# Integrated Structural and Fire Protection Considerations in Building Design

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfilment of the requirements for the

Degree in Bachelor of Science

in

**Civil Engineering** 

By

**Elizabeth M. Coffey** 

Emma T. Healey

Date: March 19, 2017 Worcester Polytechnic Institute Project Advisor:

**Professor Leonard D. Albano** 

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

# Abstract

A five-story structure was created for modification to demonstrate the variations in design as a result of building codes, fire codes, and environmental factors. Environmental factors were considered in Boston, MA; Los Angeles, CA; and Miami, FL. Designs were evaluated based on estimated costs, and changes in the structural and fire protection layouts. This report includes structural and fire protection design calculations, architectural drawings, structural drawings, fire alarm drawings, and fire protection drawings for five different occupancy case studies.

#### **Executive Summary**

#### Introduction

A five-story structure was created for modification to demonstrate the variations in design as a result of building codes, fire codes, and environmental factors. Five design case studies were created and then altered for three geographic locations. These designs included a steel office building, a lightweight wood residential building, a lightweight wood and steel pedestal building with mercantile and residential uses, a steel office building with a two-story atrium, and a steel office building with an extended central corridor. Structural and fire protection designs were completed for each case based on the loading conditions, structure location, and building occupancies.

The goal of this project was to explore the differences in structural and fire protection design as a result of occupancy factors and geographical location. Design changes and the costs related to these variations were then explored.

#### Background

For the structural designs, the current edition of the *International Building Code (IBC)*, along with design specifications or standards from the *American Institute of Steel Construction (AISC)*, *American Society of Civil Engineers (ASCE)*, and *American Wood Council (AWC)* were used. *National Fire Protection Association (NFPA)* codes including *Life Safety Code (NFPA 101)*, *National Fire Alarm and Signaling Code (NFPA 72)*, and *Standard for the Installation of Sprinkler Systems (NFPA 13)* were references in designing the fire detection and suppression systems. *RS Means: Building Construction Cost Data* was used to determine line item costs of the structural and fire protection components within the designs.

The structural and fire protection designs in this project were completed in compliance with the most recent *IBC* and *NFPA* codes, respectively. The structural designs were based on the 2015 edition of *IBC*. Fire detection designs were in compliance with the 2015 edition of *NFPA 101* and the 2016 edition of *NFPA 72*. Fire suppression designs utilized the criteria in the 2015 edition of *NFPA 101* and the 2016 edition of *NFPA 13*.

#### Results

Variations in structural design, fire protection system design, and costs were compiled upon completing the five different case studies in three geographic locations. For structural design, the most significant differences in the cases stemmed from the size of the frames required for the various lateral loading conditions. The spacing requirements for both the fire detection and suppression systems were consistent among the cases. The locations of devices, appliances, and sprinkler heads varied according to the occupancy classification of the structure and the architectural layouts of the rooms. The costs associated with each design were calculated with and without location factors and then compared to the base costs of the associated case study.

#### **Summary and Conclusions**

Throughout the course of this project, the effects of different environmental loading conditions, the occupancy classifications, and the cost factors associated with specific locations were considered and used within the design of the five case studies. These significant factors had an impact on both the structural and fire protection system designs for each case as well as the costs associated with each case.



The figure above is a visual depiction of the design and cost impacts of each significant factor considered.

# Authorship

Within this report, the work was broken up categorically into structural design, fire protection design, and cost estimation. The team designed architectural layouts for business, residential, and mercantile occupancies.

Emma Healey was responsible for the structural design background, design criteria, and results sections. Emma designed the layout and sizing of structural wood and steel members through iterative calculation methods while staying within the sizing constraints presented by the architectural layouts of the structures. For each case, she designed structural frames to resist environmental loading conditions. Emma also completed the AutoCAD layouts for the structural designs.

Elizabeth Coffey was responsible for the fire protection design background, design criteria, and results sections. Elizabeth assisted Emma in the steel design for Case 1. She used a combination of heat transfer and hydraulic calculation methods to design and validate the fire detection and suppression systems. These designs took the geometry of the rooms, the intensity rating of the strobe light notification devices, the hazard classification of each occupancy, and the location of egress points into account. Elizabeth completed the AutoCAD designs for the architectural, fire alarm, fire protection layouts, and completed the final drawing set.

Both Elizabeth and Emma completed the cost estimation sections and the analysis of results.

We ascertain the above information to be correct and true.

Elizabeth Coffey

Hu

Emma Healey

# Acknowledgements

We would like to thank Professor Lenard Albano for his assistance and insight throughout the course of this project. His knowledge of both structural and fire protection engineering was an invaluable resource in completing this project. We would like to extend additional thanks to Jess Rosewitz and Caitlin Burner for their assistance in wood design calculations and the steel design iteration flowchart respectively.

## **Capstone Design Statement**

This Major Qualifying Project focused on the design and analysis of the structural and fire protection aspects of a hypothetical five-story structure. Courses in civil, structural, and fire protection engineering gave our team the tools to complete the engineering and design work for this project. The capstone design served as a bridge between school and the professional engineering workforce. The skills learned in the classroom were then applied to a real-world design problem. This project helped our team review the current code requirements and how these requirements vary under different design constraints. The main focuses of this project were:

#### Economic

A variety of cases were considered as final designs of the building. These cases differed in the structural and fire protection aspects of the design. By considering different design scenarios, a cost analysis was implemented for each case. From here, we determined the construction costs needed for each scenario and identified how each case differs. This allowed us to determine the structural and fire protection components that have the greatest cost impact.

#### Health and Safety

The use of building and fire codes is necessary in creating regulated, safe building and system designs. The *National Fire Protection Association 2015 (NFPA)* and the *International Building Code 2015 (IBC)* are two established codes used in the United States for design and construction. Both of these codes add different considerations that were taken into account when changing the building's use, material, and location. The most current editions of the *NFPA* and *IBC* codes (as of September 2016) were used to ensure that our designs are compliant on a national scale.

#### Manufacturability

The scope of the project considered a variety of different types of construction materials, designs, and calculations. Structural designs included standard sizes and designs for steel and wood members to limit costs for customization. In addition to structural considerations, the design was reconfigured to account for fire protection system layout. A full fire protection layout

was designed for each case study as per *NFPA* and regional fire codes based on the occupancy types and hazard classifications. These designs included automatic suppression systems, heat and smoke detection devices, notification appliances, occupancy loads, and egress analysis.

# Ethical

This project conforms to the ASCE Code of Ethics under Canon 1: Hold Safety Paramount. The designs within this project heavily consider lifesafety features and conformity of nationally recognized engineering standards. Everything that was designed for this project was in line with the constraints put forth by NFPA codes and the IBC.

### **Professional Engineering Licensure**

In every discipline, there is a system of checks and balances to ensure high quality and professional work. In order to moderate the outputs from engineers throughout the country, the National Council of Examiners for Engineering and Surveying (NCEES) administer a nationally recognized set of exams. In the world of design, an engineer who takes and passes these exams is allowed to legally approve plans and declare the plans safe to implement and build. This responsibility is given to an engineer when they attain certification as a "Professional Engineer". This system allows for accountability of the designer if something fails, but also explicitly gives credit to them if they come up with a new and innovative design.

Achieving the status of a Professional Engineer is beneficial both professionally and personally. To acquire a PE license, an engineer must complete a rigorous process that includes earning a four-year college engineering degree from an ABET-accredited school and passing the Fundamentals of Engineering (FE) exam. Once this exam has been passed, the graduate becomes an Engineer in Training (EIT) and must work under a Professional Engineer (PE) for at least four years. To grow from the title of EIT to PE, the Engineer in Training must complete and pass a second, intensive, Principles and Practice of Engineering exam. Upon passing the exam, the EIT then becomes a PE for the state in which they took the exam. In order to practice in multiple states after receiving their license, the engineer must apply to each new state individually. Each state has different continuing education requirements to maintain a PE license.

Having a PE license can provide more opportunities for career growth and development because many companies view a PE as a sign of a determined and motivated individual. A licensed engineer can approve drawings and designs to be put forward onto projects, allowing the PE to take on more management roles and responsibilities. This gives the PE a high level of responsibility but also a high level of respect from peers and coworkers. Even in careers that do not require the use of a PE license, having the license showcases knowledge and drive to other professionals and clients. In addition to the professional benefits of a PE license, there is an increased pay scale for those with a license.

# **Table of Contents**

| Abstract                              | i  |
|---------------------------------------|----|
| Executive Summaryi                    | i  |
| Introductioni                         | i  |
| Backgroundi                           | i  |
| Resultsii                             | i  |
| Summary and Conclusionsii             | i  |
| Authorshipiv                          | V  |
| Acknowledgements                      | V  |
| Capstone Design Statementv            | i  |
| Economicv                             | 'n |
| Health and Safetyv                    | 'n |
| Manufacturabilityv                    | 'n |
| Ethicalvi                             | i  |
| Professional Engineering Licensurevii | i  |
| Acronyms xiv                          | V  |
| List of Figuresxv                     | V  |
| List of Tablesxvi                     | i  |
| 1. Introduction1                      | 1  |
| 2. Background                         | 3  |
| 2.1 Initial Structure                 | 3  |
| 2.2. Codes                            | 3  |
| 2.2.1 Building Codes                  | 3  |
| 2.2.1.1 Structural Design             | 4  |
| 2.2.1.1.1 Risk Category               | 4  |
| 2.2.1.1.2 Wind                        | 5  |
| 2.2.1.1.3 Seismic                     | б  |
| 2.2.1.1.4 Snow                        | 7  |
| 2.2.1.2 Building Occupancy            | 7  |
| 2.2.2 Fire Codes                      | 8  |
| 2.2.2.1 Fire Protection Systems       | 9  |

| 2.2.2.1.1 Fire Detection Systems                                       | 9  |
|------------------------------------------------------------------------|----|
| 2.2.2.1.2 Fire Suppression Systems                                     | 9  |
| 2.2.2.2 Egresses                                                       |    |
| 2.2.2.3 Stairs                                                         |    |
| 2.2.2.4 Occupancy Types                                                |    |
| 2.2.2.5 Hazard Classes                                                 |    |
| 2.2.2.6 Stratification                                                 |    |
| 2.3 Structure Types                                                    |    |
| 2.3.1 Steel Frame                                                      |    |
| 2.3.2 Lightweight Wood Frame                                           |    |
| 2.3.3 Pedestal with Wood Frame                                         |    |
| 2.4 Special Conditions                                                 |    |
| 2.4.1 Atrium                                                           |    |
| 2.4.2 Accordion-Type Fire Doors                                        | 14 |
| 2.5 Cost Estimating                                                    | 14 |
| 2.5.1 Takeoff                                                          | 15 |
| 2.5.2 Square Footage                                                   |    |
| 2.6 Conclusion                                                         |    |
| 3. Problem Statement                                                   |    |
| 3.1 Integration of Structural Design and Fire Protection System Design |    |
| 3.2 Design Considerations and Alterations                              |    |
| 4. Design Criteria                                                     |    |
| 4.1 Structural Design                                                  |    |
| 4.1.1 Steel Design                                                     |    |
| 4.1.2 Lightweight Wood Design                                          |    |
| 4.1.3 Pedestal Design                                                  |    |
| 4.2 Fire Protection: Detection System Design                           |    |
| 4.3 Fire Protection: Suppression System Design                         |    |
| 4.4 Cost Analysis                                                      |    |
| 4.5 Geographical Analysis and Environmental Loads                      |    |
| 4.5.1 Los Angeles, California                                          |    |

| 4.5.2 Miami, Florida                              |    |
|---------------------------------------------------|----|
| 4.5.3 Boston, Massachusetts                       |    |
| 5.0 Results                                       |    |
| 5.1 Case 1: Steel Office Building                 |    |
| 5.1.1 Structural Design                           |    |
| 5.1.2 Fire Protection: Detection System Design    |    |
| 5.1.3 Fire Protection: Suppression System Design  |    |
| 5.1.4 Cost Analysis                               |    |
| 5.2 Case 2: Lightweight Wood Residential          |    |
| 5.2.1 Structural Design                           |    |
| 5.2.2 Fire Protection: Detection System Design    |    |
| 5.2.3 Fire Protection: Suppression System Design  |    |
| 5.2.4 Cost Analysis                               |    |
| 5.3 Case 3: Steel Pedestal Mixed Occupancy        |    |
| 5.3.1 Structural Design                           |    |
| 5.3.2 Fire Protection: Detection System Design    |    |
| 5.3.3 Fire Protection: Suppression System Design  |    |
| 5.3.4 Cost Analysis                               |    |
| 5.4 Case 4: Atrium with Accordion-Type Fire Doors |    |
| 5.4.1 Structural Design                           |    |
| 5.4.2 Fire Protection: Detection System Design    |    |
| 5.4.3 Fire Protection: Suppression System Design  |    |
| 5.4.4 Cost Analysis                               |    |
| 5.5 Case 5: Effects of Extended Central Hallway   |    |
| 5.5.1 Structural Design                           |    |
| 5.5.2 Fire Protection: Detection System Design    |    |
| 5.5.3 Fire Protection: Suppression System Design  |    |
| 5.5.4 Cost Analysis                               | 68 |
| 6.0 Discussion                                    |    |
| 6.1 Impact Analysis                               | 71 |
| 6.2 Cost Analysis                                 |    |

| 7.0 Summary and Conclusions                                  | 77   |
|--------------------------------------------------------------|------|
| 7.1 Design Work                                              | 77   |
| 7.2 Cost Analysis                                            |      |
| References                                                   |      |
| Appendices                                                   | A-1  |
| Appendix A: Project Proposal                                 | A-1  |
| Appendix B: Structural Design Sample Calculation             | B-1  |
| Steel Design                                                 | B-1  |
| Wood Calculations                                            | B-30 |
| Appendix C: Lateral Loading Sample Calculation               | C-1  |
| Seismic                                                      | C-1  |
| Boston Seismic Calculations (Case 1 & 4)                     | C-2  |
| Miami Seismic Calculations (Case 1 & 4)                      | C-2  |
| Los Angles Seismic Calculations (Case 1 & 4)                 | C-3  |
| Boston Seismic Calculations (Case 5)                         | C-3  |
| Miami Seismic Calculations (Case 5)                          | C-4  |
| Los Angeles Seismic Calculations (Case 5)                    | C-4  |
| Wind                                                         | C-5  |
| Boston Wind Calculations (Case 1 & 4)                        | C-6  |
| Miami Wind Calculations (Case 1 & 4)                         | C-6  |
| Los Angeles Wind Calculations (Case 1 & 4)                   | C-7  |
| Boston Wind Calculations (Case 5)                            | C-7  |
| Miami Wind Calculations (Case 5)                             | C-8  |
| Los Angeles Wind Calculations (Case 5)                       | C-8  |
| RISA-3D                                                      | C-9  |
| Frame Summary                                                | C-10 |
| Appendix D: Egress Analysis Sample Calculation               | D-1  |
| Appendix E: Hydraulic System Sample Calculation              | E-1  |
| Case 1 (Floor 5) and Case 4 (Floor 5) Hydraulic Calculations | E-1  |
| Case 2 (Floor 5) and Case 3 (Floor 5) Hydraulic Calculations | E-4  |
| Case 3 (Floor 1) Hydraulic Calculations                      | E-7  |

| Case 5 (Floor 5) Hydraulic Calculations                                     | E-10 |
|-----------------------------------------------------------------------------|------|
| Appendix F: Seismic Bracing Sample Calculations (B-Line by Eaton, TOLBrace) | F-1  |
| Seismic Bracing: Boston, Massachusetts                                      | F-1  |
| Cases 1, 4, and 5                                                           | F-2  |
| Cases 2 and 3                                                               | F-3  |
| Seismic Bracing: Los Angeles, California                                    | F-4  |
| Cases 1, 4, and 5                                                           | F-5  |
| Cases 2 and 3                                                               | F-6  |
| Seismic Bracing: Miami, Florida                                             | F-7  |
| Cases 1, 4, and 5                                                           | F-8  |
| Cases 2 and 3                                                               | F-9  |
| Appendix G: Full Drawings Set                                               | G-1  |
|                                                                             |      |

# Acronyms

| Full Title                                  | Acronym |
|---------------------------------------------|---------|
| American Institute of Steel Construction    | AISC    |
| American Society of Civil Engineers         | ASCE    |
| American Wood Council                       | AWC     |
| Fire Alarm Control Panel                    | FACP    |
| International Building Code                 | IBC     |
| International Code Council                  | ICC     |
| Load and Resistance Factor Design           | LRFD    |
| Major Qualifying Project                    | MQP     |
| National Fire Protection Association        | NFPA    |
| Principles and Practice of Engineering Exam | PE Exam |
| Professional Engineer                       | PE      |
| Worcester Polytechnic Institute             | WPI     |

# List of Figures

| Figure 1: Ultimate Design Wind Speeds for Risk Category II Buildings and Other Structure    | ires   |
|---------------------------------------------------------------------------------------------|--------|
| (IBC 1609, 2015)                                                                            | 5      |
| Figure 2: Risk-Targeted Maximum Considered Earthquake Ground Motion Response                |        |
| Accelerations for the Conterminous United States of 1-Second Spectral Response Acceleration | ration |
| (5% of Critical Damping), Site Class B (IBC 1613, 2015)                                     | 6      |
| Figure 3: Ground Snow Loads, for the United States (psf) (IBC 1608, 2015)                   | 7      |
| Figure 4: Beam Layout Version 1                                                             | 21     |
| Figure 5: Beam Layout Version 2                                                             | 22     |
| Figure 6: Beam Layout Version 3                                                             |        |
| Figure 7: Beam Layout Version 4                                                             |        |
| Figure 8: Taken from NFPA 72; Table 18.5.5.4.1(a)                                           | 27     |
| Figure 9: Taken from NFPA 13; Figure 11.2.3.1.1                                             |        |
| Figure 10: Case 1 Structural Framing Plan                                                   | 38     |
| Figure 11: Case 1 Structural Layout with Frames                                             | 39     |
| Figure 12: Fire Alarm Design - Case 1, Floor 1                                              | 40     |
| Figure 13: Fire Alarm Design – Case 1, Floors 2-5                                           | 40     |
| Figure 14: Fire Protection Design - Case 1, Floor 1                                         | 42     |
| Figure 15: Fire Protection Design - Case 1, Floor 2                                         | 43     |
| Figure 16: Power Law Heat Release Rates [NFPA 13; Table B.2.3.2.3.6]                        | 43     |
| Figure 17: Case 2 Floor Layout                                                              | 46     |
| Figure 18: Fire Alarm Design - Case 2, Floor 1                                              | 47     |
| Figure 19: Fire Alarm Design - Case 2, Floors 2-5                                           | 48     |
| Figure 20: Fire Protection Design - Case 2, Floors 1                                        | 49     |
| Figure 21: Fire Protection Design - Case 2, Floors 2-5                                      | 49     |
| Figure 22: Fire Alarm Design - Case 3, Floor 1                                              | 53     |
| Figure 23: Fire Alarm Design - Case 2, Floors 2-5                                           | 53     |
| Figure 24: Fire Protection Design - Case 3, Floor 1                                         | 54     |
| Figure 25: Fire Protection Design - Case 3, Floors 2-5                                      | 55     |
| Figure 26: Case 4 Floor Layout                                                              | 58     |
| Figure 27: Fire Alarm Design - Case 4, Floor 1                                              | 59     |

| Figure 28: Fire Alarm Design - Case 4, Floor 2         | 59 |
|--------------------------------------------------------|----|
| Figure 29: Fire Alarm Design - Case 4, Floors 3-5      | 60 |
| Figure 30: Fire Protection Design - Case 3, Floors 2-5 | 61 |
| Figure 31: Fire Protection Design - Case 3, Floors 2-5 | 61 |
| Figure 32: Fire Protection Design - Case 3, Floors 2-5 | 62 |
| Figure 33: Case 5 Floor Layout                         | 64 |
| Figure 34: Case 5 Structural Layout with Frame         | 65 |
| Figure 35: Case 5 Frame 7 for Geographic Locations     | 65 |
| Figure 36: Fire Alarm Design - Case 5, Floor 1         | 66 |
| Figure 37: Fire Alarm Design - Case 5, Floors 2-5      | 66 |
| Figure 38: Fire Protection Design - Case 5, Floor 1    | 67 |
| Figure 39: Fire Protection Design - Case 5, Floors 2-5 | 68 |
| Figure 40: Impact Analysis                             | 71 |
| Figure 41: Structural Cost Comparison                  | 73 |
| Figure 42: Fire Alarm Cost Comparison                  | 74 |
| Figure 43: Fire Suppression Cost Comparison            | 75 |
| Figure 44: Total Overall Cost Comparison               | 76 |
|                                                        |    |

# List of Tables

| Table 1:ASCE 7-10 LRFD Load Combination Equations                                | 4  |
|----------------------------------------------------------------------------------|----|
| Table 2: Description of Occupancy Types                                          | 8  |
| Table 3: System Protection Area Limitations for Occupancy Types                  | 12 |
| Table 4: Case Study Descriptions                                                 | 18 |
| Table 5: Case 1 Loading Conditions                                               | 24 |
| Table 6: Case 2 Loading Conditions                                               | 25 |
| Table 7: Cost Analysis Values from Building Construction Cost Data RS Means 2015 | 29 |
| Table 8: Seismic Calculation Values                                              | 31 |
| Table 9: Wind Calculation Values                                                 | 32 |
| Table 10: Frame Design Iteration Method                                          | 33 |
| Table 11: Calculation Values for Los Angeles from ASCE 7-10                      | 34 |
| Table 12: Calculation Values for Miami from ASCE 7-10                            | 35 |
| Table 13: Calculation Values for Boston from ASCE 7-10                           | 36 |
| Table 14: Case 1 Fire Detection Device and Appliance Count                       | 41 |
| Table 15: Case 1 Sprinkler Head Count                                            | 43 |
| Table 16: Case 1 Cost Analysis                                                   | 45 |
| Table 17: Case 2 Wood Members                                                    | 46 |
| Table 18: Case 2 Fire Detection Device and Appliance Count                       | 47 |
| Table 19: Case 2 Sprinkler Head Count                                            | 49 |
| Table 20: Case 2 Cost Analysis                                                   | 51 |
| Table 21: Case 3 Fire Detection Device and Appliance Count                       | 54 |
| Table 22: Case 3 Sprinkler Head Count                                            | 55 |
| Table 23: Case 3 Cost Analysis                                                   | 56 |
| Table 24: Case 4 Fire Detection Device and Appliance Count                       | 60 |
| Table 25: Case 4 Sprinkler Head Count                                            | 62 |
| Table 26: Case 4 Cost Analysis                                                   | 63 |
| Table 27: Case 5 Fire Detection Device and Appliance Count                       | 67 |
| Table 28: Case 5 Sprinkler Head Count                                            | 68 |
| Table 29: Case 5 Cost Analysis                                                   | 69 |
| Table 30: Design Case Summary                                                    | 70 |

# **1. Introduction**

For decades, building and fire codes have improved safety in the built environment. As materials of construction and furnishings change, and predictive technology improves, the national codes and standards must reflect these changes. Although current codes provide a sufficient baseline for standard construction and protection, many significant changes in requirements are reactive to larger-scale incidents, rather than being proactive in nature.

An example of reactive changes is the code changes that occurred after the Station Nightclub fire in Warwick, RI in February 2003 (*NFPA*, 2003). This fire was caused by a pyrotechnic display that ignited highly flammable foam attached to the ceiling. After this fire occurred, many code sections, especially in *NFPA 1* and *NFPA 101* were added and revised. Many of the hundreds of deaths and injuries could have been prevented that night if the building and fire codes laid out more stringent design parameters for both existing and new buildings. This building had been inspected and was deemed code compliant at the time. After this incident, the importance of egress, fire spread through different materials, and increased training to Fire Marshals or equivalent Authorities Having Jurisdiction (AHJs) were all considered.

To explore this relationship and better understand the interaction of codes, a series of case studies was considered. Two 5-story tall control buildings were designed for commercial occupancy and residential occupancy. From these control buildings, a series of alterations were made and the significance of required code changes was considered. These code considerations included both structural and fire protection elements, as well as environmental criteria (such as seismic and wind loads based on location). Once full system designs were completed for each case study, a comprehensive comparison of the different cases using factors including lifesafety, differences in code requirements, and estimated construction costs was completed.

Once these two control buildings were designed, three additional cases were created by varying different aspects of the control cases. One of these cases was a hybrid of the two control cases by using a steel pedestal construction. The second variation was the alteration of the lobby of a control case to contain an atrium. The third variation was an extended version of a control case by doubling the length of the hallway. These cases all had design ramifications due to the differences in each building. A range of occupancies suited to each case was also chosen. From here, the case studies were each considered in three different geographic locations, and designs were changed according to load constraints, local building codes, and local fire codes.

As these cases were designed and considered, the changes in building and fire code requirements and restrictions were explored between each structure and location. These modifications were then noted and the necessary designs were made and implemented. The modifications were then explored to determine the monetary significance to the design by completing a structural and fire protection cost analysis for each case. As the costs were changed for each case, trends were identified in these changes and it was determined if the root change was because of architectural and structural differences between the cases, or if it was more a factor of geographic location of the structure.

This report outlines and details what goes into a structural and fire protection design process and the conclusions that can be draw from design considerations and post-design analysis. The beginning of the report provides the reader with background information on structural and fire protection design and code requirements. After this, the project scope and description is included followed by the design criteria used in the system and building layouts. After this, the final layouts are included in addition to final calculation results. Finally, a summary of the analysis of the design cases and conclusions drawn from these designs are detailed.

### 2. Background

The structures designed in this project were based on the layout of an existing building that was completed in 2011. This project uses the specifications in the *International Building Code* (2015) and the *National Fire Protection Association Codes* (2015 through 2017 depending on the code cycle). From these specifications, five modified design cases were created to explore.

#### 2.1 Initial Structure

The structure modified for the purposes of this projects was a five-story structure whose architectural design is based on Worcester Polytechnic Institute's (WPI's) East Hall. This building was completed in 2011 and was compliant with building and fire codes at that time. The case studies in this project were redesigned to current *IBC* and *NFPA* code provisions. The initial design was a residential steel structure but the building materials and architectural layouts were modified for each case study in this project.

#### 2.2. Codes

When any type of structure is designed, various codes are used to ensure that the building will be safe for its occupants. Building codes include aspects such as loading conditions of the structure, occupancy classification and building usages, height and area constraints, M/E/P requirements, and information regarding different types of construction materials. This includes everything from concrete and steel, to glass and glazing and plastics. Building codes, such as the International Building Code, also include requirements for fire protection materials and systems, and means of egress. In addition to the fire protection requirements shown in building codes, the International Fire Code (IFC) and the *National Fire Protection Association (NFPA)* discuss fire codes exclusively. These national codes can be adopted into law on a state-by-state basis as a whole or with state amendments. For the scope of this project, the International Building Code (*IBC*) and the *National Fire Protection (NFPA*) codes and standards were used.

#### 2.2.1 Building Codes

The *IBC* is a series of model building codes released by the International Code Council (ICC) every three years. It has been adopted throughout the United States with certain

amendments and adaptations enacted by individual states. The 2015 edition contains 35 chapters and 13 amendments. For the purposes of this project, the *IBC 2015* were used.

#### 2.2.1.1 Structural Design

The building of a structure has many code provisions and reference standards regarding the structural design, which are covered in Chapter 16 of the *IBC*. These design criteria include loading conditions, risk categories, the required strength, and design factors for different types of structures to decrease the risk and limit the consequences of structural failure.

Structures have different load combinations depending on their location and what environmental factors will affect it. *ASCE 7-10*, Chapter 2 presents seven Load Combination equations for Load and Resistance Factor Design (LRFD) as listed in Table 1.

| LRFD Load Combinations | <b>Environment Factor Equations</b>                                  |
|------------------------|----------------------------------------------------------------------|
| Load Combination 1     | 1.4D                                                                 |
| Load Combination 2     | $1.2D + 1.6L + 0.5(L_r \text{ or } R \text{ or } S)$                 |
| Load Combination 3     | $1.2D + 1.6(L_r \text{ or } R \text{ or } S) + (L \text{ or } 0.5W)$ |
| Load Combination 4     | $1.2D + 1.6W + L + 0.5(L_r \text{ or } R \text{ or } S)$             |
| Load Combination 5     | 1.2D + 1.0E + L + 0.2S                                               |
| Load Combination 6     | 0.9D + 1.0W                                                          |
| Load Combination 7     | 0.9D + 1.0E                                                          |

Table 1:ASCE 7-10 LRFD Load Combination Equations

These equations use a combination of different dead and live loads in conjunction with various factors of safety. These loads are Dead (D), Live (L), Roof Live (L<sub>r</sub>), Rain Load (R), Snow Load, (S), Wind Load (W), and Seismic Load (E). The Governing Load combination is determined by the greatest loading effect on the structure.

#### 2.2.1.1.1 Risk Category

All buildings and structures are assigned a risk category based on the nature of the occupancy. There are 4 risk categories that range from low risk storage facilities (Risk I), to facilities of high importance, such as emergency shelters and toxic material storage (Risk IV).

This project considered a Risk II building which is the classification for miscellaneous structures that do not fall into risk categories I, III, or IV.

Risk Categories are given to all structures based on their hazard to human life in the event of failure (*IBC 1604.5*, 2015). Higher values indicate that more conservative design factors should be used for the structure. This allows for more resilience of the structure against environmental changes. Structures such as hospitals, aviation control towers, and power generating facilities are categorized as Risk IV due to their importance. Any structure that is categorized as Risk I is anything that "represent a low hazard to human life in the event of failure," (*IBC Table 1604.5*, 2015).

The Risk Categories are used when developing factors of safety for different load types. The loads which use these factors are lateral loads such as wind and seismic forces. Wind and seismic are dynamic forces that have the ability to damage a structure so a structure requires a more conservative design to combat these forces. Snow loading is less dynamic than wind and seismic loading. It is also considered a gravity load which requires increased load bearing capabilities instead of increased structural stiffness.

### 2.2.1.1.2 Wind



Section 1609 of *IBC 2015* covers wind loads that must be considered in structural design. These loads are determined in accordance with Chapter 26 of *ASCE 7-10* (*IBC 1609*, 2015).

Figure 1: Ultimate Design Wind Speeds for Risk Category II Buildings and Other Structures (IBC 1609, 2015)

Wind loading varies throughout the country based on the weather patterns in the region. The ultimate design wind speed,  $V_{ult}$ , is determined by the wind loads shown in the map in Figure 1. This map is Figure 1609.3(1) from *IBC 2015* which is used for Risk Category II Buildings. The contours on the map indicate the ultimate wind speeds, ranging from 100-200 mph. Most regions use 100 mph or 105 mph as the standard  $V_{ult}$  but regions on the east coast and the Gulf of Mexico have higher values and a larger range due to the increased risk of hurricane force winds.

#### 2.2.1.1.3 Seismic

*IBC 2015* discusses seismic forces and loading in Section 1613: Earthquake Loads. Seismic forces must be considered for all structures except for those with incidental human occupancy, as well as detached dwellings. As the structures under study do not fulfill either of these requirements, they were designed per the Maximum Considered Earthquake. The map in Figure 2 shows the Ground Motion Response Acceleration for 1-Second Spectral Response.



Figure 2: Risk-Targeted Maximum Considered Earthquake Ground Motion Response Accelerations for the Conterminous United States of 1-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B (IBC 1613, 2015)

Similar to Wind Loads, these values vary across the United States, depending on both historic occurrence and intensity. These values, as well as the Risk Category of the structures were defined, and a Seismic Design Category, A, B, C, or D, was assigned to the buildings.

#### 2.2.1.1.4 Snow

Section 1608 of the *IBC* pertains to information about snow loading. Snow loads are considered to be a gravity load that is added onto the roof of a structure. This value is given in pounds per square foot so it can be added into the dead and live load already considered on the structure. Like wind and seismic loads, snow loads vary geographically, as seen in Figure 3. These loads also vary at different elevations. The values given on the chart are to be considered for structures at or near sea level, and the values in parentheses are the upper elevation limits.



Figure 3: Ground Snow Loads, for the United States (psf) (IBC 1608, 2015)

### 2.2.1.2 Building Occupancy

Building Occupancy is broken up by the *IBC* into ten different subgroups depending on the intended use for the facility. There are different structural limitations associated with each occupancy type and different live loading values must be considered in the design. The occupancy types include Assembly, Business, Educational, Factory and Industrial, High Hazard, Institutional, Mercantile, Residential, Storage, Utility, and Miscellaneous. Some of these groups are subcategorized in order to add specifications needed for variations. These specifications are used for individualized cases with additional special considerations under one main category. For example, a single-family dwelling and a high-rise apartment building are both considered residential, but need to be designed very differently due to height, building material, and number of occupants. The three occupancies that should be noted for this project are Business: Group B (*IBC 2015, Section 304*), Mercantile: Group M (*IBC 2015, Section 309*), and Residential: Group R-2 (*IBC 2015, Section 310.4*) (Table 2).

Similar to the *IBC*, the *NFPA* codes dictate different occupancy classifications depending on the use of the building. For fire protection, the occupancy classification is used to determine the type and intensity of sprinkler system needed in the building, as well as the spacing required for detection devices such as smoke and heat detectors.

| Occupancy Type | Group | Description                      | Examples                      |
|----------------|-------|----------------------------------|-------------------------------|
|                |       | Offices and professional use,    | office facilities, banks, car |
| Business       | В     | including storage of records and | washes, laboratories,         |
|                |       | accounts. Classified if any      | outpatient clinics            |
|                |       | portion is used for business.    |                               |
|                |       | Display, storage, and sale of    | department stores, drug       |
| Mercantile     | М     | merchandise.                     | stores, gas stations, retail, |
|                |       |                                  | sales rooms                   |
|                |       | Facilities with areas used for   | transient sleeping units      |
| Residential    | R-2   | sleeping purposes that are not   | (apartments, dormitories,     |
|                |       | classified as Institutional      | religious living facilities)  |
|                |       | (Group I).                       |                               |

#### Table 2: Description of Occupancy Types

#### 2.2.2 Fire Codes

The *National Fire Protection Association (NFPA)* is an organization that writes and revises codes and standards for use in fire protection design at both state and municipal levels.

These codes and standards are typically adopted by local governments and amended if stricter codes are desired. Each *NFPA* code is revised and released in a three-year cycle, and the local government determines which version is used. *NFPA 1 (Fire Code)*, *NFPA 13 (Standard for the Installation of Sprinkler Systems)*, *NFPA 72 (National Fire Alarm and Signaling Code)*, and *NFPA 101 (Life Safety Code)* were the primary codes used for the fire protection systems designed in this project.

#### **2.2.2.1 Fire Protection Systems**

Fire protection systems are designed and implemented to mitigate the effects of a fire hazard. According to *NFPA 1 [Section 3.3.120]*, a fire hazard is defined as "any situation, process, material, or condition that, on the basis of applicable data, can cause a fire or explosion or that can provide a ready fuel supply to augment the spread or intensity of a fire or explosion, all of which pose a threat to life or property." Fire detection and suppression systems are used to protect both the lifesafety of building occupants and emergency responders, and to mitigate property loss or damages. These systems are implemented in a variety of occupancy classifications including mercantile, business, commercial, and residential.

#### 2.2.2.1.1 Fire Detection Systems

Fire detection systems are used in both sprinklered and unsprinklered structures. A detector is defined as "a device suitable for connection to a circuit that has a sensor that responds to a physical stimulus such as gas, heat or smoke" [*NFPA 72; Section 3.3.66*]. These systems detect fire signatures within a room and notify the occupants of a potentially dangerous fire scenario. For system design, characteristics such as the physical size and occupancy type of the building are taken into consideration to determine the ambient conditions occurring in the building. For example, if there is a room with a high ceiling, smoke detectors may have to be placed closer together. Another example could be using linear heat detection along storage shelves in a warehouse as opposed to only placing heat detectors at the ceiling level.

#### 2.2.2.1.2 Fire Suppression Systems

Similar to fire detection systems, the design criteria for a fire suppression system is based upon design areas, occupancy types, and hazard classifications of the building. These suppression systems are used to limit the spread of flames and damage caused by fire. Fire suppression systems include water-based, foam application, and inert gas injection, depending on the space being protected. For a typical residential or commercial occupancy, a water-based automatic sprinkler system is typically proficient because the type of fire is not likely to be extremely fast-growing and is not usually oil-based. Foam suppression systems are typically used where the threat of chemical or oil-based fires is high, and inert gas injection systems are most common in areas with expensive or delicate electronics that would be damaged by water or foam.

#### 2.2.2.2 Egresses

*NFPA 1; Section 3.3.177* defines means of egress as "a continuous and unobstructed way of travel from any point in a building or structure to a public way consisting of three separate and distinct parts: (1) the exit access, (2) the exit, (3) the exit discharge." Egress must be considered to determine if the number and size of stairways is appropriate for the occupant load. When calculating the permitted occupancy of specific rooms and entire buildings, an egress analysis is required. This analysis uses criteria such as the corridor lengths, door widths, stair risers, and similar factors to determine how many people can safely exit a building in a timely manner during an emergency.

#### 2.2.2.3 Stairs

Stairs are considered in accordance with *NFPA 101* for egress analysis. The riser, tread, and width of a stair may have significant impacts upon egress requirements and occupancy loads. Currently, stairs are the main means of egress from a multistory building; this makes the quantity and characteristics of staircases within a building instrumental in fire safety design. Appendix G shows the drawing set produced during this project with the architectural layouts that were designed. In these architectural layouts, there are four sets of stairs in Cases 1-4 and six sets of stairs in Case 5. This design shows a direct correlation between the number of suites within the building and the number of stairs included in the design.

#### 2.2.2.4 Occupancy Types

As discussed in Section 2.2.1.2, *IBC* and *NFPA* codes have similar occupancy classifications, but both must be considered within a design. An occupancy as defined by *NFPA 1; Section 3.3.183* is "the purpose for which a building or other structure, or part thereof, is used or intended to be used". Classification of building usage helps to determine the fire detection and protection systems appropriate for the space based on the typical fuel loads present in different occupancies.

#### 2.2.2.5 Hazard Classes

A hazard rating is "the numerical rating of the health, flammability, self-reactivity, and other hazards of the material including its reaction with water" [*NFPA 1; Section 3.3.143\*; Hazard Rating*]. Similar to occupancy types, the hazard classification helps the designer determine the appropriate levels and ratings of fire protection systems within a structure. When designing a fire protection system, a "design fire" is typically estimated based upon the combustibility of materials within a building. This design fire allows for estimating a worst case scenario heat release rate and growth time of a fire. The method of using a design fire for a specific occupancy is a performance-based approach in the sense that the response is tailored to the specific hazard at hand. For some systems, this can be a prescriptive design based on NFPA codes, and in other systems, the design fire may directly influence the spacing of detectors and discharge criteria of suppression systems.

#### 2.2.2.6 Stratification

When structures contain a room or area where the ceiling level is above one story in height, a phenomenon called "stratification" may occur [*NFPA 72; Section 3.3.277*]. Typically, the smoke in a fire creates a ceiling jet that begins at the ceiling above the fire and moves outward from that space, heating up the ceiling and surrounding combustibles. In larger spaces, the air being entrained into the fire and the smoke layer has the potential to cool the smoke down to the temperature of the surrounding air. This is dependent upon the geometry of the compartment, the fuel being combusted, the air flow in the room, the ambient temperature, and a variety of other environmental factors within the room. Designs are in these types of spaces

typically compensate for potential stratification by using alternate methods to smoke, heat, or fire detection than the typical ceiling-mounted smoke detector.

#### 2.3 Structure Types

The *IBC 2015* has specific chapters dedicated to different types of building materials and the minimum requirements and limitations for each. Chapters 19-26 include concrete, aluminum, masonry, steel, wood, glass and glazing, gypsum boards, and plastic. For the design and analysis of the proposed structure, steel (Chapter 22) and wood (Chapter 23) structural framing systems were used. Building construction type was also considered for fire resistance rating in the sprinkler system design [*NFPA 13*]. The system protection area limitations vary based on the occupancy hazard type as dictated in *NFPA 13; Section 8.2.1*. These occupancy hazard types are based on the intended uses of a space and the expected fire size for that space. A "system protection area is used as a sample area of sprinkler operation for feasible worst case scenario fires in a specific type of space. Having these protection area limitations allow the designer to ensure that there will be enough water and pressure in a system for operation during a fire. Table 3 shows the different system protection area limitations based on occupancy type as indicated in *NFPA 13*.

| Occupancy Type  | System Protection Area Limitations |
|-----------------|------------------------------------|
| Light Hazard    | 52,000 $ft^2$                      |
| Ordinary Hazard | 52,000 ft <sup>2</sup>             |
| Extra Hazard    | $40,000 \text{ ft}^2$              |
| Storage         | $40,000 \text{ ft}^2$              |

Table 3: System Protection Area Limitations for Occupancy Types

#### 2.3.1 Steel Frame

Steel is one of the most desirable structural frame materials for mercantile, commercial, and large-scale residential buildings. It is a high-strength material with a wide range of design flexibility and accommodate large bay sizes. Because of these characteristics, both architects and engineers benefit from using steel in construction. In addition, in areas with local access to steel

manufacturing, steel is less expensive than concrete and it can be built much quicker due to a lack of curing time. Steel is also not affected by weather during construction. This is beneficial when building in locations with harsh winters.

#### 2.3.2 Lightweight Wood Frame

Wood framing can be used in Risk I and II type buildings. It is particularly favorable for residential construction due to its inexpensive nature. Although lumber comes in certain standard width and height dimensions, the lengths can be easily modified on site which makes wood a more forgiving construction material than steel. Wood is much more susceptible to environmental changes which affects the time of year and location wood can be constructed in. Building codes also affect the constructability of wood. The *IBC 2015* limits construction to five stories but many local codes add their own restrictions making it a less desirable material for many types of structures.

#### 2.3.3 Pedestal with Wood Frame

Structures do not necessarily need to be constructed of only one building material. Wood can only be used for construction to a limited height, because of this, it is sometimes built on top of a stronger, less combustible, base material. The base material could be concrete walls, steel columns, or a combination of both to create the "pedestal". All materials used in these structures must be in compliance with the building codes.

#### **2.4 Special Conditions**

When a building does not conform to traditional design, considerations of its variations must be accounted for. Designs may include unique structural or aesthetic elements that have an effect on how the code is interpreted and implemented. Examples of special conditions that were considered in this project are atriums and non-traditional fire doors.

## 2.4.1 Atrium

As defined in *NFPA 101; Section 3.3.27*, an atrium is a "large-volume space created by a floor opening or series of floor openings connecting two or more stories that is covered at the top of the series of openings and is used for purposes other than an enclosed stairway; an elevator

hoistway; an escalator opening; or as a utility shaft used for plumbing, electrical, airconditioning, or communications facilities." Atriums are a common design element in larger buildings to open the interior space and provide interest points to a structure. Because atriums are not uncommon, there are specific areas of the code that detail the variations in treatment required. These specific criteria typically address smoke control and detection as well as automatic sprinkler protection or other suppression techniques. Including an atrium is a concern in the design of a structure because there is less division between levels which allows for fire and smoke to spread more easily.

#### 2.4.2 Accordion-Type Fire Doors

The code must adapt and change with improvements and expansion of technology. A double accordion-type fire door has been around for decades *[Won Door]* but has recently been rising in popularity as building owners value the aesthetic of an open space over a bay of traditional fire doors. These doors function through a heat or smoke detection system that triggers their release from a recess in the wall. After closure is triggered, this moveable wall will automatically extend to the opposite wall on a ceiling track. The concerns for appliances like these mainly extend to the compartmentalization speed and the robustness to function under emergency conditions.

#### 2.5 Cost Estimating

Before a construction project begins, the overall cost of the project is estimated. These estimates are based on standards for cost estimating and cost analysis. *RS Means Building Construction Cost* was used as a source of product cost data and was utilized for cost compilation and analysis. Estimating is completed using a method called "takeoff" and then the total project is priced per square foot of the structure. Some aspects of a project must be determined using takeoff but others can be more generalized by estimating per square foot. When there is insufficient data in the design specifications, elements including electrical wiring, HVAC, and plumbing can be generalized to cost per square foot. There are benefits and drawbacks of using takeoff versus cost per area, therefore both methods are initially considered for every product to achieve the most accurate price.

#### 2.5.1 Takeoff

Estimating using the "takeoff" method involves determining how much of a specific material is going to be used and then multiplying by the cost per unit. For example, steel is estimated using this method by pricing per linear foot of each piece size. This method was used in estimating the cost of each steel design case. When materials are measured using takeoff, a certain amount of buffer is calculated in to ensure that the amount does not come up short. Takeoff can be calculated by hand, but there are also software programs available that can do many of these calculations at once, expediting the process.

### 2.5.2 Square Footage

When pricing a job using area estimation, only certain aspects are included in this cost. Labor is one of the items that is estimated per square foot. Other items such as wiring and plumbing can be estimated using square footage because many structures built for the same uses have similar amounts of these items per square foot. These items were estimated in the design cases because there was not enough information to do a takeoff. This type of estimating can be less precise than takeoff because each amount of product is not being calculated throughout the entire building, but it is generally accurate enough that estimators use it as a way to assist in establishing their bid.

### **2.6 Conclusion**

Through the design and analysis of both structural and fire protection systems, the relationship and use of codes for varying occupancy and structural characteristics will be explored. Many different portions of *IBC* and *NFPA* codes and standards were consulted to complete this project. Discussion of the results includes the relative cost effectiveness of each design as well as the interactions between various code provisions and requirements. This was completed through analysis of five different cases located in Boston, Miami, and Los Angeles, and exploring variations in structural and fire protection system design.

### **3. Problem Statement**

Throughout this project, different structural factors were investigated for their effect on the design of structural members and fire protection systems. The design variations were based on steel and wood construction materials. For each different case study, the structural design utilized either a steel or wood structural base with a variety of design features that affected the architectural, structural, and fire protection layouts. The fire protection system design included a sprinkler layout, smoke detection, notification devices, heat detection, and smoke control systems where appropriate. The design criteria for each case is shown in Table 4.

The first case was a 5-story, commercial occupancy. This structure was designed using steel beam and girder framing with a slab floor. Dead and live loads associated with the occupancies and the mass of structural members were considered in the design of the frame. Brick facade walls were used for the exterior enclosure. Due to these structural decisions, the building was classified as Construction Type II (B). Type B refers to the structural steel members that do not have a fire protective coating. The office space in this structure was classified as a Light Hazard Occupancy in accordance with *NFPA 13; Chapter 5*, and fire protection systems were designed appropriately to these criteria with special considerations given to spaces such as mechanical rooms.

The second case is a 5-story, residential occupancy. This structure was designed using a light frame wood configuration. Dead loads and live loads associated with the structural members and residential occupancies were considered in this design. Exterior paneling was used in this case. With these structural elements and wood composition, this building was classified as Construction Type V (A). As a residential occupancy, none of the structural wood members were exposed to the living space. The residential spaces within the building were classified as a Light Hazard Occupancy with the mechanical spaces classified as Ordinary Hazard 1 (*NFPA 13; Chapter 5*).

For Cases 3-5, design variations were added to Cases 1 and 2 by using the basic steel and wood design layouts. Case 3 combined structural steel and wood with a pedestal design containing mercantile and residential occupancies. Case 4 considered the design variations necessary if a two story atrium was located on the ground floor of a steel office building, and Case 5 contained an extended central hallway within a steel office building. With each variation, required changes for the structural components of the building were noted, and incorporated, and

any differences in necessary fire protection systems were implemented. Upon completion of these designs, a breakdown of variable construction costs was conducted for each case. Depending on the material or component being considered, an analysis was conducted in cost per unit floor area or cost per item.

All cases were then compared on the criteria of cost, occupancy use, building and fire code requirements, and design simplicity. From here, strategies were proposed to improve the performance and ease of future design in each area.

Table 4: Case Study Descriptions

| Case Number                 | Primary Occupancy Type    | Structural System and | Construction Type        | Fire Protection           |
|-----------------------------|---------------------------|-----------------------|--------------------------|---------------------------|
|                             |                           | Enclosure             |                          |                           |
| Case 1: Structural Steel    | Commercial (Office Use)   | Steel Frame           | Construction Type II     | Sprinkler System,         |
| Office Building             | Light Hazard              | Concrete Slab Floor   |                          | Detection and Alarm       |
|                             |                           | Brick Façade          |                          | Systems, Egress Analysis  |
| Case 2: Lightweight Wood    | Residential               | Lightweight Wood      | Construction Type V (A)  | Sprinkler System,         |
| Construction Residential    | Light Hazard              |                       |                          | Detection and Alarm       |
| Building                    |                           | Exterior Vinyl Siding |                          | Systems, Egress Analysis  |
| Case 3: Mixed Occupancy     | Mercantile Ground Level,  | Steel Pedestal with   | Construction Type V (A)  | Sprinkler System,         |
|                             | Residential Above         | Lightweight Wood      |                          | Detection and Alarm       |
|                             | Ordinary Hazard (Group 2) | Concrete Slab Floor   |                          | Systems, Egress Analysis  |
|                             |                           | Exterior Vinyl Siding |                          |                           |
| Case 4: Central Atrium with | Commercial                | Steel Frame           | Construction Type II (B) | Sprinkler System,         |
| Horizontal Fire Doors       | Light Hazard              | Concrete Slab Floor   |                          | Detection and Alarm       |
|                             |                           | Brick Façade          |                          | Systems, Smoke Control    |
|                             |                           | Altered Wall Design   |                          | System, Egress Analysis,  |
|                             |                           |                       |                          | Horizontal Fire Doors     |
| Case 5: Additional Building | Commercial                | Steel Frame           | Construction Type II (B) | Sprinkler System,         |
| Wings                       | Light Hazard              | Concrete Slab Floor   |                          | Detection and Alarm       |
|                             |                           | Brick Façade          |                          | Systems, Egress Analysis, |
|                             |                           |                       |                          | Horizontal Fire Doors     |
#### 3.1 Integration of Structural Design and Fire Protection System Design

In a typical design process, the architectural layout is created first, followed by the structural elements of the building with an integrated HVAC layout, and the fire protection systems would be designed last. For this project, the structural, architectural, and fire protection design components influenced one another and grew co-dependently. The general parameters for the building, such as location, occupancy type, and size, were determined at the beginning. Design considerations within the structure such as the story height and corresponding drop ceiling height, the stairway locations, and other structural features were greatly influenced by the projected fire protection design.

Fire protection system design typically depends on the layout and projected usage of a space. Influencing the structural and architectural layout of a building with fire protection considerations from the beginning was both a hindrance and a positive strategy. It was difficult to design a fire protection system for a layout that was prone to changing. The full extent of the architectural layout was also unknown at the time of the fire protection designs. This process of designing and changing the fire protection layouts as architectural features are altered could represent a more accurate portrayal of what may happen when working in industry as building owners change their minds about certain features in their construction project.

The design elements influenced by fire protection were put in place to increase the cohesiveness between the layout and the proposed lifesafety protection of the building. In this way, it was very beneficial to base the designs on each other as they were still in incipient stages. Design decisions like the height of the drop ceiling allowed for ample room for sprinkler piping and electrical conduit, while the use of acoustic ceiling tiles (ACT) would create a more pleasing aesthetical choice for both sprinkler head installation and smoke detectors and notification systems. Another example of this co-dependent design was in considering the atrium and options to retain the surrounding walkways as viable egress routes. Utilization of horizontal fire or smoke doors gave the leniency to not require a different primary egress route.

Intertwining the structural, architectural, and fire protection designs allowed for both aesthetic and lifesafety components to be considered from the beginning. By making these designs interdependent, one aspect of the structure did not interfere with the intended outcome of a different discipline's design.

### **3.2 Design Considerations and Alterations**

As the design process of this project developed, some of the Cases were modified or eliminated. In the initial proposal, there were two Control Cases and five modified cases for a total of seven cases. Cases I and II remained the same as in the initial proposal but were no longer considered "control cases" because they were no longer the basis of the remaining cases. Case III was originally defined with commercial space on the first floor and residential on the subsequent floors. This was changed to include a mercantile space on the first floor instead of a commercial space because it would increase the hazard class from Light to Ordinary Hazard Group 2. All other cases were Light Hazard so this change added variety to the hazard classes, and as a result, allowed for more modifications in the Fire Protection design.

The final modification that was made was combining the case including an atrium with the case including accordion-style fire doors. In spaces with atriums, one of the most critical issues in the Fire Protection design is the compartmentalization of the smoke to prevent it from reaching the upper floors through means of the open atrium. Accordion-style fire doors are a useful solution to this issue so the two cases were combined to create a more cohesive modification and solution. In addition to the modifications, the case including Alternative Flooring Systems was removed from this project. This Case would be interesting to pursue further but it was not cohesive with the other cases in this project so it was removed. After all of the modification were made, the final project included five case studies.

# 4. Design Criteria

The cases in this project were created to provide a variety of both structural and fire protection conditions. The main construction materials used in these cases were structural steel and lightweight wood. Having these two variations in construction design allowed for a breadth of different design considerations.

### **4.1 Structural Design**

The structural design for each case was created by superimposing the structural members over the architectural drawing of the building. Each floor was laid out identically in AutoCAD to maximize the efficiency of the design. The architectural layout was considered in each design layout to ensure the columns would not obstruct doors or hallways and to maximize the number of columns located within walls.

## 4.1.1 Steel Design

Various design iterations were performed until all beam members were of a reasonable size. The beam spacing needed to be reduced because the initial spacing was unable to support the weight of the flooring system while maintaining a reasonable size. In the first design, the beams in Section 4 of Figure 4 were over 25 feet in length.



Figure 4: Beam Layout Version 1

A beam of this length would deflect excessively which caused it to have a web larger than the 24 inch desired for the ceiling depth. To remedy this, another row of columns was added to the other side of the hallway which divided the 25-foot span in half (Figure 5).



Figure 5: Beam Layout Version 2

However, this design was not able to be used because the beams in Section 6 of Figure 5 were almost 22 feet in length which also caused too much like deflection, similar to Section 4 from the first design iteration. The two areas on the side of the structure had adequate beam lengths so the beams and girders were rotated 90° to make the beams run horizontally through the center hallway of the structure. This design had adequate sized girders but the beams in Section 7, Figure 6 were sized at W24x62 in the condition that did not include environmental loads, which was the same depth as the ceiling.



Figure 6: Beam Layout Version 3

To create more clearance in the ceiling for MEP, another row of columns was added to the center of the structure which reduced the Section 7 beams to W14x26 which gave 10 inches of clearance (Figure 7).



Figure 7: Beam Layout Version 4

Throughout the design process, each section of beams was calculated first taking into account dead and live loads for the appropriate structure type (See Table 5).

| Dead Load           |                          |  |  |  |
|---------------------|--------------------------|--|--|--|
| Reinforced Concrete | $43 \text{ lb./ft}^2$    |  |  |  |
| Steel Decking       | 2.75 lb./ft <sup>2</sup> |  |  |  |
| MEP                 | $10 \text{ lb./ft}^2$    |  |  |  |
| Finishes            | $5 \text{ lb./ft}^2$     |  |  |  |
| Live Load           |                          |  |  |  |
| Office              | $50 \text{ lb./ft}^2$    |  |  |  |
| Concentrated Load   |                          |  |  |  |
| Office 2000 lb.     |                          |  |  |  |

Table 5: Case 1 Loading Conditions

For the Geographical cases, the snow loads were considered as well. Beam sizes were selected and then reevaluated to include their self-weight. The floors with the same layout were assumed to have the same beam sizes except for the roof which had different loading applied to

it. Girders were calculated next using the same dead and live loads as the beams but also including the dead weight caused by the beams located in the tributary area of the girder. Columns were designed last using the first floor layout and including the dead, self, and live loads of the four overlying floors plus the dead, live, and snow loads from the roof.

### 4.1.2 Lightweight Wood Design

Lightweight wood design was completed using a less methodical approach than steel design because each individual member did not need to be analyzed. For this design, calculation checks were done for floor joists, load-bearing wall systems, and glued laminated beams. Each of these types was checked using the longest member in the structure and then used as a typical dimension throughout the rest of the building. The dead and live loads listed in Table 6 were used for these calculations.

| Dead Load        |                        |  |  |  |
|------------------|------------------------|--|--|--|
| 3/4" OSB Plywood | $2.5 \text{ lb./ft}^2$ |  |  |  |
| 2x6 Framing      | $1.7 \text{ lb./ft}^2$ |  |  |  |
| 2x10 Framing     | $2.9 \text{ lb./ft}^2$ |  |  |  |
| 2x12 Framing     | $3.5 \text{ lb./ft}^2$ |  |  |  |
| MEP              | $10 \text{ lb./ft}^2$  |  |  |  |
| Finishes         | $5 \text{ lb./ft}^2$   |  |  |  |
| Roofing System   | $20 \text{ lb./ft}^2$  |  |  |  |
| Live Load        |                        |  |  |  |
| Apartment Rooms  | $40 \text{ lb./ft}^2$  |  |  |  |
| Roof             | $20 \text{ lb./ft}^2$  |  |  |  |

Table 6: Case 2 Loading Conditions

In lightweight wood construction, the floor members are spaced closer to each other than in steel design. Wood has less strength than steel so more members are required to carry the different loading conditions. Having more members reduces the tributary area of each piece, thus reducing the weight being carried across the member. In this design, the longest joist size was found to be 14 feet 7.5 inches in length. An assumed member size was chosen and then checked for bending, shear, and deflection to ensure adequate sizing. Wall systems were calculated in the same manner as the joists where the longest unbraced wall span was determined and a typical calculation was done to determine the size of the wall joists. These walls were designed with the same joist and spacing as the floors. This allows for the floor and wall joists to line up and carry loads throughout the structure from the roof into the foundation.

