
Detecting Academic Dishonesty in Computer Science Courses

A Major Qualifying Project
Submitted to the faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

Degree in Bachelor of Science
in

Computer Science

By:
Matthew Olson, Matthew Hurlbut-Coke, and Marcelino Puente-Perez

Date: 4/28/2022
Project advisor:

Professor Joseph Beck

This report represents work of one or more WPI undergraduate students submitted to the faculty
as evidence of a degree requirement. WPI routinely publishes these reports on its web site

without editorial or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

Abstract

Plagiarism Detector (PD) is a software that was created in response to an alarming
incident of academic dishonesty in an entry-level computer science course at Worcester
Polytechnic Institute (WPI). The software developed in this project is meant to detect similarities
in code and present the results to instructors in a meaningful way. PD was built in Java using
JavaFX with the intention of checking assignments in the Racket programming language. Racket
is a general purpose programming language that was selected for the introductory CS classes at
WPI due to its intuitive function templates and high-level features. PD used a syntax-tree based
similarity detector that was custom built for Racket’s unique syntax structure. We found that our
algorithm worked respectably well at finding cases of possible cheating.

1

Acknowledgments

Special thanks to Professor Joseph Beck for recruiting us to this project and supporting us along
the way.

Special thanks to the WPI Computer Science Department.

Special thanks to Reilly Norum and Jake Casey for helping edit and revise this paper.

Special thanks to Professor Hugh Lauer and his team of students for paving the way for this type
of software at WPI with Checksims.

2

Table of Contents

Abstract 1

Acknowledgments 2

Table of Contents 3

1. Introduction 4

2. Literature Review 5
2.1 What is Academic Dishonesty 5
2.2 Previous Solutions 6

2.2.1 Moss 6
2.2.2 Checksims 7

2.3 Racket Specific Approaches 8
2.3.1 Syntax Trees 8
2.3.2 Racket Syntax 9
2.3.3 Tree Comparison Algorithms 9

3. Requirements 10

4 Solution 11
4.1 Application 11
4.2 Racket Tree 12
4.3 Data Visualization 14

5. Results 16

6. Future Work and Conclusions 18
6.1 Future Work 18
6.2 Conclusions 19

References 20

Additional Materials 22

3

1. Introduction

The COVID-19 pandemic has brought many stressors to students and professors alike.

Universities all over the world have since reported a significant increase in academic dishonesty

as classes have transitioned to an online learning format (Herdian et al. 2021). However, online

learning is not a new concept. A 2008 study taken at a Northeastern University of 12,000

students found that between 50-70% of undergraduates had performed some form of academic

dishonesty (Schmelkin et al. 2008). Additionally, it appears that stress and fear of loss due to the

COVID-19 pandemic are tightly connected to the increase in academic dishonesty (Grolleau

2016).

Professor Beck, the advising professor for this project, experienced an extreme case of

cheating in his Spring 2021 Computer Science classes with 19 student admissions of dishonesty

and 2 cases referred to the Campus Hearing Board. This incident was prompted by a Student

Assistant noticing a clear case of copying on an assignment. That prompted Professor Beck to

manually evaluate all 63 student submissions for evidence of cheating. This process was

laborious and not one he wanted to repeat. In recent years, record numbers of CS majors have

been earning degrees; from 2017 to 2018 there was a 15% increase (Partovi 2020). As WPI CS

grows similarly, it has become increasingly more difficult for teaching assistants and professors

to detect cheating in the multiple assignments per class. Our team has worked hard to create a

program that is accurate and efficient at detecting academic dishonesty in these Racket-based

computer science courses. With our easy to use program, professors can review possible cases of

cheating in a much faster period of time.

