rotorcraft

in terms of preprogrammed maneuvers; and [62], which discusses trajectory planning based

on the solution of the Hamilton-Jacobi-Bellman equation.

4

1.1. LITERATURE REVIEW

Path-planning for nonholonomic vehicle models dates back to the seminal work of Du-

bins [63], who proved that minimum-length curves of bounded curvature that connect two

prespecified points in the plane with prespecified initial and final tangent directions must

belong to a finite family of curves. This family of curves is characterized by concatena-

tions of up to three circular arc and straight line segments, where the radius of the circu-

lar arcs is equal to the inverse of the given curvature bound. This result has been applied

for path-planning for nonholonomic vehicles that can move forwards only with a bounded

rate of turn (e.g. fixed-wing aircraft flying at a constant altitude and speed). Reeds and

Shepp [64] extended this result further for nonholonomic vehicles that can move both for-

wards and backwards (often called car-like vehicles). It is difficult to find shortest paths with

continuous curvature even without the obstacle-avoidance requirement and is proven to be

NP-hard [65].

Randomized sampling-based methods for path-planning and trajectory generation

have been studied in the last two decades. Probabilistic roadmap (PRM) methods [66–70],

[26, Ch. 7], and methods that use rapidly exploring trees (RRT) (RRTs) [71–76] can address

the vehicle’s kinematic and dynamic constraints, but often result in suboptimal trajectories.

In these methods, random samples of the obstacle-free space are connected to each other by

feasible trajectories, and the resulting graph is searched for a sequence of connected samples

from the initial state to the goal state. PRM is applied to nonholonomic car-like robots path

planning in [77], and is shown to be probabilistically complete [78, 79].

1.1.3 Motion-planning for Satisfying LTL Specifications

Linear Temporal Logic (LTL) is used in computer science to specify desired character-

istics of algorithms [1]. The application of temporal logic in robotics dates back to [80].

Recently LTL has been applied for specifying behaviors of mobile vehicles. In [81] the

author designed controllers controllers using navigation functions that satisfy LTL formu-

las. In [4], a framework has been presented for generating feedback-control laws for planar

5

1.1. LITERATURE REVIEW

robots operating in polygonal environments. In [5], the author designed closed-loop hybrid

controllers that guarantee the generation of continuous robot trajectories that satisfy tempo-

ral specifications. In [82], author provide a fully automated framework for control of linear

systems with specifications given in terms of LTL formulas. In [6], the author summarize

their research trend to use symbolic techniques for robot motion planning and control. For

the extension work of this topic, in [83], the author describe a framework for multi-robot mo-

tion planning using computation tree logic formulas, but without considering the dynamics

of the robots. Centralized motion-planning algorithms for the team are developed in [84].

Several results on the control of dynamical systems to satisfy LTL specifications are re-

ported in the literature. All of these results crucially rely on generating a discrete abstraction

of a dynamical system [85, 86], which is a finite state transition system whose transition se-

quences are equivalent – via appropriately defined equivalence relations – to admissible state

trajectories of the dynamical system. Discrete abstractions allow the application of formal

verification and/or search algorithms to find transition sequences that satisfy the given LTL

specifications. To this end, a compact domain of interest in the state space of the dynami-

cal system Γ is partitioned into a finite number of regions. Each region in this partition is

uniquely associated with a state of a transition system G. Control laws are designed to steer

trajectories of Γ between these regions and thereby emulate state transitions in G [4, 81, 87].

The LTL specification is represented by a Büchi automaton B, which is a finite state tran-

sition system with transition sequences exactly equal to those admissible under the given

LTL specification [88–91]. Finally, a product transition system of B and G is searched. Any

transition sequence of this product system can be projected to a path in G, which in turn can

be associated with control laws and admissible state trajectories of Γ. These state trajectories

are therefore guaranteed to satisfy the given LTL specification.

The preceding approach is in general beneficial,and is considered “canonical” to the

extent that many works in the literature assume a priori the existence of a finite transition

system that represents an underlying dynamical system [84, 92, 93]. However, there are

several serious shortcomings in the state-of-the-art, which the proposed dissertation seeks to

6

1.1. LITERATURE REVIEW

address.

First, the efficient construction of discrete abstractions is largely restricted to low-dimensional

linear systems [87, 94, 95]. The approach of state-space partitioning naturally incurs the

“curse of dimensionality”, and leads to an explosion in the number of states in G. The situ-

ation is worse for nonlinear systems, where the requirement of finding local control laws to

steer state trajectories between adjacent regions in the aforesaid partition leads to enormous

numbers of states in G, even for low-dimensional systems. Consider for example a recently

reported work [96], where the discrete abstraction of a three-state vehicle model consists of

91,035 states and over 34 million transitions. Whereas the size of the discrete abstraction

may not be of high relevance for offline verification purposes, it can easily overwhelm the

limited computational resources onboard UAVs. Several other recent works address the sat-

isfaction of LTL specifications for nonlinear systems, but either involve linearization [97], or

rely on strong controllability properties or special vector field structure of Γ [98,99] that are

not applicable to the aircraft model considered in this paper.

Second, the state-of-the-art methods for satisfying LTL specifications do not “adapt” to

changes in model parameters that affect motion characteristics, e.g. bounds on the steer-

ing rate. When such parameters do change, the entire process of computing the discrete

abstraction and product transition system must be repeated, which can be computationally

expensive or prohibitive.

Third, the state-of-the-art methods do not accommodate standard trajectory optimization

algorithms, which have been established for aircraft guidance [46]. This lack of context to

traditional aircraft guidance algorithms therefore restricts the scope of practical application

of these methods.

The literature on multi-vehicle teams subject to LTL specifications falls into two

broad categories: (1) global specifications for the entire team are assumed, and central-

ized motion-planning algorithms are developed [84, 94], and (2) separate specifications for

individual vehicles in the team are assumed, and distributed motion-planning algorithms are

7

1.2. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

developed [100, 101]. Distributed algorithms for satisfying global specifications are yet an

open subject of research. We seek to extend the results of [84] to include nonholonomic

kinematic constraints. A crucial assumption in [84] is that a discrete abstraction of the ve-

hicle dynamical model is readily available. This assumption is valid for holonomic vehicles

that can be modeled as single or double integrators. However, for nonholonomic vehicles,

the generation of a finite state model of the vehicle’s motion is non-trivial, and is addressed

in this dissertation.

1.2 Thesis Overview and Statement of Contributions

The goal of this dissertation is to develop fast motion-planning and control algorithms

that enable autonomous vehicles to satisfy LTL specifications.

1.2.1 Overview

In chapter 2, we propose a novel and computationally efficient approach to aircraft guid-

ance subject to LTL specifications, where nonholonomic constraints on the vehicle’s motion

are considered. The scope of applications of this work primarily involves small-scale UAVs

in domains such as urban environments where the dimensions of the UAV maneuvering

characteristics (e.g. minimum turn radius) are comparable to the dimensions of workspace

features (e.g. distances between obstacles). The proposed approach is based on workspace

partitioning, and relies on the idea of lifted graphs [102]. Briefly, edges in a lifted graph

are successions of adjacent edges in the topological graph associated with the workspace

partition. We associate edges of the lifted graph with reachability properties of the aircraft

model.A finite state transition system is then constructed as the product of the lifted graph

with the Büchi automaton associated with the given LTL specification. Each run of this

product transition system has a unique projection on the collection of paths in the workspace

partition graph. We show that each run of the product transition system is associated with

8

1.2. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

an admissible state trajectory of the aircraft model that satisfies the given LTL specifications

and the proposed guidance algorithm relies on searching the product transition system.

In chapter 3, we propose a centralized motion-planning algorithm for a team of robotic

vehicles subject to nonholonomic kinematic constraints and global LTL specifications. The

problem formulation relies on workspace cell decompositions, where certain regions of in-

terest in the robots’ shared workspace are defined. The proposed algorithm involves two

graphs: first, the topological graph G arising from the workspace cell decomposition, and

second, a graph GR arising from vertex aggregation on G, such that each region of interest is

a vertex GR. The main technical innovation in the proposed algorithm is the application of

the method of lifted graphs which defined in chapter 2 to determine feasibility of edge tran-

sitions in G and GR. As in [84], a team transition system is first established. Next, a product

transition system is constructed from this team transition system and the Büchi automaton

associated with the global LTL specifications. Runs of this product transition system can

be uniquely projected to paths (for each vehicle) that are compatible with the nonholonomic

constraints and also ensure that the global LTL specifications are satisfied.

In chapter 4, we propose the idea of incremental H-cost motion-planning. The pro-

posed algorithm retains the primary benefit of the original H-cost technique [102] of find-

ing an optimal high-level plan with the guarantee that there exists a state trajectory of Γ

to execute this plan. Additionally, the proposed algorithm significantly mitigates the com-

putational cost of the original H-cost approach by introducing incremental computations.

The proposed algorithm is incremental in that it produces a sequence of feasible plans in

intermediate iterations, which asymptotically converge to an optimal plan. Therefore, the

proposed algorithm is eventually optimal, and it is also suitable for real-time implementation

with a hard bound on the available computation time. The primary motivation behind de-

veloping an incremental algorithm is as follows: the fundamental computational complexity

in the H-cost technique (or any similar hierarchical motion-planning technique) cannot be

defeated if the objective is solely to find an optimal motion plan. In the interests of real-time

implementation, it is beneficial to develop a motion planner that returns a feasible solution at

9

1.2. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

nearly any time during its search for an optimal motion plan. The proposed algorithm relies

on iterative repair of paths in lifted graphs. We focus on the point-to-point motion-planning

problem for developing the algorithm; as previously stated, it is easy to envision extensions

to the general problem where the high-level task is specified by logic formulae. The H-cost

algorithm [102] attempts to find optimal paths in lifted graphs with appropriately defined

edge costs. Whereas the search for such optimal paths is inherently difficult, the proposed

approach alleviates this difficulty by iteratively “seeding” the search with the result of a sim-

pler optimization problem, and then replacing high-cost edges in the “seed” path. This idea

of path repair has been discussed in different contexts in [103, 104].

In chapter 5, we propose a randomized sampling-based motion planning algorithm to

satisfy LTL specifications. Similar to RRT*, the proposed algorithm incrementally gener-

ates a tree abstraction of the vehicle dynamical system model. Random samples are taken

from multiple copies of the state space, with each copy uniquely associated with a state of the

Büchi automaton. The proposed algorithm retains the properties of RRT∗: namely, the pro-

posed algorithm is probabilistically complete (i.e. guaranteed to find a trajectory satisfying

the specifications if it exists) and asymptotically optimal. To achieve significant reductions

in computation time, we propose a sampling heuristic that provides a bias for growing the

tree structure. This sampling heuristic preserves the completeness and optimality of the algo-

rithm. We provide numerical simulation results of the application of the proposed algorithm

to a fixed-wing aircraft kinematical model and to a quadrotor aircraft dynamical model.

1.2.2 Contributions

We make the following contributions toward developing motion-planning algorithm to

satisfy LTL specifications.

Graph based guidance algorithm to find trajectories satisfying LTL specifications:

The state-of-the-art in this area involves linearization or feedback linearization (in the ab-

sence of state- or input constraints), followed by discrete abstraction of the linearized model.

10

1.2. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

The proposed algorithm does not involve linearization. The proposed algorithm relies on

partitioning the output space (instead of the state space), which reduces the number of states

and transitions in the aforesaid product transition system. Previous attempts at using output

space decompositions [4] have either ignored state- and control input constraints and/or rely

on strong controllability properties of the dynamical system such as controllability in the

presence of workspace constraints [98], which is not true of the aircraft model considered in

our work. We also emphasize offline preprocessing of a significant portion of the computa-

tions in the proposed route-planning algorithm, thereby elevating the practical applicability

of the proposed approach in future UAV onboard, real-time guidance systems. The proposed

algorithm accommodates independent trajectory optimization algorithms for generating ref-

erence trajectories. Also, in contrast to the state-of-the-art [4,87,105], the proposed approach

does not use up control authority for the sake of creating a discrete abstraction of the vehicle

model. Furthermore, we discuss a local trajectory generation problem which can be solved

by standard numerical trajectory optimization tools. These two features of the proposed ap-

proach not only afford the flexibility of using the proposed algorithm in conjunction with

existing trajectory optimization algorithms for UAVs, but also allow the use of the full range

of a UAV’s maneuvering capabilities.

Multiple vehicle motion-planning: We present an novel motion-planning method to

enable a team of nonholonomic vehicles to satisfy global LTL specifications. This method

relies on vertex aggregation in the team’s shared workspace, and on the new method of

lifted graphs. We propose an incremental algorithm computing the desired motion plan and

the proposed approach promises better scalability to higher-dimensional vehicle dynamical

models.

Incremental motion-planning: We propose a novel, computationally efficient, and hi-

erarchically separated solution to the point-to-point motion-planning problem. The proposed

approach can incorporate complex vehicle dynamical characteristics, and it guarantees “com-

patibility” between the ask-planning and trajectory generation algorithms. Furthermore, the

proposed approach possesses the desirable property of maintaining feasible solutions in in-

11

1.2. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

termediate iterations while asymptotically converging to an optimal solution. Secondly, we

elucidate the properties of lifted graphs as a general tool for hierarchical motion-planning

involving different task-planning problems and vehicle dynamics. Finally, we discuss the

suitability of the proposed approach to future real-time computations with bounds on the

computation time. Specifically, the proposed approach can be implemented to use as much

computational time as available, instead of requiring a significant minimum period for arriv-

ing at a usable result.

Randomized sampling-based algorithm to find trajectories satisfying LTL specifi-

cations: The proposed algorithm, which is a fast, probabilistically complete, and asymp-

totically optimal method for generating vehicle trajectories satisfying a given LTL speci-

fication. In comparison with the two works in the literature closest to the proposed ap-

proach [106,107], the proposed algorithm is faster owing to the proposed sampling heuristic.

The work [106] constructs a RRG-based discrete transition system to represent the vehicle

model. In contrast, the proposed algorithm incrementally constructs a tree structure, which

does not require a graph search (RRG does), while retaining an asymptotic optimality prop-

erty. In contrast to other randomized sampling-based approaches using a tree structure, the

proposed algorithm is capable of finding finite or infinite trajectories in prefix-suffix form

to satisfy LTL specifications, including specifications that lie outside of the co-safe class of

specifications (will discussed in chapter 5).

12

Chapter 2

Motion-planning for a Nonholonomic Vehicle

2.1 Problem Formulation

We introduce the following elements of the problem: the vehicle model, the workspace

partition, and the LTL specification. We use the term trajectory to refer to a locus of points

in the state space of the vehicle model, and the term route to refer to a discrete representation

of a trajectory (e.g., a sequence of waypoints or regions). We discuss route-planning (syn-

onymous with route guidance), which is the process of finding a sequence of regions in the

workspace that enclose the aircraft’s desired trajectory.

2.1.1 Vehicle Model

LetW ⊂ R2 be a compact set, called the workspace, which is assumed to be a planar

region of interest for the vehicle, and vmax > vmin > 0 indicate, respectively, upper and

lower bounds on the vehicle speed. Let ξ = (x, y, v, ψ) ∈ D = W × [vmin, vmax] × S1

denote the state of the vehicle, namely, the position of the vehicle’s center of mass and the

magnitude and direction of its velocity vector in a prespecified Cartesian coordinate system.

We denote by x(ξ) the projection of ξ ∈ D on the setW . We consider a vehicle kinematic

model described by the differential equations

ẋ(t) = v(t) cosψ(t), ẏ(t) = v(t) sinψ(t), v̇(t) = u1(t), ψ̇(t) =
u2(t)

v(t)
, (2.1)

13

2.1. PROBLEM FORMULATION

where u1 and u2 (the tangential and lateral accelerations, respectively) are the control inputs.

We assume that the set of admissible control input values is the compact domain

U :=

{
(u1, u2) ∈ R2 | u

2
1

a2
+ u2

2ρ
2 6 1

}
, (2.2)

where amax, ρ > 0 are prespecified. Let U be the set of all piecewise continuous func-

tions of t defined on finite intervals that take values in U . For any u ∈ U, and initial

state ξ0 ∈ D, the state trajectory ξ(t; ξ0, u), t ∈ [0, tf], obtained by integrating (2.1) is called

an admissible state trajectory. Note that amax is an upper bound on the magnitude of the

tangential acceleration, and ρ is the minimum radius of turn at unit speed. For computational

reasons to be clarified later, we assume ρvmin > 3.

2.1.2 Workspace partition

Consider a partition ofW into convex polytopic subregions called cells. The intersection

of any two cells is either empty, or a single vertex, or a finite-length segment that lies on the

boundaries of both cells. We denote by NC ∈ Z+ the number of cells, and by c[i] ⊂ W

the subregion associated with the ith cell, for each i = 1, . . . , NC. Therefore, ∪NC

i=1c[i] =W .

We associate with this partition an undirected graph G := (V,E) such that each vertex of G

is uniquely associated with a cell, and each edge of G is uniquely associated with a pair

of geometrically adjacent cells. We assume “4-connectivity,” i.e., two cells are considered

geometrically adjacent if their intersection is a finite-length segment. We denote by cell(v)

the element of {c[i]}NC

i=1 associated with the vertex v ∈ V . A path v in G is a sequence

(v0, v1, . . .) of vertices, such that v0, vk ∈ V , and (vk−1, vk) ∈ E, for each k ∈ N. The

number of vertices in a path is called its length. According to the preceding definition, a path

in G can contain cycles. We denote by LG the collection of all paths in G. Note that the paths

in LG are associated with vehicle routes described by a sequence of successively adjacent

cells.

14

2.1. PROBLEM FORMULATION

For every tf ∈ R+, ξ0 ∈ D, and u ∈ U, we define the G-trace of the trajectory ξ (t; ξ0, u),

t ∈ [0, tf] as the path tr(ξ,G) = (v0, v1, . . . , vP) ∈ LG of minimal length such that

1. x(ξ (0; ξ0, u)) ∈ cell(v0),

2. There exists a positive and strictly increasing sequence {t0, t1, . . . , tP}with t0 = 0,

tP = tf , and

x(ξ (t; ξ0, u)) ∈ cell(vk), t ∈ [tk−1, tk] , for each k = 1, 2, . . . , P. (2.3)

The preceding definition applies also to trajectories defined over [0,∞) , where the

aforesaid increasing sequence is infinite, and the G-trace is infinitely long. We denote

by LΓ(ξ0) ⊆ LG the collection of G-traces of all admissible trajectories for every tf ∈ R+,

including those defined over [0,∞) . Informally, the path tr(ξ,G) is associated with the se-

quence of cells that defines a “channel” in W , such that the curve x(ξ(t)), t ∈ [0, tf] , lies

within this channel. The curve x(ξ(t)) and the trajectory ξ(t) are said to traverse this channel

of cells.

2.1.3 LTL−X specifications

Linear temporal logic is a convenient formal language to express specifications on the

behavior of a system over time. As is common in the literature [87], we use a restricted

version of LTL, namely, LTL−X , which does not involve the next operator. The choice of

LTL−X instead of LTL is for simplicity of exposition of the proposed work. A brief overview

of LTL−X is provided below; the reader is referred to the literature [2,87] for further details.

The LTL−X syntax involves operators¬ (negation), ∨ (disjunction) and . (until). Let Λ =

{λk}N
R

i=0, with NR ∈ Z>0 be a prespecified set of atomic propositions. A LTL−X formula

over Λ is recursively defined as follows:

1. Every atomic proposition λk ∈ Λ is a LTL−X formula.

15

2.1. PROBLEM FORMULATION

2. If φ1 and φ2 are LTL−X formulae, then ¬φ1, (φ1 ∨ φ2), and (φ1 . φ2) are also LTL−X

formulae.