Some open areas between load bearing walls needed support for the floor joists because without them, the joists would be too long and deflect from the dead loads. These intermediate beams were designed with the same dead loads as the joists in addition to the weight of the floor joists on it. These beams were designed as glued laminated members which are much stronger than a typical wood beam.

#### 4.1.3 Pedestal Design

The pedestal design combined the techniques used for the steel and lightweight wood designs into one structure. Only the first floor of the structure was constructed with steel members, decking, and reinforced concrete. Because of this, the floor system was designed in the same manner as the previous steel design, using apartment live loads instead of office (Table 6). The columns in this design were different than previously designed because instead of supporting a system of exclusively steel members, the dead weight on these columns was one floor system of steel, three floors and four walls of lightweight wood, and one lightweight wood roof. The second through fifth floors are constructed of wood and were designed using the same methods listed previously for lightweight wood construction.

### **4.2 Fire Protection: Detection System Design**

For a fire detection system, spacing requirements were based on the size of the room, the type of hazard in the area, and the rating of the detection or notification device. In light and ordinary hazard occupancies like the case studies considered herein, smoke detectors were required in most of the rooms. These detectors typically were spaced with a 20ft by 20ft area of coverage. The final spacing determination was based on the manufacturer's data sheets of the specific products, but *NFPA 72; Section 17.7.3.2.3.1* states that spot type smoke detectors may have a maximum spacing of 30ft. In locations where smoke detectors were not permitted, like

mechanical spaces, heat detectors were used based on the area of the space. Manual pull stations were located within five feet from exterior exits and placed at 40ft spacing in corridors.

The fire notification system for these cases consist of speaker strobe notification devices. The spacing of these notification devices were dependent upon the strobe's candela rating. These values were shown in *NFPA* 72; *Table* 18.5.5.4.1(a). Different candela ratings were required for different room areas. The rating was based on the values shown in Figure 8 below. Speakers were integrated into the notification devices, and intelligibility was considered for larger spaces such as the lobby.

| Maximum                              |                                             | Minimum Ro<br>Ou<br>[Effective In | equired Ligh<br>tput<br>ntensity (cd)          |
|--------------------------------------|---------------------------------------------|-----------------------------------|------------------------------------------------|
| Roor                                 | m Size<br>m                                 | One Light<br>per Room             | Four Ligh<br>per Roon<br>(One Ligh<br>per Wall |
| $20 \times 20$                       | $6.10 \times 6.10$                          | 15                                | NA                                             |
| $28 \times 28$                       | $8.53 \times 8.53$                          | 30                                | NA                                             |
| $30 \times 30$                       | $9.14 \times 9.14$                          | 34                                | NA                                             |
| $40 \times 40$                       | $12.2 \times 12.2$                          | 60                                | 15                                             |
| $45 \times 45$                       | $13.7 \times 13.7$                          | 75                                | 19                                             |
| $50 \times 50$                       | $15.2 \times 15.2$                          | 94                                | 30                                             |
| $54 \times 54$                       | $16.5 \times 16.5$                          | 110                               | 30                                             |
| $55 \times 55$                       | $16.8 \times 16.8$                          | 115                               | 30                                             |
| $60 \times 60$                       | $18.3 \times 18.3$                          | 135                               | 30                                             |
| $63 \times 63$                       | $19.2 \times 19.2$                          | 150                               | 37                                             |
| 68 × 68                              | $20.7 \times 20.7$                          | 177                               | 43                                             |
| 70 × 70                              | $21.3 \times 21.3$                          | 184                               | 60                                             |
| 80 × 80                              | 24.4 × 24.4                                 | 240                               | 00                                             |
| $90 \times 90$<br>100 $\times 100$   | $27.4 \times 27.4$<br>$90 \times 90 \times$ | 304<br>975                        | 95                                             |
| $100 \times 100$<br>$110 \times 110$ | 22 5 × 22 5                                 | 455                               | 125                                            |
| $120 \times 120$                     | 36.6 × 36.6                                 | 540                               | 135                                            |
| $130 \times 130$                     | $39.6 \times 39.6$                          | 635                               | 185                                            |

Figure 8: Taken from NFPA 72; Table 18.5.5.4.1(a)

# **4.3 Fire Protection: Suppression System Design**

A wet-pipe sprinkler suppression system was used to protect the structures in all of the case studies. Two significant design assumptions for these systems were that concealed spaces within the drop ACT ceiling was not considered public access and therefore was not sprinklered, and that light fixtures within the structures were not considered obstructions to the sprinkler heads. Depending on the occupancy type, the design requirements for the sprinkler systems

varied. The cases included a commercial occupancy, a residential occupancy, and a mercantile occupancy. These occupancy types all fell within light and ordinary hazard occupancies and were designed accordingly.

The primary design considerations for occupancy classification was the design density and area used for spacing and flow requirements. These density/area curves were found in *NFPA 13; Figure 11.2.3.1.1* (shown below as Figure 9). Light hazard occupancies included the commercial and residential cases. These occupancies typically require smaller amounts of water to suppress a fire. A density of 0.10 gpm/ft<sup>2</sup> over a design area of 1500 ft<sup>2</sup> was used for the light hazard occupancies. Ordinary hazard occupancies included mercantile areas and storefronts; these were additionally characterized as an ordinary hazard "Group 2". For these occupancies, more pressure and flow was required to suppress a fire, so a density of 0.20 gpm/ft<sup>2</sup> over a design area of 1500ft<sup>2</sup> was used for the cases that had ordinary hazard occupancy.



RE 11.2.3.1.1 Density/Area Curves.

Figure 9: Taken from NFPA 13; Figure 11.2.3.1.1

Hydraulic calculations were completed to determine the overall pressure and water demands of the sprinkler system. These calculations can be shown in the *NFPA 13* format in Appendix E. To complete these calculations, the sprinkler k-factor (5.7), the area of coverage, and the design density must be considered. Appendix E has design areas highlighted within each case study and the correlating equations for each step of the calculation.

In some geographic locations, additional design considerations were made for seismic bracing of sprinkler piping. For these cases, the type of pipe, size of pipe, and geographic seismic characteristics were considered in determining the spacing required for these braces. A program called TOL-Brace was used to calculate and confirm the correct components for areas with seismic activity. This program uses geographic-specific seismic values and the length, size, and material of sprinkler piping to determine the spacing of seismic bracing and the fastening components that were required for the hangers. The two largest factors that go into this calculation is the seismic value for short periods of a specific geographic location, and the projected weight of water within a span of sprinkler pipe.

### 4.4 Cost Analysis

For each Design Case, a simple cost analysis was done in order to compare the costs difference in various locations as a result of the structural and fire protection alterations required of each city. All of the items listed in Table 7 were taken from line items in *RS Means 2016: Construction Costs.* 

| Section           | Item Type                                   | Cost per | Unit |  |
|-------------------|---------------------------------------------|----------|------|--|
|                   |                                             | Unit     |      |  |
| Structural        |                                             |          |      |  |
| Structural Shapes | Beams                                       | \$3900   | Ton  |  |
|                   | Girders                                     | \$3900   | Ton  |  |
|                   | Columns                                     | \$3900   | Ton  |  |
| Rough Carpentry   | Stud Walls, 2x6 10ft                        | \$2.37   | SF   |  |
|                   | Roof Joists, 2x10                           | \$2.00   | SF   |  |
|                   | Roof Joists, 2x12                           | \$2.48   | SF   |  |
|                   | Floor Joists, 2x12                          | \$2.48   | SF   |  |
|                   | Beam, 6 <sup>3</sup> / <sub>4</sub> " x 24" | \$42.60  | LF   |  |
| Fire Alarm: Detec | tion/Notification                           |          |      |  |
|                   | Spot-Type Smoke Detectors                   | \$110.00 | Ea.  |  |
|                   | Rate of Rise Heat Detector                  | \$51.00  | Ea.  |  |
|                   | Linear Beam Smoke Detectors                 | \$200.00 | Ea.  |  |
|                   | Manual Pull Stations                        | \$83.50  | Ea.  |  |
|                   | Strobe and Horn Notification                | \$152.00 | Ea.  |  |
| Fire Suppression: | Suppression                                 |          |      |  |
|                   | 15000SF or more (Exposed Wet)               | \$3.56   | SF   |  |

Table 7: Cost Analysis Values from Building Construction Cost Data RS Means 2015

The items considered in the analysis were simplified to include only items that would vary with changes in the structural and fire protection designs. For example, the steel was included because different member sizes would change the cost but the steel decking was not included because the structure maintains the same surface area regardless of the location. Each case had the base cost calculated for the gravity load model, and then the variations for each structure were calculated and compared to the initial cost. In addition to the variations caused by material changes, the location factors for each city were included in the cost to show the differences in construction costs that need to be considered when building in different locations.

#### 4.5 Geographical Analysis and Environmental Loads

The initial design of each case was developed without any considerations of environmental loading conditions. Member sizes were established from the dead load conditions created by the structure itself and the live loads associated with the designated use of the structure. Across the United States wind, seismic, and snow loads, and the fire protection codes vary from location to location. Varying the location altered the structural designs for each case. Figures 1, 2, and 3 were used to determine the magnitudes of the environmental loads associated with each location.

Seismic Loading was found using the following series of equations to solve for the total force acting on the entire story of the structure. The values in Table 8 were taken from *ASCE 7-10* and *IBC 2015* and used in the equations. The weight of the structure was an estimated value where it was assumed that each floor weighed 125 pounds per square foot and the roof weighed 75 pounds per square foot. Once the force per story was calculated, it was divided amongst the frames dependent on how much load they would carry. The full set of calculations can be found in Appendix C.

$$C_{s} = \frac{S_{DS}}{RI}$$

$$V = W * C_{s}$$

$$C_{vi} = \frac{w_{i}h_{i}}{\sum_{1}^{5}w_{i}h_{i}}$$

$$w_{i} = weight of story; h_{i} = height of story$$

$$F_{i} = C_{vi} * V$$

Wind Loading was found using the series of equations below to determine the total wind force on each face of the building. The values used for these equations are indicated in Table 9. First the static wind pressure,  $q_s$  was calculated using the U.S customary units formula. This was

used in the formula for the velocity wind pressure at different heights above the ground. In this equation, the variable for the exposure coefficients changes as the height of the structure increases. The velocity wind pressure  $q_z$  was the used to determine the design wind pressure, p, on a particular face of the structure which in turn was multiplied by the length of the building and the tributary floor height, 10 feet, to determine the wind force acting on each story. The full set of calculations can be found in Appendix C.

| Variable        | Boston | Miami | Los Angeles |
|-----------------|--------|-------|-------------|
| ρ               | 1      | 1     | 1.3         |
| S <sub>DS</sub> | 0.23   | 0.04  | 1.60        |
| R               | 3      | 3     | 3           |
| Ι               | 1      | 1     | 1           |
| W(kips)         | 14066  | 14066 | 14066       |

 $q_{s} = 0.00256V$   $q_{z} = q_{s}IK_{z}K_{zt}K_{d}$   $p = q_{z}GC_{p}$ Force = L \* (tributary floor height = 10) \* p

| Variable                                      |     | Boston     | Miami      | Los Angeles |
|-----------------------------------------------|-----|------------|------------|-------------|
| Wind Velocity, V                              |     | 108 mph    | 139 mph    | 85 mph      |
| Occupancy Importance Factor,                  | Ι   | 1          | 0.77       | 1           |
| Velocity Pressure Exposure                    | 10' | 0.57       | 0.57       | 0.57        |
| Coefficient, Kz                               | 20' | 0.62       | 0.62       | 0.62        |
|                                               | 30' | 0.70       | 0.70       | 0.70        |
|                                               | 40' | 0.76       | 0.76       | 0.76        |
|                                               | 50' | 0.81       | 0.81       | 0.81        |
| Velocity Pressure Exposure                    | 10' | 0.70       | 0.70       | 0.70        |
| Coefficient, Kz                               | 20' | 0.70       | 0.70       | 0.70        |
| Least Horizontal Dimension                    | 30' | 0.70       | 0.70       | 0.70        |
|                                               | 40' | 0.76       | 0.76       | 0.76        |
|                                               | 50' | 0.81       | 0.81       | 0.81        |
| Topographic Factor, K <sub>zt</sub>           |     | 1          | 1          | 1           |
| Wind Directionality Factor, Ka                | d   | 1          | 1          | 1           |
| Gust Factor, G                                |     | 0.85       | 0.85       | 0.85        |
| External Pressure Coefficient, C <sub>p</sub> |     | 1          | 1          | 1           |
| Length of Building, N-S                       |     | 225.67 ft. | 225.67 ft. | 225.67 ft.  |
| Length of Building, E-W                       |     | 131.38 ft. | 131.38 ft. | 131.38 ft.  |

Table 9: Wind Calculation Values

In order to carry lateral loads, structures have frames placed throughout the structure which are designed to carry the additional loading. To design these frames, the lateral loading first was divided amongst the different frames. The lateral loads acting on each individual frame was determined by designing the structure in RISA-3D and applying a 1-kip point load to the top of the structure. The displacement was then used to calculate the stiffness of the frame in kips per inch. This was then multiplied by the quantity of the frame type used in the structure and used to find the percentage of total stiffness the frame carried. These stiffness percentages were multiplied by the total force per story to determine the forces acting upon each story of each different frame. From here, the loads for wind and seismic were analyzed separately for each location in RISA-3D. The calculated loads were applied to each story and the frame was analyzed to determine the displacement caused by the forces. The maximum displacement was determined to be the height divided by 500 which is 1.2 inches. Each frame was analyzed and the maximum deflection of the top story was compared to the allowable deflection. If the limit was exceeded, each frame was redesigned using the design method in Table 10.

|    | Original Member      | New Member | Member Type |
|----|----------------------|------------|-------------|
| 1  | W14x22               | W14x26     | Beam        |
| 2  | W14x26               | W16x31     | Beam        |
| 3  | W16x31               | W18x35     | Beam        |
| 4  | W18x35               | W18x40     | Beam        |
| 5  | W12x40               | W12x50     | Column      |
| 6  | N/A                  | W12x16     | Cross Beam  |
| 7  | W12x16               | W14x22     | Cross Beam  |
| 8  | W12x50               | W12x65     | Column      |
| 9  | W18x40               | W21x44     | Beam        |
| 10 | W12x65               | W14x82     | Column      |
| 11 | Add additional cross | s beams    | Cross Beam  |
| 12 | W14x82               | W14x109    | Column      |
| 13 | W14x22               | W14x26     | Cross Beam  |
| 14 | W21x44               | W21x62     | Beam        |
| 15 | X-shapes cross bean  | ns         | Cross Beam  |
| 16 | W14x109              | W14x120    | Column      |
| 17 | W14x26               | W16x31     | Cross Beam  |
| 18 | W16x31               | W18x35     | Cross Beam  |
| 19 | W21x62               | W21x68     | Beam        |
| 20 | W14x120              | W14x132    | Column      |
| 21 | W18x35               | W18x40     | Cross Beam  |
| 22 | W14x132              | W14x145    | Column      |
| 23 | W21x68               | W24x68     | Beam        |
| 24 | W14x145              | W14x176    | Column      |

Table 10: Frame Design Iteration Method

### 4.5.1 Los Angeles, California

The first site location to be considered was Los Angeles, California which is located in the Southwest of the country. This region is located on a fault line so high levels of seismic loading must be considered. The wind forces in this region are less significant than the seismic loading so the seismic loads govern the required lateral loading. California has snow loading at higher altitudes but Los Angeles is close enough to sea level and has a climate and elevation that the snow loading can be considered as zero. The values used in the calculations for Los Angeles were taken from ASEC 7-10 and are in Table 11.

| Item                    | Values                  | Unit |
|-------------------------|-------------------------|------|
| Address                 | 2975 Wilshire Boulevard | -    |
| Soil Classification     | С                       | -    |
| Seismic Design Category | D                       | -    |
| Redundancy (p)          | 1.3                     | -    |
| S <sub>DS</sub>         | 1.603                   | %g   |
| Wind Velocity (Vasd)    | 85                      | mph  |
| Wind Importance Factor  | 1                       | -    |
| Exposure Category       | В                       | -    |
| Snow Load               | 0                       | psf  |

Table 11: Calculation Values for Los Angeles from ASCE 7-10

The designs of Case 2 and Case 3 were partially or completely lightweight wood construction. A structure of this height and area cannot be built in Los Angeles, California in accordance with the city's building code. *The Los Angeles Building Code* is a series of amendments to the 2013 *California Building Code (CBC)*. In Chapter 5: General Building Heights and Areas of the *CBC*, Table 503 indicates the floor area per story and story limits for different types of construction. For an R-2 type structure of Type V-A construction, the structure is limited to three stories at up to 18,000 square feet per story. Type V-B is even more restrictive, limiting construction to two stories at up to 12,000 square feet. The residential structure designed in Case 2 and 3 are five stories at 19,000 square feet so this structure could not be constructed in Los Angeles, California due to its noncompliance with local and state building codes.

### 4.5.2 Miami, Florida

The next site location considered was Miami, Florida which is located in the Southeast of the country. This region is located on the Atlantic Ocean in an area prone to hurricanes so high levels of lateral loading caused by wind must be considered. There are minimal seismic forces in this region so even though they were included in the design, the wind loading was the driving force for lateral effects. Similar to California, no snow loading was considered but unlike California, the snow loading is considered zero at all elevations in this region. The values used in the calculations for Miami were taken from ASEC 7-10 and are in Table 12.

Miami is located in a hurricane zone with wind velocity of 139 miles per hour. As a result of this, wood is not a desirable construction material for the size of structure designed in Case 2

and 3. Unlike California however, Florida does not have specified limits in their building code for construction height limits for different building materials. The American Wood Council (AWC) does have recommended floor areas and structure heights for wood construction for structures in 140 mph winds and Exposure Category B. This guide states that the structure should not be greater than 33 feet in height and for irregular structures with an aspect ratio of 1.5, no larger than 80 feet by 60 feet. The structure in the design is several times larger than these limits that were set forth, indicating that wood would not be able to be used in this structure. However, this guide is intended to be used for "Wood Frame Construction in High Wind Areas for One-and Two-Family Dwellings," which is not the nature of the building in the design. Since there are no limits specifically indicated in the Florida or Miami building codes that permit the construction of a lightweight wood structure of this height and area, it was deemed unsafe to pursue the designs for Case 2 and 3 in Florida without further knowledge of the area.

| Item                    | Values                        | Unit |
|-------------------------|-------------------------------|------|
| Address                 | 745 SW 3 <sup>rd</sup> Street | -    |
| Soil Classification     | D                             | -    |
| Seismic Design Category | А                             | -    |
| Redundancy (p)          | 1                             | -    |
| S <sub>DS</sub>         | 0.044                         | %g   |
| Wind Velocity (Vasd)    | 139                           | mph  |
| Wind Importance Factor  | 1                             | -    |
| Exposure Category       | В                             | -    |
| Snow Load               | 0                             | psf  |

Table 12: Calculation Values for Miami from ASCE 7-10

#### 4.5.3 Boston, Massachusetts

The final site location considered was Boston, Massachusetts which is located in the northeast of the country. This region was the most difficult to calculate because all three loading conditions must be considered. Even though Massachusetts is not located on a major fault line, there is still minor seismic loading that must be considered. In addition, much of Boston is located on land created by filling in the ocean with soil. These areas must be treated with greater seismic consideration so the location of the structure was placed outside of this region. Wind loading is minimal throughout most of the country but it is more substantial in this location due

to its proximity to the Atlantic Ocean. Of the three locations selected, Boston has the largest snow load to consider because it is much further north than the other two locations. The values used in the calculations for Los Angeles were taken from ASEC 7-10 and are in Table 13.

| Item                              | Values             | Unit |
|-----------------------------------|--------------------|------|
| Address                           | 165 Tremont Street | -    |
| Soil Classification               | D                  | -    |
| Seismic Design Category           | В                  | -    |
| Redundancy (p)                    | 1                  | -    |
| S <sub>DS</sub>                   | 0.23               | %g   |
| Wind Velocity (V <sub>asd</sub> ) | 108                | mph  |
| Wind Importance Factor            | 1                  | -    |
| Exposure Category                 | В                  | -    |
| Snow Load                         | 50                 | psf  |

Table 13: Calculation Values for Boston from ASCE 7-10

# **5.0 Results**

Five cases were designed with different building materials and uses and then relocated to three major cities across the United States. These designs were chosen to show how a variety of minor changes in a structure can have large implications on the structural and fire protection designs. Each design has unique characteristics that change what needs to be considered in the design process. These designs were then reanalyzed in three different locations to demonstrate how environmental factors can have large effects on the design of a structure. By changing the use and location, the variations of the needs of a structure as well as the impact of the local building codes can be analyzed. In addition, a cost analysis of the five structures was done in the three locations as well as with a base cost. These costs only included the variable costs such as steel members and quantity of smoke detectors. This made it possible to show a direct comparison between the costs in the different locations.

# 5.1 Case 1: Steel Office Building

The first case being considered is a five-story, steel frame structure. For the initial analysis, only the occupancy live loads and structural dead load were considered. Additional designs were prepared for three different locations which considered environmental loads as well. This structure was designed as an open concept office space with executive offices and a conference room, break room, and reception area in each suite. Partitions were designed to allow space for up to six tenants per floor. Each floor contains two elevators, two bathrooms, and four stairways. These stairways were used in egress analysis of calculated occupant load per *NFPA 101*. The architectural layout of this case can be found in Appendix G.

### **5.1.1 Structural Design**

The structural design for Case 1 was composed of a series of beams, girders, and columns as seen in Figure 10.



Figure 10: Case 1 Structural Framing Plan

Figure 10 shows the first floor framing plan and the subsequent floors are designed in the same manner. Girders run from North to South in the end sections and run East to West in the longer middle hallway. For the initial gravity load design, the members were all defined to support dead and live loads only. The member sizes for this design can be found in Appendix G. It can be noted that all beam and girder sizes were designed to be a minimum size of W12x16 to reduce the risk of problems arising due to slenderness of members. When lateral loading was introduced to the design, eight frames (Figure 11) were introduced into the structural layout. These frames were designed to resist the wind and seismic loading conditions of the three areas and the values

varied for the different locations so the frames were modified to the appropriate size for each loading condition. The final frame design for each location can be found in Appendix B.



Figure 11: Case 1 Structural Layout with Frames

## 5.1.2 Fire Protection: Detection System Design

For Case 1, the required detection devices and notification appliances included smoke detection throughout, heat detection in the elevator machine room, manual pull stations, and speaker/strobe notification appliances throughout all occupied spaces. The layout for this case can be found in Appendix G and in Figures 12 and 13.



Figure 12: Fire Alarm Design - Case 1, Floor 1



Figure 13: Fire Alarm Design – Case 1, Floors 2-5

The design spacing in Case 1 for the ceiling-mounted smoke detectors was 30ft by 30ft. This is a standardized spacing for smoke detectors for ceilings that are only one story high. This spacing can be seen on the drawings throughout as the typical spacing for the office space, lobby, work areas, restrooms, etc. In this design, heat detectors were only prescribed for use in the elevator machine room to minimize potential of false alarms from mechanical function within the building.

As per *NFPA 72*, there was a maximum of 200 ft. spacing between manual pull stations. These devices were placed in the path of egress in all areas. This made the design slightly more conservative than the code requirements, but because of the size and the number of exits, it was prudent to include more manual pull stations. A combination of wall-mounted and ceiling-mounted speaker/strobe appliances were laid out with a design area of coverage of 30 ft. x 30ft. Designing all the rooms to have ceiling-mounted notification allowed for flexibility within rooms if furniture were to be moved or for the space use to change. The two-directional wall-mounted notification appliances were beneficial for the uniform spacing and proximity to doors in many cases.

In office design it is presumed that the occupants have familiarity with the building and their own office space; therefore, the layout did not include notification appliances directly in the executive offices. The only occupied rooms that are separate from the general tenant space are 4 executive offices and the break room.

The elevator shafts were protected by a single sprinkler head at the base/top of the shaft. This will act as a heat detector and be linked to an automatic shutoff of elevator function in the case of actuation. The areas above the acoustic ceiling tiles (ACT) were not included in the scope of detection coverage since these spaces are concealed and will not be used for storage. The quantities of the aforementioned devices appliances are listed in Table 14.

| Floor | Smoke<br>Detector | Heat<br>Detector | Pull Station | Horn/Strobe |
|-------|-------------------|------------------|--------------|-------------|
| 1     | 81                | 2                | 7            | 51          |
| 2     | 87                | 2                | 6            | 55          |
| 3     | 87                | 2                | 6            | 55          |
| 4     | 87                | 2                | 6            | 55          |
| 5     | 87                | 2                | 6            | 55          |

Table 14: Case 1 Fire Detection Device and Appliance Count

# 5.1.3 Fire Protection: Suppression System Design

This office building was classified as a light hazard occupancy for the suppression system design. With a light hazard occupancy classification, one single sprinkler riser can supply systems that are up to 52,000 ft<sup>2</sup> in area. The water density and design area requirements of this system will be 0.10 gpm/ft<sup>2</sup> over 1,500 ft<sup>2</sup>. This system was designed to have pendent K5.6 sprinklers throughout. The typical sprinkler head spacing in Case 1 was 10ft by 12ft. As per *NFPA 13*, no spacing exceeded 15ft between sprinkler heads. Each sprinkler head covered a maximum of 130 ft<sup>2</sup>. Although the typical spacing was 10ft by 12ft, depending on the geometry of the room, this spacing throughout was not possible. Figures 14 and 15 show the sprinkler layout in Case 1. The number of sprinkler heads used in this design are also shown in Table 15.



Figure 14: Fire Protection Design - Case 1, Floor 1



Figure 15: Fire Protection Design - Case 1, Floor 2

Table 15: Case 1 Sprinkler Head Count

| Floor | Pendent K-5.6 Sprinkler |  |
|-------|-------------------------|--|
| 1     | 187                     |  |
| 2     | 190                     |  |
| 3     | 190                     |  |
| 4     | 190                     |  |
| 5     | 190                     |  |

For a business occupancy, the design fire was simplified to a medium growth fire. This simplification incorporated the assumption of an alpha growth value of 0.011728 kW/s<sup>2</sup> over a growth time of 300 seconds. Refer to Section 2.2.2.1 Fire Protection Systems for more information on design requirements and to Figure 16 below for typical fire growth values. With these assumptions, at a spacing of 10ft by 12ft, and a heat rating of 135°F, the expected sprinkler activation time for the typical area in this occupancy would be approximately 13 seconds.

TABLE B.2.3.2.3.6 Power Law Heat Release Rates

| Fire Growth<br>Rate | Growth Time $(t_g)$                                                                              | $(kW/sec^2)$                 | $\alpha$ (Btu/sec <sup>3</sup> ) |
|---------------------|--------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|
| Slow                | $\begin{array}{l} t_g \geq 400  \sec \\ 150 \leq t_g < 400  \sec \\ t_g < 150  \sec \end{array}$ | $\alpha \le 0.0066$          | $\alpha \le 0.0063$              |
| Medium              |                                                                                                  | $0.0066 < \alpha \le 0.0469$ | $0.0063 < \alpha \le 0.0445$     |
| Fast                |                                                                                                  | $\alpha > 0.0469$            | $\alpha > 0.0445$                |

Figure 16: Power Law Heat Release Rates [NFPA 13; Table B.2.3.2.3.6]

There was no change in suppression design when the environmental loads prescribed for Boston and Miami were considered. Because of the seismic loads present in Los Angeles, additional seismic bracing was required to hang the sprinkler piping at a spacing of 30ft. This bracing absorbs movement and stabilizes the sprinkler pipe to account for the seismic forces.

The required water flow and pressure for this system is 168gpm at 50psi using a hydraulic calculation method for a design area of 1500 ft<sup>2</sup>. These calculations and the design area are shown in Appendix E.

## **5.1.4 Cost Analysis**

Construction costs for Case 1 were determined with the variable items listed in Table 16. Each cost has slight variations from the base cost due to more materials being used as well as the location factors which were included in each location. As you can see in this chart, the location factor for Boston is greater than those for Los Angeles and Miami which gives an immediate mark up to the project, regardless of the changes in member sizes. The location factor for Miami is 1 so any changes in the costs for Miami from the Base Cost are due to changes in the sizes of structural members.

| Item Type             | Base Cost       | Boston      | Los Angeles | Miami       |
|-----------------------|-----------------|-------------|-------------|-------------|
| Location Factor       | -               | 1.37        | 1.08        | 1.00        |
| Structural            | ·               |             |             |             |
| Beams                 | \$463,000       | \$488,000   | \$385,000   | \$356,000   |
| Girders               | \$409,000       | \$491,000   | \$379,000   | \$351,000   |
| Columns               | \$246,000       | \$706,000   | \$847,000   | \$311,000   |
| Frame                 | -               | \$524,000   | \$621,000   | \$304,000   |
| Brace                 | -               | \$132,000   | \$557,000   | \$8,760     |
| Total                 | \$1,120,000     | \$2,340,000 | \$2,790,000 | \$1,330,000 |
| Fire Alarm: Detection | Notification    |             |             |             |
| Spot-Type Smoke       | \$110.00 ea.    | \$64,700    | \$51,000    | \$47,200    |
| Detectors             | \$47,200 total  |             |             |             |
| Rate of Rise Heat     | \$51.00 ea.     | \$699       | \$551       | \$510       |
| Detector              | \$510 total     |             |             |             |
| Linear Beam Smoke     | N/A             | N/A         | N/A         | N/A         |
| Detectors             |                 |             |             |             |
| Manual Pull Stations  | \$83.50 ea.     | \$3,530     | \$2,790     | \$2,580     |
|                       | \$2,580 total   |             |             |             |
| Strobe and Horn       | \$152.00 ea.    | \$67,900    | \$53,500    | \$49,600    |
| Notification          | \$49,600 total  |             |             |             |
| Total                 | \$99,900        | \$137,000   | \$108,000   | \$99,900    |
| Fire Suppression: Sup | pression        |             |             |             |
| 15000SF or more       | \$3.56 per SF   | \$465,000   | \$366,000   | \$339,000   |
| (Exposed Wet)         | \$339,000 total |             |             |             |
| Total Cost            | \$1,560,000     | \$2,940,000 | \$3,260,000 | \$1,770,000 |

Table 16: Case 1 Cost Analysis

### 5.2 Case 2: Lightweight Wood Residential

The second case considered was a five-story, lightweight wood residential building. Similar to the first case, the structure was first designed for only structural dead load and residential live load. As indicated in Section 4.5.1 and 4.5.2, wood structures of this size cannot be constructed in Los Angeles or Miami so this case was only considered in Boston. This structure was designed as a residential apartment building with 12 apartments per floor. On every level, there are ten apartments with three bedrooms and one bathroom, and two studio-style apartments with one bathroom. Each floor contains two elevators, and four stairways. The architectural layout of this case can be found in Appendix H.

### **5.2.1 Structural Design**

The structural design for Case 2 consisted of floor joists, load bearing walls, and support beams as shown in Figure 17. As can be seen in floor plan, the floor joists were spaced at a typical 16" on center and then placed in the orientation that minimized the member length.



Figure 17: Case 2 Floor Layout

Since only one location, Boston, was considered, the resulting designs for the Base Case and Boston were very similar with only minor changes to the roof due to snow loading. The floor plan in Figure 17 shows the first floor but the same layout was used for all floors. A typical member size was chosen for the wall joists, floor joists, roof joists, and support beams and can be seen in Table 17. Complete calculations for this case can be found in Appendix B.

| Member Type  | Member Size (Gravity)    | Member Size (Boston)     |
|--------------|--------------------------|--------------------------|
| Wall Joist   | 2x6                      | 2x6                      |
| Floor Joist  | 2x12 at 16" O.C.         | 2x12 at 16" O.C.         |
| Roof Joist   | 2x10 at 16" O.C.         | 2x12 at 16" O.C.         |
| Support Beam | 6.75" x 24" glu-lam beam | 6.75" x 24" glu-lam beam |

Table 17: Case 2 Wood Members

# 5.2.2 Fire Protection: Detection System Design

The layout of Case 2 (Figure 18 and 19) reflects the differences in fire alarm notification requirements between residential occupancies and business occupancies. Smoke detectors are located throughout, but the bedrooms and bathroom do not require horn/strobe appliances. These appliances are located in the main living areas such as the living room and the kitchen. Table 18 denotes the number of devices and appliances used in each floor of this design.



Figure 18: Fire Alarm Design - Case 2, Floor 1

| Table 18: | Case 2 Fire | Detection | Device and | l Appliance | Count |
|-----------|-------------|-----------|------------|-------------|-------|
|-----------|-------------|-----------|------------|-------------|-------|

| Floor | <b>Smoke Detector</b> | Heat Detector | <b>Pull Station</b> | Horn/Strobe |
|-------|-----------------------|---------------|---------------------|-------------|
| 1     | 93                    | 2             | 10                  | 42          |
| 2     | 93                    | 2             | 6                   | 34          |
| 3     | 93                    | 2             | 6                   | 34          |
| 4     | 93                    | 2             | 6                   | 34          |
| 5     | 93                    | 2             | 6                   | 34          |



Figure 19: Fire Alarm Design - Case 2, Floors 2-5

# **5.2.3 Fire Protection: Suppression System Design**

According to *NFPA 13*, residential buildings are classified as a light hazard occupancy. The same requirements as Case 1 apply to this case due to the similarities in water density, flow, and pressure requirements within the system. The branchline layout varied significantly due to the difference in architectural room layout. These layouts can be seen below and in *Figures 20 and 21*. The number of sprinkler heads used in this design are also shown below in *Table 19*.



Figure 20: Fire Protection Design - Case 2, Floors 1



Figure 21: Fire Protection Design - Case 2, Floors 2-5

| Floor | Pendent K-5.6 Sprinkler |
|-------|-------------------------|
| 1     | 180                     |
| 2     | 180                     |
| 3     | 180                     |
| 4     | 180                     |
| 5     | 180                     |

Because of structural factors within the building codes, this wood design was not considered in Los Angeles or Miami. In Boston, because of the geographic seismic activity, and the bracing being attached to wood decking, seismic sprinkler bracing would be required every 40ft. This bracing absorbs movement and stabilizes the sprinkler pipe to account for the seismic forces.

The required water flow and pressure for this system is 177gpm at 56psi using a hydraulic calculation method for a design area of 1500 ft<sup>2</sup>. These calculations and the design area are shown in Appendix E.

## **5.2.4 Cost Analysis**

The cost breakdown of Case 2 can be seen in Table 20. Only one geographic location was analyzed so this cost analysis is a comparison between the Base Case and the one location considered. The structural cost of Case 2 was very similar for the gravity load and geographical cases, with most of the variance being due to the location factor of Boston.

| Item Type                     | Base Cost       | Boston      |
|-------------------------------|-----------------|-------------|
| Location Factor               | -               | 1.37        |
| Structural                    |                 |             |
| Stud Walls, 2x6 10ft          | \$352,000       | \$482,000   |
| Floor Joists, 2x12            | \$189,000       | \$259,000   |
| Roof Joists, 2x10             | \$38,100        | -           |
| Roof Joists, 2x12             | -               | \$64,700    |
| Support Beam                  | \$48,800        | \$66,900    |
| Total                         | \$628,000       | \$873,000   |
| Fire Alarm: Detection/Notific | ation           |             |
| Spot-Type Smoke Detectors     | \$110.00 ea.    | \$70,100    |
|                               | \$51,150 total  |             |
| Rate of Rise Heat Detector    | \$51.00 ea.     | \$700       |
|                               | \$510 total     |             |
| Linear Beam Smoke             | N/A             | N/A         |
| Detectors                     |                 |             |
| Manual Pull Stations          | \$83.50 ea.     | \$3,890     |
|                               | \$2,840 total   |             |
| Strobe and Horn Notification  | \$152.00 ea.    | \$37,200    |
|                               | \$27,100 total  |             |
| Total                         | \$81,600        | \$112,000   |
| Fire Suppression: Suppression | n               |             |
| 15000SF or more (Exposed      | \$3.56 per SF   | \$465,000   |
| Wet)                          | \$339,000 total |             |
| Total Cost                    | \$1,050,000     | \$1,450,000 |

Table 20: Case 2 Cost Analysis

### 5.3 Case 3: Steel Pedestal Mixed Occupancy

The third case considered was a five-story, mixed-use building with steel and lightweight wood construction. Similar to the first case, the structure was first designed only with structural dead load and residential live load. As indicated in Section 4.5.1 and 4.5.2, wood structures of this size cannot be constructed in Los Angeles or Miami so this case was only considered in Boston. This structure was designed as a mixed-use building with 12 apartments on floors two through five and flexible mercantile spaces on the first floor that can accommodate up to four tenants. On each apartment level, there are ten apartments with three bedrooms and one bathroom, and two studio-style apartments with one bathroom. The mercantile floor contains the four storefronts as well as two public bathrooms. Each floor contains two elevators, and four stairways. The architectural layout of this case can be found in Appendix I.

#### **5.3.1 Structural Design**

The structural design for Case 3 was a combination of the designs used in Case 1 and Case 2. Floor 1 of Case 3 had the same layout of structural steel beams, girders, and columns as Case 1 but with smaller members due to the smaller dead and live loads created by apartments on Floor 2 instead of offices. In addition, smaller columns could be used because the dead load from the subsequent wood floors have a lower weight than steel members. The breakdown of member sizes can be seen in Appendix H. Because the steel of the structure only reaches 10 feet tall, frames were not designed in the geographical iteration of this case. Instead, a system of tie downs was used to join the four wood floors as well as to connect the wood floors to the concrete slab on top of the steel. For floors 2-4 and the roof, the same design as Case 2 was used.

### **5.3.2 Fire Protection: Detection System Design**

The fire alarm spacing in Case 3 was consistent with the spacing requirements used in cases 1 and 2. Larger candela ratings in the horn/strobe appliances were able to be used for increased spacing in the larger retail areas of the fire floor. Because of the open space, fewer smoke detectors were used in the first floor than the rest of the building. The device count can be found in table 21. The differences in device placement demonstrated the juxtaposition of mercantile versus residential occupancies and how partition walls within a building affected the overall required notifiers and detection devices used in one system. Figures 22 and 23 show the first floor alarm system layout and the typical layout for the residential floors above.



Figure 22: Fire Alarm Design - Case 3, Floor 1



Figure 23: Fire Alarm Design - Case 2, Floors 2-5

| Floor | <b>Smoke Detector</b> | <b>Heat Detector</b> | <b>Pull Station</b> | Horn/Strobe |
|-------|-----------------------|----------------------|---------------------|-------------|
| 1     | 57                    | 2                    | 7                   | 49          |
| 2     | 93                    | 2                    | 6                   | 34          |
| 3     | 93                    | 2                    | 6                   | 34          |
| 4     | 93                    | 2                    | 6                   | 34          |
| 5     | 93                    | 2                    | 6                   | 34          |

Table 21: Case 3 Fire Detection Device and Appliance Count

# 5.3.3 Fire Protection: Suppression System Design

Mercantile occupancies present a higher hazard than residential or commercial occupancies. This meant that instead of having a design water flow density of 0.1 gpm/ft<sup>2</sup>, the first floor of this building required a system that could provide a design density of 0.2 gpm/ft<sup>2</sup>. This did not affect the placement of the sprinkler heads since the area of coverage was still 130ft<sup>2</sup>, but it did change the water requirements in the hydraulic calculations. Sprinkler layouts are shown in Figures 24 and 25 and the quantity per floor are in Table 22.



Figure 24: Fire Protection Design - Case 3, Floor 1


Figure 25: Fire Protection Design - Case 3, Floors 2-5

| Floor | Pendent K-5.6 Sprinkler |
|-------|-------------------------|
| 1     | 194                     |
| 2     | 180                     |
| 3     | 180                     |
| 4     | 180                     |
| 5     | 180                     |

Table 22: Case 3 Sprinkler Head Count

Because the majority of this building was wood construction, it would have required seismic bracing similar to Case 2 of 40ft spacing in Boston. With the larger design density, floor one of this case required a water flow and pressure of 346gpm at 138psi. This would be the governing flow and pressure requirements because, even taking the elevation into consideration, the water requirements for the fifth floor of this building in a light hazard area was a flow of 177gpm at a pressure of 56psi. These calculations and the design area are shown in Appendix E.

# 5.3.4 Cost Analysis

The structural cost of Case 3 is itemized in Table 23. This cost was greater than the cost of Case 2 because it was not entirely wood construction but less than Case 1 because there was only one floor of steel. In a pedestal design, the structural cost is more expensive than complete wood construction but is significantly less expensive than steel. This design also had less expensive Fire Alarm systems because the mercantile space on the first floor did not require as many devices as the apartment rooms in the floors above.

| Item Type                          | Base Cost       | Boston      |  |  |
|------------------------------------|-----------------|-------------|--|--|
| Location Factors                   | -               | 1.37        |  |  |
| Structural                         |                 |             |  |  |
| Beams                              | \$94,700        | \$130,000   |  |  |
| Girders                            | \$86,300        | \$118,000   |  |  |
| Columns                            | \$49,100        | \$67,300    |  |  |
| Stud Walls, 2x6 10ft               | \$282,000       | \$386,000   |  |  |
| Floor Joists, 2x12                 | \$142,000       | \$195,000   |  |  |
| Roof Joists, 2x10                  | \$38,100        | -           |  |  |
| Roof Joists, 2x12                  | -               | \$64,700    |  |  |
| Support Beam                       | \$29,300        | \$40,100    |  |  |
| Total                              | \$722,000       | \$1,000,000 |  |  |
| Fire Alarm: Detection/Notification |                 |             |  |  |
| Spot-Type Smoke Detectors          | \$110.00 ea.    | \$64,700    |  |  |
|                                    | \$47,200 total  |             |  |  |
| Rate of Rise Heat Detector         | \$51.00 ea.     | \$700       |  |  |
|                                    | \$510 total     |             |  |  |
| Linear Beam Smoke                  | N/A             |             |  |  |
| Detectors                          |                 |             |  |  |
| Manual Pull Stations               | \$83.50 ea.     | \$3,550     |  |  |
|                                    | \$2,590 total   |             |  |  |
| Strobe and Horn                    | \$152.00 ea.    | \$38,600    |  |  |
| Notification                       | \$28,200 total  |             |  |  |
| Total                              | \$78,500        | \$108,000   |  |  |
| Fire Suppression: Suppressi        | ion             |             |  |  |
| 15000SF or more (Exposed           | \$3.56 per SF   | \$465,000   |  |  |
| Wet)                               | \$339,000 total |             |  |  |
| Total Cost                         | \$1,140,000     | \$1,573,000 |  |  |

Table 23: Case 3 Cost Analysis

#### **5.4 Case 4: Atrium with Accordion-Type Fire Doors**

Case 4 is designed in a similar manner to Case 1 as a 5-story steel structure with an atrium spanning floors 1 and 2. For the initial analysis, the structure was designed considering only the gravity loads but then lateral loads from three locations were considered as well. This structure was designed as an open concept office space with executive offices and conference room in each suite. Partitions were designed to allow space for up to four tenants in floors three through five and three tenants in floors one and two. Each floor contains two elevators, two bathrooms, and six stairways. These stairways were used in egress analysis of predicted occupant load. The architectural layout of this case can be found in Appendix K.

# **5.4.1 Structural Design**

The structural design for Case 4 was similar to Case 1 on floors 2-4 and the roof. Since the structure was designed with the same column, beam, and girder layout, these floors did not need a separate analysis and the structural steel framing from Case 1 was used. The atrium on Floor 1 caused changes in the design of some of the members directly around the open area. Girders in this area were shortened but because they were cantilevered, their tributary length was considered to the end of the member instead of halfway to the next column. The frame layout and member sizing from Case 1 were used again in Case 4 because none of the frames interrupted the open area of the atrium. The first floor layout of this case can be seen in Figure 26.



Figure 26: Case 4 Floor Layout

# 5.4.2 Fire Protection: Detection System Design

Case 4 provided insight into the effect higher ceilings can have on fire alarm design. To ensure that smoke was being reliably detected, even in the case of stratification within the atrium, linear beam smoke detection was implemented in this design. Typically, smoke detector placement is not reduced in areas with 20ft high ceilings. This design does not enclose the atrium however and this could become a problem when detecting smoke and activating sprinklers. To include another layout protective measure within this design, a performance-based option of using horizontal fire doors as smoke protection surrounding the atrium was explored. This would use the linear beam smoke detection devices to activate the doors and prevent the spread of smoke to corridors on the second floor as well as preventing fire spread. The layouts for the first floor, second floor, and typical upper-level floors are shown in Figures 27, 28, and 29.



Figure 27: Fire Alarm Design - Case 4, Floor 1



Figure 28: Fire Alarm Design - Case 4, Floor 2



Figure 29: Fire Alarm Design - Case 4, Floors 3-5

| Table 24.         | Case 4 | Fire  | Detection | Device | and A | Annliance | Count |
|-------------------|--------|-------|-----------|--------|-------|-----------|-------|
| 1 <i>ubie</i> 27. | Cuse + | 1 110 | Delection | Device | unu 1 | ippiunce  | Count |

| Floor | Smoke<br>Detector | Linear Beam<br>Smoke Detector | Heat<br>Detector | Pull Station | Horn/Strobe |
|-------|-------------------|-------------------------------|------------------|--------------|-------------|
| 1     | 77                | 1                             | 2                | 7            | 52          |
| 2     | 77                | 1                             | 2                | 6            | 56          |
| 3     | 87                | 0                             | 2                | 6            | 55          |
| 4     | 87                | 0                             | 2                | 6            | 55          |
| 5     | 87                | 0                             | 2                | 6            | 55          |

# **5.4.3 Fire Protection: Suppression System Design**

The sprinkler layout criteria for this case was very similar to that of Case 1. The only differences were in the physical placement of branchlines within the atrium. The layouts for Case 4 are shown in Figure 30, 31, and 32. Because the atrium is only 20ft high, special considerations were not made for sprinkler head spacing or alternative methods of suppression.



Figure 30: Fire Protection Design - Case 3, Floors 2-5



Figure 31: Fire Protection Design - Case 3, Floors 2-5



Figure 32: Fire Protection Design - Case 3, Floors 2-5

| Floor | Pendent K-5.6 Sprinkler |
|-------|-------------------------|
| 1     | 160                     |
| 2     | 181                     |
| 3     | 190                     |
| 4     | 190                     |
| 5     | 190                     |

Seismic loads present in Los Angeles would require additional seismic bracing at a spacing of 30ft. The required water flow and pressure for this system is 168gpm at 50psi. These calculations and the design area are shown in Appendix E. The quantity of sprinklers per floor are listed in Table 25.

# **5.4.4 Cost Analysis**

The structural cost of Case 4 is broken down in Table 26. This case had a very similar cost to Case 1 because the structures are the same size, have the same structural layout, and have the same building use. Case 4 was slightly less expensive however, because there was less

material needed in the 2000 square foot area of the atrium. The cost of the fire protection and detection systems were less expensive than Case 1 because even though the design criteria were the same for both structures in Floors 2-5, the open area of the atrium eliminated some of the system required. In addition, the extra ceiling height in the atrium did not require additional fire protection design which could have increased the cost.

| Item Type                     | Base Cost       | Boston      | Los Angeles | Miami       |  |
|-------------------------------|-----------------|-------------|-------------|-------------|--|
| Location Factors              | -               | 1.37        | 1.08        | 1.00        |  |
| Structural                    |                 |             |             |             |  |
| Beams                         | \$455,000       | \$479,000   | \$378,000   | \$350,000   |  |
| Girders                       | \$310,000       | \$395,000   | \$303,000   | \$280,000   |  |
| Columns                       | \$246,000       | \$706,000   | \$847,000   | \$311,000   |  |
| Frame                         | -               | \$524,000   | \$621,000   | \$304,000   |  |
| Brace                         | -               | \$132,000   | \$557,000   | \$8,760     |  |
| Total                         | \$1,010,000     | \$2,240,000 | \$2,710,000 | \$1,250,000 |  |
| Fire Alarm: Detection/Notifi  | cation          |             |             |             |  |
| Spot-Type Smoke Detectors     | \$110.00 ea.    | \$62,600    | \$49,300    | \$45,700    |  |
|                               | \$45,700 total  |             |             |             |  |
| Rate of Rise Heat Detector    | \$51.00 ea.     | \$700       | \$550       | \$510       |  |
|                               | \$510 total     |             |             |             |  |
| Linear Beam Smoke             | \$200.00 ea.    | \$550       | \$440       | \$400       |  |
| Detectors                     | \$400 total     |             |             |             |  |
| Manual Pull Stations          | \$83.50 ea.     | \$3,550     | \$2,800     | \$2,590     |  |
|                               | \$2,590 total   |             |             |             |  |
| Strobe and Horn Notification  | \$152.00 ea.    | \$56,900    | \$44,900    | \$41,500    |  |
|                               | \$41,500 total  |             |             |             |  |
| Total                         | \$90,700        | \$125,000   | \$98,000    | \$90,700    |  |
| Fire Suppression: Suppression |                 |             |             |             |  |
| 15000SF or more (Exposed      | \$3.56 per SF   | \$458,000   | \$359,000   | \$332,000   |  |
| Wet)                          | \$332,000 total |             |             |             |  |
| Total Cost                    | \$1,430,000     | \$2,820,000 | \$3,160,000 | \$1,670,000 |  |

Table 26: Case 4 Cost Analysis

# 5.5 Case 5: Effects of Extended Central Hallway

Case 5 is designed in a similar manner to Case 1 as a 5-story steel structure but the center hallway is twice the length. In addition, there are two additional sets of stairs in the center of the extended hallway. For the initial analysis, the structure was designed considering only the gravity loads but then lateral loads from three locations were considered as well. This structure was designed as an open concept office space with executive offices and conference room in

each suite. Partitions were designed to allow space for up to eight tenants per floor. Each floor contains two elevators, two bathrooms, and six stairways. These stairways were used in egress analysis of predicted occupant load. The architectural layout of this case can be found in Appendix K.

# **5.5.1 Structural Design**

The structural design for Case 5 was also similar to Case 1 but with additional steel members in the extended hallway (Figure 33).



Figure 33: Case 5 Floor Layout

Beams, girders, and columns for this structural have the same design as Case 1 with the exception of beam type 8 which was added for this case. An additional calculation was required to size this member. Because of the extended hallway, more frames were added to the center of

the structure (Figure 34).



Figure 34: Case 5 Structural Layout with Frame

These additional frames carried some of the stiffness of the structure so new member sizes were designed for each frame type to carry the different percentage of the load. In addition to changing the percentage of load carried by each member, the lateral loads were larger because of the increased length and weight of the structure. For Case 5, Frame 7 carried a large portion of the load so larger members and more cross beams were required (Figure 35). A sample frame calculation and full results can be found in Appendix C.



Figure 35: Case 5 Frame 7 for Geographic Locations

# 5.5.2 Fire Protection: Detection System Design

Case 5 is the same fire alarm design as Case 1 with an extended corridor. This required more fire safety devices and appliances than the previous four cases, but the spacing and locations remained consistent. The layouts are shown in Figures 36 and 37 and the quantities of the fire devices and appliances are shown in Table 27.



Figure 36: Fire Alarm Design - Case 5, Floor 1



Figure 37: Fire Alarm Design - Case 5, Floors 2-5

| Floor | <b>Smoke Detector</b> | <b>Heat Detector</b> | Pull Station | Horn/Strobe |
|-------|-----------------------|----------------------|--------------|-------------|
| 1     | 102                   | 2                    | 9            | 70          |
| 2     | 112                   | 2                    | 6            | 74          |
| 3     | 112                   | 2                    | 6            | 74          |
| 4     | 112                   | 2                    | 6            | 74          |
| 5     | 112                   | 2                    | 6            | 74          |

Table 27: Case 5 Fire Detection Device and Appliance Count

# 5.5.3 Fire Protection: Suppression System Design

Even though Case 5 is such a large structure, it would still be classified as a light hazard occupancy. Similar to the fire alarm layouts, the fire protection layouts are also consistent with Case 1. The differences lie in the location of the riser and the additional branchlines to accommodate the width of the building. Figures 38 and 39 are layouts of the sprinkler system for this case and Table 28 indicates the number of sprinklers per floor.



Figure 38: Fire Protection Design - Case 5, Floor 1



Figure 39: Fire Protection Design - Case 5, Floors 2-5

| Table 28 | : Case 5 Sprinkler Head Count |  |
|----------|-------------------------------|--|
|          |                               |  |

| Floor | Pendent K-5.6 Sprinkler |
|-------|-------------------------|
| 1     | 251                     |
| 2     | 250                     |
| 3     | 250                     |
| 4     | 250                     |
| 5     | 250                     |

Seismic bracing would be required in Los Angeles at a spacing of 30ft. Because the riser was located in the center of building for this case, the required water flow and pressure for this system were very similar to Cases 1 and 4 with a flow of 168gpm at 50psi. These calculations and the design area are shown in Appendix E.

# 5.5.4 Cost Analysis

The cost breakdown of Case 5 is in Table 29. This case was the most expensive case because of the larger area of the building. A larger area required a more expansive fire protection system which in turn increased the cost. In addition, the increased number of steel members in the extended hallway doubled the cost of that set of beams, girders, and columns. With the longer structure, more frames were also required which increased the cost of these members, as well as the cross-braces.

Table 29: Case 5 Cost Analysis

| Item Type                     | Base Cost       | Boston      | Los Angeles | Miami       |  |
|-------------------------------|-----------------|-------------|-------------|-------------|--|
| Location Factor               | -               | 1.37        | 1.08        | 1.00        |  |
| Structural                    |                 |             |             |             |  |
| Beams                         | \$577,000       | \$625,000   | \$493,000   | \$456,000   |  |
| Girders                       | \$557,000       | \$673,000   | \$519,000   | \$481,000   |  |
| Columns                       | \$292,000       | \$845,000   | \$1,020,000 | \$369,000   |  |
| Frame                         | -               | \$634,000   | \$767,000   | \$358,000   |  |
| Brace                         | -               | \$173,000   | \$918,000   | \$45,900    |  |
| Total                         | \$1,450,000     | \$2,950,000 | \$3,720,000 | \$1,710,000 |  |
| Fire Alarm: Detection/No      | otification     |             |             |             |  |
| Spot-Type Smoke               | \$110.00 ea.    | \$82,900    | \$65,400    | \$60,500    |  |
| Detectors                     | \$60,500 total  |             |             |             |  |
| Rate of Rise Heat             | \$51.00 ea.     | \$700       | \$550       | \$510       |  |
| Detector                      | \$510 total     |             |             |             |  |
| Linear Beam Smoke             | N/A             | N/A         | N/A         | N/A         |  |
| Detectors                     |                 |             |             |             |  |
| Manual Pull Stations          | \$83.50 ea.     | \$3,800     | \$3,000     | \$2,800     |  |
|                               | \$2,800 total   |             |             |             |  |
| Strobe and Horn               | \$152.00 ea.    | \$76,300    | \$60,100    | \$55,700    |  |
| Notification                  | \$55,700 total  |             |             |             |  |
| Total                         | \$120,000       | \$168,000   | \$129,000   | \$120,000   |  |
| Fire Suppression: Suppression |                 |             |             |             |  |
| 15000SF or more               | \$3.56 per SF   | \$597,000   | \$471,000   | \$436,000   |  |
| (Exposed Wet)                 | \$436,000 total |             |             |             |  |
| Total Cost                    | \$2,010,000     | \$3,720,000 | \$4,320,000 | \$2,270,000 |  |

# **6.0 Discussion**

This project provided insight into the effects that various environmental loading conditions, occupancy classifications, and geographic cost considerations had on different structural and fire protection designs. Within this analysis, the implications that different components of this project had on the design and costs of the overall product were considered. Comparison of the costs of Cases 1 through 5 demonstrated the effects that architectural, structural, and geographic variations had on the overall cost. A summary of the cases can be seen in Table 30.

| Case Number           | Primary Occupancy  | Structural System,       | Fire Protection        |
|-----------------------|--------------------|--------------------------|------------------------|
|                       | Туре               | Enclosure, Construction  |                        |
|                       |                    | Туре                     |                        |
| Case 1: Structural    | Commercial (Office | Steel Frame              | Sprinkler System,      |
| Steel Office Building | Use)               | Concrete Slab Floor      | Detection and Alarm    |
|                       | Light Hazard       | Brick Façade             | Systems, Egress        |
|                       |                    | Construction Type II     | Analysis               |
| Case 2: Lightweight   | Residential        | Lightweight Wood         | Sprinkler System,      |
| Wood Construction     | Light Hazard       | Exterior Vinyl Siding    | Detection and Alarm    |
| Residential Building  |                    | Construction Type V (A)  | Systems, Egress        |
|                       |                    |                          | Analysis               |
| Case 3: Mixed         | Mercantile Ground  | Steel Pedestal with      | Sprinkler System,      |
| Occupancy             | Level, Residential | Lightweight Wood         | Detection and Alarm    |
|                       | Above              | Concrete Slab Floor      | Systems, Egress        |
|                       | Ordinary Hazard    | Exterior Vinyl Siding    | Analysis               |
|                       | (Group 2)          | Construction Type V (A)  |                        |
| Case 4: Central       | Commercial         | Steel Frame              | Sprinkler System,      |
| Atrium with           | Light Hazard       | Concrete Slab Floor      | Detection and Alarm    |
| Horizontal Fire Doors |                    | Brick Façade             | Systems, Smoke         |
|                       |                    | Altered Wall Design      | Control System, Egress |
|                       |                    | Construction Type II (B) | Analysis, Horizontal   |
|                       |                    |                          | Fire Doors             |
| Case 5: Additional    | Commercial         | Steel Frame              | Sprinkler System,      |
| Building Wings        | Light Hazard       | Concrete Slab Floor      | Detection and Alarm    |
|                       |                    | Brick Façade             | Systems, Egress        |
|                       |                    | Construction Type II (B) | Analysis, Horizontal   |
|                       |                    |                          | Fire Doors             |

| Table 30: Design Case Summary |
|-------------------------------|
|-------------------------------|

# **6.1 Impact Analysis**

A qualitative impact analysis was completed by considering the design and cost implications of various factors. For this analysis the effects of environmental loading conditions, the occupancy classifications, and the location cost adjustment factor were ranked based on the impact on final designs and costs. A visual depiction of the impact analysis can be found below in Figure 40.