4

2. Literature Review

2.1 What is Academic Dishonesty

Academic dishonesty is commonly defined as the act of misrepresenting the work of a

student, such as through cheating on tests or plagiarizing the work of others. The definitions

slightly vary from school to school but WPI separates its definition into four categories:

Cheating, Fabrication, Facilitation, and Plagiarism. Cheating can be described as using or

attempting to use materials, information, or study aid that are unauthorized for use in an

academic exercise. For example, copying a peer’s work or communicating with a peer during an

exam would be considered cheating. Fabrication is the falsification or misrepresentation of

information in an academic exercise such as altering grades or changing exam solutions after the

allotted time. Facilitation involves helping someone commit academic dishonesty by sharing

answers or doing work for a peer. Lastly, Plagiarism can be defined as using words, ideas, data,

or code without properly attributing it to the original author. This can be seen as paraphrasing

without citation or taking credit for someone else’s work (What is Academic Dishonesty 2022).

The academic dishonesty policy for WPI can be accessed through the link below:

https://www.wpi.edu/about/policies/academic-integrity/dishonesty

As mentioned earlier, some professors have seen a surge in the rates of academically

dishonest behavior during the COVID-19 pandemic (Beck, personal communication), such as

blatantly copied assignment submissions with only superficial changes made to them. Our

project is designed to help combat dishonest behavior by making it easier for professors to

compare submitted code, and draw attention to potential plagiarism/copying.

5

https://www.wpi.edu/about/policies/academic-integrity/dishonesty

2.2 Previous Solutions

The problem of academic dishonesty is not a new one and has had many attempts trying

to detect it. This problem is especially difficult to deal with in introductory computer science

courses, such as Introduction to Program Design (CS1101) and Accelerated Introduction to

Program Design (CS1102). These courses in particular use Racket, a language that is not

commonly used, and as such, there are not many dedicated tools for detecting plagiarized work.

Most schools keep their methods secret to avoid students circumventing the tool, but the

benchmark for detecting plagiarized code is the widely used tool known as Moss (Measure of

Software Similarity).

2.2.1 Moss

Moss is a free to use software and currently maintained and provided by Stanford

University. While the ideas behind its method are publicly available, the source code is closed

source. Originally developed in 1994 (Aiken, n.d), Moss can be used for a number of languages,

such as Java, Matlab, and most relevant to our project: Scheme, which Racket is based on. Moss

is a web-based application where registered users can upload a set of files to a server, which will

return a report displaying the similarity between each pair of files. It also has the ability to ignore

predetermined sections of code, such as libraries or starter code, so that it will not erroneously

flag code that was provided by the instructor.

As a copy-detection algorithm, Moss has three key features that help it detect similarity

across files: whitespace insensitivity, noise suppression, and position independence (Yang, D,

2019). Being whitespace insensitive means that the algorithm does not take whitespace, such as

spaces or new lines, into account when calculating similarity. Noise suppression refers to the

ability of the algorithm to ignore small, meaningless matches, such as ones consisting of only a

6

few words. The last feature is position independence, which means that even if copied code is

rearranged and restructured, the program will still flag it as being similar.

Despite Moss’s complexity and power, however, it is not without its faults. One of its

biggest weaknesses is its inability to detect syntactic changes, such as replacing if-else

statements with switch-case statements, or for loops with while loops. Another drawback is that

while Moss can detect similarity, there is no way for it to detect causation. It can indicate which

two files were likely copied, but it cannot conclusively determine that plagiarism took place; it

can find evidence, but not definitive proof. Ultimately, whether or not academic dishonesty has

taken place comes down to one’s own judgment.

2.2.2 Checksims

Academic dishonesty is not a new problem at WPI. In 2015, Professor Hugh Lauer

created an MQP for this same problem. This MQP would end up creating the program

Checksims to find academic dishonesty. Checksims was designed to be a multi-use application

that was language agnostic and able to compare students' submissions on a line by line basis. The

software is a local app that a professor could download and run on their submissions, outputting

a similarity value from 0 to 1 to determine how much code from one file could be found in

another.

