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Abstract 
As the amount of information captured about users increased over the last decade, interest in 

personalized user interfaces has surged in the HCI and IS communities. Personalization is an 

effective means for accommodating for differences between individuals. The fundamental idea 

behind personalization rests on the notion that if a system can gather useful information about 

the user, generate a relevant user model and apply it appropriately, it would be possible to adapt 

the behavior of a system and its interface to the user at the individual level. Personalization of 

a user interface features can enhance usability. With recent technological advances, personali-

zation can be achieved automatically and unobtrusively. A user interface can deploy a NeuroIS 

technology such as eye-tracking that learns from the user’s visual behavior to provide users an 

experience most unique to them. The advantage of eye-tracking technology is that subjects 

cannot consciously manipulate their responses since they are not readily subject to manipula-

tion. The objective of this dissertation is to develop a theoretical framework for user personal-

ization during reading comprehension tasks based on two machine learning (ML) models. The 

proposed ML-based profiling process consists of user’s age characterization and user’s cogni-

tive load detection, while the user reads text. To this end, detection of cognitive load through 

eye-movement features was investigated during different cognitive tasks (see Chapters 3, 4 and 

6) with different task conditions. Furthermore, in separate studies (see Chapters 5 and 6) the 

relationship between user’s eye-movements and their age population (e.g., younger and older 

generations) were carried out during a reading comprehension task.  A Tobii X300 eye tracking 

device was used to record the eye movement data for all studies. Eye-movement data was ac-

quired via Tobii eye tracking software, and then preprocessed and analyzed in R for the afore-

mentioned studies. Machine learning techniques were used to build predictive models. The 

aggregated results of the studies indicate that machine learning accompanied with a NeuroIS 

tool like eye-tracking, can be used to model user characteristics like age and user mental states 

like cognitive load, automatically and implicitly with accuracy above chance (range of 70-

92%). The results of this dissertation can be used in a more general framework to adaptively 

modify content to better serve the users mental and age needs. Text simplification and modifi-

cation techniques might be developed to be used in various scenarios.  
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1 Introduction 

1.1 Personalized User Experience 

Nowadays, we are surrounded by a multitude of interactive devices and smart objects. In this 

situation, applications need to adapt to continuous changes of contexts, but only end users know 

the specific adaptations that they would like to have in their applications. In 1999, David Wein-

berger, a technologist and co-author of The Cluetrain Manifesto (Levine, Locke, Searls, & 

Weinberger, 1999), wrote, “Personalization: the automatic tailoring of sites and messages to 

the individuals viewing them so that we can feel that somewhere there’s a piece of software 

that loves us for who we are.” Interestingly, nearly 20 years later, personalization is being used 

by companies attempting to make the online experience more human. Personalization has 

grown rapidly since Weinberger’s statement, so that personalized experiences have become the 

norm, not an occasion. Personalization takes place by adjusting the system to suit the needs 

and preferences of a particular user. A useful and satisfying experience includes tailoring the 

experience to the individual and making it easier for a user to find relevant information or reach 

their intended goal. A properly personalized user interface improves users’ satisfaction and 

performance, compared to traditional manually designed “one size fits all” interfaces. In gen-

eral, there are two basic kinds of personalization: adaptable and adaptive (Eichler, 2014). Both 

adaptable and adaptive approaches try to improve usability through personalization of interface 

from its default configuration. The adaptable approach means personalization performed by 

the user which is also known as customization, whereas the adaptive approach stands for per-

sonalization performed by the computer (Eichler, 2014).  

Personalization of user experience requires collection of accurate and adequate user feedback. 

There are two primary techniques for collecting user feedback. Information can be obtained 

explicitly, by directly requesting the user to specify their feedback in a given piece of data on 

a specified rating scale, or implicitly, by observing user actions and inferring the user charac-

teristics and cognitive behaviors (Mac Aoidh et al., 2009). One implicit method of collecting 
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user’s feedback is by measuring a user’s cognitive load while interacting with an interface. 

Assessing cognitive load has long been an area of interest in the Information Systems and Hu-

man Computer Interaction literature (Stassen etal., 1990; Riedl, 2010; Buettner, 2014; Buettner 

et al., 2015). Cognitive load is defined as the relationship between the cognitive demands 

placed on a user due to a cognitive task and the user’s cognitive resources (Wickens, 2002).  

To design more intuitive systems that are easier to learn, and free of performance error, the 

first step is to model user’s natural behavior (Oviatt, 2006). According to Human-Centered 

Design principles, cognitive load associated with extraneous complexity of system output 

needs to be minimized (Oviatt, 2006). 

Personalization of a user interface is aligned with Intelligent Human Computer Interface 

(IHCI). An IHCI emphasizes that human behavior encompasses both apparent human behavior 

and the hidden mental state behind behavioral performance (Duric et al., 2002). IHCI integrates 

parsing and interpretation of nonverbal information with a computational cognitive model of 

the user, which, in turn, feeds into processes that adapt the interface to enhance operator per-

formance and provide for rational decision-making (Duric et al., 2002). 

One objective of this study is to collect nonverbal, objective and unobtrusive user’s behavior 

via using eye tracking technology, and then interpret the user’s behavior to build a user’s men-

tal model of interaction with an interface. In this study I focus on building a model that can 

detect user’s cognitive load and user’s age characteristics. Such models can be used further in 

enhancing the IHCI or Adaptive User Interfaces (AUIs).  

Once the user’s mental model is built, the next step for an intelligent or adaptive system is 

to diagnose the problems that influence user’s experience negatively. Lastly, the final step is 

to adapt the interface to the user’s need appropriately. Adaptive and intelligent HCI are im-

portant for novel applications of computing, including universal and human-centered compu-

ting (Duric et al., 2002). Recently, psychophysiological monitoring and neuro-feedback using 

bio-sensors have been recognized to provide accurate feedback from users’ emotion and cog-

nitive status, when interacting with interfaces (Dimoka, 2012). For example, an electrocardio-

gram could directly measure whether a certain interface increases the user’s heart rate, thus 

inferring anxiety or stress. Eye tracking tools can implicitly measure user’s cognitive load level 

and capture whether a user finds it difficult to interact with the interface by observing how the 
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eyes move on a computer screen (Dimoka, 2012). Further details on how this technology is 

used to collect unobtrusive user feedback is provided in the next chapter section 2.1. 

In this dissertation, eye tracking technology is used to implicitly and unobtrusively collect user 

feedback when the user is fulfilling different cognitive tasks such as problem solving and read-

ing comprehension. Machine learning models are used to infer and predict user’s age group 

and user’s cognitive load, only through the eye movements.  The use of predictive analytics 

and machine learning makes it possible to extend UX principles beyond personas all the way 

down to the individual user. This level of specificity can help guide users to content that is 

most preferable to their unique requirements. Many top companies have used this approach to 

deliver bull’s-eye-precision targeted marketing while providing an environment that is engag-

ing and unique to each user. The most pervasive examples of this are Amazon and Netflix. 

Amazon is able to track individual shopping habits, and suggest items that are highly relevant 

to each user. Amazon doesn’t rely on focus groups or persona matching to find these items; 

they use machine learning (ML) and individual usage data to provide useful product recom-

mendations. Until very recently, personalization has required face-to-face communication to 

identify user needs and adaptively revise the interface’s content or appearance, but massive 

amounts of user data and machine-learning techniques can now augment these techniques to 

provide a better user experience.  

Development of a personalized UX model that will be implemented in Adaptive User Interfaces 

(AUI), is the main focus of the present dissertation. “An AUI is a design that improves its 

ability to interact with a user by constructing a user model based on partial experience with that 

user” (Stathopoulos et al. 2002). AUI are at the intersection of Information System (IS), Human 

Computer Interaction (HCI) and Machine Learning (ML).  

An adaptive UI changes dynamically in response to its experience with users (McTear, 2000). 

Adaptation to user requires a user model containing attributes of the user to which adaptations 

are sought. Such an effect is typically achieved by using dedicated machine learning algorithms 

responsible for acquiring and maintaining user characteristics and behaviors towards suitable 

interface adaptations (Goecks & Shavlik, 2000). The ML techniques are capable of expressing 
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a rich variety of non-linear decision models. Such techniques, in general, process training/input 

data and attempt to make decisions or classification based on this input.  

As mentioned earlier, the goal of present research is to develop a UX personalization model 

that consists of user age characterization and cognitive load detection. Figure.1.1 represents the 

general diagram of the theoretical framework that is proposed to address the user personaliza-

tion while the user is interacting with an interface such as a website or a mobile application. 

Eye tracking is used to collect user’s eye-movement while interacting with the interface. The 

eye-movement data is preprocessed and used to detect the user’s cognitive state (e.g., high or 

low cognitive load) as well as user’s age characteristics (e.g., young or old).  Detecting user’s 

level of cognitive load, and user’s characteristics, will help in providing adaptive user person-

alization that can provide a personalized experience for individual users. With the advent of 

technology, adaptive user personalization will be applied in implementing adaptive user inter-

faces.  

 

Figure 1. 1 UX personalization Model Diagram 
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1.2 Dissertation Contributions 

To support the dissertation statement, my interdisciplinary research integrated the fields of ma-

chine learning, human computer interactions, eye tracking, statistics, and cognitive science. It 

makes several contributions that lay a foundation for HCI research by bringing cognitive load 

measurement through eye movements for HCI. In particular, with this dissertation, I make the 

following contributions: 

1. Eye-movement Analysis: I describe novel methods of analyzing eye movement data, use 

newly defined eye movement features and develop classification methods and tools for eye 

movement analysis.  

2. Cognitive Load Prediction and Machine Learning: I apply machine learning models and 

methods to analyze and predict cognitive load using eye-movement data. I show that cognitive 

load level due to different task demands is detectable and predictable in a complex cognitive 

task.  I explored the two cognitive tasks of problem solving and reading comprehension because 

they have direct relevance to many HCI research studies.  

3. Detecting Reading Difficulty Level Using Eye Movements: Using machine learning models 

I show that eye movements can be used as a proxy to detect the level of comprehension diffi-

culty during a reading task. 

4. Detecting Age Group of a User through Eye Movements: Using machine learning models I 

show that eye movements can be used to predict the age group of a user in a reading compre-

hension task.  

5. Time Series Analyses of Pupil Dilation: I show that, pupillary data can be used continuously 

to understand the ongoing cognitive processes during reading. Further, I show that dividing the 

information processing and decision period of a task into smaller intervals provides valuable 

insight for examining the information processing behavior in real time.  
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1.3 Dissertation Roadmap 

This dissertation is organized as follows:	Chapter 2 provides an overview of related work that 

lays the foundation for this dissertation. The literature is presented which includes related back-

ground on the eye tracking technology and how the technology is used to collect eye move-

ments of a user while fulfilling a task in front of a computer screen. I present the research works 

related to the difference between older and young users in online web experience, and how this 

differences emphasize the need for implementing adaptive user interfaces.  Further, I will elab-

orate on the definition and theory of cognitive load, and will present related research that focus 

on measurement of cognitive load, using eye movements. This chapter also covers application 

of machine learning in eye-tracking HCI research.  

As discussed above, detection of cognitive load and user’s age characterizations are the main 

focus of my PhD studies. To this end, I conducted three different studies which will be pre-

sented in Chapters 3 to 5 of this dissertation.  

Chapter 3 (study 1) focuses on detection of cognitive load (due to task condition) in a problem 

solving task. Cognitive load is manipulated as time limit in solving math problems (treatment 

group). A machine learning model is developed to classify the users into treatment and control 

(no time limit) conditions using their eye movements.  

Chapter 4 (study 2) covers analysis of time-domain pupillary data to investigate cognitive load 

during a reading comprehension and decision making task. It is shown that pupil dilation time 

series during reading is not significantly different between groups of users who read passages 

with different task conditions. However, it was found that examining pupillary data in various 

time intervals can provide additional information for assessment of cognitive load. 

The relationship between user’s age and eye-movements during reading comprehension task is 

presented in Chapter 5 (study 3). Regression analysis is used to investigate how certain eye-

movement metrics maps to user’s age characteristics.  

The final chapter (study 4) of the dissertation addresses the major goals of my PhD thesis, that 

is to develop two machine learning models using eye-movement features, one for user’s age 

characterization (e.g. Generation Y, Baby boomers), and another for cognitive load during 

reading comprehension task.  
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2 Theoretical Background 

This chapter presents the background material and research work relevant to this dissertation. 

It specifically looks at the motivation behind this research, a literature review on the eye track-

ing research, the state of the art in eye tracking, and how we can use eye tracking as a means 

of collecting implicit user feedback in real time. In this chapter I also look at the differences 

between older and younger generations, the two most important and distinct populations of the 

web users in the United States, and then conclude the chapter by reviewing how machine learn-

ing can be applied in eye tracking research. 

2.1 Eye Tracking: An Unobtrusive Technology for Objective 

User Experience Assessment 

Eye tracking refers to capturing the focus of a viewer’s gaze on a stimulus at a given time. This 

is done by tracking a viewer’s eye movements (Djamasbi, 2014). The predominant means to 

collect information from our environment is through the visual system, hence eye tracking pro-

vides an excellent tool for examining how people focus their attention and process information 

(Djamasbi, 2014). Eye tracking has been possible for many years, however, the earlier versions 

of eye tracker were very difficult to use because of large head mounted cameras which needed 

long set up times and difficult calibration procedures.  With the extant growth of eye tracking 

technology, this technology is becoming increasingly popular in user experience research for 

investigating the interaction of users with user interfaces such as mobile and website (Albert 

& Tullis, 2013; Bergstrom & Schall, 2014). Eye tracking has been used by a number of re-

searchers in the areas of Human-Computer Interactions, Marketing, Cognitive Psychology, and 

the new field of Neuro-IS, to detect where users look at a point in time, how long they look at 

something, and the path their eyes travel (Bergstrom & Schall, 2014). 
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An overview on how eye tracking technology works and how it is used in user experience re-

search for capturing eye movements is given in the following. In addition, details are pre-

sented on the accuracy and precision of the eye tracking devices.  

2.1.1 How does eye tracking work? 

Most modern eye-trackers capture the eye-movements unobtrusively, using a method called 

video-based corneal reflection. The corneal reflection (or glint) is created by projecting infrared 

light into the eye, which also turns the pupil into a bright disc that makes its detection easier. 

The video-based corneal reflection method of eye movement detection captures the corneal 

reflection appearing as a small bright glint on the surface of the eye, as well as the center of the 

pupil (Djamasbi, 2014). The gaze location on the screen is calculated based on the relative 

position of glint and pupil center (Djamasbi, 2014). 

Calibration 

To measure the accurate location of the eyes on the screen, eye trackers need to be calibrated 

for each person. During the calibration process, the eye tracker learns how certain coordinates 

on the stimulus correspond to a person’s eye position.  

By asking the viewer to look at several dots on the computer screen or a calibration plate, the 

calibration process allows the eye tracker to associate the viewer’s glint/pupil data with known 

locations on the stimulus. Figure 2.1 shows an example of a calibration process on a desktop 

computer. During calibration the user is asked to follow the movement of a red dot on the 

screen, without guessing where the future location of the dot is. The red spot in Figure 2.1 

shows where the user’s eye is fixated during calibration on a computer screen.  

When looking at a stimulus, our eyes constantly move around to help construct a complete 

schema of what we are looking at. This process results in formation of two major types of eye 

movements: fixation and saccades (Djamasbi, 2014). Further details on the definition of dif-

ferent types of eye movements and the related literature is provided in section 2.2.2.  

In the following I will present details about important attributes of an eye tracking device, 

which needs to be considered by researchers before conducting an eye tracking study. One of 
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the most important features of an eye tracking device is its sampling rate (frequency) of the 

device.  

 

  
Figure 2. 1 The Calibration Procedure  

 

Sampling Rate  

An important attribute of an eye tracking device, which facilitates a continuous recording of 

eye movements, is sampling rate of the device. Frequency of the eye tracking device corre-

sponds to how many times per second the eye position is measured. For example, an eye track-

ing device with a 60Hz sampling rate can record gaze points every 16.6 milliseconds, which is 

an adequate sampling rate for web studies (Djamasbi, 2014). However, for reading studies a 

higher sampling rate is required because higher sampling rates produce better temporal accu-

racy (also called temporal resolution) when measuring eye movements such as duration of fix-

ations and saccades (Campbell & Bovee, J. C, 2014). Common sampling rates include 1,000 

Hz, 300 Hz, 250 Hz, and 60 Hz. The average temporal error will be approximately half the 

duration of the time between samples (Campbell & Bovee, J. C, 2014). For example, a sam-

pling rate of 300 Hz samples the eye position every 3.3 msec, which will lead to an average 

error of 1.65 msec. A sampling rate of 60 Hz, which samples eye position every 16.7 msec, 
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will lead to an average error of approximately 8 msec. An 8 msec error in temporal resolution 

might be considered too large to study some of the eye metrics during reading. Thirty years 

ago most reading research was conducted using eye trackers with 60 Hz sampling rates. Most 

research on reading is now performed using eye trackers capable of sampling at 300 Hz or 

above.  