Figure 40: Impact Analysis

The snow loading conditions presented in the geographic-specific cases only had an effect when the structures were located in Boston. The snow loading condition required marginal increases in the member sizes for the roof framing for the Boston location. This change was fairly trivial for both the design and cost impacts.

Wind loads had a negligible impact to the designs in the Boston and Los Angeles locations. In Miami, minimal changes were required within the structural frame design to

account for the wind loading condition. These changes presented a slight cost impact when compared to the costs associated with the design loading conditions.

The occupancy classification of the various cases had a significant effect on the structural, architectural, and fire protection and detection systems. The occupancy of a building inherently changes the layout of the rooms and, consequently, the location of fire detection, notification, and suppression systems. This directly affects cost with the increase or decrease of the number of required devices and appliances.

The location cost adjustment factor from RS Means had a significant effect on the overall cost of the building in all of the cases, but had no impact on the designs. This adjustment factor skewed the final location-based costs. Boston has a very large adjustment factor (1.37), whereas Los Angeles and Miami both have smaller factors (1.08 and 1.00 respectively). This made Boston appear to be significantly more expensive than what the base construction costs and systems components would suggest.

Seismic loading conditions had the most significant impact on both the designs and the costs of all the cases. All of the steel cases in Boston and Los Angeles required the design of seismic framing. Seismic framing was also designed for Cases 2 and 3 in Boston. Seismic bracing for sprinkler piping was also required in Boston and Los Angeles. These factors created additional design considerations and increased the cost of the overall building.





Figure 41: Structural Cost Comparison

The structural cost of each of the cases varied for each geographic location compared to the Base Cost. As can be seen in Figure 41, the costs for Case 1 and Case 4 are very similar for each scenario which is due to the similarities in their structures. Case 5 is the most expensive case due to the extended hallway which required more structural materials to be used. Case 2 and Case 3 had very similar base costs because they were the two structures that used lightweight wood construction. Case 2 is slightly less expensive because it had entirely wood construction and Case 3 had one floor of steel. The cost for Los Angeles was always the most expensive due to the large amounts of steel required for each of the frames. The frames in Boston had much smaller member sizes and less cross bracing than the Los Angeles frames but the location factor in Boston was much larger which made the costs end up being closer. In the Miami scenarios, the frames were not much larger than the original design and the location factor was equal to 1, so the cost for Miami did not increase by much compared to the Base Cost in each case.



Figure 42: Fire Alarm Cost Comparison

The cost for the Fire Alarm system was more varied than the suppression system but was still very similar across the different cases (Figure 42). Cases 1 and 4 required similar number of detection devices and notification appliances because the structural layouts of the offices were similar. Cases 2 and 3 had apartments that required less devices and appliances than the offices so the cost of these two cases were lower than Case 1 and 4. Case 3 is slightly less expensive than Case 2 because the open layout of the mercantile spaces on the first floor required less devices and appliances than the apartments on the first floor of Case 2. Case 5 is the most expensive case because the larger area of the overall building required more devices and appliances, thus driving up the price.



Figure 43: Fire Suppression Cost Comparison

The cost of Fire Suppression systems is based on square footage so as a result, the costs for Cases 1-4 are the same. Case 5 is the only structure with an increased cost because the extended hallway increased the square footage of the building. In each case, the costs for each location are also the same with the variation from the Base Cost coming from the Location Factor.



Figure 44: Total Overall Cost Comparison

The total costs of each case have similar trends to the structural costs. This is because the fire detection and suppression costs were very similar in each case and they were much less expensive than the structural materials. As a result, the costs in each case were driven by the cost of the structural design.

# 7.0 Summary and Conclusions

In this project, five cases were designed with different structural materials and occupancy types. The goal of this project was to explore variations within fire protection and structural system design, and to identify their effects on cost and design requirements in relation to national codes. Each of these cases was then modified to fit the environmental loads from three locations, Boston, Los Angeles, and Miami. Fire protection systems and structural designs were created for each cases in each location. A cost analysis was then done for each of these cases and compared to analyze the effects that different structural designs, fire protection systems, and locations had on the overall cost.

#### 7.1 Design Work

This project focuses primarily on basic variations of a typical structure to gather information on the changes required for the structural and fire protection designs. As a result, only critical aspects, such as steel member sizes and sprinkler locations, were designed. To expand on this project, one case could be chosen and designed in further depth. A deeper study could be used to determine the cost impacts of other systems. Components of this more extensive design may include structural details such as foundation and roof. Wall depths and window locations could also be specified. This would become a governing factor in the location and the sizing of steel members. Full mechanical and HVAC systems could also be included for a more complete structure and would have an effect on the location of fire protection systems as well as the structural decisions such as steel member locations and sizing. Addressable versus analog fire alarms could be further explored, as well as the effect of Fire Alarm Control Panel (FACP) zoning on the building's system and panel annunciation in the case of emergency response.

The structural design of each of these structures was calculated based on gravity and lateral loading conditions. Members were then chosen as the least weight solution. As a result, the member sizes may pose challenged for specifying connections. A further analysis of the steel design could be done to design the connections required and revise the member sizes to promote economical and efficient connections. Important strategies include using similar connection details as much as possible, minimizing the number of pieces in the connections, and avoiding stiffeners and reinforcing plates. This would improve the constructability of the overall design. In addition to connections, baseplates could be designed for the columns which would have an effect on the overall design due to lateral loading, as well as the cost due to larger plates being required for larger columns. When reviewing the frame design for the Los Angeles geographic cases, smaller spacing between the columns may be explored to determine if that would reduce the amount of cross bracing required for this structure.

The fire protection systems for these cases were designed with conservative assumptions and calculations. By doing so, larger pipes were required. If a component cost analysis were completed rather than estimation per square foot of system, these larger pipes would drive up the cost. A redesign of the system could be completed with fire compartmentalization of the office suites and apartments. This may lead to a design where fewer sprinkler heads and detection devices are required as well as fewer egress requirements. In addition to redesigning the systems, local fire codes and their effects on the design could be explored. For this project, NFPA codes were used for each case. If the local fire codes and amendments used in Boston, Los Angeles, and Miami were applied, some of the design criteria may have been more lenient than national codes, and some of the local codes may have required extremely strict, more conservative designs. Additional geographic considerations could be explored with the water demand for each system and the local water supplies. This would dictate whether a fire pump and additional water sources would be required.

# 7.2 Cost Analysis

Cost analyses done in this project were based on values from RS Means for the structural and fire protection systems. This data did give an estimate of the cost of each structure sufficient for comparison, but it could be analyzed further for a more accurate, complete cost. For example, there were no connections or baseplates in the structural cost analysis even though these components would increase the overall price. Additionally, the sprinkler system cost was analyzed based on square footage. A more specific cost analysis could be completed using the sprinkler pipe lengths, sprinkler head count, and valve specifications. In addition to more specific material estimates, local availability of materials and local labor costs could be explored; giving a more in-depth cost analysis of each case.

# References

ASCE/SEI 7-10. American Society of Civil Engineers. 2010 Audible Visible Appliance Reference Guide. System Sensor. 2015 Building Construction Cost Data. RS Means. 2015 Code of Ethics. American Society of Civil Engineers. 2006 International Building Code. International Code Council. 2015 NDS for Wood Construction. American Wood Council. 2005 NFPA 1: Fire Code. NFPA. 2015 NFPA 13: Standard for the Installation of Sprinkler Systems. NFPA. 2016 NFPA 72: National Fire Alarm and Signaling Code. NFPA2. 2016 NFPA 101: Life Safety Code. NFPA. 2015 RISA-3D. RISA. Software. 2016 Steel Construction Manual. AISC. 14th Ed. 2011 The Station Nightclub Fire. NFPA. Web. 16 Dec. 2016. TOLBrace Fire Protection Software. EATON. Software. Version 8.0. WFCM Guide: 140 MPH Exposure B. American Wood Council, 2015 What is a PE?. National Society of Professional Engineers. NSPE. 2016 https://www.nspe.org/resources/licensure/what-pe Won Door Fireguard Classic. Won Door. http://wondoor.com/products/wondoor-fireguard/

# Appendices

# **Appendix A: Project Proposal**

# **1. Introduction**

For decades, building and fire codes have improved safety in the built environment. As materials of construction and furnishing change, and predictive technology improves, the national codes and standards must reflect these changes. Although current codes provide a sufficient baseline for standard construction and protection, many significant improvements are reactive to larger-scale incidents, rather than being proactive in nature.

To explore this relationship and better understand the interaction of codes, a series of case studies will be considered. Two 5-story tall control buildings will be designed for commercial occupancy and residential occupancy. From these control buildings, a series of alterations will be made and the significance of required code changes will be considered. These code considerations will include both structural and fire protection elements, as well as geographic criteria (such as seismic and wind loads based on location). Once full system designs for each case study are completed, there will be a comprehensive comparison of the different cases using factors including lifesafety, differences in code requirements, and estimated design costs.

# 2. Background

## 2.1 Initial Structure

The structure modified for the purposes of this projects will be a five-story structure whose architectural design is based on Worcester Polytechnic Institute's (WPI's) East Hall. It was completed in 2011 so it complies with building and fire codes and has the correct number of floors for the purposes of this project. The structure will have a steel frame as the initial condition but will have modification made to the design and building materials.

# 2.2. Codes

When any type of structure is designed, various codes are used to ensure that the building will be safe for its occupants. Building codes include aspects such as loading conditions of the structure, occupancy classification and building usages, height and area constraints, M/E/P requirements, and information regarding different types of construction materials. This includes everything from concrete and steel, to glass and glazing and plastics. Building codes also include information about fire protection materials and systems, and means of egress. However, there are some codes that just include information regarding fire protection. For the scope of this project, the International Building Code (IBC) and the National Fire Protection Association (NFPA) codes will be used.

# 2.2.1 Building Codes

IBC is a series of building codes released by the International Code Council (ICC) every three years. It has been adopted throughout the United States with certain amendments and adaptations enacted by individual states. The 2015 edition contains 35 chapters and 13 amendments. For the purposes of this project, the IBC 2015 will be used. The use of former editions will be noted if required.

# 2.2.1.1 Structural Design

The building of a structure has many code provisions and reference standards regarding the structural design, which are covered in Chapter 16 of IBC. These design criteria include loading conditions, risk categories, the required strength, and design factors for different types of structures to decrease the risk of structural failure.

# 2.2.1.1.1 Risk Category

All buildings and structures are assigned a risk category based on the nature of the occupancy. There are 4 risk categories that range from low risk storage facilities (Risk I), to facilities of high importance, such as emergency shelters and toxic material storage (Risk IV). We are considering a Risk II building which is the classification for miscellaneous structures that do not fall into risk categories I, III, or IV.

# 2.2.1.1.2 Wind

Section 1609 of IBC 2015 covers wind loads that must be considered in structural design. These loads are determined by Chapter 26 of *ASCE 7-10*. Wind loading varies throughout the country based on the weather patterns in the region. The ultimate design wind speed,  $V_{ult}$ , is determined by the wind loads shown in the map figure below.



Notes:

1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.

2. Linear interpolation between contours is permitted.

3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.

4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions. 5. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00143, MRI = 700 Years).

FIGURE 1609.3(1) ULTIMATE DESIGN WIND SPEEDS, *v<sub>ult</sub>*, FOR RISK CATEGORY II BUILDINGS AND OTHER STRUCTURES

This map is Figure 1609.3(1) from IBC 2015 which is used for Risk Category II Buildings. The lines on the map indicate the ultimate wind loads, ranging from 100-200 mph. Most regions use 100 mph or 105 mph as the standard  $V_{ult}$  but regions on the east coast and the Gulf of Mexico have higher values and a larger range due to the increased risk of hurricane force winds.

# 2.2.1.1.3 Seismic

The IBC 2015 discusses seismic forces and loading in Section 1613: Earthquake Loads. Seismic forces must be considered for all structures except for those with incidental human occupancy, as well as detached dwellings. As the structure being analyzed does not fulfill either of these requirements, it will be designed per the Maximum Considered Earthquake. The map below shows the Ground Motion Response Acceleration for 1-Second Spectral Response.



FIGURE 1613.3.1(2) RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE<sub>R</sub>) GROUND MOTION RESPONSE ACCELERATIONS FOR THE CONTERMINOUS UNITED STATES OF 1-SECOND SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

Similar to Wind Loads, these values vary across the United States, depending on both historic occurrence and intensity. These values as well as the Risk Category of the structure are analyzed and a Seismic Design Category, A, B, C, or D, is assigned to the building.

#### 2.2.1.2 Building Occupancy

Building Occupancy is broken up by the IBC into ten different subgroups depending on the intended use for the facility. These include Assembly, Business, Educational, Factory and Industrial, High Hazard, Institutional, Mercantile, Residential, Storage, Utility, and Miscellaneous. Some of these groups are subcategorized in order to add specifications needed for variations. These specifications are used for individualized cases with additional special considerations under one main category. For example, a single family dwelling and a high-rise apartment building are both considered residential, but need to be designed very differently due to height, building material, and number of occupants. The three occupancies that should be noted for this project are Business: Group B (IBC 2015, Section 304), Mercantile: Group M (IBC 2015, Section 309), and Residential: Group R-2 (IBC 2015, Section 310.4).

### 2.2.1.2.1 Business: Group B

Business Occupancy encompasses structures for offices and professional use, including storage of records and accounts. Structures are classified as this occupancy if any portion is used for business. Business classification includes office facilities, banks, car washes, laboratories, outpatient clinics, and others.

# 2.2.1.2.2 Mercantile: Group M

Mercantile Occupancy is for buildings intended for the display, storage, and sale of merchandise. Such facilities include department stores, drug stores, gas stations, retail, and sales rooms.

#### 2.2.1.2.3 Residential: Group R-2

Facilities with areas used for sleeping purposes that are not classified as Institutional (Group I) are considered a Residential Occupancy. Group R is broken in 4 subcategories covering varying lengths of stay and number of residents. Group R-2 covers transient sleeping units including apartments, dormitories, and religious living facilities.

## 2.2.2 Fire Codes

The National Fire Protection Association (NFPA) is an organization that writes and revises codes and standards for use in fire protection design at both state and municipal levels. These codes and standards are typically adopted by local governments and amended if stricter codes are desired. Each NFPA code is revised and released in a three-year cycle and the local government determines which version is used. NFPA 1 (Fire Code), NFPA 13 (Standard for the Installation of Sprinkler Systems), NFPA 72 (National Fire Alarm and Signaling Code), and NFPA 101 (Life Safety Code) will be the primary codes used as a standard for fire protection systems designed in this project.

#### **2.2.2.1 Fire Protection Systems**

Fire protection systems are designed and implemented to mitigate the effects of a fire hazard. According to NFPA 1 [3.3.120], a fire hazard is defined as "any situation, process, material, or condition that, on the basis of applicable data, can cause a fire or explosion or that can provide a ready fuel supply to augment the spread or intensity of a fire or explosion, all of which pose a threat to life or property." Fire detection and suppression systems are used to protect both the lifesafety of building occupants and emergency responders, and to mitigate property loss or damages. These systems are implemented in a variety of occupancy classifications including mercantile, business, commercial, and residential.

#### **2.2.2.1.1 Fire Detection Systems**

Fire detection systems are used in both sprinklered and unsprinklered structures. A detector is defined as "a device suitable for connection to a circuit that has a sensor that responds to a physical stimulus such as gas, heat or smoke" [*NFPA 72; Section 3.3.66*]. For system design, characteristics such as the physical size and occupancy type of the building are taken into consideration.

# 2.2.2.1.2 Fire Suppression Systems

Similar to fire detection systems, the design criteria for a fire suppression system is based upon design areas, occupancy types, and hazard classifications of the building. Fire suppression systems include water-based, foam application, and inert gas injection depending on the space being protected. For a typical residential or commercial occupancy, a water-based automatic sprinkler system is typically proficient.

#### 2.2.2.2 Egresses

NFPA 1; 3.3.177 defines means of egress as "a continuous and unobstructed way of travel from any point in a building or structure to a public way consisting of three separate and distinct parts: (1) the exit access, (2) the exit, (3) the exit discharge." When calculating the permitted occupancy of specific rooms and entire buildings, an egress analysis is required. This analysis uses criteria such as the corridor lengths, door widths, stair risers, and similar factors to determine how many people can safely exit a building in a timely manner during an emergency.

#### 2.2.2.3 Stairs

Stairs are considered in accordance with NFPA 101 for egress analysis. The riser, tread, and width of a stair may have significant impacts upon egress requirements and occupancy loads. Currently, stairs are the main means of egress from a multistory building, this makes the quantity and characteristics of staircases within a building instrumental in a design.

# 2.2.2.4 Occupancy Types

IBC and NFPA have similar occupancy classifications, but both must be considered within a design. An occupancy as defined by NFPA 1; 3.3.183 is "the purpose for which a building or other structure, or part thereof, it used or intended to be used". Classification of building usage helps to determine the appropriate fire detection and protection systems appropriate for the space.

#### 2.2.2.5 Hazard Classes

A hazard rating is "the numerical rating of the health, flammability, self-reactivity, and other hazards of the material including its reaction with water" [NFPA 1; 3.3.143\*; Hazard Rating]. Similar to occupancy types, the hazard classification helps the designer determine the appropriate levels and rating of fire protection systems within a structure. When designing a fire protection system, a "design fire" is typically estimated based upon the combustibility of

materials within a building. This design fire allows for estimating a worst case scenario heat release rate and growth time of a fire.

# 2.3 Structure Types

The IBC 2015 has specific chapters dedicated to different types of building materials and the codes and limitations for each. Chapters 19-26 include concrete, aluminum, masonry, steel, wood, glass and glazing, gypsum boards, and plastic. For the analysis of the theoretical structure, steel (Chapter 22), wood (Chapter 23), and concrete (Chapter 19) will be used. Building construction type will also be considered for fire resistance rating in the sprinkler system design [NFPA 13].

#### 2.3.1 Steel Frame

Steel is one of the most desirable structural frame materials for mercantile, commercial, and large-scale residential buildings. It is a high strength material with a wide range of design flexibility. Because of these characteristics, both architects and engineers benefit from using steel in construction. In addition, in areas with local access to steel manufacturing, steel is less expensive than concrete and it can be built much quicker due to a lack of curing time. Steel is also not effected by weather during construction. This is beneficial when building in locations with harsh winters.

#### 2.3.2 Pedestal with Wood Frame

Structures do not necessarily need to be constructed of only one building material. Wood framing can be used in Risk I and II type buildings, with regards to seismic classification. It is particularly favorable for residential construction due to its inexpensive nature. Wood can only be used for construction to a limited height, because of this, it is sometimes built on top of a stronger base material. This is considered "pedestal" construction. All materials used in these structures must be in compliance with the building codes.

#### **2.4 Special Conditions**

When a building does not conform to traditional design, considerations of these variations must be accounted for. Designs may include unique structural or aesthetic elements

that have an effect on how the code is interpreted and implemented. Examples of special conditions that we will be considering are atriums and non-traditional fire doors.

#### 2.4.1 Atrium

As defined in NFPA 3.3.27, an atrium is a "large-volume space created by a floor opening or series of floor openings connecting two or more stories that is covered at the top of the series of openings and is used for purposes other than an enclosed stairway; an elevator hoistway; an escalator opening; or as a utility shaft used for plumbing, electrical, airconditioning, or communications facilities." Atriums are a common design element in larger buildings to open the interior space and provide interest points to a structure. Because atriums are not uncommon, there are specific areas of the code that detail the variations in treatment required. These specific criteria typically address smoke control and detection as well as automatic sprinkler protector or other suppression techniques.

## 2.4.2 Accordion-Type Fire Doors

The code must adapt and change with improvements and expansion of technology. A double accordion-type fire door has been around for decades [source Won Door] but has recently been rising in popularity as building owners value the aesthetic of an open space over a bay of traditional fire doors. These doors function through a heat or smoke detection system that triggers their release from a recess in the wall. After this is triggered, this moveable wall will automatically extend to the opposite wall on a ceiling tract. The concerns for appliances like these mainly extend to the compartmentalization speed and the robustness to function under emergency conditions. Non-traditional fire doors like this must be considered in a case by case basis to determine the effectiveness of the system and if it will pose a problem to the structural elements of the building. These doors may impact the structural design when replacing a load bearing wall containing traditional swing-type fire doors.

# 2.5 Cost Estimating

Before a construction project begins, the overall cost of the project is estimated. These estimates are based on standards for cost estimating and cost analysis. RS Means will be used as a source of product cost data, and UniFormat will be utilized as an organization system for cost

compilation and analysis. Estimating is completed using a method called "takeoff" and then the total project is priced per square foot of the structure. Some aspects of a project must be determined using takeoff but others can be more generalized by estimating per square foot. When there is insufficient data in the design specifications, elements including electrical wiring, HVAC, and plumbing can be generalized to cost per square foot. There are benefits and drawbacks of using takeoff versus cost per area, therefore both methods are initially considered for every product to achieve the most accurate price.

# 2.5.1 Takeoff

Estimating using the "takeoff" method involves determining how much of a specific material is going to be used and then multiplying by the cost per unit. Steel is estimated using this method by pricing per linear foot of each piece size. This method will be used in estimating the cost of each steel design case. When materials are measured using takeoff, a certain amount of buffer is calculated in to ensure that the amount does not come up short. Takeoff can be calculated by hand, but there are also software programs available that can do many of these calculations at once, expediting the process.

# 2.5.2 Square Footage

When pricing a job using area estimation, only certain aspects are included in this cost. Labor is one of the items that is estimated per square foot. Other items such as wiring and plumbing can be estimated using square footage because many structures built for the same uses have similar amounts of these items per square foot. These items will be estimated in the design cases because there is not enough information to do a takeoff. This type of estimating can be less precise than takeoff because each amount of product is not being calculated throughout the entire building, but it is generally accurate enough that estimators use it as a way to assist in establishing their bid.

# **2.6 Conclusion**

Through analysis of both structural and fire protection systems, the relationship and use of codes for varying occupancy and structural characteristics will be explored. Many different portions of IBC and NFPA codes and standards will be consulted to complete this analysis. Discussion will include the relative cost effectiveness of each design as well as the interactions between various code types. This will be completed through analysis of different cases exploring variations in structural and fire protection system design.
### **3.** Capstone Design Statement

This Major Qualifying Project focused on the design and analysis of the structural and fire protection aspects of a theoretical five-story structure. Courses in civil, structural, and fire protection engineering gave our team the tools to complete the engineering and design work for this project. The capstone design serves as a bridge between school and the professional engineering workforce. The skills that had been learned in the classroom were able to be applied to a real-world design problem. This project will help our team review the current code requirements and how they vary under different design constraints. The main focuses of this project were:

#### **3.1 Economic**

A variety of cases are being considered as final designs of the building. These cases differed in the structural and fire protection aspects of the design. By considering different design scenarios, a cost analysis can be implemented for each case. From here, we will be able to determine the cost of the materials needed for each scenario and identify how each case differs. This will allow us to determine the structural and fire protection components that have the greatest cost impact.

### **3.2 Health and Safety**

The use of building and fire codes is necessary in creating regulated, safe building and system designs. The National Fire Protection Association (NFPA) and the International Building Code (IBC) are two established codes used in the United States for design and construction. Both of these codes add different considerations that must be taken into account when changing the building's use, material, and location. We will be using NFPA and IBC codes to ensure that our designs are compliant on a national scale.

### **3.3 Manufacturability**

The scope of project considered a variety of different types of construction materials, designs, and calculations. In addition to pure structural considerations, the design was reconfigured to account for fire protection system layout. A full fire protection layout was designed for each case study as per NFPA and regional fire codes based on the occupancy types

and hazard classifications. These designs included automatic suppression systems, heat and smoke detection devices, notification appliances, occupancy loads, and egress analysis.

### **3.4 Sustainability**

As part of our results, we will be looking into the longevity and sustainability of each design. As large scale events occur, codes are reevaluated and updated based on safety and new technologies available. By looking at a variety of case studies, we will be reviewing the strengths and potential weaknesses in each design. This critical look at the designs will aid in determining the sustainability of each case from a code and material perspective.

### 4. Professional Engineering Licensure

Achieving the status of a Professional Engineer is beneficial both professionally and personally. To acquire a PE, an engineer must complete a rigorous process that includes completing a four-year college degree and taking the Fundamentals of Engineering (FE) exam. Once this exam has been passed, the graduate becomes an Engineer in Training (EIT) and must work under a Professional Engineer (PE) for at least four years. To move from the title of EIT to PE, the Engineer in Training must complete and pass a second intensive Principles and Practice of Engineering exam. This PE exam grants PE status to the engineer in the state that they took it in. In order to practice in multiple states after receiving their license, the engineer must apply to each new state individually. Each state has different continuing education requirements to maintain a PE license.

Having a PE license can provide more opportunities for career growth and development because many companies view a PE as a sign of a determined and motivated individual. A licensed engineer can approve drawings and designs to be put forward on to projects. This gives you a high level of responsibility but also a high level of respect from peers and coworkers. Even in a careers that do not require the use of a PE license, having the license will showcase your knowledge and drive to other professionals and clients. In addition to the professional benefits of a PE license, there is an increased pay scale for those with a license.

# 5. Scope and Methodology

| Case       | Number  | Occupancy   | "Special"       | Principle      | Scope                  | References                | Programs |
|------------|---------|-------------|-----------------|----------------|------------------------|---------------------------|----------|
|            | of      | Туре        | Characteristics | Responsibility |                        |                           | or       |
|            | Stories |             | and Conditions  |                |                        |                           | Software |
| Case 1:    | 5       | Commercial  | Control         | Coffey &       | Modify East Hall CAD   |                           | AutoCAD  |
| Control I  |         |             | Building        | Healey         | Floor Plans            |                           |          |
|            |         |             |                 | Coffey         | Design Fire Protection | NFPA 1 (2015),            |          |
|            |         |             |                 |                | Systems for Commercial | NFPA 13                   |          |
|            |         |             |                 |                | Use                    | (2016), NFPA              |          |
|            |         |             |                 |                |                        | 72 (2016),                |          |
|            |         |             |                 |                |                        | NFPA 101                  |          |
|            |         |             |                 |                |                        | (2015)                    |          |
|            |         |             |                 | Coffey         | Confirm Egress         | NFPA 101                  |          |
|            |         |             |                 |                | Compliance             | (2015)                    |          |
|            |         |             |                 | Healey         | Design Structural      | IBC (2015),               |          |
|            |         |             |                 |                | Layout of Building     | AISC 14 <sup>th</sup> ed. |          |
|            |         |             |                 | Coffey &       | Develop Cost Estimate  | RS Means                  |          |
|            |         |             |                 | Healey         | (per square foot)      |                           |          |
| Case 2:    | 5       | Residential | Control         | Coffey &       | Modify East Hall CAD   |                           | AutoCAD  |
| Control II |         |             | Building        | Healey         | Floor Plans            |                           |          |
|            |         |             |                 | Coffey         | Design Fire Protection | NFPA 1 (2015),            |          |
|            |         |             |                 |                | Systems for Commercial | NFPA 13                   |          |
|            |         |             |                 |                | Use                    | (2016), NFPA              |          |
|            |         |             |                 |                |                        | 72 (2016),                |          |
|            |         |             |                 |                |                        | NFPA 101                  |          |
|            |         |             |                 | ~              |                        | (2015)                    |          |
|            |         |             |                 | Coffey         | Confirm Egress         | NFPA 101                  |          |
|            |         |             |                 |                | Compliance             | (2015)                    |          |
|            |         |             |                 | Healey         | Design Structural      | IBC (2015),               |          |
|            |         |             |                 | ~ ~ ~          | Layout of Building     | AWC (2012)                |          |
|            |         |             |                 | Coffey &       | Develop Cost Estimate  | RS Means                  |          |
|            |         |             |                 | Healey         | (per square foot)      |                           |          |

| Case 3:   | 5 | Commercial  | Multiple         | Coffey & | Modify Control Case                             |                    | AutoCAD |
|-----------|---|-------------|------------------|----------|-------------------------------------------------|--------------------|---------|
| Mixed     |   | /Mercantile | Occupancy        | Healey   | Drawings (Denote                                |                    |         |
| Occupancy |   | on Bottom   | Types            |          | locations such as office                        |                    |         |
|           |   | Floor,      |                  |          | space, residential space,                       |                    |         |
|           |   | Residential |                  |          | retail, etc.)                                   |                    |         |
|           |   | Above       |                  | Coffey   | Design Fire Protection                          | NFPA 1 (2015),     |         |
|           |   |             |                  |          | Systems based on                                | NFPA 13            |         |
|           |   |             |                  |          | Occupancy                                       | (2016), NFPA       |         |
|           |   |             |                  |          |                                                 | 72 (2016),         |         |
|           |   |             |                  |          |                                                 | NFPA 101           |         |
|           |   |             |                  |          |                                                 | (2015)             |         |
|           |   |             |                  | Coffey   | Confirm Egress                                  | NFPA 101<br>(2015) |         |
|           |   |             |                  | TT1      | Compliance<br>Design Structure1                 | (2015)             |         |
|           |   |             |                  | Healey   | Levent of Duilding and                          | AISC (2015),       |         |
|           |   |             |                  |          | Layout of Building and<br>Identify Changes from | AISC 14 ed.        |         |
|           |   |             |                  |          | Control                                         |                    |         |
|           |   |             |                  | Coffey & | Identify Differences                            | NFPA 1 (2015)      |         |
|           |   |             |                  | Healey   | between Original                                | NFPA 13            |         |
|           |   |             |                  |          | Use/Renovation                                  | (2016). NFPA       |         |
|           |   |             |                  |          |                                                 | 72 (2016),         |         |
|           |   |             |                  |          |                                                 | NFPA 101           |         |
|           |   |             |                  |          |                                                 | (2015)             |         |
|           |   |             |                  | Coffey & | Develop Cost Estimate                           | RS Means           |         |
|           |   |             |                  | Healey   | (per square foot)                               |                    |         |
| Case 4:   | 5 | Commercial  | Atrium requires  | Coffey & | Modify Case I Drawings                          |                    | AutoCAD |
| Inclusion |   |             | alternative code | Healey   | to include Atrium from                          |                    |         |
| of an     |   |             | application and  |          | Floors 1-2                                      |                    |         |
| Atrium    |   |             | smoke control    | Coffey   | Design Fire Protection                          | NFPA 1 (2015),     |         |
|           |   |             |                  |          | Systems for Commercial                          | NFPA 13            |         |
|           |   |             |                  |          | Use (include                                    | (2016), NFPA       |         |
|           |   |             |                  |          | considerations for                              | 72 (2016),         |         |
|           |   |             |                  |          | smoke control)                                  |                    |         |

|             |   |            |                  |          |                            | NFPA 101                  |         |
|-------------|---|------------|------------------|----------|----------------------------|---------------------------|---------|
|             |   |            |                  |          |                            | (2015)                    |         |
|             |   |            |                  | Coffey   | Confirm Egress             | NFPA 101                  |         |
|             |   |            |                  |          | Compliance                 | (2015)                    |         |
|             |   |            |                  | Healey   | Design Structural          | IBC (2015),               |         |
|             |   |            |                  |          | Layout of Building         | AISC 14 <sup>th</sup> ed. |         |
|             |   |            |                  |          | (including differences in  |                           |         |
|             |   |            |                  |          | load bearing due to open   |                           |         |
|             |   |            |                  |          | atrium design)             |                           |         |
|             |   |            |                  | Coffey & | Develop Cost Estimate      | RS Means                  |         |
|             |   |            |                  | Healey   | (per square foot)          |                           |         |
| Case 5:     | 5 | Commercial | Use of "new      | Coffey & | Modify Case I Drawings     |                           | AutoCAD |
| Horizontal  |   |            | technology"      | Healey   | to include horizontal fire |                           |         |
| Fire Door   |   |            | (example: Won    |          | doors in open areas        |                           |         |
| VS.         |   |            | Door) compared   |          | (elevator bays,            |                           |         |
| Traditional |   |            | to a bay of fire |          | staircases, etc.)          |                           |         |
| Swing Fire  |   |            | doors            | Coffey   | Design Fire Protection     | NFPA I (2015),            |         |
| Door        |   |            |                  |          | Systems for Commercial     | NFPA 13                   |         |
|             |   |            |                  |          | Use (take fire doors into  | (2016), NFPA              |         |
|             |   |            |                  |          | account)                   | 72 (2010),                |         |
|             |   |            |                  |          |                            | (2015)                    |         |
|             |   |            |                  | Coffay   | Confirm Egrand             | (2013)<br>NEDA 101        |         |
|             |   |            |                  | Coney    | Compliance                 | (2015)                    |         |
|             |   |            |                  | Haalay   | Design Structural          | (2013)                    |         |
|             |   |            |                  | Treatey  | Layout (Differences        | AISC $1/^{\text{th}}$ ed  |         |
|             |   |            |                  |          | between having a load-     | AISC 14 Cu.               |         |
|             |   |            |                  |          | bearing set of doors       |                           |         |
|             |   |            |                  |          | versus a ceiling track     |                           |         |
|             |   |            |                  |          | accordion fold door)       |                           |         |
|             |   |            |                  | Coffey & | Develop Cost Estimate      | RS Means                  |         |
|             |   |            |                  | Healey   | (per square foot)          |                           |         |

| Case 6:     | 5 | Commercial | Long corridors'  | Coffey & | Modify Case I Drawings |                           | AutoCAD |
|-------------|---|------------|------------------|----------|------------------------|---------------------------|---------|
| Effects of  |   |            | effect on egress | Healey   | to include additional  |                           |         |
| Additional  |   |            | C C              |          | wings on building      |                           |         |
| Wings on    |   |            |                  | Coffey   | Design Fire Protection | NFPA 1 (2015),            |         |
| Building    |   |            |                  |          | Systems for Commercial | NFPA 13                   |         |
|             |   |            |                  |          | Use                    | (2016), NFPA              |         |
|             |   |            |                  |          |                        | 72 (2016),                |         |
|             |   |            |                  |          |                        | NFPA 101                  |         |
|             |   |            |                  |          |                        | (2015)                    |         |
|             |   |            |                  | Coffey   | Confirm Egress         | NFPA 101                  |         |
|             |   |            |                  | 5        | Compliance             | (2015)                    |         |
|             |   |            |                  | Healey   | Design Structural      | IBC (2015),               |         |
|             |   |            |                  | 2        | Layout (Design for     | AISC 14 <sup>th</sup> ed. |         |
|             |   |            |                  |          | Lateral Load)          |                           |         |
|             |   |            |                  | Coffey & | Develop Cost Estimate  | RS Means                  |         |
|             |   |            |                  | Healey   | (per square foot)      |                           |         |
| Case 7:     | 5 | Commercial | Steel Decking,   | Coffey & | Investigate effect on  | ACI (2014),               |         |
| Alternative |   |            | Precast          | Healey   | price per square foot  | AISC 14 <sup>th</sup> ed. |         |
| Floor       |   |            | Concrete, etc.   | 2        | from Control Case I    |                           |         |
| Systems     |   |            | Loading          |          |                        |                           |         |
|             |   |            | conditions and   |          |                        |                           |         |
|             |   |            | fire resistance  |          |                        |                           |         |

## 6. Schedule

| Term      | Dates         | Milestones                                                                                      | Weekly Goals                                                                                                                    | Notes                                                                           |
|-----------|---------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|           | 9/19 - 9/25   | First Proposal Submittal (September 23rd)                                                       | Finish all sections of the project proposal                                                                                     |                                                                                 |
| A         | 9/26 - 10/2   |                                                                                                 |                                                                                                                                 |                                                                                 |
| Term      | 10/3 - 10/9   |                                                                                                 |                                                                                                                                 |                                                                                 |
|           | 10/10 - 10/13 | End of Term Submittal (October 15th)                                                            |                                                                                                                                 |                                                                                 |
|           | 10/24 - 10/30 |                                                                                                 | -Review working<br>draft and solidify<br>design approach                                                                        |                                                                                 |
|           | 10/31 - 11/6  |                                                                                                 | -Structural<br>calculation<br>spreadsheet for Case<br>1 completed<br>-Identify additional<br>design case studies<br>to consider | Contact<br>Kristen<br>Bigda<br>(NFPA)                                           |
|           | 11/7 - 11/13  | Complete Case Study Drawings<br>(including Fire Detection and Notification<br>appliance design) | -Complete audit and<br>code review of all<br>cases for compliance                                                               |                                                                                 |
| B<br>Term | 11/14 - 11/20 |                                                                                                 | -Complete sprinkler<br>activation time<br>spreadsheets                                                                          |                                                                                 |
|           | 11/21 - 12/4  | Complete Sprinkler Design for all Case<br>Studies                                               | -Complete structural<br>calculations for Case<br>2                                                                              | Decide<br>whether<br>or not to<br>include<br>a<br>concrete<br>structure<br>case |
|           | 12/5 - 12/11  |                                                                                                 | -Complete structural<br>calculations for<br>Cases 3-7                                                                           |                                                                                 |
|           | 12/12 - 12/15 | End of Term Submittal (Paper to Date and All Calculations)                                      |                                                                                                                                 |                                                                                 |
| C<br>Term | 1/12 - 1/22   |                                                                                                 | -Complete cost<br>analysis on structural<br>and fire protection<br>components of<br>design                                      |                                                                                 |

|             |                                           | -Compare Cases in<br>regards to design<br>criteria and<br>associated costs                                             |  |
|-------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| 1/23 - 1/29 |                                           | -Compile<br>calculations and<br>drawings<br>-Compare Cases in<br>regards to design<br>criteria and<br>associated costs |  |
| 1/30 - 2/5  | First Full Draft Submittal (February 3rd) | -Format report<br>-Write initial project<br>conclusions                                                                |  |
| 2/6 - 2/12  |                                           | -Continue analysis<br>and comparisons of<br>Case Studies                                                               |  |
| 2/13 - 2/19 |                                           | -Continue analysis<br>and comparisons of<br>Case Studies<br>-Update discussion<br>and conclusions                      |  |
| 2/20 - 2/26 |                                           | -Continue analysis<br>and comparisons of<br>Case Studies<br>-Update discussions<br>and conclusions                     |  |
| 2/27 - 3/3  | Submit Final Project                      | -Finalize formatting                                                                                                   |  |

### References

"International Building Code". International Code Council. 2015

"Fire Code". NFPA 1. 2015

"Standard for the Installation of Sprinkler Systems". NFPA 13. 2016

"National Fire Alarm and Signaling Code". NFPA 72. 2016

"Life Safety Code". NFPA 101. 2015

"What is a PE?" National Society of Professional Engineers. NSPE. 2016

https://www.nspe.org/resources/licensure/what-pe

### **Appendix B: Structural Design Sample Calculation**

### **Steel Design**



| Case 1 |           |             |       |            |          |       |            |        |       |           |          |
|--------|-----------|-------------|-------|------------|----------|-------|------------|--------|-------|-----------|----------|
|        | Gravity L | .oads       | Los A | ngeles, Ca | lifornia | N     | liami, Flo | rida   | Bosto | n, Massad | chusetts |
| Label  | Size      | Length (ft) | Label | Size       | Length   | Label | Size       | Length | Label | Size      | Length   |
| B1     | W12x19    | 14.63       | B1    | W12x19     | 14.63    | B1    | W12x19     | 14.63  | B1    | W12x19    | 14.63    |
| B2     | W18x40    | 17.21       | B2    | W18x40     | 17.21    | B2    | W18x40     | 17.21  | B2    | W18x40    | 17.21    |
| B3     | W12x19    | 13.71       | В3    | W12x19     | 13.71    | В3    | W12x19     | 13.71  | B3    | W12x19    | 13.71    |
| B4     | W14x22    | 15.13       | B4    | W14x22     | 15.13    | B4    | W14x22     | 15.13  | B4    | W14x22    | 15.13    |
| B5     | W12x19    | 14.63       | B5    | W12x19     | 14.63    | B5    | W12x19     | 14.63  | B5    | W12x19    | 14.63    |
| B6     | W12x16    | 10.00       | B6    | W12x16     | 10.00    | B6    | W12x16     | 10.00  | B6    | W12x16    | 10.00    |
| Β7     | W14x26    | 15.71       | B7    | W14x26     | 15.71    | B7    | W14x26     | 15.71  | B7    | W14x26    | 15.71    |
| B1R    | W12x16    | 14.63       | B1R   | W12x16     | 14.63    | B1R   | W12x16     | 14.63  | B1R   | W12x16    | 14.63    |
| B2R    | W18x35    | 17.21       | B2R   | W18x35     | 17.21    | B2R   | W18x35     | 17.21  | B2R   | W18x35    | 17.21    |
| B3R    | W12x16    | 13.71       | B3R   | W12x16     | 13.71    | B3R   | W12x16     | 13.71  | B3R   | W12x16    | 13.71    |
| B4R    | W12x22    | 15.13       | B4R   | W12x22     | 15.13    | B4R   | W12x22     | 15.13  | B4R   | W14x22    | 15.13    |
| B5R    | W12x16    | 14.63       | B5R   | W12x16     | 14.63    | B5R   | W12x16     | 14.63  | B5R   | W12x16    | 14.63    |
| B6R    | W12x16    | 10.00       | B6R   | W12x16     | 10.00    | B6R   | W12x16     | 10.00  | B6R   | W12x16    | 10.00    |
| B7R    | W14x22    | 15.71       | B7R   | W14x22     | 15.71    | B7R   | W14x22     | 15.71  | B7R   | W14x22    | 15.71    |
| G1     | W12x16    | 12.40       | G1    | W12x16     | 12.40    | G1    | W12x16     | 12.40  | G1    | W12x16    | 12.40    |
| G2     | W14x22    | 21.60       | G2    | W14x22     | 21.60    | G2    | W14x22     | 21.60  | G2    | W14x22    | 21.60    |
| G3     | W18x35    | 22.40       | G3    | W18x35     | 22.40    | G3    | W18x35     | 22.40  | G3    | W18x35    | 22.40    |
| G4     | W12x16    | 9.21        | G4    | W12x16     | 9.21     | G4    | W12x16     | 9.21   | G4    | W12x16    | 9.21     |
| G5     | W18x35    | 22.40       | G5    | W18x35     | 22.40    | G5    | W18x35     | 22.40  | G5    | W18x35    | 22.40    |
| G6     | W12x16    | 9.21        | G6    | W12x16     | 9.21     | G6    | W12x16     | 9.21   | G6    | W12x16    | 9.21     |
| G7     | W16x31    | 22.40       | G7    | W16x31     | 22.40    | G7    | W16x31     | 22.40  | G7    | W16x31    | 22.40    |
| G8     | W24x68    | 31.60       | G8    | W24x68     | 31.60    | G8    | W24x68     | 31.60  | G8    | W24x68    | 31.60    |
| G9     | W12x16    | 11.67       | G9    | W12x16     | 11.67    | G9    | W12x16     | 11.67  | G9    | W12x16    | 11.67    |
| G10    | W16x31    | 22.40       | G10   | W16x31     | 22.40    | G10   | W16x31     | 22.40  | G10   | W16x31    | 22.40    |
| G11    | W24x62    | 31.60       | G11   | W24x62     | 31.60    | G11   | W24x62     | 31.60  | G11   | W24x62    | 31.60    |
| G12    | W12x16    | 11.67       | G12   | W12x16     | 11.67    | G12   | W12x16     | 11.67  | G12   | W12x16    | 11.67    |
| G13    | W12x16    | 6.04        | G13   | W12x16     | 6.04     | G13   | W12x16     | 6.04   | G13   | W12x16    | 6.04     |
| G14    | W12x16    | 15.19       | G14   | W12x16     | 15.19    | G14   | W12x16     | 15.19  | G14   | W12x16    | 15.19    |
| G15    | W12x16    | 10.00       | G15   | W12x16     | 10.00    | G15   | W12x16     | 10.00  | G15   | W12x16    | 10.00    |
| G16    | W16x31    | 21.21       | G16   | W16x31     | 21.21    | G16   | W16x31     | 21.21  | G16   | W16x31    | 21.21    |
| G17    | W24x68    | 31.13       | G17   | W24x68     | 31.13    | G17   | W24x68     | 31.13  | G17   | W24x68    | 31.13    |
| G18    | W12x16    | 9.21        | G18   | W12x16     | 9.21     | G18   | W12x16     | 9.21   | G18   | W12x16    | 9.21     |
| G19    | W14x26    | 22.00       | G19   | W14x26     | 22.00    | G19   | W14x26     | 22.00  | G19   | W14x26    | 22.00    |
| G20    | W12x16    | 12.40       | G20   | W12x16     | 12.40    | G20   | W12x16     | 12.40  | G20   | W12x16    | 12.40    |
| G21    | W18x35    | 22.40       | G21   | W18x35     | 22.40    | G21   | W18x35     | 22.40  | G21   | W18x35    | 22.40    |
| G22    | W12x16    | 9.21        | G22   | W12x16     | 9.21     | G22   | W12x16     | 9.21   | G22   | W12x16    | 9.21     |
| G23    | W18x35    | 22.40       | G23   | W18x35     | 22.40    | G23   | W18x35     | 22.40  | G23   | W18x35    | 22.40    |
| G1R    | W12x16    | 12.40       | G1R   | W12x16     | 12.40    | G1R   | W12x16     | 12.40  | G1R   | W12x16    | 12.40    |
| G2R    | W12x16    | 21.60       | G2R   | W12x16     | 21.60    | G2R   | W12x16     | 21.60  | G2R   | W14x22    | 21.60    |
| G3R    | W14x22    | 22.40       | G3R   | W14x22     | 22.40    | G3R   | W14x22     | 22.40  | G3R   | W14x30    | 22.40    |
| G4R    | W12x16    | 9.21        | G4R   | W12x16     | 9.21     | G4R   | W12x16     | 9.21   | G4R   | W12x16    | 9.21     |

| G5R  | W14x22 | 22.40 | G5R    | W14x22      | 22.40 | G5R    | W14x22     | 22.40 | G5R               | W14x30 | 22.40 |  |
|------|--------|-------|--------|-------------|-------|--------|------------|-------|-------------------|--------|-------|--|
| G6R  | W12x16 | 9.21  | G6R    | W12x16      | 9.21  | G6R    | W12x16     | 9.21  | G6R               | W12x16 | 9.21  |  |
| G7R  | W14x22 | 22.40 | G7R    | W14x22      | 22.40 | G7R    | W14x22     | 22.40 | G7R               | W14x26 | 22.40 |  |
| G8R  | W21x55 | 31.60 | G8R    | W21x55      | 31.60 | G8R    | W21x55     | 31.60 | G8R               | W21x55 | 31.60 |  |
| G9R  | W12x16 | 11.67 | G9R    | W12x16      | 11.67 | G9R    | W12x16     | 11.67 | G9R               | W12x16 | 11.67 |  |
| G10R | W14x22 | 22.40 | G10R   | W14x22      | 22.40 | G10R   | W14x22     | 22.40 | G10R              | W14x26 | 22.40 |  |
| G11R | W21x55 | 31.60 | G11R   | W21x55      | 31.60 | G11R   | W21x55     | 31.60 | G11R              | W21x55 | 31.60 |  |
| G12R | W12x16 | 11.67 | G12R   | W12x16      | 11.67 | G12R   | W12x16     | 11.67 | G12R              | W12x16 | 11.67 |  |
| G13R | W12x16 | 6.04  | G13R   | W12x16      | 6.04  | G13R   | W12x16     | 6.04  | G13R              | W12x16 | 6.04  |  |
| G14R | W12x16 | 15.19 | G14R   | W12x16      | 15.19 | G14R   | W12x16     | 15.19 | G14R              | W12x16 | 15.19 |  |
| G15R | W12x16 | 10.00 | G15R   | W12x16      | 10.00 | G15R   | W12x16     | 10.00 | G15R              | W12x16 | 10.00 |  |
| G16R | W14x22 | 21.21 | G16R   | W14x22      | 21.21 | G16R   | W14x22     | 21.21 | G16R              | W14x26 | 21.21 |  |
| G17R | W21x55 | 31.13 | G17R   | W21x55      | 31.13 | G17R   | W21x55     | 31.13 | G17R              | W21x62 | 31.13 |  |
| G18R | W12x16 | 9.21  | G18R   | W12x16      | 9.21  | G18R   | W12x16     | 9.21  | G18R              | W12x16 | 9.21  |  |
| G19R | W12x19 | 22.00 | G19R   | W12x19      | 22.00 | G19R   | W12x19     | 22.00 | G19R              | W14x22 | 22.00 |  |
| G20R | W12x16 | 12.40 | G20R   | W12x16      | 12.40 | G20R   | W12x16     | 12.40 | G20R              | W12x16 | 12.40 |  |
| G21R | W14x22 | 22.40 | G21R   | W14x22      | 22.40 | G21R   | W14x22     | 22.40 | G21R              | W14x30 | 22.40 |  |
| G22R | W12x16 | 9.21  | G22R   | W12x16      | 9.21  | G22R   | W12x16     | 9.21  | G22R              | W12x16 | 9.21  |  |
| G23R | W14x22 | 22.40 | G23R   | W14x22      | 22.40 | G23R   | W14x22     | 22.40 | G23R              | W14x30 | 22.40 |  |
| F1   | -      | -     | F1*    | W21x62      | -     | F1     | W18x40     | -     | F1*               | W21x44 | -     |  |
| F2   | -      | -     | F2*    | W21x62      | -     | F2     | W18x40     | -     | F2*               | W21x44 | -     |  |
| F3   | -      | -     | F3*    | W21x62      | -     | F3*    | W18x40     | -     | F3*               | W21x44 | -     |  |
| F4   | -      | -     | F4*    | W21x62      | -     | F4     | W14x22     | -     | F4*               | W18x40 | -     |  |
| F5   | -      | -     | F5*    | W21x68      | -     | F5*    | W18x40     | -     | F5*               | W21x44 | -     |  |
| F6   | -      | -     | F6*    | W21x62      | -     | F6     | W14x26     | -     | F6*               | W21x44 | -     |  |
| F7   | -      | -     | F7*    | W21x62      | -     | F7     | W14x26     | -     | F7*               | W21x44 | -     |  |
| F8   | -      | -     | F8*    | W21x62      | -     | F8     | W14x22     | -     | F8*               | W14x22 | -     |  |
| C1   | -      | -     | C1     | W14x109     | -     | C1     | W12x50     | -     | C1                | W14x82 | -     |  |
| C2   | -      | -     | C2     | W14x120     | -     | C2     | W12x40     | -     | C2                | W14x82 | -     |  |
| C3   | -      | -     | C3     | W14x120     | -     | C3     | W12x50     | -     | C3                | W14x82 | -     |  |
| C4   | -      | -     | C4     | W14x109     | -     | C4     | W12x40     | -     | C4                | W12x50 | -     |  |
| C5   | -      | -     | C5     | W14x132     | -     | C5     | W12x50     | -     | C5                | W14x82 | -     |  |
| C6   | -      | -     | C6     | W14x109     | -     | C6     | W12x40     | -     | C6                | W14x65 | -     |  |
| C7   | -      | -     | C7     | W14x109     | -     | C7     | W12x40     | -     | C7                | W14x82 | -     |  |
| C8   | -      | -     | C8     | W14x120     | _     | C8     | W12x40     | _     | C8                | W12x40 | -     |  |
|      |        |       | * = Cr | oss-Bracing | 5     | * = Cr | oss-Bracir | lg    | * = Cross-Bracing |        |       |  |

| General Cost |        |             |          |                |                |       |          |            |  |  |  |
|--------------|--------|-------------|----------|----------------|----------------|-------|----------|------------|--|--|--|
| Label        | Weight | Length (ft) | Cost/ton | # per<br>Floor | # of<br>Floors | Total | Length   | Total Cost |  |  |  |
|              |        |             | В        | eams           |                |       |          |            |  |  |  |
| B1           | 19     | 14.63       | 3100.00  | 15             | 4              | 60    | 878      | \$25842    |  |  |  |
| B2           | 40     | 17.21       | 3100.00  | 28             | 4              | 112   | 1927     | \$119495   |  |  |  |
| B3           | 19     | 13.71       | 3100.00  | 28             | 4              | 112   | 1535     | \$45216    |  |  |  |
| B4           | 22     | 15.13       | 3100.00  | 28             | 4              | 112   | 1694     | \$57765    |  |  |  |
| B5           | 19     | 14.63       | 3100.00  | 6              | 4              | 24    | 351      | \$10337    |  |  |  |
| B6           | 16     | 10.00       | 3100.00  | 14             | 4              | 56    | 560      | \$13888    |  |  |  |
| B7           | 26     | 15.71       | 3100.00  | 42             | 4              | 168   | 2639     | \$106363   |  |  |  |
| B1R          | 16     | 14.63       | 3100.00  | 15             | 1              | 15    | 219      | \$5441     |  |  |  |
| B2R          | 35     | 17.21       | 3100.00  | 28             | 1              | 28    | 482      | \$26139    |  |  |  |
| B3R          | 16     | 13.71       | 3100.00  | 28             | 1              | 28    | 384      | \$9519     |  |  |  |
| B4R          | 22     | 15.13       | 3100.00  | 28             | 1              | 28    | 424      | \$14441    |  |  |  |
| B5R          | 16     | 14.63       | 3100.00  | 6              | 1              | 6     | 88       | \$2176     |  |  |  |
| B6R          | 16     | 10.00       | 3100.00  | 14             | 1              | 14    | 140      | \$3472     |  |  |  |
| B7R          | 22     | 15.71       | 3100.00  | 42             | 1              | 42    | 660      | \$22500    |  |  |  |
|              |        |             |          |                |                | То    | tal Cost | \$462594   |  |  |  |
|              |        |             | (        | Girder         |                |       |          |            |  |  |  |
| G1           | 16     | 12.40       | 3100.00  | 3              | 4              | 12    | 149      | \$3689     |  |  |  |
| G2           | 22     | 21.60       | 3100.00  | 3              | 4              | 12    | 259      | \$8840     |  |  |  |
| G3           | 35     | 22.40       | 3100.00  | 6              | 4              | 24    | 538      | \$29159    |  |  |  |
| G4           | 16     | 9.21        | 3100.00  | 3              | 4              | 12    | 111      | \$2740     |  |  |  |
| G5           | 35     | 22.40       | 3100.00  | 8              | 4              | 32    | 717      | \$38879    |  |  |  |
| G6           | 16     | 9.21        | 3100.00  | 4              | 4              | 16    | 147      | \$3654     |  |  |  |
| G7           | 31     | 22.40       | 3100.00  | 4              | 4              | 16    | 358      | \$17218    |  |  |  |
| G8           | 68     | 31.60       | 3100.00  | 4              | 4              | 16    | 506      | \$53297    |  |  |  |
| G9           | 16     | 11.67       | 3100.00  | 4              | 4              | 16    | 187      | \$4629     |  |  |  |
| G10          | 31     | 22.40       | 3100.00  | 4              | 4              | 16    | 358      | \$17218    |  |  |  |
| G11          | 62     | 31.60       | 3100.00  | 4              | 4              | 16    | 506      | \$48595    |  |  |  |
| G12          | 16     | 11.67       | 3100.00  | 4              | 4              | 16    | 187      | \$4629     |  |  |  |
| G13          | 16     | 6.04        | 3100.00  | 4              | 4              | 16    | 97       | \$2397     |  |  |  |
| G14          | 16     | 15.19       | 3100.00  | 4              | 4              | 16    | 243      | \$6026     |  |  |  |
| G15          | 16     | 10.00       | 3100.00  | 2              | 4              | 8     | 80       | \$1984     |  |  |  |
| G16          | 31     | 21.21       | 3100.00  | 5              | 4              | 20    | 424      | \$20381    |  |  |  |
| G17          | 68     | 31.13       | 3100.00  | 5              | 4              | 20    | 623      | \$65612    |  |  |  |
| G18          | 16     | 9.21        | 3100.00  | 1              | 4              | 4     | 37       | \$913      |  |  |  |
| G19          | 26     | 22.00       | 3100.00  | 1              | 4              | 4     | 88       | \$3546     |  |  |  |
| G20          | 16     | 12.40       | 3100.00  | 1              | 4              | 4     | 50       | \$1230     |  |  |  |
| G21          | 35     | 22.40       | 3100.00  | 1              | 4              | 4     | 90       | \$4860     |  |  |  |
| G22          | 16     | 9.21        | 3100.00  | 1              | 4              | 4     | 37       | \$913      |  |  |  |
| G23          | 35     | 22.40       | 3100.00  | 1              | 4              | 4     | 90       | \$4860     |  |  |  |
| G1R          | 16     | 12.40       | 3100.00  | 3              | 1              | 3     | 37       | \$922      |  |  |  |
| G2R          | 16     | 21.60       | 3100.00  | 3              | 1              | 3     | 65       | \$1607     |  |  |  |
| G3R          | 22     | 22.40       | 3100.00  | 6              | 1              | 6     | 134      | \$4582     |  |  |  |