Checksims calculates its comparisons by using one of two algorithms, either a simple line

comparison algorithm or the more complex, Smith-Waterman algorithm. The line comparison is

designed to be a fast technique that uses n-gram fingerprinting on a line by line basis to get the

number of similar lines. While the algorithm is very quick and scales linearly with file size, a

small change per line is enough to mess with the outputs. The other algorithm used in Checksims

7

is Smith-Waterman. While this algorithm is very tamper resistant, it has a time complexity of

on two files with and fingerprints (Heon and Marvill, 2015).𝑂(𝑚𝑛) 𝑚 𝑛

While Checksims is designed to be language agnostic, it is only designed to work on text

files. This means that it does not work on all Racket files as some of them are stored in Racket’s

proprietary file format.

2.3 Racket Specific Approaches

Previous approaches of academic dishonesty software are language agnostic. While these

are very useful for large computer science departments, they sacrifice potential improvements

that can be made using the specifics of certain languages. They are also typically based on

reading plaintext files, which causes an issue when working with Racket. Racket supports a

proprietary file format called WXME that is closed source with no documentation (Editors, n.d).

This makes working with Racket specifically complicated as it cannot be plugged into existing

solutions.

2.3.1 Syntax Trees

Languages are defined by their syntax and how that syntax is translated to actual machine

code. Most languages process the given code using what is called a syntax tree. This is a way of

translating human readable source code into a machine usable data structure. Syntax trees are

useful for plagiarism detection because many simple syntactic changes (e.g. variable names,

whitespace, comments, etc.) are not expressed in the final tree. This allows for relatively simple

methods of disguising academic dishonesty to be ignored.

8

2.3.2 Racket Syntax

Syntax trees are helpful specifically for Racket because of its simple syntax structure.

Racket’s syntax uses s-expressions to represent the underlying syntax tree of the document

(reader, n.d). This makes the translation to a syntax tree extremely easy as parsing the

s-expressions will lead to a simple tree data structure.

2.3.3 Tree Comparison Algorithms

One of the most convenient ways to compare two files after they have been parsed into

syntax trees are tree comparison algorithms. These algorithms are designed to, when given two

trees, produce a similarity value between them. The most common type is tree edit distance

(TED). TED is a family of algorithms that describe the difference between two trees as the

weighted sum of the number of edits needed to make them the same. The edits are commonly

described as either the addition, removal, or renaming of a tree node and are each given a weight

(Paaßen, 2018). The algorithms output the lowest sum of changes needed to transform the trees.

While a lot of work has been done in optimizing these algorithms, the current best known

asymptotic bound is that of . This runtime is not acceptable for the real-time program we𝑂 𝑛3()
were asked to develop as our trees are on the order of 1000 leaves. While we can not use TED in

our program it could be a possible avenue in a less time dependant scenario or with a lot of

optimization as real-world cases can get the experimental evaluations down to in𝑂(𝑛 log(𝑛))

specific scenarios (Schwarz, Pawlik, & Augsten, 2017).

9

3. Requirements

The project's requirements were laid out by Professor Beck at the beginning of the MQP.

The requirements call for the creation of a program that can fulfill them in a functional and easy

to use manner. The project requirements are as followed:

1. The program must be easy enough to be used by any CS professor or staff.

2. The program must be run locally in order to assure student confidentiality and program

accuracy.

3. The output of the program must give a straightforward explanation of what cases may or

may not be academic dishonesty to later be verified by the course staff.

4. The program must be easily configurable through a set of variables and switches.

5. The program must output a side by side comparison of code to allow for quick analysis.

6. The program must implement Checksims1 as an alternative method of similarity

detection.

Due to the unique syntax of Racket and the time constraints of an MQP, our team decided

to go with a plaintext-based program. We wanted a solution that could be run locally on any

client with the program downloaded. With the resources and documentation our project will

provide, we hope that our project may be easily modified and improved in the future. Our

requirements call for a security by obscurity approach as the program must only be used by those

authorized to view student grades and information. However, the similarity detection algorithm

can easily be migrated to a host-based online format. This is a format that may be explored by

future projects but it would require a different set of security layers to remain secure.