Accuracy 

Another important feature of an eye tracking device is the level of accuracy that it delivers in 

tracking the gaze. Accuracy is defined as the average difference between the real stimuli posi-

tion and the measured gaze position. In other words, accuracy refers to how well the calculated 

fixation location matches actual fixation location (“Specification of Gaze Precision and Gaze 

Accuracy,” 2016). This is measured in degrees of visual angle (a half circle has 180º of visual 

angle). Accuracy of the eye tracker is dependent on different factors such as illumination, gaze 

angle, and the distance of eyes to the screen. The average accuracy of the Tobii X-300 system 

when using a white stimuli background, and with average distance of 65cm to 75 cm to the 

screen, and with gaze angels of maximum 30º, is between 0.4 to 0.6º of visual angle 

(“Specification of Gaze Precision and Gaze Accuracy,” 2016). When looking at a 17-20-inch 

computer monitor at a normal viewing distance, the width of the monitor covers 20-30º of 

visual angle. The degree of accuracy needed depends on the research goals. In a reading eye 

tracking study, if the goal is to measure which character on a line is fixated, then character 

position accuracy is needed. If the goal is to measure which word on a line is fixated, then word 

position accuracy is needed (Campbell & Bovee, J. C, 2014). 

Precision 

Precision is defined as the ability of the eye tracker to reliably reproduce the same gaze point 

measurement (“Specification of Gaze Precision and Gaze Accuracy,” 2016). Precision is cal-

culated as root mean-square (RMS) of successive samples (“Specification of Gaze Precision 

and Gaze Accuracy,” 2016). Precision is dependent on distance from the eye tracker. For ex-

ample, for a distance of 65 cm from the screen the precision of Tobii X300 device is about 0.07 

degrees of visual angel according to (“Specification of Gaze Precision and Gaze Accuracy,” 

2016). 
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Figure 2.2 shows how accuracy and precision play important role in measuring the gaze loca-

tion on the stimuli. The required level of accuracy and precision depends on the nature of the 

eye tracking study. Small uncertainties, for instance, can be critical when analyzing gaze data 

in reading studies or studies with a small stimulus.  During data collection, accuracy and pre-

cision are used as indicators of the eye tracker data validity. A system with stronger accuracy 

and precision will provide more valid data as it is able to correctly describe the location of a 

person’s gaze on a screen. 

 

Figure 2. 2 Accuracy and Precision in Measuring Gaze Location on the Stimuli (“Eye tracker 
accuracy and precision,” n.d.) 

 

As mentioned earlier, the main objective of this dissertation is to develop machine learning 

models that can automatically predict user’s level of cognitive load as well as user’s age char-

acteristics, using eye movements of user completing a cognitive task. In the next section I will 

provide an overview of cognitive load theory and different methods used to measure cognitive 

load. Further, I will explain the relationship between cognitive load measurement and different 

types of eye movements used in previous research.  
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2.2 Cognitive Load in Information Systems and HCI Re-

search 

Cognitive load (also referred to as mental effort) is defined as the relationship between the 

cognitive demands placed on a user due to a cognitive task and the user’s limited cognitive 

resources (Wickens, 2002). The higher the cognitive load, the higher the chance is that the user 

will not complete a given task. High cognitive load affect how users make decisions and hence 

negatively influence user’s judgment and performance.  Thus, measuring a user’s cognitive 

effort has been an important problem in Information Systems-Human Computer Interactions 

(IS-HCI) research from past to present (Buettner et al., 2015; Buettner, 2014; Riedl et al., 2010; 

Stassen et al., 1990). IS Scholars have traditionally investigated a user’s cognitive effort based 

on the user’s performance and subjective measurements (Ayyagari et al., 2011; Gupta et al., 

2013; Ragu-Nathan et al., 2008; Tarafdar et al., 2010), however, such measures are intrusive 

or require a lot of equipment and expertise. Researchers in the field of NeuroIS have proposed 

determining a user’s mental effort based on objective psychological measurements such as Eye 

Tracking, Skin Conductance Response (SCR) and Functional Magnetic Resonance Imaging 

(fMRI) (Dimoka, 2012; Riedl, 2010). In HCI, the complexity of the interface and the task com-

plexity can jointly affect the user’s attention or behavior due to different levels of cognitive 

load (Wang et al., 2014). Therefore, cognitive load associated with inessential complexity of 

the system needs to be minimized to improve user’s performance in fulfilling a cognitive task 

(Oviatt, 2006). Being aware of a user’s mental status is an important step in implementing a 

personalized user experience model. A successful user-centered design leverage from adapting 

to users’ behavior and preferences (Attar, 2016). 

The concept of cognitive load was introduced in Cognitive Load Theory (CLT) which was 

developed by John Sweller in the late 1980s (Sweller, 1988). Sweller identified three types of 

cognitive load: extraneous, intrinsic, and germane load. Intrinsic load is cognitive load that is 

inherent in the content or task to be learned, and is determined by the given complexity of the 

task. Extraneous load is cognitive load that has been introduced by the way information is 

presented, and could have been avoided by alternative presentation. An increase in extraneous 

cognitive load corresponds to an increase in additional information processing (Korbach et al., 
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2017). The better the format of information presented, the lower the amount of extraneous 

cognitive load  (Brunken et al., 2003; Paas et al.,  2003). Germane load is the amount of load 

dedicated to relevant information processing and mental model construction resulting in higher 

learning performance. An updated model of cognitive load theory (Choi et al., 2011) considers 

only two of the three components: intrinsic and extraneous load. The deletion of germane load 

was due to the close relationship between intrinsic and germane cognitive load. In this disser-

tation, I focus on detecting and predicting the extraneous cognitive load that is due to the task 

condition or the way information is presented to the user.  

2.2.1 How can cognitive load be measured?  

Measurement of cognitive load plays a crucial role in HCI research that focus on cognitive-

load, and in developing practical implications for efficient universal design  (Korbach et al., 

2017). According to past research, cognitive load can be measured using two different methods. 

One is objective measurement, and the other one is subjective measurement. 

Objective methods of cognitive-load measurement include the analysis of task performance 

and as well as the analysis of cognitive activity indicated by eye-tracking data (Brünken et al., 

2010; Dimoka, 2012). Each of these objective methods is essential due to the continuous nature 

of the measurement. Objective measurement of cognitive load allows producing more detailed 

and accurate data and facilitates measurement of cognitive load continuously during the cog-

nitive process. Subjective methods include ratings of perceived task difficulty, engagement or 

effort, which are completed by each participants (Korbach et al., 2017). Two examples are the 

subjective rating scale introduced by (Paas, 1992) and the NASA Task Load Index (NASA 

TLX) (Hart & Staveland, 1988), and SMEQ (Zijlstra & van Doorn, 1985).The advantage of 

subjective methods is that subjective rating scales are very easy to implement and can be used 

in different contexts. However, rating scales are criticized because of methodological problems 

concerning the criteria of objectivity, validity, and reliability (Brunken et al., 2003; Moreno, 

2006; Brünken et al., 2010; Clark & Clark, 2010). In particular, it is difficult to distinguish 

between different types of cognitive load with a universal subjective rating scale.  Another 

disadvantage is that subjective ratings are in general requested subsequent to the cognitive ac-
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tivities, which have to be evaluated by the subjects. Therefore, rating scales provide no contin-

uous information about the actual cognitive load during the cognitive process (Korbach et al., 

2017). 

To enhance the user experience of a web page, cognitive load imposed by the interface should 

be minimal to free sufficient cognitive resources to process the contents of the website (Sweller, 

2011). In other words, interfaces need to be designed in a way that they reduce the demand on 

user’s cognitive capacity (Albers, 2011; Czaja & Lee, 2007). 

Therefore, to enhance the user experience, it can be argued that there is a need for accurate, 

automatic and objective measurement of cognitive load. This measurement should not rely 

solely on the user’s subjective rating of mental effort. Hence, one major focus of this study is 

on the automatic measurement of cognitive load when completing a task using eye movement 

data such as fixation, saccade, and pupil dilation. These eye movements are known in the lit-

erature to be the proxy for measuring cognitive load. 

2.2.2 Cognitive load and eye movements 

Eye-tracking is a powerful means of investigating cognitive load during information processing 

by offering a spatio-temporal record of visual attention (Hill et al., 2011). Eye movement anal-

ysis facilitates measures of allocation of attention and cognitive activities spent to process in-

formation (Korbach et al., 2017). According to several studies, there is a strong correlation 

between eye-movements and cognitive load ( Just & Carpenter, 1976; Rayner, 1998; Holmqvist 

et al., 2011; Rosch & Vogel-Walcutt, 2013). Four major eye-movement data that are broadly 

used in the eye tracking literature that studied cognitive load are pupil dilation, fixation, sac-

cade and blink. A brief review of each of these metrics and how they are used as measurement 

of cognitive load is given in the following. All of these eye movement metrics are readily ob-

tained through typical eye-tracking technology. 

Fixation 

Fixation refers to a collection of relatively stable gaze points that are near in both spatial and 

temporal proximity. During fixation, the eyes hold steady on an object, and thus fixation re-

flects attention to a stimulus (Holmqvist et al., 2011; Poole & Ball, 2005). A number of studies 



	
	

15	

have associated fixation related metrics to cognitive effort. For example, the number of fixa-

tions within an area of interest (AOI) has been used to compare cognitive effort of millennials 

and baby boomers when viewing a web page (Djamasbi et al., 2011).  How frequently people 

fixate on an object has also been used to assess cognitive effort in business to consumer (B2C) 

transactional processes, when an option must be selected prior to continuing with the transac-

tion (Hogan et al., 2015). Additionally, the number of fixations has been shown to strongly 

correlate positively with task performance (Van Orden etal., 2001). Because task performance 

is also correlated with effort spending (Payne etal., 1993), this result suggests a link between 

fixation frequency and cognitive effort. 

Similarly, fixation duration, or the amount of time a user looks at stimuli, can be used to meas-

ure effort. To attend to a stimulus or an object, the user has to expend effort to keep his/her 

gaze steady on the object (Djamasbi, 2014). Moreover, studies provide evidence that fixation 

duration increases as information processing becomes more effortful (Van Orden et al., 2001; 

He & McCarley, 2010; Meghanathan et al., 2014).  

Saccade 

Saccades refer to small, rapid eye movements when jumping from fixating on one object to 

another (Goldberg & Kotval, 1999). While visual information is not processed during saccadic 

eye movements, they still can provide information about viewing behavior (Holmqvist et al., 

2011; Jacob & Karn, 2003). For example, people tend to exhibit more saccadic eye movements 

when reading long words (De Luca et al., 2002). Similarly, saccade amplitude, or the path 

traveled by a saccade between two consecutive fixations, tends to increase when reading longer 

words (De Luca et al., 2002). When interacting with an online resource, longer saccadic am-

plitudes can reflect whether users have become familiar with an interface. 

Having a better internal representation of an interface allows users to move their eyes directly 

to a desired location on the screen, hence producing longer saccadic amplitudes (Goldberg & 

Kotval, 1999). Consistent with this point of view, difficulty in locating information when 

browsing a webpage is likely to impact the duration of saccades. According to the theory of 

visual hierarchy (Faraday, 2000), a stimulus is inspected by scanning it through a sequence of 

visual entry points. Each entry point acts like an anchor, which allows the user to scan for 
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information around it. According to this perspective, longer duration of saccadic eye move-

ments could indicate increased cognitive effort in finding a suitable entry point into a visual 

display (Djamasbi, 2014). 

Blink 

Blinks are the involuntary act of shutting and opening the eyelids. They are known to reflect 

changes in attention and thus they are likely to reflect an individual’s cognitive effort (Poole & 

Ball, 2005; Van Orden et al., 2001). In particular, fewer blinks have been associated with in-

creased attention (Ledger, 2013). For example, a study shows that surgeons had a lower number 

of blinks when performing surgery as compared to when they were engaged in casual conver-

sations (Wong et al., 2002).  

In addition to the number of blinks, the duration of blinks can also indicate cognitive effort. 

For example, shorter blink durations were associated with increased visual workload during a 

traffic simulation task (Ahlstrom & Friedman-Berg, 2006). Similarly, comparing blink data 

during a hard (math problem solving) and easy task (listening to relaxing music), people ex-

hibited shorter blink durations during the hard task (Andrzejewska & Stolińska, 2016). Because 

of its observed association with cognitive effort, blink duration has been used to assess mental 

effort in educational games (Ikehara et al., 2013).  

The above studies suggest that people often exhibit fewer or shorter blinks during more chal-

lenging tasks because they want to minimize missing visual information. After all, when the 

eyes are closed during a blink, there is no incoming visual information to process. 

Pupillometry 

The use of pupil size as an indicator of cognitive processes dates back to the 1800s, and since 

the 1960s, there have been many studies into the behavior of the pupil in cognitive psychology. 

Changes in pupil size, which are controlled by the involuntary nervous system, can serve as a 

reliable proxy of cognitive load or mental effort (Laeng, et al., 2012). Many pupillometric stud-

ies have suggested that there is a link between pupil size and cognitive load. For example, when 

people are asked to memorize numbers, retain them in memory, or perform multiplication, the 

size of their pupil seems to correlate with the difficulty of the task  (Hess & Polt, 1964; 

Kahneman & Beatty, 1966; Schultheis & Jameson, 2004; Iqbal et al., 2005; Bailey & Iqbal, 

2008; Piquado, Isaacowitz, & Wingfield, 2010). Iqbal et al. (2004) and Bailey and Iqbal (2008)  
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presented a framework for detecting task boundaries based on pupil dilations as a measure of 

cognitive load. In all of these studies, pupil size was shown to be a reliable indicator of task 

difficulty.  

There has also been a great research interest in understanding the cognitive load in a visual 

search task and its relationship with pupillary responses. Porter et al.  (2007) used pupillometry 

to study cognitive load during visual search. Based on their findings, when individuals perform 

a visual task, pupil size appears to be a function of the cognitive effort and attention required. 

Klinger (2010) found a link between mental effort and pupillary responses during map reading 

and searching tasks. According to his findings, looking up for a given locality caused signifi-

cant differences in pupil size compared to legend reading.  

Similar to pupil dilation, variation in pupil dilation can also carry information about cognitive 

load (Buettner et al., 2015; Shojaeizadeh et al., 2015; Fehrenbacher & Djamasbi, 2017) . For 

example, the level of difficulty measured as number of steps required to complete a task has 

been shown to impact pupil dilation variation (Buettner et al., 2015). Increased cognitive load 

measured as implicit and explicit time limit also has a significant impact on pupil dilation var-

iation. It is argued that pupil dilation variation is particularly effective in detecting the impact 

of complex decision tasks on users because these tasks often involve a number of smaller sub-

tasks. These subtasks are likely to require different types of mental activity with varying levels 

of difficulty. Consequently, complex decision tasks may result in variability in pupil size over 

the course of the task (Buettner et al., 2015). Another explanation for the suitability of pupil 

dilation variation in measuring cognitive load is rooted in the Adaptive Decision Making theory 

which asserts people often switch their information processing strategies to conserve their lim-

ited cognitive resources. 

This flexibility in adjusting to the decision environment, which involves balancing one’s cog-

nitive load, is likely to be detected by the variation in pupil dilation (Fehrenbacher & Djamasbi, 

2017; Shojaeizadeh et al., 2017). Table 2.1 provides the list of the eye movement behaviors, 

their respective parameters and some of the supporting studies, as discussed in the above sec-

tions. 

 



	 18	

Table 2. 1 Eye Movement Behaviors and Parameters for Measuring Cognitive Effort 

 

2.3 Eye Movements Characteristics in Reading  

This section surveys the literature for eye movements that are relevant to information pro-

cessing during reading.  