Let φ1 and φ2 be LTL−X formulae. The formula (φ1 . φ2) means that φ2 eventually becomes

true and φ1 remains true until φ2 becomes true. The operators ∧ (conjunction), ⇒ (impli-

cation), ⇔ (equivalence) are defined as is standard in propositional logic. The temporal

operators 3 (eventually), and 2 (always) are defined as follows:

3φ1 := (φ1 ∨ ¬φ1) . φ1, 2φ1 := ¬(3¬φ1).

A word ω = (ω0, ω1, . . .) is a sequence such that ωi ∈ 2Λ for each i = 0, 1, . . . where 2Λ de-

notes the power set of Λ. For i, j ∈ Z>0, j > i, we denote by ωji the word (ωi, ωi+1, . . . , ωj).

The satisfaction of a LTL−X formula φ by the word ω is denoted by ω |= φ, and it is recur-

sively defined as follows:

1. ω |= λk if λk ∈ ω0, and ω 6|= λk if λk 6∈ ω0.

2. ω |= ¬φ if ω 6|= φ.

3. ω |= (φ1 ∨ φ2) if ω |= φ1 or ω |= φ2.

4. ω |= (φ1 . φ2) if there exists i > 0 such that ω∞i |= φ2 and for every j < i, ωij |= φ1.

We assume a finite number of regions of interest in the workspace labeled as λ1, . . . , λNR .

Each λk is an atomic proposition defined by a set membership relation in D of the form

λk ≡ x(ξ) ∈ ∪i∈ςkc[i], for each k = 1, . . . , NR. (2.4)

where ςk ⊆ {1, . . . , NC} is prespecified for each k = 1, . . . , NR. Each region of interest is

assumed to be a (possibly disconnected) union of cells. Each path v = (v0, v1, . . .) ∈ LG
defines a word ω(v) = (ω0, ω1, . . . ,), where

ω` := {λk | cell(v`) ⊆ ∪i∈ςkc[i]} . (2.5)

16

2.2. LIFTED GRAPH

The path v is said to satisfy a LTL−X formula φ if ω(v) |= φ. The main problem of interest

in this paper is the following.

Problem 1. Given a LTL−X formula φ over Λ, and ξ0 ∈ D, determine a collection of paths

LΓφ ⊆ LΓ(ξ0) such that every path in LΓφ satisfies the formula φ.

The “channel” of cells associated with every path in the collection LΓφ can be traversed

by an admissible state trajectory. Furthermore, every path in LΓφ also satisfies the specifi-

cation φ. The collection LΓφ therefore represents, loosely speaking, an equivalence class of

admissible state trajectories that satisfy the specification φ. The computation of LΓφ is de-

sirable because every route that belongs to LΓφ is guaranteed to be compatible with vehicle

dynamical constraints. As we discuss in Section 2.3, the solution of Problem 1 immediately

leads to a route-planning algorithm.

The computation of LΓφ is challenging because LΓ(ξ0) is difficult to compute, and in-

volves discrete abstraction of the continuous system Γ. Previously [4, 98], feedback control

laws have been designed to construct a language equivalent discrete abstraction, such that

LΓ = LG . However, the underlying assumption therein is that the vehicle model is com-

pletely controllable in the presence of workspace constraints (e.g. obstacles). For the vehicle

model considered in this paper, this controllability assumption is not true [102].

To solve Problem 3 in the light of the preceding observations, we propose a new ap-

proach based on the so-called lifted graph, which we discuss next.

2.2 Lifted Graph

The proposed approach to the solution of Problem 3 and route-planning relies on traversabil-

ity analysis and assignment of transition costs to successions of edges in the graph G. To this

end, we adopt and modify the idea of lifted graphs [102] as follows. For H ∈ Z>0, let

VH :=
{

(v0, . . . , vH) : (vk−1, vk) ∈ E and vk 6= vm ⇔ k 6= m, for k,m ∈ {1, . . . , H}
}
.

17

2.2. LIFTED GRAPH

(a) Graph G. (b) Lifted graph G1.

Figure 2.1: Example of a lifted graph (the vertices (3, 2) and (5, 2) of the lifted graph are drawn
twice for clarity of the diagram).

Every element i ∈ VH is an ordered (H + 1)-tuple of unique elements of V . Per the notation

used by Cowlagi & Tsiotras [102], we denote by [i]k the kth element of i, and by [i]mk the tuple(
[i]k, [i]k+1, . . . , [i]m

)
, where 1 6 k < m 6 H+1. LetEH be a set of pairs (i, j) ∈ VH×VH ,

such that [i]k = [j]k−1, for each k = 2, . . . , H + 1. According to this notation, V0 = V and

E0 = E. Note that, forH > 1, each vertex in VH defines an edge inEH−1. ifH is larger than

the length of the longest simple path in G, then VH is empty. The lifted graph GH is defined

as the directed graph whose vertex and edge sets are, respectively, VH and EH . Figure 2.1

illustrates an example of a lifted graph for H = 1.

With the exception of paths that contain cycles of length H + 1 or less, every path

v = (v0, v1, . . .) in the graph G can be uniquely mapped to a path i := (i0, i1, . . .) in the

lifted graph GH , where ik := (jk, jk+1, . . . , jk+H) ∈ VH for each k ∈ N. We denote this map

by bH0 : LG → LGH , where LGH is the collection of all paths in GH . Therefore, i = bH0 (v)

and v = b0
H(i). For every integer H > 0, the map bH0 is surjective and invertible and bHH

is the identity map. As a first step towards the solution of Problem 1, we associate certain

reachability properties of the vehicle model with edge transitions in the lifted graph GH . In

what follows, we assume H > 1.

18

2.2. LIFTED GRAPH

2.2.1 Edge Transition Costs in GH

To characterize the collection LΓ, we define a transition cost function gH : EH → [0, χ],

by which we can compute costs of paths in the lifted graph GH . Here, χ ∈ R+ is a large

positive number sufficiently greater than the length of the longest simplest path in G. Then

we assert that a path v ∈ LG belongs to the collection LΓ(ξ0) if and only if any subpath of

bH0 (v) of length less than χ has cost less than χ.

Consider an edge (i, j) ∈ EH in the lifted graph GH . Let S(i) ⊂ D be a set of states

associated with i ∈ VH such that x(S(i)) ⊆ cell([i]1)∩ cell([i]2). Thus, the projections onW

of the elements in S(i) lie on the boundary between the first and second cells corresponding

to the vertices of V that constitute the ordered H-tuple i. Next let Q(j) ⊂ D be such that

x(Q(j)) ⊆ cell([j]1) ∩ cell([j]2) and for every ξq ∈ Q(j) there exists a finite traversal time tq

and an admissible control input uq ∈ U such that tr(ξ(·; ξq, uq),G) = b0
H−1(j). Informally,

Q(j) is the set of all states whose position components lie on the boundary between the first

and second cells of j, and such that the traversal of the geometric region defined by the cells

associated with j is possible from any initial state within Q(j). Sets such as Q(·) are called

backward reachable sets or target sets [108].

Next, letRi be a reachability map associated with the states in sets S(i), defined by

Ri(ξs) :=
{
ξt ∈ D | ξt ∈

⋃
t∈R+

⋃
u∈Ut

ξ(t; ξs, u), and (
⋃

τ∈[0,t]

x(ξ(τ ; ξs, u))) ∩ (W\cell([i]2)) = ∅
}
,

(2.6)

where ξs ∈ S(i). Informally, Ri(ξs) is a forward reachable set of all states that can be

reached from ξs by trajectories whose projections onW always remain within the cell([i]2),

i.e. the region defined by the second cell of i. Finally, define Ŝ(i, j) := {ξs ∈ S(i) :

Ri(ξs) ∩Q(j) 6= ∅}.

Now consider a finite-length path v = (v0, v1, . . . vP) ∈ LG with no cycles of length less

than or equal to H + 1, and an initial vehicle state ξ0 ∈ D, with x(ξ0) ∈ cell(v0) ∩ cell(v1).

19

2.2. LIFTED GRAPH

[ik]1 [ik]2 = [ik+1]1

[ik]3 = [ik+1]2 [ik]4 = [ik+1]3 [ik+1]4

��
��Ŝ(ik, ik+1)

PPP

S(ik) ⋃
ξs∈S(ik)Rik(ξs)

PPPPPP

Q(ik+1)

hhhhhhh S(ik+1)

Figure 2.2: Conceptual illustration of the setsR,Q(·) and S(·) forH = 2. The large arrows indicate
the existence of admissible state trajectories as described in the text preceding (2.6).

For each k ∈ N, let ik := (vk, . . . , vk+H). Clearly, (ik, ik+1) ∈ EH . We iteratively define gH

and the set association S(·) as follows:

S(ik+1) :=
⋃

ξs∈Ŝ(ik,ik+1)

(Rik(ξs) ∩Q(ik+1)) , (2.7)

gH(ik, ik+1) :=

 χ, if S(ik+1) = ∅,

1, otherwise,
(2.8)

where S(i0) = ξ0. The H-cost of the path v ∈ LG is defined as

JH(v) := H +
P−H∑
k=0

gH(ik, ik+1). (2.9)

Figure 2.2 illustrates these concepts. Note first that theH-cost of a path v ∈ LG depends

on the initial state. The collection of sets S(ik) indicate the possible vehicle states from

which traversal of the channel associated with the path v is possible. Second, note that due

to the recursive nature of (2.7)–(2.9), it is beneficial to compute edge transition costs in GH
in conjunction with a search algorithm for finding a desired path in LG.

In this context, notice that a serious issue arises. On the one hand, the computations

20

2.2. LIFTED GRAPH

of the sets R(·), Q(·), and S(·) are time-intensive and unsuitable for real-time implemen-

tation. On the other hand, the edge transition costs in (2.7)–(2.9) must be computed simul-

taneously with the real-time route-planning algorithm (see Section 2.3.1) that searches for

a path in the lifted graph GH . To resolve this issue, we propose a technique that relegates

the time-intensive computations to an offline preprocessing stage, and yet allows for con-

servative approximations of the sets R(·), Q(·), and S(·) to be determined online (based on

the preprocessed results) within the route-planning algorithm. This technique is discussed

in Section 2.4. Here, we state an important result that characterizes the collection LΓ(ξ0) of

G-traces of all admissible vehicle trajectories.

Proposition 1. Let v = (v0, . . . , vP) be a path in LG with length less than χ and with no

cycles of length less than or equal to H + 1, and let ξ0 ∈ D be prespecified such that

x(ξ0) ∈ cell(v0) ∩ cell(v1). Then v ∈ LΓ(ξ0) if and only if JH(v) < χ.

Proof. Define ik := (vk, . . . , vk+H), for each k ∈ {0, . . . , P − H}. First, suppose that

JH(v) < χ. By Eqns. (2.8) and (2.9), it follows that, for each k ∈ {0, . . . , P − H},

gH(ik, ik+1) = 1, and that S(ik+1) is nonempty. By Eqn. (2.7), for every state ξs ∈ S(ik+1),

there exists pre(ξs) ∈ Ŝ(ik, ik+1) ⊆ S(ik) such that ξs ∈ Rik(pre(ξs)).

In particular, S(iP−H) is nonempty, and, by Eqn. (2.7), Q(iP−H) is nonempty. By

definition, for any state ξP−H ∈ Q(iP−H), there exist tP−H ∈ R+ and a control input

uP−H ∈ UtP−H such that

x(ξ(t; ξP−H , uP−H)) ∈ ∪H+1
`=1 cell([IP−H]`) (2.10)

Then we iteratively define ξk := pre(ξk+1) for each k = P −H, . . . , 0. Note that ξk+1 ∈

RIk(ξk). By definition in Eqn. (2.6), there exist tk ∈ R+ and uk ∈ Utk such that ξ (t; ξk, uk) =

ξk+1, and

x(ξ (t; ξk, uk)) ∈ cell([ik]2), t ∈ [0, tk] . (2.11)

21

2.3. PRODUCT TRANSITION SYSTEM

Note that ξk ∈ S(ik), which implies that ξ0 ∈ S(i0) = ξ0. Now define the concatenated

trajectory

ξ∗(t) := ξ(t; ξk, uk), t ∈ [τk, τk+1] , (2.12)

where τ0 = 0 and τk+1 := τk + tk, for each k = 0, . . . , P −H. By Eqns. (2.10) and (2.11),

it follows that v = tr(ξ∗,G), and, by consequence, that v ∈ LΓ(ξ0).

To prove the converse, suppose that v ∈ LΓ(ξ0). By definition, x(ξ (0; ξ0, u)) ∈ cell(v0)

and x(ξ (tf ; ξ0, u)) ∈ cell(vP). Define for each k ∈ {0, . . . , P −H},

τk := max
τk∈[0,tf]

{τk : x(ξ (τk; ξ0, u)) ∈ cell([ik]1) ∩ cell([ik]2)} ,

ξs
k := ξ (τk; ξ0, u) , uk := u|[τk,τk+1].

The existence of τk is guaranteed by continuity of ξ and by (2.3). It is easy to see that

τ0 = 0, ξs
k = ξ0, and that for each k ∈ {1, . . . , P −H}, ξs

k+1 ∈ Rik(ξ
s
k). By definition of the

setsQ(·), it is also clear that ξs
k+1 ∈ Q(ik+1). Therefore, ξs

k+1 ∈ S(k + 1), and by Eqns. (2.7)

and (2.8), gH(ik) = 1 for each k ∈ {1, . . . , P −H}. It follows that JH(v) < χ.

Proposition 1 asserts that the channel of cells associated with any path inLG is traversable

by an admissible state trajectory of Γ if and only if the H-cost of this path is less than χ (as-

suming that the number of vertices in this path is less than χ).

2.3 Product Transition System

The lifted graph GH and the associated edge transition cost computations define a finite

state transition system that represents the vehicle dynamical model. To find paths in GH that

satisfy a given specification φ, we construct and search a so-called product transition system

as discussed below. Figure 3.1 illustrates the proposed route-planning algorithm. Recall that

the connection between the given LTL specification and the UAV route is via (2.4), which

22

2.3. PRODUCT TRANSITION SYSTEM

Figure 2.3: Conceptual illustration of the proposed route-planning approach.

associates propositions in the LTL specifications with regions in the workspace.

It is known [88,89] that every LTL formula can “represented” by a finite state transition

system. Precisely, every LTL formula φ over the alphabet Λ is associated with a Büchi

automaton Bφ with input alphabet 2Λ. The collection of accepting runs of Bφ is exactly the

collection of infinite strings over Λ that satisfy φ. In the context of UAV route-planning,

admissible transition sequences in Bφ are associated with routes that satisfy the given LTL

specification. Algorithms for translating a LTL formula to the associated Büchi automaton

are available [89–91]. The reader interested is referred to the literature [2, 109] for further

details on finite state automata in general and Büchi automata in particular.

For the Büchi automaton Bφ, we denote by S the set of states, by δBφ ⊆ S × 2Λ × S

the transition relation between states, and by S0, Sf ⊆ S, respectively, the sets of initial

and accepting states. For an integer H > 1, we now define a product transition system

Tφ,H := (T, δTφ,H) as follows:

1. The set of states of Tφ,H is T := S × VH . For each state θ ∈ T , we denote by θ|S and

θ|VH , respectively, the projections of θ on S and VH .

2. The transition relation of Tφ,H is δTφ,H ⊆ T × 2Λ × T defined as the set of all triplets

(θk, ωk, θ`) such that

(θk|S, ωk, θ`|S) ∈ δBφ , (θk|VH , θ`|VH) ∈ EH , (2.13)

ωk = {λi | cell([θk|VH]1) ⊆ ∪j∈ςicj} . (2.14)

23

2.3. PRODUCT TRANSITION SYSTEM

Thus, transitions in the product system are associated with transitions in the Büchi

automaton and with transitions in the lifted graph GH . The relationship between tran-

sitions in the product system and the UAV’s workspace is defined by (3.3).

A run of Tφ,H is a sequence Θ = (θ0, θ1, . . . ,) such that θk ∈ T for each k ∈ Z>0, and

(θk, ωk, θk+1) ∈ δTφ,H , with ωk as defined in (3.3). We denote by Θ|S = (θ0|S, θ1|S, . . . ,)

and Θ|VH = (θ0|VH , θ1|VH , . . . ,), respectively, the projections of Θ on S and VH . Note that

Θ|VH ∈ LGH , and therefore b0
H(Θ|VH) ∈ LG .

Similar to previously reported approaches in the literature [87], we restrict attention

to runs of Tφ,H of a “prefix-suffix” form Θ = (Θp,Θs,Θs, . . . ,). Here, the “suffix” run

Θs = (θf,1, θs,1, . . . , θs,N, θf,2), which is repeated infinitely often in Θ, is a finite sequence

such that θf,1, θf,2 ∈ Sf × VH , and θs,n ∈ S × VH , for n = 1, . . . , N. The “prefix” run

Θp = (θ0, . . . , θM) is a finite sequence such that θ0 ∈ S0 × VH and (θM , ωM , θf) ∈ δTφ,H .

Now we state the main result of this paper as follows.

Theorem 1. Let Θ = (θ0, θ1, . . . ,) be a run of Tφ,H .

If JH(b0
H(Θp|VH)) < χ and JH(b0

H(Θs|VH)) < χ,

then b0
H(Θ|VH) ∈ LΓΦ.

Conversely, for every path v ∈ LΓΦ with no cycles of length less than or equal to H + 1,

there exists a run Θ of Tφ,H , such that b0
H(Θ|VH) = v.

Proof. By Prop. 1,

b0
H(Θp|VH) ∈ LΓ(ξ0), b0

H(Θs|VH) ∈ LΓ(ξ0),

which implies that b0
H((Θp,Θs,Θs, . . .)|VH) ∈ LΓ(ξ0). By (2.5), (3.2), and (3.3), the path

v := b0
H(Θ|VH) ∈ LG defines the word ω(v) = (ω0, ω1, . . .). By definition of Tφ,H ,

(θk, ωk, θk+1) ∈ δTφ,H , and (θk|S, ωk, θk+1|S) ∈ δBφ for each k ∈ N. Therefore, the word

24

2.3. PRODUCT TRANSITION SYSTEM

ω(v) is accepted by the Büchi automaton Bφ, which in turn means that the path π satisfies

the formula φ and, by consequence, v = b0
H(Θp|VH) ∈ LΓΦ.

To prove the converse, consider a path v = (j0, j1, . . .) ∈ LΓφ ⊆ LΓ ⊆ LG such that the

length of v is greater thanH+1 and there are no cycles of length less than or equal toH+1.

Because the path satisfies the formula φ, the word ω(v) = (ω0, ω1, . . .), where ωk is defined

in Eqn. (2.5), is accepted by the Büchi automaton Bφ. Let s0, s1, . . . be the states of Bφ
visited in the run associated with the input word ω(v). Also, let ik := (vk, . . . , vk+1) ∈ VH ,

and define θk := (sk, ik) for each k ∈ N. Clearly, (θk, ωk, θk+1) ∈ δTφ,H , and it follows that

Θ := (θ0, θ1, . . .) is a run of Tφ,H , and that Θ|VH = bH0 (v),which implies b0
H(Θ|VH) = v.

2.3.1 Route-Planning Algorithm

Theorem 2 solves Problem 3 in that it precisely characterizes the collection LΓφ. Recall

thatLΓφ is an equivalence class of admissible state trajectories that satisfy the specification φ.