|            |    |       |         |        |   | То    | tal Cost | \$1117232 |  |  |
|------------|----|-------|---------|--------|---|-------|----------|-----------|--|--|
| С          | 33 | 10    | 3100    | 96     | 5 | 480   | 4800     | \$245520  |  |  |
|            |    |       | Co      | olumns |   |       |          |           |  |  |
| Total Cost |    |       |         |        |   |       |          |           |  |  |
| G23R       | 22 | 22.40 | 3100.00 | 1      | 1 | 1     | 22       | \$764     |  |  |
| G22R       | 16 | 9.21  | 3100.00 | 1      | 1 | 1     | 9        | \$228     |  |  |
| G21R       | 22 | 22.40 | 3100.00 | 1      | 1 | 1     | 22       | \$764     |  |  |
| G20R       | 16 | 12.40 | 3100.00 | 1      | 1 | 1     | 12       | \$307     |  |  |
| G19R       | 19 | 22.00 | 3100.00 | 1      | 1 | 1     | 22       | \$648     |  |  |
| G18R       | 16 | 9.21  | 3100.00 | 1      | 1 | 1     | 9        | \$228     |  |  |
| G17R       | 55 | 31.13 | 3100.00 | 4      | 1 | 4     | 125      | \$10614   |  |  |
| G16R       | 22 | 21.21 | 3100.00 | 4      | 1 | 4     | 85       | \$2893    |  |  |
| G15R       | 16 | 10.00 | 3100.00 | 2      | 1 | 2     | 20       | \$496     |  |  |
| G14R       | 16 | 15.19 | 3100.00 | 4      | 1 | 4     | 61       | \$1507    |  |  |
| G13R       | 16 | 6.04  | 3100.00 | 4      | 1 | 4     | 24       | \$599     |  |  |
| G12R       | 16 | 11.67 | 3100.00 | 4      | 1 | 4     | 47       | \$1157    |  |  |
| G11R       | 55 | 31.60 | 3100.00 | 4      | 1 | 4     | 126      | \$10777   |  |  |
| G10R       | 22 | 22.40 | 3100.00 | 4      | 1 | 4     | 90       | \$3055    |  |  |
| G9R        | 16 | 11 67 | 3100.00 | 4      | 1 | 4     | 47       | \$1157    |  |  |
| G8R        | 55 | 31.60 | 3100.00 |        | 1 | -<br> | 126      | \$10777   |  |  |
| G7R        | 22 | 22 /0 | 3100.00 |        | 1 |       | 90       | \$3055    |  |  |
| G6R        | 16 | Q 21  | 3100.00 | 4      | 1 | 1     | 37       | \$0110    |  |  |
| G5R        | 22 | 22 /0 | 3100.00 | 8      | 1 | 8     | 179      | \$6110    |  |  |
| G4R        | 16 | 9 21  | 3100.00 | 3      | 1 | 3     | 28       | \$685     |  |  |

| Weight (Lb/ft) |                |       | /ft)   |                |              |                |                |         |         |                | Total Cost |          |
|----------------|----------------|-------|--------|----------------|--------------|----------------|----------------|---------|---------|----------------|------------|----------|
| Label          | Los<br>Angeles | Miami | Boston | Length<br>(ft) | Cost/<br>ton | # per<br>Floor | # of<br>Floors | Total   | Length  | Los<br>Angeles | Miami      | Boston   |
|                |                |       |        |                |              | B              | Jeams          |         |         |                |            |          |
| B1             | 19             | 19    | 19     | 14.63          | 3100         | 15             | 4              | 60      | 878     | \$25842        | \$25842    | \$25842  |
| B2             | 40             | 40    | 40     | 17.21          | 3100         | 20             | 4              | 80      | 1377    | \$85353        | \$85353    | \$85353  |
| B3             | 19             | 19    | 19     | 13.71          | 3100         | 20             | 4              | 80      | 1097    | \$32297        | \$32297    | \$32297  |
| B4             | 22             | 22    | 22     | 15.13          | 3100         | 24             | 4              | 96      | 1452    | \$49513        | \$49513    | \$49513  |
| B5             | 19             | 19    | 19     | 14.63          | 3100         | 5              | 4              | 20      | 293     | \$8614         | \$8614     | \$8614   |
| B6             | 16             | 16    | 16     | 10.00          | 3100         | 14             | 4              | 56      | 560     | \$13888        | \$13888    | \$13888  |
| B7             | 26             | 26    | 26     | 15.71          | 3100         | 30             | 4              | 120     | 1885    | \$75974        | \$75974    | \$75974  |
| B1R            | 16             | 16    | 16     | 14.63          | 3100         | 15             | 1              | 15      | 219     | \$5441         | \$5441     | \$5441   |
| B2R            | 35             | 35    | 35     | 17.21          | 3100         | 20             | 1              | 20      | 344     | \$18671        | \$18671    | \$18671  |
| B3R            | 16             | 16    | 16     | 13.71          | 3100         | 20             | 1              | 20      | 274     | \$6799         | \$6799     | \$6799   |
| B4R            | 22             | 22    | 22     | 15.13          | 3100         | 24             | 1              | 24      | 363     | \$12378        | \$12378    | \$12378  |
| B5R            | 16             | 16    | 16     | 14.63          | 3100         | 5              | 1              | 5       | 73      | \$1814         | \$1814     | \$1814   |
| B6R            | 16             | 16    | 16     | 10.00          | 3100         | 14             | 1              | 14      | 140     | \$3472         | \$3472     | \$3472   |
| B7R            | 22             | 22    | 22     | 15.71          | 3100         | 30             | 1              | 30      | 471     | \$16071        | \$16071    | \$16071  |
|                |                |       |        |                | Total (      | Cost wi        | ithout L       | ocation | Factors | \$356127       | \$356127   | \$356127 |
|                |                |       |        |                | Tot          | tal Cos        | t with L       | ocation | Factors | \$384618       | \$356127   | \$487895 |
|                |                |       |        |                |              | G              | irders         |         |         |                |            |          |
| G1             | 16             | 16    | 16     | 12.40          | 3100         | 0              | 4              | 0       | 0       | \$             | \$         | \$       |
| G2             | 22             | 22    | 22     | 21.60          | 3100         | 0              | 4              | 0       | 0       | \$             | \$         | \$       |
| G3             | 35             | 35    | 35     | 22.40          | 3100         | 6              | 4              | 24      | 538     | \$29159        | \$29159    | \$29159  |
| G4             | 16             | 16    | 16     | 9.21           | 3100         | 3              | 4              | 12      | 111     | \$2740         | \$2740     | \$2740   |
| G5             | 35             | 35    | 35     | 22.40          | 3100         | 8              | 4              | 32      | 717     | \$38879        | \$38879    | \$38879  |
| G6             | 16             | 16    | 16     | 9.21           | 3100         | 4              | 4              | 16      | 147     | \$3654         | \$3654     | \$3654   |
| G7             | 31             | 31    | 31     | 22.40          | 3100         | 4              | 4              | 16      | 358     | \$17218        | \$17218    | \$17218  |
| G8             | 38             | 38    | 38     | 31.60          | 3100         | 4              | 4              | 16      | 506     | \$29784        | \$29784    | \$29784  |
| G9             | 16             | 16    | 16     | 11.67          | 3100         | 4              | 4              | 16      | 187     | \$4629         | \$4629     | \$4629   |
| G10            | 31             | 31    | 31     | 22.40          | 3100         | 4              | 4              | 16      | 358     | \$17218        | \$17218    | \$17218  |
| G11            | 62             | 62    | 62     | 31.60          | 3100         | 4              | 4              | 16      | 506     | \$48595        | \$48595    | \$48595  |
| G12            | 16             | 16    | 16     | 11.67          | 3100         | 2              | 4              | 8       | 93      | \$2315         | \$2315     | \$2315   |
| G13            | 16             | 16    | 16     | 6.04           | 3100         | 0              | 4              | 0       | 0       | \$             | \$         | \$       |
| G14            | 16             | 16    | 16     | 15.19          | 3100         | 0              | 4              | 0       | 0       | \$             | \$         | \$       |
| G15            | 16             | 16    | 16     | 10.00          | 3100         | 2              | 4              | 8       | 80      | \$1984         | \$1984     | \$1984   |
| G16            | 31             | 31    | 31     | 21.21          | 3100         | 4              | 4              | 16      | 339     | \$16305        | \$16305    | \$16305  |
| G17            | 68             | 68    | 68     | 31.13          | 3100         | 5              | 4              | 20      | 623     | \$65612        | \$65612    | \$65612  |
| G18            | 16             | 16    | 16     | 9.21           | 3100         | 0              | 4              | 0       | 0       | \$             | \$         | \$       |
| G19            | 26             | 26    | 26     | 22.00          | 3100         | 0              | 4              | 0       | 0       | \$             | \$         | \$       |
| G20            | 16             | 16    | 16     | 12.40          | 3100         | 1              | 4              | 4       | 50      | \$1230         | \$1230     | \$1230   |
| G21            | 35             | 35    | 35     | 22.40          | 3100         | 1              | 4              | 4       | 90      | \$4860         | \$4860     | \$4860   |
| G22            | 16             | 16    | 16     | 9.21           | 3100         | 1              | 4              | 4       | 37      | \$913          | \$913      | \$913    |
| G23            | 35             | 35    | 35     | 22.40          | 3100         | 1              | 4              | 4       | 90      | \$4860         | \$4860     | \$4860   |
| G1R            | 16             | 16    | 16     | 12.40          | 3100         | 0              | 1              | 0       | 0       | \$             | \$         | \$       |
| G2R            | 16             | 16    | 22     | 21.60          | 3100         | 0              | 1              | 0       | 0       | \$             | \$         | \$       |

| G3R                                 | 22 | 22 | 30      | 22.40    | 3100     | 6        | 1        | 6       | 134     | \$4582   | \$4582   | \$6248   |
|-------------------------------------|----|----|---------|----------|----------|----------|----------|---------|---------|----------|----------|----------|
| G4R                                 | 16 | 16 | 16      | 9.21     | 3100     | 3        | 1        | 3       | 28      | \$685    | \$685    | \$685    |
| G5R                                 | 22 | 22 | 30      | 22.40    | 3100     | 8        | 1        | 8       | 179     | \$6110   | \$6110   | \$8331   |
| G6R                                 | 16 | 16 | 16      | 9.21     | 3100     | 4        | 1        | 4       | 37      | \$913    | \$913    | \$913    |
| G7R                                 | 22 | 22 | 26      | 22.40    | 3100     | 4        | 1        | 4       | 90      | \$3055   | \$3055   | \$3610   |
| G8R                                 | 55 | 55 | 55      | 31.60    | 3100     | 4        | 1        | 4       | 126     | \$10777  | \$10777  | \$10777  |
| G9R                                 | 16 | 16 | 16      | 11.67    | 3100     | 4        | 1        | 4       | 47      | \$1157   | \$1157   | \$1157   |
| G10R                                | 22 | 22 | 26      | 22.40    | 3100     | 4        | 1        | 4       | 90      | \$3055   | \$3055   | \$3610   |
| G11R                                | 55 | 55 | 55      | 31.60    | 3100     | 4        | 1        | 4       | 126     | \$10777  | \$10777  | \$10777  |
| G12R                                | 16 | 16 | 16      | 11.67    | 3100     | 4        | 1        | 4       | 47      | \$1157   | \$1157   | \$1157   |
| G13R                                | 16 | 16 | 16      | 6.04     | 3100     | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G14R                                | 16 | 16 | 16      | 15.19    | 3100     | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G15R                                | 16 | 16 | 16      | 10.00    | 3100     | 2        | 1        | 2       | 20      | \$496    | \$496    | \$496    |
| G16R                                | 22 | 22 | 26      | 21.21    | 3100     | 4        | 1        | 4       | 85      | \$2893   | \$2893   | \$3419   |
| G17R                                | 55 | 55 | 62      | 31.13    | 3100     | 5        | 1        | 5       | 156     | \$13267  | \$13267  | \$14956  |
| G18R                                | 16 | 16 | 16      | 9.21     | 3100     | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G19R                                | 19 | 19 | 22      | 22.00    | 3100     | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G20R                                | 16 | 16 | 16      | 12.40    | 3100     | 1        | 1        | 1       | 12      | \$307    | \$307    | \$307    |
| G21R                                | 22 | 22 | 30      | 22.40    | 3100     | 1        | 1        | 1       | 22      | \$764    | \$764    | \$1041   |
| G22R                                | 16 | 16 | 16      | 9.21     | 3100     | 1        | 1        | 1       | 9       | \$228    | \$228    | \$228    |
| G23R                                | 22 | 22 | 30      | 22.40    | 3100     | 1        | 1        | 1       | 22      | \$764    | \$764    | \$1041   |
|                                     |    |    | Factors | \$350942 | \$350942 | \$358711 |          |         |         |          |          |          |
|                                     |    |    |         |          | Tot      | al Cost  | t with L | ocation | Factors | \$379017 | \$350942 | \$491434 |
|                                     |    |    |         |          |          | Fi       | rames    |         |         |          |          |          |
| F1*                                 | 62 | 40 | 44      | 14.63    | 3100     | 1        | 5        | 5       | 73      | \$7030   | \$4535   | \$4989   |
|                                     | 62 | 40 | 44      | 17.21    | 3100     | 4        | 5        | 20      | 344     | \$33074  | \$21338  | \$23472  |
|                                     | 62 | 40 | 44      | 13.71    | 3100     | 4        | 5        | 20      | 274     | \$26347  | \$16998  | \$18698  |
|                                     | 62 | 40 | 44      | 15.13    | 3100     | 4        | 5        | 20      | 303     | \$29070  | \$18755  | \$20631  |
| F2*                                 | 62 | 40 | 44      | 14.63    | 3100     | 4        | 5        | 20      | 293     | \$28119  | \$18141  | \$19955  |
|                                     | 62 | 40 | 44      | 17.21    | 3100     | 4        | 5        | 20      | 344     | \$33074  | \$21338  | \$23472  |
|                                     | 62 | 40 | 44      | 13.71    | 3100     | 4        | 5        | 20      | 274     | \$26347  | \$16998  | \$18698  |
|                                     | 62 | 40 | 44      | 15.13    | 3100     | 4        | 5        | 20      | 303     | \$29070  | \$18755  | \$20631  |
| F3*                                 | 62 | 40 | 44      | 17.21    | 3100     | 4        | 5        | 20      | 344     | \$33074  | \$21338  | \$23472  |
|                                     | 62 | 40 | 44      | 13.71    | 3100     | 4        | 5        | 20      | 274     | \$26347  | \$16998  | \$18698  |
| F4*                                 | 62 | 22 | 40      | 6.04     | 3100     | 4        | 5        | 20      | 121     | \$11612  | \$4120   | \$7492   |
|                                     | 62 | 22 | 40      | 15.19    | 3100     | 4        | 5        | 20      | 304     | \$29190  | \$10358  | \$18833  |
| F5*                                 | 68 | 40 | 44      | 21.21    | 3100     | 4        | 5        | 20      | 424     | \$44707  | \$26298  | \$28928  |
| F6*                                 | 62 | 26 | 44      | 9.21     | 3100     | 1        | 5        | 5       | 46      | \$4425   | \$1855   | \$3140   |
|                                     | 62 | 26 | 44      | 22.00    | 3100     | 4        | 5        | 20      | 440     | \$42284  | \$17732  | \$30008  |
|                                     | 62 | 26 | 44      | 12.40    | 3100     | 4        | 5        | 20      | 248     | \$23825  | \$9991   | \$16908  |
| F7*                                 | 62 | 26 | 44      | 15.71    | 3100     | 12       | 5        | 60      | 943     | \$90584  | \$37987  | \$64285  |
| F8*                                 | 62 | 22 | 22      | 15.71    | 3100     | 6        | 5        | 30      | 471     | \$45292  | \$16071  | \$16071  |
|                                     | 62 | 22 | 22      | 11.67    | 3100     | 2        | 5        | 10      | 117     | \$11215  | \$3979   | \$3979   |
| Total Cost without Location Factors |    |    |         |          |          |          |          |         |         | \$574688 | \$303589 | \$382361 |
|                                     |    |    |         |          | Tot      | al Cost  | t with L | ocation | Factors | \$620663 | \$303589 | \$523834 |

|       |         |          |        |        |         | Co      | lumns      |         |         |          |            |               |
|-------|---------|----------|--------|--------|---------|---------|------------|---------|---------|----------|------------|---------------|
| С     | 33      | 33       | 33     | 10     | 3100    | 8       | 5          | 40      | 400     | \$20460  | \$20460    | \$20460       |
| C1    | 109     | 50       | 82     | 10     | 3100    | 17      | 5          | 85      | 850     | \$143608 | \$65875    | \$108035      |
| C2    | 120     | 40       | 82     | 10     | 3100    | 20      | 5          | 100     | 1000    | \$186000 | \$62000    | \$127100      |
| C3    | 120     | 50       | 82     | 10     | 3100    | 12      | 5          | 60      | 600     | \$111600 | \$46500    | \$76260       |
| C4    | 109     | 40       | 50     | 10     | 3100    | 6       | 5          | 30      | 300     | \$50685  | \$18600    | \$23250       |
| C5    | 132     | 50       | 82     | 10     | 3100    | 2       | 5          | 10      | 100     | \$20460  | \$7750     | \$12710       |
| C6    | 109     | 40       | 65     | 10     | 3100    | 8       | 5          | 40      | 400     | \$67580  | \$24800    | \$40300       |
| C7    | 109     | 40       | 82     | 10     | 3100    | 13      | 5          | 65      | 650     | \$109818 | \$40300    | \$82615       |
| C8    | 120     | 40       | 40     | 10     | 3100    | 8       | 5          | 40      | 400     | \$74400  | \$24800    | \$24800       |
|       |         |          |        |        | Total C | Cost wi | thout L    | ocation | Factors | \$784610 | \$311085   | \$515530      |
|       |         |          |        |        | Tot     | al Cost | with L     | ocation | Factors | \$847379 | \$311085   | \$706276      |
|       |         |          |        |        |         | Cros    | s Bean     | าร      |         |          |            |               |
|       | We      | ight (Lb | /ft)   |        |         |         | Leng       | th/ Bay | -       |          | Total Cost |               |
|       | Los     |          |        | Length | Cost/   |         |            |         |         | Los      |            |               |
| Label | Angeles | Miami    | Boston | (ft)   | ton     | Los Ar  | ngeles     | Miami   | Boston  | Angeles  | Miami      | Boston        |
|       |         |          |        | . ,    |         |         |            |         | _       |          |            |               |
| X1    | 26      | -        | 22     | 19.90  | 3100    | 19      | 99         | -       | 59.7    | \$32079  | -          | Ş8143         |
|       | 26      | -        | -      | 16.97  | 3100    | 16      | 9.7        | -       | -       | \$27356  | -          | -             |
|       | 26      | -        | 22     | 18.13  | 3100    | 18      | 1.3        | -       | 54.39   | \$29226  | -          | \$7419        |
| X2    | 26      | -        | 22     | 17.72  | 3100    | 1/      | /.2        | -       | 53.16   | \$28565  | -          | \$7251        |
|       | 26      | -        | -      | 19.9   | 3100    | 99      | 0.5        | -       | -       | \$16039  | -          | -             |
|       | 26      | -        | 22     | 16.97  | 3100    | 16      | 9.7        | -       | 50.91   | \$27356  | -          | Ş6944         |
|       | 26      | -        | -      | 18.13  | 3100    | 90.     | .65        | -       | -       | \$14613  | -          | -             |
| X3    | 35      | 16       | 22     | 19.9   | 3100    | 19      | 99         | 59.7    | 59.7    | \$43183  | \$5922     | \$8143        |
|       | 35      | -        | 22     | 16.97  | 3100    | 16      | 9.7        | -       | 33.94   | \$36825  | -          | Ş4629         |
| X4    | 26      | -        | -      | 11.68  | 3100    | 110     | b.8        | -       |         | \$18828  | -          | -             |
|       | 26      | -        | 26     | 18.18  | 3100    | 18      | 1.8        | -       | 54.54   | \$29306  | -          | \$8792        |
| X5    | 35      | 26       | 26     | 23.45  | 3100    | 234     | 4.5        | 70.35   | /0.35   | \$12722  | \$2835     | \$2835        |
| X6    | 26      | -        | 22     | 15.93  | 3100    | 15      | 9.3        | -       | 47.79   | \$25679  | -          | \$6519        |
|       | 26      | -        | 22     | 23.45  | 3100    | 234     | 4.5        | -       | 70.35   | \$37801  | -          | \$9596        |
| ×/    | 31      | -        | 22     | 10.03  | 3100    | 10      | 0.3        | -       | 93.15   | \$17903  | -          | <u>ک</u> ککס  |
|       | 31      | -        | -      | 10.03  | 3100    | 18      | 0.3<br>C 2 | -       | -       | \$17903  | -          | -<br>66252    |
|       | 31      | -        | 22     | 10.03  | 3100    | 10      | 0.3        | -       | 93.15   | \$17903  | -          | <b>\$0353</b> |
|       | 31      | -        | -      | 10.03  | 3100    | 18      | 0.3<br>C 2 | -       | -       | \$17903  | -          | -<br>66252    |
|       | 31      | -        | 22     | 10.03  | 3100    | 18      | 0.3        | -       | 93.15   | \$17903  | -          | <u>ک</u> ککס  |
|       | - 31    | -        | -      | 18.63  | 3100    | 18      | b.3        | - 1     | -       | \$1/903  | -          | -             |

|    |                                                                      |   |    |                                   |                       |                |           |         | +         |           | 4         |
|----|----------------------------------------------------------------------|---|----|-----------------------------------|-----------------------|----------------|-----------|---------|-----------|-----------|-----------|
| X8 | 26                                                                   | - | 22 | 15.37                             | 3100                  | /6.85          | -         | 46.11   | \$3097    | -         | \$1572    |
|    | 26                                                                   | - | -  | 18.63                             | 3100                  | 93.15          | -         | -       | \$3754    | -         | -         |
|    | 26                                                                   | - | 22 | 18.63                             | 3100                  | 93.15          | -         | 55.89   | \$3754    | -         | \$1906    |
|    | 26                                                                   | - | -  | 18.63                             | 3100                  | 93.15          | -         | -       | \$3754    | -         | -         |
|    | 26                                                                   | - | 22 | 18.63 3100 93.15 - 55.89 \$3754 - |                       |                |           |         |           | -         | \$1906    |
|    | 26                                                                   | - | -  | 18.63                             | 3 3100 93.15 \$3754 - |                |           |         |           | -         |           |
|    | 26                                                                   | - | 22 | 18.63                             | 3100                  | 93.15          | -         | 55.89   | \$3754    | -         | \$1906    |
|    | 26                                                                   | - | -  | 15.37                             | 3100                  | 76.85          | -         | -       | \$3097    | -         | -         |
|    |                                                                      |   |    |                                   | Total C               | Cost without L | ocation   | Factors | \$515715  | \$8757    | \$96619   |
|    |                                                                      |   |    |                                   | Tot                   | al Cost with L | ocation   | Factors | \$556972  | \$8757    | \$132368  |
|    | Total Cost of Design without Location Factors \$2582083 \$1330501 \$ |   |    |                                   |                       |                | \$1709348 |         |           |           |           |
|    |                                                                      |   |    | Total (                           | Cost of               | Design with L  | ocation   | Factors | \$2788650 | \$1330501 | \$2341807 |

|       |           |             |       |            | Case     | 3     |              |        |       |           |         |
|-------|-----------|-------------|-------|------------|----------|-------|--------------|--------|-------|-----------|---------|
|       | Gravity L | oads        | Los A | ngeles, Ca | lifornia | Ν     | /liami, Flor | ida    | Bosto | n, Massac | husetts |
| Label | Size      | Length (ft) | Label | Size       | Length   | Label | Size         | Length | Label | Size      | Length  |
| B1    | W12x19    | 14.63       | B1    | W12x19     | 14.63    | B1    | W12x19       | 14.63  | B1    | W12x19    | 14.63   |
| B2    | W18x40    | 17.21       | B2    | W18x40     | 17.21    | B2    | W18x40       | 17.21  | B2    | W18x40    | 17.21   |
| B3    | W12x19    | 13.71       | B3    | W12x19     | 13.71    | B3    | W12x19       | 13.71  | B3    | W12x19    | 13.71   |
| B4    | W14x22    | 15.13       | B4    | W14x22     | 15.13    | B4    | W14x22       | 15.13  | B4    | W14x22    | 15.13   |
| B5    | W12x19    | 14.63       | B5    | W12x19     | 14.63    | B5    | W12x19       | 14.63  | B5    | W12x19    | 14.63   |
| B6    | W12x16    | 10.00       | B6    | W12x16     | 10.00    | B6    | W12x16       | 10.00  | B6    | W12x16    | 10.00   |
| B7    | W14x26    | 15.71       | B7    | W14x26     | 15.71    | B7    | W14x26       | 15.71  | B7    | W14x26    | 15.71   |
| G1    | W12x16    | 12.40       | G1    | W12x16     | 12.40    | G1    | W12x16       | 12.40  | G1    | W12x16    | 12.40   |
| G2    | W14x22    | 21.60       | G2    | W14x22     | 21.60    | G2    | W14x22       | 21.60  | G2    | W14x22    | 21.60   |
| G3    | W18x35    | 22.40       | G3    | W18x35     | 22.40    | G3    | W18x35       | 22.40  | G3    | W18x35    | 22.40   |
| G4    | W12x16    | 9.21        | G4    | W12x16     | 9.21     | G4    | W12x16       | 9.21   | G4    | W12x16    | 9.21    |
| G5    | W18x35    | 22.40       | G5    | W18x35     | 22.40    | G5    | W18x35       | 22.40  | G5    | W18x35    | 22.40   |
| G6    | W12x16    | 9.21        | G6    | W12x16     | 9.21     | G6    | W12x16       | 9.21   | G6    | W12x16    | 9.21    |
| G7    | W16x31    | 22.40       | G7    | W16x31     | 22.40    | G7    | W16x31       | 22.40  | G7    | W16x31    | 22.40   |
| G8    | W24x68    | 31.60       | G8    | W24x68     | 31.60    | G8    | W24x68       | 31.60  | G8    | W24x68    | 31.60   |
| G9    | W12x16    | 11.67       | G9    | W12x16     | 11.67    | G9    | W12x16       | 11.67  | G9    | W12x16    | 11.67   |
| G10   | W16x31    | 22.40       | G10   | W16x31     | 22.40    | G10   | W16x31       | 22.40  | G10   | W16x31    | 22.40   |
| G11   | W24x62    | 31.60       | G11   | W24x62     | 31.60    | G11   | W24x62       | 31.60  | G11   | W24x62    | 31.60   |
| G12   | W12x16    | 11.67       | G12   | W12x16     | 11.67    | G12   | W12x16       | 11.67  | G12   | W12x16    | 11.67   |
| G13   | W12x16    | 6.04        | G13   | W12x16     | 6.04     | G13   | W12x16       | 6.04   | G13   | W12x16    | 6.04    |
| G14   | W12x16    | 15.19       | G14   | W12x16     | 15.19    | G14   | W12x16       | 15.19  | G14   | W12x16    | 15.19   |
| G15   | W12x16    | 10.00       | G15   | W12x16     | 10.00    | G15   | W12x16       | 10.00  | G15   | W12x16    | 10.00   |
| G16   | W16x31    | 21.21       | G16   | W16x31     | 21.21    | G16   | W16x31       | 21.21  | G16   | W16x31    | 21.21   |
| G17   | W24x68    | 31.13       | G17   | W24x68     | 31.13    | G17   | W24x68       | 31.13  | G17   | W24x68    | 31.13   |
| G18   | W12x16    | 9.21        | G18   | W12x16     | 9.21     | G18   | W12x16       | 9.21   | G18   | W12x16    | 9.21    |
| G19   | W14x26    | 22.00       | G19   | W14x26     | 22.00    | G19   | W14x26       | 22.00  | G19   | W14x26    | 22.00   |
| G20   | W12x16    | 12.40       | G20   | W12x16     | 12.40    | G20   | W12x16       | 12.40  | G20   | W12x16    | 12.40   |
| G21   | W18x35    | 22.40       | G21   | W18x35     | 22.40    | G21   | W18x35       | 22.40  | G21   | W18x35    | 22.40   |
| G22   | W12x16    | 9.21        | G22   | W12x16     | 9.21     | G22   | W12x16       | 9.21   | G22   | W12x16    | 9.21    |
| G23   | W18x35    | 22.40       | G23   | W18x35     | 22.40    | G23   | W18x35       | 22.40  | G23   | W18x35    | 22.40   |

| Labol | Woight | Length | Cost/ton  | # per  | # of   | Total | Longth   | Total    |
|-------|--------|--------|-----------|--------|--------|-------|----------|----------|
| Label | weight | (ft)   | COST/TOIL | Floor  | Floors | TOtal | Length   | Cost     |
|       |        |        | I         | Beams  |        |       |          |          |
| B1    | 19     | 14.63  | 3100.00   | 15     | 1      | 15    | 219      | \$6461   |
| B2    | 40     | 17.21  | 3100.00   | 28     | 1      | 28    | 482      | \$29874  |
| B3    | 19     | 13.71  | 3100.00   | 28     | 1      | 28    | 384      | \$11304  |
| B4    | 22     | 15.13  | 3100.00   | 28     | 1      | 28    | 424      | \$14441  |
| B5    | 19     | 14.63  | 3100.00   | 6      | 1      | 6     | 88       | \$2584   |
| B6    | 16     | 10.00  | 3100.00   | 14     | 1      | 14    | 140      | \$3472   |
| B7    | 26     | 15.71  | 3100.00   | 42     | 1      | 42    | 660      | \$26591  |
|       |        |        |           |        |        | То    | tal Cost | \$94726  |
|       |        |        |           | Girder |        | -     |          |          |
| G1    | 16     | 12.40  | 3100.00   | 3      | 1      | 3     | 37       | \$922    |
| G2    | 22     | 21.60  | 3100.00   | 3      | 1      | 3     | 65       | \$2210   |
| G3    | 35     | 22.40  | 3100.00   | 6      | 1      | 6     | 134      | \$7290   |
| G4    | 16     | 9.21   | 3100.00   | 3      | 1      | 3     | 28       | \$685    |
| G5    | 35     | 22.40  | 3100.00   | 8      | 1      | 8     | 179      | \$9720   |
| G6    | 16     | 9.21   | 3100.00   | 4      | 1      | 4     | 37       | \$913    |
| G7    | 31     | 22.40  | 3100.00   | 4      | 1      | 4     | 90       | \$4304   |
| G8    | 68     | 31.60  | 3100.00   | 4      | 1      | 4     | 126      | \$13324  |
| G9    | 16     | 11.67  | 3100.00   | 4      | 1      | 4     | 47       | \$1157   |
| G10   | 31     | 22.40  | 3100.00   | 4      | 1      | 4     | 90       | \$4304   |
| G11   | 62     | 31.60  | 3100.00   | 4      | 1      | 4     | 126      | \$12149  |
| G12   | 16     | 11.67  | 3100.00   | 4      | 1      | 4     | 47       | \$1157   |
| G13   | 16     | 6.04   | 3100.00   | 4      | 1      | 4     | 24       | \$599    |
| G14   | 16     | 15.19  | 3100.00   | 4      | 1      | 4     | 61       | \$1507   |
| G15   | 16     | 10.00  | 3100.00   | 2      | 1      | 2     | 20       | \$496    |
| G16   | 31     | 21.21  | 3100.00   | 5      | 1      | 5     | 106      | \$5095   |
| G17   | 68     | 31.13  | 3100.00   | 5      | 1      | 5     | 156      | \$16403  |
| G18   | 16     | 9.21   | 3100.00   | 1      | 1      | 1     | 9        | \$228    |
| G19   | 26     | 22.00  | 3100.00   | 1      | 1      | 1     | 22       | \$887    |
| G20   | 16     | 12.40  | 3100.00   | 1      | 1      | 1     | 12       | \$307    |
| G21   | 35     | 22.40  | 3100.00   | 1      | 1      | 1     | 22       | \$1215   |
| G22   | 16     | 9.21   | 3100.00   | 1      | 1      | 1     | 9        | \$228    |
| G23   | 35     | 22.40  | 3100.00   | 1      | 1      | 1     | 22       | \$1215   |
|       |        |        |           |        |        | То    | tal Cost | \$86318  |
|       |        |        | C         | olumn  | s      |       |          |          |
| С     | 33     | 10     | 3100      | 96     | 1      | 96    | 960      | \$49104  |
|       |        |        |           |        |        | То    | tal Cost | \$230148 |

|       |           |             | ·     |            | Case     | 4     |            | -      |       |          |          |
|-------|-----------|-------------|-------|------------|----------|-------|------------|--------|-------|----------|----------|
|       | Gravity L | oads        | Los A | ngeles, Ca | lifornia | N     | liami, Flo | rida   | Bosto | n, Massa | chusetts |
| Label | Size      | Length (ft) | Label | Size       | Length   | Label | Size       | Length | Label | Size     | Length   |
|       |           |             |       |            | Floor    | 1     |            |        |       | -        |          |
| B1    | W12x19    | 14.63       | B1    | W12x19     | 14.63    | B1    | W12x19     | 14.63  | B1    | W12x19   | 14.63    |
| B2    | W18x40    | 17.21       | B2    | W18x40     | 17.21    | B2    | W18x40     | 17.21  | B2    | W18x40   | 17.21    |
| B3    | W12x19    | 13.71       | B3    | W12x19     | 13.71    | B3    | W12x19     | 13.71  | B3    | W12x19   | 13.71    |
| B4    | W14x22    | 15.13       | B4    | W14x22     | 15.13    | B4    | W14x22     | 15.13  | B4    | W14x22   | 15.13    |
| B5    | W12x19    | 14.63       | B5    | W12x19     | 14.63    | B5    | W12x19     | 14.63  | B5    | W12x19   | 14.63    |
| B6    | W12x16    | 10.00       | B6    | W12x16     | 10.00    | B6    | W12x16     | 10.00  | B6    | W12x16   | 10.00    |
| B7    | W12x22    | 15.71       | B7    | W12x22     | 15.71    | B7    | W12x22     | 15.71  | B7    | W12x22   | 15.71    |
|       |           | ·           |       |            | Floor 2  | -4    |            | -      |       |          |          |
| B1    | W12x19    | 14.63       | B1    | W12x19     | 14.63    | B1    | W12x19     | 14.63  | B1    | W12x19   | 14.63    |
| B2    | W18x40    | 17.21       | B2    | W18x40     | 17.21    | B2    | W18x40     | 17.21  | B2    | W18x40   | 17.21    |
| B3    | W12x19    | 13.71       | B3    | W12x19     | 13.71    | B3    | W12x19     | 13.71  | B3    | W12x19   | 13.71    |
| B4    | W14x22    | 15.13       | B4    | W14x22     | 15.13    | B4    | W14x22     | 15.13  | B4    | W14x22   | 15.13    |
| B5    | W12x19    | 14.63       | B5    | W12x19     | 14.63    | B5    | W12x19     | 14.63  | B5    | W12x19   | 14.63    |
| B6    | W12x16    | 10.00       | B6    | W12x16     | 10.00    | B6    | W12x16     | 10.00  | B6    | W12x16   | 10.00    |
| B7    | W14x26    | 15.71       | B7    | W14x26     | 15.71    | B7    | W14x26     | 15.71  | B7    | W14x26   | 15.71    |
|       |           |             |       |            | Roof     | :     |            |        |       |          |          |
| B1R   | W12x16    | 14.63       | B1R   | W12x16     | 14.63    | B1R   | W12x16     | 14.63  | B1R   | W12x16   | 14.63    |
| B2R   | W18x35    | 17.21       | B2R   | W18x35     | 17.21    | B2R   | W18x35     | 17.21  | B2R   | W18x35   | 17.21    |
| B3R   | W12x16    | 13.71       | B3R   | W12x16     | 13.71    | B3R   | W12x16     | 13.71  | B3R   | W12x16   | 13.71    |
| B4R   | W12x22    | 15.13       | B4R   | W12x22     | 15.13    | B4R   | W12x22     | 15.13  | B4R   | W14x22   | 15.13    |
| B5R   | W12x16    | 14.63       | B5R   | W12x16     | 14.63    | B5R   | W12x16     | 14.63  | B5R   | W12x16   | 14.63    |
| B6R   | W12x16    | 10.00       | B6R   | W12x16     | 10.00    | B6R   | W12x16     | 10.00  | B6R   | W12x16   | 10.00    |
| B7R   | W14x22    | 15.71       | B7R   | W14x22     | 15.71    | B7R   | W14x22     | 15.71  | B7R   | W14x22   | 15.71    |
|       |           |             |       |            | Floor    | 1     |            |        |       |          |          |
| G1    | W12x16    | 12.40       | G1    | W12x16     | 12.40    | G1    | W12x16     | 12.40  | G1    | W12x16   | 12.40    |
| G2    | W14x22    | 21.60       | G2    | W14x22     | 21.60    | G2    | W14x22     | 21.60  | G2    | W14x22   | 21.60    |
| G3    | W18x35    | 22.40       | G3    | W18x35     | 22.40    | G3    | W18x35     | 22.40  | G3    | W18x35   | 22.40    |
| G4    | W12x16    | 9.21        | G4    | W12x16     | 9.21     | G4    | W12x16     | 9.21   | G4    | W12x16   | 9.21     |
| G5    | W18x35    | 22.40       | G5    | W18x35     | 22.40    | G5    | W18x35     | 22.40  | G5    | W18x35   | 22.40    |
| G6    | W12x16    | 9.21        | G6    | W12x16     | 9.21     | G6    | W12x16     | 9.21   | G6    | W12x16   | 9.21     |
| G7    | W16x31    | 22.40       | G7    | W16x31     | 22.40    | G7    | W16x31     | 22.40  | G7    | W16x31   | 22.40    |
| G8    | W24x68    | 31.60       | G8    | W24x68     | 31.60    | G8    | W24x68     | 31.60  | G8    | W24x68   | 31.60    |
| G9    | W12x16    | 11.67       | G9    | W12x16     | 11.67    | G9    | W12x16     | 11.67  | G9    | W12x16   | 11.67    |
| G10   | W16x31    | 22.40       | G10   | W16x31     | 22.40    | G10   | W16x31     | 22.40  | G10   | W16x31   | 22.40    |
| G11   | W24x62    | 31.60       | G11   | W24x62     | 31.60    | G11   | W24x62     | 31.60  | G11   | W24x62   | 31.60    |
| G12   | W12x16    | 11.67       | G12   | W12x16     | 11.67    | G12   | W12x16     | 11.67  | G12   | W12x16   | 11.67    |
| G13   | W12x16    | 6.04        | G13   | W12x16     | 6.04     | G13   | W12x16     | 6.04   | G13   | W12x16   | 6.04     |
| G14   | W12x16    | 15.19       | G14   | W12x16     | 15.19    | G14   | W12x16     | 15.19  | G14   | W12x16   | 15.19    |
| G15   | W12x16    | 10.00       | G15   | W12x16     | 10.00    | G15   | W12x16     | 10.00  | G15   | W12x16   | 10.00    |
| G16   | W12x16    | 15.19       | G16   | W12x16     | 15.19    | G16   | W12x16     | 15.19  | G16   | W12x16   | 15.19    |
| G17   | W12x16    | 6.04        | G17   | W12x16     | 6.04     | G17   | W12x16     | 6.04   | G17   | W12x16   | 6.04     |

| G18  | W12x16 | 9.21  | G18  | W12x16 | 9.21    | G18  | W12x16 | 9.21  | G18  | W12x16 | 9.21  |
|------|--------|-------|------|--------|---------|------|--------|-------|------|--------|-------|
| G19  | W14x26 | 22.00 | G19  | W14x26 | 22.00   | G19  | W14x26 | 22.00 | G19  | W14x26 | 22.00 |
| G20  | W12x16 | 12.40 | G20  | W12x16 | 12.40   | G20  | W12x16 | 12.40 | G20  | W12x16 | 12.40 |
| G21  | W18x35 | 22.40 | G21  | W18x35 | 22.40   | G21  | W18x35 | 22.40 | G21  | W18x35 | 22.40 |
| G22  | W12x16 | 9.21  | G22  | W12x16 | 9.21    | G22  | W12x16 | 9.21  | G22  | W12x16 | 9.21  |
| G23  | W18x35 | 22.40 | G23  | W18x35 | 22.40   | G23  | W18x35 | 22.40 | G23  | W18x35 | 22.40 |
| G24  | W16x31 | 21.21 | G24  | W16x31 | 21.21   | G24  | W16x31 | 21.21 | G24  | W16x31 | 21.21 |
| G25  | W14x26 | 10.00 | G25  | W14x26 | 10.00   | G25  | W14x26 | 10.00 | G25  | W14x26 | 10.00 |
|      |        |       |      |        | Floor 2 | -4   |        |       |      |        |       |
| G1   | W12x16 | 12.40 | G1   | W12x16 | 12.40   | G1   | W12x16 | 12.40 | G1   | W12x16 | 12.40 |
| G2   | W14x22 | 21.60 | G2   | W14x22 | 21.60   | G2   | W14x22 | 21.60 | G2   | W14x22 | 21.60 |
| G3   | W18x35 | 22.40 | G3   | W18x35 | 22.40   | G3   | W18x35 | 22.40 | G3   | W18x35 | 22.40 |
| G4   | W12x16 | 9.21  | G4   | W12x16 | 9.21    | G4   | W12x16 | 9.21  | G4   | W12x16 | 9.21  |
| G5   | W18x35 | 22.40 | G5   | W18x35 | 22.40   | G5   | W18x35 | 22.40 | G5   | W18x35 | 22.40 |
| G6   | W12x16 | 9.21  | G6   | W12x16 | 9.21    | G6   | W12x16 | 9.21  | G6   | W12x16 | 9.21  |
| G7   | W16x31 | 22.40 | G7   | W16x31 | 22.40   | G7   | W16x31 | 22.40 | G7   | W16x31 | 22.40 |
| G8   | W24x68 | 31.60 | G8   | W24x68 | 31.60   | G8   | W24x68 | 31.60 | G8   | W24x68 | 31.60 |
| G9   | W12x16 | 11.67 | G9   | W12x16 | 11.67   | G9   | W12x16 | 11.67 | G9   | W12x16 | 11.67 |
| G10  | W16x31 | 22.40 | G10  | W16x31 | 22.40   | G10  | W16x31 | 22.40 | G10  | W16x31 | 22.40 |
| G11  | W24x62 | 31.60 | G11  | W24x62 | 31.60   | G11  | W24x62 | 31.60 | G11  | W24x62 | 31.60 |
| G12  | W12x16 | 11.67 | G12  | W12x16 | 11.67   | G12  | W12x16 | 11.67 | G12  | W12x16 | 11.67 |
| G13  | W12x16 | 6.04  | G13  | W12x16 | 6.04    | G13  | W12x16 | 6.04  | G13  | W12x16 | 6.04  |
| G14  | W12x16 | 15.19 | G14  | W12x16 | 15.19   | G14  | W12x16 | 15.19 | G14  | W12x16 | 15.19 |
| G15  | W12x16 | 10.00 | G15  | W12x16 | 10.00   | G15  | W12x16 | 10.00 | G15  | W12x16 | 10.00 |
| G16  | W16x31 | 21.21 | G16  | W16x31 | 21.21   | G16  | W16x31 | 21.21 | G16  | W16x31 | 21.21 |
| G17  | W24x68 | 31.13 | G17  | W24x68 | 31.13   | G17  | W24x68 | 31.13 | G17  | W24x68 | 31.13 |
| G18  | W12x16 | 9.21  | G18  | W12x16 | 9.21    | G18  | W12x16 | 9.21  | G18  | W12x16 | 9.21  |
| G19  | W14x26 | 22.00 | G19  | W14x26 | 22.00   | G19  | W14x26 | 22.00 | G19  | W14x26 | 22.00 |
| G20  | W12x16 | 12.40 | G20  | W12x16 | 12.40   | G20  | W12x16 | 12.40 | G20  | W12x16 | 12.40 |
| G21  | W18x35 | 22.40 | G21  | W18x35 | 22.40   | G21  | W18x35 | 22.40 | G21  | W18x35 | 22.40 |
| G22  | W12x16 | 9.21  | G22  | W12x16 | 9.21    | G22  | W12x16 | 9.21  | G22  | W12x16 | 9.21  |
| G23  | W18x35 | 22.40 | G23  | W18x35 | 22.40   | G23  | W18x35 | 22.40 | G23  | W18x35 | 22.40 |
|      |        |       |      |        | Roof    |      |        |       |      |        |       |
| G1R  | W12x16 | 12.40 | G1R  | W12x16 | 12.40   | G1R  | W12x16 | 12.40 | G1R  | W12x16 | 12.40 |
| G2R  | W12x16 | 21.60 | G2R  | W12x16 | 21.60   | G2R  | W12x16 | 21.60 | G2R  | W14x22 | 21.60 |
| G3R  | W14x22 | 22.40 | G3R  | W14x22 | 22.40   | G3R  | W14x22 | 22.40 | G3R  | W14x30 | 22.40 |
| G4R  | W12x16 | 9.21  | G4R  | W12x16 | 9.21    | G4R  | W12x16 | 9.21  | G4R  | W12x16 | 9.21  |
| G5R  | W14x22 | 22.40 | G5R  | W14x22 | 22.40   | G5R  | W14x22 | 22.40 | G5R  | W14x30 | 22.40 |
| G6R  | W12x16 | 9.21  | G6R  | W12x16 | 9.21    | G6R  | W12x16 | 9.21  | G6R  | W12x16 | 9.21  |
| G7R  | W14x22 | 22.40 | G7R  | W14x22 | 22.40   | G7R  | W14x22 | 22.40 | G7R  | W14x26 | 22.40 |
| G8R  | W21x55 | 31.60 | G8R  | W21x55 | 31.60   | G8R  | W21x55 | 31.60 | G8R  | W21x55 | 31.60 |
| G9R  | W12x16 | 11.67 | G9R  | W12x16 | 11.67   | G9R  | W12x16 | 11.67 | G9R  | W12x16 | 11.67 |
| G10R | W14x22 | 22.40 | G10R | W14x22 | 22.40   | G10R | W14x22 | 22.40 | G10R | W14x26 | 22.40 |
| G11R | W21x55 | 31.60 | G11R | W21x55 | 31.60   | G11R | W21x55 | 31.60 | G11R | W21x55 | 31.60 |
| G12R | W12x16 | 11.67 | G12R | W12x16 | 11.67   | G12R | W12x16 | 11.67 | G12R | W12x16 | 11.67 |

| G13R | W12x16 | 6.04  | G13R   | W12x16      | 6.04  | G13R   | W12x16     | 6.04  | G13R   | W12x16     | 6.04  |
|------|--------|-------|--------|-------------|-------|--------|------------|-------|--------|------------|-------|
| G14R | W12x16 | 15.19 | G14R   | W12x16      | 15.19 | G14R   | W12x16     | 15.19 | G14R   | W12x16     | 15.19 |
| G15R | W12x16 | 10.00 | G15R   | W12x16      | 10.00 | G15R   | W12x16     | 10.00 | G15R   | W12x16     | 10.00 |
| G16R | W14x22 | 21.21 | G16R   | W14x22      | 21.21 | G16R   | W14x22     | 21.21 | G16R   | W14x26     | 21.21 |
| G17R | W21x55 | 31.13 | G17R   | W21x55      | 31.13 | G17R   | W21x55     | 31.13 | G17R   | W21x62     | 31.13 |
| G18R | W12x16 | 9.21  | G18R   | W12x16      | 9.21  | G18R   | W12x16     | 9.21  | G18R   | W12x16     | 9.21  |
| G19R | W12x19 | 22.00 | G19R   | W12x19      | 22.00 | G19R   | W12x19     | 22.00 | G19R   | W14x22     | 22.00 |
| G20R | W12x16 | 12.40 | G20R   | W12x16      | 12.40 | G20R   | W12x16     | 12.40 | G20R   | W12x16     | 12.40 |
| G21R | W14x22 | 22.40 | G21R   | W14x22      | 22.40 | G21R   | W14x22     | 22.40 | G21R   | W14x30     | 22.40 |
| G22R | W12x16 | 9.21  | G22R   | W12x16      | 9.21  | G22R   | W12x16     | 9.21  | G22R   | W12x16     | 9.21  |
| G23R | W14x22 | 22.40 | G23R   | W14x22      | 22.40 | G23R   | W14x22     | 22.40 | G23R   | W14x30     | 22.40 |
| F1   | -      | -     | F1*    | W21x62      | -     | F1     | W18x40     | -     | F1*    | W21x44     | -     |
| F2   | -      | -     | F2*    | W21x62      | -     | F2     | W18x40     | -     | F2*    | W21x44     | -     |
| F3   | -      | -     | F3*    | W21x62      | -     | F3*    | W18x40     | -     | F3*    | W21x44     | -     |
| F4   | -      | -     | F4*    | W21x62      | -     | F4     | W14x22     | -     | F4*    | W18x40     | -     |
| F5   | -      | -     | F5*    | W21x68      | -     | F5*    | W18x40     | -     | F5*    | W21x44     | -     |
| F6   | -      | -     | F6*    | W21x62      | -     | F6     | W14x26     | -     | F6*    | W21x44     | -     |
| F7   | -      | -     | F7*    | W21x62      | -     | F7     | W14x26     | -     | F7*    | W21x44     | -     |
| F8   | -      | -     | F8*    | W21x62      | -     | F8     | W14x22     | -     | F8*    | W14x22     | -     |
| C1   | -      | -     | C1     | W14x109     | -     | C1     | W12x50     | -     | C1     | W14x82     | -     |
| C2   | -      | -     | C2     | W14x120     | -     | C2     | W12x40     | -     | C2     | W14x82     | -     |
| C3   | -      | -     | C3     | W14x120     | -     | C3     | W12x50     | -     | C3     | W14x82     | -     |
| C4   | -      | -     | C4     | W14x109     | -     | C4     | W12x40     | -     | C4     | W12x50     | -     |
| C5   | -      | -     | C5     | W14x132     | -     | C5     | W12x50     | -     | C5     | W14x82     | -     |
| C6   | -      | -     | C6     | W14x109     | -     | C6     | W12x40     | -     | C6     | W14x65     | -     |
| C7   | -      | -     | C7     | W14x109     | -     | C7     | W12x40     | -     | C7     | W14x82     | -     |
| C8   | -      | -     | C8     | W14x120     | -     | C8     | W12x40     | -     | C8     | W12x40     | -     |
|      |        |       | * = Cr | oss-Bracing | 5     | * = Cr | oss-Bracir | lg    | * = Cr | oss-Bracin | g     |

| Case  |        |             | Case 4 (   | General | Cost   |       |          |            |
|-------|--------|-------------|------------|---------|--------|-------|----------|------------|
| Labol | Weight | Longth (ft) | Cost/ton   | # per   | # of   | Total | Longth   | Total Cost |
| Label | weight | Length (It) | COST/ LOII | Floor   | Floors | TOtal | Length   | Total Cost |
|       |        |             | В          | eams    |        |       |          |            |
|       | 1      |             | F          | loor 1  |        |       |          |            |
| B1    | 19     | 14.63       | 3100.00    | 15      | 1      | 15    | 219      | \$6461     |
| B2    | 40     | 17.21       | 3100.00    | 28      | 1      | 28    | 482      | \$29874    |
| B3    | 19     | 13.71       | 3100.00    | 28      | 1      | 28    | 384      | \$11304    |
| B4    | 22     | 15.13       | 3100.00    | 28      | 1      | 28    | 424      | \$14441    |
| B5    | 19     | 14.63       | 3100.00    | 6       | 1      | 6     | 88       | \$2584     |
| B6    | 16     | 10.00       | 3100.00    | 14      | 1      | 14    | 140      | \$3472     |
| B7    | 22     | 15.71       | 3100.00    | 36      | 1      | 36    | 566      | \$19286    |
|       |        |             | Fle        | oor 2-4 |        |       |          |            |
| B1    | 19     | 14.63       | 3100.00    | 15      | 3      | 45    | 658      | \$19382    |
| B2    | 40     | 17.21       | 3100.00    | 28      | 3      | 84    | 1446     | \$89621    |
| B3    | 19     | 13.71       | 3100.00    | 28      | 3      | 84    | 1152     | \$33912    |
| B4    | 22     | 15.13       | 3100.00    | 28      | 3      | 84    | 1271     | \$43324    |
| B5    | 19     | 14.63       | 3100.00    | 6       | 3      | 18    | 263      | \$7753     |
| B6    | 16     | 10.00       | 3100.00    | 14      | 3      | 42    | 420      | \$10416    |
| B7    | 26     | 15.71       | 3100.00    | 42      | 3      | 126   | 1979     | \$79772    |
|       |        |             |            | Roof    |        |       |          |            |
| B1R   | 16     | 14.63       | 3100.00    | 15      | 1      | 15    | 219      | \$5441     |
| B2R   | 35     | 17.21       | 3100.00    | 28      | 1      | 28    | 482      | \$26139    |
| B3R   | 16     | 13.71       | 3100.00    | 28      | 1      | 28    | 384      | \$9519     |
| B4R   | 22     | 15.13       | 3100.00    | 28      | 1      | 28    | 424      | \$14441    |
| B5R   | 16     | 14.63       | 3100.00    | 6       | 1      | 6     | 88       | \$2176     |
| B6R   | 16     | 10.00       | 3100.00    | 14      | 1      | 14    | 140      | \$3472     |
| B7R   | 22     | 15.71       | 3100.00    | 42      | 1      | 42    | 660      | \$22500    |
|       |        |             |            |         |        | То    | tal Cost | \$455289   |
|       |        |             | C          | Girder  |        |       |          |            |
|       |        |             | F          | loor 1  |        |       |          |            |
| G1    | 16     | 12.40       | 3100.00    | 3       | 1      | 3     | 37       | \$922      |
| G2    | 22     | 21.60       | 3100.00    | 3       | 1      | 3     | 65       | \$2210     |
| G3    | 35     | 22.40       | 3100.00    | 6       | 1      | 6     | 134      | \$7290     |
| G4    | 16     | 9.21        | 3100.00    | 3       | 1      | 3     | 28       | \$685      |
| G5    | 35     | 22.40       | 3100.00    | 8       | 1      | 8     | 179      | \$9720     |
| G6    | 16     | 9.21        | 3100.00    | 4       | 1      | 4     | 37       | \$913      |
| G7    | 31     | 22.40       | 3100.00    | 4       | 1      | 4     | 90       | \$4304     |
| G8    | 68     | 31.60       | 3100.00    | 4       | 1      | 4     | 126      | \$13324    |
| G9    | 16     | 11.67       | 3100.00    | 4       | 1      | 4     | 47       | \$1157     |
| G10   | 31     | 22.40       | 3100.00    | 4       | 1      | 4     | 90       | \$4304     |
| G11   | 62     | 31.60       | 3100.00    | 4       | 1      | 4     | 126      | \$12149    |
| G12   | 16     | 11.67       | 3100.00    | 4       | 1      | 4     | 47       | \$1157     |
| G13   | 16     | 6.04        | 3100.00    | 2       | 1      | 2     | 12       | \$300      |
| G14   | 16     | 15.19       | 3100.00    | 2       | 1      | 2     | 30       | \$753      |

| G15 | 16 | 10.00 | 3100.00 | 2       | 1 | 2  | 20  | \$496   |
|-----|----|-------|---------|---------|---|----|-----|---------|
| G16 | 16 | 15.19 | 3100.00 | 2       | 1 | 2  | 30  | \$753   |
| G17 | 16 | 6.04  | 3100.00 | 2       | 1 | 2  | 12  | \$300   |
| G18 | 16 | 9.21  | 3100.00 | 1       | 1 | 1  | 9   | \$228   |
| G19 | 26 | 22.00 | 3100.00 | 1       | 1 | 1  | 22  | \$887   |
| G20 | 16 | 12.40 | 3100.00 | 1       | 1 | 1  | 12  | \$307   |
| G21 | 35 | 22.40 | 3100.00 | 1       | 1 | 1  | 22  | \$1215  |
| G22 | 16 | 9.21  | 3100.00 | 1       | 1 | 1  | 9   | \$228   |
| G23 | 35 | 22.40 | 3100.00 | 1       | 1 | 1  | 22  | \$1215  |
| G24 | 31 | 21.21 | 3100.00 | 5       | 1 | 5  | 106 | \$5095  |
| G25 | 26 | 10.00 | 3100.00 | 5       | 1 | 5  | 50  | \$2015  |
|     |    |       | Flo     | oor 2-4 |   |    |     |         |
| G1  | 16 | 12.40 | 3100.00 | 3       | 3 | 9  | 112 | \$2767  |
| G2  | 22 | 21.60 | 3100.00 | 3       | 3 | 9  | 194 | \$6630  |
| G3  | 35 | 22.40 | 3100.00 | 6       | 3 | 18 | 403 | \$21870 |
| G4  | 16 | 9.21  | 3100.00 | 3       | 3 | 9  | 83  | \$2055  |
| G5  | 35 | 22.40 | 3100.00 | 8       | 3 | 24 | 538 | \$29159 |
| G6  | 16 | 9.21  | 3100.00 | 4       | 3 | 12 | 111 | \$2740  |
| G7  | 31 | 22.40 | 3100.00 | 4       | 3 | 12 | 269 | \$12913 |
| G8  | 68 | 31.60 | 3100.00 | 4       | 3 | 12 | 379 | \$39973 |
| G9  | 16 | 11.67 | 3100.00 | 4       | 3 | 12 | 140 | \$3472  |
| G10 | 31 | 22.40 | 3100.00 | 4       | 3 | 12 | 269 | \$12913 |
| G11 | 62 | 31.60 | 3100.00 | 4       | 3 | 12 | 379 | \$36446 |
| G12 | 16 | 11.67 | 3100.00 | 4       | 3 | 12 | 140 | \$3472  |
| G13 | 16 | 6.04  | 3100.00 | 4       | 3 | 12 | 73  | \$1798  |
| G14 | 16 | 15.19 | 3100.00 | 4       | 3 | 12 | 182 | \$4520  |
| G15 | 16 | 10.00 | 3100.00 | 2       | 3 | 6  | 60  | \$1488  |
| G16 | 31 | 21.21 | 3100.00 | 4       | 3 | 12 | 255 | \$12229 |
| G17 | 68 | 31.13 | 3100.00 | 4       | 3 | 12 | 374 | \$39367 |
| G18 | 16 | 9.21  | 3100.00 | 1       | 3 | 3  | 28  | \$685   |
| G19 | 26 | 22.00 | 3100.00 | 1       | 3 | 3  | 66  | \$2660  |
| G20 | 16 | 12.40 | 3100.00 | 1       | 3 | 3  | 37  | \$922   |
| G21 | 35 | 22.40 | 3100.00 | 1       | 3 | 3  | 67  | \$3645  |
| G22 | 16 | 9.21  | 3100.00 | 1       | 3 | 3  | 28  | \$685   |
| G23 | 35 | 22.40 | 3100.00 | 1       | 3 | 3  | 67  | \$3645  |
|     |    |       |         | Roof    |   |    |     |         |
| G1R | 16 | 12.40 | 3100.00 | 3       | 1 | 3  | 37  | \$922   |
| G2R | 16 | 21.60 | 3100.00 | 3       | 1 | 3  | 65  | \$1607  |
| G3R | 22 | 22.40 | 3100.00 | 6       | 1 | 6  | 134 | \$4582  |
| G4R | 16 | 9.21  | 3100.00 | 3       | 1 | 3  | 28  | \$685   |
| G5R | 22 | 22.40 | 3100.00 | 8       | 1 | 8  | 179 | \$6110  |
| G6R | 16 | 9.21  | 3100.00 | 4       | 1 | 4  | 37  | \$913   |
| G7R | 22 | 22.40 | 3100.00 | 4       | 1 | 4  | 90  | \$3055  |
| G8R | 55 | 31.60 | 3100.00 | 4       | 1 | 4  | 126 | \$10777 |
| G9R | 16 | 11.67 | 3100.00 | 4       | 1 | 4  | 47  | \$1157  |