Eye movements have been broadly used by pioneers in the reading psychology literature who 

have used eye tracking to understand the link between eye movements and reading behavior 

(Rayner, 1998; Ashby etal., 2005; Rayner 2009; Rayner K. & Pollatsek A., 2012; Campbell & 

Behaviour Parameter  

Fixation: Relatively 
stable gaze points 
close in proximity and 
time 

Fixation count 
(Djamasbi et al., 2011; Hogan 
et al. 2015; Van Orden et al., 
2001) 

Fixation duration  

(Djamasbi, 2014; He & 
McCarley, 2010; Just & Car-
penter, 1980; Meghanathan et 
al., 2014; Van Orden et al., 
2001) 

Saccade: 
Rapid eye movements 
between fixations  

Saccade count (De Luca et al., 2002) 

Saccade duration  (Djamasbi, 2014) 

Saccade amplitude (the dis-
tance travelled between two 
adjacent fixations)  

(De Luca et al., 2002; Gold-
berg et al., 2002) 

Blink: 
Involuntary act of shut-
ting and opening the 
eyelids 

Blink count  
(Ledger, 2013; Poole & Ball, 
2005; Van Orden et al., 2001; 
Wong et al., 2002) 

Blink duration 
(Ahlstrom & Friedman-Berg, 
2006; Ikehara et al., 2013; An-
drzejewska & Stolińska, 2016) 

Pupillary Response: 
Changes in pupil dila-
tion 

Pupil dilation (size of pupil di-
ameter)  

(Beatty, 1982; Kahneman & 
Beatty, 1966; Piquado et al., 
2010; Chen et al., 2011) 

Pupil dilation variation (deriv-
ative of pupil diameter or rate 
of change in pupil size)  

(Buettner et al., 2015; Fehren-
bacher & Djamasbi, 2017; 
Shojaeizadeh et al., 2015; Sho-
jaeizadeh et al., 2017)) 
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Bovee, 2014;)  This is because movements of the eyes are a natural part of reading, and hence 

studying eye movements provides important information into the user’s covert cognitive pro-

cesses during reading. According to Rayner (1998) eye movements can be used to understand 

the ongoing cognitive processes that occur during reading. Further, Rayner et al. (2006) indi-

cated that eye movements can be used to reflect text difficulty in reading. Eye movements have 

been also used to understand whether or not and how textual information is processed (Iqbal et 

al., 2004; Salojärvi et al., 2005). For example, Gustavsson (2010) and Campbell et al. (2014) 

used eye movements to detect whether a person was reading a text or not. Similarly, eye move-

ments were used to detect whether users read or skim textual information (Buscher et al., 2008).  

During reading, we naturally make sequences of fixations and saccades. Fixations and saccades 

can vary in duration and frequency, which is the result of how the information are being pro-

cessed in our brain. For example, during reading, re-fixating on a word or fixating for a longer 

time on that word could indicate that the reader is uncertain about the semantics of the current 

sentence and needs to return to a previously read word to comprehend the sentence. During 

these saccades and fixations, the pupil dilates and contracts as a physiological response. Emo-

tional and cognitive events along with other factors from the environment such as brightness 

can cause the pupil to constrict or expand. Accurate assessment of these meaningful signals is 

crucial for research in HCI as an indicator of cognitive load (Attar, 2016). 

When reading, fixation duration is around 200-300 milliseconds, with a range of 100-500 mil-

liseconds and saccades range in duration between 10-20 msec for short between word saccades, 

and between 60-80 msec for longer saccades from end of one line to the beginning of another 

line (Rayner, 1998).  

The majority of saccades during reading English are made from left to right, however, in skilled 

readers, about 10-15% of the saccades are regressive, they are backward saccades to the previ-

ously read words or lines (Rayner, 1998). In general, saccades during reading are divided into 

two categories: 1) Progressive saccades in the direction of reading text, 2) Regressive saccades, 

or backward saccade, to the opposite direction of reading (Rayner, 1998). Short within-word 

regressions can be due to problems in processing the currently fixated word. Longer regressions 

(more than 10 letter spaces back along the line or to another line) are because of the difficulties 

in comprehension, or may be because the text is particularly difficult and the reader cannot 
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understand the text (Rayner, 1998). Regression depends on the difficulty of the text. As the 

texts become more difficult, saccade size decreases, fixation duration increases, and regression 

increases. 

According to previous research, eye movements provide several important advantages as a 

measure of reading behavior. First, observing eye movements provides the ability to examine 

text processing demands at a global level (across an entire text), the sentence level (individual 

sentences), or the local level (individual words or phrases) (Campbell & Bovee, 2014). 

This is because for example, changes in global difficulty lead to changes in several measures 

of eye movements, such as total reading time, number of forward fixations, and the number of 

regressions. Changes in local level difficulty also affects several measures, such as reading 

times for individual words, the probability of fixating words, and likelihood of making regres-

sions to specific words (Campbell & Bovee, 2014). It is important to note that while eye move-

ment analyses during reading provide such details, overall reading times or sentence-by-sen-

tence reading times do not provide such detailed measures of reading behavior.  

A second advantage of using eye movement in assessing reading performance and behavior, is 

that eye movements are a natural part of reading (Campbell & Bovee, 2014); therefore, no 

additional task demands are placed on a reader. Furthermore, eye tracking provides different 

types of eye movements (e.g., fixation duration, saccade amplitude, and regression count), and 

hence facilitates processing various elements of reading process. Eye movements also reflect 

individual differences in readers, since they vary according to reader’s ability (Ashby et al., 

2005), prior knowledge about a topic (Kaakinen, Hyönä, & Keenan, 2003), and age of the 

reader (Rayner et al., 2006). Due to the above mentioned characteristics, eye movement serves 

as an ideal assessment of reading behavior (Campbell & Bovee, 2014).   

One way to summarize the eye movements is to present averages of various eye movement 

metrics over a large segment of text such as a passage, a paragraph, or a set of sentences. These 

measures, such as the mean fixation duration, the mean duration of forward and backward sac-

cades, have been shown to globally reflect the difficulty of the reading process. For example, 

reading a more difficult passage results in longer mean fixation durations, shorter average for-

ward saccade duration, and more regressions (Rayner & Pollatsek, 2012). 
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A number of researchers have used eye tracking to examine the differences between the two 

most populated age groups in the US, meaning Baby Boomers and Generation Y, during an 

online web experience. Detecting user’s age characteristics is an important component of this 

dissertation. To personalize the user experience for each age group, one needs to know the 

differences between the two groups in online web experience. 

2.4 Personalization and Age: Differences between Older 

Adults and Generation Y in Online User Experience 

In this section the differences between older adults specifically Baby Boomers and Genera-

tion Y in online reading and web experience is explained, based on the literature. 

Baby Boomers, born between 1946 and 1964 (age in 2018, 54 to 72) are the second largest 

generation in the U.S. With 74.9 million people in 2015, they make up 26 percent of the total 

U.S. population (“Baby Boomers and Credit generational,” n.d.). People 65+ represented 

14.5% of the population in the year 2014; they are expected to grow to be 21.7% of the popu-

lation by 2040. The internet provides a number of benefits for older adults. It is used as a means 

of communication via E-mail, chat rooms, discussion groups, and direct messaging. The Inter-

net also contains a wealth of medical information that can be particularly useful for older adults 

when health becomes a greater issue and concern.  

Generation Y (born in 1980s and 1990s) are the largest population in US with 82 million re-

ported in 2015. Generation Y are an economically powerful generation, spending $200 billion 

annually (Djamasbi et al., 2010). Gen Y are known as incredibly sophisticated, digitally and 

technologically, as they have been exposed and grew up with technology since their early child-

hood (Djamasbi et al., 2010). Therefore, to better accommodate Generation Y user experience, 

corporations need to understand their needs and preferences and adapt to them accordingly, to 

stay competitive in the marketplace.  

In the following section I provide an overview of the literature that examined the older adult 

(e.g., Baby Boomers) web experience. Then I discuss the differences in online web experience 
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of these two generations, and will further discuss the importance of considering age as an im-

portant construct in implementing a personalized UX model.  The majority of these studies 

have used eye tracking technology as an effective tool for examining the older or younger 

adult’s web experience. 

2.4.1 Older Adult Web Experience 

Prior research demonstrate that older adults are slower in cognitive processing than younger 

people  (Fisk et al., 2012) and hence may expend more cognitive effort when processing online 

information. Slowdowns of cognitive processing in older adults can be explained by the cog-

nitive theory of aging, which elucidates the age related differences between older and younger 

adults (Kemtes & Kemper, 1997; Salthouse, 1996). According to this theory, declines in per-

formance of older adults in accomplishing a cognitive task (e.g., in reading) is due to general 

functioning or specific difficulties in older adults, which results in predictable age related dif-

ferences between older and younger adults (Kemtes & Kemper, 1997; Salthouse, 1996). 

In addition to cognitive processing, aging can result in progressive decline in visual, auditory, 

and motor skills, which significantly influence the web experience of older people, and hence 

results in the differences between older adult web experiences as compared to generation Y 

(Chadwick-Dias et al., 2004; Czaja & Lee, 2007; Money, et al., 2010). For example, cognitive 

declines due to aging results in longer processing and response times for older adults as com-

pared to their younger counterparts (Arch et al., 2009; Czaja & Lee, 2007; Priest et al., 2007). 

In addition, researchers who have investigated the older adult web usability have reported that 

even though older adults use the internet often, they experience difficulty when using it 

(Chadwick-Dias et al., 2003; Boechler et al., 2006; Brandtzæg, Lüders, & Skjetne, 2010; 

Hertzum & Hornbæk, 2010; Romano Bergstrom et al., 2013). Further, according to the findings 

of (Chadwick-Dias et al., 2003), Baby Boomers often have different usability issues as com-

pared to young adults, and this is due to numerous reasons such as social, cognitive, psycho-

logical, and physical factors as well as overall differences in life experience.  
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2.4.2 Eye Tracking and Older Adult Web Experience 

Older adults are likely to have more problems than younger ones with conventional usability 

methods (Fisk et al., 2012). Therefore, an especially valuable benefit of eye-tracking is its ap-

plication with older adults, and hence, a lot of researchers have used eye tracking as a means 

of investigating older adult’s web experience and usability.  

Psychological eye-tracking literature has reported that older adults show age-related slowing 

which reflects in their eye movements. For example, Abel & Douglas (2007) demonstrated that 

older adults, as compared to younger adults, are slower to react to stimuli and their performance 

is more variable, while Kemper et al. (2004) and Kliegl et al. (2004) demonstrated that older 

adults read more slowly and make more fixations and regressions than younger readers.  

Rayner et al., (2006) examined the eye movement characteristics of older people. They asked 

young and old adults to read sentences containing target words that varied either in frequency 

(low-frequency vs. high-frequency target words) or in predictability (low-predictable, medium-

predictable, or high predictable target words) to determine whether frequency and predictabil-

ity interact with age when these target words are read.  They learned that older adults make 

more and longer fixations (a mean of 260 ms compared to 246 ms for younger readers) and 

more regressions. Overall, these studies suggest that older adults are performing at a reasonable 

level and they are successful in reading but it seems that they make more effort in reading as 

demonstrated by longer fixation durations (Hill et al., 2011). Nevertheless, Kliegl et al., (2004) 

showed that the differences between older and younger adults in reading do not necessarily 

have a significant impact on reading performance (at least where reading is “easy”). 

Despite the advantages that eye-tracking offers for research with older adults, the field is cur-

rently small and has potential for improvement. First, only a small number of web usability 

studies have been carried out with older adults. There is scope for further and more detailed 

research in this area. Some of the studies show results in the form of heatmaps, rather than 

giving detailed spatio-temporal eye-movement metrics such as fixation or saccade. In addition, 

the eye trackers used in most of the studies had relatively low sample rates, ranging from 30 

Hz (Fukuda & Bubb, 2003) to 60 Hz (Josephson & Holmes, 2004). There is also less reports 

on higher order cognitive tasks such as reading textual information, which is an important part 
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of web experience. Despite the small number of reports, outcomes have been relatively con-

sistent. Researchers conclude that older adults are slower and hence experience lower usability. 

2.4.3 A Comparison between Older and Younger Adults in Online Web Experi-

ence  

One of the early study involves an eye-tracking examination of railway timetables (Fukuda & 

Bubb, 2003), with younger (mean: 22.5) and older users (mean: 67). They concluded that older 

people made longer fixations due to visual difficulties reading small text (point 10). It also took 

older people a longer time to complete tasks as compared to younger people. A similar finding 

emerged from two studies looking at expert older users working at an investment company, 

Fidelity. In their first study, they examined the behavior of expert older adults (50-69), who 

worked in the office and used the web daily, compared to younger colleagues (20-39) (Tullis, 

2007). The results showed that older adults spent on average 42% more time looking at the 

content of the pages than did the younger adults. They also spent 51% more time looking at the 

navigation areas as compared to the younger adults. Their results also suggest that older par-

ticipants distributed their gaze more widely across the pages and read more of the text than 

younger users did. In another study, conducted at Fidelity, researchers examined preferences 

for web page presentation, and reported that older adults aged 44-62 tended to fixate for longer 

on large images and search bars as compared to their younger counterparts (Capozzo et al., 

2008). In another study, Zaphiris & Savtich, (2008) compared older (58-87) and younger (19-

27) web users browsing health information sites of varying depth of hierarchy, and concluded 

that older adults looked at more of the page and spent longer considering which link to choose. 

The researchers found no significant difference in reading speeds, suggesting that older adults 

were not simply slower than younger ones.  

Chadwick-Dias et al. (2003), conducted two usability studies to investigate the differences be-

tween older and younger adults in completing a task using a prototype employee/retiree bene-

fits page on Fidelity’s website. In their first study they examined whether there were differences 

in how older adults interact with the web and whether changes in text size would affect perfor-

mance. Users completed tasks on the website using various text sizes. They learned that older 

users (55 years or older, mean=69.2) had significantly more difficulty using the web than 
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younger users (55 and younger, mean=35.9), but that did not significantly affect performance 

in any age group. In their second study new participants performed the same tasks on a version 

of the site that was redesigned to address the usability problems encountered by older users in 

the first study, with the purpose of improving the performance of older adults. The results were 

that performance improved significantly for both older and younger users. They also observed 

that older users tended to read more text and often read all the text on a screen. Additionally, 

they found that older adults were particularly cautious and not confident about clicking on links 

that were nouns, like Accounts. When they changed those links to actions, like Go to Accounts, 

both older and younger users were faster and more confident. Coyne et al. (2002) found that 

their older adult participants distribute their gaze more widely across the pages and read more 

than younger adults in their studies. They also concluded that older adults were more likely to 

read messages, prompts, and pop-ups than younger study participants. 

In a more recent study, Djamasbi et al. (2011) examined the differences between old and young 

adults in reactions to a set of homepages through a laboratory experiment. Users’ reactions 

were captured using self-report measures and eye tracking. Their results showed that both gen-

erations reported similar visual preferences, and both generations preferred pages that had im-

ages and little text. However, the two generations also displayed differing online viewing be-

havior and preferences. For instance, eye tracking data revealed that Baby Boomers had sig-

nificantly more fixations and that their fixations covered more of the pages than younger gen-

eration. In addition, Baby Boomers reported a significantly higher tolerance for having more 

web components on a page (Djamasbi et al., 2011).  

Loos & Romano Bergstrom, (2011), examined the differences between older and younger users 

in information search behavior. Researchers asked the participants to complete a search task 

related to health information on three different websites. Researchers then investigated whether 

age or other factors such as gender, educational background and frequency of internet use have 

the biggest impact on navigation patterns, the use of the search box, effectiveness, and effi-

ciency and user satisfaction. According to their findings, older users were less likely to make 

use of the search box than younger users. In addition, younger users were more successful in 

accomplishing the search task and were much faster than their older counterparts in completing 

the task. Although there are some differences between older and younger users in fulfilling an 
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information search task, the greatest factor affecting information search behavior is not always 

age. For example, when comparing the navigation patterns of older people using internet daily 

with those of younger age group no significant differences were observed between the two 

groups. 

Doube and Beh (2012) studied factors influencing the interaction of cognitive processing with 

visual and motor skills during website use by older adults. Twenty-eight older adults and 18 

younger adults completed an on-line air-ticketing search task. Their results showed that com-

pared with the younger group, older adults took significantly longer and made significantly 

more errors. Although age was a major contributing factor resulting in longer task times of 

older adults, less experience and less regular practice were also contributing factors. In addi-

tion, the larger number of search errors made by older adults was also correlated with age. 

Furthermore, although errors in search results were correlated with age alone, greater experi-

ence with website use could free cognitive resources for problem-solving and possibly would 

improve task performance. 