Following Theorem 2, it is easy to determine a specific plan for a given initial state ξ0 ∈ D

and a given LTL−X specification φ. To do so, we execute Dijkstra’s algorithm to search

for a prefix and suffix run of the product transition system that satisfy the conditions given

in Theorem 2. A straightforward algorithm for finding a run of a product automaton with

minimum total number of vertices in the concatenation of prefix and suffix runs appears in

the literature [87], which we can appropriately modify for finding a run of Tφ,H . A limitation

of the proposed algorithm is that routes of length less than H + 1 or routes containing cycles

of length less than or equal to H + 1 cannot be mapped to the lifted graph GH , and will

therefore not be found by the proposed algorithm. However, for practical applications in

aircraft route-planning this fact is unlikely to restrict the proposed algorithm. The values

of H are typically small integers, whereas routes to be planned in practice are over large

environments. Therefore, routes with less than H cells are unlikely to be of significance.

Furthermore, the aircraft’s minimum radius of turn is likely to preclude short-length cycles

in the route.

25

2.3. PRODUCT TRANSITION SYSTEM

The only modification that needs to be made to Dijsktra’s search algorithm is that the

edge transition costs in the lifted graph are computed simultaneously with the search. To do

so, within the search algorithm each search vertex (state of the product transition system) is

associated with an index set related to the vehicle state. The exact definition of these index

sets is clarified in the next Section, where we also introduce a connectivity matrix.

This idea is illustrated with pseudo-code in Fig. 2.4. Let ξ0 ∈ D be the given vehicle

initial state and let vS be the vertex in G such that ξ0 ∈ cell(vS). We define θS as a “dummy”

start vertex in the product automaton Tφ,H such that it is connected with zero cost to all θ ∈ T

with [θ|VH]1 = vS. As is usual in Dijkstra’s algorithm [58], each search vertex (state of the

product transition system) is associated with a label d and a backpointer b. The fringe P is

a set of search vertices whose label can potentially be improved. The REMOVE and INSERT

functions maintain a sorting order in the fringe according to the current value of the label.

The modification proposed here associates the index set R with each search vertex, which

is updated in Line 8 of the pseudo-code shown in Fig. 2.4. The meaning and significance

of the symbol C (connectivity matrix) in Line 8 will become clear in the next Section. The

description in Fig. 2.4 is an idealization, and implementations of the proposed route-planning

can be significantly sped up by using search heuristics, a discussion of which is beyond the

scope of this paper. The cost function (2.8) is approximated as follows, to provide transition

costs in the product system Tφ,H :

g̃H((θk|VH , θ`|VH)) :=

 χ, if R(θ`) = ∅,

1, otherwise.

The computational complexity of the proposed algorithm is the same as that of Dijkstra’s

algorithm, namely, O
(
|δTφ,H |+ |Tφ,H | log |Tφ,H |

)
when the fringe P is implemented using

a Fibonacci heap [110]. Here, δTφ,H is the total number of transitions in the product tran-

sition system. To express this computational complexity in terms of problem data, namely,

the number of cells NC and the number of atomic propositions NR in the given LTL−X

26

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

Proposed Label-Correcting Algorithm for Route-Planning

procedure INITIALIZE(θS)
1: P := θS, d(θS) := 0, R(θS) := m0.
2: for all θ ∈ T do
3: d(θ) :=∞

procedure MAIN

1: INITIALIZE(θS)
2: while P 6= ∅ do
3: θk := REMOVE(P)
4: for all θ` ∈ T such that there exists ωk as in (3.3) and (θk, ωk, θ`) ∈ δTφ,H do
5: if d(θk) + g̃H((θk|VH , θ`|VH)) < d(θ`) then
6: d(θ`) := d(θk) + g̃H((θk|VH , θ`|VH)); b(θ`) := θk
7: R(θ`) := {p ∈ N | Cmp = 1, for each m ∈ R(θk)}
8: P := INSERT(P , θ`)

Figure 2.4: Pseudo-code for executing a modified form of Dijkstra’s algorithm on the product au-
tomaton.

specification, note first that that |Tφ,H | = |VH ||S|, and |δTφ,H | ≈ |EH ||S|. The minimum

number of states in the Büchi automaton Bφ depends on the structure of φ; for specifications

of typical relevance in aircraft guidance applications (see Section 5.4 for illustrative exam-

ples), we consider |S| ≈ NR + 1, as reported in the literature [111]. Next, we note that the

number of edges in the cell decomposition graph G = G0 is of the same order as the number

of cells, i.e. E ≈ 2NC, for the specific case of 4-connected rectangular cells considered in

this paper. Next, note that |VH | ≈ NC4H , and that EH ≈ 4|VH | ≈ NC4H+1. It follows that

the worst-case complexity of the proposed algorithm isO
(
NT4H+1 +NT4H log

(
NT4H

))
,

where NT := NC(NR + 1).

2.4 Numerical Computation of Edge Transition Costs

In this section, we address the computation of the sets R(·), Q(·), and S(·) that appear

in the edge transition cost definition (2.7)–(2.9).

27

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

x

y

(a) Adjacent faces.

x

y

(b) Opposite faces.

x

y

x

y

y

x

[i]1 [i]2

[i]3 [i]4 [j]4

(c) Illustration of a sequence of cells associated with (i, j) ∈
E3.

Figure 2.5: Illustration of canonical traversals (adjacent and opposite) and local coordinate axes
systems. In (a) and (b), the green- and red colored dotted lines indicate, respectively, the entering
and exiting faces of traversal of the cell.

Admissible state trajectories of the vehicle model in Section 2.1.1 are continuously dif-

ferentiable planar curves with a speed profile, such that the curvature at any point on these

curves satisfies the speed-dependent upper bound

κmax :=

√
a2

max − v̇2

v2amaxρ
. (2.15)

Recall that, due to the control input constraint (2.2), |v̇| 6 amax, which ensures that the

previous expression for κmax is real. Based on this observation, and previously reported

geometric analysis of curvature-bounded paths [112], we discuss a method to numerically

compute the edge transition costs defined in (2.7)–(2.9). In the analysis that follows, we

assume that the workspace has been partitioned using square cells of uniform size. Without

loss of generality, we assume that the size of each side of any cell is 1 unit.

First, recall that each edge (i, j) ∈ EH is associated with a sequence of H + 2 succes-

sively adjacent cells, namely, the sequence
(
cell([i]1), . . . , cell([i]H+1), cell([j]H+1)

)
as illus-

trated in Fig. 2.5(c). Each cell in this sequence, called a tile [102], admits either traversal

across adjacent faces (e.g. cell([i]2) and cell([i]3) in Fig. 2.5(c)), or traversal across opposite

faces (e.g. cell([i]4) in Fig. 2.5(c)). We consider canonical forms of these cell traversal types,

and attach local, right-handed coordinate axes systems as shown in Figs. 2.5(a) and 2.5(b).

28

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

Similarly, local coordinate axes systems are attached to each cell such that (a) for traversal

across adjacent faces, the x-axis coincides with the “exiting” face, and (b) for either type of

traversal, the y-axis coincides with the “entering” face, as shown in Fig. 2.5(c). Note that

each local axes system can be transformed via rigid rotations and/or reflections to either of

the canonical forms shown in Figs. 2.5(a) and 2.5(b).

The advantage of attaching these local coordinate axes systems to each cell is that, for

k = 1, . . . , H , for every state ξs ∈ cell([i]k) ∩ cell([i]k+1), the local coordinates of x(ξs)

are of the form (0, w), where 0 6 w 6 1. Consequently, the local coordinates of the states

in the previously introduced sets Q(·) and S(·) reside in the parallelepiped S := [0, 1] ×[
−π

2
, π

2

]
× [vmin, vmax] . This observation is crucial for developing a concise representation

of (approximations of) the forward- and backward reachable sets involved in (2.7)–(2.9), and

consequently enable fast online computations thereof.

The preprocessing stage of the proposed approach is summarized as follows. First, we

generate a library of tiles for each relevant value of H = 1, 2, Next, for each of these

tiles in this library, we consider two copies of the parallelepiped S := [0, 1] ×
[
−π

2
, π

2

]
×

[vmin, vmax] associated with, respectively, the second and third cells in the tile. These copies

are denoted, respectively, by S1 and S2. Next, we compute numerical approximations of the

sets of the sets R(·), Q(·), and S(·) using geometric analysis of curvature-bounded planar

curves. Next, we partition the parallelepiped S into uniformly sized regions. Finally, we

compute intersections or inclusions of these regions with the sets R(·), Q(·), and S(·), as

appropriate, to determine a connectivity matrix of regions within S1 to those within S2. This

connectivity matrix is stored and looked up during online computations of edge transition

costs in GH . In what follows, we provide additional details of each of the steps outlined

above.

29

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

Figure 2.6: Tile library for H = 2, auto-generated using a MATLABr script.

Figure 2.7: Tile library for H = 3, auto-generated using a MATLABr script.

Library of Tiles

Recall that for each H > 1, the number of cells in any tileis H + 2. It is straightforward

to generate a library of tiles for each value of H by enumerating all possible permutations of

successive traversal types. During real-time computations, the sequence of cells associated

with any edge in GH can be uniquely mapped to a tile in this library via rigid transformations.

The libraries of all tiles (unique up to rigid transformations) forH = 2 andH = 3 are shown

in Figs. 2.6 and 2.7 respectively.

Geometric Computation of Forward- and Backward Reachable Sets

Computations of the backward reachable set Q(·) can be performed using previously

reported analysis [112] of curvature-bounded curves in rectangular channels similar to the

30

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

regions enclosed by tiles. The details of this analysis are available in the literature [112,113],

and are therefore omitted from this paper. Here, it suffices to note that, for the tile associated

with an edge (i, j) ∈ EH and a prespecified κ > 0,, the results of this analysis are pointwise

numerical values of four piecewise continuous functions α1, α1, α2, α2 : [0, 1] →
[
−π

2
, π

2

]
such that:

1. For every point with coordinates (0, w) on the cell boundary cell([i]1) ∩ cell([i]2),

there exists a continuously differentiable curve with maximum curvature κ travers-

ing the remainder of the tile if the initial tangent angle of this curve lies in the interval

[α1(w), α1(w)] . All of the quantities involved here are expressed in the local coordi-

nate axes system attached to the second cell of the tile, i.e. cell([i2]).

2. For every point with coordinates (0, w) on the cell boundary cell([i]2) ∩ cell([i]3),

there exists a continuously differentiable curve with maximum curvature κ travers-

ing the remainder of the tile if the initial tangent angle of this curve lies in the interval

[α2(w), α2(w)] . All of the quantities involved here are expressed in the local coordi-

nate axes system attached to the third cell of the tile, i.e. cell([i3]).

Note that these functions represent the backward reachable setsQ(·) defined in Section 2.2.1.

The forward reachability setsR(ξs) are relatively easier to compute [114]. In the present

context, we leverage the assumption (stated in Section 2.1.1) ρvmin > 3 and obtain conserva-

tive approximations to these sets in the form of regions described by [w,w]×
[
β, β

]
× [v, v] .

The derivation and exact expressions for the quantities w,w, β, β, v, v, all of which de-

pend on ξs, are lengthy and cumbersome, and are therefore omitted. For the reader’s con-

venience, MATLABr code implementing these computations is made available at http:

//users.wpi.edu/∼rvcowlagi/software.html.

The preprocessing stage in the proposed route-planning algorithm involves the compu-

tation of these forward- and backward reachable set for each element of the tile library for

each value of H . Furthermore, recall that the curvature constraints of interest for the vehi-

cle model considered in this paper are speed-dependent. Therefore, these computations are

31

http://users.wpi.edu/~rvcowlagi/software.html
http://users.wpi.edu/~rvcowlagi/software.html

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

in fact performed for several different values of the curvature bound. The details of these

preprocessing computations with precise index notations are discussed next.

Note that the results of computations of these forward and backward reachable sets

constitute large volumes of numerical data, which is not advisable for storage and online

lookup (even if the computations themselves are preprocessed offline). To resolve this issue,

we store only an “abstraction” of the relations between these reachable sets in the form of

sparse connectivity matrices, as explained next.

Regions in S and Connectivity

Consider an edge (i, j) ∈ EH , and the associated tile. As previously noted, we con-

sider copies S1 and S2 of the parallelepiped [0, 1]×
[
−π

2
, π

2

]
× [vmin, vmax] associated with,

respectively, the second and third cells in the tile. Each of S1 and S2 are partitioned into uni-

formly sized regions, i.e. each region in this partition is itself a parallelepiped of dimensions

∆w := 1
Nw , ∆ψ := 1

Nψ , and ∆v := 1
Nv , where Nw, Nψ, N v ∈ Z>0 are prespecified. We de-

note these regions by σ1[m], σ2[m], where m = 0, 1, . . . , (NwNψN v−1), and the subscripts

1 and 2 indicate to which of the parallelepipeds S1 and S2 the regions belong. Each region

σn[m], n ∈ {1, 2} is defined by the Cartesian product
[
σwn [m], σwn [m]

]
×
[
σψn [m], σψn [m]

]
×[

σvn[m], σvn[m]
]
, where

σwn [m] := mod(mod(m,N vNψ), Nψ)∆w, σwn [m] := σwn [m] + ∆w, (2.16)

σψn [m] :=

⌊
mod(m,NwNψ)

Nψ

⌋
∆ψ, σψn [m] := σψn [m] + ∆ψ, (2.17)

σvn[m] :=
⌊ m

NψNw

⌋
∆v, σvn[m] := σvn[m] + ∆v. (2.18)

We associate with each tile a sparse square connectivity matrix C with NwNψN v rows.

The preprocessing stage of the proposed route-planning algorithm then consists of the fol-

lowing computations to be performed for each tile for each value of H:

32

2.4. NUMERICAL COMPUTATION OF EDGE TRANSITION COSTS

1. Perform curvature-bounded traversal analysis [112] withN v different curvature bounds,

and for each determine numerical approximations of the four functions discussed in

Section 2.4. Denote these functions by α`1, α
`
1, α

`
2, α

`
2, where ` = 0, 1, . . . , (N v − 1).

The different curvature bounds to be used for this analysis are the following:

κmax,` :=
(
(σvn[m])2ρ

)−1
, m = 0, 1, . . . , (NwNψN v − 1). (2.19)

Note that although the index m takes values in a larger range compared to the index `,

by (2.18), the number of unique values of the right hand side of (2.19) is N v. The

expression (2.19) for curvature bounds arises from the previously discussed expres-

sion (2.15). Here, since the traversal analysis is performed for a range of speeds, the

dependence on tangential acceleration can be ignored in favor of conservative approx-

imations to the speed as necessary.

2. Determine an index set m2 ⊆ {0, 1, . . . , (NwNψN v − 1)} such that

σ2[m] ∩ (
⋃

w∈[0,1]

[
α`2(w), α`2(w)

]
) 6= ∅, for each m ∈m2, where ` :=

⌊ m

NψNw

⌋
+ 1.

Informally, the index set m2 indicates the regions σ2[m] that have a nonempty inter-

section with the backward reachable set Q(j).

3. Determine an index set m1 ⊆ {0, 1, . . . , (NwNψN v − 1)} such that

σ1[m] ⊆
⋃

w∈[0,1]

[
α`1(w), α`1(w)

]
, for each m ∈m1, where ` :=

⌊ m

NψNw

⌋
+ 1.

Informally, the index set m1 indicates the regions σ1[m] that are included in the back-

ward reachable set Q(i).

4. For each m ∈m1,

(a) Determine wm, wm, βm, βm, vm, vm, (explicit expressions omitted due to length;

MATLABr code available at http://users.wpi.edu/∼rvcowlagi/software.html).

33

http://users.wpi.edu/~rvcowlagi/software.html

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

(b) Determine an index set mr
2 ⊆m2 such that

σ2[p] ∩
(

[wm, wm]×
[
β
m
, βm

]
× [vm, vm]

)
6= ∅, for each p ∈mr

2. (2.20)

(c) Assign Cmp = 1, where Cmp is the element in the mth row and pth column in C.

This step records connectivity between the mth region in S1 with the pth region

in S2.

2.5 Illustrative Numerical Simulation Results

Figures 2.8–2.10 illustrate applications of the proposed route guidance algorithm. In

each of these results, a workspace partition with uniformly-sized square cells is considered.

For clarity, the indices assigned to all cells are not shown; instead, different colors are used

to indicate associations with atomic propositions, as in (2.4). In what follows, we use the

notation of Section 2.1. All of these illustrative examples assume a constant unit speed of

traversal, i.e. u1 = 0. For preprocessing the connectivity matrices, the values Nw = Nψ =

100 are used. Also, all of these illustrative examples are set up in a cell decomposition

consisting of NC = 144 cells.

For the result shown in Fig. 2.8(a), the number of atomic propositions is NR = 3. In

each of the following examples, the atomic proposition λ1 is associated with all cells, includ-

ing those indicated in white color, to establish workspace limits. The cells associated with

atomic propositions λ2, λ3, and λ4 are indicated in Fig. 2.8(a) by gray (obstacles), red, and

yellow colors respectively. The dark green cell in the lower left corner is the cell contain-

ing x(ξ0). The sequence of numbered cells with bold outlines in Figure 2.8(a) indicate the

route obtained as a result of searching the product transition system described in Section 2.3,

for the LTL−X formula φ1 := 2λ1 ∧ 2¬λ2 ∧ 3λ3. This specification is read “always λ1,

never λ2, and eventually λ3”. Informally, this specification requires the vehicle to avoid

the gray-colored regions and visit the red-colored region, and is equivalent to the standard

34

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

(a) Spec. φ1 and ρ = 3.0 units. (b) Spec. φ2 and ρ 6 1
1.55 units. (c) Spec. φ2 and ρ = 3.0 units.

Figure 2.8: Application of the proposed approach: illustration of the effects on the resultant path of
changes in the control input constraint. The numerical values ρ are in dimensionless distance units,
where 1 unit is equal to the side of a cell in the uniform decomposition.

motion-planning problem of reaching a destination while avoiding obstacles. For the result

indicated in Figure 2.8(a), the control input constraint parameter ρ is set to ρ = 3 units.

Here, the unit of measurement is the size of a cell. The numbers indicated within cells in the

resultant route are the indices assigned to those cells.

The sequences of numbered cells with bold outlines in Figs. 2.8(b) and 2.8(c) indicate

the resultant route for satisfying the LTL−X specification φ2 := φ1 ∧ 3λ4. Informally, this

specification requires the vehicle to avoid the gray-colored regions, and visit the red- and

yellow-colored regions both. The different results in Figs. 2.8(b) and 2.8(c) are a conse-

quence of changing the parameter ρ. In particular, for the result indicated in Fig. 2.8(b),

ρ 6 1
1.55

units, whereas for the result indicated in Fig. 2.8(c) ρ = 3 units. Notice that the

same LTL−X specification is satisfied by two markedly different paths due to the different

input constraints. The result shown in Fig. 2.8(b) is computed by ignoring the vehicle model

altogether during route-planning and relies on the previously known result [115] that if a

channel is sufficiently “wide,” (specifically, at least 1.55 times the minimum radius of turn)

then a curvature-bounded curve is guaranteed to traverse it from any initial condition.

For the result shown in Fig. 2.9, the number of atomic propositions is NR = 3. The

cells associated with atomic propositions λ2 and λ3 are indicated in Fig. 2.9 by red and

yellow colors. Informally, this specification requires the vehicle visit the red- and yellow-

colored regions both. However, the order of visit is not specified, and there is no preference

for which of the two yellow- or two red-colored regions is to be visited. The dark green

35

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

(a) ξ0 = (4.5, 1.0, 1.0, π2), ρ = 3.5 units. (b) ξ0 = (4.0, 0.5, 1.0, π), ρ = 3.5 units.

(c) ξ0 = (2.0, 2.5, 1.0, 0), ρ = 3.5 units. (d) ξ0 = (1.5, 3.0, 1.0, π2), ρ = 3.5 units.