| G10R | 22 | 22.40 | 3100.00 | 4      | 1 | 4   | 90       | \$3055    |
|------|----|-------|---------|--------|---|-----|----------|-----------|
| G11R | 55 | 31.60 | 3100.00 | 4      | 1 | 4   | 126      | \$10777   |
| G12R | 16 | 11.67 | 3100.00 | 4      | 1 | 4   | 47       | \$1157    |
| G13R | 16 | 6.04  | 3100.00 | 4      | 1 | 4   | 24       | \$599     |
| G14R | 16 | 15.19 | 3100.00 | 4      | 1 | 4   | 61       | \$1507    |
| G15R | 16 | 10.00 | 3100.00 | 2      | 1 | 2   | 20       | \$496     |
| G16R | 22 | 21.21 | 3100.00 | 4      | 1 | 4   | 85       | \$2893    |
| G17R | 55 | 31.13 | 3100.00 | 4      | 1 | 4   | 125      | \$10614   |
| G18R | 16 | 9.21  | 3100.00 | 1      | 1 | 1   | 9        | \$228     |
| G19R | 19 | 22.00 | 3100.00 | 1      | 1 | 1   | 22       | \$648     |
| G20R | 16 | 12.40 | 3100.00 | 1      | 1 | 1   | 12       | \$307     |
| G21R | 22 | 22.40 | 3100.00 | 1      | 1 | 1   | 22       | \$764     |
| G22R | 16 | 9.21  | 3100.00 | 1      | 1 | 1   | 9        | \$228     |
| G23R | 22 | 22.40 | 3100.00 | 1      | 1 | 1   | 22       | \$764     |
|      |    |       |         |        |   | То  | tal Cost | \$309901  |
|      |    |       | Cc      | olumns |   |     |          |           |
| С    | 33 | 10    | 3100    | 96     | 5 | 480 | 4800     | \$245520  |
|      |    |       |         |        |   | То  | tal Cost | \$1010710 |

|       | We             | ight (Lb | /ft)   |                |              |                |                |         |         |                | Total Cost |          |
|-------|----------------|----------|--------|----------------|--------------|----------------|----------------|---------|---------|----------------|------------|----------|
| Label | Los<br>Angeles | Miami    | Boston | Length<br>(ft) | Cost/<br>ton | # per<br>Floor | # of<br>Floors | Total   | Length  | Los<br>Angeles | Miami      | Boston   |
|       |                |          |        |                |              | В              | eams           |         |         |                |            |          |
|       |                |          |        |                |              | F              | loor 1         |         |         |                |            |          |
| B1    | 19             | 19       | 19     | 14.63          | 3100         | 15             | 1              | 15      | 219     | \$6461         | \$6461     | \$6461   |
| B2    | 40             | 40       | 40     | 17.21          | 3100         | 20             | 1              | 20      | 344     | \$21338        | \$21338    | \$21338  |
| B3    | 19             | 19       | 19     | 13.71          | 3100         | 20             | 1              | 20      | 274     | \$8074         | \$8074     | \$8074   |
| B4    | 22             | 22       | 22     | 15.13          | 3100         | 24             | 1              | 24      | 363     | \$12378        | \$12378    | \$12378  |
| B5    | 19             | 19       | 19     | 14.63          | 3100         | 5              | 1              | 5       | 73      | \$2154         | \$2154     | \$2154   |
| B6    | 16             | 16       | 16     | 10.00          | 3100         | 14             | 1              | 14      | 140     | \$3472         | \$3472     | \$3472   |
| B7    | 22             | 22       | 22     | 15.71          | 3100         | 24             | 1              | 24      | 377     | \$12857        | \$12857    | \$12857  |
|       |                |          |        |                |              | Fle            | oor 2-4        |         |         |                |            |          |
| B1    | 19             | 19       | 19     | 14.63          | 3100         | 15             | 3              | 45      | 658     | \$19382        | \$19382    | \$19382  |
| B2    | 40             | 40       | 40     | 17.21          | 3100         | 20             | 3              | 60      | 1033    | \$64015        | \$64015    | \$64015  |
| B3    | 19             | 19       | 19     | 13.71          | 3100         | 20             | 3              | 60      | 823     | \$24223        | \$24223    | \$24223  |
| B4    | 22             | 22       | 22     | 15.13          | 3100         | 24             | 3              | 72      | 1089    | \$37135        | \$37135    | \$37135  |
| B5    | 19             | 19       | 19     | 14.63          | 3100         | 5              | 3              | 15      | 219     | \$6461         | \$6461     | \$6461   |
| B6    | 16             | 16       | 16     | 10.00          | 3100         | 14             | 3              | 42      | 420     | \$10416        | \$10416    | \$10416  |
| B7    | 26             | 26       | 26     | 15.71          | 3100         | 30             | 3              | 90      | 1414    | \$56980        | \$56980    | \$56980  |
|       |                |          |        |                |              |                | Roof           |         |         |                |            |          |
| B1R   | 16             | 16       | 16     | 14.63          | 3100         | 15             | 1              | 15      | 219     | \$5441         | \$5441     | \$5441   |
| B2R   | 35             | 35       | 35     | 17.21          | 3100         | 20             | 1              | 20      | 344     | \$18671        | \$18671    | \$18671  |
| B3R   | 16             | 16       | 16     | 13.71          | 3100         | 20             | 1              | 20      | 274     | \$6799         | \$6799     | \$6799   |
| B4R   | 22             | 22       | 22     | 15.13          | 3100         | 24             | 1              | 24      | 363     | \$12378        | \$12378    | \$12378  |
| B5R   | 16             | 16       | 16     | 14.63          | 3100         | 5              | 1              | 5       | 73      | \$1814         | \$1814     | \$1814   |
| B6R   | 16             | 16       | 16     | 10.00          | 3100         | 14             | 1              | 14      | 140     | \$3472         | \$3472     | \$3472   |
| B7R   | 22             | 22       | 22     | 15.71          | 3100         | 30             | 1              | 30      | 471     | \$16071        | \$16071    | \$16071  |
|       |                |          |        |                | Total (      | Cost wi        | ithout L       | ocation | Factors | \$349991       | \$349991   | \$349991 |
|       |                |          |        |                | Tot          | tal Cos        | t with L       | ocation | Factors | \$377990       | \$349991   | \$479488 |
|       |                |          |        |                |              | G              | irders         |         |         |                |            |          |
|       |                |          |        |                |              | F              | loor 1         |         |         |                |            |          |
| G1    | 16             | 16       | 16     | 12.40          | 3100         | 0              | 1              | 0       | 0       | \$             | \$         | \$       |
| G2    | 22             | 22       | 22     | 21.60          | 3100         | 0              | 1              | 0       | 0       | \$             | \$         | \$       |
| G3    | 35             | 35       | 35     | 22.40          | 3100         | 6              | 1              | 6       | 134     | \$7290         | \$7290     | \$7290   |
| G4    | 16             | 16       | 16     | 9.21           | 3100         | 3              | 1              | 3       | 28      | \$685          | \$685      | \$685    |
| G5    | 35             | 35       | 35     | 22.40          | 3100         | 8              | 1              | 8       | 179     | \$9720         | \$9720     | \$9720   |
| G6    | 16             | 16       | 16     | 9.21           | 3100         | 4              | 1              | 4       | 37      | \$913          | \$913      | \$913    |
| G7    | 31             | 31       | 31     | 22.40          | 3100         | 4              | 1              | 4       | 90      | \$4304         | \$4304     | \$4304   |
| G8    | 68             | 68       | 68     | 31.60          | 3100         | 4              | 1              | 4       | 126     | \$13324        | \$13324    | \$13324  |
| G9    | 16             | 16       | 16     | 11.67          | 3100         | 4              | 1              | 4       | 47      | \$1157         | \$1157     | \$1157   |
| G10   | 31             | 31       | 31     | 22.40          | 3100         | 4              | 1              | 4       | 90      | \$4304         | \$4304     | \$4304   |
| G11   | 62             | 62       | 62     | 31.60          | 3100         | 4              | 1              | 4       | 126     | \$12149        | \$12149    | \$12149  |
| G12   | 16             | 16       | 16     | 11.67          | 3100         | 2              | 1              | 2       | 23      | \$579          | \$579      | \$579    |
| G13   | 16             | 16       | 16     | 6.04           | 3100         | 0              | 1              | 0       | 0       | \$             | \$         | \$       |

| G14 | 16 | 16          | 16 | 15.19 | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
|-----|----|-------------|----|-------|------|-----|---------|----|-----|---------|---------|---------|
| G15 | 16 | 16          | 16 | 10.00 | 3100 | 2   | 1       | 2  | 20  | \$496   | \$496   | \$496   |
| G16 | 16 | 16          | 16 | 15.19 | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G17 | 16 | 16          | 16 | 6.04  | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G18 | 16 | 16          | 16 | 9.21  | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G19 | 26 | 26          | 26 | 22.00 | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G20 | 16 | 16          | 16 | 12.40 | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G21 | 35 | 35          | 35 | 22.40 | 3100 | 1   | 1       | 1  | 22  | \$1215  | \$1215  | \$1215  |
| G22 | 16 | 16          | 16 | 9.21  | 3100 | 1   | 1       | 1  | 9   | \$228   | \$228   | \$228   |
| G23 | 35 | 35          | 35 | 22.40 | 3100 | 1   | 1       | 1  | 22  | \$1215  | \$1215  | \$1215  |
| G24 | 31 | 31          | 31 | 21.21 | 3100 | 4   | 1       | 4  | 85  | \$4076  | \$4076  | \$4076  |
| G25 | 26 | 26          | 26 | 10.00 | 3100 | 4   | 1       | 4  | 40  | \$1612  | \$1612  | \$1612  |
|     |    | <del></del> |    |       |      | Flo | oor 2-4 |    |     |         |         |         |
| G1  | 16 | 16          | 16 | 12.40 | 3100 | 0   | 3       | 0  | 0   | \$      | \$      | \$      |
| G2  | 22 | 22          | 22 | 21.60 | 3100 | 0   | 3       | 0  | 0   | \$      | \$      | \$      |
| G3  | 35 | 35          | 35 | 22.40 | 3100 | 6   | 3       | 18 | 403 | \$21870 | \$21870 | \$21870 |
| G4  | 16 | 16          | 16 | 9.21  | 3100 | 3   | 3       | 9  | 83  | \$2055  | \$2055  | \$2055  |
| G5  | 35 | 35          | 35 | 22.40 | 3100 | 8   | 3       | 24 | 538 | \$29159 | \$29159 | \$29159 |
| G6  | 16 | 16          | 16 | 9.21  | 3100 | 4   | 3       | 12 | 111 | \$2740  | \$2740  | \$2740  |
| G7  | 31 | 31          | 31 | 22.40 | 3100 | 4   | 3       | 12 | 269 | \$12913 | \$12913 | \$12913 |
| G8  | 38 | 38          | 38 | 31.60 | 3100 | 4   | 3       | 12 | 379 | \$22338 | \$22338 | \$22338 |
| G9  | 16 | 16          | 16 | 11.67 | 3100 | 4   | 3       | 12 | 140 | \$3472  | \$3472  | \$3472  |
| G10 | 31 | 31          | 31 | 22.40 | 3100 | 4   | 3       | 12 | 269 | \$12913 | \$12913 | \$12913 |
| G11 | 62 | 62          | 62 | 31.60 | 3100 | 4   | 3       | 12 | 379 | \$36446 | \$36446 | \$36446 |
| G12 | 16 | 16          | 16 | 11.67 | 3100 | 4   | 3       | 12 | 140 | \$3472  | \$3472  | \$3472  |
| G13 | 16 | 16          | 16 | 6.04  | 3100 | 0   | 3       | 0  | 0   | \$      | \$      | \$      |
| G14 | 16 | 16          | 16 | 15.19 | 3100 | 0   | 3       | 0  | 0   | \$      | \$      | \$      |
| G15 | 16 | 16          | 16 | 10.00 | 3100 | 2   | 3       | 6  | 60  | \$1488  | \$1488  | \$1488  |
| G16 | 31 | 31          | 31 | 21.21 | 3100 | 4   | 3       | 12 | 255 | \$12229 | \$12229 | \$12229 |
| G17 | 68 | 68          | 68 | 31.13 | 3100 | 5   | 3       | 15 | 467 | \$49209 | \$49209 | \$49209 |
| G18 | 16 | 16          | 16 | 9.21  | 3100 | 0   | 3       | 0  | 0   | \$      | \$      | \$      |
| G19 | 26 | 26          | 26 | 22.00 | 3100 | 0   | 3       | 0  | 0   | \$      | \$      | \$      |
| G20 | 16 | 16          | 16 | 12.40 | 3100 | 1   | 3       | 3  | 37  | \$922   | \$922   | \$922   |
| G21 | 35 | 35          | 35 | 22.40 | 3100 | 1   | 3       | 3  | 67  | \$3645  | \$3645  | \$3645  |
| G22 | 16 | 16          | 16 | 9.21  | 3100 | 1   | 3       | 3  | 28  | \$685   | \$685   | \$685   |
| G23 | 35 | 35          | 35 | 22.40 | 3100 | 1   | 3       | 3  | 67  | \$3645  | \$3645  | \$3645  |
|     |    |             |    |       |      |     | Roof    |    |     |         |         |         |
| G1R | 16 | 16          | 16 | 12.40 | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G2R | 16 | 16          | 22 | 21.60 | 3100 | 0   | 1       | 0  | 0   | \$      | \$      | \$      |
| G3R | 22 | 22          | 30 | 22.40 | 3100 | 6   | 1       | 6  | 134 | \$4582  | \$4582  | \$6248  |
| G4R | 16 | 16          | 16 | 9.21  | 3100 | 3   | 1       | 3  | 28  | \$685   | \$685   | \$685   |
| G5R | 22 | 22          | 30 | 22.40 | 3100 | 8   | 1       | 8  | 179 | \$6110  | \$6110  | \$8331  |
| G6R | 16 | 16          | 16 | 9.21  | 3100 | 4   | 1       | 4  | 37  | \$913   | \$913   | \$913   |
| G7R | 22 | 22          | 26 | 22.40 | 3100 | 4   | 1       | 4  | 90  | \$3055  | \$3055  | \$3610  |
| G8R | 55 | 55          | 55 | 31.60 | 3100 | 4   | 1       | 4  | 126 | \$10777 | \$10777 | \$10777 |

| G9R  | 16  | 16 | 16 | 11.67 | 3100    | 4        | 1        | 4       | 47      | \$1157   | \$1157   | \$1157   |
|------|-----|----|----|-------|---------|----------|----------|---------|---------|----------|----------|----------|
| G10R | 22  | 22 | 26 | 22.40 | 3100    | 4        | 1        | 4       | 90      | \$3055   | \$3055   | \$3610   |
| G11R | 55  | 55 | 55 | 31.60 | 3100    | 4        | 1        | 4       | 126     | \$10777  | \$10777  | \$10777  |
| G12R | 16  | 16 | 16 | 11.67 | 3100    | 4        | 1        | 4       | 47      | \$1157   | \$1157   | \$1157   |
| G13R | 16  | 16 | 16 | 6.04  | 3100    | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G14R | 16  | 16 | 16 | 15.19 | 3100    | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G15R | 16  | 16 | 16 | 10.00 | 3100    | 2        | 1        | 2       | 20      | \$496    | \$496    | \$496    |
| G16R | 22  | 22 | 26 | 21.21 | 3100    | 4        | 1        | 4       | 85      | \$2893   | \$2893   | \$3419   |
| G17R | 55  | 55 | 62 | 31.13 | 3100    | 5        | 1        | 5       | 156     | \$13267  | \$13267  | \$14956  |
| G18R | 16  | 16 | 16 | 9.21  | 3100    | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G19R | 19  | 19 | 22 | 22.00 | 3100    | 0        | 1        | 0       | 0       | \$       | \$       | \$       |
| G20R | 16  | 16 | 16 | 12.40 | 3100    | 1        | 1        | 1       | 12      | \$307    | \$307    | \$307    |
| G21R | 22  | 22 | 30 | 22.40 | 3100    | 1        | 1        | 1       | 22      | \$764    | \$764    | \$1041   |
| G22R | 16  | 16 | 16 | 9.21  | 3100    | 1        | 1        | 1       | 9       | \$228    | \$228    | \$228    |
| G23R | 22  | 22 | 30 | 22.40 | 3100    | 1        | 1        | 1       | 22      | \$764    | \$764    | \$1041   |
|      |     |    |    |       | Total C | Cost wi  | thout L  | ocation | Factors | \$280189 | \$280189 | \$287958 |
|      |     |    |    |       | Tot     | tal Cost | t with L | ocation | Factors | \$302605 | \$280189 | \$394503 |
|      |     |    |    |       |         | F        | rames    |         |         |          |          |          |
| F1*  | 62  | 40 | 44 | 14.63 | 3100    | 1        | 5        | 5       | 73      | \$7030   | \$4535   | \$4989   |
|      | 62  | 40 | 44 | 17.21 | 3100    | 4        | 5        | 20      | 344     | \$33074  | \$21338  | \$23472  |
|      | 62  | 40 | 44 | 13.71 | 3100    | 4        | 5        | 20      | 274     | \$26347  | \$16998  | \$18698  |
|      | 62  | 40 | 44 | 15.13 | 3100    | 4        | 5        | 20      | 303     | \$29070  | \$18755  | \$20631  |
| F2*  | 62  | 40 | 44 | 14.63 | 3100    | 4        | 5        | 20      | 293     | \$28119  | \$18141  | \$19955  |
|      | 62  | 40 | 44 | 17.21 | 3100    | 4        | 5        | 20      | 344     | \$33074  | \$21338  | \$23472  |
|      | 62  | 40 | 44 | 13.71 | 3100    | 4        | 5        | 20      | 274     | \$26347  | \$16998  | \$18698  |
|      | 62  | 40 | 44 | 15.13 | 3100    | 4        | 5        | 20      | 303     | \$29070  | \$18755  | \$20631  |
| F3*  | 62  | 40 | 44 | 17.21 | 3100    | 4        | 5        | 20      | 344     | \$33074  | \$21338  | \$23472  |
|      | 62  | 40 | 44 | 13.71 | 3100    | 4        | 5        | 20      | 274     | \$26347  | \$16998  | \$18698  |
| F4*  | 62  | 22 | 40 | 6.04  | 3100    | 4        | 5        | 20      | 121     | \$11612  | \$4120   | \$7492   |
|      | 62  | 22 | 40 | 15.19 | 3100    | 4        | 5        | 20      | 304     | \$29190  | \$10358  | \$18833  |
| F5*  | 68  | 40 | 44 | 21.21 | 3100    | 4        | 5        | 20      | 424     | \$44707  | \$26298  | \$28928  |
| F6*  | 62  | 26 | 44 | 9.21  | 3100    | 1        | 5        | 5       | 46      | \$4425   | \$1855   | \$3140   |
|      | 62  | 26 | 44 | 22.00 | 3100    | 4        | 5        | 20      | 440     | \$42284  | \$17732  | \$30008  |
|      | 62  | 26 | 44 | 12.40 | 3100    | 4        | 5        | 20      | 248     | \$23825  | \$9991   | \$16908  |
| F7*  | 62  | 26 | 44 | 15.71 | 3100    | 12       | 5        | 60      | 943     | \$90584  | \$37987  | \$64285  |
| F8*  | 62  | 22 | 22 | 15.71 | 3100    | 6        | 5        | 30      | 471     | \$45292  | \$16071  | \$16071  |
|      | 62  | 22 | 22 | 11.67 | 3100    | 2        | 5        | 10      | 117     | \$11215  | \$3979   | \$3979   |
|      |     |    |    |       | Total C | Cost wi  | thout L  | ocation | Factors | \$574688 | \$303589 | \$382361 |
|      |     |    |    |       | Tot     | tal Cost | t with L | ocation | Factors | \$620663 | \$303589 | \$523834 |
|      |     |    |    |       |         | Co       | olumns   |         |         |          |          |          |
| С    | 33  | 33 | 33 | 10    | 3100    | 8        | 5        | 40      | 400     | \$20460  | \$20460  | \$20460  |
| C1   | 109 | 50 | 82 | 10    | 3100    | 17       | 5        | 85      | 850     | \$143608 | \$65875  | \$108035 |
| C2   | 120 | 40 | 82 | 10    | 3100    | 20       | 5        | 100     | 1000    | \$186000 | \$62000  | \$127100 |
| C3   | 120 | 50 | 82 | 10    | 3100    | 12       | 5        | 60      | 600     | \$111600 | \$46500  | \$76260  |
| C4   | 109 | 40 | 50 | 10    | 3100    | 6        | 5        | 30      | 300     | \$50685  | \$18600  | \$23250  |

| C5    | 132      | 50        | 82        | 10        | 3100        | 2       | 5           | 10      | 100     | \$20460    | \$7750    | \$12710   |  |
|-------|----------|-----------|-----------|-----------|-------------|---------|-------------|---------|---------|------------|-----------|-----------|--|
| C6    | 109      | 40        | 65        | 10        | 3100        | 8       | 5           | 40      | 400     | \$67580    | \$24800   | \$40300   |  |
| C7    | 109      | 40        | 82        | 10        | 3100        | 13      | 5           | 65      | 650     | \$109818   | \$40300   | \$82615   |  |
| C8    | 120      | 40        | 40        | 10        | 3100        | 8       | 5           | 40      | 400     | \$74400    | \$24800   | \$24800   |  |
|       | <u>.</u> |           |           | 1         | Total C     | Cost wi | thout L     | ocation | Factors | \$784610   | \$311085  | \$515530  |  |
|       |          |           |           |           | Tot         | al Cost | t with L    | ocation | Factors | \$847379   | \$311085  | \$706276  |  |
|       |          |           |           |           |             | Cros    | s Bean      | าร      |         |            |           |           |  |
|       | We       | ight (Lb, | /ft)      |           | Length/ Bay |         |             |         |         | Total Cost |           |           |  |
| Labal | Los      |           | Destau    | Length    | Cost/       |         |             |         | Destau  | Los        |           | Destan    |  |
| Label | Angeles  | iviiami   | Boston    | (ft)      | ton         | LOS A   | LUS Angeles |         | Boston  | Angeles    | iviiami   | Boston    |  |
| X1    | 26       | -         | 22        | 19.90     | 3100        | 199     |             | -       | 59.7    | \$32079    | -         | \$8143    |  |
|       | 26       | -         | -         | 16.97     | 3100        | 169.7   |             | -       | -       | \$27356    | -         | -         |  |
|       | 26       | -         | 22        | 18.13     | 3100        | 18      | 181.3       |         | 54.39   | \$29226    | -         | \$7419    |  |
| X2    | 26       | -         | 22        | 17.72     | 3100        | 17      | 7.2         | -       | 53.16   | \$28565    | -         | \$7251    |  |
|       | 26       | -         | -         | 19.9      | 3100        | 99      | 9.5         | -       | -       | \$16039    | -         | -         |  |
|       | 26       | -         | 22        | 16.97     | 3100        | 16      | 9.7         | -       | 50.91   | \$27356    | -         | \$6944    |  |
|       | 26       | -         | -         | 18.13     | 3100        | 90      | .65         | -       | -       | \$14613    | -         | -         |  |
| Х3    | 35       | 16        | 22        | 19.9      | 3100        | 1       | 99          | 59.7    | 59.7    | \$43183    | \$5922    | \$8143    |  |
|       | 35       | -         | 22        | 16.97     | 3100        | 16      | 169.7       |         | 33.94   | \$36825    | -         | \$4629    |  |
| X4    | 26       | -         | -         | 11.68     | 3100        | 116.8   |             | -       |         | \$18828    | -         | -         |  |
|       | 26       | -         | 26        | 18.18     | 3100        | 181.8   |             | -       | 54.54   | \$29306    | -         | \$8792    |  |
| X5    | 35       | 26        | 26        | 23.45     | 3100        | 23      | 234.5       |         | 70.35   | \$12722    | \$2835    | \$2835    |  |
| X6    | 26       | -         | 22        | 15.93     | 3100        | 15      | 9.3         | -       | 47.79   | \$25679    | -         | \$6519    |  |
|       | 26       | -         | 22        | 23.45     | 3100        | 23      | 4.5         | -       | 70.35   | \$37801    | -         | \$9596    |  |
| X7    | 31       | -         | 22        | 18.63     | 3100        | 18      | 6.3         | -       | 93.15   | \$17903    | -         | \$6353    |  |
|       | 31       | -         | -         | 18.63     | 3100        | 18      | 6.3         | -       | -       | \$17903    | -         | -         |  |
|       | 31       | -         | 22        | 18.63     | 3100        | 18      | 6.3         | -       | 93.15   | \$17903    | -         | \$6353    |  |
|       | 31       | -         | -         | 18.63     | 3100        | 18      | 6.3         | -       | -       | \$17903    | -         | -         |  |
|       | 31       | -         | 22        | 18.63     | 3100        | 18      | 6.3         | -       | 93.15   | \$17903    | -         | \$6353    |  |
|       | 31       | -         | -         | 18.63     | 3100        | 18      | 6.3         | -       | -       | \$17903    | -         | -         |  |
| X8    | 26       | -         | 22        | 15.37     | 3100        | 76      | .85         | -       | 46.11   | \$3097     | -         | \$1572    |  |
|       | 26       | -         | -         | 18.63     | 3100        | 93      | .15         | -       | -       | \$3754     | -         | -         |  |
|       | 26       | -         | 22        | 18.63     | 3100        | 93      | .15         | -       | 55.89   | \$3754     | -         | \$1906    |  |
|       | 26       | -         | -         | 18.63     | 3100        | 93      | .15         | -       | -       | \$3754     | -         | -         |  |
|       | 26       | -         | 22        | 18.63     | 3100        | 93      | .15         | -       | 55.89   | \$3754     | -         | \$1906    |  |
|       | 26       | -         | -         | 18.63     | 3100        | 93      | .15         | -       | -       | \$3754     | -         | -         |  |
|       | 26       | -         | 22        | 18.63     | 3100        | 93      | .15         | -       | 55.89   | \$3754     | -         | \$1906    |  |
|       | 26       | -         | -         | 15.37     | 3100        | 76      | .85         | -       | -       | \$3097     | -         | -         |  |
|       |          |           |           |           | Total C     | Cost wi | thout L     | ocation | Factors | \$515715   | \$8757    | \$96619   |  |
|       |          |           |           |           | Tot         | al Cost | t with L    | ocation | Factors | \$556972   | \$8757    | \$132368  |  |
|       |          |           | Т         | otal Cost | of Des      | sign wi | thout L     | ocation | Factors | \$2505194  | \$1253612 | \$1632459 |  |
|       |          |           | \$2705610 | \$1253612 | \$2236469   |         |             |         |         |            |           |           |  |

|       | Case 5    |             |       |            |          |       |            |        |       |          |          |
|-------|-----------|-------------|-------|------------|----------|-------|------------|--------|-------|----------|----------|
|       | Gravity L | .oads       | Los A | ngeles, Ca | lifornia | N     | liami, Flo | rida   | Bosto | n, Massa | chusetts |
| Label | Size      | Length (ft) | Label | Size       | Length   | Label | Size       | Length | Label | Size     | Length   |
| B1    | W12x19    | 14.63       | B1    | W12x19     | 14.63    | B1    | W12x19     | 14.63  | B1    | W12x19   | 14.63    |
| B2    | W18x40    | 17.21       | B2    | W18x40     | 17.21    | B2    | W18x40     | 17.21  | B2    | W18x40   | 17.21    |
| B3    | W12x19    | 13.71       | B3    | W12x19     | 13.71    | B3    | W12x19     | 13.71  | B3    | W12x19   | 13.71    |
| B4    | W14x22    | 15.13       | B4    | W14x22     | 15.13    | B4    | W14x22     | 15.13  | B4    | W14x22   | 15.13    |
| B5    | W12x19    | 14.63       | B5    | W12x19     | 14.63    | B5    | W12x19     | 14.63  | B5    | W12x19   | 14.63    |
| B6    | W12x16    | 10.00       | B6    | W12x16     | 10.00    | B6    | W12x16     | 10.00  | B6    | W12x16   | 10.00    |
| B7    | W14x26    | 15.71       | B7    | W14x26     | 15.71    | B7    | W14x26     | 15.71  | B7    | W14x26   | 15.71    |
| B1R   | W12x16    | 14.63       | B1R   | W12x16     | 14.63    | B1R   | W12x16     | 14.63  | B1R   | W12x16   | 14.63    |
| B2R   | W18x35    | 17.21       | B2R   | W18x35     | 17.21    | B2R   | W18x35     | 17.21  | B2R   | W18x35   | 17.21    |
| B3R   | W12x16    | 13.71       | B3R   | W12x16     | 13.71    | B3R   | W12x16     | 13.71  | B3R   | W12x16   | 13.71    |
| B4R   | W12x22    | 15.13       | B4R   | W12x22     | 15.13    | B4R   | W12x22     | 15.13  | B4R   | W14x22   | 15.13    |
| B5R   | W12x16    | 14.63       | B5R   | W12x16     | 14.63    | B5R   | W12x16     | 14.63  | B5R   | W12x16   | 14.63    |
| B6R   | W12x16    | 10.00       | B6R   | W12x16     | 10.00    | B6R   | W12x16     | 10.00  | B6R   | W12x16   | 10.00    |
| B7R   | W14x22    | 15.71       | B7R   | W14x22     | 15.71    | B7R   | W14x22     | 15.71  | B7R   | W14x22   | 15.71    |
| G1    | W12x16    | 12.40       | G1    | W12x16     | 12.40    | G1    | W12x16     | 12.40  | G1    | W12x16   | 12.40    |
| G2    | W14x22    | 21.60       | G2    | W14x22     | 21.60    | G2    | W14x22     | 21.60  | G2    | W14x22   | 21.60    |
| G3    | W18x35    | 22.40       | G3    | W18x35     | 22.40    | G3    | W18x35     | 22.40  | G3    | W18x35   | 22.40    |
| G4    | W12x16    | 9.21        | G4    | W12x16     | 9.21     | G4    | W12x16     | 9.21   | G4    | W12x16   | 9.21     |
| G5    | W18x35    | 22.40       | G5    | W18x35     | 22.40    | G5    | W18x35     | 22.40  | G5    | W18x35   | 22.40    |
| G6    | W12x16    | 9.21        | G6    | W12x16     | 9.21     | G6    | W12x16     | 9.21   | G6    | W12x16   | 9.21     |
| G7    | W16x31    | 22.40       | G7    | W16x31     | 22.40    | G7    | W16x31     | 22.40  | G7    | W16x31   | 22.40    |
| G8    | W24x68    | 31.60       | G8    | W24x68     | 31.60    | G8    | W24x68     | 31.60  | G8    | W24x68   | 31.60    |
| G9    | W12x16    | 11.67       | G9    | W12x16     | 11.67    | G9    | W12x16     | 11.67  | G9    | W12x16   | 11.67    |
| G10   | W16x31    | 22.40       | G10   | W16x31     | 22.40    | G10   | W16x31     | 22.40  | G10   | W16x31   | 22.40    |
| G11   | W24x62    | 31.60       | G11   | W24x62     | 31.60    | G11   | W24x62     | 31.60  | G11   | W24x62   | 31.60    |
| G12   | W12x16    | 11.67       | G12   | W12x16     | 11.67    | G12   | W12x16     | 11.67  | G12   | W12x16   | 11.67    |
| G13   | W12x16    | 6.04        | G13   | W12x16     | 6.04     | G13   | W12x16     | 6.04   | G13   | W12x16   | 6.04     |
| G14   | W12x16    | 15.19       | G14   | W12x16     | 15.19    | G14   | W12x16     | 15.19  | G14   | W12x16   | 15.19    |
| G15   | W12x16    | 10.00       | G15   | W12x16     | 10.00    | G15   | W12x16     | 10.00  | G15   | W12x16   | 10.00    |
| G16   | W16x31    | 21.21       | G16   | W16x31     | 21.21    | G16   | W16x31     | 21.21  | G16   | W16x31   | 21.21    |
| G17   | W24x68    | 31.13       | G17   | W24x68     | 31.13    | G17   | W24x68     | 31.13  | G17   | W24x68   | 31.13    |
| G18   | W12x16    | 9.21        | G18   | W12x16     | 9.21     | G18   | W12x16     | 9.21   | G18   | W12x16   | 9.21     |
| G19   | W14x26    | 22.00       | G19   | W14x26     | 22.00    | G19   | W14x26     | 22.00  | G19   | W14x26   | 22.00    |
| G20   | W12x16    | 12.40       | G20   | W12x16     | 12.40    | G20   | W12x16     | 12.40  | G20   | W12x16   | 12.40    |
| G21   | W18x35    | 22.40       | G21   | W18x35     | 22.40    | G21   | W18x35     | 22.40  | G21   | W18x35   | 22.40    |
| G22   | W12x16    | 9.21        | G22   | W12x16     | 9.21     | G22   | W12x16     | 9.21   | G22   | W12x16   | 9.21     |
| G23   | W18x35    | 22.40       | G23   | W18x35     | 22.40    | G23   | W18x35     | 22.40  | G23   | W18x35   | 22.40    |
| G1R   | W12x16    | 12.40       | G1R   | W12x16     | 12.40    | G1R   | W12x16     | 12.40  | G1R   | W12x16   | 12.40    |
| G2R   | W12x16    | 21.60       | G2R   | W12x16     | 21.60    | G2R   | W12x16     | 21.60  | G2R   | W14x22   | 21.60    |
| G3R   | W14x22    | 22.40       | G3R   | W14x22     | 22.40    | G3R   | W14x22     | 22.40  | G3R   | W14x30   | 22.40    |
| G4R   | W12x16    | 9.21        | G4R   | W12x16     | 9.21     | G4R   | W12x16     | 9.21   | G4R   | W12x16   | 9.21     |
| G5R   | W14x22    | 22.40       | G5R   | W14x22     | 22.40    | G5R   | W14x22     | 22.40  | G5R   | W14x30   | 22.40    |

| r    |        |       | -      |             |       | -      |            |       | -                 | 1      |       |  |
|------|--------|-------|--------|-------------|-------|--------|------------|-------|-------------------|--------|-------|--|
| G6R  | W12x16 | 9.21  | G6R    | W12x16      | 9.21  | G6R    | W12x16     | 9.21  | G6R               | W12x16 | 9.21  |  |
| G7R  | W14x22 | 22.40 | G7R    | W14x22      | 22.40 | G7R    | W14x22     | 22.40 | G7R               | W14x26 | 22.40 |  |
| G8R  | W21x55 | 31.60 | G8R    | W21x55      | 31.60 | G8R    | W21x55     | 31.60 | G8R               | W21x55 | 31.60 |  |
| G9R  | W12x16 | 11.67 | G9R    | W12x16      | 11.67 | G9R    | W12x16     | 11.67 | G9R               | W12x16 | 11.67 |  |
| G10R | W14x22 | 22.40 | G10R   | W14x22      | 22.40 | G10R   | W14x22     | 22.40 | G10R              | W14x26 | 22.40 |  |
| G11R | W21x55 | 31.60 | G11R   | W21x55      | 31.60 | G11R   | W21x55     | 31.60 | G11R              | W21x55 | 31.60 |  |
| G12R | W12x16 | 11.67 | G12R   | W12x16      | 11.67 | G12R   | W12x16     | 11.67 | G12R              | W12x16 | 11.67 |  |
| G13R | W12x16 | 6.04  | G13R   | W12x16      | 6.04  | G13R   | W12x16     | 6.04  | G13R              | W12x16 | 6.04  |  |
| G14R | W12x16 | 15.19 | G14R   | W12x16      | 15.19 | G14R   | W12x16     | 15.19 | G14R              | W12x16 | 15.19 |  |
| G15R | W12x16 | 10.00 | G15R   | W12x16      | 10.00 | G15R   | W12x16     | 10.00 | G15R              | W12x16 | 10.00 |  |
| G16R | W14x22 | 21.21 | G16R   | W14x22      | 21.21 | G16R   | W14x22     | 21.21 | G16R              | W14x26 | 21.21 |  |
| G17R | W21x55 | 31.13 | G17R   | W21x55      | 31.13 | G17R   | W21x55     | 31.13 | G17R              | W21x62 | 31.13 |  |
| G18R | W12x16 | 9.21  | G18R   | W12x16      | 9.21  | G18R   | W12x16     | 9.21  | G18R              | W12x16 | 9.21  |  |
| G19R | W12x19 | 22.00 | G19R   | W12x19      | 22.00 | G19R   | W12x19     | 22.00 | G19R              | W14x22 | 22.00 |  |
| G20R | W12x16 | 12.40 | G20R   | W12x16      | 12.40 | G20R   | W12x16     | 12.40 | G20R              | W12x16 | 12.40 |  |
| G21R | W14x22 | 22.40 | G21R   | W14x22      | 22.40 | G21R   | W14x22     | 22.40 | G21R              | W14x30 | 22.40 |  |
| G22R | W12x16 | 9.21  | G22R   | W12x16      | 9.21  | G22R   | W12x16     | 9.21  | G22R              | W12x16 | 9.21  |  |
| G23R | W14x22 | 22.40 | G23R   | W14x22      | 22.40 | G23R   | W14x22     | 22.40 | G23R              | W14x30 | 22.40 |  |
| F1   | -      | -     | F1*    | W21x62      | -     | F1     | W18x40     | -     | F1*               | W21x44 | -     |  |
| F2   | -      | -     | F2*    | W21x62      | -     | F2     | W18x40     | -     | F2*               | W21x44 | -     |  |
| F3   | -      | -     | F3*    | W21x62      | -     | F3*    | W18x40     | -     | F3*               | W21x44 | -     |  |
| F4   | -      | -     | F4*    | W21x62      | -     | F4     | W14x22     | -     | F4*               | W18x40 | -     |  |
| F5   | -      | -     | F5*    | W21x68      | -     | F5*    | W18x40     | -     | F5*               | W21x44 | -     |  |
| F6   | -      | -     | F6*    | W21x62      | -     | F6     | W14x26     | -     | F6*               | W21x44 | -     |  |
| F7   | -      | -     | F7*    | W21x62      | -     | F7     | W14x26     | -     | F7*               | W21x44 | -     |  |
| F8   | -      | -     | F8*    | W21x62      | -     | F8     | W14x22     | -     | F8*               | W14x22 | -     |  |
| C1   | -      | -     | C1     | W14x109     | -     | C1     | W12x50     | -     | C1                | W14x82 | -     |  |
| C2   | -      | -     | C2     | W14x120     | -     | C2     | W12x40     | -     | C2                | W14x82 | -     |  |
| C3   | -      | -     | C3     | W14x120     | -     | C3     | W12x50     | -     | C3                | W14x82 | -     |  |
| C4   | -      | -     | C4     | W14x109     | -     | C4     | W12x40     | -     | C4                | W12x50 | -     |  |
| C5   | -      | -     | C5     | W14x132     | -     | C5     | W12x50     | -     | C5                | W14x82 | -     |  |
| C6   | -      | -     | C6     | W14x109     | _     | C6     | W12x40     | -     | C6                | W14x65 | -     |  |
| C7   | -      | -     | C7     | W14x109     | -     | C7     | W12x40     | -     | C7                | W14x82 | -     |  |
| C8   | -      | -     | C8     | W14x120     | _     | C8     | W12x40     | -     | C8                | W12x40 | -     |  |
|      |        |       | * = Cr | oss-Bracing | 5     | * = Cr | oss-Bracir | lg    | * = Cross-Bracing |        |       |  |

|       | Case 5 General Costs |             |          |        |                                                  |                                                   |           |            |  |  |  |
|-------|----------------------|-------------|----------|--------|--------------------------------------------------|---------------------------------------------------|-----------|------------|--|--|--|
| Lahel | Weight               | Longth (ft) | Cost/ton | # per  | # of                                             | Total                                             | Longth    | Total Cost |  |  |  |
| Lawe. | WCI5                 | 101801 (14) | 030 1011 | Floor  | Floors                                           | 10                                                | Leng      |            |  |  |  |
|       | <u> </u>             |             | <u>B</u> | eams   | <del>.                                    </del> | <del>,                                     </del> | <u> </u>  |            |  |  |  |
| B1    | 19                   | 14.63       | 3100.00  | 15     | 4                                                | 60                                                | 878       | \$25842    |  |  |  |
| B2    | 40                   | 17.21       | 3100.00  | 28     | 4                                                | 112                                               | 1927      | \$119495   |  |  |  |
| B3    | 19                   | 13.71       | 3100.00  | 28     | 4                                                | 112                                               | 1535      | \$45216    |  |  |  |
| B4    | 22                   | 15.13       | 3100.00  | 28     | 4                                                | 112                                               | 1694      | \$57765    |  |  |  |
| B5    | 19                   | 14.63       | 3100.00  | 6      | 4                                                | 24                                                | 351       | \$10337    |  |  |  |
| B6    | 16                   | 10.00       | 3100.00  | 14     | 4                                                | 56                                                | 560       | \$13888    |  |  |  |
| B7    | 26                   | 15.71       | 3100.00  | 84     | 4                                                | 336                                               | 5279      | \$212726   |  |  |  |
| B8    | 16                   | 9.21        | 3100.00  | 7      | 4                                                | 28                                                | 258       | \$6395     |  |  |  |
| B1R   | 16                   | 14.63       | 3100.00  | 15     | 1                                                | 15                                                | 219       | \$5441     |  |  |  |
| B2R   | 35                   | 17.21       | 3100.00  | 28     | 1                                                | 28                                                | 482       | \$26139    |  |  |  |
| B3R   | 16                   | 13.71       | 3100.00  | 28     | 1                                                | 28                                                | 384       | \$9519     |  |  |  |
| B4R   | 22                   | 15.13       | 3100.00  | 28     | 1                                                | 28                                                | 424       | \$14441    |  |  |  |
| B5R   | 16                   | 14.63       | 3100.00  | 6      | 1                                                | 6                                                 | 88        | \$2176     |  |  |  |
| B6R   | 16                   | 10.00       | 3100.00  | 14     | 1                                                | 14                                                | 140       | \$3472     |  |  |  |
| B7R   | 22                   | 15.71       | 3100.00  | 42     | 1                                                | 42                                                | 660       | \$22500    |  |  |  |
| B8R   | 16                   | 9.21        | 3100.00  | 7      | 1                                                | 7                                                 | 64        | \$1599     |  |  |  |
|       |                      |             |          |        |                                                  | Тс                                                | otal Cost | \$576952   |  |  |  |
|       |                      |             | (        | Girder |                                                  |                                                   |           |            |  |  |  |
| G1    | 16                   | 12.40       | 3100.00  | 3      | 4                                                | 12                                                | 149       | \$3689     |  |  |  |
| G2    | 22                   | 21.60       | 3100.00  | 3      | 4                                                | 12                                                | 259       | \$8840     |  |  |  |
| G3    | 35                   | 22.40       | 3100.00  | 6      | 4                                                | 24                                                | 538       | \$29159    |  |  |  |
| G4    | 16                   | 9.21        | 3100.00  | 3      | 4                                                | 12                                                | 111       | \$2740     |  |  |  |
| G5    | 35                   | 22.40       | 3100.00  | 8      | 4                                                | 32                                                | 717       | \$38879    |  |  |  |
| G6    | 16                   | 9.21        | 3100.00  | 4      | 4                                                | 16                                                | 147       | \$3654     |  |  |  |
| G7    | 31                   | 22.40       | 3100.00  | 4      | 4                                                | 16                                                | 358       | \$17218    |  |  |  |
| G8    | 68                   | 31.60       | 3100.00  | 4      | 4                                                | 16                                                | 506       | \$53297    |  |  |  |
| G9    | 16                   | 11.67       | 3100.00  | 4      | 4                                                | 16                                                | 187       | \$4629     |  |  |  |
| G10   | 31                   | 22.40       | 3100.00  | 4      | 4                                                | 16                                                | 358       | \$17218    |  |  |  |
| G11   | 62                   | 31.60       | 3100.00  | 4      | 4                                                | 16                                                | 506       | \$48595    |  |  |  |
| G12   | 16                   | 11.67       | 3100.00  | 4      | 4                                                | 16                                                | 187       | \$4629     |  |  |  |
| G13   | 16                   | 6.04        | 3100.00  | 4      | 4                                                | 16                                                | 97        | \$2397     |  |  |  |
| G14   | 16                   | 15.19       | 3100.00  | 4      | 4                                                | 16                                                | 243       | \$6026     |  |  |  |
| G15   | 16                   | 10.00       | 3100.00  | 2      | 4                                                | 8                                                 | 80        | \$1984     |  |  |  |
| G16   | 31                   | 21.21       | 3100.00  | 12     | 4                                                | 48                                                | 1018      | \$48915    |  |  |  |
| G17   | 68                   | 31.13       | 3100.00  | 12     | 4                                                | 48                                                | 1494      | \$157468   |  |  |  |
| G18   | 16                   | 9.21        | 3100.00  | 1      | 4                                                | 4                                                 | 37        | \$913      |  |  |  |
| G19   | 26                   | 22.00       | 3100.00  | 1      | 4                                                | 4                                                 | 88        | \$3546     |  |  |  |
| G20   | 16                   | 12.40       | 3100.00  | 1      | 4                                                | 4                                                 | 50        | \$1230     |  |  |  |
| G21   | 35                   | 22.40       | 3100.00  | 1      | 4                                                | 4                                                 | 90        | \$4860     |  |  |  |
| G22   | 16                   | 9.21        | 3100.00  | 1      | 4                                                | 4                                                 | 37        | \$913      |  |  |  |
| G23   | 35                   | 22.40       | 3100.00  | 1      | 4                                                | 4                                                 | 90        | \$4860     |  |  |  |

| G1R  | 16        | 12.40 | 3100.00 | 3      | 1 | 3   | 37       | \$922    |
|------|-----------|-------|---------|--------|---|-----|----------|----------|
| G2R  | 16        | 21.60 | 3100.00 | 3      | 1 | 3   | 65       | \$1607   |
| G3R  | 22        | 22.40 | 3100.00 | 6      | 1 | 6   | 134      | \$4582   |
| G4R  | 16        | 9.21  | 3100.00 | 3      | 1 | 3   | 28       | \$685    |
| G5R  | 22        | 22.40 | 3100.00 | 8      | 1 | 8   | 179      | \$6110   |
| G6R  | 16        | 9.21  | 3100.00 | 4      | 1 | 4   | 37       | \$913    |
| G7R  | 22        | 22.40 | 3100.00 | 4      | 1 | 4   | 90       | \$3055   |
| G8R  | 55        | 31.60 | 3100.00 | 4      | 1 | 4   | 126      | \$10777  |
| G9R  | 16        | 11.67 | 3100.00 | 4      | 1 | 4   | 47       | \$1157   |
| G10R | 22        | 22.40 | 3100.00 | 4      | 1 | 4   | 90       | \$3055   |
| G11R | 55        | 31.60 | 3100.00 | 4      | 1 | 4   | 126      | \$10777  |
| G12R | 16        | 11.67 | 3100.00 | 4      | 1 | 4   | 47       | \$1157   |
| G13R | 16        | 6.04  | 3100.00 | 4      | 1 | 4   | 24       | \$599    |
| G14R | 16        | 15.19 | 3100.00 | 4      | 1 | 4   | 61       | \$1507   |
| G15R | 16        | 10.00 | 3100.00 | 2      | 1 | 2   | 20       | \$496    |
| G16R | 22        | 21.21 | 3100.00 | 12     | 1 | 12  | 255      | \$8678   |
| G17R | 55        | 31.13 | 3100.00 | 12     | 1 | 12  | 374      | \$31841  |
| G18R | 16        | 9.21  | 3100.00 | 1      | 1 | 1   | 9        | \$228    |
| G19R | 19        | 22.00 | 3100.00 | 1      | 1 | 1   | 22       | \$648    |
| G20R | 16        | 12.40 | 3100.00 | 1      | 1 | 1   | 12       | \$307    |
| G21R | 22        | 22.40 | 3100.00 | 1      | 1 | 1   | 22       | \$764    |
| G22R | 16        | 9.21  | 3100.00 | 1      | 1 | 1   | 9        | \$228    |
| G23R | 22        | 22.40 | 3100.00 | 1      | 1 | 1   | 22       | \$764    |
|      |           |       |         |        |   | То  | tal Cost | \$556521 |
|      |           |       | Cc      | olumns |   |     |          |          |
| С    | 33        | 10    | 3100    | 114    | 5 | 570 | 5700     | \$291555 |
|      | \$1425027 |       |         |        |   |     |          |          |

|       | We             | ight (Lb | /ft)     |                |              |                |                |         |         | Total Cost     |             |              |  |
|-------|----------------|----------|----------|----------------|--------------|----------------|----------------|---------|---------|----------------|-------------|--------------|--|
| Label | Los<br>Angeles | Miami    | Boston   | Length<br>(ft) | Cost/<br>ton | # per<br>Floor | # of<br>Floors | Total   | Length  | Los<br>Angeles | Miami       | Boston       |  |
|       |                |          | Beams    |                |              |                |                |         |         | t              |             |              |  |
| B1    | 19             | 19       | 19       | 14.63          | 3100         | 15             | 4              | 60      | 878     | \$25842        | \$25842     | \$25842      |  |
| B2    | 40             | 40       | 40       | 17.21          | 3100         | 20             | 4              | 80      | 1377    | \$85353        | \$85353     | \$85353      |  |
| B3    | 19             | 19       | 19       | 13.71          | 3100         | 20             | 4              | 80      | 1097    | \$32297        | \$32297     | \$32297      |  |
| B4    | 22             | 22       | 22       | 15.13          | 3100         | 24             | 4              | 96      | 1452    | \$49513        | \$49513     | \$49513      |  |
| B5    | 19             | 19       | 19       | 14.63          | 3100         | 5              | 4              | 20      | 293     | \$8614         | \$8614      | \$8614       |  |
| B6    | 16             | 16       | 16       | 10.00          | 3100         | 14             | 4              | 56      | 560     | \$13888        | \$13888     | \$13888      |  |
| B7    | 26             | 26       | 26       | 15.71          | 3100         | 60             | 4              | 240     | 3770    | \$151947       | \$151947    | \$151947     |  |
| B8    | 16             | 16       | 16       | 9.21           | 3100         | 7              | 4              | 28      | 258     | \$6395         | \$6395      | \$6395       |  |
| B1R   | 16             | 16       | 16       | 14.63          | 3100         | 15             | 1              | 15      | 219     | \$5441         | \$5441      | \$5441       |  |
| B2R   | 35             | 35       | 35       | 17.21          | 3100         | 20             | 1              | 20      | 344     | \$18671        | \$18671     | \$18671      |  |
| B3R   | 16             | 16       | 16       | 13.71          | 3100         | 20             | 1              | 20      | 274     | \$6799         | \$6799      | \$6799       |  |
| B4R   | 22             | 22       | 22       | 15.13          | 3100         | 24             | 1              | 24      | 363     | \$12378        | \$12378     | \$12378      |  |
| B5R   | 16             | 16       | 16       | 14.63          | 3100         | 5              | 1              | 5       | 73      | ,<br>\$1814    | ,<br>\$1814 | ,<br>\$1814  |  |
| B6R   | 16             | 16       | 16       | 10.00          | 3100         | 14             | 1              | 14      | 140     | \$3472         | \$3472      | \$3472       |  |
| B7R   | 22             | 22       | 22       | 15.71          | 3100         | 60             | 1              | 60      | 943     | \$32143        | \$32143     | \$32143      |  |
| B8R   | 16             | 16       | 16       | 9.21           | 3100         | 7              | 1              | 7       | 64      | \$1599         | \$1599      | \$1599       |  |
|       | <u> </u>       | <u> </u> | <u> </u> | -              | Total (      | Cost wi        | ithout L       | ocation | Factors | \$456167       | \$456167    | \$456167     |  |
|       |                |          |          |                | To           | tal Cos        | t with L       | ocation | Factors | \$492660       | \$456167    | \$624948     |  |
|       |                |          |          |                |              | G              | irders         |         |         | <u> </u>       | <u> </u>    |              |  |
| G1    | 16             | 16       | 16       | 12.40          | 3100         | 0              | 4              | 0       | 0       | Ş              | \$          | \$           |  |
| G2    | 22             | 22       | 22       | 21.60          | 3100         | 0              | 4              | 0       | 0       | Ś              | Ś           | \$           |  |
| G3    | 35             | 35       | 35       | 22.40          | 3100         | 6              | 4              | 24      | 538     | \$29159        | \$29159     | \$29159      |  |
| G4    | 16             | 16       | 16       | 9.21           | 3100         | 3              | 4              | 12      | 111     | ,<br>\$2740    | \$2740      | ,<br>\$2740  |  |
| G5    | 35             | 35       | 35       | 22.40          | 3100         | 8              | 4              | 32      | 717     | \$38879        | \$38879     | \$38879      |  |
| G6    | 16             | 16       | 16       | 9.21           | 3100         | 4              | 4              | 16      | 147     | \$3654         | \$3654      | \$3654       |  |
| G7    | 31             | 31       | 31       | 22.40          | 3100         | 4              | 4              | 16      | 358     | \$17218        | \$17218     | \$17218      |  |
| G8    | 38             | 38       | 38       | 31.60          | 3100         | 4              | 4              | 16      | 506     | ,<br>\$29784   | \$29784     | ,<br>\$29784 |  |
| G9    | 16             | 16       | 16       | 11.67          | 3100         | 4              | 4              | 16      | 187     | ,<br>\$4629    | \$4629      | \$4629       |  |
| G10   | 31             | 31       | 31       | 22.40          | 3100         | 4              | 4              | 16      | 358     | \$17218        | \$17218     | \$17218      |  |
| G11   | 62             | 62       | 62       | 31.60          | 3100         | 4              | 4              | 16      | 506     | \$48595        | \$48595     | \$48595      |  |
| G12   | 16             | 16       | 16       | 11.67          | 3100         | 2              | 4              | 8       | 93      | \$2315         | \$2315      | ,<br>\$2315  |  |
| G13   | 16             | 16       | 16       | 6.04           | 3100         | 0              | 4              | 0       | 0       | ,<br>,<br>,    | \$          | \$           |  |
| G14   | 16             | 16       | 16       | 15.19          | 3100         | 0              | 4              | 0       | 0       | \$             | \$          | \$           |  |
| G15   | 16             | 16       | 16       | 10.00          | 3100         | 2              | 4              | 8       | 80      | \$1984         | \$1984      | \$1984       |  |
| G16   | 31             | 31       | 31       | 21.21          | 3100         | 8              | 4              | 32      | 679     | \$32610        | \$32610     | \$32610      |  |
| G17   | 68             | 68       | 68       | 31.13          | 3100         | 12             | 4              | 48      | 1494    | \$157468       | \$157468    | \$157468     |  |
| G18   | 16             | 16       | 16       | 9.21           | 3100         | 0              | 4              | 0       | 0       | \$             | \$          | \$           |  |
| G19   | 26             | 26       | 26       | 22.00          | 3100         | 0              | 4              | 0       | 0       | \$             | \$          | \$           |  |
| G20   | 16             | 16       | 16       | 12.40          | 3100         | 1              | 4              | 4       | 50      | \$1230         | \$1230      | \$1230       |  |
| G21   | 35             | 35       | 35       | 22.40          | 3100         | 1              | 4              | 4       | 90      | \$4860         | \$4860      | \$4860       |  |
| G22   | 16             | 16       | 16       | 9.21           | 3100         | 1              | 4              | 4       | 37      | \$913          | \$913       | \$913        |  |
| G23  | 35 | 35 | 35 | 22.40 | 3100    | 1       | 4        | 4       | 90      | \$4860   | \$486 <sup>0</sup> | \$4860   |
|------|----|----|----|-------|---------|---------|----------|---------|---------|----------|--------------------|----------|
| G1R  | 16 | 16 | 16 | 12.40 | 3100    | 0       | 1        | 0       | 0       | \$       | \$                 | \$       |
| G2R  | 16 | 16 | 22 | 21.60 | 3100    | 0       | 1        | 0       | 0       | \$       | \$                 | \$       |
| G3R  | 22 | 22 | 30 | 22.40 | 3100    | 6       | 1        | 6       | 134     | \$4582   | \$4582             | \$6248   |
| G4R  | 16 | 16 | 16 | 9.21  | 3100    | 3       | 1        | 3       | 28      | \$685    | \$685              | \$685    |
| G5R  | 22 | 22 | 30 | 22.40 | 3100    | 8       | 1        | 8       | 179     | \$6110   | \$6110             | \$8331   |
| G6R  | 16 | 16 | 16 | 9.21  | 3100    | 4       | 1        | 4       | 37      | \$913    | \$913              | \$913    |
| G7R  | 22 | 22 | 26 | 22.40 | 3100    | 4       | 1        | 4       | 90      | \$3055   | \$3055             | \$3610   |
| G8R  | 55 | 55 | 55 | 31.60 | 3100    | 4       | 1        | 4       | 126     | \$10777  | \$10777            | \$10777  |
| G9R  | 16 | 16 | 16 | 11.67 | 3100    | 4       | 1        | 4       | 47      | \$1157   | \$1157             | \$1157   |
| G10R | 22 | 22 | 26 | 22.40 | 3100    | 4       | 1        | 4       | 90      | \$3055   | \$3055             | \$3610   |
| G11R | 55 | 55 | 55 | 31.60 | 3100    | 4       | 1        | 4       | 126     | \$10777  | \$10777            | \$10777  |
| G12R | 16 | 16 | 16 | 11.67 | 3100    | 4       | 1        | 4       | 47      | \$1157   | \$1157             | \$1157   |
| G13R | 16 | 16 | 16 | 6.04  | 3100    | 0       | 1        | 0       | 0       | \$       | \$                 | \$       |
| G14R | 16 | 16 | 16 | 15.19 | 3100    | 0       | 1        | 0       | 0       | \$       | \$                 | \$       |
| G15R | 16 | 16 | 16 | 10.00 | 3100    | 2       | 1        | 2       | 20      | \$496    | \$496              | \$496    |
| G16R | 22 | 22 | 26 | 21.21 | 3100    | 8       | 1        | 8       | 170     | \$5786   | \$5786             | \$6838   |
| G17R | 55 | 55 | 62 | 31.13 | 3100    | 12      | 1        | 12      | 374     | \$31841  | \$31841            | \$35893  |
| G18R | 16 | 16 | 16 | 9.21  | 3100    | 0       | 1        | 0       | 0       | \$       | \$                 | \$       |
| G19R | 19 | 19 | 22 | 22.00 | 3100    | 0       | 1        | 0       | 0       | \$       | \$                 | \$       |
| G20R | 16 | 16 | 16 | 12.40 | 3100    | 1       | 1        | 1       | 12      | \$307    | \$307              | \$307    |
| G21R | 22 | 22 | 30 | 22.40 | 3100    | 1       | 1        | 1       | 22      | \$764    | \$764              | \$1041   |
| G22R | 16 | 16 | 16 | 9.21  | 3100    | 1       | 1        | 1       | 9       | \$228    | \$228              | \$228    |
| G23R | 22 | 22 | 30 | 22.40 | 3100    | 1       | 1        | 1       | 22      | \$764    | \$764              | \$1041   |
|      |    |    |    |       | Total C | Cost wi | thout L  | ocation | Factors | \$480570 | \$480570           | \$491228 |
|      |    |    |    |       | Tot     | al Cost | t with L | ocation | Factors | \$519015 | \$480570           | \$672983 |
|      |    | 1  |    |       | 1       | F       | rames    |         |         |          |                    |          |
| F1*  | 62 | 40 | 44 | 14.63 | 3100    | 1       | 5        | 5       | 73      | \$7030   | \$4535             | \$4989   |
|      | 62 | 40 | 44 | 17.21 | 3100    | 4       | 5        | 20      | 344     | \$33074  | \$21338            | \$23472  |
|      | 62 | 40 | 44 | 13.71 | 3100    | 4       | 5        | 20      | 274     | \$26347  | \$16998            | \$18698  |
|      | 62 | 40 | 44 | 15.13 | 3100    | 4       | 5        | 20      | 303     | \$29070  | \$18755            | \$20631  |
| F2*  | 62 | 40 | 44 | 14.63 | 3100    | 4       | 5        | 20      | 293     | \$28119  | \$18141            | \$19955  |
|      | 62 | 40 | 44 | 17.21 | 3100    | 4       | 5        | 20      | 344     | \$33074  | \$21338            | \$23472  |
|      | 62 | 40 | 44 | 13.71 | 3100    | 4       | 5        | 20      | 274     | \$26347  | \$16998            | \$18698  |
|      | 62 | 40 | 44 | 15.13 | 3100    | 4       | 5        | 20      | 303     | \$29070  | \$18755            | \$20631  |
| F3*  | 62 | 40 | 44 | 17.21 | 3100    | 4       | 5        | 20      | 344     | \$33074  | \$21338            | \$23472  |
|      | 62 | 40 | 44 | 13.71 | 3100    | 4       | 5        | 20      | 274     | \$26347  | \$16998            | \$18698  |
| F4*  | 62 | 22 | 40 | 6.04  | 3100    | 4       | 5        | 20      | 121     | \$11612  | \$4120             | \$7492   |
|      | 62 | 22 | 40 | 15.19 | 3100    | 4       | 5        | 20      | 304     | \$29190  | \$10358            | \$18833  |
| F5*  | 68 | 40 | 44 | 21.21 | 3100    | 4       | 5        | 20      | 424     | \$44707  | \$26298            | \$28928  |
| F6*  | 62 | 26 | 44 | 9.21  | 3100    | 1       | 5        | 5       | 46      | \$4425   | \$1855             | \$3140   |
|      | 62 | 26 | 44 | 22.00 | 3100    | 4       | 5        | 20      | 440     | \$42284  | \$17732            | \$30008  |
|      | 62 | 26 | 44 | 12.40 | 3100    | 4       | 5        | 20      | 248     | \$23825  | \$9991             | \$16908  |
| F7*  | 62 | 26 | 44 | 15.71 | 3100    | 24      | 5        | 120     | 1885    | \$181168 | \$75974            | \$128571 |