It is worth restating that aging slows down the cognitive processing which results in different 

viewing and reading behavior between old and young adults.  Older users read almost all the 

text that appears on a screen (Chadwick-Dias et al., 2003), are more patient in reading and 

spend more effort when reading passages (Fukuda & Bubb, 2003), while younger users dislike 

reading and show less patient reading behavior (Djamasbi et al., 2011).  

Research suggests that Generation Y and Baby Boomers differ in their sense of immediacy and 

patience. This difference is attributed to the two generations’ differing experiences during mat-

uration; in particular, Baby Boomers were not exposed to the rate of change and advancement 

that the Internet provided Generation Y (Locher, 2009). From a technological perspective, 

Generation Y has matured in a fast-paced world that facilitated instantaneous response and 

encouraged multitasking (Felthousen, 2008). Because Generation Y has grown up in such an 

environment, this generation tends to have a shorter attention span and tends to be less patient 

than Baby Boomers, who, as they were growing up, did not have access to the technologies 

that were available to the younger generation. 

Hence, it can be argued that there is a noticeable distinction between older and younger user’s 

behavior while interacting with user interfaces. This suggests that there is a need in the user 
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experience research to take into account the differences in reading behavior of the users via a 

user personalization model. User personalization has been an interest of recent research in the 

field. I know discuss instances of the more distinguished studies and user personalization ap-

proaches in the following section. 

Fisk et al. (2012) show that presenting simple contents that are in plain language is extremely 

important especially when it comes to older adults, since they have difficulty drawing infer-

ences from complex text. Turns and Wagner (2004) suggest limiting the reading level to the 

lowest possible level, such as eighth grade, or testing audience literacy of the domain to ensure 

that the content is written to the appropriate degree of simplicity. Other researchers ask content 

developers and information designers to present technical information in a non-technical way 

that is easy to read and understand (Coyne, 2002; Craik & Salthouse, 2000). Theofanos and 

Redish (2003) recommend implementing short, clear, straightforward sentences. This supports 

ease of skimming but also supports information retention and reduces memory load.  Cognitive 

researchers e.g., Fisk et al. (2012) have found that older adults can be more easily distracted by 

extraneous information and that as people get older they have more and more difficulty making 

inferences. Therefore, they suggest that information should be organized in ways that show 

how the pieces are related.  

Chadwick et al., (2003) found that older people are more cautious about clicking links and are 

more likely to click links that explicitly tell them what will happen when they click. They also 

observed that older users do not readily recognize links, even when they are blue and under-

lined. They also found that older users may not be familiar with terms like URL, Home, or 

Back. Based on these findings, they provided some design suggestions to help to improve the 

user experience, especially for older people. They suggest using action word links, making link 

style and color consistent and obvious throughout the site, using scalable fonts and options to 

increase text size, provide options for increasing the size of text on the site, and keeping the 

language simple. 

Grahame et al. (2004) compared the abilities of older and younger adults in performing a visual 

search task on a Web page. The task involved determining the presence of a blue, underlined 

hyperlink, the most common means of indicating potential targets in sequential Web search 
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and general browsing. They manipulated link size, location, number of distracting links, the 

amount of clutter, and presence of the target hyperlink. The results of their eye tracking exper-

iment produced several suggestions for improving the user experience of web search for older 

adults. For example, they suggest that hyperlinks should be salient and in locations expected 

by the common user to facilitate improved search. Specifically they suggest increasing relative 

size, changing used and unused link colors so that they contrast with the background, grouping 

links, and using common standards (such as underlined text to mark a hyperlink) for assisting 

people in finding and recognizing the information. Additionally, decreasing clutter and the 

number of links will improve a person’s ability to sort through a web site, and this is especially 

true if that person is an older adult.  

Important online information is often conveyed via text-based communication.  Thus, examin-

ing the reading behavior of older users and comparing it to those of younger users allow de-

signers to better meet the need of both user groups.  To personalize the UX by age and cognitive 

load first we need to learn about the user’s age group and whether or not they experience cog-

nitive load, unobtrusively, via a machine learning eye tracking model. In the next section I 

present a survey on the applications of machine learning in eye tracking research.  

2.5 Application of Machine Learning in Eye Tracking Re-

search 

Machine learning (ML) and classification approaches have previously been used in eye-track-

ing research to automatically analyze eye-movement data. The objective is to find some com-

putational structure that describes a link between the low-level raw data and high-level behav-

ioral units. Machine learning focuses on developing models that can automatically learn from 

data. Because machine learning models learn to perform tasks by generalizing from examples, 

they are often more cost effective than manual programming (Domingos, 2012). The goal of 

machine learning is to develop a system that can learn from a given set of data, so as to make 

predictions about a yet unseen set of data. One of the most mature and widely used types of 

machine learning is classification. Herein our focus is on supervised classification to predict 

categorical responses.  
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This section provides a review of relevant eye tracking studies that use machine learning to 

predict a variety of different behaviors such as information retrieval, performance, intention, 

distraction, reading and domain expertise. The findings of these studies, which show the effec-

tiveness of combining eye tracking data with machine learning approach, provide support for 

developing an eye tracking, machine learning system for predicting user’s characteristics and 

information processing behavior.  

Given the ability of classification to generalize from examples, it has been used in a number of 

eye tracking studies to predict behavior. A supervised learning approach was applied to a set 

of eye movement metrics (fixation count, total fixation duration, mean fixation duration, and 

regression duration) to predict information retrieval behavior on mock search results pages 

(Salojärvi et al., 2003). A similar approach was applied in the area of Content-Based Image 

Retrieval (CBIR) to predict from the eye movement data (total and average length of fixations 

and fixation count) whether the retrieved images were relevant to the search terms used (Klami 

et al., 2008). Machine learning was also used to predict from eye movement data (fixation 

count, mean and standard deviation of fixation duration, mean and standard deviation of sac-

cade length and saccade direction) whether a user is searching for a word, an answer to a ques-

tion, or looking up the most interesting title in a given list (Simola et al., 2008). They achieved 

about 60% prediction accuracy when inferring in which of three states a user can be during 

information search tasks. 

Using eye movement data (fixation duration, path distance or saccade amplitude, fixation 

count, fixation rate), a classification approach was also used to predict how well people would 

solve a puzzle (Eivazi & Bednarik, 2011). They applied a Support Vector Machine (SVM) 

based approach for learning and classifying cognitive states during problem-solving, and 

achieved an accuracy of approximately 53% on the classification problem. In addition to pre-

dicting task performance, classification has been used to predict user intention from their eye 

movement data (saccade length, saccade duration, saccade velocity, and saccade acceleration). 

The authors developed a classification system to predict whether study participants intended to 

give a command to a gaze-based interface (Bednarik et al., 2012). Another study used machine 

learning classification from eye movement data of people collaborating on building concept 

maps (gaze count and gaze duration) to distinguish expert participants from novice participants 
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(Liu et al., 2009). Other instances of a machine learning approach for eye-tracking data analysis 

have been reported by (Bednarik et al., 2005) and (Kinnunen et al., 2010). The authors have 

applied a state-of-the-art biometric person authentication system based on traditional signal 

processing methods. Using eye movement velocity and pupil size, or a histogram of the veloc-

ity and gaze direction, the authors achieved identification rates of 60% or equal error rates of 

29%, respectively.  Table 2.2 summarizes the above and more applications where machine 

learning along with eye-tracking technology was used.    
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Table 2.2 List of Machine Learning and Eye-tracking Research Studies in the Literature 

 

Reference Application 
# of Par-
ticipants 

or data set 

Eye-movement 
Features 

Machine Learning 
Method(s) 

Perfor-
mance 

Salojarvi et 
al. (2003)  

 

Predicting information retrieval 
behavior on mock search re-

sults pages 
60 

Fixation count, total 
fixation duration, mean 
fixation duration, and 
regression duration 

Linear Discriminative 
Analysis (LDA) 80.5% 

Marshal,  
(2007)  

Classifying users who perform 
an arithmetic problem-solving 
task vs. a doing-nothing task. 

NA Pupil size and point-of-
gaze Neural Network 70% 

Klami et al., 
(2008) 

  

Inferring the relevance of im-
ages based on eye movement 

data 
(predicting from the eye move-
ment data whether the retrieved 

images were relevant to the 
search terms used)  

27 
Total and average dura-

tion of fixations and 
fixation count 

LDA 
 91.2% 
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Simola et al., 
(2008)  

Predicting whether a user is 
searching for a word, an answer 
to a question, or looking up the 
most interesting title in a given 

list. 

10 

Fixation count, mean 
and standard deviation 

of fixation duration, 
mean and standard de-
viation of saccade am-
plitude and saccade di-

rection 

Discriminative hidden 
Markov model 

 
60.2% 

Liu et al., 
(2009)  

Classifying expert participants 
from novice participants on 

building concept 
64 Fixation count and fix-

ation duration 
Profile hidden-Markov 

model 96% 

Richstone  et 
al., (2010)  

Classifying surgeons into ex-
pert and non-expert cohorts 

based on their eye-data gath-
ered during simulated and live 

surgical environments. 

22 
highly un-
balanced 
sample 

Pupil dilation 
Linear discriminate anal-
ysis and nonlinear neural 

network 

Around 
90% 

Eivazi et al., 
(2011)  

Predicted how well people 
would solve a puzzle 14 

Fixation duration, Sac-
cade amplitude, Fixa-
tion count, Fixation 

rate 

Support Vector Machine 53% 
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Bednarik et 
al., (2012)  

Task-independent prediction of 
interaction intents  (predicted 
whether study participants in-
tended to give a command to a 

gaze-based interface) 

12 

Saccade amplitude, 
saccade duration, sac-
cade velocity, and sac-

cade acceleration 

Support Vector Machine 76% 

Kardan & 
Conati (2012)  

Classifying students’ perfor-
mance in a problem-solving 
task using eye-movements 

50 

Fixation rate, number 
of fixations and fixa-
tion duration, saccade 

amplitude, relative sac-
cades direction and ab-
solute saccade direction 

Decision Tree based, 
Support Vector 

Machine, 
Linear Ridge Regres-

sion, Logistic Regression 
Neural Network 

71% 

Henderson et 
al., (2013)  

Participants were engaged in 
four tasks over 196 scenes and 
140 texts: scene search, scene 
memorization, reading, and 

pseudo reading. 

12 

Mean and standard de-
viation of fixation dura-
tion, mean and standard 

deviation of saccade 
amplitude, number of 

fixations per trial. 

Naive Bayes Over 80% 

Schneider et 
al., (2013)  

 

Predicting students’ learning 
scores using eye-movement 

data 
75 

52 features: 
(7 Fixations), (42 Sac-
cades). And (3 pupil 

size). 

Support Vector Machine 
Naïve Bayes 

Logistic Regression 
93% 

Borji et al., 
(2014)  

Subjects’ gaze patterns were 
recorded while performing one 
of a number of image-viewing 
tasks (like estimating the ages 
of people shown in the picture 

or their material circum-
stances). 

21 Fixation map and scan 
path Neural Network Around 

60% 
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Najar et al., 
(2014) [60] 

Classifying novices and ad-
vanced students when learning 

from examples 
22 

Fixation duration, total 
fixation duration, fixa-

tion count, 
visit duration 

 

Decision Tree Between 
61% to 89% 

Steichen et 
al., (2014) 

[61] 

Classifying: 
users attending different cogni-

tive tasks, tasks complexity, 
visual Working Memory, ver-
bal Working Memory, visuali-
zation type, perceptual speed 

35 

Fixation rate, Number 
of fixations, Fixation 

duration, Saccade am-
plitude, Relative sac-
cade angles, absolute 

saccade angles 

Decision Tree, 
Support Vector Machine, 

Neural Network 
Logistic Regression 

Between 55-
70% 

 

Krol & Krol 
(2017) [62] 

Classifying two strategic deci-
sion tasks that differ in terms of 
the information about the coun-
terpart’s behaviour that players 
are provided with and to choose 
her own strategy accordingly. 

92 Pupil dilation and gaze 
dispersion Neural Network 67% 
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2.6 Research Questions 

While previous research offers machine learning as a potential solution for detection of human 

cognitive and visual behavior from eye tracking data, little is known about an automatic user 

profiling using various features of the eye movements. In this research I attempt to fill the 

research gap in building an automatic and unobtrusive user profiling model which is based on 

cognitive load and age, two important factors affecting user’s experience according to the 

above literature review. I address the following research questions in building the user profiling 

model.   

RQ1: Can a machine learning model predict the cognitive load from the eye movement data of 

a user doing time-limited problem solving task? 

RQ2: Which eye movement features best describe the extraneous cognitive load due to a task 

condition during a problem solving task? 

RQ3: Can a machine learning model predict the age group of a user, in a reading comprehen-

sion task, via their eye movement?  

RQ4: Can a machine learning model predict the cognitive load of a user, in a reading compre-

hension task, via their eye movement?  

RQ5: Which eye movement features best describe the extraneous cognitive load due to task 

condition, and age group of the user during a reading comprehension task? 

To address RQ1 and RQ2 I designed study one (Chapter 3), where I developed machine learn-

ing model that can predict cognitive load level of a user doing a math problem solving task. 

Studies two and three are designed to address RQ3 to RQ5. In Chapter 4 I focus on assessing 

cognitive load from pupillary responses during reading. In Chapter 5, I assess user’s age char-

acteristic using eye movement data during reading. In Chapter 6, I develop a user profiling 

model based on user’s age group and the level of cognitive load. 



	 36	

 

3 Study One: Detecting Cognitive Load in a Problem Solv-

ing Task 

The objective of this study is to address RQ1 and RQ2 presented in Section 2.6, that is to 

predict cognitive load due to solving time-limited math problems automatically, using eye 

movement metrics. As described in chapter 2, section 2.2.2, eye movements are used in re-

search as means of measuring cognitive load (Beatty, 1982; Iqbal et al., 2004; Buettner et al., 

2015). Pupil dilation, for example is known to be a reliable measure of cognitive load, in a 

problem solving task. The following section provide the details about two studies (pre and 

main) that were conducted related to this line of research.  

 

3.1 Pre Study: Does Pupillary Data Differ During Fixations 

and Saccades? Does it Carry Information about Task De-

mand?  

3.1.1 Introduction  

Recent technological advances have made it possible to capture a user’s experience of a system 

through the analysis of his or her eye movement data. IS researchers have used eye movement 

data to examine users’ attention, awareness, search behavior, preferences, and behaviors (Cyr 

et al., 2009; Djamasbi, 2014).  

Pupillometry can serve as a reliable measure of cognitive load. However, exploring pupil data 

is a relatively new phenomenon in IS-HCI research. In this study, I argue that a user’s pupil 

data may be different during saccades and fixations. Moreover, I explore the relationship be-

tween task demand and pupil data. Fixations and saccades represent two different types of eye 

movement events. The former is used to collect visual information to send to our brain for 

processing, while the latter is used to scan our visual field for the next fixation event (Djamasbi, 

2014). Pupil data refers to changes in pupil dilation/constriction as well as variation in such 
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changes. Because pupil dilation is an involuntary reaction that has been shown to represent 

cognitive activity (Buettner et al., 2015), I tested to see whether pupil dilation during fixations 

and saccadic eye movements are different. While prior studies have used pupil data to capture 

cognitive load, to my best knowledge no study has looked at pupil data within fixations and 

saccades separately. As explained above, fixations and saccades reflect very different types of 

eye movements, so it is likely that pupil data differ during fixations and saccades. Thus, I expect 

to see differences in pupil data during these two types of eye movement events. 

I also tested to see whether pupil data during fixation and saccades carry information about 

task demand. To do so, I examined the relationship between subjective perception of task de-

mand and objective measure of pupil data.		

The results of this study were published in the Proceedings of 14th annual Pre-ICIS workshop 

on HCI Research in MIS, Fort Worth, Texas, in December 2015. 

3.1.2 Methodology 

Eighteen graduate students, participated in the study, completed 10 GRE math questions in 5 

minutes. Tobii X300 eye tracking device and Tobii Studio version 3.2.3 were used to collect 

the eye movement data, while the user was completing the task. IV-T filter with 30 deg/sec 

saccadic velocity threshold was used to filter the raw gaze data into fixation and saccades. In 

addition, subjective experience of task demand was measured via NASA Task Load Index 

(TLX), with 5 dimensions of Mental Demand, Physical Demand, Time Demand, Performance, 

Effort, and Frustration (Lin & Imamiya, 2006). Pupillary data were exported from the eye 

tracking software for analyses. Pupil dilation data during saccade events were separated from 

pupil dilation data during fixation event. Two paired t-tests were used to investigate the differ-

ences between pupillary data (pupil dilation and pupil variation) during saccade and fixation. 