Figure 2.9: Application of the proposed approach: illustration of the effects on the resultant path of
changes in the initial state. Here, the LTL−X specification is φ3 (described in text). The numerical
values of position coordinates and of ρ are in dimensionless distance units, where 1 unit is equal to
the side of a cell in the uniform decomposition.

cell near the center is the cell containing x(ξ0). The sequence of numbered cells with bold

outlines in each of Figs. 2.9(a)–2.9(d) indicate the route obtained as a result of searching

the product transition system, for the LTL−X formula φ3 := 2λ1 ∧3λ2 ∧3λ3. Notice that

the regions associated with the propositions λ2 and λ3 (the red- and yellow-colored regions,

respectively) are unions of disconnected subregions. The different resultant paths in each of

Figs. 2.9(a)–2.9(d) are due to different initial states, as indicated in the captions.

Two additional results are shown in Fig. 2.10 to illustrate the impact of nonholonomic

constraints on the manner in which the given LTL specifications are satisfied, and of the

effectiveness of the proposed route-planning algorithm in handling these situations. For the

result shown in Fig. 2.10(a), the number of atomic propositions is NR = 4, with atomic

36

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

proposition λ2 associated with gray regions, and propositions λ3, λ4 associated with the red-

and yellow-colored regions respectively. The dark green-colored cell at the bottom left is

the cell containing x(ξ0). The sequence of numbered cells with bold outlines in Fig. 2.10(a)

indicates the route resulting from the proposed algorithm for satisfying the LTL−X specifi-

cation φ4 := φ2 ∧ (¬λ4 . λ3), which requires not only that the regions associated with λ3

and λ4 be both visited, but also that the region associated with λ3 be visited first. The result

shown in Fig. 2.10 is of significance for intelligence, surveillance, and reconnaissance UAV

operations, where mission requirements may dictate the order of visit to different regions.

For the result shown in Fig. 2.10(b), the number of atomic propositions isNR = 5, with

atomic proposition λ2, associated with gray regions, the propositions λ3 and λ4 associated

with the red- and yellow-colored regions, respectively, and the proposition associated with

the two green-colored regions. The green-colored cell at the bottom left is the cell containing

x(ξ0). The LTL−X specification φ5 := φ4 ∧32λ5 is considered.

Informally, this specification requires that the gray-colored regions be avoided, that the

red-colored region be visited, followed by the yellow-colored region, and that the route ter-

minate in either one of the green-colored regions. This specification is simple, yet of im-

mense practical significance: the sub-formula (32λ5) codifies the common – and necessary

– mission requirement of “return UAV to base,” where the “base” location need not be unique

(e.g. there may be multiple landing strips available).

The sequence of numbered cells with bold outlines indicates the route determined by

the proposed route-planning algorithm. This route includes a cycle, and is defined by the

sequence of cells

(1, . . . , 10, 22, 23, 35, . . . , 95, 94, . . . , 33, 34, 46, 47, 59, 60, 72 . . . , 144).

Notice that this result is significantly impacted by the control input constraints. Specifi-

cally, the route for a holonomic vehicle in this case may have simply involved returning to

the green-colored cell (indicated with index 1) in the bottom left after visiting the red- and

37

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

(a) Spec φ4 and ρ = 3.5 units. (b) Spec φ5 and ρ = 3.5 units.

Figure 2.10: Additional examples that illustrate the significant impact of nonholonomic motion con-
straints on the manner in which the given LTL specifications are satisfied (details in text).

yellow-colored regions. However, such a route is infeasible with the control input constraint

indicated in the figure caption. Furthermore, such a planned route (possibly computed by

a naive route-planning algorithm) would have been a particularly adverse plan, considering

the UAV’s kinematic constraints. This example therefore indicates the benefit offered by the

proposed approach in finding routes that not only satisfy given LTL specifications, but are

also compatible with the vehicle model and its constraints.

Figures 2.8–2.10 represent the results of executing the proposed route-planning algo-

rithm with parameter H = 5. The algorithm is implemented in the MATLABr (version

R2014b), and executed on a desktop computer with an Intelr CoreTM i7 2.80 GHz proces-

sor, 16 GB RAM, and the Windowsr 7 Enterprise 64-bit operating system. Representative

computation times involved in the proposed approach are provided in Tables 2.1 and 2.2.

The numbers of vertices in lifted graphs GH , for several different values of the parameter

H , are provided in Table 2.1. The computation time τtplg in the third row of Table 2.1

is the time required to record the topology of GH , i.e. to find and store in memory a list

of the vertices and edges in the lifted graph. This may be considered a part of the offline

38

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

H 0 1 2 3 4 5 6 7

|VH | 144 528 1,448 3,072 6,832 15,032 33,088 71,200
τtplg (s) — 0.0238 0.0895 0.2633 0.9265 3.347 12.95 53.46

Table 2.1: Number of vertices in the lifted graph, for various values of the parameter H , and the time
required to record the graph topology.

preprocessing stage, because the edge transition costs in GH are not assigned at this stage.

The computation times for setting up and executing the proposed route-planning algo-

rithm for the examples shown in Figs. 2.8–2.10 are provided in Table 2.2. Here, τsetup is

the total time required to record the lifted graph topology, to construct the Büchi automa-

ton (using the LTL2BA algorithm [91], and its MATLABr adaptation [?]), and to enlist

and store transitions in the product transition system Tφ,H . The time τ 0
search is the time re-

quired to search the product transition system using Dijkstra’s algorithm to find a route. The

times τ 1
search and τ 2

search are the times required to search the product transition system using

an A∗-like informed search algorithm with a search heuristic. A full discussion of these

search heuristics is beyond the scope of this paper, and the τ 1
search and τ 2

search are provided

to indicate potential improvements in the execution time of the proposed algorithm. Briefly,

these search heuristics are based on a preliminary search in the product transition system

Tφ,0, which executes quickly. The data reported in Tables 2.1 and 2.2 are averages over three

simulation trials for each specification, each value of the parameter H , and each value of the

control constraint ρ for specifications φ1 and φ2.

2.5.1 Discussion

The proposed route-planning algorithm offers several advantages compared to the state-

of-the-art. First, a significant portion of the computations involved can be preprocessed (as

discussed in Section 2.4), which reduces the online computational burden. For the numerical

simulation results shown in Figures 2.8–2.10, the time to execute the preprocessing step

with Nw = Nψ = 100, N v = 1, H = 1, . . . , 7, and ρ = 3.5, on the aforementioned

39

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

Specification→ φ1 φ2 φ3 φ4 φ5

ρ→ 3.0 4.0 5.0 3.0 4.0 5.0 3.5 3.5 3.5

H = 3, |Tφ,H | 6,146 12,292 12,292 9,219 18,438
|δφH| 11,110 22,892 32,308 17,771 17,963

τsetup (s) 2.429 5.040 4.917 — —
τ0

search (s) 6.391 3.705 — 18.82 6.992 2.258 0.9605 — —
τ1

search (s) 1.049 2.036 — 11.47 6.076 2.251 0.6679 — —

H = 4, |Tφ,H | 13,666 27,332 27,332 20,499 40,998
|δφH| 23,799 49,114 73,608 38,496 38,904

τsetup (s) 6.545 13.73 13.73 — —
τ0

search (s) 14.88 6.083 1.985 42.09 13.95 3.814 1.398 — —
τ1

search (s) 2.272 2.758 1.995 24.88 10.02 3.563 0.8846 — —

H = 5, |Tφ,H | 30,066 60,132 60,132 45,099 90,198
|δφH| 51,114 105,660 167,582 83,563 84,475

τsetup (s) 19.84 39.12 37.64 35.68 71.56
τ0

search (s) 22.42 12.90 6.205 69.69 34.29 9.443 1.436 38.08 66.78
τ1

search (s) 2.421 3.462 6.028 37.20 21.84 9.132 0.9781 35.90 84.27
τ2

search (s) Experiment not performed. 31.65 49.26

Table 2.2: Execution times for the numerical simulation examples discussed in Section 5.4. The blank
entries for τ0

search and τ1
search for H = 3, 4 indicate that the search returned failure after a finite

number of iterations, and no route was found.

40

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

desktop computer, is approximately 65 minutes. Connectivity matrices for each of a total

of 254 tiles (unique up to rigid transformations) are stored. The total number of non-zero

elements in all of these matrices is approximately 64.21×106, which requires memory space

of approximately 32 MB using the sparse matrix data structure provided by MATLAB R©.

Whereas the execution times reported in Table 2.2 are of the order of seconds or tens

of seconds, we claim that significant portions of these execution times are merely due to

the computational overhead introduced by MATLAB R©. This claim is corroborated by the

fact that the sizes of the product transition systems, in terms of numbers of states, indicated

in Table 2.2 are relatively small in comparison to the typical graph sizes (of the order of

107 vertices) that can be searched by high-performance software libraries within a few tens

of seconds [116, 117]. The main difficulty in the proposed approach is that the transition

costs in the product transition system depend on computationally intensive reachability cal-

culations. However, the offline preprocessing stage as discussed in Section 2.4 enables the

determination of these transition costs via a simple lookup table. Therefore, it is possible to

reduce these execution times by several orders of magnitude by appropriately implementing

the proposed algorithm with a low-level programming language such as C++, and by uti-

lizing high-performance open-source software libraries. Appropriate search heuristics can

also significantly reduce the execution times, and enable real-time implementations of the

proposed algorithm.

Second, as previously noted for the example shown in Fig. 2.9, the proposed approach

allows for the association of disconnected regions in the workspace with a single atomic

proposition. Consequently, the total number of propositions can be reduced, thereby reduc-

ing the size of the product transition system. This ability is not available in other approaches

reported in the literature, e.g. [87,96], which depend on partitioning the vehicle’s state space

instead of its workspace (output space).

Third, the proposed approach does not use up control authority for the sake of gener-

ating a discrete abstraction of the vehicle dynamical model, as is often done in the litera-

ture [4, 6, 87, 96, 118]. This approach leaves room to accommodate any independent trajec-

41

2.5. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

tory optimization algorithm to be employed for generating reference trajectories for tracking

the planned route. The trajectory optimization problem is subjected to the constraint that

the workspace projection of the resulting must remain within the channel associated with

the planned route (namely, the channels indicated by numbered cells with bold outlines in

Figs. 6–8).

42

Chapter 3

Motion-planning for Multiple Nonholonomic Ve-

hicles

In thi chapter we propose a centralized motion-planning algorithm for a team of robotic

vehicles subject to nonholonomic kinematic constraints and global LTL specifications. The

problem formulation still relies on workspace cell decompositions, where certain regions of

interest in the robots’ shared workspace are defined. The proposed algorithm involves two

graphs: first, the topological graph G arising from the workspace cell decomposition, and

second, a graph GR arising from vertex aggregation on G, such that each region of interest

is a vertex GR. We still apply the method of lifted graphs to determine feasibility of edge

transitions in G and GR. Next, a product transition system is constructed from this team

transition system and the Büchi automaton associated with the global LTL specifications.

Runs of this product transition system can be uniquely projected to paths (for each vehicle)

that are compatible with the nonholonomic constraints and also ensure that the global LTL

specifications are satisfied.

3.1 Problem Formulation

We use the same vehicle model as we used before for each robotic vehicle in a team.

And we will introduce some new preliminary ideas involved in this problem next.

43

3.1. PROBLEM FORMULATION

3.1.1 Regions of Interest Graph

In the workspace cell decomposition as we defined before, special cells we called base

locations and regions of interest (ROI) are prespecified. The number of base locations is

equal to the number NV of robotic vehicles in the team, and each robot is assumed to start

from one of these locations. The vertices in V associated with these cells are denoted by

vB,1, . . . , vB,NV . The number of ROIs is NR. Each ROI is a connected union of cells, i.e.

the kth ROI is ∪i∈ςkc[i], where ςk ⊆ {1, . . . , NC}, k = 1, . . . , NR are prespecified. The

associated vertices are denoted vR,`k, ` ∈ ςk.

The motion of the entire team of vehicles can be modeled by NV copies of GH . Specifi-

cally, the idea is to construct a team transition system [84] through a Cartesian product-like

operation with NV copies of GH . Whereas this approach is viable, it is wasteful when the

number of ROI NR is small compared to the number of cells NC. Instead, we consider an

undirected graph – henceforth referred to as the ROI graph – GR = (V R, ER), which is con-

structed by aggregating vertices in G. To this end, we introduce a map ROI : 2V → V R that

uniquely associates each vertex in V R with either a ROI or a robot base, i.e. the total number

of vertices in V R is NR +NV. Precisely:

V R :=
⋃

k=1,...,NR

ROI({vR,`k}`∈ςk) ∪
⋃

k=1,...,NV

ROI(vB,k).

The edge set ER is defined to be complete, i.e. each vertex in V R is adjacent to every other

vertex in V R. Informally, paths in GR “abstractly” denote vehicle routes to complete the

specified task (LTL formula). In a minor abuse of notation we denote by ROI−1 the set

association of every element q ∈ V R with vertices in V, e.g., ROI−1(q) = {vR,`k}`∈ςk .

The finite state model of the vehicle team in the proposed approach is intricately linked

with the motion-planning algorithm. Informally, this finite state model is obtained by lifting

GR to construct GR
M for M > 0 followed by a product-like operation with NV copies of GR

M .

Transition costs in GR
M are assigned by computing optimal paths in GH . Figure 3.1 illustrates

44

3.1. PROBLEM FORMULATION

Figure 3.1: Conceptual relationship between the various graphs involved.

the relationship between the various graphs discussed here.

3.1.2 Global LTL−X specifications

Consider paths vn ∈ LG , n = 1, . . . , NV, associated with the motion of each vehi-

cle in the team. Each of these paths defines a word ωn(vn) = (ω0,n, ω1,n, . . .), which we

“concatenate” to define a word for the entire team as follows

ω(π) := (ω0,1, ω0,2, . . . , ω1,1, ω1,2, . . .), (3.1)

where π := (v1, . . . ,vNV). Here, the rule of “concatenation” is that ω`1,n1 appears before

ω`2,n2 in ω(π) if `1 < `2 or else if `1 = `2 and n1 < n2, for `1, `2 ∈ Z+ and n1, n2 ∈

{1, . . . , NV}. The n-tuple of paths π is said to collectively satisfy a formula φ if ω(π) satisfies

φ. The main problem of interest is then formulated as follows.

Problem 2. Given a LTL−X formula φ over Λ, and vehicle initial conditions ξ0,n ∈ D, for

n = 1, . . . , NV, determine

LΓφ ⊆ LΓ(ξ0,1)× . . .× LΓ(ξ0,NV)

such that every NV-tuple of paths in LΓφ collectively satisfies the formula φ.

An instance of Problem 3 with two vehicles is illustrated in Fig. 3.2, where four ROIs

45

3.2. MULTI-VEHICLE MOTION-PLANNING

Figure 3.2: An instance of Problem 1. Here, ROIs λ1 and λ2 are indicated in red (cells 19 and 27,
respectively), and ROIs λ3 and λ4 are indicated in gray (cells 10–12 and 16–18, respectively).

(gray and yellow) and two base locations (green) are indicated. The given LTL specification

is (3λ1) ∧ (3λ2) ∧ (2¬λ3) ∧ (2¬λ4). This formula specifies that the yellow-colored ROIs

must be eventually visited (no preference for the order of visit), and that the gray-colored

ROIs must be always avoided. Intuitively, the expected motion plan will involve a vehicle

from base B1 to visit ROI λ1 and the second vehicle from base B2 to visit ROI λ2. How-

ever, due to nonholonomic constraints, the sharp turns required to execute this plan may be

infeasible, and an alternative plan is required.

3.2 Multi-Vehicle Motion-planning

For H,M > 1, consider GR
M . According to the definition of lifting in Section 2.2, each

edge transition in GR
M corresponds to a sequence of M + 2 locations (either ROIs or base

locations) in G. Accordingly, we can assign a transition cost to this edge in GR
M based on a

vehicle’s cost of traversal between these M + 2 locations.

To this end, the team state µ = (q1, . . . ,qNV) ∈ (V R
M)N

V is defined as the NV-tuple of

vertices in V R
M indicating the location of each vehicle. Specifically, the team state µ indicates

that the kth vehicle is at the location associated with [qk]1 ∈ V R. We denote by QM the set

of all team states. A team state transition is the relation δR ⊆ (V R
M)2NV defined by

(µ, γ) ∈ δR iff (qk, rk) ∈ ER
M , for each k = 1, . . . , NV,

46

3.2. MULTI-VEHICLE MOTION-PLANNING

where µ = (q1, . . . ,qNV) and γ = (r1, . . . , rNV). Note that each (µ, γ) ∈ δR is asso-

ciated with NV sequences {([qk]1, . . . , [qk]M+1, [rk]M+2)} of vertices of V R, where k =

1, . . . , NV. Let v∗k(µ, γ) ∈ LG denote a path with minimal H-cost that passes through all of

the vertices ROI−1([qk]1), . . . , ROI−1([qk]M+1), ROI−1([rk]M+2) in that order. Then we

define the cost of the transition (µ, γ) by
∑NV

k=1 JH (v∗k(µ, γ)) .

The computation of these transition costs is time-consuming, but these computations

can be preprocessed offline, and therefore do not constitute a computational burden on the

proposed motion-planning algorithm.

Assuming that the initial location of the kth vehicle is the kth base location, we can

define a set Q0,M ⊂ (V R
M)N

V of initial team states as:

Q0,M := {µ ∈ QM | [qk]1 = ROI(vB,k), k = 1, . . . , NV}.

The triplet QM = (QM , Q0,M , δR) defines the team state transition system, which is a finite

state model of the motion of the entire vehicle team.

Then, we define a product transition system Tφ,M := (T, δTφ,M) as the product of Q and

Bφ as follows:

1. The set of states of Tφ,M is T := S × QM . For every state θ ∈ T , we denote by θ|S
and θ|QM , respectively, the projection of θ on S and QM .

2. The transition relation of Tφ,M is δTφ,M ⊆ T × 2Λ × T defined as the set of all triplets

(θk, ωk, θ`) such that

(θk|S, ωk, θ`|S) ∈ δBφ , (θk|QM , θ`|QM) ∈ δR, (3.2)

ωk =
{
λi | θk|QM ⊆ (qR,1, . . . ,qR,NV)

}
. (3.3)

Here qR,n ∈ V R
M is an tuple that contains ROI({vR,`i}`∈ςi).

A run of Tφ,M is a sequence Θ = (θ0, θ1, . . . ,) such that θk ∈ T for each k ∈ N, and

47

3.2. MULTI-VEHICLE MOTION-PLANNING

(θk, ωk, θk+1) ∈ δTφ,M , with ωk as defined in (3.3). We denote by Θ|S = (θ0|S, θ1|S, . . . ,)

and Θ|QM = (θ0|QM , θ1|QM , . . . ,), respectively, the projections of Θ on S and QM . Note

that Θ|QM corresponds to NV paths in LG , i.e. one path for each vehicle in the team. The

kth path πk(Θ) ∈ LG is defined by the concatenation

πk(Θ) := (v∗k(θ0|QM , θ1|QM),v∗k(θ1|QM , θ2|QM), . . .)

Similar to [84, 87], we restrict attention to runs of Tφ,M of a “prefix-suffix” form Θ =

(Θp,Θs,Θs, . . . ,). Here, the “suffix” run Θs = (θf , . . . , θf), which is repeated infinitely

often in Θ, is a finite sequence such that θf ∈ Sf ×QM . The “prefix” run Θp = (θ0, . . . , θP)

is a finite sequence such that θ0 ∈ S0 ×QM and (θP , ωP , θf) ∈ δTφ,M .

Now we state the main result of this part of work as follows.

Theorem 2. Let Θ = (Θp,Θs,Θs, . . . ,) be a run of Tφ,M . IfJH(πk(Θp)) < χ andJH(πk(Θs)) <

χ, for each k = 1, . . . , NV, then

(π1(Θ), . . . , πNV(Θ)) ∈ LΓΦ.