| F8*   | * 62 22 22     |           | 22     | 15.71          | 3100         | 12       | 5        | 60      | 943     | \$90584        | \$32143    | \$32143  |
|-------|----------------|-----------|--------|----------------|--------------|----------|----------|---------|---------|----------------|------------|----------|
|       | 62             | 22        | 22     | 11.67          | 3100         | 2        | 5        | 10      | 117     | \$11215        | \$3979     | \$3979   |
|       |                |           |        |                | Total (      | Cost wi  | thout I  | ocation | Factors | \$710564       | \$357647   | \$462717 |
|       |                |           |        |                | Tot          | tal Cost | t with L | ocation | Factors | \$767409       | \$357647   | \$633923 |
|       |                |           |        |                |              | Co       | olumns   |         |         |                |            |          |
| С     | 33             | 33        | 33     | 10             | 3100         | 8        | 5        | 40      | 400     | \$20460        | \$20460    | \$20460  |
| C1    | 109            | 50        | 82     | 10             | 3100         | 17       | 5        | 85      | 850     | \$143608       | \$65875    | \$108035 |
| C2    | 120            | 40        | 82     | 10             | 3100         | 20       | 5        | 100     | 1000    | \$186000       | \$62000    | \$127100 |
| C3    | 120            | 50        | 82     | 10             | 3100         | 12       | 5        | 60      | 600     | \$111600       | \$46500    | \$76260  |
| C4    | 109            | 40        | 50     | 10             | 3100         | 6        | 5        | 30      | 300     | \$50685        | \$18600    | \$23250  |
| C5    | 132            | 50        | 82     | 10             | 3100         | 5        | 5        | 25      | 250     | \$51150        | \$19375    | \$31775  |
| C6    | 109            | 40        | 65     | 10             | 3100         | 8        | 5        | 40      | 400     | \$67580        | \$24800    | \$40300  |
| C7    | 109            | 40        | 82     | 10             | 3100         | 24       | 5        | 120     | 1200    | \$202740       | \$74400    | \$152520 |
| C8    | 120            | 120 40 40 |        | 10             | 3100         | 12       | 5        | 60      | 600     | \$111600       | \$37200    | \$37200  |
|       |                |           |        |                | Total C      | Cost wi  | thout l  | ocation | Factors | \$945423       | \$369210   | \$616900 |
|       |                |           |        |                | Tot          | tal Cost | t with L | ocation | Factors | \$1021056      | \$369210   | \$845153 |
|       |                |           |        |                |              | Cros     | s Bean   | ıs      |         |                |            |          |
|       | We             | ight (Lb  | /ft)   |                |              |          | Leng     | th/ Bay |         |                | Total Cost |          |
| Label | Los<br>Angeles | Miami     | Boston | Length<br>(ft) | Cost/<br>ton | Los A    | ngeles   | Miami   | Boston  | Los<br>Angeles | Miami      | Boston   |
| X1    | 35             | 16        | 22     | 19.90          | 3100         | 1        | 99       | 59.7    | 99.5    | \$43183        | \$5922     | \$13572  |
| -     | 35             | -         | -      | 16.97          | 3100         | 16       | 9.7      | -       | -       | \$36825        | -          | -        |
|       | 35             | 16        | 22     | 18.13          | 3100         | 18       | 1.3      | 54.39   | 90.65   | \$39342        | \$5395     | \$12365  |
| X2    | 26             | 16        | 22     | 17.72          | 3100         | 17       | 7.2      | 53.16   | 53.16   | \$28565        | \$5273     | \$7251   |
|       | 26             | -         | -      | 19.9           | 3100         | 1        | 99       | -       | -       | \$32079        | -          | -        |
|       | 26             | 16        | 22     | 16.97          | 3100         | 16       | 9.7      | 50.91   | 50.91   | \$27356        | \$5050     | \$6944   |
|       | 26             | -         | -      | 18.13          | 3100         | 18       | 1.3      | -       | -       | \$29226        | -          | -        |
| X3    | 40             | 16        | 22     | 19.9           | 3100         | 1        | 99       | 59.7    | 59.7    | \$49352        | \$5922     | \$8143   |
|       | 40             | -         | 22     | 16.97          | 3100         | 16       | 9.7      | -       | 33.94   | \$42086        | -          | \$4629   |
| X4    | 35             | -         | -      | 11.68          | 3100         | 11       | 6.8      | -       |         | \$25346        | -          | -        |
|       | 35             | -         | 22     | 18.18          | 3100         | 18       | 1.8      | -       | 54.54   | \$39451        | -          | \$7439   |
| X5    | 40             | 16        | 22     | 23.45          | 3100         | 23       | 4.5      | 70.35   | 117.3   | \$14539        | \$1745     | \$3998   |
| X6    | 26             | -         | -      | 15.93          | 3100         | 79       | .65      | -       | -       | \$12840        | -          | -        |
|       | 26             | -         | 22     | 23.45          | 3100         | 23       | 4.5      | -       | 70.35   | \$37801        | -          | \$9596   |
| X7    | 40             | 16        | 22     | 18.63          | 3100         | 18       | 6.3      | 55.89   | 93.15   | \$46202        | \$5544     | \$12706  |
|       | 40             | -         | -      | 18.63          | 3100         | 18       | 6.3      | -       | -       | \$46202        | -          | -        |
|       | 40             | 16        | 22     | 18.63          | 3100         | 18       | 6.3      | 55.89   | 93.15   | \$46202        | \$5544     | \$12706  |
|       | 40             | -         | -      | 18.63          | 3100         | 18       | 6.3      | -       | -       | \$46202        | -          | -        |
|       | 40             | 16        | 22     | 18.63          | 3100         | 18       | 6.3      | 55.89   | 93.15   | \$46202        | \$5544     | \$12706  |
|       |                |           |        |                |              |          |          |         |         |                | -          |          |

| X8 | 26 | - | 22 | 15.37     | 3100     | 153.7          | -       | 46.11   | \$12388   | -         | \$3145    |
|----|----|---|----|-----------|----------|----------------|---------|---------|-----------|-----------|-----------|
|    | 26 | - | -  | 18.63     | 3100     | 186.3          | -       | -       | \$15016   | -         | -         |
|    | 26 | - | 22 | 18.63     | 3100     | 186.3          | -       | 55.89   | \$15016   | -         | \$3812    |
|    | 26 | - | -  | 18.63     | 3100     | 186.3          | -       | -       | \$15016   | -         | -         |
|    | 26 | - | 22 | 18.63     | 3100     | 186.3          | -       | 55.89   | \$15016   | -         | \$3812    |
|    | 26 | - | -  | 18.63     | 3100     | 186.3          | -       | -       | \$15016   | -         | -         |
|    | 26 | - | 22 | 18.63     | 3100     | 186.3          | -       | 55.89   | \$15016   | -         | \$3812    |
|    | 26 | - | -  | 15.37     | 3100     | 153.7          | -       | -       | \$12388   | -         | -         |
|    |    |   |    |           | Total C  | Cost without L | ocation | Factors | \$850074  | \$45941   | \$126634  |
|    |    |   |    |           | Tot      | al Cost with L | ocation | Factors | \$918080  | \$45941   | \$173489  |
|    |    |   | Т  | otal Cost | t of Des | sign without L | ocation | Factors | \$3442797 | \$1709535 | \$2153646 |
|    |    |   |    | Total (   | Cost of  | Design with L  | ocation | Factors | \$3718221 | \$1709535 | \$2950495 |

## **Wood Calculations**

| Glued Loninated Beam Lmax = 21'-8"                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensions<br>width: 6314" dead load: 21.416/ft²(4'-5'/8")= 94.74 16/ft<br>depth: 24" Live Load: 40 16/ft²(4'-5'/8")= 177.116/ft                                                                                                |
| WEadored = 1.20+ 1.62 = (1.2 × 94.74) + (1.6 × 177.1) = 397 16/ft                                                                                                                                                               |
| Area = 1621n <sup>2</sup><br>Fbx = 2400 psi Ex = 1,800,000 psi Ey = 1,600,000 psi<br>Ix = 77761n <sup>4</sup><br>Fvx = 215 psi Exmin = 930,000 psi Eymin = 780,000 psi<br>Sx = 6481n <sup>3</sup>                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                            |
| $M = \frac{WL^2}{8} = \frac{397  \text{Ib} F(\text{al'}-8'')^2}{8} = 33,396  \text{Ib} - F_{+} = 379,557  \text{Ib} - in$ $Fb_{+} = \frac{M}{5x} = \frac{379,557  \text{Ib} - \text{in}}{648  \text{in}^3} = 431.4  \text{psi}$ |
| Design Calculations                                                                                                                                                                                                             |
| $C_{v} = \left(\frac{\partial If_{+}}{\partial \Psi' - \beta''}\right)^{\circ, 1} \left(\frac{1 \partial In}{\partial \Psi_{10}}\right)^{\circ, 1} \left(\frac{5.1 \partial 5 In}{6.7 5 in}\right)^{\circ, 1} = 0.905$          |
| $\frac{Lux}{Depin} = \frac{Al'-8''}{A'} = 10.8$                                                                                                                                                                                 |
| le= 1.63(21'-8") + 3(2')= 495.8 m                                                                                                                                                                                               |
| E'min= KF-E Do Eymin CmCE = (1.5)0.85 (780000 poi)(1)(1) = 1,170,000 poi                                                                                                                                                        |
| $R_8 = \int l_e \frac{d}{b^2} = \sqrt{(495.8.n)} \frac{24.n}{(2.75)^2} = 16.16$                                                                                                                                                 |
| $F_{bE} = 1.20 \frac{E'_{min}}{AB^2} = 1.20 \frac{(1,170000psi)}{16,16^2} = 5,376 psi$                                                                                                                                          |
| Fb* = RRF-Fb \$\$ Fb CmCe = (0,8) =.16 (0.85)(2400 psi)(1) = 4147 psi                                                                                                                                                           |
|                                                                                                                                                                                                                                 |
| $C_{L} = \left(\frac{1+\alpha_{b}}{1.9}\right) = \int \left(\frac{1+\alpha_{b}}{1.9}\right)^{2} = \frac{\alpha_{b}}{0.95}$                                                                                                      |
| $= \left(\frac{1+1.296}{1.9}\right) - \int \left(\frac{1+1.296}{1.9}\right)^2 - \frac{1.296}{0.95} = 0.898$                                                                                                                     |
| CK< CV :. Ch governs                                                                                                                                                                                                            |

Booling Chrick  
Major Aris: Fo; 2Kr-Fo 
$$0 = For Cm Ce Cl$$
  
 $= 0.8 (245 Ydb)(2400 psi XiXiX 0.898) = 3724 psi$   
 $fb_1 = 431.4 < Fb_1 = 3724 psi$   
 $fb_1 = 431.4 < Fb_1 = 3724 psi$   
 $F'v = 2Kr-Fv = 0 = Fv Cm Ce$   
 $= 0.8 (240) = 0 = (215 psi Xi.0X1.0) = 372 psi$   
 $Vr = (3)Fv = bk (3) 372 psi (0.75 m)(241.n) = 40,170 lb$   
 $Vlocd = Vr = (3971 lb)(P_1)(21-3-) = 4,301 lb$   
 $Vlocd = Vr = V$   
 $Diflection Chrick$   
 $\frac{Lmax}{360} = 0.722 in$   
 $\Delta = \frac{5wL^4}{384EI} = \frac{5(3871 lb)(P_1X21-5m)^4}{364(1,800,000 psi)(1777 cm^4)} = 0.141 m$   
 $Broon Size is acceptable$ 

Roof Joist Check Lmax: 14'-7% axio Longth: 14'-71/2" width: 1.50in C:= 1.0 Cm= 1.0 Fb: 1050 psi Fv: 175 psi depth: 9.25:n SX: 21.39:n<sup>3</sup> Ix: 98.93:n<sup>3</sup> Cr = 1.15Ct = 1.0Фb= 0.85 Dv = 0.75 E: 1,600,000 psi CF = 1.0 2 = 0.8 Dead Load: 30 16/6+ 2 (16") = 40 16/6+ Live Lood: 20 16/612 (16")= 26.7 16/64 W= 1.20 + 1.66 = 1.2(40)+ 1.6(26.7) = 90.7 16/F+  $M_{load} = \frac{\omega L^2}{8} = \frac{90.7 \text{ lb} \text{ft} (14' - 7'2'')^2}{8} = 29,089 \text{ lb} \cdot \text{in} = 2424 \text{ lb} \cdot \text{ft}$ Bending Check F'b= 2KF-F6 \$ 06 F6 CmCeCrCF = 0.8 (216) (0.85 X1050 poiX1X1X1115X1) = 2087 psi .  $fb = \frac{M_{10ad}}{S_x} = \frac{a_{9,0891b.1n}}{a_{1.39,n^3}} = 1360psi$ fb < Fb ~ Shear Check FV= 2KF-FV QV Fv Cm Ct Ci = 0,8 (2.16) 0.75 (175psi) (1/(X1)) = 302 psi  $V_{102} d = \frac{1}{2} = \frac{90.7(14-7/2)}{2} = 603 \text{ m}$  $V'_{r} = \left[ \left(\frac{a}{3}\right) F'_{v} \operatorname{bdn} \right] \left(\frac{dn}{d}\right)^{2} = \left[ \left(\frac{a}{3}\right) 30 \operatorname{apsi}\left( \operatorname{LSX} 7, 25 \operatorname{in} \right) \right] \left[ \frac{7.25}{9.25} \right]^{2}$ Vload & V'r = 134716 Deflection Check  $= \frac{5(66.7161714'-71/2)^4}{384(1,600,0000)(38,93,4)} = 0.4335 \text{ in}$ 384EI Δ= 0.4335 4 0.488 1 2×10 @ 16" OC Roof + Snow => axia Dead Load : 80 1619+2 (16")= 106.7 16 1f+ w= 1.20+ 1.6L= 1.2(106.7) + 1.6(26.7)= 170.7 16Ht  $M_{load} = \frac{\omega L^2}{8} = \frac{170.7 \, 10 \left[ f + (14 - 7 \frac{1}{2})^2 \right]}{8} = 54,756 \, 16 - 10 = 4563 \, 16 - f + 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100$ Bunding: fb = 54756 10.10 = 1731 poi fb × Fb ~ Shear: Vload = 170.7 (14-71/2) = 124816 Vload < V'r = 189116 V Deflection:  $\Delta = \frac{5(133.161ft)(14-7/6)^4}{384(1,606,000psiX178m^4)} = 0.482in \Delta < \Delta max = 0.485in 1/2$ 2×12016" 00

Lmax: 14-71/2" a'x 1a" Floor Joist Check Length: $14^{1} - 7^{1}/a^{"}$ Width:1.50inCm = 1.0Fb:1050 psiDepth:11.2sinCr = 1.15Fv:175 psi $Sx = 31.64in^{3}$ Ct = 1.0Cm= 1.0 (i= 1.0 \$6= 0.85 Qv= 0.75 Ix = 177.98104 E : 1600,000 psi CF=1.0 2 . 0.8 Dead Load:  $17.516[ft^2(16^{\circ})= 23.3316]ft$ Live Load:  $40.016[ft^2(16^{\circ})= 53.3316]ft$ W= 1.20 - 1.6L = 1.2(23.33) - 1.6(53.33) = 113.3 16/Ft Mind= wL2 = 113.3 (14'-7/2)2 = 36,361 16.10 = 3030 16.ft Bending Check  $\frac{\text{Depth nominal}}{\text{Width nom.}} = \frac{12}{2} = 6 \quad \therefore \quad \text{CL} = 1.0$ Fb' = 2 KF - Fb \$\$ Fb Cm C+ Cr CF = 0.8 (2.16) X0.85 X1050 psiX1 X1.15 X1) = 2087 psi fb= Mind = 30.36110.10 = 1,149 psi fb < Fb V Shear Check F'V= 2KF-Fr Or Fr CmCECi = 0.8 (2.16) X0.75X175psiX1X1X1) = 302 psi  $V_{load} = \frac{(1)}{a} = \frac{(1)3 \cdot 3/5(f+(1)'-7'z'')}{a} - 829$  Ib Depth notich = 9.25 in .. notch = 2 in  $V'_{r} = \left[ \left(\frac{a}{3}\right) F'_{v} b d_{n} \right] \left(\frac{d_{n}}{d}\right)^{2} = \left[ \left(\frac{a}{3}\right) 30 a psi \left(1.5 \ln \chi 9.25 \ln \right) \right] \left(\frac{9.25}{11.25}\right)^{2}$ = 189116: Vixed < V'r V Deflection Check Length = 0.488in = 51.76.67161ft)(14'-71/3")4 <u>5624</u> 384 ETx = 0.277 10  $\Delta =$ 384(160000psi) 177.98.14) 0.277 < 0.488 V 2" × 18" @ 16" O.C. is acceptable.

Appendix C: Lateral Loading Sample Calculation Seismic

$$C_{s} = \frac{S_{DS}}{\frac{R}{I}}$$

$$V = C_{s} * W$$

$$C_{vi} = \frac{w_{x}h_{x}^{k}}{\sum_{i=1}^{n}w_{i}h_{i}^{k}}$$

$$F_{i} = C_{vi} * V$$

$$F_{x} = \frac{F_{i}K_{F}}{N}$$

S<sub>DS</sub>: short-period design response acceleration R: Response modification factor, 3

I: Importance Factor

Cs: Seismic response coefficient

V: total base shear

W: total weight of structure

*w<sub>x</sub>*: *weight of floor, x* 

 $h_x^k$ : height of floor, x

*C*<sub>vi</sub>: vertical distribution factor

*F<sub>i</sub>*: total seismic force

 $F_x$ : Force per frame, x

K<sub>F</sub>: Frame stiffness

N: quantity of frame type

Boston Seismic Calculations (Case 1 & 4)

|                  | Sds                          | Sd1                          | <b>S1</b>                    | R                | I                | Cs                           | check | W<br>(kips)                      | V<br>(kips)              | wi<br>(kips)                 | hi<br>(feet)         | k                | numerator<br>(k-ft.)                 | Cvi                          | Fi<br>(kips)                        | Frame<br>1                                    | Frame<br>2                                     | Frame<br>3                                     | Frame<br>4 | Frame<br>5 |
|------------------|------------------------------|------------------------------|------------------------------|------------------|------------------|------------------------------|-------|----------------------------------|--------------------------|------------------------------|----------------------|------------------|--------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|------------|------------|
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08                         | -     | 10951                            | 840                      | 2381                         | 10                   | 1                | 309481                               | 0.08                         | 64.58                               | 9.58                                          | 10.20                                          | 7.06                                           | 3.65       | 3.61       |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08                         |       | 10951                            | 840                      | 2381                         | 20                   | 1                | 309481                               | 0.15                         | 129.16                              | 19.15                                         | 20.40                                          | 14.11                                          | 7.30       | 7.22       |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08                         |       | 10951                            | 840                      | 2381                         | 30                   | 1                | 309481                               | 0.23                         | 193.75                              | 28.73                                         | 30.60                                          | 21.17                                          | 10.96      | 10.83      |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08                         |       | 10951                            | 840                      | 2381                         | 40                   | 1                | 309481                               | 0.31                         | 258.33                              | 38.31                                         | 40.80                                          | 28.23                                          | 14.61      | 14.44      |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08                         |       | 10951                            | 840                      | 1428                         | 50                   | 1                | 309481                               | 0.23                         | 193.75                              | 28.73                                         | 30.60                                          | 21.17                                          | 10.96      | 10.83      |
|                  |                              |                              |                              |                  |                  |                              |       |                                  |                          |                              |                      |                  |                                      |                              |                                     |                                               |                                                |                                                |            |            |
|                  |                              | 1                            |                              | 1                | 1                |                              |       |                                  |                          |                              |                      | 1                |                                      |                              |                                     | Frame                                         | Frame                                          | Frame                                          |            |            |
|                  |                              |                              |                              | 1                | 1                |                              | L     |                                  |                          |                              |                      | 1                |                                      |                              |                                     | Frame<br>6                                    | Frame<br>7                                     | Frame<br>8                                     |            | L          |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08                         | -     | 10951                            | 840                      | 2381                         | 10                   | 1                | 309481                               | 0.08                         | 64.58                               | Frame<br>6<br>5.62                            | Frame<br>7<br>19.42                            | Frame<br>8<br>14.50                            |            |            |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1                | 0.08<br>0.08                 | -     | 10951<br>10951                   | 840<br>840               | 2381<br>2381                 | 10<br>20             | 1                | 309481<br>309481                     | 0.08<br>0.15                 | 64.58<br>129.16                     | Frame<br>6<br>5.62<br>11.25                   | Frame<br>7<br>19.42<br>38.84                   | Frame<br>8<br>14.50<br>28.99                   |            |            |
| 1<br>1<br>1      | 0.23<br>0.23<br>0.23         | 0.11<br>0.11<br>0.11         | 0.07<br>0.07<br>0.07         | 3<br>3<br>3      | 1<br>1<br>1      | 0.08<br>0.08<br>0.08         | -     | 10951<br>10951<br>10951          | 840<br>840<br>840        | 2381<br>2381<br>2381         | 10<br>20<br>30       | 1<br>1<br>1      | 309481<br>309481<br>309481           | 0.08<br>0.15<br>0.23         | 64.58<br>129.16<br>193.75           | Frame<br>6<br>5.62<br>11.25<br>16.87          | Frame<br>7<br>19.42<br>38.84<br>58.26          | Frame<br>8<br>14.50<br>28.99<br>43.49          |            |            |
| 1<br>1<br>1<br>1 | 0.23<br>0.23<br>0.23<br>0.23 | 0.11<br>0.11<br>0.11<br>0.11 | 0.07<br>0.07<br>0.07<br>0.07 | 3<br>3<br>3<br>3 | 1<br>1<br>1<br>1 | 0.08<br>0.08<br>0.08<br>0.08 | -     | 10951<br>10951<br>10951<br>10951 | 840<br>840<br>840<br>840 | 2381<br>2381<br>2381<br>2381 | 10<br>20<br>30<br>40 | 1<br>1<br>1<br>1 | 309481<br>309481<br>309481<br>309481 | 0.08<br>0.15<br>0.23<br>0.31 | 64.58<br>129.16<br>193.75<br>258.33 | Frame<br>6<br>5.62<br>11.25<br>16.87<br>22.50 | Frame<br>7<br>19.42<br>38.84<br>58.26<br>77.68 | Frame<br>8<br>14.50<br>28.99<br>43.49<br>57.98 |            |            |

# Miami Seismic Calculations (Case 1 & 4)

|   | Sds  | Sd1  | <b>S1</b> | R | I | Cs   | check | W<br>(kips) | V<br>(kips) | wi<br>(kips) | hi<br>(feet) | k | numerator<br>(k-ft.) | Cvi  | Fi<br>(kips) | Frame<br>1 | Frame<br>2 | Frame<br>3 | Frame<br>4 | Frame<br>5 |
|---|------|------|-----------|---|---|------|-------|-------------|-------------|--------------|--------------|---|----------------------|------|--------------|------------|------------|------------|------------|------------|
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 | -     | 10951       | 161         | 2381         | 10           | 1 | 309481               | 0.08 | 12.35        | 1.83       | 1.95       | 1.35       | 0.70       | 0.69       |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 2381         | 20           | 1 | 309481               | 0.15 | 24.71        | 3.66       | 3.90       | 2.70       | 1.40       | 1.38       |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 2381         | 30           | 1 | 309481               | 0.23 | 37.06        | 5.50       | 5.85       | 4.05       | 2.10       | 2.07       |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 2381         | 40           | 1 | 309481               | 0.31 | 49.42        | 7.33       | 7.81       | 5.40       | 2.79       | 2.76       |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 1428         | 50           | 1 | 309481               | 0.23 | 37.06        | 5.50       | 5.85       | 4.05       | 2.10       | 2.07       |
|   |      |      |           |   |   |      |       |             |             |              |              |   |                      |      |              | Frame<br>6 | Frame<br>7 | Frame<br>8 |            |            |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 | -     | 10951       | 161         | 2381         | 10           | 1 | 309481               | 0.08 | 12.35        | 1.08       | 3.71       | 2.77       |            |            |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 2381         | 20           | 1 | 309481               | 0.15 | 24.71        | 2.15       | 7.43       | 5.55       |            |            |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 2381         | 30           | 1 | 309481               | 0.23 | 37.06        | 3.23       | 11.14      | 8.32       |            |            |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 2381         | 40           | 1 | 309481               | 0.31 | 49.42        | 4.30       | 14.86      | 11.09      |            |            |
| 1 | 0.04 | 0.03 | 0.02      | 3 | 1 | 0.01 |       | 10951       | 161         | 1428         | 50           | 1 | 309481               | 0.23 | 37.06        | 3.23       | 11.14      | 8.32       |            |            |

Los Angles Seismic Calculations (Case 1 & 4)

|     | Sds  | Sd1  | <b>S1</b> | R | I | Cs   | check | W<br>(kips) | V<br>(kips) | wi<br>(kips) | hi<br>(feet) | k | numerator<br>(k-ft.) | Cvi  | Fi (kips) | Frame<br>1 | Frame<br>2 | Frame<br>3 | Frame<br>4 | Frame<br>5 |
|-----|------|------|-----------|---|---|------|-------|-------------|-------------|--------------|--------------|---|----------------------|------|-----------|------------|------------|------------|------------|------------|
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 10           | 1 | 309481.25            | 0.08 | 450.11    | 66.75      | 71.10      | 49.18      | 25.45      | 25.16      |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 20           | 1 | 309481.25            | 0.15 | 900.22    | 133.49     | 142.20     | 98.36      | 50.90      | 50.32      |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 30           | 1 | 309481.25            | 0.23 | 1350.33   | 200.24     | 213.29     | 147.54     | 76.35      | 75.47      |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 40           | 1 | 309481.25            | 0.31 | 1800.44   | 266.98     | 284.39     | 196.72     | 101.81     | 100.63     |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 1428         | 50           | 1 | 309481.25            | 0.23 | 1350.33   | 200.24     | 213.29     | 147.54     | 76.35      | 75.47      |
|     |      |      |           |   |   |      |       |             |             |              |              |   |                      |      |           | Frame      | Frame      | Frame      |            |            |
|     |      | -    |           | - |   |      | _     | -           |             | -            | _            |   |                      |      |           | 6          | 7          | 8          |            |            |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 10           | 1 | 309481.25            | 0.08 | 450.11    | 39.20      | 135.34     | 101.03     |            |            |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 20           | 1 | 309481.25            | 0.15 | 900.22    | 78.39      | 270.68     | 202.06     |            |            |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 30           | 1 | 309481.25            | 0.23 | 1350.33   | 117.59     | 406.03     | 303.09     |            |            |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 2381         | 40           | 1 | 309481.25            | 0.31 | 1800.44   | 156.79     | 541.37     | 404.12     |            |            |
| 1.3 | 1.60 | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 10951       | 5851        | 1428         | 50           | 1 | 309481.25            | 0.23 | 1350.33   | 117.59     | 406.03     | 303.09     |            |            |

# **Boston Seismic Calculations (Case 5)**

|                  | Sds                          | Sd1                          | <b>S1</b>                    | R                | I           | Cs                           | check | W<br>(kips)                      | V<br>(kips)                  | wi<br>(kips)                 | hi<br>(feet)         | k                | numerator<br>(k-ft.)                           | Cvi                          | Fi<br>(kips)                        | Frame<br>1                                   | Frame<br>2                                      | Frame<br>3                                     | Frame<br>4 | Frame<br>5 |
|------------------|------------------------------|------------------------------|------------------------------|------------------|-------------|------------------------------|-------|----------------------------------|------------------------------|------------------------------|----------------------|------------------|------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------------------------|------------|------------|
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         | -     | 14066                            | 1078                         | 3058                         | 10                   | 1                | 397508                                         | 0.08                         | 82.95                               | 11.65                                        | 12.41                                           | 8.58                                           | 4.44       | 4.39       |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         |       | 14066                            | 1078                         | 3058                         | 20                   | 1                | 397508                                         | 0.15                         | 165.90                              | 23.30                                        | 24.82                                           | 17.17                                          | 8.88       | 8.78       |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         |       | 14066                            | 1078                         | 3058                         | 30                   | 1                | 397508                                         | 0.23                         | 248.85                              | 34.95                                        | 37.23                                           | 25.75                                          | 13.33      | 13.17      |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         |       | 14066                            | 1078                         | 3058                         | 40                   | 1                | 397508                                         | 0.31                         | 331.81                              | 46.60                                        | 49.64                                           | 34.34                                          | 17.77      | 17.56      |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         |       | 14066                            | 1078                         | 1835                         | 50                   | 1                | 397508                                         | 0.23                         | 248.85                              | 34.95                                        | 37.23                                           | 25.75                                          | 13.33      | 13.17      |
|                  |                              |                              |                              |                  |             |                              |       |                                  |                              |                              |                      |                  |                                                |                              |                                     |                                              |                                                 |                                                |            |            |
|                  | •                            |                              |                              |                  |             |                              |       |                                  |                              |                              |                      |                  |                                                |                              |                                     | Frame                                        | Frame                                           | Frame                                          |            |            |
|                  |                              |                              |                              |                  |             |                              |       |                                  |                              |                              |                      |                  |                                                |                              |                                     | Frame<br>6                                   | Frame<br>7                                      | Frame<br>8                                     |            |            |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         | -     | 14066                            | 1078                         | 3058                         | 10                   | 1                | 397508                                         | 0.08                         | 82.95                               | Frame<br>6<br>3.96                           | Frame<br>7<br>27.32                             | Frame<br>8<br>20.40                            |            |            |
| 1                | 0.23                         | 0.11                         | 0.07                         | 3                | 1           | 0.08                         | -     | 14066<br>14066                   | 1078<br>1078                 | 3058<br>3058                 | 10<br>20             | 1                | 397508<br>397508                               | 0.08<br>0.15                 | 82.95<br>165.90                     | Frame<br>6<br>3.96<br>7.91                   | Frame<br>7<br>27.32<br>54.64                    | Frame<br>8<br>20.40<br>40.79                   |            |            |
| 1<br>1<br>1      | 0.23<br>0.23<br>0.23         | 0.11<br>0.11<br>0.11         | 0.07<br>0.07<br>0.07         | 3<br>3<br>3      | 1 1 1       | 0.08<br>0.08<br>0.08         | -     | 14066<br>14066<br>14066          | 1078<br>1078<br>1078         | 3058<br>3058<br>3058         | 10<br>20<br>30       | 1<br>1<br>1      | 397508<br>397508<br>397508                     | 0.08<br>0.15<br>0.23         | 82.95<br>165.90<br>248.85           | Frame<br>6<br>3.96<br>7.91<br>11.87          | Frame<br>7<br>27.32<br>54.64<br>81.97           | Frame<br>8<br>20.40<br>40.79<br>61.19          |            |            |
| 1<br>1<br>1<br>1 | 0.23<br>0.23<br>0.23<br>0.23 | 0.11<br>0.11<br>0.11<br>0.11 | 0.07<br>0.07<br>0.07<br>0.07 | 3<br>3<br>3<br>3 | 1<br>1<br>1 | 0.08<br>0.08<br>0.08<br>0.08 | -     | 14066<br>14066<br>14066<br>14066 | 1078<br>1078<br>1078<br>1078 | 3058<br>3058<br>3058<br>3058 | 10<br>20<br>30<br>40 | 1<br>1<br>1<br>1 | 397508<br>397508<br>397508<br>397508<br>397508 | 0.08<br>0.15<br>0.23<br>0.31 | 82.95<br>165.90<br>248.85<br>331.81 | Frame<br>6<br>3.96<br>7.91<br>11.87<br>15.83 | Frame<br>7<br>27.32<br>54.64<br>81.97<br>109.29 | Frame<br>8<br>20.40<br>40.79<br>61.19<br>81.58 |            |            |

Miami Seismic Calculations (Case 5)

|                  | Sds                          | Sd1                          | <b>S1</b>                    | R                | I                | Cs                           | check | W<br>(kips)                      | V<br>(kips)              | wi<br>(kips)                 | hi<br>(feet)         | k                | numerator<br>(k-ft.)                           | Cvi                          | Fi<br>(kips)                     | Frame<br>1                                 | Frame<br>2                                                                       | Frame<br>3                                   | Frame<br>4 | Frame<br>5 |
|------------------|------------------------------|------------------------------|------------------------------|------------------|------------------|------------------------------|-------|----------------------------------|--------------------------|------------------------------|----------------------|------------------|------------------------------------------------|------------------------------|----------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|------------|------------|
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         | -     | 14066                            | 206                      | 3058                         | 10                   | 1                | 397508                                         | 0.08                         | 15.87                            | 2.23                                       | 2.37                                                                             | 1.64                                         | 0.85       | 0.84       |
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         |       | 14066                            | 206                      | 3058                         | 20                   | 1                | 397508                                         | 0.15                         | 31.74                            | 4.46                                       | 4.75                                                                             | 3.28                                         | 1.70       | 1.68       |
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         |       | 14066                            | 206                      | 3058                         | 30                   | 1                | 397508                                         | 0.23                         | 47.61                            | 6.69                                       | 7.12                                                                             | 4.93                                         | 2.55       | 2.52       |
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         |       | 14066                            | 206                      | 3058                         | 40                   | 1                | 397508                                         | 0.31                         | 63.48                            | 8.91                                       | 9.50                                                                             | 6.57                                         | 3.40       | 3.36       |
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         |       | 14066                            | 206                      | 1835                         | 50                   | 1                | 397508                                         | 0.23                         | 47.61                            | 6.69                                       | 7.12                                                                             | 4.93                                         | 2.55       | 2.52       |
|                  |                              |                              |                              |                  |                  |                              |       |                                  |                          |                              |                      |                  |                                                |                              |                                  |                                            |                                                                                  |                                              |            |            |
|                  |                              |                              |                              |                  |                  |                              |       |                                  |                          |                              |                      |                  |                                                |                              |                                  | Frame                                      | Frame                                                                            | Frame                                        |            |            |
|                  | 1                            | 1                            |                              | 1                |                  |                              |       |                                  |                          |                              |                      |                  |                                                |                              |                                  | Frame<br>6                                 | Frame<br>7                                                                       | Frame<br>8                                   |            |            |
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         | -     | 14066                            | 206                      | 3058                         | 10                   | 1                | 397508                                         | 0.08                         | 15.87                            | Frame<br>6<br>0.76                         | Frame<br>7<br>5.23                                                               | Frame<br>8<br>3.90                           |            |            |
| 1                | 0.04                         | 0.03                         | 0.02                         | 3                | 1                | 0.01                         | -     | 14066<br>14066                   | 206<br>206               | 3058<br>3058                 | 10<br>20             | 1                | 397508<br>397508                               | 0.08<br>0.15                 | 15.87<br>31.74                   | Frame<br>6<br>0.76<br>1.51                 | Frame<br>7<br>5.23<br>10.45                                                      | Frame<br>8<br>3.90<br>7.80                   |            |            |
| 1<br>1<br>1      | 0.04<br>0.04<br>0.04         | 0.03<br>0.03<br>0.03         | 0.02<br>0.02<br>0.02         | 3<br>3<br>3      | 1<br>1<br>1      | 0.01<br>0.01<br>0.01         | -     | 14066<br>14066<br>14066          | 206<br>206<br>206        | 3058<br>3058<br>3058         | 10<br>20<br>30       | 1<br>1<br>1      | 397508<br>397508<br>397508                     | 0.08<br>0.15<br>0.23         | 15.87<br>31.74<br>47.61          | Frame<br>6<br>0.76<br>1.51<br>2.27         | Frame<br>7<br>5.23<br>10.45<br>15.68                                             | Frame<br>8<br>3.90<br>7.80<br>11.70          |            |            |
| 1<br>1<br>1<br>1 | 0.04<br>0.04<br>0.04<br>0.04 | 0.03<br>0.03<br>0.03<br>0.03 | 0.02<br>0.02<br>0.02<br>0.02 | 3<br>3<br>3<br>3 | 1<br>1<br>1<br>1 | 0.01<br>0.01<br>0.01<br>0.01 | -     | 14066<br>14066<br>14066<br>14066 | 206<br>206<br>206<br>206 | 3058<br>3058<br>3058<br>3058 | 10<br>20<br>30<br>40 | 1<br>1<br>1<br>1 | 397508<br>397508<br>397508<br>397508<br>397508 | 0.08<br>0.15<br>0.23<br>0.31 | 15.87<br>31.74<br>47.61<br>63.48 | Frame<br>6<br>0.76<br>1.51<br>2.27<br>3.03 | Frame           7           5.23           10.45           15.68           20.91 | Frame<br>8<br>3.90<br>7.80<br>11.70<br>15.61 |            |            |

# Los Angeles Seismic Calculations (Case 5)

|     | Sds      | Sd1  | <b>S1</b> | R | I | Cs   | check | W<br>(kips) | V<br>(kips) | wi<br>(kips) | hi<br>(feet) | k | numerator<br>(k-ft.) | Cvi  | Fi (kips) | Frame 1 | Frame 2 | Frame 3 | Frame 4 | Frame 5 |
|-----|----------|------|-----------|---|---|------|-------|-------------|-------------|--------------|--------------|---|----------------------|------|-----------|---------|---------|---------|---------|---------|
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 10           | 1 | 397508               | 0.08 | 578.13    | 81.19   | 86.49   | 59.83   | 30.96   | 30.60   |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 20           | 1 | 397508               | 0.15 | 1156.27   | 162.38  | 172.97  | 119.65  | 61.92   | 61.21   |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 30           | 1 | 397508               | 0.23 | 1734.40   | 243.58  | 259.46  | 179.48  | 92.88   | 91.81   |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 40           | 1 | 397508               | 0.31 | 2312.54   | 324.77  | 345.95  | 239.30  | 123.84  | 122.41  |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 1835         | 50           | 1 | 397508               | 0.23 | 1734.40   | 243.58  | 259.46  | 179.48  | 92.88   | 91.81   |
|     | <u>.</u> |      |           |   |   |      |       |             |             |              |              |   |                      |      |           | Frame 6 | Frame 7 | Frame 8 |         |         |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 10           | 1 | 397508               | 0.08 | 578.13    | 27.57   | 190.42  | 142.14  |         |         |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 20           | 1 | 397508               | 0.15 | 1156.27   | 55.15   | 380.84  | 284.29  |         |         |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 30           | 1 | 397508               | 0.23 | 1734.40   | 82.72   | 571.26  | 426.43  |         |         |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 3058         | 40           | 1 | 397508               | 0.31 | 2312.54   | 110.30  | 761.68  | 568.58  |         |         |
| 1.3 | 1.60     | 0.74 | 0.85      | 3 | 1 | 0.53 | 0.14  | 14066       | 7516        | 1835         | 50           | 1 | 397508               | 0.23 | 1734.40   | 82.72   | 571.26  | 426.43  |         |         |

Wind

$$q_{s} = 0.00256 * V^{2}$$
$$q_{z} = q_{s} * K_{z}$$
$$p = q_{z} * C_{p} * G$$
$$F = L * p * h$$
$$F_{x} = F * K_{F}$$

- *q<sub>s</sub>*: *static wind pressure*
- V: wind velocity
- *q<sub>z</sub>*: velocity wind pressure at height *z*
- *K<sub>z</sub>*: *exposure factor*
- p: design wind pressure on a particular face of a building
- G: gust factor, 0.85
- C<sub>p</sub>: external pressure coefficient, 1.0
- L: building length
- F: total force
- h: tributary height
- *F<sub>x</sub>: Force per frame, x*
- *K<sub>F</sub>*: *Frame stiffness*

| Floor | Wind<br>Velocity | qs    | Exposure | qz    | р     | Building<br>Length | Total<br>Force | Frame<br>1 | Frame<br>2 | Frame<br>3 | Frame<br>4 | Frame<br>5 |
|-------|------------------|-------|----------|-------|-------|--------------------|----------------|------------|------------|------------|------------|------------|
| 1     | 108              | 29.86 | 0.57     | 17.02 | 14.47 | 225.67             | 32647          | 4.84       | 5.16       | 3.57       | 1.85       | 1.82       |
| 2     | 108              | 29.86 | 0.62     | 18.51 | 15.74 | 225.67             | 35511          | 5.27       | 5.61       | 3.88       | 2.01       | 1.98       |
| 3     | 108              | 29.86 | 0.66     | 19.71 | 16.75 | 225.67             | 37802          | 5.61       | 5.97       | 4.13       | 2.14       | 2.11       |
| 4     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 225.67             | 40093          | 5.95       | 6.33       | 4.38       | 2.27       | 2.24       |
| 5     | 108              | 29.86 | 0.76     | 22.69 | 19.29 | 225.67             | 21765          | 3.23       | 3.44       | 2.38       | 1.23       | 1.22       |
|       |                  |       |          |       |       |                    |                | Frame      | Frame      | Frame      |            |            |
|       |                  |       |          |       |       |                    |                | 6          | 7          | 8          |            |            |
| 1     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 2.03       | 7.02       | 5.24       |            |            |
| 2     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 2.03       | 7.02       | 5.24       |            |            |
| 3     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 2.03       | 7.02       | 5.24       |            |            |
| 4     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 2.03       | 7.02       | 5.24       |            |            |
| 5     | 108              | 29.86 | 0.76     | 22.69 | 19.29 | 131.38             | 12671          | 1.10       | 3.81       | 2.84       |            |            |

## **Boston Wind Calculations (Case 1 & 4)**

Miami Wind Calculations (Case 1 & 4)

| Floor            | Wind                     | as                               | Exposure                     | 07                               | n                                | Building                             | Total                            | Frame                                      | Frame                                          | Frame                                      | Frame | Frame |
|------------------|--------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|-------|-------|
| 11001            | Velocity                 | Чэ                               | Exposure                     | 94                               | Р                                | Length                               | Force                            | 1                                          | 2                                              | 3                                          | 4     | 5     |
| 1                | 139                      | 49.46                            | 0.57                         | 28.19                            | 23.96                            | 225.67                               | 54079                            | 8.02                                       | 8.54                                           | 5.91                                       | 3.06  | 3.02  |
| 2                | 139                      | 49.46                            | 0.62                         | 30.67                            | 26.07                            | 225.67                               | 58823                            | 8.72                                       | 9.29                                           | 6.43                                       | 3.33  | 3.29  |
| 3                | 139                      | 49.46                            | 0.66                         | 32.64                            | 27.75                            | 225.67                               | 62618                            | 9.29                                       | 9.89                                           | 6.84                                       | 3.54  | 3.50  |
| 4                | 139                      | 49.46                            | 0.70                         | 34.62                            | 29.43                            | 225.67                               | 66413                            | 9.85                                       | 10.49                                          | 7.26                                       | 3.76  | 3.71  |
| 5                | 139                      | 49.46                            | 0.76                         | 37.59                            | 31.95                            | 225.67                               | 36053                            | 5.35                                       | 5.69                                           | 3.94                                       | 2.04  | 2.02  |
|                  |                          |                                  |                              |                                  |                                  |                                      |                                  |                                            |                                                |                                            |       |       |
|                  |                          |                                  |                              |                                  |                                  |                                      |                                  | Frame                                      | Frame                                          | Frame                                      |       |       |
|                  |                          |                                  |                              |                                  |                                  |                                      |                                  | Frame<br>6                                 | Frame<br>7                                     | Frame<br>8                                 |       |       |
| 1                | 139                      | 49.46                            | 0.70                         | 34.62                            | 29.43                            | 131.38                               | 38663                            | Frame<br>6<br>3.37                         | Frame<br>7<br>11.63                            | Frame<br>8<br>8.68                         |       |       |
| 1                | 139<br>139               | 49.46<br>49.46                   | 0.70                         | 34.62<br>34.62                   | 29.43<br>29.43                   | 131.38<br>131.38                     | 38663<br>38663                   | Frame<br>6<br>3.37<br>3.37                 | Frame<br>7<br>11.63<br>11.63                   | Frame<br>8<br>8.68<br>8.68                 |       |       |
| 1<br>2<br>3      | 139<br>139<br>139        | 49.46<br>49.46<br>49.46          | 0.70<br>0.70<br>0.70         | 34.62<br>34.62<br>34.62          | 29.43<br>29.43<br>29.43          | 131.38<br>131.38<br>131.38           | 38663<br>38663<br>38663          | Frame<br>6<br>3.37<br>3.37<br>3.37         | Frame<br>7<br>11.63<br>11.63<br>11.63          | Frame<br>8<br>8.68<br>8.68<br>8.68         |       |       |
| 1<br>2<br>3<br>4 | 139<br>139<br>139<br>139 | 49.46<br>49.46<br>49.46<br>49.46 | 0.70<br>0.70<br>0.70<br>0.70 | 34.62<br>34.62<br>34.62<br>34.62 | 29.43<br>29.43<br>29.43<br>29.43 | 131.38<br>131.38<br>131.38<br>131.38 | 38663<br>38663<br>38663<br>38663 | Frame<br>6<br>3.37<br>3.37<br>3.37<br>3.37 | Frame<br>7<br>11.63<br>11.63<br>11.63<br>11.63 | Frame<br>8<br>8.68<br>8.68<br>8.68<br>8.68 |       |       |

| Floor | Wind     | as    | Exposure | 07             | n     | Building | Total | Frame | Frame | Frame | Frame | Frame |
|-------|----------|-------|----------|----------------|-------|----------|-------|-------|-------|-------|-------|-------|
| 11001 | Velocity | Чэ    | LAPOSULE | 4 <sup>2</sup> | Ч     | Length   | Force | 1     | 2     | 3     | 4     | 5     |
| 1     | 85       | 18.50 | 0.57     | 10.54          | 8.96  | 225.67   | 20223 | 3.00  | 3.19  | 2.21  | 1.14  | 1.13  |
| 2     | 85       | 18.50 | 0.62     | 11.47          | 9.75  | 225.67   | 21997 | 3.26  | 3.47  | 2.40  | 1.24  | 1.23  |
| 3     | 85       | 18.50 | 0.66     | 12.21          | 10.38 | 225.67   | 23416 | 3.47  | 3.70  | 2.56  | 1.32  | 1.31  |
| 4     | 85       | 18.50 | 0.70     | 12.95          | 11.01 | 225.67   | 24835 | 3.68  | 3.92  | 2.71  | 1.40  | 1.39  |
| 5     | 85       | 18.50 | 0.76     | 14.06          | 11.95 | 225.67   | 13482 | 2.00  | 2.13  | 1.47  | 0.76  | 0.75  |
|       |          |       |          |                |       |          |       | Frame | Frame | Frame |       |       |
|       |          |       |          |                |       |          |       | 6     | 7     | 8     |       |       |
| 1     | 85       | 18.50 | 0.70     | 12.95          | 11.01 | 131.38   | 14458 | 1.26  | 4.35  | 3.25  |       |       |
| 2     | 85       | 18.50 | 0.70     | 12.95          | 11.01 | 131.38   | 14458 | 1.26  | 4.35  | 3.25  |       |       |
| 3     | 85       | 18.50 | 0.70     | 12.95          | 11.01 | 131.38   | 14458 | 1.26  | 4.35  | 3.25  |       |       |
| 4     | 85       | 18.50 | 0.70     | 12.95          | 11.01 | 131.38   | 14458 | 1.26  | 4.35  | 3.25  |       |       |
| 5     | 85       | 18.50 | 0.76     | 14.06          | 11.95 | 131.38   | 7849  | 0.68  | 2.36  | 1.76  |       |       |

## Los Angeles Wind Calculations (Case 1 & 4)

# **Boston Wind Calculations (Case 5)**

| Floor | Wind<br>Velocity | qs    | Exposure | qz    | р     | Building<br>Length | Total<br>Force | Frame<br>1 | Frame<br>2 | Frame<br>3 | Frame<br>4 | Frame<br>5 |
|-------|------------------|-------|----------|-------|-------|--------------------|----------------|------------|------------|------------|------------|------------|
| 1     | 108              | 29.86 | 0.57     | 17.02 | 14.47 | 329.21             | 47627          | 6.69       | 7.12       | 4.93       | 2.55       | 2.52       |
| 2     | 108              | 29.86 | 0.62     | 18.51 | 15.74 | 329.21             | 51805          | 7.28       | 7.75       | 5.36       | 2.77       | 2.74       |
| 3     | 108              | 29.86 | 0.66     | 19.71 | 16.75 | 329.21             | 55147          | 7.74       | 8.25       | 5.71       | 2.95       | 2.92       |
| 4     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 329.21             | 58489          | 8.21       | 8.75       | 6.05       | 3.13       | 3.10       |
| 5     | 108              | 29.86 | 0.76     | 22.69 | 19.29 | 329.21             | 31751          | 4.46       | 4.75       | 3.29       | 1.70       | 1.68       |
|       |                  |       |          |       |       |                    |                | Frame      | Frame      | Frame      |            |            |
|       |                  | -     |          |       | -     |                    | -              | 6          | 7          | 8          |            |            |
| 1     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 1.11       | 7.69       | 5.74       |            |            |
| 2     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 1.11       | 7.69       | 5.74       |            |            |
| 3     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 1.11       | 7.69       | 5.74       |            |            |
| 4     | 108              | 29.86 | 0.70     | 20.90 | 17.77 | 131.38             | 23341          | 1.11       | 7.69       | 5.74       |            |            |
| 5     | 108              | 29.86 | 0.76     | 22.69 | 19.29 | 131.38             | 12671          | 0.60       | 4.17       | 3.12       |            |            |

| Floor | Wind     | qs    | Exposure | qz    | р     | Building | Total | Frame | Frame | Frame | Frame | Frame |
|-------|----------|-------|----------|-------|-------|----------|-------|-------|-------|-------|-------|-------|
|       | velocity | -     | -        | -     | -     | Length   | Force | 1     | 2     | 3     | 4     | 5     |
| 1     | 139      | 49.46 | 0.57     | 28.19 | 23.96 | 329.21   | 78892 | 11.08 | 11.80 | 8.16  | 4.22  | 4.18  |
| 2     | 139      | 49.46 | 0.62     | 30.67 | 26.07 | 329.21   | 85813 | 12.05 | 12.84 | 8.88  | 4.60  | 4.54  |
| 3     | 139      | 49.46 | 0.66     | 32.64 | 27.75 | 329.21   | 91349 | 12.83 | 13.67 | 9.45  | 4.89  | 4.84  |
| 4     | 139      | 49.46 | 0.70     | 34.62 | 29.43 | 329.21   | 96885 | 13.61 | 14.49 | 10.03 | 5.19  | 5.13  |
| 5     | 139      | 49.46 | 0.76     | 37.59 | 31.95 | 329.21   | 52595 | 7.39  | 7.87  | 5.44  | 2.82  | 2.78  |
|       |          |       |          |       |       |          |       | Frame | Frame | Frame |       |       |
|       |          |       |          |       |       |          |       | 6     | 7     | 8     |       |       |
| 1     | 139      | 49.46 | 0.70     | 34.62 | 29.43 | 131.38   | 38663 | 1.84  | 12.73 | 9.51  |       |       |
| 2     | 139      | 49.46 | 0.70     | 34.62 | 29.43 | 131.38   | 38663 | 1.84  | 12.73 | 9.51  |       |       |
| 3     | 139      | 49.46 | 0.70     | 34.62 | 29.43 | 131.38   | 38663 | 1.84  | 12.73 | 9.51  |       |       |
| 4     | 139      | 49.46 | 0.70     | 34.62 | 29.43 | 131.38   | 38663 | 1.84  | 12.73 | 9.51  |       |       |
| 5     | 139      | 49.46 | 0.76     | 37.59 | 31.95 | 131.38   | 20989 | 1.00  | 6.91  | 5.16  |       |       |

# Miami Wind Calculations (Case 5)

# Los Angeles Wind Calculations (Case 5)

| Floor | Wind     | a     | Exposure | a.         | n     | Building | Total | Frame | Frame | Frame | Frame | Frame |
|-------|----------|-------|----------|------------|-------|----------|-------|-------|-------|-------|-------|-------|
| 11001 | Velocity | ۳     | Exposure | <b>H</b> 2 | ٩     | Length   | Force | 1     | 2     | 3     | 4     | 5     |
| 1     | 85       | 18.50 | 0.57     | 10.54      | 8.96  | 329.21   | 29501 | 4.14  | 4.41  | 3.05  | 1.58  | 1.56  |
| 2     | 85       | 18.50 | 0.62     | 11.47      | 9.75  | 329.21   | 32089 | 4.51  | 4.80  | 3.32  | 1.72  | 1.70  |
| 3     | 85       | 18.50 | 0.66     | 12.21      | 10.38 | 329.21   | 34159 | 4.80  | 5.11  | 3.53  | 1.83  | 1.81  |
| 4     | 85       | 18.50 | 0.70     | 12.95      | 11.01 | 329.21   | 36230 | 5.09  | 5.42  | 3.75  | 1.94  | 1.92  |
| 5     | 85       | 18.50 | 0.76     | 14.06      | 11.95 | 329.21   | 19668 | 2.76  | 2.94  | 2.04  | 1.05  | 1.04  |
|       |          |       |          |            |       |          |       | Frame | Frame | Frame |       |       |
|       |          |       |          |            |       |          |       | 6     | 7     | 8     |       |       |
| 1     | 85       | 18.50 | 0.70     | 12.95      | 11.01 | 131.38   | 14458 | 0.69  | 4.76  | 3.55  |       |       |
| 2     | 85       | 18.50 | 0.70     | 12.95      | 11.01 | 131.38   | 14458 | 0.69  | 4.76  | 3.55  |       |       |
| 3     | 85       | 18.50 | 0.70     | 12.95      | 11.01 | 131.38   | 14458 | 0.69  | 4.76  | 3.55  |       |       |
| 4     | 85       | 18.50 | 0.70     | 12.95      | 11.01 | 131.38   | 14458 | 0.69  | 4.76  | 3.55  |       |       |
| 5     | 85       | 18.50 | 0.76     | 14.06      | 11.95 | 131.38   | 7849  | 0.37  | 2.59  | 1.93  |       |       |

#### RISA-3D

For the lateral load analysis, RISA-3D was used by modeling the frame using the originally designed members and redesigning them based on deflection. The dead and live loads were added to the model and the end supports were considered to be fixed. Each floor had a lateral load from the wind or seismic calculation applied to it and the model was solved for deflection. The frame in the example is Frame 1 from Case 1 with wind loading in Miami, Florida. The deflection shown has a magnification factor of 40X so the deflection appears to be more significant. Then, the maximum lateral deflection in the X-direction was identified and compared to the maximum lateral deflection of the structure. If the sway of the structure exceeded the allowable lateral deflection, the frame was redesigned with new member sizes and reanalyzed.