Pupil dilation variation was calculated as the rate of change of pupil dilation as proposed by 

Iqbal et al. (2005). In addition, the relationship between subjective experience of task demand 

(TLX items) and pupil dilation and pupil variation during saccades and fixations was examined 

via regression analysis. 
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3.1.3 Results  

The results of t-tests (Table 3.1) showed that the mean value of pupil dilation during fixation 

(3.079) was almost the same as the mean value of pupil dilation during saccades (3.078). The 

results of t-tests (Table 3.2) showed that pupil dilation variation during fixation (0.166) was 

significantly (p=0.016) smaller than pupil dilation variation during saccade (0.169).  

Table 3. 1 Paired t-tests comparing users’ pupil dilation (mm) during fixations and saccades 
 

 

 

 

 

Table 3. 2 Paired t-tests comparing users’ pupil dilation variation during fixations and sac-
cades 

 

 

 

 

 

In addition, I tested the relationship between subjective experience of task demand (TLX items) 

and pupil dilation and pupil dilation variation during saccades and fixations via regression 

analysis. The results (Table 3.3 and Table 3.4) showed a significant relationship between task 

demand and pupil variation (in saccades: R2 =0.25, p=0.035, B=51.08, in fixations: R2=0.24, 

p=0.041, B=51.64), however, the results did not show any significant relationship between task 

demand and pupil dilation. The effect size for the significant results was rather large and 

slightly larger for fixation (f2 = 0.33) than for saccades (f2 = 0.31). The unstandardized coeffi-

cient (B) was also slightly larger for fixation as compared to saccades. In summary, these anal-

yses showed that pupil dilation was not significantly different between fixations and saccades. 

However, there was a significant difference in pupil dilation variation between these two eye 

movement events. These results also showed that pupil dilation variation had a strong signifi-

 Pupil Dilation 
 Mean SD 
Saccades 3.078 0.461 
Fixation 3.079 0.462 

  df= 17, t Stat= 0.93, p=0.36 

 Pupil Dilation Variation 
 Mean SD 
Saccades 0.169 0.061 
Fixation 0.166 0.061 

 df= 17, t Stat= 2.68, p=0.02 
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cant correlation with the Time Demand dimension of TLX, while I did not find the same rela-

tionship between TLX and pupil dilation data. These results suggest that pupil data during 

saccades and fixations can be different, and that may be useful to consider for in some studies. 

The results also suggest that pupil dilation variation may be more sensitive in terms of revealing 

differences between fixation and saccadic eye movements. Because these results indicate that 

pupil data may carry information about a user’s subjective experience of task environment, 

they provide a new direction for using pupillometry in studying user experience. 

 

Table 3. 3 Regression Analysis (Y: Pupil Variation during Saccade, X: TLX Variables) 

 Mental 
Demand 

Physical 
Demand 

Time 
 Demand Performance Effort Frustration 

R2 0.15 0.03 0.25 0.10 0.07 0.05 
P-value 0.11 0.48 0.03 0.20 0.28 0.37 

B 36.82 14.09 51.08 27.39 22.97 -14.96 
 

Table 3. 4 Regression Analysis (Y: Pupil Variation during Fixation, X: TLX Variables) 

 Mental 
Demand 

Physical 
Demand 

Time  
Demand Performance Effort Frustration 

R2 0.15 0.03 0.24 0.09 0.07 0.05 
P-value 0.12 0.51 0.04 0.23 0.30 0.40 

B 36.89 13.51 51.64 26.37 22.43 -14.42 
 

3.2 Main Study: Automatic Detection of Task Condition in a 

Problem Solving Task 

As mentioned above, the goal of this study is to detect extraneous cognitive load due to a task 

condition (e.g., time limit) using eye movements while completing a math problem solving 

task. Cognitive load is a major factor that influences how computerized systems are used to 

make decisions. High cognitive load contributes to difficulty in use, as well as a lack of adop-

tion. Responding to the need of users to ease demand on cognitive resources thereby provides 

an opportunity for improving the effective use of decision aids at a personalized level. A first 

step is to gain a more informed understanding of the cognitive load experienced by users. Such 
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information should be collected in an automated, accurate, and seamless manner. In this study, 

I argue that eye movements can provide invaluable data for unobtrusive and automatic detec-

tion of cognitive load. I test this assertion by developing an eye tracking machine learning 

system to detect the level of cognitive load experienced during a math problem-solving task 

both in the presence, and absence, of a time limit threshold. The results support my hypotheses, 

revealing that eye movements provide valuable information about cognitive load. The machine 

learning system implemented in this study can reliably predict increased mental effort from the 

eye movement data.  

From the results of this study a manuscript is being prepared, and targeted to be submitted to 

the Decision Support Systems Journal.  

3.2.1 Introduction 

Despite the growing importance of computerized decision making and problem solving in a 

globally connected world, studies suggest that computerized tools may not always be used to 

their full potential. For example, while computers can augment an individual’s information 

processing capacity, people seem to use them in a way to reduce their effort rather than to 

improve their decision accuracy (Todd & Benbasat, 1991, 1992, 1994). According to Adaptive 

Decision Making theory, this behavior is not due to inherent laziness or indifference (Payne et 

al., 1993), whereas accurate, rational decisions are the intention, due to limited cognitive ca-

pacity a natural consequence is the conservation of cognitive resources (Payne et al., 1993; 

Simon, 1955). Consequently, cognitive effort plays a major role in users’ technology usage 

behavior (Davis, 1989; Todd & Benbasat, 1991, 1992, 1994). Because people place a high 

value on effort reduction, a comprehensive understanding of user experience of cognitive load 

provides excellent opportunities for designing computerized decision tools that are used more 

effectively. 

In particular, if decision tools can detect changes in cognitive load, it is reasonable to conclude 

that they can more successfully respond to user need in an adaptive way. For example, an 

adaptive decision tool that can detect user experience of high cognitive load  might then provide 

feedback or suggestions for the user to help ease cognitive effort or more effectively use limited 

cognitive resources (Todd & Benbasat, 1999; Barkhi et al., 2005; Hess et al., 2005; Shah et al., 
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2011). The absence of such cognitive information, however, makes it difficult, if not impossi-

ble, to envision such an adaptive decision tool. 

In this study, I develop and test a machine learning system that can reliably, automatically, and 

unobtrusively detect the experience of cognitive load through analyzing eye movement data. 

Detecting cognitive load using eye tracking has several important advantages. Because eye 

movements reflect how people visually inspect stimuli, and because vision is our most domi-

nant sense (Dähne, et al., 2014; Andrzejewska & Stolińska, 2016), eye tracking provides a 

natural method for examining information processing behavior. Eye trackers collect eye move-

ments continuously, thereby providing a comprehensive picture of behavior. Moreover, mod-

ern remote eye trackers are integrated into monitors, or can be easily attached to such visual 

displays. Hence, they can collect eye movement behavior unobtrusively, without requiring us-

ers to wear special gear (Holmqvist et al., 2011; Poole & Ball, 2005; Djamasbi, 2014).  

The integration of machine learning technology into eye-tracking devices holds promise not 

only for a dynamic and flexible mechanism for detecting user experience of cognitive load, but 

also one that is easily scalable. The advent of machine learning approaches carries the promise 

of discovering meaningful insights even on data sets of massive size. Because machine learning 

systems can generalize from a given set of data (Domingos, 2012), advanced machine learning 

eye tracking systems are bound to improve over time as their respective eye tracking data set 

grows every time they are used. Moreover, as eye tracking technology matures, high quality 

remote eye trackers become increasingly affordable (Djamasbi, 2014). This in turn, not only 

makes developing advanced machine learning eye tracking systems possible but also cost ef-

fective. 

Based on Adaptive Decision Making theory (Payne et al., 1993), eye tracking research 

(Holmqvist et al., 2011), and machine learning literature using eye tracking datasets (Eivazi & 

Bednarik, 2011), I argue that a machine learning approach is a reliable and effective way to use 

gaze data to predict the cognitive demand of a user. This assertion was tested via a laboratory 

experiment that manipulates level of cognitive load using two different task conditions. In the 

following sections I provide a brief review of relevant theory and literature, thereby establish-

ing the framework for my research. I subsequently form two hypotheses and discuss the meth-

odology that was used to test these hypotheses. I will also discuss the method that was used to 
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develop an eye tracking machine learning system, and will report the results of the tests for 

examining the effectiveness of this system in predicting the level of cognitive demand experi-

enced by a user. 

3.2.2 Hypothesis 

Task conditions have a major impact on the level of demand placed on cognitive resources. 

To conserve the inherently limited cognitive resources required for processing information, 

decision makers skillfully adjust their efforts in the way they go about solving a problem so 

that they can meet the demands of the task at hand. A number of studies, summarized in Table 

2.1 in Chapter 2, suggest that eye movements can carry information about cognitive load. 

Hence, it is likely that effort used to meet task condition is reflected through the way infor-

mation is processed. Thus, I hypothesize that eye movement data can provide information about 

user experience of task condition: 

Hypothesis 1: Eye movement data will carry information about task condition experienced by 

a user. 

Modern remote eye tracking devices allow us to collect information about user gaze unobtru-

sively and seamlessly (Holmqvist et al., 2011). The inherently rich and vast amount of eye 

movement signals collected for a user have been shown to provide suitable information for 

developing predictive machine learning systems. As reviewed in section 2.6, studies have 

demonstrated that machine learning can automatically learn from data to predict users’ domain 

knowledge, intention to give a command, distraction during driving, performance in a puzzle 

game, and patterns of information search and retrieval (Salojärvi et al., 2003; Klami et al., 

2008; Simola et al., 2008; Liu et al., 2009; Eivazi & Bednarik, 2011; Bednarik et al., 2012). 

Moreover, as discussed earlier and summarized in Table 2.1, studies suggest that eye move-

ment data can carry information about cognitive load. Hence, I hypothesize that it is possible 

to develop a machine learning system using eye movement data that can predict task demand: 

Hypothesis 2: The developed eye movement classification system can predict user experience 

of task condition. 
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3.2.3 Eye Tracking Experiment  

To test the hypotheses, the first step was to build the eye tracking machine learning system. To 

do so, I conducted a laboratory experiment to collect eye movement data for a cognitively 

complex problem solving task under two different task conditions. In this section I explain the 

methodology for the eye tracking experiment. 

3.2.4 Task 

The problem-solving task used in this study asked participants to provide correct answers to a 

set of ten mathematical questions. This set of questions were manually selected from a pool of 

problem-solving practice tests for the Graduate Record Examination (GRE), which is a stand-

ardized test required for admission to most graduate degree programs in the United States.   

The full set of these practice questions were retrieved from www.majortests.com. These math 

questions were then used to develop an online multiple choice math test.  

3.2.5 Experimental Design & Participants  

I used a time constraint to manipulate the level of demand placed on cognitive resources 

(Ferrari, 2001). It is well-known that a time constraint increases the use of cognitive resource 

by making problem-solving tasks more demanding (Payne et al., 1993). I created two treat-

ments by manipulating the time available for completing the task. In the control treatment no 

time limit was enforced, while in the experimental group the time available for completing the 

task was set to five minutes. This created two treatments with different task conditions: control 

treatment (lower cognitive load) and experimental treatment (higher cognitive load). Partici-

pants were randomly assigned to either a control or experimental group. Participants in both 

groups completed the same problem-solving task, however, in the experimental group partici-

pants had to complete the task within five minutes, while in the control group they could take 

as long as they wished to complete the task. 

Because GRE math problems were used for the problem-solving task, I recruited participants 

from the pool of graduate students in various technical disciplines (e.g., computer science, 

electrical and computer engineering, robotics engineering, etc.) at WPI. Because students are 
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accustomed to taking timed tests, the task and setting created an appropriate and realistic envi-

ronment for our participants. 

The eye movements of 48 participants (21 female, and 27 male, ages ranging between 24 and 

31) were collected during this study. The eye movement data for half of the participants was 

collected under a time constraint, while the remaining 24 were collected from participants that 

had no time limit. I used Tobii X300 remote eye tracker with a sampling rate of 300 Hz 

mounted on a 21-inch monitor at a resolution of 1920 x 1200 to collect the gaze data. To track 

eye movements, each participant completed a brief eye-calibration process. While seated, par-

ticipants were asked to observe a moving dot on the eye-tracking monitor. This calibration 

process took less than one minute to complete. 

3.2.6 Measurements 

I used the I-VT filter with 30°/sec saccadic velocity threshold, provided in the Tobii Studio 

software version 3.2.3, to identify fixations and saccades in the gaze stream. Saccade amplitude 

(the distance traveled between two adjacent fixations), measured in degrees, as well as pupil 

dilation (size of pupil diameter) was also calculated by the Tobii Studio software. Pupil Dila-

tion Variation (PDV) or rate of change of pupil dilation was calculated by taking the temporal 

derivative of pupil dilation (Iqbal et al., 2005; Van den Brink et al., 2016). Blinks were calcu-

lated as complete eye closure lasting between 100-500 milliseconds (Aarts et al., 2012).  

3.2.7 Developing the Eye Tracking Machine Learning System 

The eye tracking machine learning system developed for this study performs a classification 

problem. Classification refers to the process of identifying the correct category for a new piece 

of information based on prior observations. In this case, classification refers to identifying 

whether eye movements were collected under lower or higher level of cognitive load. To 

achieve this goal, the classifier must first be trained with a set of (eye movements, task condi-

tion) data. That is, during this training phase the system has access to both the collected eye 

movement data as well as the task condition under which the data was collected. With a suc-

cessful training, the system will be able to take as input a new set of eye-movement data only, 

without information about task condition, and reliably predict the task condition under which 



	
	

45	

the data was collected. 

To develop the eye tracking machine learning system to classify tasks into higher and lower 

cognitive demands, I conducted the following three steps. First, grounded in the eye tracking 

literature discussed in section 2.2.2, I determined a set of variables, or feature set, that were 

likely to be most effective in predicting cognitive load. Second, I prepared the collected data 

set for training and testing the system by removing seven outliers from the data. Finally, I 

selected a classification algorithm for developing and testing the eye tracking machine learning 

system. In the following sections, I discuss how each step was carried out. 

Step 1: Feature selection 

The first step of the development process required the identification of relevant data attributes 

for designing our machine learning classification system. A list of relevant eye-movement fea-

tures supported in the literature and summarized in Table 2.1 were used. Each parameter was 

measured over the duration of the task completed by each participant in the study. Machine 

learning feature sets are often developed using statistical properties of fundamental parameters. 

Hence, basic statistical properties, such as mean and standard deviation, were calculated for 

each of the parameters in Table 2.1. According to my previous study, pupil data during the 

saccadic and fixation events has been shown to differ (Shojaeizadeh et al., 2015), thus I con-

sidered pupil data for fixations and saccades separately. 

In addition to calculating the average duration values for saccades, fixations, and blinks, I also 

considered their normalized duration metrics. Normalization was carried out by dividing the 

total duration of the fixation, saccade, or blink parameter by the total task completion time. 

Additionally, certain eye movement behaviors were combined to develop ratios that could pro-

vide additional insight. For example, the ratio of saccades to fixations reveal the amount of 

time spent searching for information, versus the amount of time spent on processing the infor-

mation visually (Djamasbi, 2014). This in turn can provide insight about cognitive effort 

(Goldberg & Kotval, 1999). Together, the feature set of the eye tracking machine learning 

system consisted of thirty different eye metrics. This feature set is displayed in Table 3.5. 
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Table 3. 5 Feature Set: List of Eye Movement Metrics for the Machine Learning System 

Eye Movements Eye Metrics (Features) 

Fixation 
 

Average fixation duration (millisecond) 
Standard deviation of fixation duration 
Normalized fixation number (fixation number/task completion time) 
Normalized total fixation duration (total fixation duration/task comple-
tion time) 

Saccade 
 

Average saccade duration (millisecond) 
Standard deviation of saccade duration 
Average saccade amplitude (degree) 
Standard deviation of saccade amplitude 
Normalized saccade number (saccade number/task completion time) 
Normalized saccade duration (total saccade duration/task completion 
time) 

Blink 
 

Average blink duration (millisecond) 
Standard deviation of blink duration 
Normalized blink number 
Normalized blink duration (total blink duration/task completion time) 

Pupil Dilation 
 

Average pupil dilation (PD) during fixation (millimetre)  
Standard deviation of PD during fixation 
Average pupil dilation variation (PDV) during fixation 
Standard deviation of PDV during fixation 
Average PD during saccade (millimetre) 
Standard deviation PD during saccade 
Average PDV during saccade 
Standard deviation of PDV during saccade 

Combined Eye 
Movements Eye Metrics (Features) 

Ratios 
 

Average (PD during saccade/ PD during fixation) 
Standard deviation of (PD during saccade/PD during fixation) 
Average (saccade duration/fixation duration) 
Standard deviation (saccade duration/fixation duration) 
Average (PDV during saccade/PDV during fixation) 
Standard deviation (PDV during saccade/PDV during fixation) 
Normalized saccade duration/normalized fixation duration 
Normalized saccade number/normalized fixation number 

	

Step 2: Selecting an Algorithm 

Machine learning algorithms are typically selected based on the complexity of the problem at 

hand. The purpose of the present study is to detect the level of effort expenditure based on user 

eye movements during the decision-making process in a math problem solving task. According 
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to Adaptive Decision Making theory (Payne et al., 1993), people expend effort to balance the 

conflict between maximizing accuracy and minimizing effort using various strategies, and 

moreover this effort expenditure is highly contingent upon task conditions. In particular, during 

complex tasks under time limit people are likely to switch between multiple strategies to meet 

the task demand (e.g., they may increase their processing speed,  use less information, and/or 

switch to a less demanding strategy such as heuristics) (Payne, Bettman, & Johnson, 1988). 