The proposed algorithm is shown in pseudocode-form Fig. 3.3. A fixed value of H > 1,

with higher values of H preferred. As a preprocessing step, we compute the optimal paths

v∗k(µ, γ) for all transitions (µ, γ) in δR, for various values of M , and the H-costs of these

paths are stored in a lookup table.

The main algorithm is initialized with M = 0, and an optimal run in the product transi-

tion system Tφ,M is identified using, say, Dijkstra’s algorithm. This run is projected to paths

for individual vehicles, and theH-costs of these paths are calculated. By Prop. 1, these paths

are feasible for traversal by admissible vehicle trajectories iff theirH-costs are less than χ. If

all the paths are found to be feasible, then their total cost is recorded and a feasible solution

to the overall problem is now available. The algorithm then increments M , either to deter-

mine a first feasible solution, or to reduce the cost of the last known feasible solution. This

48

3.3. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

Incremental Multi-Vehicle Motion-planning

1: M := 0, choose H > 1
2: total cost := χNV

3: while true do
4: Find an optimal run Θ∗ of Tφ,M
5: all paths feasible := true
6: for k = 1, . . . , NV do
7: if JH(πk(Θ

∗)) > χ then
8: all paths feasible := false
9: break;

10: if all paths feasible then
11: total cost := min

(
total cost,

∑NV

k=1 JH(πk(Θ
∗))
)

12: M := M + 1

Figure 3.3: Pseudocode description of the proposed incremental algorithm for solving the multi robot
task/path planning problem.

algorithm can be terminated either when the first feasible solution is found, or whenever a

predetermined maximum execution time is reached.

3.3 Illustrative Numerical Simulation Results

Figure 3.4 illustrates the application of the proposed algorithm to the sample problem

introduced in Fig. 3.2. The proposed motion-planning algorithm starts with M = 0, and

preprocessed information with H = 0. The product transition system Tφ,0 is searched. The

resulting paths for each vehicle is shown in Fig. 3.4(a), which is a intuitively expected solu-

tion. Since H = 0, no information regarding the vehicle dynamical model is included.

The result of executing the proposed algorithm with M = 0 and H = 3 is shown in

Fig. 3.4(b). Here, the minimum H-cost of any path between the base B1 and ROI λ1 (and

similarly, between baseB2 and ROI λ2) is found to be greater than χ. The solution illustrated

49

3.3. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

in Fig. 3.4(b) indicates that π2 = ∅ , and

π1 =(1, 2, 3, 4, 13, 14, 15, 24, 25, 26, 27, 26, 25, 24,

23, 22, 21, 20, 19).

These paths for the two vehicles satisfy the given specification of visiting ROIs 19 and 27,

and avoiding the gray-colored ROIs. However, the overall path π1 is still infeasible for

traversal due to the sharp change in direction at ROI 27. The reason for this solution is

that M = 0, and only single edge transitions in the ROI graph are encoded with H-costs

of paths. In this case, with H = 3, the segments (1, 2, 3, 4, 13, 14, 15, 24, 25, 26, 27) and

(27, 26, 25, 24, 23, 22, 21, 20, 19) of π1 each have H-cost lower than χ, but their concatena-

tion π1 does not.

The algorithm finds this infeasibility of traversal in Line 9 of the proposed algorithm,

and proceeds to search for another solution the the product transition system with M = 1.

The result is illustrated in Fig. 3.4(c), which indicates the paths for the two vehicles as:

π1 = (1, 2, 3, 4, 13, 14, 15, 24, 25, 26, 27),

π2 = (9, 8, 7, 6, 15, 14, 13, 22, 21, 20, 19).

Both of these paths are feasible for traversal (i.e. the H-cost of each path is less than χ), and

together the global specification is satisfied.

Figure 3.5 illustrates the result of application of the proposed algorithm to a 4-vehicle

problem. The LTL specifications are similar to the previous problem.

Next, we address an issue that arises due to the simplifying assumption related to

temporal synchronization, as discussed in Section 3.1. Consider the workspace shown in

Fig. 3.6(a), where two base locations (green) and two ROIs to be visited (red) are indicated.

If the order of visit is irrelevant (e.g. the LTL specification φ = (3λ1) ∧ (3λ2), then tem-

poral synchronization is not important. In this case, the projection of a run of the product

50

3.3. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

system to QM , namely, Θ|QM is

Θ|QM =
(

(vB,1, vB,2), (vR,1, vB,2), (vR,1, vR,2)
)
.

This result means that the paths (in the ROI graph) to be followed by the two vehicles are,

respectively, (vB,1, vR,1) and (vB,2, vR,2) for the vehicles starting from base locations 1 and

2. These paths are illustrated in Fig. 3.6(b).

Now, consider the formula φ = 3(λ2∧(3λ1)), which specifies that λ2 be visited before

λ1. In this case, the projection of a run of the product system to QM results in

Θ|QM =
(

(vB,1, vB,2), (vB,1, vR,2), (vR,1, vR,2)
)
.

Because we have excluded temporal synchronization, the paths for the individual vehicles

in these two cases are the same. However, it is clear from the two expressions for Θ|QM
that temporal information is encoded within the ROI graph paths, and needs to additionally

encoded with time-stamps for temporal synchronization.

51

3.3. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

10 11 12 16 17 1810 11 12 16 17 18

11 9

19 27

2 3 4

13

20 21 22

6 7 8

24

15

25 26

(a) Result of searching the product transition system with M = 0, H = 0.

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

10 11 12 16 17 1810 11 12 16 17 18

11 9

19 27

2 3 4

13 14 15

23222120 22 24 25 26

(b) Result with M = 0, H = 3.

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

10 11 12 16 17 1810 11 12 16 17 18

11 9

19 27

2 3 4

13 14 15

24 25 26

6 7 8

20 21 22

(c) Result with M = 1, H = 3.

Figure 3.4: Solutions to the motivating example in Fig. 3.2. The yellow- and blue-colored cells
indicate, respectively, the paths planned for the first and second vehicle (additional details are in
Section 5.4).

52

3.3. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

Figure 3.5: Illustration of motion-planning for 4 vehicles. The LTL specification is similar to that
of the example in Fig. 3.2. Here, ROIs to be always avoided are indicated in gray, and ROIs to be
eventually visited are indicated in red (order of visit is not relevant). The base locations are indicated
in green, and the paths found for each vehicle are indicated in yellow.

53

3.3. ILLUSTRATIVE NUMERICAL SIMULATION RESULTS

G2G1

V2V1

(a) Conceptual illustration of workspace.

(b) Illustration of numerical simulation result.

Figure 3.6: Illustration of motion-planning when temporal synchronization is important. The paths
of the two vehicle are indicated with yellow- and blue-colored cells.

54

Chapter 4

Incremental Motion-Planning

In this chapter we proposed an incremental algorithm in [119] for hierarchical motion-

planning based on the previously developed H-cost motion-planning technique using the

method of lifted graphs. The idea of incremental H-cost motion-planning retains the pri-

mary benefit of the original H-cost technique of finding an optimal high-level plan with the

guarantee that there exists a state trajectory of Γ to execute this plan. Additionally, the pro-

posed algorithm significantly mitigates the computational complexity of the original H-cost

approach by introducing incremental computations. The primary motivation behind devel-

oping an incremental algorithm is as follows: the fundamental computational complexity

in the H-cost technique (or any similar hierarchical motion-planning technique) cannot be

defeated if the objective is solely to find an optimal motion plan. In the interests of real-time

implementation, it is beneficial to develop a motion planner that returns a feasible solution

at nearly any time during its search for an optimal motion plan.

A conceptual illustration of the incremental planning is shown in Fig. 4.1. Any path π in

the graph GH is uniquely mapped to a path in the graph GH+1, and this mapping is bijective,

for every H > 0. Let π?H be an optimal path b(π) in GH , and let π?H+1 be an optimal path

in GH+1. So the idea is to construct π?H+1 by making incremental changes to the path b(π?H).

The advantage of this process is that GH is a significantly smaller graph compared to GH+1,

and therefore the search for the path pi?H in GH will be faster than a direct search for π?H+1 in

GH+1. Furthermore, this process can be started with H = 0, and continued for the amount

of time allotted during real-time computations.

The proposed incremental planning algorithm is motivated by the following property of

the transition cost function of lifted graph GH .

55

Figure 4.1: Illustration of proposed implementation of the H-cost framework with incremental plan-
ning

Proposition 2. Let π = {j0, . . . , jP} be a path in the graph G such that JH(π) < χ. Let

IHk ∈ VH be vertices defined by IHk := (jk−H , . . . , jk) , for k ∈ {H, . . . , P}. Then for

each ` ∈ {H + 2, . . . , P}, either

g̃H+1(IH+1
`−1 , I

H+1
`) = χ, or

g̃H+1(IH+1
`−1 , I

H+1
`) 6 g̃H(IH`−2, I

H
`−1) + g̃H(IH`−1, I

H
`).

If g̃H , H > 0, are coarse transition cost functions, then the preceding inequality reduces to

an equality:

g̃H+1(IH+1
`−1 , I

H+1
`) = g̃H(IH`−2, I

H
`−1) + g̃H(IH`−1, I

H
`).

By definition, the sequence of vertices in V defined by the edge (IH+1
`−1 , I

H+1
`) ∈ EH+1 is

the same as that defined by the successive edges (IH`−2, I
H
`−1), (IH`−1, I

H
`) ∈ EH . Also, for each

H > 0 and k ∈ {H, . . . , P}, the vertex IH` belongs to the path πH = bH0 (π). Proposition 2

states that either the edge (IH+1
`−1 , I

H+1
`) in graph GH+1 is infeasible for traversal, or the

transition cost of this edge is no greater than the sum of the transition costs of the successive

edges (IH`−2, I
H
`−1) and (IH`−1, I

H
`) in graph GH , for each ` ∈ {H + 2, . . . , P}. Therefore,

either JH+1(π) > χ or JH+1(π) 6 JH(π).

56

Informally, this observation about JH+1(π) means that a path π in G, upon “further

scrutiny” with higher values of the parameter H , will either be infeasible for traversal by

trajectories of the vehicle dynamical system model Γ, or the cost of this traversal can poten-

tially be reduced. Proposition 2 implies that is that it is desirable to use as large a value of

the parameter H as possible. However, it is computationally impractical to do so, because

the number of vertices in GH increases exponentially with H .

To address this issue, we propose an incremental algorithm to search for a H̄-cost opti-

mal path in G. The main idea is to seed the search for this path with a path that is optimal

in the graph G0. The proposed algorithm uses a path repair procedure that replaces edges

that are either infeasible or of high cost in lifted graphs. Starting with H = 0 (or any other

small integer value of H that is convenient for computation of the initial path), the proposed

algorithm incrementally progresses to higher values of H .

A precise description of the proposed incremental H-cost motion-planning algorithm is

provided in Fig. 4.2. For simplicity of exposition, the algorithm in Fig. 4.2 considers coarse

transition cost functions, and it can accommodate refined cost functions with no modifica-

tions in principle. In Fig. 4.2, the algorithm is initialized in Lines 1–2 by searching for a

“seed” path in graph G0 with prespecified initial and goal vertices jS, jG ∈ V. The result of

the algorithm at the nth iteration, where n ∈ Z+, is a path π0
n in G from the initial vertex jS to

the goal vertex jG. Lines 4–19 describe the iterative process of the algorithm as it progresses

through increasing values of H . Whenever H is incremented and an infeasible edge in de-

tected in GH , the algorithm replaces this infeasible edge with a subpath with finite H-cost,

as described in Lines 15–19. The path repair procedure in Line 16 computes this subpath

from the vertex immediately before the infeasible edge to any of the vertices between the in-

feasible edge and the goal. In Lines 8–11, the algorithm attempts to find paths of lower cost

between intermediate vertices of the currently known path and the goal vertex. This step is

necessary because the “patching” of subpaths in Line 17 can lead to suboptimal paths. How-

ever, in practical implementations, for the sake of speed Lines 9-11 need be executed only

for high values of H , or they can be executed after completing the while loop of Line 4.

57

Incremental H-cost Motion-planning Algorithm

procedure MAIN

1: H ← 0, n← 0
2: π0

0 ← arg minπ∈L0(jS,jG){J0(π)}
3: H ← H + 1
4: while H ≤ H̄ do
5: Pn ← (number of vertices of π0

n) −1
6: IHk , k ∈ {H, . . . , Pn} defined as in Prop. 2
7: if JH(π0

n) < χ then
8: for k = Pn − 1, Pn − 2, . . . , 0 do
9: if minς∈LH(IHk ,I

H
Pn

){JH(ς)} <
∑Pn

`=k+1 g̃H(IH`−1, I
H
`) then

10: πHn+1 ← path in GH obtained by replacing with arg minς∈LH(IHk ,I
H
Pn

){JH(ς)}
the edges between IHk and IHPn in path bH0 (π0

n)
11: π0

n+1 ← b0
H(πHn+1)

12: n← n+ 1
13: H ← H + 1
14: else
15: k∗ ← arg min{k ∈ {H + 1, . . . , Pn} : g̃H(IHk−1, I

H
k) = χ}

16: {ς∗, `∗} ← PATH-REPAIR(k∗)
17: πHn+1 ← path in GH obtained by replacing with ς∗ the edges between IHk∗−1 and IH`∗

in path bH0 (π0
n)

18: π0
n+1 ← b0

H(πHn+1)
19: n← n+ 1

procedure PATH-REPAIR(k∗)
1: for ` = k∗, . . . , Pn do
2: ς∗ ← arg min{ς ∈ LH(IHk∗−1, I

H
`)}

3: if JH(ς∗) < χ then
4: Return (ς∗, `∗ = `)

Figure 4.2: Pseudocode description of the proposed incremental algorithm for solving the H-cost
optimal path problem.

58

The optimization involved in Line 2 of the PATH-REPAIR procedure can be performed

by an algorithm similar to the H-cost optimal path-planning algorithm described in [102].

The result of this algorithm is the path returned at either Line 11 or Line 18 of the

final iteration of the algorithm. Whereas the algorithm terminates after a finite number of

iterations (as we show next), its execution can be forcibly halted after Line 19 at any an

intermediate iteration n before the algorithm’s natural termination. Crucially, despite such a

forcible termination, the algorithm returns a path π0
n in graph G which is feasible for traversal

(i.e. has H-cost less than χ), assuming such a path exists. This property of the algorithm

of having ready a feasible path at the end of any iteration is highly desirable in real-time

application.

The following result further highlights the merits of the proposed algorithm: not only

does the algorithm eventually converge to an H̄-cost optimal path, but the H-costs of paths

found in intermediate iterations are almost always nonincreasing. Whenever H is incre-

mented (Line 13), the transition costs of some edges in GH+1 can possibly become higher

than χ, and therefore the trend nonincreasing costs can be interrupted.

Proposition 3. For a fixed value of the parameter H , whenever Lines 8–12 of Fig. 4.2 are

executed, JH(π0
n+1) 6 JH(π0

n), for each n ∈ Z+.

Proof. Immediate by construction of π0
n+1 in Fig. 4.2.

Next, we state the main result of this chapter.

Proposition 4. The proposed algorithm as described in Fig. 4.2 terminates after a finite

number of iterations. Upon termination, the following statements hold true:

1) If, for some H̃ 6 H̄ , there exists no path in graph G with H̃-cost less than χ, then the

algorithm reports failure.

2) If there exists at least one path in graph G with H̄-cost less than χ, then the algorithm

returns a path with minimum H̄-cost.

59

4.1. ILLUSTRATIVE EXAMPLES AND DISCUSSION

Proof. Every iterative loop in the proposed algorithm in Fig. 4.2 has a finite termination

condition. Therefore the overall algorithm must terminate in a finite number of iterations.

Case 1) Suppose for some H̃ 6 H̄ , there exists no path in graph G with H-cost less

than χ and assume (without loss of generality) that H̃ is the smallest such value of the

parameter H . Suppose that the algorithm increments the value of the parameter H from

H̃ − 1 to H̃ at the nth iteration. Then JH̃(π0
n) > χ, and in the next iteration the algorithm

executes Lines 7 and 15. At Line 15, the PATH-REPAIR must report failure because a subpath

satisfying the condition in Line 3 of the PATH-REPAIR procedure does not exist. Then the

overall algorithm also reports failure.

Case 2) Suppose there exists at least one path in graph G with H̄-cost less than χ.

Then there exists a path in graph G with minimum H̄-cost, because the number of such paths

is finite, in turn because the numbers of vertices and edges in G are finite. According to

the termination condition in Line 4, the overall algorithm terminates when H = H̄ . For

any particular value of H , the final iteration of the for loop in Line 8 results in an H-cost

optimal path. In particular, it results in the H̄-cost optimal path.

Remark The proposed algorithm does not reduce the complexity of the H-cost optimal

path problem. However, the proposed algorithm ensures that the search for an optimal path

does not proceed in a “all or nothing” manner. Specifically, it makes available a feasible

solution during intermediate iterations.

4.1 Illustrative Examples and Discussion

Figure 4.3 illustrates the execution of the proposed algorithm. Here, the prespecified

initial and goal vertices are indicated, respectively, by the green- and red-colored vertices in

Fig. 4.3(a). The path between the initial and final vertices highlighted in Fig. 4.3(a) is a 0-

cost optimal path, i.e., it is found by solving the standard optimal path problem on G0, where

edge transition costs are defined as the Euclidean distances between cells. The algorithm

60

4.1. ILLUSTRATIVE EXAMPLES AND DISCUSSION

(a) Initial path π0
0 in G0. (b) An infeasible edge (red) in G3.

(c) Path repair in G3. (d) An infeasible edge (red) in G4.

(e) Path repair in G4. (f) Cost reduction in G6.

Figure 4.3: Illustrative example of solution of the H-cost optimal path problem using incremental
path repair.

61

4.1. ILLUSTRATIVE EXAMPLES AND DISCUSSION

progresses to higher values of H , and when H = 3, the 3-cost of the path is found (Line

7 of the algorithm in Fig. 4.2) to be greater than or equal to χ. In particular, the transition

cost of a single edge, illustrated in red in Fig. 4.3(b) is found to be equal to χ. In this

example, H-costs are defined by Eqns. (2.7) and (2.8) for a Dubins car kinematic model

with unit minimum turn radius. The edge with transition cost χ is replaced by the PATH-

REPAIR procedure. The subpath ς∗ computed by the PATH-REPAIR procedure is indicated

in green color in Fig. 4.3(c). Next, the 4-cost of the new path is found to be greater than or

equal to χ (Fig. 4.3(d)) and it is again replaced by a subpath by the PATH-REPAIR procedure

(Fig. 4.3(e)). The repaired path is found to have 6-cost less than χ, and at H = 6, the cost

reduction steps in Lines 8-11 of the algorithm in Fig. 4.2 are executed to arrive at a 6-cost

optimal path as shown in Fig. 4.3(f). The yellow-colored cells in Fig. 4.3 indicate the vertices

explored by the PATH-REPAIR procedure during its computations to find a subpath (Line 16

in Fig. 4.2).

Figure 4.5 illustrates a more striking example of application the proposed algorithm.

Here, a 4-cost feasible path is found quickly, and in further iterations, the algorithm finds

paths of lower 4-cost. A feasible path is provided during intermediate iterations, and an

optimal is eventually found.

4.1.1 o

In the geometric path-planning literature, anytime incremental algorithms such as LPA∗

[120] have been discussed for fast replanning when small changes in the environment are

detected. The proposed incremental algorithm allows replanning H-cost optimal paths in

response to such changes in the environment. Specifically, the current H-cost feasible or

optimal path can become infeasible if changes in the environment cause a cell in the current

path to be blocked by an obstacle. The proposed algorithm can detect such a change in Line 7

of Fig. 4.2.