Frame Summary







W18x40

W18x35

W18x40















## **Appendix D: Egress Analysis Sample Calculation**

## NFPA 101; Table 7.3.1.2; 7.3.3.2

Sample for Case 1:

Stairway Capacity:

C = Capacity

 $W_n = Nominal Width of Stairs = 56in$ 

$$C = 146.7 + \left(\frac{W_n - 44}{0.218}\right)$$
$$C = 146.7 + \left(\frac{56 - 44}{0.218}\right)$$

 $C = 202 \ persons$ 

4 Stairways  $\rightarrow$  Allowable Occupancy = 808 persons

|                                                                     | Case 1:                     | Floor 1                                                                               |                               |
|---------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|-------------------------------|
| Occupancy Use                                                       | <b>Occupant Load Factor</b> | Applicable Areas                                                                      | Total Area (ft <sup>2</sup> ) |
|                                                                     | (ft²/person)                |                                                                                       |                               |
| Business Use                                                        | 100                         | Open Work Space<br>(860ft <sup>2</sup> )<br>Reception (200ft <sup>2</sup> )           | 5300                          |
| Concentrated<br>Business Use                                        | 50                          | Conference Room<br>(300ft <sup>2</sup> )<br>Personal Offices<br>(160ft <sup>2</sup> ) | 4700                          |
| Storage (in other<br>than storage and<br>mercantile<br>occupancies) | 500                         | Supply Room (64ft <sup>2</sup> )                                                      | 320                           |
| Less Concentrated<br>Use, Without<br>Fixed Seating                  | 15net                       | Open Lobby<br>(2200ft <sup>2</sup> )                                                  | ~600                          |
| Concentrated use,<br>without fixed<br>seating                       | 7net                        | Break Room (170ft <sup>2</sup> )                                                      | ~500                          |

\*Net occupant load factor only considers the area that is explicitly used

Occupant Load:

$$C = \left(\frac{5300}{100}\right) + \left(\frac{4700}{50}\right) + \left(\frac{320}{500}\right) + \left(\frac{600}{15}\right) + \left(\frac{500}{7}\right)$$

 $C = 259 \, persons$ 

Acceptable: 259 Occupant Load < 808 Allowable Capacity

#### **Appendix E: Hydraulic System Sample Calculation**

#### Case 1 (Floor 5) and Case 4 (Floor 5) Hydraulic Calculations

Material: Black Steel Schedule 40 Piping (C=120) Design Area: 1500 ft<sup>2</sup> Design Density: 0.1 gpm/ft<sup>2</sup> Typical Area of Coverage: 120 ft<sup>2</sup> Sprinkler K-Factor: 5.6

#### Design Area: NFPA 13HB; Figure A.23.4.4

$$\begin{split} N &= \frac{Design \ Area}{Area \ per \ Sprinkler} \\ N &= \frac{1500 f t^2}{120 f t^2} \\ N &= 12.5 \ Sprinklers \rightarrow 13 \ Sprinklers \\ N_{Branchline} &= \frac{1.2 \sqrt{A}}{S} \\ N_{Branchline} &= \frac{1.2 \sqrt{1500 f t^2}}{10} \\ N_{Branchline} &= 4.65 \ Sprinklers \rightarrow 5 \ Sprinklers \end{split}$$

## **Required Flow and Pressure:**

168gpm at 50psi



| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                   |
| <sup>3</sup> 0 97 77770 166 5                                                                                           |
| 5 0 27 77700 1 C1                                                                                                       |
| Q 37.7739 L.b. P p 0.052395 Pf 0.36676538                                                                               |
| T 7 Height of Elevation                                                                                                 |
| q 13.56457 1.5 L 7.25 C 120 Pt 5.86727136 q=kVPt                                                                        |
| Pe 0 q 13.56457                                                                                                         |
| Q 51.34197 1.61 F 0.092424 Pf 0.67007473                                                                                |
| T 7.25 Height of Elevation                                                                                              |
| q 14.31821 2 L 3.66 C 120 Pt 6.53734609 q=kVPt                                                                          |
|                                                                                                                         |
| Q 65.66018 2.067 F 5 p 0.043147 Pf 0.37365577                                                                           |
| T 8.66 Height of Elevation                                                                                              |
| q 0 2.5 L 12 C 120 $Pt$ 6.91100187 $q = KVPt$                                                                           |
| CM1 0 55 56010 2.450 1T 5 12 n 0.012150                                                                                 |
| P 12 p 0.018133 Pf 0.43580826                                                                                           |
| I 24 Height of Elevation                                                                                                |
| 2 Pt 4.59183673 Q=(Area of Coverage)(De                                                                                 |
| q 1.5 Pe 0 Q= 12                                                                                                        |
| 6 Q 12 1.61 F p 0.006279 Pf 0.06279086 Pt= 4 591837                                                                     |
| T 10 Height of Elevation                                                                                                |
| g 12.08177 1.5 L 10 C 120 Pt 4.65462759 g=kVPt                                                                          |
| 7 Pe 0 q 12.08177                                                                                                       |
| Q 24.08177 1.61 F 0.022779 Pf 0.22778997                                                                                |
| T 10 Height of Elevation                                                                                                |
| q 12.37387 2 L 10 C 120 Pt 4.88241756 q=kVPt                                                                            |
|                                                                                                                         |
| Q 36.45564 2.067 F P 0.014528 Pf 0.14528129                                                                             |
| T 10 Height of Elevation                                                                                                |
| q 12.55662 2 L 7.5 C 120 Pe 0 q 12.55662                                                                                |
| 9 Q 49.01225 2.067 F F 0.025119                                                                                         |
| T 75                                                                                                                    |
|                                                                                                                         |
| q 12.78971 2 L 3.33 C 120 Pe 0 a 12.78971                                                                               |
|                                                                                                                         |
| 10 Q 61.80196 2.067 F p 0.038574 pf 0.12845277                                                                          |
| 10 Q 61.80196 2.067 F D 0.038574 Pf 0.12845277 Height of Elevation                                                      |
| 10 Q 61.80196 2.067 F D 0.038574 P 0.038574 Height of Elevation Height of Elevation                                     |
| 10     Q     61.80196     2.067     F     p     0.038574     Pf     0.12845277     Height of Elevation       T     3.33 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                  |

|              |     |          |       |                |     | 0.5  | _ | 120      | Pt         | 4.59183673    | Q=(Area o   | f Coverage | )(Density) |
|--------------|-----|----------|-------|----------------|-----|------|---|----------|------------|---------------|-------------|------------|------------|
|              | q   |          | 1     |                | L   | 9.5  | C | 120      | Pe         | 0             | Q=          | 12         |            |
| 11           | _   |          |       |                | _   |      |   |          |            |               | Pt=(Q/k-fa  | actor)^2   |            |
|              | Q   | 12       | 1.049 |                | F   |      | р | 0.050578 | Pf         | 0.48049117    | Pt=         | 4.591837   |            |
|              |     |          |       |                | т   | 95   | _ |          |            | 0.10010111    | Height of   | Flevation  |            |
|              |     |          |       |                |     | 0.0  |   |          | Pt         | 5 07232791    | n=kVPt      |            |            |
|              | q   | 12.61222 | 1     |                | L   | 12   | С | 120      | Pe         | 0             | a           | 12 61222   |            |
| 12           |     |          |       |                |     |      |   |          |            |               | 4           | 12:01222   |            |
|              | Q   | 24.61222 | 1.049 |                | F   |      | р | 0.191032 | Pf         | 2 29238126    |             |            |            |
|              |     |          |       |                | т   | 12   |   |          |            | 2.2.52.5012.0 | Height of   | Elevation  |            |
|              |     |          |       |                |     |      |   |          | Pt         | 7 36470916    | a=k/e       |            |            |
|              | q   | 15.19728 | 1.25  |                | L   | 9.25 | С | 120      | Pe         | 0             | a           | 15 19728   |            |
| 13           |     |          |       |                |     |      |   |          | TC .       | 0             | ч           | 13.13720   |            |
| 15           | Q   | 39.8095  | 1.38  |                | F   |      | р | 0.122297 | Pf         | 1 13125161    |             |            |            |
|              |     |          |       |                | т   | 9.25 | _ |          |            | 1.15125101    | Height of   | Flevation  |            |
|              | _   |          |       |                |     | 5.25 |   |          |            |               | ricigite of | Licvation  |            |
|              |     |          |       |                |     |      |   | _        | D+         | 21 7035368    | a=h/p       |            |            |
|              | q   | 0        | 3     |                | L   | 8.5  | С | 120      |            | 0             | q=KVPt      | 0          |            |
| CM3          |     |          |       |                |     |      |   |          | re         | 0             | ч           | U          |            |
| CIVIS        | Q   | 167.2716 | 3.068 |                | F   |      | р | 0.035563 | Df         | 0 20220502    |             |            |            |
|              |     |          |       |                | т   | 0 E  |   |          | FI         | 0.30228383    | Hoight of   | Flovation  |            |
|              | -   |          |       |                | 1   | 8.5  |   |          | D+         | 22.0059226    | neight Of   | Lievation  |            |
|              | q   | 0        | 3.5   |                | - L | 24   | С | 120      | PL         | 22.0058220    | q=KVPt      | 0          |            |
| CN44         |     |          |       |                |     |      |   |          | Pe         | 0             | Ч           | U          |            |
| CIVI4        | Q   | 167.2716 | 3.548 |                | F   |      | р | 0.017521 | Df         | 0.42050010    |             |            |            |
|              |     |          |       |                | т   | 24   |   |          | PI         | 0.42050919    | Unight of   | Flouration |            |
|              |     |          |       |                | 1   | 24   |   |          | Dt         | 22 4262240    |             | Elevation  |            |
|              | q   | 0        | 4     |                | L   | 61   | С | 120      | Pt<br>D-   | 22.4263318    | q=KVPt      | •          |            |
| <b>C1 45</b> |     |          |       |                |     |      |   |          | Ре         | 0             | q           | 0          |            |
| CIVI5        | Q   | 167.2716 | 4.026 |                | F   |      | р | 0.009468 | <b>D</b> ( | 0 57750500    |             |            |            |
|              |     |          |       |                | -   | 64   |   |          | PT         | 0.57753593    |             | -          |            |
|              |     |          |       |                | 1   | 61   |   |          | 21         | 22 0020670    | Height of   | Elevation  |            |
|              | q   | 0        | 5     |                | L   | 40.5 | С | 120      | Pt         | 23.0038678    | q=KVPt      |            |            |
|              |     |          |       |                |     |      |   |          | Ре         | 0             | q           | 0          |            |
| CIVI6        | Q   | 167.2716 | 5.047 | 1E             | F   | 12   | р | 0.003149 | <b>D</b> ( | 0.46500757    |             |            |            |
|              |     |          |       |                | -   | 52.5 |   |          | PT         | 0.16533757    |             | -          |            |
|              |     |          |       |                | 1   | 52.5 |   |          |            |               | Height of   | Elevation  |            |
|              | q   | 0        | 6     |                | L   | 6.5  | с | 120      | Pt         | 23.1692053    | q=kVPt      | •          |            |
|              |     |          |       |                |     |      |   |          | Pe         | 0             | q           | 0          |            |
| RISER        | Q   | 167.2716 | 6.065 | 1E             | F   | 14   | р | 0.001287 | -          |               |             |            |            |
|              |     |          |       |                | _   |      |   |          | Pt         | 0.02638471    |             |            |            |
|              |     |          |       |                | T   | 20.5 |   |          |            |               | Height of   | Elevation  |            |
|              | q   | 0        | 6     |                | L   | 60   | с | 120      | Pt         | 23.19559      | q=k√Pt      | _          |            |
|              | · . |          |       |                |     |      |   |          | Pe         | 25.98         | q           | 0          |            |
|              |     |          |       |                |     |      |   |          |            |               |             |            |            |
| BOR          | Q   | 167.2716 | 6.065 | 1BV; 1GV; 1SCV | F   | 45   | p | 0.001287 |            |               |             |            |            |
|              | ·   |          |       |                | _   |      | ľ |          |            |               |             |            |            |
|              |     |          |       |                |     |      | _ |          | Pf         | 0.13514118    |             |            |            |
|              |     | ,,       |       | ·              | Т   | 105  |   |          |            | -             | Height of   | Elevation  | 60         |
|              |     |          |       |                |     |      |   |          | Pt         | 49.3107312    |             |            |            |

# Case 2 (Floor 5) and Case 3 (Floor 5) Hydraulic Calculations

Material: Black Steel Schedule 40 Piping (C=120) Design Area: 1500  $ft^2$ Design Density: 0.1 gpm/ft<sup>2</sup> Area of Coverage: 120  $ft^2$ Sprinkler K-Factor: 5.6

Design Area:  

$$N = \frac{Design Area}{Area per Sprinkler}$$

$$N = \frac{1500ft^2}{120ft^2}$$

$$N = 12.5 Sprinklers \rightarrow 13 \text{ Sprinklers}$$

$$N_{Branchline} = \frac{1.2\sqrt{A}}{S}$$

$$N_{Branchline} = \frac{1.2\sqrt{1500ft^2}}{10}$$

$$N_{Branchline} = 4.65 Sprinklers \rightarrow 5 \text{ Sprinklers}$$

## **Required Flow and Pressure:**

177gpm at 56psi



| Location | Flov | w (gpm)      | Pipe Size<br>(in) | Fittings and<br>Devices | Pipe E<br>Len | quivalent<br>Igth (ft) | Frictio  | on Loss  | Requir     | ed Pressure<br>(psi) |            | Notes      |            |
|----------|------|--------------|-------------------|-------------------------|---------------|------------------------|----------|----------|------------|----------------------|------------|------------|------------|
|          | q    |              | 1                 |                         | L             | 10                     | с        | 120      | Pt         | 4.591836735          | Q=(Area o  | f Coverage | )(Density) |
| 1        |      |              |                   |                         |               |                        |          |          | Ре         | 0                    | Q=         | 12         |            |
| 1        | Q    | 12           | 1.049             |                         | F             |                        | р        | 0.050578 | Pf         | 0.505780181          | Pt=(Q/K-12 | 4.591837   |            |
|          |      |              |                   |                         | т             | 10                     |          |          |            |                      | Height of  | Elevation  |            |
|          | a    | 12.64362553  | 1                 |                         | L             | 10                     | с        | 120      | Pt         | 5.097616915          | q=kV⊧t     |            |            |
|          | ч    | 12:0 1002000 | -                 |                         | -             |                        | 0        |          | Pe         | 0                    | q          | 12.64363   |            |
| 2        | Q    | 24.64362553  | 1.049             |                         | F             |                        | р        | 0.191483 | Pf         | 1 914829077          |            |            |            |
|          |      |              |                   |                         | т             | 10                     |          |          |            | 1011025077           | Height of  | Elevation  |            |
|          | a    | 14 82937309  | 1 25              |                         | 1             | 10                     | C        | 120      | Pt         | 7.012445992          | q=kV⊵t     |            |            |
|          | ч    | 14.02557505  | 1.25              |                         | -             | 10                     | c        | 120      | Pe         | 0                    | q          | 14.82937   |            |
| 3        | Q    | 39.47299862  | 1.61              |                         | F             |                        | р        | 0.056829 | Df         | 0 560205105          |            |            |            |
|          |      |              |                   |                         | т             | 10                     |          |          |            | 0.300203103          | Height of  | Elevation  |            |
|          | ~    | 15 41055140  | 1 5               |                         |               | 0 5                    | c        | 120      | Pt         | 7.580731177          | q=kVPt     |            |            |
|          | q    | 15.41655146  | 1.5               |                         | L             | 0.5                    | L        | 120      | Pe         | 0                    | q          | 15.41855   |            |
| 4        | Q    | 54.8915501   | 1.61              |                         | F             |                        | р        | 0.104591 | Df.        | 0.00003753           |            |            |            |
|          |      |              |                   |                         | т             | 8.5                    |          |          | PT         | 0.88902752           | Height of  | Flevation  |            |
|          | ~    | 16 20750502  | 1 5               |                         |               | 7.25                   | c        | 120      | Pt         | 8.469758698          | q=kVPt     |            |            |
|          | q    | 10.29759592  | 1.5               |                         | L             | 7.25                   | L        | 120      | Pe         | 0                    | q          | 16.2976    |            |
| 5        | Q    | 71.18914602  | 1.61              | 1E                      | F             | 4                      | р        | 0.169191 | D(         | 4 000005000          |            |            |            |
|          |      |              |                   |                         | т             | 11 25                  |          |          | PT         | 1.903395923          | Height of  | Elevation  |            |
|          |      |              |                   |                         |               | 11120                  |          | 100      | Pt         | 10.37315462          | q=kVPt     |            |            |
|          | q    | 0            | 2.5               |                         | L             | 8.5                    | L        | 120      | Pe         | 0                    | q          | 0          |            |
| CM1      | Q    | 71.18914602  | 2.469             | 1T                      | F             | 12                     | р        | 0.021088 | <b>D</b> ( | 0 400000000          |            |            |            |
|          |      |              |                   |                         | т             | 20.5                   |          |          | Pt         | 0.432309502          | Height of  | Flevation  |            |
|          |      |              |                   |                         |               | 20.5                   |          |          |            |                      | Treight of | levation   |            |
|          |      |              | 1                 |                         | 1             | 10.83                  | C        | 120      | Pt         | 4.591836735          | Q=(Area o  | f Coverage | )(Density) |
|          | ч    |              | -                 |                         | -             | 10.05                  | c        | 120      | Pe         | 0                    | Q=         | 12         |            |
| 6        | Q    | 12           | 1.049             |                         | F             |                        | р        | 0.050578 | Df         | 0 5/17750036         | Pt=(Q/k-fa | (ctor)^2   |            |
|          |      |              |                   |                         | т             | 10.83                  |          |          |            | 0.3477333330         | Height of  | Elevation  |            |
|          | a    | 12 69558     | 1                 |                         | 1             | 19.25                  | C        | 120      | Pt         | 5.13959667           | q=k√Pt     |            |            |
| _        | ч    | 12.05550     | -                 |                         | -             | 15.25                  | c        | 120      | Pe         | 0                    | q          | 12.69558   |            |
| 7        | Q    | 24.69558     | 1.049             |                         | F             |                        | р        | 0.19223  | Df         | 3 700/35276          |            |            |            |
|          |      |              |                   |                         | т             | 19.25                  |          |          |            | 3.700433270          | Height of  | Elevation  |            |
|          | 9    | 16 65002709  | 1.25              |                         |               | 12.22                  | c        | 120      | Pt         | 8.840031946          | q=kVPt     |            |            |
|          | Ч    | 10.03002708  | 1.25              |                         | L             | 12.55                  | C        | 120      | Pe         | 0                    | q          | 16.65003   |            |
| 8        | Q    | 41.34560708  | 1.38              |                         | F             |                        | р        | 0.131171 | Df         | 1 617222005          |            |            |            |
|          |      |              |                   |                         | т             | 12.33                  |          |          | FI         | 1.01/352605          | Height of  | Elevation  |            |
|          | 1    |              |                   |                         | -             |                        |          |          |            |                      |            |            |            |
|          | q    | 0            | 3                 |                         | L             | 9                      | с        | 120      | Pt         | 21.26282887          | q=k√Pt     |            |            |
| CM42     | -1   |              |                   | 17                      |               |                        | -        |          | Pe         | 0                    | q          | 0          |            |
| CM2      | Q    | 112.5347531  | 3.068             | 11                      | F             | 15                     | р        | 0.017082 | Pf         | 0 409976645          |            |            |            |
|          |      |              |                   |                         | т             | 24                     | <b>,</b> |          |            | 2. 10357 0045        | Height of  | Elevation  |            |

|                                   |                                                                    |                                                                              |                                                                      |                      |                                                                                                                                                                             |                                                                                 |                                                                                   | 100                                                                                  | Pt                                                                                                                                                                                                                                                                                                                         | 4.591836735                                                                                                                                                                    | Q=(Area o                                                                                                                                                                                                                                                                                                                                                                | f Coverage)                                                          | (Density) |
|-----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|
|                                   | q                                                                  |                                                                              | 1.25                                                                 |                      | L                                                                                                                                                                           | 8.5                                                                             | С                                                                                 | 120                                                                                  | Pe                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                              | Q=                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                   |           |
| 9                                 | 0                                                                  | 12                                                                           | 1.20                                                                 |                      | -                                                                                                                                                                           |                                                                                 | _                                                                                 | 0.010000                                                                             |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Pt=(Q/k-fa                                                                                                                                                                                                                                                                                                                                                               | actor)^2                                                             |           |
|                                   | ų                                                                  | 12                                                                           | 1.38                                                                 |                      | F                                                                                                                                                                           |                                                                                 | р                                                                                 | 0.013302                                                                             | Pf                                                                                                                                                                                                                                                                                                                         | 0.113069692                                                                                                                                                                    | Pt=                                                                                                                                                                                                                                                                                                                                                                      | 4.591837                                                             |           |
|                                   |                                                                    |                                                                              |                                                                      |                      | Т                                                                                                                                                                           | 8.5                                                                             |                                                                                   |                                                                                      |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Height of                                                                                                                                                                                                                                                                                                                                                                | Elevation                                                            |           |
|                                   | a                                                                  | 12 14684591                                                                  | 15                                                                   |                      | 1                                                                                                                                                                           | 15 75                                                                           | c                                                                                 | 120                                                                                  | Pt                                                                                                                                                                                                                                                                                                                         | 4.704906427                                                                                                                                                                    | q=kV⊵t                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |           |
|                                   | ч                                                                  | 12.14004351                                                                  | 1.5                                                                  |                      | -                                                                                                                                                                           | 15.75                                                                           | C .                                                                               | 120                                                                                  | Pe                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                              | q                                                                                                                                                                                                                                                                                                                                                                        | 12.14685                                                             |           |
| 10                                | Q                                                                  | 24.14684591                                                                  | 1.61                                                                 |                      | F                                                                                                                                                                           |                                                                                 | р                                                                                 | 0.022893                                                                             |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   |                                                                    |                                                                              |                                                                      |                      | -                                                                                                                                                                           | 45.75                                                                           |                                                                                   |                                                                                      | Pt                                                                                                                                                                                                                                                                                                                         | 0.360564887                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          | <b>F</b> 1                                                           |           |
|                                   |                                                                    |                                                                              |                                                                      |                      | 1                                                                                                                                                                           | 15.75                                                                           |                                                                                   |                                                                                      | Dt                                                                                                                                                                                                                                                                                                                         | 5.005471214                                                                                                                                                                    | Height of                                                                                                                                                                                                                                                                                                                                                                | Elevation                                                            |           |
|                                   | q                                                                  | 12.60369709                                                                  | 1.5                                                                  |                      | L                                                                                                                                                                           | 11.25                                                                           | С                                                                                 | 120                                                                                  | PL                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                              | q=KVPt                                                                                                                                                                                                                                                                                                                                                                   | 12 6037                                                              |           |
| 11                                |                                                                    |                                                                              |                                                                      |                      |                                                                                                                                                                             |                                                                                 |                                                                                   |                                                                                      | re                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                              | ч                                                                                                                                                                                                                                                                                                                                                                        | 12.0037                                                              |           |
|                                   | Q                                                                  | 36.750543                                                                    | 1.61                                                                 |                      | F                                                                                                                                                                           |                                                                                 | р                                                                                 | 0.049791                                                                             | Pf                                                                                                                                                                                                                                                                                                                         | 0.560146456                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   |                                                                    |                                                                              |                                                                      | •                    | т                                                                                                                                                                           | 11.25                                                                           | _                                                                                 |                                                                                      |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Height of                                                                                                                                                                                                                                                                                                                                                                | Elevation                                                            |           |
|                                   | ~                                                                  | 12 20220540                                                                  | 2                                                                    |                      |                                                                                                                                                                             | 0                                                                               | c                                                                                 | 120                                                                                  | Pt                                                                                                                                                                                                                                                                                                                         | 5.62561777                                                                                                                                                                     | q=kVPt                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |           |
|                                   | ч                                                                  | 15.26229546                                                                  | 2                                                                    |                      | L                                                                                                                                                                           | 9                                                                               | L                                                                                 | 120                                                                                  | Pe                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                              | q                                                                                                                                                                                                                                                                                                                                                                        | 13.2823                                                              |           |
| 12                                | 0                                                                  | 50 03283848                                                                  | 2.067                                                                |                      | F                                                                                                                                                                           |                                                                                 | n                                                                                 | 0.026096                                                                             |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   | ~                                                                  | 50.052050.0                                                                  | 2.007                                                                |                      |                                                                                                                                                                             |                                                                                 | ٢                                                                                 | 0.020050                                                                             | Pf                                                                                                                                                                                                                                                                                                                         | 0.234860257                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   |                                                                    |                                                                              |                                                                      |                      | Т                                                                                                                                                                           | 9                                                                               |                                                                                   |                                                                                      |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Height of                                                                                                                                                                                                                                                                                                                                                                | Elevation                                                            |           |
|                                   | q                                                                  | 13.55671756                                                                  | 2                                                                    |                      | L                                                                                                                                                                           | 4                                                                               | с                                                                                 | 120                                                                                  | Pt                                                                                                                                                                                                                                                                                                                         | 5.860478026                                                                                                                                                                    | q=kV <sub>Pt</sub>                                                                                                                                                                                                                                                                                                                                                       | 40 55670                                                             |           |
| 12                                |                                                                    |                                                                              |                                                                      |                      |                                                                                                                                                                             |                                                                                 |                                                                                   |                                                                                      | Ре                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                              | q                                                                                                                                                                                                                                                                                                                                                                        | 13.55672                                                             |           |
| 15                                | Q                                                                  | 63.58955604                                                                  | 2.067                                                                |                      | F                                                                                                                                                                           |                                                                                 | р                                                                                 | 0.040664                                                                             | Pf                                                                                                                                                                                                                                                                                                                         | 0 162655486                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   |                                                                    |                                                                              |                                                                      |                      | т                                                                                                                                                                           | 4                                                                               |                                                                                   |                                                                                      |                                                                                                                                                                                                                                                                                                                            | 0.102033400                                                                                                                                                                    | Height of                                                                                                                                                                                                                                                                                                                                                                | Flevation                                                            |           |
|                                   |                                                                    |                                                                              |                                                                      |                      | ·                                                                                                                                                                           | ·                                                                               |                                                                                   |                                                                                      |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   |                                                                    |                                                                              |                                                                      |                      |                                                                                                                                                                             |                                                                                 |                                                                                   |                                                                                      |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |           |
|                                   | ~                                                                  | 0                                                                            | 2                                                                    |                      |                                                                                                                                                                             | 17                                                                              | c                                                                                 | 120                                                                                  | Pt                                                                                                                                                                                                                                                                                                                         | 27.69593903                                                                                                                                                                    | q=k√Pt                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |           |
|                                   | q                                                                  | 0                                                                            | 3                                                                    |                      | L                                                                                                                                                                           | 17                                                                              | с                                                                                 | 120                                                                                  | Pt<br>Pe                                                                                                                                                                                                                                                                                                                   | <b>27.69593903</b><br>0                                                                                                                                                        | q=kV⊵t<br>q                                                                                                                                                                                                                                                                                                                                                              | 0                                                                    |           |
| CM3                               | q<br>O                                                             | 0                                                                            | 3                                                                    |                      | L<br>F                                                                                                                                                                      | 17                                                                              | C                                                                                 | 120<br>0.039123                                                                      | Pt<br>Pe                                                                                                                                                                                                                                                                                                                   | <b>27.69593903</b><br>0                                                                                                                                                        | q=kV⊵t<br>q                                                                                                                                                                                                                                                                                                                                                              | 0                                                                    |           |
| CM3                               | q<br>Q                                                             | 0<br>176.1243091                                                             | 3<br>3.068                                                           |                      | L<br>F                                                                                                                                                                      | 17                                                                              | C<br>p                                                                            | 120<br>0.039123                                                                      | Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                                                             | 27.69593903<br>0<br>0.665092699                                                                                                                                                | q=kVet<br>q                                                                                                                                                                                                                                                                                                                                                              | 0                                                                    |           |
| СМЗ                               | q<br>Q                                                             | 0<br>176.1243091                                                             | 3<br>3.068                                                           |                      | - L<br>- F<br>T                                                                                                                                                             | 17<br>                                                                          | C<br>p                                                                            | 120<br>0.039123                                                                      | Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                                                             | 27.69593903<br>0<br>0.665092699                                                                                                                                                | q=k√Pt<br>q<br>Height of                                                                                                                                                                                                                                                                                                                                                 | 0<br>Elevation                                                       |           |
| СМЗ                               | q<br>Q<br>q                                                        | 0<br>176.1243091<br>0                                                        | 3<br>3.068<br>3.5                                                    |                      | - L<br>- F<br>- T<br>- L                                                                                                                                                    | 17<br>17<br>17<br>28.5                                                          | c<br>p<br>c                                                                       | 120<br>0.039123<br>120                                                               | Pt<br>Pe<br>Pf<br>Pt                                                                                                                                                                                                                                                                                                       | 27.69593903<br>0<br>0.665092699<br>28.36103173                                                                                                                                 | q=kVPt<br>q<br>Height of<br>q=kVPt                                                                                                                                                                                                                                                                                                                                       | 0<br>Elevation                                                       |           |
| СМЗ                               | q<br>Q<br>q                                                        | 0<br>176.1243091<br>0                                                        | 3<br>3.068<br>3.5                                                    |                      | - L<br>- F<br>- T<br>- L                                                                                                                                                    | 17<br>17<br>28.5                                                                | C<br>p<br>C                                                                       | 120<br>0.039123<br>120                                                               | Pt<br>Pe<br>Pf<br>Pt<br>Pe                                                                                                                                                                                                                                                                                                 | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0                                                                                                                            | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q                                                                                                                                                                                                                                                                                                                                  | 0<br>Elevation                                                       |           |
| СМ3                               | q<br>Q<br>q<br>Q                                                   | 0<br>176.1243091<br>0<br>176.1243091                                         | 3<br>3.068<br>3.5<br>3.548                                           |                      | - L<br>- F<br>- L<br>- F                                                                                                                                                    | 17<br>17<br>28.5                                                                | С<br>р<br>С<br>р                                                                  | 120<br>0.039123<br>120<br>0.019275                                                   | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                                           | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0                                                                                                                            | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q                                                                                                                                                                                                                                                                                                                                  | 0<br>Elevation                                                       |           |
| CM3<br>CM4                        | q<br>Q<br>q<br>Q                                                   | 0<br>176.1243091<br>0<br>176.1243091                                         | 3<br>3.068<br>3.5<br>3.548                                           |                      | - L<br>- F<br>- L<br>- F<br>- T                                                                                                                                             | 17<br>17<br>28.5<br>28.5                                                        | C<br>p<br>C<br>p                                                                  | 120<br>0.039123<br>120<br>0.019275                                                   | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                                           | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896                                                                                                             | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q                                                                                                                                                                                                                                                                                                                                  | 0<br>Elevation<br>0<br>Elevation                                     |           |
| CM3<br>CM4                        | q<br>Q<br>q<br>Q                                                   | 0<br>176.1243091<br>0<br>176.1243091                                         | 3<br>3.068<br>3.5<br>3.548                                           |                      | - L<br>- F<br>- L<br>- F<br>- T                                                                                                                                             | 17<br>17<br>28.5<br>28.5                                                        | C<br>p<br>C<br>p                                                                  | 120<br>0.039123<br>120<br>0.019275                                                   | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                                           | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463                                                                                              | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q<br>Height of<br>q=kVPt                                                                                                                                                                                                                                                                                                           | 0<br>Elevation<br>0<br>Elevation                                     |           |
| CM3<br>CM4                        | q<br>Q<br>q<br>Q<br>Q<br>Q                                         | 0<br>176.1243091<br>0<br>176.1243091<br>0                                    | 3<br>3.068<br>3.5<br>3.548<br>4                                      |                      | - L<br>F<br>- L<br>- F<br>T<br>- L                                                                                                                                          | 17<br>17<br>28.5<br>28.5<br>76.33                                               | С<br>р<br>С<br>р<br>С                                                             | 120<br>0.039123<br>120<br>0.019275                                                   | Pt<br>Pe<br>Pf<br>Pt<br>Pf<br>Pf<br>Pf<br>Pt<br>Pe                                                                                                                                                                                                                                                                         | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0                                                                                         | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q<br>Height of<br>q=kVPt<br>q                                                                                                                                                                                                                                                                                                      | 0<br>Elevation<br>0<br>Elevation                                     |           |
| CM3<br>CM4<br>CM5                 | q<br>Q<br>q<br>Q<br>Q<br>q<br>Q                                    | 0<br>176.1243091<br>0<br>176.1243091<br>0<br>176.1243091                     | 3<br>3.068<br>3.5<br>3.548<br>4                                      |                      | - L<br>F<br>- L<br>- F<br>- L<br>- L                                                                                                                                        | 17<br>17<br>28.5<br>28.5<br>76.33                                               | C<br>p<br>C<br>p<br>C                                                             | 120<br>0.039123<br>120<br>0.019275<br>120                                            | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt<br>Pe                                                                                                                                                                                                                                                                               | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0                                                                                         | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q<br>Height of<br>q=kVPt<br>q                                                                                                                                                                                                                                                                                                      | 0<br>Elevation<br>0<br>Elevation                                     |           |
| CM3<br>CM4<br>CM5                 | q<br>Q<br>q<br>Q<br>Q<br>q<br>Q                                    | 0<br>176.1243091<br>0<br>176.1243091<br>0<br>176.1243091                     | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026                             |                      | L<br>F<br>L<br>F<br>T<br>L<br>F                                                                                                                                             | 17<br>17<br>28.5<br>28.5<br>76.33                                               | С<br>р<br>С<br>р<br>С<br>С                                                        | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416                                | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                         | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437                                                                          | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q<br>Height of<br>q=kVPt<br>q                                                                                                                                                                                                                                                                                                      | 0<br>Elevation<br>0<br>Elevation                                     |           |
| CM3<br>CM4<br>CM5                 | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q                                    | 0<br>176.1243091<br>0<br>176.1243091<br>0<br>176.1243091                     | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026                             |                      | F<br>T<br>F<br>F<br>T<br>T<br>F<br>F<br>F                                                                                                                                   | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33                                      | С<br>р<br>С<br>Р<br>С                                                             | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416                                | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                                                                                                                                                                                                                                         | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437                                                                          | q=kVPt<br>q<br>Height of<br>q=kVPt<br>q<br>Height of<br>Height of                                                                                                                                                                                                                                                                                                        | 0<br>Elevation<br>0<br>Elevation<br>0                                |           |
| CM3<br>CM4<br>CM5                 | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q                          | 0<br>176.1243091<br>0<br>176.1243091<br>0<br>176.1243091<br>0                | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5                        |                      | F<br>T<br>F<br>F<br>T<br>T<br>L<br>F<br>F<br>T                                                                                                                              | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>76.33<br>18                       | с<br>р<br>с<br>р<br>с<br>р<br>с<br>с                                              | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416                                | Pt<br>Pe<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf<br>Pf<br>Pt                                                                                                                                                                                                                                                                         | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.7053021437                                                         | q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi                                                                                                                                                                                                                                                                               | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation                   |           |
| CM3<br>CM4<br>CM5                 | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q                     | 0<br>176.1243091<br>176.1243091<br>0<br>176.1243091<br>176.1243091           | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5                        |                      | L<br>F<br>L<br>F<br>F<br>F<br>L<br>F<br>L                                                                                                                                   | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>76.33<br>18                       | C<br>p<br>C<br>p<br>C<br>C<br>p<br>c<br>C                                         | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416                                | Pt<br>Pe<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf<br>Pf<br>Pf<br>Pf                                                                                                                                                                                                                                                                   | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0                                                      | q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q                                                                                                                                                                                                                                                                          | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation                   |           |
| CM3<br>CM4<br>CM5<br>RISER        | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q                | 0<br>176.1243091<br>176.1243091<br>0<br>176.1243091<br>176.1243091           | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047               | 2E                   | L<br>F<br>L<br>F<br>F<br>C<br>F<br>C<br>F<br>C<br>F                                                                                                                         | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>76.33<br>18<br>24                 | С<br>р<br>С<br>р<br>С<br>С<br>р<br>С<br>С<br>р<br>С<br>С<br>р                     | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>120<br>0.003465             | Pt<br>Pe<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                                                                                                                                                                                                                                                             | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0                                                      | q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q                                                                                                                                                                                                                                                                          | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation                   |           |
| CM3<br>CM4<br>CM5<br>RISER        | q<br>Q<br>q<br>Q<br>q<br>Q<br>Q<br>q<br>Q<br>Q                     | 0<br>176.1243091<br>176.1243091<br>0<br>176.1243091<br>0<br>176.1243091      | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047               | 2E                   | L<br>F<br>L<br>F<br>C<br>F<br>C<br>C<br>F<br>C<br>C<br>F<br>C<br>C<br>F<br>T<br>T                                                                                           | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>76.33<br>18<br>24<br>24           | с<br>р<br>С<br>р<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>120<br>0.003465             | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                                                                                                                                                                                                                                                             | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0<br>0.145511037                                       | q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q<br>Height of<br>q=kVPi<br>q                                                                                                                                                                                                                                                                          | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation                   |           |
| CM3<br>CM4<br>CM5<br>RISER        | q<br>Q<br>q<br>Q<br>Q<br>q<br>Q<br>Q<br>q<br>Q                     | 0<br>176.1243091<br>176.1243091<br>0<br>176.1243091<br>0<br>176.1243091      | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047               | 2E                   | L<br>F<br>L<br>F<br>L<br>L<br>L<br>L<br>L<br>F<br>L<br>L                                                                                                                    | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>18<br>24<br>24<br>42              | с<br>р<br>С<br>р<br>С<br>С<br>С<br>р<br>С<br>С<br>С                               | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>120<br>0.003465             | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pt<br>Pf                                                                                                                                                                                                                                                       | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0<br>0.145511037<br>29.8509071                         | q=kVPi           q           Height of           q=kVPi           q           Height of           q=kVPi           q           Height of           q=kVPi           q           Height of           q=kVPi           Height of           q=kVPi           q           Height of           q=kVPi                                                                         | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation                   |           |
| CM3<br>CM4<br>CM5<br>RISER        | q<br>Q<br>q<br>Q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q           | 0<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091 | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047<br>6          | 2E                   | L<br>F<br>F<br>F<br>F<br>L<br>L<br>F<br>L<br>F<br>T<br>L<br>F<br>T<br>L                                                                                                     | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>18<br>24<br>42<br>60              | С<br>р<br>С<br>р<br>С<br>С<br>С<br>р<br>С<br>С                                    | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>120<br>0.003465             | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pt<br>Pe<br>Pt<br>Pe                                                                                                                                                                                                                                           | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0<br>0.145511037<br>29.8509071<br>25.98                | q=kVPi           q           Height of           q=kVPi           q           G           G           G           G           Height of           q=kVPi           G | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation                   |           |
| CM3<br>CM4<br>CM5<br>RISER<br>BOR | q<br>Q<br>q<br>Q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q           | 0<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091 | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047<br>6          | 2E<br>1BV; 1GV; 1SCV | L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T           | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>18<br>24<br>42<br>60              | с<br>р<br>С<br>р<br>С<br>С<br>р<br>С<br>С<br>С<br>С<br>С                          | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>120<br>0.003465             | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pe<br>Pf<br>Pf<br>Pt<br>Pe                                                                                                                                                                                                                                                       | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0<br>0.145511037<br>29.8509071<br>25.98                | q=kVP1           q           Height of           q=kVP1           q           Height of           q=kVP1           q           Height of           q=kVP1           q           Height of           q=kVP1           q=kVP1           q=kVP1           q                                                                                                                 | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation |           |
| CM3<br>CM4<br>CM5<br>RISER<br>BOR | q<br>Q<br>q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q | 0<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091 | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047<br>6<br>6     | 2E<br>1BV; 1GV; 1SCV | L<br>F<br>T<br>C<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>F<br>T<br>F<br>F<br>T<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>18<br>24<br>42<br>60<br>45        | С<br>Р<br>С<br>Р<br>С<br>Р<br>С<br>Р<br>С<br>Р<br>С<br>С<br>Р                     | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>0.003465                    | Pt           Pe           Pf           Pf | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0<br>0.145511037<br>29.8509071<br>25.98<br>0.148669581 | q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of<br>q=kVP1<br>q                                                                                                                                                                                                                                              | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation |           |
| CM3<br>CM4<br>CM5<br>RISER<br>BOR | q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q      | 0<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091<br>176.1243091 | 3<br>3.068<br>3.5<br>3.548<br>4<br>4.026<br>5<br>5.047<br>6<br>6.065 | 2E<br>1BV; 1GV; 1SCV | L<br>F<br>T<br>C<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                  | 17<br>17<br>28.5<br>28.5<br>76.33<br>76.33<br>18<br>24<br>42<br>60<br>45<br>105 | С<br>р<br>С<br>р<br>С<br>р<br>С<br>р<br>С<br>С<br>р<br>С                          | 120<br>0.039123<br>120<br>0.019275<br>120<br>0.010416<br>0.003465<br>120<br>0.001416 | Pt<br>Pe<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf<br>Pt<br>Pf                                                                                                                                                                                                                                                 | 27.69593903<br>0<br>0.665092699<br>28.36103173<br>0<br>0.549342896<br>28.91037463<br>0<br>0.795021437<br>29.70539606<br>0<br>0.145511037<br>29.8509071<br>25.98<br>0.148669581 | q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of<br>q=kVP1<br>q<br>Height of                                                                                                                                                                                                                                 | 0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation<br>0<br>Elevation |           |

# Case 3 (Floor 1) Hydraulic Calculations

Material: Black Steel Schedule 40 Piping (C=120) Design Area: 1500  $ft^2$ Design Density: 0.2 gpm/ft<sup>2</sup> Area of Coverage: 120  $ft^2$ Sprinkler K-Factor: 5.6

Design Area:  

$$N = \frac{Design Area}{Area per Sprinkler}$$

$$N = \frac{1500ft^{2}}{120ft^{2}}$$

$$N = 12.5 Sprinklers \rightarrow 13 \text{ Sprinklers}$$

$$N_{Branchline} = \frac{1.2\sqrt{A}}{S}$$

$$N_{Branchline} = \frac{1.2\sqrt{1500ft^{2}}}{12}$$

$$N_{Branchline} = 3.87 Sprinklers \rightarrow 4 \text{ Sprinklers}$$

# **Required Flow and Pressure:**

346gpm at 138psi



| Location | Flo      | w (gpm)     | Pipe Size<br>(in) | Fittings and<br>Devices | Pipe E<br>Len | quivalent<br>gth (ft) | Frictio | on Loss  | Require  | ed Pressure<br>(psi) |                     | Notes                |           |
|----------|----------|-------------|-------------------|-------------------------|---------------|-----------------------|---------|----------|----------|----------------------|---------------------|----------------------|-----------|
|          | q        |             | 1                 |                         | L             | 12                    | с       | 120      | Pt<br>Pe | 18.36734694<br>0     | Q=(Area c<br>Q=     | of Coverage)<br>24   | (Density) |
| 1        | Q        | 24          | 1.049             |                         | F             |                       | р       | 0.182334 | Pf       | 2.188006185          | Pt=(Q/k-fa<br>Pt=   | actor)^2<br>18.36735 |           |
|          |          |             |                   |                         | Т             | 12                    |         |          |          |                      | Height of           | Elevation            |           |
|          | q        | 25.3892866  | 1                 |                         | L             | 12                    | с       | 120      | Pt       | 20.55535312          | q=kV⊵t              | 25 20020             |           |
| 2        | 0        | 10 2002066  | 1.049             |                         | c             |                       |         | 0 602042 | re       | 0                    | ч                   | 25.36525             |           |
|          | Q        | 45.3852800  | 1.049             |                         | _             |                       | P       | 0.092942 | Pf       | 8.315308022          |                     |                      |           |
|          |          |             |                   |                         | 1             | 12                    |         |          | Pt       | 28.87066115          | Height of<br>a=k√Pt | Elevation            |           |
|          | q        | 30.08959843 | 1.25              |                         | L             | 12                    | С       | 120      | Pe       | 0                    | q                   | 30.0896              |           |
| 3        | Q        | 79.47888503 | 1.38              |                         | F             |                       | р       | 0.439448 | 56       | 5 272270070          |                     |                      |           |
|          |          |             |                   |                         | т             | 12                    |         |          | PT       | 5.2/33/90/9          | Height of           | Elevation            |           |
|          | a        | 32 72242505 | 15                |                         | -1            | 12                    | c       | 120      | Pt       | 34.14404023          | q=kV⊵t              |                      |           |
| 4        | ч        | 52.72242505 | 1.5               | 15                      | -             |                       | C       | 120      | Pe       | 0                    | q                   | 32.72243             |           |
| 4        | Q        | 112.2013101 | 1.61              | IE                      | F             | 4                     | р       | 0.392561 | Pf       | 6.280977859          |                     |                      |           |
|          |          |             |                   |                         | т             | 16                    |         |          |          |                      | Height of           | Elevation            |           |
|          | q        | 0           | 2                 |                         | L             | 10                    | с       | 120      | Pt       | 40.42501808          | q=kV⊵t              | 0                    |           |
| CM1      | 2        | 442 2042404 | 2.067             | 1T                      | -             | 40                    |         | 0.446262 | re       | 0                    | ч                   | U                    |           |
|          | Q        | 112.2013101 | 2.067             |                         | F             | 10                    | р       | 0.116263 | Pf       | 2.325258125          |                     |                      |           |
|          |          |             |                   |                         | Т             | 20                    |         |          |          |                      | Height of           | Elevation            |           |
|          |          |             | 1                 |                         |               | 12                    | c       | 120      | Pt       | 18.36734694          | Q=(Area c           | of Coverage          | (Density) |
| _        | ч        |             | -                 |                         | L             | 12                    | C       | 120      | Pe       | 0                    | Q=                  | 24                   |           |
| 5        | Q        | 24          | 1.049             |                         | F             |                       | р       | 0.182334 | Pf       | 2.188006185          | Pt=(Q/k-fa          | actor)^2             |           |
|          |          |             |                   |                         | т             | 12                    |         |          |          |                      | Height of           | Elevation            |           |
|          | q        | 25.3892866  | 1.25              |                         | L             | 12                    | с       | 120      | Pt       | 20.55535312          | q=kV⊵t              |                      |           |
| 6        |          |             |                   |                         |               |                       |         |          | Ре       | 0                    | q                   | 25.38929             |           |
|          | Q        | 49.3892866  | 1.38              |                         | F             |                       | p       | 0.182248 | Pf       | 2.186974998          |                     |                      |           |
|          |          |             |                   |                         | Т             | 12                    |         |          | D†       | 22 24222812          | Height of           | Elevation            |           |
|          | q        | 26.70579356 | 1.5               |                         | L             | 12                    | с       | 120      | Pe       | 0                    | q                   | 26.70579             |           |
| 7        | Q        | 76.09508016 | 1.61              |                         | F             |                       | p       | 0.191391 |          |                      |                     |                      |           |
|          |          |             |                   |                         | т             | 12                    |         |          | Pf       | 2.296688154          | Height of           | Elevation            |           |
|          | 0        | 28.0218406  | 15                |                         | -1            | 12                    | c       | 120      | Pt       | 25.03901628          | q=kV⊵t              |                      |           |
|          | ч        | 28.0218400  | 1.5               |                         | L             | 12                    | C       | 120      | Pe       | 0                    | q                   | 28.02184             |           |
| 8        | Q        | 104.1169208 | 1.61              |                         | F             |                       | р       | 0.341842 | Pf       | 4.102105192          |                     |                      |           |
|          |          |             |                   |                         | Т             | 12                    |         |          |          |                      | Height of           | Elevation            |           |
|          |          |             |                   |                         | 1             |                       | 1       |          | Dt       | 71 90120769          | g-la/a              |                      |           |
|          | q        | 0           | 2.5               |                         | L             | 10                    | с       | 120      | Pe       | 0                    | q=KVPt              | 0                    |           |
| CM2      | Q        | 216.3182308 | 2.469             | 1T                      | F             | 15                    | q       | 0.164815 |          |                      |                     |                      |           |
|          |          |             |                   |                         | т             | 25                    | · ·     |          | Pf       | 4.120384139          | Height of           | Flevation            |           |
|          |          |             |                   |                         | ·             | 25                    |         |          |          |                      | Theight of          | Lievation            |           |
|          | q        |             | 1                 |                         | L             | 12                    | с       | 120      | Pt       | 18.36734694          | Q=(Area c           | of Coverage          | (Density) |
| 9        |          |             |                   |                         |               |                       |         |          | Pe       | 0                    | Q=<br>Pt=(O/k-f     | 24<br>actor)^2       |           |
| 5        | Q        | 24          | 1.049             |                         | F             |                       | р       | 0.182334 | Pf       | 2.188006185          | Pt=                 | 18.36735             |           |
|          |          |             |                   |                         | Т             | 12                    |         |          | 21       | 20 55525242          | Height of           | Elevation            |           |
|          | q        | 25.3892866  | 1.25              |                         | L             | 12                    | с       | 120      | Pt<br>Pe | 20.55535312          | q=KVPt<br>a         | 25.38929             |           |
| 10       | Q        | 49,3892866  | 1.38              | 2E                      | F             | 6                     | a       | 0.182748 |          | -                    |                     |                      |           |
|          | <b>~</b> |             | 1.50              |                         | т             | 10                    | r'      | 5.152240 | Pf       | 3.280462497          | Hoight of           | Elevation            |           |
|          | -        | 27.24020462 | 1.5               |                         |               | 10                    | c       | 100      | Pt       | 23.83581562          | q=kVPt              | Lievation            |           |
|          | q        | 27.34028489 | 1.5               |                         | L             | 12                    | L       | 120      | Pe       | 0                    | q                   | 27.34028             |           |
| 11       | Q        | 76.72957149 | 1.61              |                         | F             |                       | р       | 0.194353 | Pf       | 2 3222/12/           |                     |                      |           |
|          |          |             |                   |                         | Т             | 12                    |         | <u> </u> |          | 2.33224134           | Height of           | Elevation            |           |
|          | q        | 28.64664494 | 1.5               |                         | L             | 12                    | с       | 120      | Pt       | 26.16805696          | q=k√Pt              |                      |           |
| 12       |          |             |                   |                         | _             |                       |         |          | Ре       | 0                    | q                   | 28.64664             |           |
|          | Q        | 105.3762164 | 1.61              |                         | F             |                       | р       | 0.34953  | Pf       | 4.194364522          |                     |                      |           |
|          |          |             |                   |                         | Т             | 12                    |         |          |          |                      | Height of           | Elevation            |           |

|       |   | 0           | 2        |                |          | 0     | c       | 120      | Pt | 106.3742033             | q=kV⊵t     |            |            |
|-------|---|-------------|----------|----------------|----------|-------|---------|----------|----|-------------------------|------------|------------|------------|
|       | Ч | U           | э        |                | L        | 9     | C       | 120      | Pe | 0                       | q          | 0          |            |
| CM3   | 0 | 321 6944473 | 3.068    | 1T             | F        | 15    | n       | 0 110244 |    |                         |            |            |            |
|       | ų | 321.0344473 | 5.000    |                | ·        | 15    | P       | 0.115244 | Pf | 2.861866597             |            |            |            |
|       |   |             |          |                | Т        | 24    |         |          |    |                         | Height of  | Elevation  |            |
|       |   |             |          |                |          |       |         |          |    |                         |            |            |            |
|       | 0 |             | 1 25     |                | 1        | 75    | c       | 120      | Pt | 18.36734694             | Q=(Area o  | f Coverage | )(Density) |
|       | ч |             | 1.25     |                | -        | 7.5   | C       | 120      | Pe | 0                       | Q=         | 24         |            |
| 13    | 0 | 24          | 1 38     |                | F        |       | n       | 0 047955 |    |                         | Pt=(Q/k-fa | actor)^2   |            |
|       | ~ | ~ .         | 1.00     |                |          |       | P       | 0.017555 | Pf | 0.359661573             | Pt=        | 18.36735   |            |
|       |   |             |          |                | Т        | 7.5   | _       |          |    |                         | Height of  | Elevation  |            |
|       |   |             |          | -              |          |       |         |          |    |                         | -          |            |            |
|       | a | 0           | 3        |                | L        | 5.5   | C       | 120      | Pt | 127.9630784             | q=kV⊵t     |            |            |
|       | 7 |             |          |                | -        |       |         |          | Pe | 0                       | q          | 0          |            |
| CM4   | Q | 345.6944473 | 3.068    |                | F        | 0     | n 0.136 | 0.136222 |    |                         |            |            |            |
|       | - |             |          |                | _        |       | F       |          | Pf | 0.749223146             |            |            | _          |
|       |   |             |          |                | Т        | 5.5   |         |          | -  |                         | Height of  | Elevation  |            |
|       | q | 0           | 3.5      |                | L        | 20    | с       | 120      | Pt | 128.7123016             | q=kV⊵t     |            |            |
| CM5   |   |             |          |                |          |       |         |          | Pe | 0                       | q          | 0          |            |
|       | Q | 345.6944473 | 3.548    |                | F        |       | р       | 0.067114 | D( | 4 2 4 2 2 2 2 2 2 2 2 2 |            |            |            |
|       |   |             |          |                | <b>T</b> | 20    |         |          | PI | 1.342282369             | Hoight of  | Flouration |            |
|       | _ |             |          |                | 1        | 20    |         |          | Dt | 120.0545020             |            | Elevation  |            |
|       | q | 0           | 4        |                | L        | 65.5  | с       | 120      | Pt | 130.0545839             | q=KVPt     | 0          |            |
| CMG   |   |             |          |                |          |       |         |          | Pe | 0                       | Ч          | U          |            |
| CIVIO | Q | 345.6944473 | 4.026    |                | F        |       | р       | 0.036266 | Df | 2 375/18387             |            | -          |            |
|       |   |             |          |                | т        | 65.5  |         |          |    | 2.373410307             | Height of  | Elevation  |            |
|       |   |             |          |                |          | 0515  |         |          | Pt | 132 4300023             | a=k/e      |            |            |
|       | q | 0           | 5        |                | L        | 43.25 | С       | 120      | Pe | 0                       | a          | 0          |            |
| CM7   | - |             |          | 1F             |          |       |         |          | 7  | -                       |            |            |            |
| -     | Q | 345.6944473 | 5.047    |                | F        | 12    | р       | 0.012063 | Pf | 0.666490809             |            |            |            |
|       |   |             |          |                | т        | 55.25 |         |          |    |                         | Height of  | Elevation  |            |
|       |   |             | <i>.</i> |                |          | 2.5   | 6       | 420      | Pt | 133.0964931             | q=kVPt     |            |            |
|       | q | 0           | 6        |                | L        | 3.5   | C       | 120      | Pe | 0                       | q          | 0          |            |
| RISER | 0 | 245 6044472 | C 005    | 1E             | -        | 14    | _       | 0.00402  |    |                         |            |            |            |
|       | ų | 545.0944475 | 0.005    |                | r        | 14    | þ       | 0.00495  | Pf | 0.086275226             |            |            |            |
|       |   |             |          |                | Т        | 17.5  |         |          |    |                         | Height of  | Elevation  |            |
|       | 0 | 0           | 6        |                |          | 10    | C       | 120      | Pt | 133.1827683             | q=kV⊵t     |            |            |
|       | ч | 0           | 0        |                | L        | 10    | C       | 120      | Pe | 4.33                    | q          | 0          |            |
| BOR   | 0 | 345 6944472 | 6.065    | 18V: 16V: 190V | c .      | 45    | n       | 0 00402  |    |                         |            |            |            |
|       | 4 | 343.0344473 | 0.005    | 150, 100, 1300 |          | 45    | ۲       | 5.00-495 | Pf | 0.271150709             |            |            |            |
|       |   |             |          |                | Т        | 55    |         |          |    | 1                       | Height of  | Elevation  | 10         |
|       |   |             |          |                |          |       |         |          | Pt | 137.7839191             |            |            |            |