1 Please refer to section 2.2.2 for more information on Checksims

10

4 Solution

4.1 Application

An important feature of our project was a finished standalone app that users could submit

assignments into. We built this app using JavaFX with some Racket to help support translating

Racket files. A key focus of this app was simplicity; we wanted users to be able to open up the

app and know exactly what to do. This was accomplished by having the main function of the app

be the center focus, with other options being in a hamburger menu to the side (Figure 1). In the

submission section of the app, we would let the user upload a directory of files that the algorithm

would run through, producing a value of every pair of submissions in the project. The application

would then provide the user with a list of pairs, ordered by the similarity value (higher value

means high similarity).

11

Another goal of the app was to keep the usage fully contained. We wanted the user to be

able to make judgments without having to open the code in another app. To do this, we supplied

the user with a side by side view of any pair of submissions so they can manually compare the

two files and make their own informed decision (Figure 2).

While a major goal was to make the app simple, we also wanted the app to be flexible in

case the default results were not desired. To do this we implemented a settings page with many

controls that can be accessed while the user uploads their datasets. These options include things

like number of threads, algorithm controls, and also a granularity control for our proprietary

algorithm.

4.2 Racket Tree

A goal for our project was to take advantage of our unique scenario to try and produce an

algorithm with better results on Racket files over existing solutions. The solution we came up

12

with for this was to use a syntax tree of Racket and a tree comparison algorithm. While existing

tree comparison algorithms, like that of TED, were considered, we found that the large size of

the tree and our specific use case made these algorithms too slow. Instead, we tried to come up

with a unique solution based around the number of similar leaves in two syntax trees of Racket

files.

This algorithm would start by hashing each tree’s leaves into a hashmap. Then, between

two trees, for each identical leaf in both trees it would traverse up the tree counting the number

of identical trees rooted at each parent node. The algorithm will continue until it finds a root

13

node with no matching children, other than the path already being traversed, where it would

terminate. Pseudocode for this algorithm can be found in Figure 3. The algorithm then averages

out the values for each leaf and sums the total values, before normalizing by the number of

leaves in the tree.

4.3 Data Visualization

One goal we wanted to incorporate into our project was an easy and concise way of

seeing a visual representation of the data from the comparison. Inspired by a visualization

charting character interactions in Les Misérables, made by Mike Bostock, we originally created a

visualization in HTML/Javascript (Bostock 2012). This visualization takes a set of comparisons

and generates a heatmap showing levels of similarity between files (Figure 4).

14

This heatmap visualization went through a few iterations, with tweaks to increase its

efficacy, such as having the colors scale off of the minimum and maximum values from the

comparisons, or the ability to filter out results within a certain range. Ultimately, incorporating

an HTML file into our program proved difficult due to limitations of the JavaFX webviewer, and

so we attempted to recreate it in JavaFX, using a custom charts library (HanSolo 2022).

Technical difficulties with IntelliJ, however, prevented the visualization page from being

finished.

15

5. Results

To be able to evaluate our application, we were given access to an anonymized data set

containing previous years assignments. These assignments were stripped of identifying

information such as filename and comments. We tested these files against Checksims and our

own algorithms to find any evidence of academic dishonesty. While we found that the amount of

academic dishonesty was rather light in this test suite2, we were able to find a couple examples

most specifically in Assignment 3 and Assignment 4.

If we plot the outputs comparing both of these algorithms on box and whisker plots we

can see that for both algorithms academically dishonest work is rated vastly above average, and

is usually a massive outlier compared to the rest of the work. Both of these algorithms agreed on

what was academically dishonest in Assignment 4, while both struggled for certain submissions

in Assignment 3. We think this is because Assignment 3 had a larger body of starter code that

affected both data sets. Because our algorithm does not have a filter for starter code, it affected

our results. Despite Checksims having built in starter code handling, we were unable to provide

the starter code files for this assignment dataset.