This flexibility in decision behavior suggests the need for an algorithm that is suited for pro-

cessing complex models. 

I used the Random Forest (RF) classification problem by creating several individual models, 

or trees, using bootstrapping  (Hastie, Tibshirani, & Friedman, 2009). Individual trees are de-

veloped by randomly selecting sub-samples from the original dataset. Each individual tree is a 

type of classifier that uses the divide-and-conquer methodology combined with bootstrapping. 

Individual trees are considered weak learners in the random forest framework. The algorithm 

generates a strong learner by combining the individual weak learners into a single overall tree 

that can produce more accurate results than any of the weak learners (Hastie et al., 2009).		

Step 3. Developing the Proposed Classifier 

Figure 3.1 displays the bootstrapping algorithm that was used to develop the random forest 

classifier. The bootstrapping methodology caused each sample to appear exactly 200 times in 

the computation. Each data point was taken with equal probability, hence some of the samples 

may have appeared several times in the bootstrap set and others not at all. Next, the data gen-

erated by bootstrapping was divided into “training” and “test” sets (80% and 20%, respectively) 

(Hastie et al., 2009). The training dataset was used to train the classifier, that is, the subsamples 

in the training set were used to create individual trees for the random forest classifier. To em-

phasize, the random forest classifier was computed using the 80% of the data marked as the 

training data (Figure 3.1). Thus the random forest classifier was totally unaware of the remain-

ing 20% of data that has been reserved for testing. 

Step 1. Initialization 
 
1.1 Set number of replications i = 200 
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Figure 3. 1 Bootstrapping Procedure 
 

After the training was completed, the test dataset was used to assess the accuracy of the random 

forest classifier in predicting task condition. That is, I assessed the performance of the random 

forest classifier created with the training data (80%) with the remaining 20% of data put aside 

for testing. By doing so, I was now able to ask the random forest machine learning algorithm 

questions about task condition for which the answer was known to me, the experimenter, but 

unknown to the random forest machine learning system. This split of the data allowed me to 

accurately test the predictive performance of the random forest for real world scenarios. 

One common way to estimate the predictive effectiveness of a classifier is to measure its per-

formance (in our case the level of error in answering questions about the task condition) on the 

unseen test data. Resampling methods are commonly used to estimate the generalization error 

of classifiers (Efron, 1979; Beran, 1992; Rao et al., 2008). I used a bootstrapping methodology 

to test the accuracy of the trained classification system. As shown in Figure 3.2, each tree (RFi) 

was trained with a bootstrapping sample (training data set) and tested with the remaining data 

in the original set (test data). The accuracy of the classifier was then measured by comparing 

the output of each individual tree with the task condition of its test data. If there was a match 

the error variable for that particular subtree was set to 0, or 1 otherwise. The average error 

value for the subtrees represented the generalized error for the random forest classifier. I used 

200 Bootstrap replications as suggested by (Efron & Tibshirani, 1994). A very large bootstrap 

replication is not suggested as it results in a computational burden.		

 
Step 2. Training and Test 
 

2.   2.1 Generate at random training sets out of the feature matrix dataset and use these for 
training the untrained classifier. Training set generation is done "with replacement". 
2.2. The resulting trained classifiers are tested on the corresponding test data. 
2.3. This procedure is then repeated i times. 
 
Step 3. Classifier Accuracy 
 
3.1. Compute the classification error at each replicate. 
3.2. Calculate the bootstrapping generalized error by averaging over the errors of all i 
classifiers.	
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The machine learning algorithms discussed in this section were implemented in R version 3.4.2 

on Windows 7, with Core i5 CPU and 3.30 GHz speed machine. I used R libraries including 

ISLR (James et al., 2018), tree (Brian & Ripley, 2018), random forest (Cutler, 2014), e1071 

(Meyer et al., 2017), and caret (Max et al., 2018).  

 

 

 

Figure 3. 2 Bootstrap Procedure for Random Forest Classifier 

 

3.2.8 Results 

To prepare the data for analyses, as suggested in prior research I examined the quality of eye 

movement recording and removed the data sets for those participants that had less than 80% 

gaze sample (Kruger et al., 2013). The gaze sample refers to percentage of the times that eyes 

were correctly detected by the eye tracker for each participant. For example, 100% means that 

one or both eyes were detected by the device throughout the recording, whereas 50% means 

that one eye or both eyes were found for half of the recording duration. While screen based eye 
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tracking experiments typically require users to look at the screen while completing a task, some 

people may look away to think about a problem or look down, e.g., at the keyboard or mouse.  

I manipulated task condition using time pressure, and checked the impact of time limit on per-

formance by using t-test to compare the performance of time pressure vs no time pressure 

groups. Performance was measured as the total number of correct responses to the math ques-

tions. As indicated in Table 3.6, performance of the experimental group is significantly lower 

than the performance of the controlled group (0.56 ± 0.15 vs. 0.67 ± 0.20, p-value < 0.05). This 

means that by applying time pressure we could in fact operationalize task condition or different 

levels of cognitive load in a problem solving task.  

Table 3. 6 Performance Results for the Experimental vs Control Groups 
 Experimental 

(time limit) 
Control 

(no time limit) 
Mean 0.56 0.67 
STD 0.15 0.20 

p-value <0.05 
 

I proposed two hypotheses. The first, (H1), is that eye movement data is likely to carry infor-

mation about task demand. The second, (H2), is that this information is distinct enough for 

building an effective eye tracking machine learning system that can predict whether a user 

experiences higher or lower task demand.  

As mentioned earlier I used the random forest algorithm to implement the machine learning 

model. One of the strengths of random forests is their ability to automatically establish the 

effectiveness of predictors in the feature set with respect to classification accuracy. Random 

forest ranks the importance of each metric based on its ability to predict the outcome. This is 

done by permuting each metric and computing the prediction accuracy of the out-of-bag por-

tion of the data before, and after, the permutation (Breiman, 2001). The random forest output 

is displayed in Figure 3.3, highlighting the metrics ordered by variable importance. The varia-

ble importance is expressed using the Gini index, a measure of node purity or homogeneity of 

nodes in sub-trees (Hastie et al., 2009). Every time a particular variable is used for splitting a 

node in the tree, the Gini index for the child node is calculated and compared to the Gini index 

of the original (parent) node. Variables and cut locations that result in nodes with higher purity 
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have a lower Gini index. Accordingly, this implies that these nodes and cut locations are better 

at predicting the desired response (James et al., 2014).  

The next step was to select the features that were sufficiently discriminative for the classifica-

tion task. I carried out a forward stepwise feature selection (Hastie et al., 2009), systematically 

investigating the cognitive load prediction accuracy of the random forest by iteratively adding 

features based upon variable importance. This process resulted in a minimized error after add-

ing the first ten features; additional features provided only marginal increases in the perfor-

mance of prediction of cognitive effort. Accordingly, to avoid overfitting I selected only the 

first ten out of thirty features (Hastie et al., 2009). These ten features are listed based on their 

order of importance in Table 3.7. 

As apparent in Table 3.7 and Figure 3.3, half of the top ten factors predicting task demand are 

related to pupil data: Avg. (PD during Saccade / PD during Fixation), STD (PDV during sac-

cade/ PDV during Fixation), STD of PDV during Fixation, STD of PD during Fixation, STD 

of (PD during Saccade / PD during Fixation). These results support research linking pupil data 

and cognitive effort (Kahneman & Beatty, 1966; Beatty, 1982; Piquado et al., 2010; Buettner 

et al., 2015; Fehrenbacher & Djamasbi, 2017). 

The ratio of pupil dilation and variation during saccades and fixations reflect the distribution 

of cognitive effort during information search and information processing. The distribution of 

effort between search and information processing, as suggested by our results, may provide 

valuable information about user experience of task demand. 

Thirty percent of the top predictive factors were related to saccade parameters (STD of Saccade 

Duration, STD of Saccade Amplitude, and Normalized Saccade Duration) and twenty percent 

to blink patterns (STD of Blink Duration, Avg. Blink Duration). These results suggest that 

saccade and blink eye movements have a major influence in effective classification of the eye 

movement data based on task demand in a problem solving task. Hence, these results provide 

further evidence in support of literature indicating saccades and blinks are associated with cog-

nitive effort.  
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Figure 3. 3 Variable Importance Plot for 30 Eye Movement Features 
 

Table 3. 7 List of features selected by Variable Importance 

1. Avg.(PD during Saccade / PD during 
Fixation) 

2. STD.(PDV during Saccade / PDV during 
Fixation) 

3. STD. PDV during Fixation 4. STD. Blink Duration 

5. STD. Saccade Duration 6. STD. PD during Fixation 
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7. STD. Saccade Amplitude 8. STD.(PD during Saccade / PD during Fixa-
tion) 

9. Normalized Saccade Duration 10. Avg. Blink Duration 

	

Interestingly enough, the results did not indicate fixation parameters, such as fixation duration 

and count, to be major contributors to classifying cognitive load. This contrasts with previous 

research that shows a positive link between fixation duration and cognitive effort – the very 

nature of viewing a stimulus requires effort in keeping the gaze steady for the information to 

be visually processed (Djamasbi, 2014). While fixation serves as a reliable and direct indicator 

of attention and thus information processing, these results indicate that more effective in clas-

sifying task condition are the saccade and pupil dilation. 

Perhaps most interesting among these results is that pupil dilation ratio values involving sac-

cades and fixations play a major role in classifying higher/lower task demand (Table 3.7). In 

particular, the variable importance for Avg. (PD during Saccade / PD during Fixation) ratio 

was noticeably larger than all other metrics. The importance of the average PD ratios during 

saccades and fixations were more than twice as large as the standard deviation of PDV ratios 

during saccades and fixations and over four times as large as the rest of the factors. These 

results both support extant literature summarized in Table 2.1, and also extend previous find-

ings by showing that only pupil, saccade, and blink related data were major predictors in clas-

sifying task demand. Further, average PD ratios during saccades and fixations appear to be far 

more important than the rest of the feature set. 

The random forest algorithm can be used to develop different sets of forests that have varying 

numbers of trees. To find the number of trees that correspond to a stable classifier, I constructed 

random forests with the number of tree values in the range [1,100]. Figure 3.4 shows the clas-

sification performance for 200 replications of bootstrapping, and as a function of the number 

of trees. The optimal number of trees for our classifier is determined via a standard technique 

having to do with individual tree error rates, namely, the out of bag error rates (Hastie et al., 

2009). When the error rates stabilize and reach a minimum value, the corresponding number 

of trees constitute the optimal number of trees. From Figure 3.4, the accuracy rate initially 
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increases as the number of trees increase; however, once the number of trees reaches approxi-

mately fifteen, the accuracy of the model stabilizes and corresponds to an eye movement clas-

sifier with 69.6% accuracy. These results show that the proposed model can predict task de-

mand not only reliably but also quickly. These results support H1 because they show that eye 

movement data, and in particular the ratios of pupil dilation, and pupil variation, during fixation 

and saccades, carries information about task demand. They also support H2 because they show 

that the developed eye tracking classifier can predict user task condition with approximately 

70% accuracy. 

Of course, one might wonder how such results could be improved. The stability of the results 

after applying fifteen trees indicates that additional computational effort will likely not improve 

the results beyond those already achieved for our fixed model and fixed data set. As far as the 

model is concerned, one could imagine the application of a more sophisticated or customized 

model giving superior results. On the other hand, overfitting is always a concern, and random 

forests were intentionally selected for their accuracy and broad applicability. As far as the data 

is concerned, additional and more detailed measurements would likely increase performance. 

It is precisely the goal to pursue such improved data generation in my future work. 

	

Figure 3. 4 Random Forest Accuracy vs. Number of Trees: Comparison of Random Forest 
Classifiers Performance by Increasing Number of Trees 
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To further describe the performance of classification I calculated the confusion matrix and 

ROC curve for the classification problem.  The confusion matrix represents the true positive, 

true negative, false positive and false negative of the classification task. ROC curve shows a 

trade-off between true positive rate (sensitivity) and false positive rate (specificity) and is a 

measure of test accuracy (Zweig & Campbell, 1993). Both confusion matrix and ROC curve 

for bootstrap#1 with 15 number of trees were calculated and are presented in Table 3.8, and 

Fig 3.5. According to the confusion matrix, the accuracy of bootstrap # 1 in prediction is 75%, 

which is calculated as total number of true positive and true negative divided by total number 

of test samples (20), in Table 3.8.  

Table 3. 8 Confusion Matrix of Bootstrap#1 with 15 trees 

N=20 Predicted NO Predicted YES 

Actual NO 7 3 

Actual YES 2 8 

	

 

Figure 3. 5 ROC Curve for Bootstrap # 1 and 15 Number of Trees 

3.2.9 Additional Analyses 

Besides Random Forest, I also investigated the performance of Support Vector Machine linear 

and nonlinear classifiers on the aforementioned feature set.  As shown in Table 3.9, the linear 
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or nonlinear SVM classifiers cannot outperform the proposed RF model. Therefore, these re-

sults suggest that RF as compared to SVM is a more suitable method for classification of eye-

movement data. 

Table 3. 9 Support Vector Machine Classification Performance 

SVM Linear 
SVM 

Nonlinear SVM with 
polynomial degree of 2 

Nonlinear SVM 
with polynomial 
degree of 3 

Nonlinear SVM 
with radial basis 
kernel 

Accuracy 56% 43% 41% 48% 
	

As mentioned earlier half of the features among selected features are related to pupil data (see 

Table 3.7). Here to further investigate each category of features based on eye-movement met-

rics (e.g., pupil dilation, blinks, fixation, and saccade), I created 6 different categories (Table 

3.10). Therefore, 6 different RF models were trained with these different feature sets to inves-

tigate the classification performance accordingly. Table 3.10 presents the performance results. 

Interestingly the highest accuracy (79%) was achieved from PD/PDV related features (category 

#5 in Table 3.10). Second column of the table show the features listed based on their importance 

order according to RF Variable Importance values.  It is important to note that similar to when 

all the 30 features were used, the most effective features in the classification is Avg. (PD during 

Saccade / PD during Fixation). These results show that ratio of PD and PDV during fixation 

and saccades are the most important metrics in the problem solving classification task.  