Figure 4.4 illustrates an example of this replanning application of the proposed algo-

62

4.1. ILLUSTRATIVE EXAMPLES AND DISCUSSION

rithm. The initial and goal vertices are indicated in Fig. 4.4(a) by green- and red-colored

cells. The black-colored cells indicate obstacles. As illustrated in Fig. 4.4(b), a change in the

location of obstacles makes infeasible for traversal the initial path π0
0 illustrated in Fig. 4.4(a).

In Fig. 4.4(a), the algorithm has already progressed to H = 1, and due to the change in the

environment, the 1-cost of the initial path is found to be higher than χ. The PATH-REPAIR

procedure finds a subpath, indicated in green in Fig. 4.4(c). In a later iteration, the 3-cost of

the new path is found higher than χ; in particular one edge (indicated in red in Fig. 4.4(d))

is found to have cost χ. The PATH-REPAIR procedure finds a subpath in G3 to replace this

edge, as indicated by the green-colored subpath in Fig. 4.4(e). The repaired path is found to

have 6-cost less than χ and at H = 6, the cost reduction steps in Lines 8-11 of Fig. 4.2 are

executed to arrive at a 6-cost optimal path as shown in Fig. 4.4(f).

Notice that in each of the two preceding examples, a 6-cost1 feasible path is available

in iterations before the optimal path is found. In real-time applications, this property can be

used to enforce hard bounds on the computation time: the proposed algorithm will report

a feasible path in the available computation time. By Prop. 4, if the algorithm is allowed

sufficient computation time, it will converge to an optimal path, and by Prop. 3, the resultant

H-costs are nonincreasing in all intermediate iterations except, possibly, in iterations where

H is incremented.

1In these particular examples, 6-cost feasible paths were found to be feasible for all higher values of H .

63

4.1. ILLUSTRATIVE EXAMPLES AND DISCUSSION

(a) Initial path. (b) Change in environment.

(c) Path repair in G1. (d) Infeasible edge in G3.

(e) Path repair in G3. (f) Cost reduction in G6.

Figure 4.4: Illustration of replanning in response to changes in the environment.

64

4.1. ILLUSTRATIVE EXAMPLES AND DISCUSSION

(a) Initial path. (b) H = 1-cost feasible path.

(c) H = 4-cost feasible path. (d) Reduced 4-cost feasible path.

(e) Reduced 4-cost feasible path. (f) 4-cost optimal path.

Figure 4.5: Illustrative example: during intermediate iterations, feasible solutions are available,
whereas the solution cost is reduced.

65

Chapter 5

Sampling Based Motion-Planning

In this chapter, we propose a randomized sampling-based motion planning algorithm to

satisfy LTL specifications. Similar to RRT*, the proposed algorithm incrementally generates

a tree structure representative of the vehicle dynamical system model. Random samples are

taken from multiple copies of the state space, with each copy uniquely associated with a state

of the Büchi automaton that accepts the given LTL specification. The proposed algorithm

retains the properties of RRT∗: namely, the proposed algorithm is probabilistically complete

(i.e. guaranteed to find a trajectory satisfying the specifications if it exists) and asymptoti-

cally optimal. To achieve significant reductions in computation time, we propose a sampling

heuristic that provides a bias for growing the tree structure. We provide numerical simulation

results of the application of the proposed algorithm to a vehicle kinematic model same as in

chapter 2 and to a quadrotor aircraft dynamical model.

5.1 Problem Formulation

The workspace is defined the same as in chapter 2, and it is assumed to have obstacles,

i.e. regions that are forbidden for the vehicle to enter. We denote by Wobs the obstacle-

occupied region of the workspace; the obstacle-free workspace is thenWfree =W\Wobs.

We consider a vehicle kinematic model described by the differential equations as in

chapter 2

ṗx(t) = cosψ(t), ṗy(t) = sinψ(t), ψ̇(t) = u(t), (5.1)

66

5.2. LTL SATISFACTION BY STATE TRAJECTORIES

where the steering rate u is the control input and ψ is the heading angle. We assume

u(t) ∈ U :=
[

1
ρ
, 1
ρ

]
for all t ∈ R, where ρ > 0 is a prespecified constant. Note that ρ is the

normalized minimum radius of turn. The state variable is x = (p, ψ) ∈ D = W × [0, 2π] .

The obstacle-free state space is defined as Dfree :=Wfree × [0, 2π] .

A rigid-body dynamical model of quadrotor aircraft motion is described by
ψ̇

θ̇

φ̇

 =
1

cos θ


0 sinφ cosφ

0 cosφ cos θ − sinφ cos θ

cos θ sinφ sin θ cosφ sin θ

Ω, (5.2)

mp̈ = −gk̂ + u[1]R
i
bk̂, IΩ̇ = u[2:4] + Ω× JΩ. (5.3)

Herem is the vehicle mass; k̂ = (0, 0, 1) is a unit basis vector; ψ, θ, φ are yaw, pitch, and roll

angles, respectively in the standard 3-2-1 Euler angle system; Ri
b is the correspoding rotation

matrix to transform coordinates from body-fixed axes to inertial axes; I is the vehicle’s mass

moment of inertia matrix; and Ω is the inertial angular velocity vector with coordinates

in a body-fixed axes system. The convention (cf., [121, 122]) is to consider control inputs

u(t) ∈ R4, where u[1] is the magnitude of the total thrust generated by the rotors, and u[2:4]

are body-fixed axes coordinates of the total moment at the vehicle c.m. due to the rotors.

The state variable is x = (p, ṗ, ψ, θ, φ,Ω) ∈ D = W × R3 × [0, 2π]3 × R3. The obstacle-

free state space is defined as Dfree := Wfree × R3 × [0, 2π]3 × R3. The attitude dynamical

equations (5.2) can be alternatively written using quaternions [122].

For these models, we denote by x(·; x0,u) the state trajectory t 7→ x(t) with initial

condition x0 and control input t 7→ u(t) for t > 0.

5.2 LTL Satisfaction by State Trajectories

To formulate LTL specifications of relevance to mobile vehicles, it is convenient to

define a finite number of regions of interest in the workspace λ1, . . . , λN ∈ Wfree. We can

67

5.2. LTL SATISFACTION BY STATE TRAJECTORIES

associate with each of these regions a unique atomic proposition defined to be true whenever

the location of the vehicle’s c.m. p is within the region, i.e. the kth proposition is true

whenever p ∈ λk. We label these atomic propositions also by λ1, . . . , λN , and define Λ :=

{λ1, . . . , λN}. Informally, each LTL formula is associated with a sequence of regions to be

visited in the workspace. A vehicle state trajectory satisfies the LTL formula if it sequentially

passes through these regions.

Next, let Γ : Dfree → 2Λ be a map from each state inDfree to a set of atomic propositions

that are true at that state. To be precise, for the state x = (p, . . .) ∈ Dfree, Γ(x) := ∪`λ`
for each ` ∈ {1, . . . , N} satisfying p ∈ λ`. Next, for a trajectory x(t; x0,u) of the vehicle

model, let 0 < t1 < t2 < . . . be a sequence of time instants such that Γ(x(tm; x0,u)) 6=

Γ(x(tm+1; x0,u)) for each integer m > 0. The trajectory x(t; x0,u) is said to define the

word ω(x(t; x0,u)) := (ω0, ω1, . . . ,) where ωm := Γ(x(tm; x0,u)) for each integer m > 0.

Finally, the trajectory x(t; x0,u) satisfies the LTL formula φ if ω(x(t; x0,u)) |= φ.

An accepting run of Bφ can be infinitely long. This situation occurs whenever the LTL

formula includes the compound operator 23 (always eventually), which indicates

a requirement of infinitely persistent visits to one or more region in the workspace. This

situation can be problematic for defining appropriate cost functionals for the vehicle state

trajectory. Several works in the literature (cf. [123]) avoid this issue by addressing a subset

of LTL specifications called co-safe specifications [2]. Informally, co-safe LTL formulae are

defined by excluding the always 2 operator. Infinitely long runs can be found in a prefix-

suffix form, where the prefix and suffix are each finite paths in the product system. The suffix

begins and ends at an accepting state of Bφ and loops infinitely often.

The proposed algorithm does not restrict LTL specifications to the co-safe class. To

define a finite state trajectory cost (without artificially introducing a discount factor), we

consider the cost of the state trajectory only up to the first suffix. To be precise, let x(t; x0,u)

be a state trajectory satisfying the LTL specification φ. If φ is co-safe, then there exists a

finite tf for which the restricted state trajectory x(t; x0,u)|[0,tf] also satisfies φ. If φ is not

co-safe, then there exist tf,p and tf,s such that the restricted trajectories x(t; x0,u)|[0,tf,p] and

68

5.3. PROPOSED SOLUTION TO PROBLEM 3

x(t; x0,u)|[tf,p,tf,s] are associated with the prefix and the first suffix subpaths of the (infinitely

long) path of the product transition system that satisfies φ. In this case, we define tf :=

tf,p + tf,s. In either case, the cost of the state trajectory is J(u) :=
∫ tf

0
g(x(t; x0,u)) dt,

where g : D → R>0 is a nonnegative cost function.

Problem 3. Given an initial state x0 ∈ D and a LTL formula φ over Λ, find a control input

u∗ : [0,∞) 7→ U such that the trajectory x(t; x0,u
∗) (1) avoids obstacles, i.e. x(t; x0,u

∗) ∈

Dfree for all t ∈ [0,∞) , (2) satisfies the specification φ, i.e. ω(x(t; x0,u
∗)) |= φ, and (3)

minimizes the trajectory cost, i.e., J(u∗) 6 J(u) for all piecewise continuous functions

u : [0,∞)→ U.

5.3 Proposed Solution to Problem 3

In this section, we discuss the proposed incremental sampling-based algorithm to solve

Problem 3 with a probabilistic guarantee of completeness and with asymptotic optimality.

The given LTL formula is first translated to a Büchi automaton Bφ = (S, s0,Σ, δB, F). We

can then define the product space T := D × S. The main algorithm is similar to RRT∗ [76].

The primary difference is that in the proposed algorithm random samples are taken from the

product space T and sampling is biased for computational efficiency. The tree constructed

from these samples then serves as the product transition system. Algorithm 5.1 provides a

precise description of the proposed approach. The descriptions of subroutines used by the

algorithm are provided in Section 5.3.1.

During its execution, Algorithm 5.1 maintains a tree1 G = (V,E). Initially, this tree

includes the initial product state θ0 = (x0, s0) as its root vertex in V and no edges. There are

two vertex sets Vprefix and Vsuffix associated with states for searching prefix and suffix paths,

respectively. For each vertex θ ∈ V = Vprefix ∪ Vsuffix, the algorithm associates a scalar cost

of reaching this vertex from the root θ0; this cost is denoted by Cost(θ). We denote states in

the product space T and also the associated vertex in V by the same symbol θ.
1A tree is a graph with no cycles.

69

5.3. PROPOSED SOLUTION TO PROBLEM 3

Sampling based motion planning algorithm to satisfy LTL specifications

1: Vprefix ← {θ0 = (x0, s0)}, Vsuffix ← Ø, E ← Ø, i← 0, Cost(θ0)← 0
2: while i < N do
3: i = i+ 1
4: θrnd ← Sample(Vprefix), θnr ← Nearest(Vprefix, θrnd), θnew ← Steer(θnr, θrnd)
5: if FeasCheck(θnr, θnew) then
6: Vprefix ← Vprefix ∪ {θnew}
7: (Vprefix, E)← UpdateTree(Vprefix, E, θnew)
8: if θnew.s ∈ F then
9: Vsuffix = Vsuffix ∪ {θnew}

10: (Vsuffix, E)← UpdateTree(Vsuffix, E, θnew)
11: V ← Vprefix ∪ Vsuffix

12: θrnd ← Sample(Vsuffix), θnr ← Nearest(Vsuffix, θrnd), θnew ← Steer(θnr, θrnd)
13: if FeasCheck(θnr, θnew) then
14: Vsuffix ← Vsuffix ∪ {θnew}
15: (Vsuffix, E)← UpdateTree(Vsuffix, E, θnew)
16: V ← Vprefix ∪ Vsuffix

17: Vnearby ← Near(Vprefix ∪ Vsuffix, θnew)
18: for all θ ∈ Vnearby do
19: SuffixCheck(θnew, θ)

Figure 5.1: Pseudocode description of the proposed sampling based algorithm for solving the
task/path planning problem.

70

5.3. PROPOSED SOLUTION TO PROBLEM 3

At each iteration, the algorithm expands the tree to search for a prefix path (Line 4-12 in

Alg. 5.1), and separately expands the tree to search for a suffix path (Line 13-19 in Alg. 5.1).

The procedure for expanding the tree for the prefix path is as follows. A new sample θrnd is

generated (Line 4 in Alg. 5.1), and a vertex in Vprefix nearest to θrnd is found. The subroutine

Steer is used to extend the tree to a new state θnew towards θnr. After checking the feasibility

(Line 5 in Alg. 5.1, discussed in Section 5.3.1) of the trajectory from θnr to θnew returned by

the Steer subroutine, the state θnew is inserted as a new vertex into Vprefix. The algorithm then

calls the subroutine UpdateTree to connect θnew by a minimum-cost trajectory and rewires

the edges in the tree (see Alg. 5.2).

If θnew.s is an accepting state, i.e., θnew.s ∈ F, then θnew is inserted as a new vertex into

Vsuffix and the tree is updated (Lines 9 and 10 in Alg. 5.1). The procedure for expanding the

tree for the suffix path is similar (Lines 13-19 in Alg. 5.1). The suffix path is a cycle that

begins and ends at an accepting state of Bφ. Since a tree does not have cycles by definition,

SuffixCheck checks if a cycle can be constructed by adding an edge between two existing

vertices. Subroutines Steer and FeasCheck ensure that all potential edges of the tree are

feasible transitions of Bφ. These subroutines also ensure that the trajectory between any two

states is obstacle-free and is generated by an admissible control input.

5.3.1 Description of Subroutines

Subroutine Sample(V) returns θ = (θ.x, θ.s) ∈ V, where θ.x is sampled from a uni-

form distribution over the state space D, and θ.s is sampled from a uniform distribution over

the subset Srch := ∪θ∈V {θ.s} ⊆ S.

Subroutine Dist(x1,x2) returns the cost of an optimal trajectory between x1 and x2,

i.e., Dist(x1,x2) := minu:[0,t2]→UJ(u), such that x(t2; x1,u) = x2.

Subroutine Steer(θ1, θ2) first finds xnew ∈ D such that Dist(θ1.x,xnew) < η, for a

prespecified constant η > 0 and such that Dist(xnew, θ2.x) is minimum. Second, Steer finds

snew ∈ S in the Büchi automaton such that snew = δB(θ1.s,Γ(xnew)). Recall that Γ(x) is the

71

5.3. PROPOSED SOLUTION TO PROBLEM 3

set of atomic propositions associated with a state transition of the Büchi automaton. Steer

returns θnew = (xnew, snew).

Subroutine FeasCheck(θ1, θ2) checks if there exists a control input u : [0, t2] 7→ U

such that x(t; θ1.x,u) ∈ Dfree for all t ∈ [0, t2], and x(t2; θ1.x,u) = θ2.x, where t2 > 0.

The subroutine also model checks, i.e., determines whether (θ1.s, θ2.s) ∈ δB. If both these

two conditions are true, the function returns true, otherwise it returns false.

The subroutine Dist, Steer, and FeasCheck are all involved in forming edges in the

tree G, associating these edges with admissible control inputs for the vehicle kinematical

or dynamical model, and ensuring that the resulting vehicle state trajectory is obstacle-free.

Therefore, implementations of Alg. 5.1 can take advantage of the functional overlaps among

these subroutines and avoid repeated trajectory optimization computations. These subrou-

tines involve the solution of the familiar trajectory optimization problem of finding an ad-

missible control input from x1 to x2 inD. Because these subroutines are repeatedly invoked,

the solution to this problem must be computationally efficient. Fortunately, the literature

provides efficient trajectory optimization solutions for the two aircraft models discussed in

Section 2.1.

For the aircraft kinematical model, minimum-time trajectories are exactly found by the

well-known Dubins paths constructions [40], which we implement. For the quadrotor dy-

namical model, we implement the minimum-snap trajectory optimization method discussed

by Mellinger & Kumar [121]. The details of these methods are found in the stated refer-

ences, and are omitted here. If vehicle kinematical/dynamical constraints are ignored, then

D =W , and the optimal trajectory between any two states x1,x2 is simply a straight line.

Subroutine Nearest(V, θ) returns θnr ∈ V such that θnr.s = θ.s where Dist(θnr.x, θ.x)

is minimum. Subroutine Near(V, θ) returns the set V
⋂
{v ∈ T | Dist(v.x, θ.x) <

η and Dist(θ.x, v.x) < η} for a prespecified η > 0.

Subroutine SuffixCheck(θ1, θ2) first executesFeasCheck(θ1, θ2). IfFeasCheck(θ1, θ2)

is true and if an edge between θ1 and θ2 results in a cycle in G, then SuffixCheck returns

72

5.3. PROPOSED SOLUTION TO PROBLEM 3

Subroutine UpdateTree(V,E, θnew)

1: θnewpr ← Nearest(V, θnew)
2: cnew ← Cost(θnewpr) +Dist(θnewpr.x, θnew.x)
3: Vnearby ← Near(V, θ)
4: for all θnear ∈ Vnearby do
5: if FeasCheck(θnear, θnew) then
6: c′ ← Cost(θnear) +Dist(θnear.x, θnew.x)
7: if c′ < cnew then
8: θnewpr ← θnear; cnew ← c′

9: E ← E ∪ {(θnewpr, θnew)}
10: for all θnear ∈ Vnearby\{θnewpr} do
11: if FeasCheck(θnew, θnear) and Cost(θnear) > Cost(θnew) + Dist(θnew.x, θnear.x)

then
12: θparent ← Parent(θnear)
13: E ← (E\{(θparent, θnear)}) ∪ {(θnew, θnear)}
14: Cost(θnear)← Cost(θnew) +Dist(θnew.x, θnear.x)
15: return (V,E)

Figure 5.2: Pseudocode description of the Update random tree subroutine.

true. If there is a vertex θ in this cycle such that θ.s ∈ F , then this cycle is a suffix.

SubroutineUpdateTree(V,E, θnew) reassigns some of the edges in this tree G. In Alg. 5.2,

the state θnewpr ∈ Near(V, θnew) that can be steered to θnew such that Cost(θnew) becomes

minimum, is chosen as the parent to θnew (Lines 4-9 in Alg. 5.2). This means that the

pair (θnewpr, θnew) is added to the edge set E (Line 9 in Alg. 5.2). The next loop (Line

10-13 in Alg. 5.2) attempts to connect θnew to states that are already in V. For any state

θnear ∈ Near(V, θnew), if a trajectory from θnew.x to θnear.x exists such that Cost(θnear) is

lowered (Line 11 in Alg. 5.2), then θnew is assigned the new parent of θnear (Lines 12 and

13 in Alg. 5.2). Note that Cost(θ) is recursively defined in Alg. 5.2 (Lines 2, 6, and 14 in

Alg. 5.2) for each vertex θ ∈ V.

73

5.3. PROPOSED SOLUTION TO PROBLEM 3

Heuristic Sampling Subroutine

1: Initialize Srch, Sext

2: srnd ← Rand(S)
3: if srnd ∈ Srch then
4: xrnd ← Rand(D)
5: else
6: sext ← Rand(Sext), and let λ ∈ Σ be such that (srnd, λ, sext) ∈ δB
7: Dsample = {x|Γ(x) = λ}, and xrnd ← Rand(Dsample)
8: return θrnd = (srnd,xrnd)

Figure 5.3: Pseudocode description of sampling heuristic subroutine.