Along with our sample data set we were also able to get some anecdotal evidence by

providing the application to our advisor, Professor Beck. Our advisor was able to run it on a real

world data set with confirmed academic dishonesty. In this data set, our algorithm outperformed

Checksims by correctly identifying six cases within its proposed top ten, compared to

Checksims’ three.

2 The most likely explanation for this is our use of data from CS 1102, which is the more advanced of the two
courses. We think this causes a self selecting behavior where academically dishonest students would not take the
more advanced class. This is supported by Professor Beck’s experience on course feedback forms where none of the
students in 1102 claimed to be aware of any academic dishonesty.

16

We also tried to compare our algorithm against Moss. While Moss is the gold standard of

the field, it being run on a remote server where the user has little control can hamper its

useability. For example, we wanted to apply Moss on our Assignment 3 and 4 data sets but we

were not able to get a usable result, and since the only output from the program was a broken

HTML results page, we were not able to troubleshoot the problem and gather usable results to

compare.

17

6. Future Work and Conclusions

6.1 Future Work

Plagiarism Detector was developed keeping future expandability in mind. We provide a

simple JavaFX platform that can be easily extended with a simple code structure. Following are

some improvements and pivot points we believe would greatly benefit the future development of

a program like ours at WPI.

First, an expansion of the similarity scoring system would maximize the user’s ability to

recognize cheating. For example, implementing the ability to remove provided template code

would further refine similarity value results. With strictly student-generated code, we would be

able to better characterize cheating methods and identify them much faster.

Another method of improving the similarity scoring system is to implement a machine

learning (ML) model. The model would be capable of analyzing a large series of results and

provide an alternate plagiarism metric based on additional characteristics that our plain-text

detector can not take into consideration. In order for this feature to be meaningful, a considerably

large dataset would be required to train a good ML model. One way to develop our own model

would be by giving the professor the option to characterize “cheating” or “not cheating” from

within the program itself. Adding these characterizations can greatly benefit the model. As time

goes on and the dataset of plagiarism grows, the ML model is able to further identify cheating.

A powerful feature addition to this program would be the ability to fuse two or more

similarity detection algorithms into one output. In its current state, our platform only allows for

the use of Checksims or Tree Similarity. The fusion of algorithms could result in a more accurate

analysis of cheating, allowing us to provide more confident similarity values.

18

Finally, a general interface overhaul would greatly benefit Plagiarism Detector. While the

purpose of our program was to be quick and easy to use, appearance was not our primary

consideration. Some recommendations would be: improved and standardized settings page, an

interactive visualization of the checked assignments, better transitions, and scaling of user

interface elements for different window sizes and resolutions.

6.2 Conclusions

Our work on the Plagiarism Detector has helped us gather a better understanding of the

solution space around detecting academic dishonesty. Working first–hand with the creation of

our Racket Syntax-Tree algorithm has shed light on the limitations and problems that arise when

detecting cheating in code. Limited code databases, renaming of functions and variables, and

alternate valid code structures are just some of the issues all detectors struggle to combat.

Despite this, the Plagiarism Detector was able to detect academic dishonesty to a

respectable degree. Most notably, in our anonymized Assignment 3 Dataset, PD rated possible

cases of cheating vastly above the average similarity value, making them very easy to identify.

Additionally, evidence was collected when Professor Beck used PD on a real world dataset that

contained confirmed cases of cheating. Of the ten highest instances reported by each program,

we found that PD detected 6 cases while Checksims detected 3.