# Case 5 (Floor 5) Hydraulic Calculations

Material: Black Steel Schedule 40 Piping Design Area: 1500 ft<sup>2</sup> Design Density: 0.1 gpm/ft<sup>2</sup> Area of Coverage: 120 ft<sup>2</sup> Sprinkler K-Factor: 5.6

Design Area:  

$$N = \frac{Design Area}{Area per Sprinkler}$$

$$N = \frac{1500ft^2}{120ft^2}$$

$$N = 12.5 Sprinklers \rightarrow 13 Sprinklers$$

$$N_{Branchline} = \frac{1.2\sqrt{A}}{S}$$

$$N_{Branchline} = \frac{1.2\sqrt{1500ft^2}}{10}$$

$$N_{Branchline} = 4.65 Sprinklers \rightarrow 5 Sprinklers$$

# **Required Flow and Pressure:**

168gpm at 50psi



| Location                      | Flow                                                                                                                                                                                                                                                                      | (gpm)                                                                                        | Pipe Size (in)                                                                     | Fittings and<br>Devices | Pipe<br>Lei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Equivalent<br>ngth (ft)                                       | Frictio                                                                                               | on Loss                                                                                                               | Require<br>(                                                                           | d Pressure<br>psi)                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                                                                                                                                        |           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                               | q                                                                                                                                                                                                                                                                         |                                                                                              | 1                                                                                  |                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                            | с                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 4.59183673                                                                                                                                                                                        | Q=(Area of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coverage)                                                                                                                                    | (Density) |
| 1                             | -                                                                                                                                                                                                                                                                         |                                                                                              |                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                                                                                       |                                                                                                                       | Pe                                                                                     | 0                                                                                                                                                                                                 | Q=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12<br>tor)^2                                                                                                                                 |           |
| -                             | Q                                                                                                                                                                                                                                                                         | 12                                                                                           | 1.049                                                                              |                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | р                                                                                                     | 0.050578                                                                                                              | Pf                                                                                     | 0.50578018                                                                                                                                                                                        | Pt= 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.591837                                                                                                                                     |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                            |                                                                                                       |                                                                                                                       |                                                                                        |                                                                                                                                                                                                   | Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evation                                                                                                                                      |           |
|                               | q                                                                                                                                                                                                                                                                         | 12.64363                                                                                     | 1.25                                                                               |                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                             | с                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 5.09761692                                                                                                                                                                                        | q=kV⊵t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |           |
| 2                             | ·                                                                                                                                                                                                                                                                         |                                                                                              |                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                                                                                       |                                                                                                                       | Pe                                                                                     | 0                                                                                                                                                                                                 | q 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.64363                                                                                                                                     |           |
| 2                             | Q                                                                                                                                                                                                                                                                         | 24.64363                                                                                     | 1.38                                                                               |                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | р                                                                                                     | 0.050361                                                                                                              | Pf                                                                                     | 0.40288906                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                             |                                                                                                       |                                                                                                                       |                                                                                        |                                                                                                                                                                                                   | Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evation                                                                                                                                      |           |
|                               | a                                                                                                                                                                                                                                                                         | 13.13377                                                                                     | 1.5                                                                                |                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                             | с                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 5.50050598                                                                                                                                                                                        | q=kV⊵t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |           |
| 2                             | -                                                                                                                                                                                                                                                                         |                                                                                              |                                                                                    |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | -                                                                                                     |                                                                                                                       | Pe                                                                                     | 0                                                                                                                                                                                                 | q 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.13377                                                                                                                                     |           |
| 3                             | Q                                                                                                                                                                                                                                                                         | 37.77739                                                                                     | 1.61                                                                               |                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | р                                                                                                     | 0.052395                                                                                                              | Pf                                                                                     | 0 36676538                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                             |                                                                                                       |                                                                                                                       |                                                                                        | 0.000700000                                                                                                                                                                                       | Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evation                                                                                                                                      |           |
|                               | a                                                                                                                                                                                                                                                                         | 13 56457                                                                                     | 15                                                                                 |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 25                                                          | C                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 5.86727136                                                                                                                                                                                        | q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |           |
|                               | ч                                                                                                                                                                                                                                                                         | 13.30437                                                                                     | 1.5                                                                                |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.25                                                          | C                                                                                                     | 120                                                                                                                   | Pe                                                                                     | 0                                                                                                                                                                                                 | q 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.56457                                                                                                                                     |           |
| 4                             | Q                                                                                                                                                                                                                                                                         | 51.34197                                                                                     | 1.61                                                                               |                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | р                                                                                                     | 0.092424                                                                                                              | Df                                                                                     | 0 67007473                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.25                                                          |                                                                                                       |                                                                                                                       |                                                                                        | 0.07007473                                                                                                                                                                                        | Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evation                                                                                                                                      |           |
|                               | 0                                                                                                                                                                                                                                                                         | 1/1 31821                                                                                    | 2                                                                                  |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.66                                                          | c                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 6.53734609                                                                                                                                                                                        | q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |           |
| _                             | ч                                                                                                                                                                                                                                                                         | 14.51021                                                                                     | 2                                                                                  |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00                                                          | с<br>—                                                                                                | 120                                                                                                                   | Pe                                                                                     | 0                                                                                                                                                                                                 | q 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.31821                                                                                                                                     |           |
| 5                             | Q                                                                                                                                                                                                                                                                         | 65.66018                                                                                     | 2.067                                                                              | 1E                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                             | р                                                                                                     | 0.043147                                                                                                              | Df                                                                                     | 0 27265577                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.66                                                          |                                                                                                       |                                                                                                                       | FI                                                                                     | 0.37303377                                                                                                                                                                                        | Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evation                                                                                                                                      |           |
|                               |                                                                                                                                                                                                                                                                           | 0                                                                                            | 25                                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                            | c                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 6.91100187                                                                                                                                                                                        | q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |           |
|                               | ч                                                                                                                                                                                                                                                                         | 0                                                                                            | 2.5                                                                                |                         | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                            | L.                                                                                                    | 120                                                                                                                   | Pe                                                                                     | 0                                                                                                                                                                                                 | q (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | כ                                                                                                                                            |           |
| CM1                           | Q                                                                                                                                                                                                                                                                         | 65.66018                                                                                     | 2.469                                                                              | 1T                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                            | р                                                                                                     | 0.018159                                                                                                              | Df                                                                                     | 0 42500026                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                            |                                                                                                       |                                                                                                                       | PI                                                                                     | 0.45560620                                                                                                                                                                                        | Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evation                                                                                                                                      |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                                                                                       |                                                                                                                       |                                                                                        |                                                                                                                                                                                                   | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |           |
|                               |                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                                                                                       |                                                                                                                       |                                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |           |
|                               | q                                                                                                                                                                                                                                                                         |                                                                                              | 1.5                                                                                |                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                            | с                                                                                                     | 120                                                                                                                   | Pt                                                                                     | 4.59183673                                                                                                                                                                                        | Q=(Area of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coverage)                                                                                                                                    | (Density) |
| 6                             | q                                                                                                                                                                                                                                                                         |                                                                                              | 1.5                                                                                |                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                            | с                                                                                                     | 120                                                                                                                   | Pt<br>Pe                                                                               | <b>4.59183673</b><br>0                                                                                                                                                                            | Q=(Area of<br>Q= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coverage)<br>12                                                                                                                              | (Density) |
| 6                             | q<br>Q                                                                                                                                                                                                                                                                    | 12                                                                                           | 1.5<br>1.61                                                                        |                         | - L<br>- F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                            | C<br>p                                                                                                | 120<br>0.006279                                                                                                       | Pt<br>Pe<br>Pf                                                                         | 4.59183673<br>0<br>0.06279086                                                                                                                                                                     | Q=(Area of<br>Q= 1<br>Pt=(Q/k-fac<br>Pt= 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coverage)<br>12<br>.tor)^2<br>4.591837                                                                                                       | (Density) |
| 6                             | q<br>Q                                                                                                                                                                                                                                                                    | 12                                                                                           | 1.5<br>1.61                                                                        |                         | F<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10                                                      | C<br>p                                                                                                | 120<br>0.006279                                                                                                       | Pt<br>Pe<br>Pf                                                                         | 4.59183673<br>0<br>0.06279086                                                                                                                                                                     | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation                                                                                             | (Density) |
| 6                             | q<br>Q<br>q                                                                                                                                                                                                                                                               | 12                                                                                           | 1.5<br>1.61<br>1.5                                                                 |                         | F<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>10                                                | C<br>p<br>C                                                                                           | 120<br>0.006279<br>120                                                                                                | Pt<br>Pe<br>Pf<br>Pt                                                                   | 4.59183673<br>0<br>0.06279086<br>4.65462759                                                                                                                                                       | Q=(Area of<br>Q= 1<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation                                                                                             | (Density) |
| 6                             | q<br>Q<br>q                                                                                                                                                                                                                                                               | 12                                                                                           | 1.5<br>1.61<br>1.5                                                                 |                         | - L<br>- F<br>- T<br>- L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>10                                                | C<br>p<br>C                                                                                           | 120<br>0.006279<br>120                                                                                                | Pt<br>Pe<br>Pf<br>Pt<br>Pe                                                             | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0                                                                                                                                                  | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt<br>q 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177                                                                                 | (Density) |
| 6                             | q<br>Q<br>q<br>Q                                                                                                                                                                                                                                                          | 12<br>12.08177<br>24.08177                                                                   | 1.5<br>1.61<br>1.5<br>1.5                                                          |                         | - L<br>- F<br>- L<br>- F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>10                                                | C<br>P<br>C                                                                                           | 120<br>0.006279<br>120<br>0.022779                                                                                    | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                       | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.222778997                                                                                                                                   | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt<br>q 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177                                                                                 | (Density) |
| 6                             | а<br>Q<br>а<br>Q                                                                                                                                                                                                                                                          | 12<br>12.08177<br>24.08177                                                                   | 1.5<br>1.61<br>1.5<br>1.61                                                         |                         | - L<br>- F<br>- L<br>- F<br>- T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>10<br>10<br>10                                          | С<br>Р<br>С                                                                                           | 120<br>0.006279<br>120<br>0.022779                                                                                    | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                                       | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997                                                                                                                                    | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt<br>q 2<br>Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation                                                                      | (Density) |
| 6                             | q<br>Q<br>q<br>Q<br>Q                                                                                                                                                                                                                                                     | 12<br>12.08177<br>24.08177<br>12.37387                                                       | 1.5<br>1.61<br>1.5<br>1.61                                                         |                         | - L<br>- F<br>- L<br>- F<br>- T<br>- L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>10<br>10<br>10                                    | C<br>P<br>C<br>P                                                                                      | 120<br>0.006279<br>120<br>0.022779                                                                                    | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt                                                 | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756                                                                                                                      | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt<br>q 2<br>Height of El<br>q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation                                                                      | (Density) |
| 6                             | q<br>Q<br>q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                                | 12<br>12.08177<br>24.08177<br>12.37387                                                       | 1.5<br>1.61<br>1.5<br>1.61<br>2                                                    |                         | F<br>T<br>F<br>F<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>10<br>10<br>10<br>10<br>10                              | C<br>p<br>C<br>C<br>C                                                                                 | 120<br>0.006279<br>120<br>0.022779<br>120                                                                             | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt<br>Pe                                           | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0                                                                                                                 | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387                                                          | (Density) |
| 6<br>7<br>8                   | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                           | 12.08177<br>24.08177<br>12.37387<br>36.45564                                                 | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067                                           |                         | F<br>F<br>T<br>F<br>T<br>T<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>10<br>10<br>10<br>10<br>10                              | C<br>p<br>C<br>C<br>p<br>C<br>C                                                                       | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528                                                                 | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pt<br>Pt                               | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129                                                                                                   | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Pt= A<br>Height of El<br>q=kVPt<br>Height of El<br>q=kVPt<br>q 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387                                                          | (Density) |
| 6<br>7<br>8                   | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                           | 12.08177<br>24.08177<br>12.37387<br>36.45564                                                 | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067                                           |                         | F<br>F<br>T<br>F<br>T<br>F<br>F<br>F<br>F<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | C<br>p<br>C<br>C<br>p<br>C<br>C                                                                       | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528                                                                 | Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf<br>Pt<br>Pe<br>Pf                                     | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129                                                                                                   | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Height of El<br>q=kVPt<br>q 4<br>Height of El<br>q=kVPt<br>q 4<br>Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation                                               | (Density) |
| 6 7 8                         | q<br>Q<br>q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                                | 12.08177<br>24.08177<br>12.37387<br>36.45564                                                 | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2                                      |                         | F<br>F<br>T<br>F<br>F<br>T<br>F<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5           | с<br>р<br>с<br>р<br>с<br>р<br>с<br>р<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528                                                                 | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                               | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885                                                                                     | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Height of El<br>q=kVPt<br>q ekVPt<br>q ekVPt<br>q height of El<br>q=kVPt<br>q height of El<br>q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation                                               | (Density) |
| 6 7 8                         | q<br>Q<br>q<br>Q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                           | 12.08177<br>24.08177<br>12.37387<br>36.45564                                                 | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2                                      |                         | L<br>F<br>T<br>F<br>F<br>T<br>L<br>F<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5           | C<br>p<br>C<br>p<br>C<br>p<br>C<br>p<br>C<br>C                                                        | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>120                                                          | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                   | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0                                                                                | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Height of El<br>q=kVPt<br>q Pt= 4<br>Height of El<br>q=kVPt<br>q Height of El<br>q=kVPt<br>q Pt= 4<br>Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662                                   | (Density) |
| 6 7 8 9                       | q<br>Q<br>q<br>Q<br>Q<br>q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                 | 12.08177<br>24.08177<br>12.37387<br>36.45564<br>49.01225                                     | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067                             |                         | F<br>F<br>T<br>F<br>F<br>T<br>C<br>F<br>T<br>C<br>F<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5           | C<br>p<br>C<br>C<br>p<br>C<br>C<br>p<br>C<br>C                                                        | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>120<br>0.025119                                              | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                         | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0                                                                                | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Height of El<br>q=kVPt<br>q Pt= 4<br>Height of El<br>q=kVPt<br>q Height of El<br>q=kVPt<br>q Pt= 4<br>Pt=(Q/k-fac)<br>q Pt=(Q/k-fac)<br>q Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt=(Q/k-fac)<br>Pt | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662                                   | (Density) |
| 6 7 8 9                       | q<br>Q<br>q<br>Q<br>q<br>Q<br>Q<br>q<br>Q                                                                                                                                                                                                                                 | 12.08177<br>24.08177<br>12.37387<br>36.45564<br>12.55662<br>49.01225                         | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067                             |                         | F<br>F<br>T<br>F<br>T<br>C<br>F<br>T<br>C<br>F<br>F<br>C<br>F<br>T<br>C<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>7.5                       | C<br>p<br>C<br>C<br>p<br>C<br>c<br>p<br>C<br>c<br>p                                                   | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>120<br>0.025119                                              | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                         | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524                                                                  | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>q=k/Pt<br>q 2<br>Height of El<br>q=k/Pt<br>q 4<br>Height of El<br>q=k/Pt<br>q 2<br>Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation                        | (Density) |
| 6 7 8 9                       | q<br>Q<br>q<br>Q<br>q<br>q<br>Q<br>q<br>Q<br>Q                                                                                                                                                                                                                            | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>12.55662<br>49.01225                         | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067                             |                         | F<br>T<br>F<br>T<br>F<br>T<br>C<br>F<br>T<br>C<br>L<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>7.5                | С<br>р<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                               | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>120<br>0.025119                                              | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf             | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408                                                    | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>q=k/Pt<br>q 2<br>Height of El<br>q=k/Pt<br>q 4<br>Height of El<br>q=k/Pt<br>q 4<br>Height of El<br>q=k/Pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation                        | (Density) |
| 6<br>7<br>8<br>9              | q<br>Q<br>q<br>Q<br>q<br>q<br>Q<br>q<br>Q<br>q<br>q                                                                                                                                                                                                                       | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>12.55662<br>49.01225                         | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067<br>2                        |                         | F<br>F<br>T<br>F<br>F<br>T<br>T<br>F<br>F<br>T<br>T<br>F<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>7.5<br>3.33        | C<br>P<br>C<br>C<br>P<br>C<br>P<br>C<br>P<br>C<br>C                                                   | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>0.014528<br>120                                              | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf       | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0                                               | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>q=k/Pt<br>q 2<br>Height of El<br>q=k/Pt<br>q 4<br>Height of El<br>q=k/Pt<br>q 2<br>Height of El<br>q=k/Pt<br>q 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.55662            | (Density) |
| 6<br>7<br>8<br>9<br>10        | q           Q           q           Q           q           Q           q           Q           q           Q           q           Q           q           Q           q           Q           Q           Q           Q           Q           Q           Q           Q | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>12.55662<br>49.01225<br>61.80196             | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067                             |                         | F<br>T<br>F<br>T<br>F<br>T<br>L<br>F<br>T<br>L<br>F<br>F<br>T<br>L<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>7.5<br>3.33  | C<br>p<br>C<br>p<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                     | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>120<br>0.025119<br>120<br>0.038574                           | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf       | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0<br>0.12845277                                 | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Height of El<br>q=kVPt<br>q 2<br>Height of El<br>q=kVPt<br>q 2<br>Height of El<br>q=kVPt<br>q 2<br>Height of El<br>q=kVPt<br>q 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.78971            | (Density) |
| 6<br>7<br>8<br>9<br>10        | q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       Q       Q                                                                                                                                                                 | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>12.55662<br>49.01225<br>12.78971<br>61.80196 | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067<br>2<br>2.067               |                         | F<br>T<br>C<br>F<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>3.33               | C  P  C  P  C  P  C  P  C  P  C  C  P  C  C                                                           | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>0.014528<br>0.025119<br>120<br>0.038574                      | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf             | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0<br>0.12845277                                 | Q=(Area of<br>Q= 2<br>PT=(Q/k-fac<br>PT=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac)Pt=(Q/k-fac<br>Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt=(Q/k-fac)Pt                                                                                                                                                                                                                                                                                           | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.78971<br>evation | (Density) |
| 6<br>7<br>8<br>9<br>10        | q       Q       q       Q       q       Q       q       Q       q       Q       Q       Q       Q                                                                                                                                                                         | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>12.55662<br>49.01225<br>12.78971<br>61.80196 | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067<br>2<br>2.067               |                         | F<br>T<br>C<br>F<br>T<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>3.33               | C P C C P C C P C C P C C C P C C C P C C C P C C C P C C C P C C C C C C C C C C C C C C C C C C C C | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>0.014528<br>0.025119<br>120<br>0.038574                      | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf             | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0<br>0.12845277                                 | Q=(Area of<br>Q= 2<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Q=k/Pt<br>Q 2<br>Height of El<br>Q=k/Pt<br>Q 4<br>Height of El<br>Q=k/Pt<br>Q 2<br>Height of El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.78971<br>evation | (Density) |
| 6<br>7<br>8<br>9<br>10        | q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q                                                                                                 | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>49.01225<br>12.78971<br>61.80196<br>0        | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067<br>2<br>2.067               |                         | F<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>L<br>T<br>T<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>3.33<br>3.33 | C P C P C P C P C C P C C C P C C C P C C C C C C C C C C C C C C C C C C C C                         | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>0.014528<br>0.025119<br>120<br>0.038574                      | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                   | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0<br>0.12845277<br>12.691357                    | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt= 4<br>Height of El<br>q=kVPt<br>q=kVPt<br>q 2<br>Height of El<br>q=kVPt<br>q 2<br>Height of El<br>q=kVPt<br>q 4<br>Height of El<br>q=kVPt<br>q 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.78971<br>evation | (Density) |
| 6<br>7<br>8<br>9<br>10        | q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q                                                                                                                 | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>49.01225<br>12.78971<br>61.80196<br>U        | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067<br>2<br>2.067               |                         | I           F           I           F           I           F           T           F           T           I           F           T           F           T           F           T           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>3.33<br>3.33 | C  P  C  P  C  P  C  P  C  P  C  C  P  C  C                                                           | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>0.014528<br>0.025119<br>120<br>0.038574                      | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0<br>0.12845277<br>0.12845277                   | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt= 4<br>elight of El<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt<br>q=kVPt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.78971<br>evation | (Density) |
| 6<br>7<br>8<br>9<br>10<br>CM2 | q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       q       Q       Q       Q       Q       Q       Q       Q                                                                                 | 12.08177<br>24.08177<br>24.08177<br>36.45564<br>49.01225<br>12.78971<br>61.80196<br>U        | 1.5<br>1.61<br>1.5<br>1.61<br>2<br>2.067<br>2<br>2.067<br>2<br>2.067<br>3<br>3.068 | 1T                      | I           F           I           F           I           F           I           F           I           F           I           F           I           F           I           F           I           I           F           I           F           I           F           I           F           I           F           F                                                                                                                                                                                                                                                                                                                         | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>7.5<br>3.33<br>3.33 | C C C C C C C C C C C C C C C C C C C                                                                 | 120<br>0.006279<br>120<br>0.022779<br>120<br>0.014528<br>0.025119<br>120<br>0.038574<br>120<br>120<br>120<br>0.038574 | Pt<br>Pe<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf<br>Pf                   | 4.59183673<br>0<br>0.06279086<br>4.65462759<br>0<br>0.22778997<br>4.88241756<br>0<br>0.14528129<br>5.02769885<br>0<br>0.18839524<br>5.21609408<br>0<br>0.12845277<br>0.12845277<br>12.691357<br>0 | Q=(Area of<br>Q= Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Pt=(Q/k-fac<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q=kV/Pt<br>Q<br>Q=kV/Pt<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coverage)<br>12<br>tor)^2<br>4.591837<br>evation<br>12.08177<br>evation<br>12.37387<br>evation<br>12.55662<br>evation<br>12.78971<br>evation | (Density) |

|       |     |            |       |                |      |      |       |           | Pt  | 4,59183673  | O=(Area o          | f Coverage | )(Density) |
|-------|-----|------------|-------|----------------|------|------|-------|-----------|-----|-------------|--------------------|------------|------------|
|       | q   |            | 1     |                | L    | 9.5  | С     | 120       | Pe  | 0           | Q=                 | 12         | ////       |
| 11    |     |            |       |                |      |      |       |           |     |             | Pt=(O/k-fa         | actor)^2   |            |
|       | Q   | 12         | 1.049 |                | F    |      | р     | 0.050578  | Pf  | 0.48049117  | Pt=                | 4.591837   |            |
|       |     |            |       |                | Т    | 9.5  |       |           |     |             | Height of          | Elevation  |            |
|       |     |            |       |                |      | 10   |       |           | Pt  | 5.07232791  | g=kVPt             |            |            |
|       | q   | 12.61222   | 1     |                | L    | 12   | C     | 120       | Pe  | 0           | q                  | 12.61222   |            |
| 12    | •   | 24 64222   | 1.040 |                | -    |      |       | 0.404022  |     |             |                    |            |            |
|       | ų   | 24.61222   | 1.049 |                | F    |      | р     | 0.191032  | Pf  | 2.29238126  |                    |            |            |
|       |     |            |       |                | Т    | 12   |       |           |     |             | Height of          | Elevation  |            |
|       | ~   | 15 10729   | 1.25  |                |      | 0.25 | C     | 120       | Pt  | 7.36470916  | q=kV⊵t             |            |            |
|       | ч   | 13.19728   | 1.25  |                | L    | 9.23 | C     | 120       | Pe  | 0           | q                  | 15.19728   |            |
| 13    | 0   | 30 8005    | 1 38  |                | F    |      | n     | 0 122207  |     |             |                    |            |            |
|       | 4   | 33.0033    | 1.50  |                |      |      | ۲     | 0.122257  | Pf  | 1.13125161  |                    |            |            |
|       |     |            |       |                | Т    | 9.25 |       |           |     |             | Height of          | Elevation  |            |
| -     |     |            |       | 1              |      | 1    | 1     |           | _   |             |                    |            |            |
|       | a   | 0          | 3     |                | L    | 8.5  | с     | 120       | Pt  | 21.7035368  | q=kV₽t             |            |            |
|       | -   |            |       |                |      |      |       |           | Pe  | 0           | q                  | 0          |            |
| CM3   | Q   | Q 167.2716 | 3.068 |                | F    |      | р     | 0.035563  | -   |             |                    |            |            |
|       |     |            |       |                | -    | 0.5  |       |           | Pt  | 0.30228583  |                    |            |            |
|       | _   |            |       |                | 1    | 8.5  |       |           |     | 22.0050226  | Height of          | Elevation  |            |
|       | q   | 0          | 3.5   |                | - L  | 24   | C 120 | 120       | Pt  | 22.0058226  | q=KVPt             | 0          |            |
| CMA   |     |            |       |                |      |      |       |           | re  | 0           | Ч                  | U          |            |
| CIVI4 | Q   | 167.2716   | 3.548 |                | F    |      | р     | 0.017521  | Df  | 0 42050010  |                    |            |            |
|       |     |            |       |                | т    | 24   | _     |           | FI  | 0.42030919  | Height of          | Flovation  |            |
|       |     |            |       |                | · ·  | 24   |       |           | D+  | 22 4262210  | a=la/n             | Lievation  |            |
|       | q 0 | 0          | 4     |                | L    | 61   | с     | 120       | Pe  | 0           | q=KVPt             | 0          |            |
| CM5   |     |            |       |                | _    |      |       |           |     | 0           | ч                  | U          |            |
| citio | Q   | 167.2716   | 4.026 |                | F    |      | р     | 0.009468  | Pf  | 0.57753593  |                    |            |            |
|       |     |            |       |                | т    | 61   |       |           |     | 1           | Height of          | Elevation  |            |
|       |     | _          | _     |                |      |      |       |           | Pt  | 23.0038678  | g=kVPt             |            |            |
|       | q   | 0          | 0 5   |                | L    | 40.5 | C     | 120       | Pe  | 0           | q                  | 0          |            |
| CM6   | •   | 4.67.074.6 | 5.047 | 1E             | -    | 42   |       | 0.0004.40 |     |             |                    |            |            |
|       | Q   | 167.2716   | 5.047 |                | F    | 12   | р     | 0.003149  | Pf  | 0.16533757  |                    |            |            |
|       |     |            |       |                | Т    | 52.5 |       |           |     |             | Height of          | Elevation  |            |
|       | ~   | 0          | 6     |                |      | 6.5  | C     | 120       | Pt  | 23.1692053  | q=kV₽t             |            |            |
|       | ч   | 0          | U     |                | L    | 0.5  | C.    | 120       | Ре  | 0           | q                  | 0          |            |
| RISER | 0   | 167 2716   | 6.065 | 1E             | F    | 14   | n     | 0 001287  |     |             |                    |            |            |
|       | ~   | 10/12/10   | 0.005 |                |      |      | ٩     | 0.001207  | Pf  | 0.02638471  |                    |            |            |
|       |     |            |       | Т              | 20.5 |      |       |           |     | Height of   | Elevation          |            |            |
|       | a   | 0          | 6     |                | - L  | 60   | с     | 120       | Pt  | 23.19559    | q=kV <sub>Pt</sub> |            |            |
|       |     |            |       |                |      |      | -     |           | Pe  | 25.98       | q                  | 0          |            |
|       |     |            |       |                |      |      |       |           |     |             |                    |            |            |
| BOR   | Q   | 167.2716   | 6.065 | 1BV; 1GV; 1SCV | F    | 45   | р     | 0.001287  |     |             |                    |            |            |
|       |     |            |       |                | -    |      |       |           | Df. | 0 1251 4412 |                    |            |            |
|       |     |            |       |                | -    | 105  |       |           | Рſ  | 0.13514118  | Listaha (C         |            |            |
|       |     |            |       |                | 1    | 105  |       |           | Dt  | 40 2107242  | Height of          | Elevation  | 60         |
|       |     |            |       |                |      |      |       |           | Pt  | 49.310/312  |                    |            |            |

# Appendix F: Seismic Bracing Sample Calculations (B-Line by Eaton, TOLBrace)

# Seismic Bracing: Boston, Massachusetts

|                       |                     | 12                 |                                                                  |
|-----------------------|---------------------|--------------------|------------------------------------------------------------------|
| Ss                    | =                   | 0.23               | Mapped spectral accelerations for short periods                  |
| Fpw                   | =                   | Cp *               | Wp                                                               |
| Fpw                   | =                   | 0.35               | Wp                                                               |
| Braces are<br>(Hr * V | require<br>Vp * Cp) | ed if:<br>/S >= Fy | tollowing condition is met.                                      |
| Hr                    | =                   | 2                  | length of riser nipple (in inches)                               |
| Wp                    | =                   | 190                | tributary weight (in pounds) for the branch line within          |
|                       |                     |                    | the ZOI, including the riser nipple                              |
| Ср                    | =                   | 0.5                | seismic coefficient (calculated above)                           |
| S                     | =                   | 0.1328             | section modulus of riser nipple (1" Sch 40 = .1328,              |
|                       |                     |                    | 1-1/4" Sch 40 = .2346, 1-1/2" Sch 40 = .3262, 2" Sch 40 = .4205) |
| Fy                    | =                   | 30000              | allowable yeild strength of 30,000 psi for steel                 |
|                       | 1                   | 20000              |                                                                  |
|                       |                     | 30000              |                                                                  |

# Cases 1, 4, and 5

|                           | Tol-Brace                                                                                         | Seismi                                                                                 | c Calculations                                                                                                        |                       |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Project Address:          | Integrated Structural and Fire Protect<br>100 Institute Road<br>Worcester, MA<br>Job # LDA - 1702 | Worcester Polytechnic Institu<br>100 Institute Road<br>Worcester, MA 01609<br>by FitoN |                                                                                                                       |                       |  |  |  |  |
| Bra                       | ce Information                                                                                    | Tolco Brace Components                                                                 |                                                                                                                       |                       |  |  |  |  |
| Maximum Spacing           | 40' 0" (12.19 m)                                                                                  | Tolco                                                                                  | Component Fig. Num                                                                                                    | ber Adjusted Load     |  |  |  |  |
| Maximum Brace Len         | gth <u>13' 1" (4 m)</u>                                                                           | Fig. 200                                                                               | 2 Clamp                                                                                                               | 1007 lbs (457 kg)     |  |  |  |  |
| Bracing Material          | 2" Sch.40                                                                                         | Fig.980                                                                                | Universal Swivel                                                                                                      | 1007 lbs (457 kg)     |  |  |  |  |
| Angle from Vertical       | 30° Min.                                                                                          | - *Please N                                                                            | *Calculation Based on CONCENTRIC Loading<br>*Please Note: These calculations are for Tolco components only. Use of an |                       |  |  |  |  |
| Least Rad. of Gyrati      | on 0.787" (20 mm)                                                                                 | -                                                                                      | Assemb                                                                                                                | bly Detail            |  |  |  |  |
| L/R Value                 | 200                                                                                               | -                                                                                      |                                                                                                                       |                       |  |  |  |  |
| Max Horizontal Load       | 3828 lbs (1736 kg)                                                                                | -                                                                                      | TOLCO FIG. 980                                                                                                        |                       |  |  |  |  |
| Force Factor (Cp)         | 0.35                                                                                              | _                                                                                      | ATTA                                                                                                                  | CHMENT                |  |  |  |  |
|                           | · · · · · · · · · · · · · · · · · · ·                                                             | _                                                                                      | STI                                                                                                                   |                       |  |  |  |  |
| Fas                       | tener information                                                                                 | _                                                                                      |                                                                                                                       |                       |  |  |  |  |
| Fastener Orientation      | NFPA Type A                                                                                       |                                                                                        |                                                                                                                       |                       |  |  |  |  |
| Maximum Load              | 1600 lbs (726 kg)                                                                                 | _                                                                                      |                                                                                                                       | ×                     |  |  |  |  |
| Diameter                  | 1/2n. (12 mm)                                                                                     |                                                                                        | O FIG. 2002-                                                                                                          |                       |  |  |  |  |
| Length                    | N/A                                                                                               | _ ^                                                                                    |                                                                                                                       | ,                     |  |  |  |  |
| Туре                      | Bolt                                                                                              |                                                                                        |                                                                                                                       |                       |  |  |  |  |
|                           |                                                                                                   | Brace I                                                                                | Boston Cases 1, 4, and 5                                                                                              |                       |  |  |  |  |
|                           |                                                                                                   | Orientation of Brace Lateral                                                           |                                                                                                                       |                       |  |  |  |  |
| Braced Pipe: 6" Sch.40    | Steel Pipe LOAD I                                                                                 | morma                                                                                  |                                                                                                                       |                       |  |  |  |  |
| Size and Type of P        | ipe                                                                                               |                                                                                        | Total Length                                                                                                          | Total Calculated Load |  |  |  |  |
| 6" Sch.40 Steel Pipe (152 | 2.4 mm)                                                                                           |                                                                                        | 40ft (12.2 m)                                                                                                         | 444 lbs (201 kg)      |  |  |  |  |
|                           |                                                                                                   |                                                                                        |                                                                                                                       |                       |  |  |  |  |
| Percentage added for Fitt | ings and Sprinklers                                                                               |                                                                                        | 15%                                                                                                                   | 67 lbs (30.39 kg)     |  |  |  |  |
| Total Adjusted Loa        | ad of all pipe within Zone of Inf                                                                 | fluence                                                                                |                                                                                                                       | 510 lbs (231 kg)      |  |  |  |  |

{Tol-Brace Verizon 8}
## Cases 2 and 3

| Tol-Brace Seismic Calculations                                            |                                                                                             |                                                    |                                                                        |                                                                            |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Project Address:                                                          | t Address: Integrated Structural and Fire Protect 10<br>100 Institute Road<br>Worcester, MA |                                                    | r Polytechnic Institu<br>ute Road<br>r, MA 01609                       | B-Line                                                                     |
| Bra                                                                       |                                                                                             | based on 2016                                      |                                                                        | Components                                                                 |
|                                                                           | 401.011 (40.40 m)                                                                           |                                                    |                                                                        |                                                                            |
| Maximum Spacing                                                           | 40' 0" (12.19 m)                                                                            | Fig. 200                                           |                                                                        | 1007 lbs (457 kg)                                                          |
| Maximum Brace Len                                                         | ngth <u>13° 1° (4 m)</u>                                                                    | Fig 980                                            | Iniversal Swivel                                                       | 1007 lbs (457 kg)                                                          |
| Bracing Material                                                          | <u>2" SCN.40</u>                                                                            | g.000                                              | *Calculation Based on CON                                              |                                                                            |
| Angle from Vertical                                                       | 30° Min.                                                                                    | *Please N                                          | ote: These calculations are for To<br>ponents voids these calculations | bloo components only. Use of any other<br>and the listing of the assembly. |
| Least Rad. of Gyratic                                                     | on 0.787" (20 mm)                                                                           |                                                    | Assemb                                                                 | olv Detail                                                                 |
| L/R Value                                                                 | 200                                                                                         |                                                    |                                                                        | ,                                                                          |
| Max Horizontal Load                                                       | 3828 lbs (1736 kg)                                                                          |                                                    | TOLCO F                                                                | IG. 980                                                                    |
| Force Factor (Cp)                                                         | 0.35                                                                                        | -                                                  | ATTA                                                                   | CHMENT                                                                     |
| Faa                                                                       | tonor Information                                                                           | -                                                  | STE                                                                    |                                                                            |
| Fastener Orientation<br>Maximum Load<br>Diameter                          | <sup>1</sup> NFPA Type A<br>565 lbs (256 kg)<br>3/4in. (19 mm)                              | TOLCO FIG. 2002-<br>SWAY BRACE<br>ATTACHMENT       |                                                                        |                                                                            |
| Length                                                                    | Minimum 4x Wood Member                                                                      |                                                    |                                                                        |                                                                            |
| Туре                                                                      | Dual Through-Bolts - Fig.906                                                                |                                                    |                                                                        |                                                                            |
|                                                                           |                                                                                             | Brace Identification on Plans Boston Cases 2 and 3 |                                                                        |                                                                            |
|                                                                           |                                                                                             | Orientation of Brace Lateral                       |                                                                        | Lateral                                                                    |
| Braced Pipe: 6" Sch.40 Steel Pipe Load Information                        |                                                                                             |                                                    |                                                                        |                                                                            |
| Size and Type of Pipe                                                     |                                                                                             |                                                    | Total Length                                                           | Total Calculated Load                                                      |
| 6" Sch.40 Steel Pipe (152.4 mm)                                           |                                                                                             |                                                    | 40ft (12.2 m)                                                          | 444 lbs (201 kg)                                                           |
|                                                                           |                                                                                             |                                                    |                                                                        |                                                                            |
| Percentage added for Fittings and Sprinklers                              |                                                                                             |                                                    | 15%                                                                    | 67 lbs (30.39 kg)                                                          |
| Total Adjusted Load of all pipe within Zone of Influence 510 lbs (231 kg) |                                                                                             |                                                    |                                                                        |                                                                            |



#### Seismic Bracing: Los Angeles, California

Calculate Force Factor

Apply

## Cases 1, 4, and 5

| Tol-Brace Seismic Calculations                                            |                                                                                                   |                                                                                                  |                                                                     |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Project Address:                                                          | Integrated Structural and Fire Protect<br>100 Institute Road<br>Worcester, MA<br>Job # LDA - 1702 | Worcester Polytechnic Institu<br>100 Institute Road<br>Worcester, MA 01609<br>B-Line<br>by FitoN |                                                                     |
| Bra                                                                       |                                                                                                   | Toico Bra                                                                                        | ce Components                                                       |
| Maximum Spacing                                                           | 30' 0" (9.14 m)                                                                                   | Tolco Component Fig. N                                                                           | lumber Adjusted Load                                                |
| Maximum Brace Ler                                                         | ngth 13' 1" (4 m)                                                                                 | Fig. 2002 Clamp                                                                                  | 1007 lbs (457 kg)                                                   |
| Bracing Material                                                          | 2" Sch.40                                                                                         | Fig.980 Universal Swivel                                                                         | 1007 lbs (457 kg)                                                   |
| Angle from Vertical                                                       | 30° Min.                                                                                          | *Calculation Based o<br>*Please Note: These calculations are                                     | n CONCENTRIC Loading<br>for Tolco components only. Use of any other |
| Least Rad. of Gyrati                                                      | on 0.787" (20 mm)                                                                                 | components voids these calcu                                                                     | alations and the listing of the assembly.                           |
| L/R Value                                                                 | 200                                                                                               | -                                                                                                |                                                                     |
| Max Horizontal Load                                                       | 3828 lbs (1736 kg)                                                                                | TO                                                                                               | LCO FIG. 980                                                        |
| Force Factor (Cp)                                                         | 0.75                                                                                              | - UNIVERSAL                                                                                      |                                                                     |
| - Eac                                                                     | topor Information                                                                                 | -                                                                                                | STEEL PIPE                                                          |
| Fastener Orientation                                                      | <sup>n</sup> NFPA Type A<br>1600 lbs (726 kg)                                                     |                                                                                                  |                                                                     |
| Diameter                                                                  | 1/2n. (12 mm)                                                                                     | TOLCO FIG. 2002<br>SWAY BRACE<br>ATTACHMENT                                                      |                                                                     |
| Length                                                                    | N/A                                                                                               |                                                                                                  |                                                                     |
| Туре                                                                      | Bolt                                                                                              |                                                                                                  |                                                                     |
|                                                                           |                                                                                                   | Brace Identification on Plans LA Cases 1, 4, and 5                                               |                                                                     |
| Bracad Dino: 6" Sab 44                                                    |                                                                                                   | Orientation of Brace                                                                             | Lateral                                                             |
| Braced Pipe: 6" Scn.40 Steel Pipe LOAD INIOI MATION                       |                                                                                                   |                                                                                                  |                                                                     |
| Size and Type of Pipe                                                     |                                                                                                   | Total Length                                                                                     | Total Calculated Load                                               |
| 6" Sch.40 Steel Pipe (152.4 mm) 30ft (9.1 m) 713 lbs (323 kg)             |                                                                                                   |                                                                                                  |                                                                     |
|                                                                           |                                                                                                   |                                                                                                  |                                                                     |
| Percentage added for Fit                                                  | tings and Sprinklers                                                                              | 15%                                                                                              | 107 lbs (48.54 kg)                                                  |
| Total Adjusted Load of all pipe within Zone of Influence 820 lbs (372 kg) |                                                                                                   |                                                                                                  | 820 lbs (372 kg)                                                    |

### Cases 2 and 3

| Tol-Brace Seismic Calculations                                     |                                                                             |                                                         |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|--|
| Project Address: Integrated Structural and Fire Protec             | Worcester Polytechnic Institu<br>100 Institute Road B-Line                  |                                                         |  |
| 100 Institute Road                                                 | Worcester, MA 01609                                                         | by <b>TATON</b>                                         |  |
| Worcester, MA                                                      |                                                                             |                                                         |  |
| Job # LDA - 1702 Calculations b                                    | ased on 2016 NFPA Pamphlet #13                                              |                                                         |  |
| Brace Information                                                  | Tolco Brace Components                                                      |                                                         |  |
| Maximum Spacing 20' 0" (6.1 m)                                     | Tolco Component Fig. Numbe                                                  | er Adjusted Load                                        |  |
| Maximum Brace Length 13' 1" (4 m)                                  | Fig. 2002 Clamp                                                             | 1007 lbs (457 kg)                                       |  |
| Bracing Material 2" Sch.40                                         | Fig.980 Universal Swivel                                                    | 1007 lbs (457 kg)                                       |  |
| Angle from Vertical 30° Min.                                       | *Calculation Based on CONO<br>*Please Note: These calculations are for Tolo | CENTRIC Loading<br>to components only. Use of any other |  |
| Least Rad. of Gyration 0.787" (20 mm)                              | components voids these calculations a                                       | and the listing of the assembly.                        |  |
| L/R Value 200                                                      | Assellin                                                                    |                                                         |  |
| Max Horizontal Load 3828 lbs (1736 kg)                             | TOLCO FI                                                                    | G. 980                                                  |  |
| Force Factor (Cp) 0.75                                             | ATTAC                                                                       | HMENT                                                   |  |
| Footoney Information                                               | STEE                                                                        |                                                         |  |
| Fasterier Information                                              | TOLCO FIG. 2002-<br>SWAY BRACE                                              |                                                         |  |
| Fastener Orientation NFPA Type A                                   |                                                                             |                                                         |  |
| Maximum Load 565 lbs (256 kg)                                      |                                                                             |                                                         |  |
| Diameter <u>3/4in. (19 mm)</u>                                     |                                                                             |                                                         |  |
| Length Minimum 4x Wood Member                                      |                                                                             |                                                         |  |
| Type Dual Through-Bolts - Fig.906                                  |                                                                             |                                                         |  |
|                                                                    | Brace Identification on Plans LA Cases 2 and 3                              |                                                         |  |
| Presed Direct Cli Sets 40 Start Direct                             | Orientation of Brace Lateral                                                |                                                         |  |
| Bracea Pipe: 6" Scn.40 Steel Pipe LOAU IIIOI MALION                |                                                                             |                                                         |  |
| Size and Type of Pipe                                              | Total Length                                                                | Total Calculated Load                                   |  |
| 6" Sch.40 Steel Pipe (152.4 mm) 20ft (6.1 m) 475 lbs (215 kg)      |                                                                             |                                                         |  |
|                                                                    |                                                                             |                                                         |  |
|                                                                    |                                                                             |                                                         |  |
|                                                                    |                                                                             |                                                         |  |
|                                                                    |                                                                             |                                                         |  |
| Percentage added for Fittings and Sprinklers 15% 71 lbs (32.21 kg) |                                                                             |                                                         |  |
| Total Adjusted Load of all pipe within Zone of Influ               | uence                                                                       | 547 lbs (248 kg)                                        |  |

#### Seismic Bracing: Miami, Florida



Calculate Force Factor

Apply

## Cases 1, 4, and 5

| Tol-Brace Seismic Calculations                     |                                        |                                                                            |                                                             |  |
|----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Project Address:                                   | Integrated Structural and Fire Protect | Worcester Polytechnic Institu<br>100 Institute Road<br>Worcester, MA 01609 |                                                             |  |
|                                                    | 100 Institute Road                     |                                                                            | by <b>FATON</b>                                             |  |
|                                                    | Worcester, MA                          |                                                                            |                                                             |  |
|                                                    | Job # LDA - 1702 Calculations t        | based on 2016 NFPA Pamphlet #13                                            |                                                             |  |
| Bra                                                | ce Information                         | Tolco Brace                                                                | Components                                                  |  |
| Maximum Spacing                                    | 40' 0" (12.19 m)                       | Tolco Component Fig. Num                                                   | ber Adjusted Load                                           |  |
| Maximum Brace Ler                                  | ngth 13' 1" (4 m)                      | Fig. 2002 Clamp                                                            | 1007 lbs (457 kg)                                           |  |
| Bracing Material                                   | 2" Sch.40                              | Fig.980 Universal Swivel                                                   | 1007 lbs (457 kg)                                           |  |
| Angle from Vertical                                | 30° Min.                               | *Calculation Based on CO<br>*Please Note: These calculations are for T     | NCENTRIC Loading<br>folco components only. Use of any other |  |
| Least Rad. of Gyrati                               | on 0.787" (20 mm)                      | components voids these calculation                                         | ns and the listing of the assembly.                         |  |
| L/R Value                                          | 200                                    | Assem                                                                      | bly Detail                                                  |  |
| Max Horizontal Load                                | 3828 lbs (1736 kg)                     | TOLCO                                                                      | FIG. 980                                                    |  |
| Force Factor (Cp)                                  | 0.35                                   | UNIVERSAL SWA                                                              | ACHMENT                                                     |  |
|                                                    |                                        | ST                                                                         | EEL PIPE                                                    |  |
| Fas                                                | stener Information                     |                                                                            |                                                             |  |
| Fastener Orientation                               | л NFPA Туре А                          |                                                                            |                                                             |  |
| Maximum Load                                       | 1600 lbs (726 kg)                      |                                                                            |                                                             |  |
| Diameter                                           | 1/2n. (12 mm)                          | TOLCO FIG. 2002-<br>SWAY BRACE<br>ATTACHMENT                               |                                                             |  |
| Length                                             | N/A                                    |                                                                            |                                                             |  |
| Туре                                               | Bolt                                   |                                                                            |                                                             |  |
|                                                    |                                        | Brace Identification on Plans Miami Cases 1, 4, and 5                      |                                                             |  |
| Bracad Dino: 61 Cab 44                             |                                        | Orientation of Brace                                                       | Lateral                                                     |  |
| Braced Pipe: 6" Sch.40 Steel Pipe LOAC INTORMATION |                                        |                                                                            |                                                             |  |
| Size and Type of Pipe                              |                                        | Total Length                                                               | Total Calculated Load                                       |  |
| 6" Sch.40 Steel Pipe (15)                          | 2.4 mm)                                | 40ft (12.2 m)                                                              | 444 lbs (201 kg)                                            |  |
|                                                    |                                        |                                                                            |                                                             |  |
| Percentage added for Fit                           | tings and Sprinklers                   | 15%                                                                        | 67 lbs (30.39 kg)                                           |  |
| Total Adjusted Lo                                  | ad of all pipe within Zone of Infl     | uence                                                                      | 510 lbs (231 kg)                                            |  |

## Cases 2 and 3

| Tol-Brace Seismic Calculations                         |                                                                                        |                                                   |                                                                 |                                  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|----------------------------------|
| Project Address:                                       | Address: Integrated Structural and Fire Protect<br>100 Institute Road<br>Worcester, MA |                                                   | er Polytechnic Institu<br>tute Road<br>er, MA 01609             | B-Line                           |
| Bra                                                    |                                                                                        | based on 2016                                     | Tolco Brace (                                                   | Components                       |
|                                                        |                                                                                        |                                                   |                                                                 |                                  |
| Maximum Spacing                                        | 40' 0" (12.19 m)                                                                       | Fig. 200                                          |                                                                 | 1007 lbs (457 kg)                |
| Maximum Brace Len                                      | gth <u>13' 1" (4 m)</u>                                                                | Fig. 200                                          |                                                                 | 1007 lbs (457 kg)                |
| Bracing Material                                       | 2" Sch.40                                                                              | Fig.980                                           | Universal Swivel                                                | 1007 lbs (457 kg)                |
| Angle from Vertical                                    | 30° Min.                                                                               | *Please N                                         | *Calculation Based on CON<br>ote: These calculations are for To | ICENTRIC Loading                 |
| Least Rad. of Gyratic                                  | on 0.787" (20 mm)                                                                      | con                                               | nponents voids these calculations                               | and the listing of the assembly. |
| L/R Value                                              | 200                                                                                    |                                                   | Asseint                                                         | ny Detail                        |
| Max Horizontal Load                                    | 3828 lbs (1736 kg)                                                                     |                                                   | TOLCO F                                                         | IG. 980                          |
| Force Factor (Cp)                                      | 0.35                                                                                   |                                                   | UNIVERSAL SWAY                                                  |                                  |
|                                                        |                                                                                        |                                                   | STE                                                             |                                  |
| Fas                                                    | tener Information                                                                      |                                                   | $\frown$                                                        |                                  |
| Fastener Orientation                                   | NFPA Туре А                                                                            |                                                   |                                                                 |                                  |
| Maximum Load                                           | 565 lbs (256 kg)                                                                       | TOLCO FIG. 2002-<br>SWAY BRACE                    |                                                                 | / X                              |
| Diameter                                               | 3/4in. (19 mm)                                                                         |                                                   |                                                                 |                                  |
| Length                                                 | Minimum 4x Wood Member                                                                 | . 1                                               |                                                                 |                                  |
| Туре                                                   | Dual Through-Bolts - Fig.906                                                           |                                                   |                                                                 |                                  |
|                                                        |                                                                                        | Brace Identification on Plans Miami Cases 2 and 3 |                                                                 |                                  |
|                                                        |                                                                                        | Orientation of Brace Lateral                      |                                                                 |                                  |
| Braced Pipe: 6" Sch.40 Steel Pipe Load Information     |                                                                                        |                                                   |                                                                 |                                  |
| Size and Type of Pipe                                  |                                                                                        |                                                   | Total Length                                                    | Total Calculated Load            |
| 6" Sch.40 Steel Pipe (152.4 mm)                        |                                                                                        |                                                   | 40ft (12.2 m)                                                   | 444 lbs (201 kg)                 |
|                                                        |                                                                                        |                                                   |                                                                 |                                  |
| Percentage added for Fittings and Sprinklers           |                                                                                        |                                                   | 15%                                                             | 67 lbs (30.39 kg)                |
| Total Adjusted Load of all pipe within Zone of Influen |                                                                                        |                                                   |                                                                 | 510 lbs (231 kg)                 |

Appendix G: Full Drawings Set



# INTEGRATED STRUCTURAL AND FIRE PROTECTION DESIGN CONSIDERATIONS





| INDEX OF DRAWINGS |             |                                              |
|-------------------|-------------|----------------------------------------------|
| SHEET NO.         | DRAWING NO. | DRAWING TITLE                                |
| 1                 | CS.1        | COVERSHEET                                   |
| 2                 | G.1         | GENERAL NOTES AND LEGEND                     |
| 3                 | S.1.1       | CASE 1 STRUCTURAL (DESIGN LOADS)             |
| 4                 | S.1.2       | CASE 1 STRUCTURAL (ENVIRONMENTAL LOADS)      |
| 5                 | S.1.3       | CASE 1 STRUCTURAL (FRAMES)                   |
| 6                 | A.1.1       | CASE 1 ARCHITECTURAL 1ST FLOOR               |
| 7                 | A.1.2       | CASE 1 ARCHITECTURAL 2ND FLOOR (TYP.)        |
| 8                 | FA.1.1      | CASE 1 FIRE ALARM 1ST FLOOR                  |
| 9                 | FA.1.2      | CASE 1 FIRE ALARM 2ND FLOOR (TYP.)           |
| 10                | FP.1.1      | CASE 1 FIRE PROTECTION 1ST FLOOR             |
| 11                | FP.1.2      | CASE 1 FIRE PROTECTION 2ND FLOOR (TYP.)      |
| 12                | S.2         | CASE 2 STRUCTURAL (WOOD DESIGN)              |
| 13                | A.2.1       | CASE 2 ARCHITECTURAL 1ST FLOOR               |
| 14                | A.2.2       | CASE 2 ARCHITECTURAL 2ND FLOOR (TYP.)        |
| 15                | FA.2.1      | CASE 2 FIRE ALARM 1ST FLOOR                  |
| 16                | FA.2.2      | CASE 2 FIRE ALARM 2ND FLOOR (TYP.)           |
| 17                | FP.2.1      | CASE 2 FIRE PROTECTION 1ST FLOOR             |
| 18                | FP.2.2      | CASE 2 FIRE PROTECTION 2ND FLOOR (TYP.)      |
| 19                | S.3.1       | CASE 3 STRUCTURAL (DESIGN LOADS)             |
| 20                | S.3.2       | CASE 3 STRUCTURAL (ENVIRONMENTAL LOADS)      |
| 21                | S.3.3       | CASE 3 STRUCTURAL (FRAMES)                   |
| 22                | S.3.4       | CASE 3 STRUCTURAL (WOOD DESIGN)              |
| 23                | A.3.1       | CASE 3 ARCHITECTURAL 1ST FLOOR               |
| 24                | A.3.2       | CASE 3 ARCHITECTURAL 2ND FLOOR (TYP.)        |
| 25                | FA.3.1      | CASE 3 FIRE ALARM 1ST FLOOR                  |
| 26                | FA.3.2      | CASE 3 FIRE ALARM 2ND FLOOR (TYP.)           |
| 27                | FP.3.1      | CASE 3 FIRE PROTECTION 1ST FLOOR             |
| 28                | FP.3.2      | CASE 3 FIRE PROTECTION 2ND FLOOR (TYP.)      |
| 29                | S.4.1       | CASE 4 STRUCTURAL (DESIGN LOADS F1)          |
| 30                | S.4.2       | CASE 4 STRUCTURAL (DESIGN LOADS F2-5)        |
| 31                | S.4.3       | CASE 4 STRUCTURAL (ENVIRONMENTAL LOADS F1)   |
| 32                | S.4.4       | CASE 4 STRUCTURAL (ENVIRONMENTAL LOADS F2-5) |
| 33                | S.4.5       | CASE 4 STRUCTURAL (FRAMES)                   |
| 34                | A.4.1       | CASE 4 ARCHITECTURAL 1ST FLOOR               |
| 35                | A.4.2       | CASE 4 ARCHITECTURAL 2ND FLOOR               |
| 36                | A.4.3       | CASE 4 ARCHITECTURAL 3RD FLOOR (TYP.)        |
| 37                | FA.4.1      | CASE 4 FIRE ALARM 1ST FLOOR                  |
| 38                | FA.4.2      | CASE 4 FIRE ALARM 2ND FLOOR                  |
| 39                | FA.4.3      | CASE 4 FIRE ALARM 3RD FLOOR (TYP.)           |
| 40                | FP.4.1      | CASE 4 FIRE PROTECTION 1ST FLOOR             |
|                   |             |                                              |

Т

| 41 | FP.4.2   | CASE 4 FIRE PROTECTION 2ND FLOOR               |
|----|----------|------------------------------------------------|
| 42 | FP.4.3   | CASE 4 FIRE PROTECTION 3RD FLOOR (TYP.)        |
| 43 | S.5.1.1  | CASE 5 STRUCTURAL (DESIGN LOADS - WEST)        |
| 44 | S.5.1.2  | CASE 5 STRUCTURAL (DESIGN LAODS - EAST)        |
| 45 | S.5.2.1  | CASE 5 STRUCTURAL (ENVIRONMENTAL LOADS - WEST) |
| 46 | S.5.2.2  | CASE 5 STRUCTURAL (ENVIRONMENTAL LOADS - EAST) |
| 47 | S.5.3.1  | CASE 5 STRUCTURAL (FRAMES - WEST)              |
| 48 | S.5.3.2  | CASE 5 STRUCTURAL (FRAMES - EAST)              |
| 49 | A.5.1.1  | CASE 5 ARCHITECTURAL 1ST FLOOR - WEST          |
| 50 | A.5.1.2  | CASE 5 ARCHITECTURAL 1ST FLOOR - EAST          |
| 51 | A.5.2.1  | CASE 5 ARCHITECTURAL 2ND FLOOR - WEST (TYP.)   |
| 52 | A.5.2.2  | CASE 5 ARCHITECTURAL 2ND FLOOR - EAST (TYP.)   |
| 53 | FA.5.1.1 | CASE 5 FIRE ALARM 1ST FLOOR - WEST             |
| 54 | FA.5.1.2 | CASE 5 FIRE ALARM 1ST FLOOR - EAST             |
| 55 | FA.5.2.1 | CASE 5 FIRE ALARM 2ND FLOOR - WEST (TYP.)      |
| 56 | FA.5.2.2 | CASE 5 FIRE ALARM 2ND FLOOR - EAST (TYP.)      |
| 57 | FP.5.1.1 | CASE 5 FIRE PROTECTION 1ST FLOOR - WEST        |
| 58 | FP.5.1.2 | CASE 5 FIRE PROTECTION 1ST FLOOR - EAST        |
| 59 | FP.5.2.1 | CASE 5 FIRE PROTECTION 2ND FLOOR - WEST (TYP.) |
| 60 | FP.5.2.2 | CASE 5 FIRE PROTECTION 2ND FLOOR - EAST (TYP.) |






















































































