Table 3. 10 RF Classification Performance Using Different Categories of Eye Features 

Feature  
Categories Features RF  

Performance  

1. Fixation Features 

1. Avg. Fixation Duration, 2. Normalized Fixa-
tion Duration, 3. Normalized Fixation Number, 4. 
STD of Fixation Duration 
 

40% 

2. Saccade Features 

1. STD of Saccade Duration, 2. Normalized Sac-
cade Duration, 3. STD of Saccade Amplitude, 4. 
Avg. Saccade Duration, 5. Avg. Saccade Ampli-
tude, 6. Normalized Saccade Number 
 

51% 
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3. All PD and PDV 
Features 

1. Avg. (PD-Saccade/ PD-Fixation), 2. STD 
(PDV-Saccade/PDV-Fixation), 3. STD PDV-
Fixation, 4. STD (PD-Saccade/PD-Fixation), 5. 
Avg. PDV-Fixation, 6. STD PD-Fixation, 7. Avg. 
PDV-Saccade, 8. Avg. (PDV-Saccade/PDV-
Fixation), 9. STD PD-Saccade, 10. STD PDV-
Saccade, 11. Avg. PD-Saccade, 12. Avg. PD-
Fixation 

69.54% 

4. Ratio of Saccade 
Features to Fixation 
Features 

1. STD (Saccade Duration/Fixation Duration), 2. 
Avg. (Saccade Duration/Fixation Duration), 3. 
Normalized Saccade Duration/Normalized Fixa-
tion Duration, 4. Normalized Saccade Num-
ber/Normalized Fixation Number 
 

43% 

5. PD and PDV (Only 
Ratios) 

1. Avg. (PD-Saccade/ PD-Fixation), 2. STD 
(PDV-Saccade/PDV-Fixation), 3.STD (PD-
Saccade/PD-Fixation), 4. Avg. (PDV-
Saccade/PDV-Fixation) 
 

79% 

6. Blink Features 
1. STD Blink Duration, 2. Normalized Blink Du-
ration, 3. Avg. Blink Duration, 4. Blink Number 
 

52% 

3.2.10   Discussion  

The two objectives of this study were to examine whether eye movement data can predict cog-

nitive load, and if so can such data be used to develop an advanced system that can predict task 

demand automatically and reliably. To do so, I conducted a laboratory experiment to collect 

eye moment data. I selected a set of eye movement metrics, or features, for developing a pre-

dictive model for task demand. I used the random forest framework to develop a machine learn-

ing system that can predict task demand based on eye movement data. 

The results of this experiment supported my hypotheses, demonstrating that eye movements 

can predict task demand during problem solving and that the random forest classifier could 

reliably learn from the provided data to predict unseen data. Interestingly, these results showed 

that pupil data was the most important contributor in the predictive model. Many studies have 

shown that pupil data is a reliable predictor of cognitive load (e.g., see Table 2.1). A novel 

contribution of this study is that it not only supports this previous finding by showing that half 
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of our top ten predictive factors were related to pupillometry, but also refines previous findings 

by showing that pupil data was the most prominent predictive factor among the set of thirty 

eye movement features. The ratio of pupil dilation in saccades and fixations were far more 

important than other features in predicting cognitive load, perhaps even more important than 

the absolute pupil dilation reported in previous studies. 

It is well established that visual information is processed during fixation, as opposed to saccade. 

Upon focusing on an object, the eye can only see a small portion vividly and colorfully, namely 

a limited area around the fixation center. Visual acuity drastically degrades with an increasing 

distance from the center of the fixation. To compensate for this limitation, saccades are used to 

rapidly collect high quality visual information. Because saccades change the center of our at-

tention, they represent information search. Since pupil dilation is linked to cognitive activity, 

pupil dilation during saccade suggests cognitive activity related to information search and pupil 

dilation during fixation indicates cognitive activity related to information processing. Thus, the 

results suggest that the ratio of cognitive activity during information search and information 

processing can provide invaluable insight for classifying task demand. 

Another key insight of this study is that, among the top ten discriminating features selected by 

the machine learning model, none are related solely to fixation (see Table 3.7 and Figure 3.3). 

In this study, metrics related to saccades and blinks were more important than metrics related 

to fixations. In particular, saccade duration and amplitude were among the top ten predictive 

factors of task demand. Because saccades indicate effort in locating relevant information, these 

results suggest how long people took to locate a fixation and how far their eyes had to travel to 

locate that information provided more insight about task demand than data about their fixation. 

Similarly, the results demonstrate that average blink duration and variation were more effective 

than fixation-related information in predicting (classifying) task condition. Blink duration has 

been associated with task complexity (Ahlstrom & Friedman-Berg, 2006; Andrzejewska & 

Stolińska, 2016; Ikehara et al., 2013). This is substantiated in the results. Average blink dura-

tion, and variation in blink duration, are likely indicating adjustment to task load, which ac-

cording to Adaptive Decision Making theory is what people do when making complex deci-

sions (Payne et al., 1993). 
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Adaptive decision making theory asserts that task conditions can strongly influence cognitive 

effort (Payne et al., 1993). The results of this study show that this argument can also be ob-

served at a physiological level through pupil data. This in turn supports a recent exploratory 

study (Fehrenbacher & Djamasbi, 2017), suggesting that Adaptive Decision Making theory can 

provide a suitable framework for explaining the relationship between cognitive load and pupil-

lometry during problem solving and decision making. As such, the results extend this previous 

study and provide a rationale and theoretical direction to use eye movement data to develop 

automatic predictive models. Because the level of effort expenditure affects user strategy in 

problem solving (Payne et al., 1993), detecting effort unobtrusively and continuously can help 

designers to have a more complete picture of user experience. Because systems that require too 

much effort are less likely to be adopted and less likely to be used effectively (Gregor & 

Benbasat, 1999; Todd & Benbasat, 1994), this study suggests a new avenue for designers to 

develop more supportive systems. 

Advances in technology make it increasingly possible to embed eye-tracking technology in 

computing devices at affordable prices. The resulting data holds a wealth of information to 

improve the understanding of user behavior and decision making. The advent of robust ma-

chine learning approaches provides an attractive opportunity to capitalize on this information. 

Hence, designing machine learning predictive models using eye tracking is likely to continue 

as a productive line of research and development. Using eye movements to detect reactions to 

task demands is an important first step in designing information systems that can more effec-

tively respond to user needs. Such adaptive tools are likely to be particularly effective in solv-

ing complex problems for novice users. 
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4 Study Two: Assessing Cognitive Load using Eye-Move-

ments during a Reading Comprehension Task 

Cognitive load is a major factor affecting user experience. Therefore, to enhance user experi-

ence, a better understanding of cognitive load is needed, which helps designing interfaces that 

can better accommodate user’s need according to the level of cognitive load. Research suggests 

that pupillometry may serve as an excellent unobtrusive measure to study user information 

processing behavior when under high cognitive load (section 2.2.2). While eye tracking is gain-

ing popularity in IS-HCI research, pupillometry is relatively less explored in IS-HCI eye track-

ing studies.  

The purpose of this study was two-fold. One was to examine the relationship between cognitive 

load and pupillary responses for a task that required people to either read a text passage from 

an actual website or read the simplified version of the same text passage (Part I). The simplified 

text passage was constructed in a way to assure reduced cognitive load, that is, to facilitate 

communication of textual information in a way that it can be read and understood easily and 

quickly (see Figure 4.1). 

The second goal of the study was to examine the relationship between cognitive load and pu-

pillary responses for a decision making task, when the same participants were asked to answer 

two questions related to the passages, one literal and one inferential (Part II).  

4.1 Part I: Text Simplification and Pupillometry Analyses 

during Reading  

The following sections provide details about the first part of the study.  The results of this study 

is published in the Proceedings of the 11th HCI International Conference, in 2017, Vancouver, 

Canada (Shojaeizadeh et al., 2017). 
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4.1.1 Introduction 

Examining eye movement data is gaining popularity in IS research. As mentioned earlier, re-

search suggests pupillometry may serve as an excellent unobtrusive measure to study user in-

formation processing behavior (see Section 2.2 for a review of related literature). Pupil dilation 

can be measured continuously during processing of a task. This would enable pupillary data to 

be a potentially robust measure of cognitive load. Further, pupil dilation can be measured con-

tinuously during processing of a task (Beatty, 1982; Iqbal et al., 2004), therefore, it could be 

used as a robust measure for cognitive load during a reading task.  

In a previous study Djamasbi et al. (2016-b) showed that by applying a set of plain language 

standards (PLS) obtained from (Djamasbi et al., 2016-a) to passages obtained from internet 

they can be simplified so that there is less cognitive demand on the readers. Simplification also 

resulted in increased user’s performance in answering questions related to passages. Addition-

ally, I showed that participants of the simplified version of the passage had shorter average 

fixations and exhibited a more efficient visual search behavior as compared to those who read 

the original version of the passage. In this study, I extended this research by investigating time 

series analysis of eye-movement (pupil dilation) as a proxy for measuring cognitive load during 

reading these passages.  

To this end, I conducted an exploratory analysis to understand how text simplification affected 

pupil dilation over time and whether or not this effect was consistent over different time inter-

vals during reading. Inspired from my previous research findings (in Section 3.1), I separated 

PD data during fixation from PD data during saccade and investigated the effect of text sim-

plification on these two variables separately over time. Time series analysis was conducted on 

the same eye tracking data set reported in the previous study that showed text simplification 

was effective in reducing cognitive load (that is, it improved performance significantly) 

(Djamasbi et al., 2016). 

The results show that text simplification had a significant impact on pupil dilation and that it 

affected pupil dilation differently at distinctive reading intervals. Additionally, the results show 
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that examining pupil dilation during fixations and saccades separately can provide new insights 

for understating cognitive load.  

4.1.2 Eye Tracking Experiment  

A comprehensive set of plain language standards (Djamasbi et al., 2016) were used to convert 

an original text passage about sports (18th grade reading level) to a simpler version (10th grade 

reading level). Please see Figure 4.1 for a list of plain language rules used to simplify the pas-

sage. Each participant was randomly assigned to one of the two versions of the text passage, 

which was displayed on a computer screen. Participants were recruited from a pool of college 

students. Out of the 54 collected datasets, 26 were from participants assigned to read the orig-

inal version of the text and the rest were from those assigned to the simplified version of the 

same passage. After reading the passage, participants were asked to answer two questions about 

the passage. One of the questions about the passage was literal and the other was inferential. 

To avoid order effect, the order in which the questions were displayed on the screen was ran-

domized.  

• Identify and write for your audience 

• Avoid slang, jargon, colloquialisms, non-literal text 

• Use short, simple words (≤~3 syllables) 

• Use concrete, familiar words/combinations of words 

• Use "must" instead of "shall" ("must not" vs. "shall not") 

• Use an active voice, simple present tense 

• Avoid weak verbs (def: a verb that is made past tense by adding -ed, -d, -t) 

• Use parallel sentence structure 

• Use positive terms (avoid "don't" or "didn't") 

• Avoid multiple negatives ("don’t forget to not…") 

• Explain all acronyms/abbreviations and avoid if possible 

• Write short sentences (20-25 words), be succinct 

• Short paragraphs (no more than 150 words in 3-8 sentences) 
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• Use transition words in paragraphs (pointing words, echo links, explicit connec-

tives) 

• Check/use correct grammar and spelling 

• Use "you" and other pronouns to speak to the reader 

• Organize document chronologically 

• Use lists 

• Use tables to make complex material easier to understand 

• Do not use ALL CAPS for emphasis 

• Do not use underlining for emphasis 

• Use bold and italics for emphasis 

 
 

Figure 4. 1 Plain Language Guidelines 

Tobii X300 eye tracking device was used to collect eye movement data. The eye tracker was 

calibrated for each participant before starting the task. Tobii software version 3.2.3, and I-VT 

filter with 30°/sec saccadic velocity threshold was used to process raw gaze data into fixations 

and saccades.  

To capture eye-movements for each participants while answering the questions (for Part II of 

the study) two video segments were created: one capturing user eye movement activity when 

completing the inferential question and one when completing the literal question.  

4.1.3 Time Domain Analysis of Pupil Dilation 

Eye-movement data obtained from the eye tracking software were individually saved in .csv 

format for further processing. Because the task was not time limited, the duration of reading 

differed among participants, which resulted in dissimilar number of data points for each par-

ticipant. To facilitate the comparison of time series analysis, studies often equalize the number 

of data points by designing the task in a way to have pre-specified time windows (Beatty, 1982; 

Einhäuser et al., 2008). While this approach is useful and relevant for many experiments, I was 

interested in examining reading behavior in a setting that allowed users to take as much time 

as they needed to read and understand the text. To compensate for the unequal number of data 
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points in such a setting, I used cubic spline interpolation method (McKinley & Levine, 2002) 

to construct equal size arrays of PD data for all participants. Interpolation is the estimation of 

intermediate values between precise data points (Reinsch, 1971). This process created an equal 

number of pupil data points for each of the participants in each of the two experimental groups 

(original and simplified conditions). To study the changes in pupil dilation over time, average 

PD values for all participants were calculated for each cell in the arrays of data. I examined 

both overall pupil dilation as well as pupil dilation during fixations and saccades. I also looked 

at changes in PD over three distinct reading periods: beginning, middle, and end. To do so, 

interpolated data points were divided into three equal intervals. 

4.1.4 Results of Pupillary Analyses 

The comparison between PD when reading original and simplified passages is indicated in 

Figure 4.2. Pupil dilation was not separated during saccade and fixation in this plot. Fig-

ure 4.2 displays the trend of overall PD. As shown in Figure 4.2 PD trend is similar between 

reading the original and simplified version of the text except for the beginning and the end part 

of the graph. I used a t-test to see whether the overall averages for these two trends were dif-

ferent. The results of the two-sample t-test for the means of the overall PD during reading the 

original or simplified passages showed that there were no significant differences between the 

two trends (t-stat = 0.93, p = 0.35). In other words, no significant differences were detected in 

pupil dilation during reading original vs. simplified versions of the same text. 

Next, I refined the above analysis by investigating differences in the means of PD during three 

equally sized different time intervals (beginning, middle and end). A two-way factorial 

ANOVA was conducted to compare the effects of two independent variables: (1) text simpli-

fication, and (2) time interval. Text simplification included 2 levels (1. Original and 2. Simpli-

fied) and time interval included 3 levels of equal size (1. Beginning, 2. Middle and 3. End). 

The results, shown in Table 4.2, indicated that text simplification did not have a main effect on 

pupil dilation (F(1,938) = 0.88, p = 0.35). The results, however, show that time interval did 

have a main effect on PD (F(2,938) =17.44, p < 0.001). The interaction effect was not signifi-

cant (F(2,944) = 2.44, p = 0.09). By comparing the pairwise interactions between time intervals 

and text simplification, as shown in Table 4.3 and Figure 4.3, it can be seen that there is a 
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significant difference in PD between simplified and original versions in the last time interval. 

There are no significant differences between simplified and original versions in the beginning 

and the middle reading intervals (p-beginning = 0.32, p-middle = 0.63). 

 

Figure 4. 2 Time series trend of pupil dilation, red: simplified, blue: original passage 

 
	

Table 4. 1 Descriptive Statistics and T-test Results for PD when Reading Original and 
Simplified Passages 

 Mean SD t Stat df p-value 
Original 2.982 0.0298 0.926 905 0.35 
Simplified 2.978 0.036 

	

Table 4. 2 ANOVA Results Comparing the Means of PD during Different Intervals and 
among Original and Simplified Passages 

 F P-value 
Task Demand 0.88 0.35 
Intervals  17.44 = 0.001 
Interaction  2.44 = 0.09 

		

2.90

2.95

3.00

3.05

3.10
1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

PD
	(m

m
)

Data	Points

Pupil	Dilation

Original Simplified



	 66	

 

Figure 4. 3 The Main Effect of Text Simplification and Time Intervals Segmentation and 
Their Interaction Effect on the Dependent Variable PD 

 
Table 4. 3 Pairwise Comparison between Different Time Intervals for Overall PD 

Time Intervals Mean ± SD 
(PD-Original) 

Mean ± SD  
(PD-Simplified) 

P-value 

 Beginning 2.99 ± 09 3.00 ± 0.11 0.32 
 Middle 2.97 ± 02 2.97 ± 0.01 0.63 
 End 2.98 ± 01 2.97 ± 0.01 0.03 

 

Next, similar analyses were performed, to examine PD during fixation (PD-Fixation) and sac-

cades (PD-Saccade) separately. Figures 4.4 and 4.5 show the time series trend of PD-Fixation 

and PD-Saccade when reading original versus simplified passages. These graphs show more 

nuanced differences between PD trends in the original vs. simplified conditions. 
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Figure 4. 4 Time Series Plot for Pupil Dilation during Fixation (blue = original, red = simplified)  
	

 

Figure 4. 5 Time Series Plot for Pupil Dilation during Saccade (blue = original, red = simplified) 

 

A two-way ANOVA was performed to investigate the effects of (1) text simplification and (2) 

fixation/saccade separation on PD. The results of ANOVA in Table 4.4 show that PD is signif-

icantly affected by text simplification, for both fixation and saccade measures 

(F(1,1068) = 68.71, p < 0.05) and that PD values are significantly different during saccades 

and fixations for both task conditions (original vs. simplified) (F(1, 1068) = 331.64, p < 0.05). 
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There is no significant interaction effect between text simplification and fixation/saccade sep-

aration as indicated in Table 4 (F (1, 1072) = 1.63, p = 0.20). The graphical representation of 

this analysis is displayed in Figure 4.6 which shows that no matter what type of passage the 

participant was reading (original or simplified) the average PD during fixation (blue line) was 

smaller than average PD during saccade (red line), and this difference remains almost the same 

either when reading the original passage or the simplified passage. Both PD-Fixations and PD-

Saccades had larger average values in the simplified text condition. These results show that 

separating PD-Fixation and PD-Saccade provides additional information that is useful when 

performing time-series analysis of pupil dilation. 