5.3.2 Sampling Heuristic

To speed up the execution of Alg. 5.1, we propose the following sampling heuristic

(Alg. 5.3). Recall that the subroutine Sample(V) samples a state from the set Srch =

∪θ∈V {θ.s}. We define the set

S ⊇ Sext := {s|(s′, s) ∈ δB and s′ ∈ Srch}\Srch.

Informally, Sext is the set of states in the Büchi automaton that can be reached by a single

transition from any state of Srch, but are not already in Srch.

In Line 2 of Alg.5.3, the subroutine Rand returns a sample srnd from a uniform distri-

bution over S (the set of all states of the Büchi automaton). If srnd ∈ Srch, then the sampling

strategy is the same as in the aforementioned Sample subroutine. Otherwise, the set Sext is

sampled (Line 6).

Intuitively, this sampling subroutine sets a sampling bias whenever Srch 6= S. This sam-

pling bias preserves the properties of probabilistic completeness and asymptotic optimality

of Alg. 5.1, which are inherited from the RRT∗ algorithm. With increasing iterations of

Alg. 5.1, the set Srch becomes larger, until Srch = S. Once this condition occurs (recall that

S is a finite set), the sampling heuristic in Alg. 5.3 becomes identical to the Sample subrou-

74

5.4. NUMERICAL SIMULATION EXAMPLES

tine, for which the aforesaid properties of completeness and optimality are proven [76]. The

significant speed-up due to this sampling heuristic is discussed in Section 5.4.

The probabilistic completeness and exponential convergence of RRT* have been proven

in [124]. The proposed algorithm inherits these properties. The proposed algorithm also

inherits the asymptotic optimality property of RRT*. This is because it rejects a new edge

only if the result of the Steer subroutine fails the model check, in which case the edge is not

associated with a transition of the Büchi automaton.

5.4 Numerical Simulation Examples

We implemented the algorithms presented in this paper with C++. All simulations dis-

cussed in this section were performed on a desktop computer with a 3.4 GHz Intel Core i7

processor, 8GB of memory, and the Ubuntu 14.04 operating system. The open-source library

Spot 2.0 was used to generate Büchi automata from LTL specifications [125]. Open-source

code for the proposed work is available at the following repository: https://github.com/zetian/ltl sampling.

5.4.1 Example Neglecting Kinematical Constraints

Consider a 100 × 100 unit square size environment as shown in Fig. 5.4(a). The inital

position is at (30, 30), and the task assigned to the vehicle is to visit regions λ1, λ2, λ3 and λ4

(orange regions in Fig. 5.4(a)) infinitely many times while avoiding obstacles (gray regions).

The LTL specification associated with this task is φ = 2(3λ1 ∧ 3λ2 ∧ 3λ3 ∧ 3λ4). A

vehicle kinematical or dynamical model is not considered.

A solution to this problem is shown in Fig. 5.4(a) marked as a black path. Figure 5.4(b)

shows the tree maintained by the algorithm. The proposed algorithm was repeatedly executed

for 20 times on this example. The average execution time to find the first feasible solution

was less than 0.1 s. By contrast, the average execution time to find the first feasible solution

without the proposed sampling heuristic was 0.87 sec. In other words, proposed sampling

75

https://github.com/zetian/ltl_sampling

5.4. NUMERICAL SIMULATION EXAMPLES

λ1 λ2

λ3λ4

(a) (b)

Figure 5.4: Workspace (a) and product space (b) for the example in Section 5.4.1.

heuristic resulted in over 75% reduction in the average execution time to find the first feasible

solution.

Next, we evaluated the performance advantage due to the proposed sampling heurstic

via a series of simulations with three different LTL specifications and with different obstacle

locations in each simulation. The results of this study are shown in Fig. 5.5. The horizontal

axis of the plot in Fig. 5.5 is the ratio of the area occupied by obstacles to the area of the

entire workspace, i.e., Area(Wobs)/Area(W). The vertical axis is the ratio of the execu-

tion times of the proposed algorithm to find a first feasible solution with and without the

proposed sampling heuristic. Note that when Area(Wobs)/Area(W) is low, the sampling

heuristic demonstrates a significant reduction in execution time: approximately an 80% re-

duction depending on the number of states in the Büchi automaton associated with the LTL

specification. Even as Area(Wobs)/Area(W) increases, a performance advantage due to the

proposed sampling heuristic is obtained. For higher values of Area(Wobs)/Area(W), i.e.,

when the workspace is too densely cluttered with obstacles, the well-known “narrow chan-

nel” problem severely impedes randomized sampling-based algorithms. Each data point in

Fig. 5.5 is an average value over 20 simulation instances.

76

5.4. NUMERICAL SIMULATION EXAMPLES

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction Area(Wobs)/Area(W)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
at

io
of

ex
ec

ut
io

n
tim

es

|S| = 16

|S| = 8

|S| = 4

Figure 5.5: Performance of sampling heuristic for the example in Section 5.4.1.

5.4.2 Examples with Fixed-Wing Aircraft Model

Example 1. Here we consider an example with the fixed wing aircraft kinematical

model (5.1). The task assigned to the vehicle is to visit regions λ1, λ2, λ3 (indicated by

shaded regions in 5.7(a)) with no imposition on the order of visits, i.e., the LTL specification

is φ1 = 3λ1 ∧ 3λ2 ∧ 3λ3. The size of the workspace is 100 × 100 unit square, and the

minimum turning radius of the vehicle model ρ = 15 units. The initial state is (50, 10, π/2),

indicated by a small circle. The trajectories resulting from the application of the proposed

algorithm after 600, 1200, and 3000 iterations with execution times 1.43 s, 3.29 s, and 14.72 s

are shown in Fig. 5.7(a), Fig. 5.7(c), and Fig. 5.7(e), respectively. Figures 5.7(b), 5.7(d), and

5.7(f) illustrate the tree G at these iterations.

As the number of iterations increase, the costs of trajectories returned by the proposed

algorithm decrease. For this example, decreasing trajectory costs with increasing iterations

of the algorithm are shown in Fig. 5.6(a).

Similar to Fig. 5.5, Fig. 5.6 shows the computational advantage provided by the pro-

posed sampling heuristic for Example 1. The horizontal and vertical axes in Fig. 5.6 are the

same as in Fig. 5.5. the sampling heuristic provides reductions in execution time by as much

as 80% depending on the number of states in the Büchi automaton.

77

5.4. NUMERICAL SIMULATION EXAMPLES

(a) Decreasing trajectory costs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction Area(Wobs)/Area(W)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
at

io
of

ex
ec

ut
io

n
tim

es

|S| = 16

|S| = 8

(b) Performance of sampling heuristic.

Figure 5.6: Results for Example 1.

Example 2. An example with a more complex LTL specification is illustrated in Fig. 5.8.

Here, the workspace is a square of 200×200 units, and the vehicle’s minimum radius of turn

is ρ = 20 units. The initial state is (100, 20, π/2), indicated by a small circle. The task

assigned to the vehicle is to visit regions λ1, λ2 and λ3, and to persistently visit λ4, λ5 and

λ6 infinitely often, and to always avoid the regions λ7 and λ8. The LTL specification for this

task is

φ2 = 3λ1 ∧3λ2 ∧3λ3 ∧2(3λ4 ∧3λ5 ∧3λ6) ∧2(¬λ7 ∧ ¬λ8).

This specification involves the 23 (always eventually) operator to specify persistent

surveillance, and lies outside the class of co-safe LTL specifications.

A reference trajectory for the prefix and one loop of the suffix of the path in satisfying

this LTL specification is shown in Fig. 5.8. Notice the “loop” through regions λ6, λ4, and λ5,

to satisfy the persistent surveillance requirement. This first feasible solution was obtained

after 17052 iterations, with an execution time of 89.22 s. This execution time compares

highly favorably against the reported time of 210 s in the state-of-the-art [126]. Therein, a

similar 3-state model with a simpler specification (i.e., fewer states in the Büchi automaton)

is considered. The specification considered in [126] is to reach a target set while avoiding

obstacles, which is simpler even compared Example 1 considered above, and far simpler

than the specification here in Example 2.

78

5.4. NUMERICAL SIMULATION EXAMPLES

λ1

λ2

λ3

(a) (b)

λ1

λ2

λ3

(c) (d)

λ1

λ2

λ3

(e) (f)

Figure 5.7: Simulation results for specification φ1 in Example 1 with the fixed wing aircraft
model (5.1).

79

5.4. NUMERICAL SIMULATION EXAMPLES

λ1

λ2

λ3
λ4

λ5

λ6

λ7

λ8

Figure 5.8: Simulation results for specification φ2 in Example 2 with the fixed wing aircraft
model (5.1).

Example 3. LTL formulae can express specifications of behavior conditional on the

environment. For example, the following specification φ3 := 3(λ1 ∧ (Target → 3λ2)) ∧

32λ3 encodes a requirement of visiting region λ0, then visiting region λ2 only if a target is

found in region λ1, and returning to base λ3 in either case. Such behavior may be required,

for instance, to relay target surveillance data to a remote data station, cf. [127].

Here, the mechanism of detecting the target is irrelevant. For the scope of this work,

we are concerned with the behavior of the vehicle in either case (i.e. target present / not

present). To this end, the proposed algorithm is implemented for the workspace shown in

Fig. 5.9. The detection of the target is hard-coded by a boolean variable within the software

implementation of the proposed algorithm. In practice this variable can be replaced by a

boolean estimate of the target’s presence generated by appropriate sensing hardware and

software. As seen in Fig. 5.9(a), when the target is present, the reference trajectory passes

through region λ1, otherwise it simply returns to base λ2 (Fig. 5.9(b)). It is easy to include a

persistent surveillance requirement, as in the preceding example with specification φ2.

80

5.4. NUMERICAL SIMULATION EXAMPLES

0 20 40 60 80 100
0

20

40

60

80

100

λ3

λ1

λ2

(a) Target present at λ1.
0 20 40 60 80 100

0

20

40

60

80

100

λ3

λ1

λ2

(b) Target not present at λ1.

Figure 5.9: Simulation results for specification φ3 illustrating trajectories conditional on properties
of the environment.

5.4.3 Example with Quadrotor Aircraft Dynamical Model

This example of trajectory generation for specification φ3, implemented with the quadro-

tor dynamical model (5.2) and (5.3). The results are shown in Fig. 5.10, and show behavior

similar to that for the fixed wing aircraft model shown in Fig. 5.9. In Fig. 5.10, the cubic

shaded region close to (0, 0, 0) is the base λ3, the cubic shaded region close to the center is

λ1 and the cubic shaded region near the top center is λ2. The tall shaded regions near the

center are obstacles. Some parts of the trajectories are hidden by the shaded regions.

Figure 5.11 shows the performance advantage due to the sampling heuristic. As in

Figs. 5.5 and 5.6(b), the horizontal axis is the ratio of the area occupied by obstacles to the

area of the entire workspace, whereas the vertical axis is the ratio of the execution times of the

proposed algorithm to find a first feasible solution with and without the proposed sampling

heuristic. Each data point in Fig. 5.11 is an average value over 20 simulation instances, each

with different obstacle locations and sizes.

The striking similarity of these three figures indicates that the strong performance ad-

81

5.4. NUMERICAL SIMULATION EXAMPLES

0

20

40
60

80
100

0

20

40

60
80

100

0

20

40

60

80

100

(a) Target present at λ1.

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

(b) Target not present at λ1.

Figure 5.10: Simulation results for specification φ3 illustrating quadrotor trajectories conditional on
properties of the environment.

vantage gained due to the proposed sampling heuristic is independent of the complexity of

the LTL specification (number of states in the Büchi automaton), and independent of the

vehicle kinematical or dynamical model considered.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction Area(Wobs)/Area(W)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
at

io
of

ex
ec

ut
io

n
tim

es

|S| = 16
|S| = 8
|S| = 4

Figure 5.11: Performance of sampling heuristic for specification φ3.

82

5.5. EXTENSION TO MULTIPLE VEHICLES

5.5 Extension to Multiple Vehicles

It is convenient to extend the algorithm we discussed in /refsec-algorithms to multiple

vehicles, similar to the team state in 3.2: team state µ = (x1, . . . , xNV) ∈ (D)N
V is defined

as the NV-tuple of vertices in D indicating the state of each vehicle. And then apply the

algorithm on product space T := (D)N
V×S, the process of the algorithm remains the same.

Simulation result are shown in Fig. 5.12 using fixed wing aircraft kinematical model

(5.1), the simulation task is the same task in refssec-example1 but assigned to two vehicles

to visit regions λ1, λ2, λ3 with no imposition on the order of visits, i.e., the LTL specification

is φ1 = 3λ1 ∧3λ2 ∧3λ3.

83

5.5. EXTENSION TO MULTIPLE VEHICLES

0 20 40 60 80 100
0

20

40

60

80

100

(a) First feasible solution.

0 20 40 60 80 100
0

20

40

60

80

100

(b) Solution after 800 iterations.

0 20 40 60 80 100
0

20

40

60

80

100

(c) Solution after 1500 iterations.

0 20 40 60 80 100
0

20

40

60

80

100

(d) Solution after 3500 iterations.

Figure 5.12: Simulation result for specification φ1 = 3λ1 ∧3λ2 ∧3λ3.

84

Chapter 6

Conclusions and Directions of Future Work

In this thesis, we discussed a new motion-planning technique for autonomous vehicles

subject to linear temporal logic specifications.

We proposed a graph based motion-planning algorithm relies on workspace partition-

ing, which involves partitioning in a space of smaller dimension than the state space, as is

often done in the literature. The proposed technique relied on the so-called lifted graph, and

on apropriate assignments of edge transition costs in the lifted graph. The relationship of

these edge transition costs with certain forward- and backward reachable sets of the vehicle

model was discussed, and the offline preprocessing of the computations of these sets was

emphasized. The proposed approach is applicable more generally to differentially flat non-

linear systems, especially when control input constraints can be mapped to constraints on

the flat output-space trajectories. The control constraints for the vehicle model considered in

this paper were mapped to curvature constraints on the admissible workspace (output space)

trajectories. Therefore, analysis of forward- and backward reachable sets with curvature-

bounded curves was directly applied for finding lifted graph edge transition costs for this

vehicle model.

We presented a multi-vehicle motion-planning algorithm for satisfying global LTL spec-

ifications, such that the resultant paths are traversable with admissible trajectories of the

vehicle dynamical model. An incremental motion-planning algorithm was proposed, and

illustrative numerical simulation results were presented.

We discussed an incremental algorithm for hierarchical motion-planning based on the

previously developed H-cost motion-planning technique. The H-cost technique has been

shown to be useful in the tight integration of the solutions of a high-level discrete task-

85

planning problem with a low-level continuous trajectory generation problem. Whereas it

is beneficial to use high values of the parameter H , the complexity of the H-cost optimal

path problem increases exponentially with H . The proposed algorithm alleviates this high

computational cost by making available a feasible solution at intermediate iterations We

proved that the proposed algorithm is guaranteed to converge to an optimal solution given

enough computation time (i.e. after a sufficiently large number of iterations). Furthermore,

the cost of the solutions available in intermediate iterations of the proposed algorithm is

always nonincreasing except, possibly, at a finite number of special iterations (i.e. when H

is incremented).

We proposed a randomized sampling based algorithm for satisfying linear temporal

logic (LTL) specifications similar to the well-known rapidly-exploring random tree (RRT∗)

algorithm. We proposed a sampling heuristic that provides significant reductions in execu-

tion time for finding feasible solutions. This sampling heuristic preserves the guarantees

of probabilistic completeness and asymptotic optimality inherited from RRT∗. We demon-

strated the computational advantages of this sampling heuristic through a series of numerical

simulations. In contrast to other randomized sampling-based approaches reported in the lit-

erature, the proposed algorithm is capable of finding infinite trajectories in prefix-suffix form

to satisfy LTL specifications, i.e., it is not restricted to the class of co-safe LTL specifications.

Following are the possible future extensions of the proposed motion planning frame-

work.

Motion-Planning with Uncertainties In this thesis, we assumed perfect knowledge of

the environment and the vehicle. In practice, the environment is uncertain, the environment

may be modeled by a Markov decision process (MDP), we can also using the idea of lifted

graph discussed in 2.2 to incorporate vehicle dynamical constraints by model the motion

planning problem by ”lifted MDP”.

Motion-Planning Algorithm on Multiple Vehicles We discussed a centralized motion-

planning algorithm in chapter 3, future work includes removing the previously discussed

86

simplifying assumptions, including temporal synchronization, and the extension to LTL

specifications involving the next operator and incorporation of a collision avoidance con-

straint among vehicles. Also we will address decentralization of the framework, one idea is

to decompose the task that described by LTL formula by consensus-based bundle algorithm

and then assign subtasks to each vehicle.

87

Bibliography

[1] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Founda-

tions of Computer Science, Providence, RI, USA, October 31 - November 2 1977, pp.

46–57.

[2] V. S. Alagar and K. Periasamy, Specification of Software Systems, 2nd ed. London,

UK: Springer-Verlag, 2011.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA, USA:

The MIT Press, 2008.

[4] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot motion plan-

ning and control in polygonal environments,” IEEE Transactions on Robotics, vol. 21,

no. 5, pp. 864 – 874, October 2005.

[5] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers for path plan-

ning: A temporal logic approach,” in Proceedings of the 44th IEEE Conference on

Decision and Control, Seville, Spain, 12 – 15 Dec. 2005, pp. 4885 – 4890.

[6] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas, “Symbolic

planning and control of robot motion,” IEEE Robotics and Automation Magazine, pp.

61 – 70, March 2007.

[7] D. J. Bertsimas and D. Simichi-Levi, “A new generation of vehicle routing research:

Robust algorithms, addressing uncertainty,” Operations Research, vol. 44, no. 2, pp.

286–304, 1996.

[8] V. Pillac, M. Gendreau, C. Gueret, and M. A. L., “A review of dynamic vehicle routing

problems,” European Journal of Operational Research, vol. 225, pp. 1–35, 2013.

88

BIBLIOGRAPHY

[9] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity. Mineola, NY, USA: Dover Publications, Inc., 1998.

[10] D. J. Bertsimas and G. Van Ryzin, “A stochastic and dynamic vehicle routing problem

in the euclidean plane,” Operations Research, vol. 39, no. 4, pp. 601–615, 1991.

[11] S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha, “Dynamic vehicle rout-

ing for translating demands: Stability analysis and receding-horizon policies,” IEEE

Transactions on Automatic Control, vol. 55, pp. 2554–2569, 2010.

[12] X. Ma and D. A. Castanon, “Receding horizon planning for dubins traveling salesman

problems,” in Proceedings of the 45th IEEE Conference on Decision & Control, San

Diego, CA, USA, Dec. 13–15 2006, pp. 5453–5458.

[13] K. Savla, E. Frazzoli, and F. Bullo, “Traveling salesperson problems for the dubins

vehicle,” IEEE Transactions on Automatic Control, vol. 53, pp. 1378–1391, 2008.

[14] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing

networks,” IEEE Transactions on Robotics and, vol. 20, no. 2, pp. 243–255, 2004.

[15] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with distributed informa-

tion,” IEEE Control Systems Magazine, pp. 75–88, August 2007.

[16] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic Networks: A

Mathematical Approach to Motion Coordination Algorithms. Princeton University

Press, 2009.

[17] Z. Shiller and Y.-R. Gwo, “Dynamic motion planning of autonomous vehicles,” IEEE

Transactions on Robotics and Automation, vol. 7, no. 2, pp. 241–249, 1991.

[18] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient hierarchical path

planning,” IEEE Transactions on Robotics and Automation, vol. 7, no. 1, pp. 9–20,

1991.

89

BIBLIOGRAPHY

[19] S. R. Cunha, A. C. de Matos, and F. L. Pereira, “An automatic path planning system

for autonomous robotic vehicles,” in Proceedings of the IECON ’93 International

Conference on Industrial Electronics, Control, and Instrumentation, Maui, HI, USA,

November 1993, pp. 1442–1447.