Plagiarism Detector is our own contribution to the effort against academic dishonesty. We

strongly suggest that further development is made so that methods, algorithms, and databases

like our own can be shared across academia. Future research must focus on gathering larger

datasets and defending against alternate methods of obfuscation of cheating. The continuous

accumulation of these solutions is essential to keeping up with the ever changing world of

programming languages and code structures. While a fully language-agnostic solution, similar to

19

MOSS, may one day be achievable, we believe language-specific solutions like our own are

incredibly valuable to the cause.

20

References

Aiken, A. (n.d.). Plagiarism Detection. Moss. Retrieved April 28, 2022, from

https://theory.stanford.edu/~aiken/moss

Bostock, M. (2012, April 10). Les Misérables Co-occurrence. Retrieved April 28, 2022, from

https://bost.ocks.org/mike/miserables/

Editors. Racket Lang. (n.d.). Retrieved April 26, 2022, from

https://docs.racket-lang.org/gui/editor-overview.html#%28part._editorfileformat%29

genchang1234. (n.d.). How to cheat in computer science 101. GitHub. Retrieved from

https://github.com/genchang1234/How-to-cheat-in-computer-science-101

Grolleau, G., & Czibor, E. (2016, January 27). Cheating and loss aversion: Do people cheat

more to avoid a loss? Management Science. Retrieved April 28, 2022, from

https://pubsonline.informs.org/doi/10.1287/mnsc.2015.2313

HanSolo. (n.d.). A javafx library that contains different kind of charts. JavaRepos. Retrieved

from https://javarepos.com/lib/HanSolo-charts

Heon, M., & Murvihill, D. (2015). (working paper). Program Similarity Detection with

Checksims. Worcester Polytechnic Institute. Retrieved April 26, 2022, from

https://digital.wpi.edu/pdfviewer/cj82k8447.

Krou, M.R., Fong, C.J. & Hoff, M.A. Achievement Motivation and Academic Dishonesty: A

Meta-Analytic Investigation. Educ Psychol Rev 33, 427–458 (2021).

https://doi.org/10.1007/s10648-020-09557-7

21

https://docs.racket-lang.org/gui/editor-overview.html#%28part._editorfileformat%29
https://github.com/genchang1234/How-to-cheat-in-computer-science-101
https://digital.wpi.edu/pdfviewer/cj82k8447
https://doi.org/10.1007/s10648-020-09557-7

Liora Pedhazur Schmelkin, Kim Gilbert, Karin J. Spencer, Holly S. Pincus & Rebecca Silva

(2008) A Multidimensional Scaling of College Students' Perceptions of Academic

Dishonesty, The Journal of Higher Education, 79:5, 587-607, DOI:

10.1080/00221546.2008.11772118

Paaßen, B. (2018). Revisiting the tree edit distance and its backtracing: A tutorial. arXiv preprint

arXiv:1805.06869.

Racket Lang. (n.d.). Reader. Racket Lang. Retrieved April 26, 2022, from

https://docs.racket-lang.org/reference/reader.html

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: Local Algorithms for

Document Fingerprinting. https://doi.org/10.1145/872757.872770

Schwarz, S., Pawlik, M., & Augsten, N. (2017). A new perspective on the tree edit distance.

Similarity Search and Applications, 156–170.

https://doi.org/10.1007/978-3-319-68474-1_11

What is Academic Dishonesty. WPI. (n.d.). Retrieved April 25, 2022, from

https://www.wpi.edu/about/policies/academic-integrity/dishonesty

Yang, D. (2019, May 3). How MOSS Works. Retrieved April 28, 2022, from

https://yangdanny97.github.io/blog/2019/05/03/MOSS

Additional Materials

Project GitHub repository:
https://github.com/MQP-Academic-Dishonesty-AB2021/PlagiarismDetector

22

https://docs.racket-lang.org/reference/reader.html
https://doi.org/10.1145/872757.872770
https://doi.org/10.1007/978-3-319-68474-1_11
https://www.wpi.edu/about/policies/academic-integrity/dishonesty
https://github.com/MQP-Academic-Dishonesty-AB2021/PlagiarismDetector