[20] J.-P. Laumond, M. Taix, P. Jacobs, and R. M. Murray, “A motion planner for nonholo-

nomic mobile robots,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5,

pp. 577–593, 1994.

[21] M. Cherif, “Kinodynamic motion planning for all-terrain wheeled vehicles,” in Pro-

ceedings of the 1999 IEEE International Conference on Robotics and Automation,

Detroit, MI., May 1999, pp. 317 – 322.

[22] D. Coombs, K. Murphy, A. Lacaze, and S. Legowik, “Driving autonomously offroad

up to 35 km/h,” in Proceedings of the 2000 International Vehicles Conference, 2000.

[23] A. Rosiglioni and M. Simina, “Kinodynamic motion planning,” in Proceedings of the

IEEE Conference on Systems, Man, and Cybernetics, vol. 3, 2003, pp. 2243–2248.

[24] B. Mettler and E. Bachelder, “Combining on- and offline optimization techniques for

efficient autonomous vehicle’s trajectory planning,” in Collection of Technical Papers

- AIAA Guidance, Navigation, and Control Conference 2005, ser. 499–511, vol. 1,

2005.

[25] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

[26] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun,

Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT

Press, 2005.

[27] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configuration space

for findpath with rotation,” IEEE Transactions on Systems, Man, and Cybernetics, vol.

SMC-15, no. 2, pp. 224–233, Mar–Apr 1985.

90

BIBLIOGRAPHY

[28] M. de Berg, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms

and Applications. Berlin: Springer, 1997.

[29] H. Samet, “The quadtree and related hierarchical data structures,” Computing Surveys,

vol. 16, no. 2, pp. 187–260, June 1984.

[30] S. Kambhampati and L. S. Davis, “Multiresolution path planning for mobile robots,”

IEEE Journal of Robotics and Automation, vol. RA-2, no. 3, pp. 135–45, September

1986.

[31] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-based path planning algorithm

for a mobile robot,” Journal of Robotic Systems, vol. 7, no. 4, pp. 555–74, 1990.

[32] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path planning by path

graph optimization,” IEEE Transactions on Systems, Man, and Cybernetics– Part A:

Systems and Humans, vol. 33, no. 1, pp. 121–127, January 2003.

[33] S. Behnke, “Local multiresolution path planning,” Lecture Notes in Artificial Intelli-

gence, vol. 3020, pp. 332–43, 2004.

[34] P. Tsiotras and E. Bakolas, “A hierarchical on-line path planning scheme using

wavelets,” in Proceedings of the European Control Conference, Kos, Greece, July 2–5

2007, pp. 2806–2812.

[35] A. E. Bryson and Y.-C. Ho, Applied Optimal Control. New York, NY, USA: Taylor

& Francis, 1975.

[36] L. Cesari, Optimization - Theory and Applications. New York, NY, USA: Springer-

Verlag, 1983.

[37] M. Athans and P. L. Falb, Optimal Control. Dover Publications, Inc., 2007.

[38] J. M. Longuski, J. J. Guzman, and J. E. Prussing, Optimal Control with Aerospace

Applications. New York, Ny, USA: Springer, 2014.

91

BIBLIOGRAPHY

[39] G. M. Siouris, Missile Guidance and Control Systems. New York, NY: Springer,

2003.

[40] X.-N. Bui, J.-D. Boissonnat, P. Souères, and J.-P. Laumond, “Shortest path synthe-

sis for dubins non-holonomic robot,” in Proceedings of the 1994 IEEE International

Conference on Robotics and Automation, San Diego, CA, USA, May 1994, pp. 2–7.

[41] H. J. Sussmann, “Shortest 3-dimensional paths with a prescribed curvature bound,” in

Proceedings of the 34th IEEE Conference on Decision & Control, New Orleans, LA,

1995, pp. 3306–3312.

[42] J.-D. Boissonnat and X.-N. Bui, “Accessibility region for a car that only moves for-

wards along optimal paths,” Institut National de Recherche en Informatique et Au-

tomatique (INRIA), Tech. Rep., 1994.

[43] T. G. McGee and J. K. Hedrick, “Optimal path planning with a kinematic airplane

model,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 2, pp. 629–633,

2007.

[44] P. K. A. Menon and E. Kim, “Optimal trajectory synthesis for terrain-following flight,”

Journal of Guidance, Control, and Dynamics, vol. 14, no. 4, pp. 807–813, 1991.

[45] E. Bakolas and P. Tsiotras, “Optimal synthesis of the Zermelo-Markov-Dubins prob-

lem in a constant drift field,” Journal of Optimization Theory and Applications, vol.

156, no. 2, pp. 469–492, 2013.

[46] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of

Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–204, 1998.

[47] I. M. Ross and F. Fahroo, Legendre Pseudospectral Approximations in Optimal Con-

trol Problems, ser. Lecture Notes in Control and Information Sciences. Berlin, Ger-

many: Springer-Verlag, 2003, vol. 295, pp. 327–342.

92

BIBLIOGRAPHY

[48] A. Farooq and D. J. N. Limebeer, “Trajectory optimization for air-to-surface missiles

with imaging radars,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 5, pp.

876–887, 2002.

[49] B. Sridhar, H. K. Ng, and N. Y. Chen, “Aircraft trajectory optimization and contrails

avoidance in the presence of winds,” Journal of Guidance, Control, and Dynamics,

vol. 34, pp. 1577–1583, 2011.

[50] Y. Zhao and P. Tsiotras, “Analysis of energy-optimal aircraft landing operation tra-

jectories,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 3, pp. 833–845,

2013.

[51] P. Williams, “Three-dimensional aircraft terrain-following via real-time optimal con-

trol,” Journal of Guidance, Control, and Dynamics, vol. 30, pp. 1201–1205, 2007.

[52] Z. Shiller and H.-H. Lu, “Computation of path constrained time-optimal motions with

dynamic singularities,” ASME Journal of Dynamic Systems, Measurement, and Con-

trol, vol. 114, pp. 34–40, 1992.

[53] Z. Shiller, “On singular time-optimal control along specified paths,” IEEE Transac-

tions on Robotics and Automation, vol. 10, no. 4, pp. 561–566, 1994.

[54] M. Lepetič, G. Klancčar, I. Škrjanc, D. Matko, and B. Potočnik, “Time optimal path

planning considering acceleration limits,” Robotics and Autonomous Systems, vol. 45,

pp. 199–210, 2003.

[55] E. Velenis and P. Tsiotras, “Minimum-time travel for a vehicle with acceleration lim-

its: Theoretical analysis and receding horizon implementation,” Journal of Optimiza-

tion Theory and Applications, vol. 138, no. 2, pp. 275–296, 2008.

[56] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods.

Englewood Cliffs, NJ, USA: Prentice Hall, 1990.

93

BIBLIOGRAPHY

[57] J. N. Tsitsiklis, “Efficient algorithms for global optimal trajectories,” IEEE Transac-

tions on Automatic Control, vol. 40, no. 9, pp. 1528–1538, 1995.

[58] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,

Belmont, MA, 2000.

[59] E. Rippel, A. Bar-Gill, and N. Shimkin, “Fast graph-search algorithms for general

aviation flight trajectory generation,” Journal of Guidance, Control, and Dynamics,

vol. 28, no. 4, pp. 801–811, July-August 2005.

[60] N. Faiz and S. K. Agrawal, “Trajectory planning of robots with dynamics and in-

equalities,” in Proceedings of the 2000 IEEE International Conference on Robotics

and Automation, San Francisco, CA, April 2000, pp. 3976–3981.

[61] T. Schouwenaars, B. Mettler, E. Feron, and J. How, “Hybrid model for trajectory plan-

ning of agile autonomous vehicles,” Journal of Aerospace Computing, Information,

and Communication, vol. 1, pp. 629–651, 2004.

[62] S. Sundar and Z. Shiller, “Optimal obstacle avoidance based on Hamilton-Jacobi-

Bellman equation,” IEEE Transactions on Robotics and Automation, vol. 13, no. 2,

pp. 305–310, April 1997.

[63] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents,” American Journal of

mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[64] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both forwards and

backwards,” Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367–393, 1990.

[65] J. Reif and H. Wang, “The complexity of the two dimensional curvature-constrained

shortest-path problem,” in Proceedings of the 3rd Workshop on the Algorithmic Foun-

dations of Robotics, 1998, pp. 49–58.

94

BIBLIOGRAPHY

[66] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal

of the Association for Computing Machinery, vol. 40, no. 5, pp. 1048–1066, Novem-

ber 1993.

[67] L. E. Kavraki and J.-C. Latombe, “Randomized preprocessing of configuration space

for fast path planning,” Dept. Computer Science, Stanford University, Stanford, CA,

Tech. Rep. STAN-CS-93-1490, 1993.

[68] P. Švestka, “A probabilistic approach to motion planning for car-like robots,” Dept.

Computer Science, Utrecht University, Utrecht, The Netherlands, Tech. Rep. RUU-

CS-1993-18, 1993.

[69] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” Robotics and

Automation, IEEE Transactions on, vol. 12, no. 4, pp. 566–580, 1996.

[70] N. M. Amato and Y. Wu, “A randomized roadmap method for path and manipulation

planning,” in Robotics and Automation, 1996. Proceedings., 1996 IEEE International

Conference on, vol. 1. IEEE, 1996, pp. 113–120.

[71] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The Interna-

tional Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[72] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic planning,” Interna-

tional Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[73] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic motion

planning with moving obstacles,” International Journal of Robotics Research, vol. 21,

no. 3, pp. 233–255, March 2002.

[74] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile au-

tonomous vehicles,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp.

116–129, 2002.

95

BIBLIOGRAPHY

[75] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics by a syn-

ergistic combination of layers of planning,” IEEE Transactions on Robotics, vol. 26,

no. 3, pp. 469–482, 2010.

[76] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-

ning,” International Journal of Robotics Research, vol. 30, pp. 846–894, 2011.

[77] L. Kavraki, P. Svestka, and M. H. Overmars, Probabilistic roadmaps for path planning

in high-dimensional configuration spaces. Unknown Publisher, 1994, vol. 1994.

[78] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, “A

random sampling scheme for path planning,” in Robotics Research. Springer, 1996,

pp. 249–264.

[79] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foundations of prob-

abilistic roadmap planning,” The International Journal of Robotics Research, vol. 25,

no. 7, pp. 627–643, 2006.

[80] M. Antoniotti and B. Mishra, “Discrete event models temporal logic supervisory con-

troller: Automatic synthesis of locomotion controllers,” in Proceedings of the 1995

International Conference on Robotics and Automation, vol. 2. IEEE, 1995, pp.

1441–1446.

[81] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-agent motion

tasks based on ltl specifications,” in Proceedings of the 2004 43rd IEEE Conference

on Decision and Control, vol. 1. IEEE, 2004, pp. 153–158.

[82] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems

from ltl specifications,” in International Workshop on Hybrid Systems: Computation

and Control, vol. 3927. Springer, 2006, pp. 333–347.

[83] M. M. Quottrup, T. Bak, and R. Zamanabadi, “Multi-robot planning: A timed au-

tomata approach,” in Proceedings of the 2004 IEEE International Conference on

Robotics and Automation, vol. 5. IEEE, 2004, pp. 4417–4422.

96

BIBLIOGRAPHY

[84] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and robustness

in multi-robot path planning with temporal logic constraints,” International Journal

of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.

[85] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete abstractions of

hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 971–984, July 2000.

[86] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach.

Springer, 2008.

[87] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems

from temporal logic specifications,” IEEE Transactions on Automatic Control, vol. 53,

no. 1, pp. 287–297, February 2008.

[88] P. Wolper, M. Vardi, and A. Sistla, “Resoning about infinite computations,” in Pro-

ceedings of the 24th Symposium on Foundations of Computer Science, Tucson, AZ,

1983, pp. 185–194.

[89] P. Wolper, “Constructing automata from temporal logic formulas: A tutorial,” in For-

mal Methods Performance Analysis: First EEF/Euro Summer School on Trends in

Computer Science. New York, NY: Springer-Verlag, 2001.

[90] G. Holzmann, “The model checker SPIN,” IEEE Transactions on Software Engineer-

ing, vol. 23, no. 5, pp. 279–295, 1997.

[91] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in Proceedings

of the 13th Conference on Computer Aided Verification (CAV’ 01), ser. Lecture Notes

in Computer Science, H. C. G. Berry and A. Finkel, Eds., vol. 2102. New York:

Springer-Verlag, 2001, pp. 53–65.

[92] X. C. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for finite deter-

ministic systems,” Automatica, vol. 50, pp. 399–408, 2014.

97

BIBLIOGRAPHY

[93] J. A. DeCastro and H. Kress-Gazit, “Synthesis of nonlinear continuous controllers for

verifiably correct high-level, reactive behaviors,” International Journal of Robotics

Research, vol. 34, no. 3, pp. 378–394, 2015.

[94] M. Kloetzer and C. Belta, “Temporal logic planning and control of robotic swarms by

hierarchical abstractions,” IEEE Transaction on Robotics, vol. 23, no. 2, pp. 320–330,

2007.

[95] Y. Yordanov, J. Tu̇mova, I. Černá, J. Barnat, and C. Belta, “Temporal logic control

of discrete-time piecewise affine systems,” IEEE Transactions on Automatic Control,

vol. 57, no. 6, pp. 1491–1505, 2012.

[96] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for nonlinear con-

trol systems without stability assumptions,” IEEE Transactions on Automatic Control,

vol. 57, no. 7, pp. 1804–1809, 2012.

[97] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based control of nonlinear

systems with linear temporal logic specifications,” in Proceedings of the 2014 Inter-

national Conference on Robotics and Automation, Hong Kong, China, May 31 – June

7 2014, pp. 5319–5325.

[98] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J. Pappas, “Courteous

cars: Decentralized multiagent traffic coordination,” IEEE Robotics & Automation

Magazine, vol. 15, pp. 30–38, 2008.

[99] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone systems,” in

Proceedings of the 18th International Conference on Hybrid Systems: Computation

and Control, Seattle, WA, USA, April 14 – 16 2015, pp. 58–67.

[100] M. Guo and D. V. Dimarogonas, “Reconfiguration in motion-planning of single- and

multi-agent systems under infeasible local LTL specifications.” in Proceedings of the

52nd IEEE Conference on Decision & Control, Florence, Italy, December 2013.

98

BIBLIOGRAPHY

[101] ——, “Multi-agent plan reconfiguration under local LTL specifications,” Interna-

tional Journal of Robotics Research, vol. 34, no. 2, pp. 218–235, 2015.

[102] R. V. Cowlagi and P. Tsiotras, “Hierarchical motion planning with dynamical feasibil-

ity guarantees for mobile robotic vehicles,” IEEE Transactions on Robotics, vol. 28,

no. 2, pp. 379 – 395, 2012.

[103] A. Stentz, “The focussed D∗ algorithm for real-time replanning,” in Proceedings of

the International Joint Conference on Artificial Intelligence, vol. 95, 1995, pp. 1652–

1659.

[104] T. Wongpiromsarn, V. G. Rao, and R. D. D’Andrea, “Two approaches to dynamic

refinement in hierarchical motion planning,” in Proceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, Aug 15–

18 2005.

[105] P. Tabuada and G. J. Pappas, “Model checking LTL over controllable linear systems

is decidable,” in Hybrid Systems: Computation & Control, ser. LNCS 2623, O. Maler

and A. Pnueli, Eds. Berlin: Springer-Verlag, 2003, pp. 498–513.

[106] C. I. Vasile and C. Belta, “Sampling-based temporal logic path planning,” in Pro-

ceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE, 2013, pp. 4817–4822.

[107] V. Varricchio, P. Chaudhari, and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning using process algebra specifications,” in Proceedings of the 2014

IEEE International Conference on Robotics and Automation. IEEE, 2014, pp. 5326–

5332.

[108] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target sets and

target tubes,” Automatica, vol. 7, pp. 233–247, 1971.

[109] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata theory, lan-

guages, and computation, 2nd ed. Boston, MA, USA: Addison-Wesley, 2001.

99

BIBLIOGRAPHY

[110] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

2nd ed. MIT Press, 2001.

[111] J. Cichon, A. Czubak, and A. Jasinski, “Minimal büchi automata for certain classes

of ltl formulasri,” in 2009 Fourth International Conference on Dependability of Com-

puter Systems. IEEE, 2009, pp. 17–24.

[112] R. V. Cowlagi and P. Tsiotras, “Curvature-bounded traversability analysis for motion

planning of mobile robots,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 1011–

1019, 2014.

[113] R. V. Cowlagi, “Hierarchical motion planning for autonomous aerial and terrestrial

vehicles,” Ph.D. dissertation, Georgia Institute of Technology, 2011.

[114] E. J. Cockayne and G. W. C. Hall, “Plane motion of a particle subject to curvature

constraints,” SIAM Journal on Control, vol. 13, no. 1, pp. 197–220, 1975.

[115] S. Bereg and D. Kirkpatrick, “Curvature-bounded traversals of narrow corridors,” in

Proceedings of the Twenty-first Annual Symposium on Computational Geometry, Pisa,

Italy, 2005, pp. 278–287.

[116] B. Dawes, D. Abrahams, and R. Rivers, “Boost C++ libraries,” Available online at

http://www.boost.org/.

[117] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine, “Single-source shortest paths

with the parallel boost graph library,” in The Ninth DIMACS Implementation Chal-

lenge: The Shortest Path Problem, Piscataway, NJ, November 2006.

[118] S. R. Lindemann, I. I. Hussein, and S. M. LaValle, “Real time feedback control for

non-holonomic mobile robots with obstacles,” in Proceedings of the 45th IEEE Con-

ference on Decision and Control, San Diego, CA, USA, December 2006, pp. 2406–

2411.

100

http://www.boost.org/

BIBLIOGRAPHY

[119] Z. Zhang and R. V. Cowlagi, “Incremental path repair in hierarchical motion-planning

with dynamical feasibility guarantees for mobile robotic vehicles,” in Proceedings of

the 2015 European Control Conference. IEEE, 2015, pp. 2366–2371.

[120] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search in AI,”

Artificial Intelligence Magazine, vol. 25, pp. 99–112, 2004.

[121] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for pre-

cise aggressive maneuvers with quadrotors,” The International Journal of Robotics

Research, vol. 31, no. 5, pp. 664–674, Apr. 2012.

[122] M. Cutler and J. P. How, “Analysis and Control of a Variable-Pitch Quadrotor for

Agile Flight,” Journal of dynamic systems, measurement, and control, vol. 137, no. 10,

p. 101002, 1 Oct. 2015.

[123] J. McMahon and E. Plaku, “Sampling-based tree search with discrete abstractions

for motion planning with dynamics and temporal logic,” in Intelligent Robots and

Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp.

3726–3733.

[124] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-

ning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894,

2011.

[125] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu, “Spot

2.0 — a framework for LTL and ω-automata manipulation,” in Proceedings of the

14th International Symposium on Automated Technology for Verification and Analysis

(ATVA’16), ser. Lecture Notes in Computer Science, vol. 9938. Springer, Oct. 2016,

pp. 122–129.

[126] M. Rungger and M. Zamani, “Scots: A tool for the synthesis of symbolic controllers,”

in Hybrid Systems Computation and Control, 2016.

101

BIBLIOGRAPHY

[127] D. J. Klein, S. Venkateswaran, J. T. Isaacs, J. Burman, T. Pham, J. a. Hespanha,

and U. Madhow, “Localization with sparse acoustic sensor network using UAVs as

information-seeking data mules,” ACM Trans. Sen. Netw., vol. 9, no. 3, pp. 30:1–

30:29, Jun. 2013.

102