 

Figure 4. 6 The main effect of text simplification and fixation/saccade separation and their 
interaction effect on the dependent variable PD 

 
	

Table 4. 4 ANOVA Results Comparing the Means of PD between Fixation and Saccade dur-
ing Original and Simplified Passages 

 F P-value 
Task Demand 68.71 < 0.001 
Pupillary Segmentation 331.64 < 0.001 
Interaction 1.63 0.20 
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Having separated PD-Fixation from PD-Saccade, next I investigated this data using the three 

reading time intervals. A two-way ANOVA test was used for PD-Fixation and PD-Saccade to 

compare the overall effects of two independent variables (1) text simplification, and (2) time 

interval separation. 

Table 4.5 displays the overall results of the ANOVA tests. The results show that PD values are 

significantly different both during fixations and saccades when people read original vs. simpli-

fied text passages (F(1,518) = 54.23, p < 0.05 for PD-fixation and F(1, 542) = 35.885, p < 0.05 

for PD-saccade). The results show that PD values during fixations are also significantly differ-

ent over the three time intervals (F(1,518) = 65.17, p < 0.05 for PD-fixation). Additionally, the 

differences in PD-fixations between the original and simplified conditions are significantly 

different in the three time intervals (F(2,524) = 10.13 and p < 0.05). The same is true for PD 

values during saccades (F(1,542) = 17.05, p < 0.05). The results show significant interaction 

effect between text simplification conditions and time intervals (F (2,548) = 75.59, p < 0.05). 

Table 4. 5 ANOVA Results Comparing the Means of PD-Fixation and PD-Saccade within 
Different Time Intervals 

PD- Fixation F P-value 
Task Demand 54.23 P < 0.001 
Intervals  65.17 p < 0.001 
Interaction 10.13 p < 0.001 
 
PD-Saccade F P-value 
Task Demand 35.88 p < 0.001 
Intervals  17.05 p < 0.001 
Interaction 75.59 p < 0.001 

  

These differences are further shown in Table 4.6, which displays the pairwise comparison be-

tween PD saccade/fixation for original and simplified passages among different time intervals. 

In other words, PD-fixation is significantly different between original and simplified passages 

in the beginning (p < 0.05), and end (p < 0.05) of the reading duration but not in the middle of 

the reading duration (p > 0.05). Identically, PD-saccade is also significantly different between 

original and simplified passages in the beginning (p < 0.05) and the end (p < 0.05). However, 

the difference in PD-saccade between original and simplified passages is also significant in the 
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middle of reading (p < 0.05). Figures 4.7and 4.8 display graphical interpretations of these re-

sults. As it can be seen in these figures, average PD-Fixation is larger in the simplified group 

compared to the original group at the beginning and the end intervals. In the middle interval 

Average PD-Fixation values are the same in both groups. While we observe a similar trend for 

PD-Saccade in the beginning and end intervals, in the middle interval average PD-Saccade for 

the original passage is significantly larger than average PD-Saccade for the simplified passage. 

Table 4.6 Pairwise Comparison Between Different Time Intervals for PD-Fixation and PD-
Saccade 

PD-Fixation 
 

Time Intervals Mean ± SD 
(Original) 

Mean ± SD 
(Simplified) 

P-value 

 Beginning 2.99 ± 0.01 3.01 ± 0.02 p < 0.001 
 Middle 3.00 ± 0.02 3.00 ± 0.01 p =0.53 
 End 3.01 ± 0.02 3.03 ± 0.01 p < 0.001 

PD-Saccade 
 

Time Intervals Mean ± SD 
(Original) 

Mean ± SD 
(Simplified) 

P-value 

 Beginning 3.02 ± 0.2 3.05 ± 0.03 p < 0.001 
 Middle 3.04 ± 0.01 3.02 ±0.01 p < 0.001 
 End 3.02 ± 0.01 3.04 ± 0.00 p < 0.001 
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Figure 4. 7 The Main Effect of Text Simplification and Time Intervals and their Interaction 
Effect on the Dependent Variable PD during Fixation 

	

 

Figure 4. 8 The Main Effect of Text Simplification and Time Intervals and their Interaction 
Effect on the Dependent Variable PD during Saccade 
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These findings are consistent with previous literature (Beatty, 1982; Chen et al., 2011; Iqbal et 

al., 2004; Klingner, 2010) that identify pupil dilation as a reliable measure of cognitive load in 

cognitive tasks. In addition; these results indicate that separating pupil dilation during fixation 

and saccades can provide more nuanced information that is not available when considering 

only the overall PD. Furthermore, these results open new research questions in the field of 

pupillometry related to HCI research, which will be discussed in the next section of this paper. 

4.1.5 Discussion and Conclusion  

Time series analysis of eye-tracking data is important because it provides a continuous measure 

of eye-movement data, which allows us to examine moment by moment analysis of eye-move-

ment data. In this study, I conducted time-series analysis of pupil dilation, which is considered 

a reliable measure of cognitive effort. 

I investigated whether reducing cognitive load of readers by simplifying text passages can af-

fect their pupil dilation during reading and whether this effect remained steady over different 

time intervals of reading. The simplified text passage used in this study was developed using a 

set of plain language rules. The original passage, which was an actual news passage about 

sports, was simplified from 18th grade reading level to 10th grade reading level through sys-

tematic application of the plain language rules described in Djamasbi et al., (2016-a). 

The results of t-test comparing overall PD values between the original and simplified groups 

showed that text simplification did not significantly affect pupil dilation over time. However, 

when dividing the data points into three equally size intervals, the results showed that PD val-

ues were significantly different between the original and simplified groups in the last part of 

reading. Because pupil dilation is associated with increased cognitive load, the results dis-

played in Figure 4.3 suggest that participants were experiencing more cognitive load at the 

beginning of the task (compared to the two other time intervals) when they were familiarizing 

themselves with the text. The results also show that cognitive load was similar for the two text 

conditions (original vs. simplified) at the beginning and middle time intervals but it was sig-

nificantly lower for people in the simplified text condition at the end interval. These results 

provide evidence that examining PD in various time intervals can provide additional infor-

mation for understanding cognitive load. 
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Next, I examined PD for fixations and saccades separately. The results showed that the impact 

of text simplification on PD was significant when separating PD-Fixation from PD-Saccade. 

These findings support the argument that examining PD during fixations and saccades sepa-

rately is useful in refining the explanatory power of pupillometry. These results are consistent 

with the argument that the observed differences are due to differences in the nature of fixation 

and saccadic eye-movements (Shojaeizadeh et al., 2015). Further, the results showed that pupil 

dilation was slightly larger during saccades as compared to pupil dilation during fixations (Fig-

ure 4.6). The results also show that PD measured during both fixations and saccades, was larger 

in simplified version of the text. Note that PD during fixations refers to visual information 

processing. Because during saccades we cannot process visual information (our eyes move too 

fast to be able to take foveal snapshots), PD during saccades may indicate cognitive processing 

beyond what is typically associated with attention measured as foveal processing of visual in-

formation. Given this interpretation, the results in Figure 4.6 suggest higher cognitive activity 

during saccades compared to fixations for both participants reading the original or the simpli-

fied versions of the text. It also suggests higher cognitive activity in the group that was reading 

simplified text. Given that the performance for the same set of data indicated that people pro-

vided significantly more accurate answers to questions about the text in the simplified group 

(Djamasbi et al., 2016), higher cognitive activity in the simplified group in this case may indi-

cate higher level of engagement with the task. 

Next, I examined PD during fixations and saccades over the three reading intervals: beginning, 

middle, and end. The results, displayed in Figure 4.7 and Figure 4.8, reveal different effects. 

During fixations, PD increases consistently over the three time periods when people read the 

original version of the text. However, when people read the simplified version, PD in the mid-

dle of the reading is significantly smaller than the two other intervals. During the saccades, PD 

values in the middle interval are higher than the two other intervals for the original version of 

the text while they are lower than the two other intervals for the simplified version of the text. 

These results indicate the presence of different types of activities in the middle of reading as 

represented by PD during saccades and fixations. While future experiments are needed to fully 

explain these differences, these results provide evidence for the usefulness of examining PD 

during fixations and saccades separately during various intervals. 
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Overall these findings are consistent with previous literature that have employed pupil dilation 

as a reliable measure of cognitive load. Additionally, the results indicate that investigating pu-

pil dilation in different time intervals is useful in providing a better understanding of cognitive 

load in reading and that separating the analysis of pupil dilation during fixations and saccades 

can provide additional useful information about cognitive load. These results provide a ra-

tionale for new research questions in the field of pupillometry related to HCI research. For 

example, why do PD-Fixation and PD-Saccade show similar behavior at the beginning and end 

of the reading when comparing reaction to original and simplified passages, but show different 

behavior in the middle of reading? Is this a consistent behavior even when we test different 

passages or with a different population of readers? 

4.2 Part II: Task Condition and Pupillometry Analyses in a 

Cognitive Decision Making Task 

In the first part of this study the relationship between cognitive load and pupillary responses 

were studied during a reading task, which included reading either an original version of a pas-

sage (higher task demand) or a simplified version of that (lower task demand). The results 

revealed that overall PD values between the original and simplified groups of text simplifica-

tion (different task condition) did not significantly affect pupil dilation over time. However, 

when dividing the data points into three equally size intervals, the results showed that PD val-

ues were significantly different between the original and simplified groups in the last part of 

reading. In the second part of this study the objective is to test whether the same relationship 

between pupillary responses and task demand exist during a decision making process such as 

answering questions about the passages. Another objective of this study is to determine if text 

simplification has also affected the way participants make a decision, and whether this effect 

could be measured from pupillary responses.  

The results of this study have been published in the Proceedings of the AMCIS Conference 

2017 (Shojaeizadeh et al., 2017-b). 
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The Adaptive decision making theory asserts that task condition affects information processing 

behavior. According to this theory, I argue that users’ pupillary responses will be different 

under different task conditions.    

4.2.1 Introduction  

The Adaptive Decision Making theory asserts that task condition affects information pro-

cessing behavior (Payne et al., 1993). Further, according to this theory people choose an infor-

mation processing behavior based on the demand placed on their cognitive resources. In addi-

tion to the pupil dilation (see section 4.1), there is indication that variability in pupil dilation or 

rate of change of pupil size may also reveal users' cognitive load due to task demand (Buettner 

et al., 2015; Chen et al., 2011; Fehrenbacher & Djamasbi, 2017). Therefore, grounded in this 

theory, and the literature that supports the relation between pupillary data and cognitive load, 

I argue that pupillary responses are likely to carry information about task condition in a decision 

making task. Similar to section 4.1, I tested this assertion via an eye tracking laboratory exper-

iment. In the following section I will briefly reintroduce the literature presented in section 2.2.2, 

that support the hypotheses built to test the research questions in this part of the study. 

4.2.2 Hypotheses  

Research shows pupillary data can serve as a reliable measure of cognitive effort. For example, 

Beatty and Kahneman (1966) observed an increase in pupil size as people completed harder 

tasks. Similarly, Chen et al. (2011) observed a positive relationship between pupil size and task 

difficulty (i.e., recalling the number of player positions in a basketball game).  Klingner et al.  

(2011) measured pupil dilation during a mental multiplication; and found that easy-multiplica-

tion problems triggered the smallest pupil dilations and hard problems the largest. Other recent 

IS scholars also suggest that pupil dilation is a reliable proxy of cognitive load (Klinger et al. 

2008, King 2009, Piquado et al. 2010, Zhan et al. 2016).  Some recent IS studies have examined 

the relationship between cognitive load and pupil dilation variation (PDV). PD is defined as 

the size of pupil diameter and PDV is defined as rate of change in pupil dilation measured as 

standard deviation of pupil dilation (Shojaeizadeh et al. 2015; Buettner et al. 2015). For exam-

ple, Buettner et al. (2015) showed that PDV has a positive relationship with performance, and 
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argued that PDV is an appropriate measure of cognitive load in IS research. A recent study 

provided evidence that task condition has an impact on pupillary response, and suggested the 

Adaptive Decision Making theory (Payne et al. 1993) may serve as a suitable theoretical frame-

work for IS decision making eye tracking studies (Fehrenbacher et al., 2017). According to this 

theory people choose an information processing behavior based on the demand placed on their 

cognitive resources. Grounded in this theory, I argue that different task demands impact cog-

nitive resources in different ways. This, in turn, is likely to impact how people manage their 

cognitive loads and thus is likely to impact their pupillary responses.  Therefore, I hypothesize:  

(H1) Pupil dilation (PD) will be different in different task conditions. 

(H2) Pupil dilation variation (PDV) will be different in different task conditions. 

4.2.3 Methodology 

The methodology (experimental set up, data analyses) in this study is similar to section 4.1.2. 

In this part of the study eye tracking data was obtained for only the duration of answering 

questions about the passages, from the same participants of part 4.1.  

The task required participants to read a text passage and answer two questions about the pas-

sage they just read. Participants were randomly assigned to one of the two text conditions (orig-

inal or simplified). One of the questions about the passage was literal and the other was infer-

ential. To avoid order effect, the order in which the questions were displayed on the screen was 

randomized. For each participant two video segments were created: one capturing user eye 

movement activity when completing the inferential question and one when completing the lit-

eral question.  

4.2.4 Results 

To test the hypothesis, I investigated pupillary responses to 1) task demand (original/simpli-

fied) and 2) to question type (inferential/ literal). I performed two mixed model ANOVAs one 

for PD and one for PDV. The results (Tables 4.7 and 4.8) indicate that PD values for partici-

pants in the simplified text condition was significantly different from the PD values for those 

in the original text condition (F(1,477) =16.92 and p-value <0.05). Additionally; the results 

show that when answering literal questions compared to when answering inferential questions, 
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PD values were significantly different (F(1,477)=65.71, p-value <0.05). Further, the results 

show that PD values were impacted significantly by the interaction between the type of text 

(simplified vs. original) and type of question (inferential vs. literal) (F(1,477) =22.29, p-value 

<0.05). The pairwise comparisons show that in the simplified text condition PD during re-

sponding to the inferential question was significantly different from PD during answering the 

literal question (PD- inferential=2.992 vs. PD-literal=3.007, F (1,477) =47.72, p-value <0.05). 

I did not observe differences in the original text condition (PD-inferential=2.994 vs. PD-

literal=2.998, F (1,477) =1.18, p-value >0.05) (Table 4.8). 

PDV values for people in the simplified text condition were also significantly different from 

the PDV values for people in the original text condition (F (1,524) =85.17, p-value <0.05). 

Similarly, PDV values were also significantly different between literal and inferential questions 

(F (1,524) =11.12, p-value <0.05). The results, however, did not show a significant interaction 

effect (F (1,524) =0.43, p-value >0.05). In other words, for both types of passages the users 

read (original or simplified) their PDV was significantly affected by type of the questions they 

answered (Table 4.8). The results of pairwise comparisons in Table 4 .8 show that PDV in the 

original text condition was significantly different between inferential and literal questions 

(PDV- inferential= 0.0060±0.0002 vs. PDV-literal=0.0066 ± 0.0002, F (1,524) =58.80, p-value 

<0.05). PDV in the simplified text conditions was also significantly different between inferen-

tial and literal questions (PD-inferential=0.0041±0.0001 vs. PD-literal=0.0049±0.0002, F 

(1,524) =31.97, p-value < 0.05). 

Table 4. 7 Results of Mixed Model ANOVA Comparing the Means of PD among Literal and 
Inferential Questions 

 F(1,477) p-value 

Task Demand 16.92 < 0.005 

Question Type 65.71 < 0.005 

Interaction  22.29 < 0.005 
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Table 4. 8 Descriptive Statistics and Pairwise Comparison between Means of PD in Different 
Task Conditions 

 

 

 
 

 

 

These results together support the hypothesis that different task demands significantly affect 

PD and PDV during a cognitive decision making task. The results also support the assertion 

that question type also affects PD and PDV values.  The results show an interaction effect be-

tween text type and question type on PDV, but not on PD. 

Table 4. 9 Results of Mixed Model ANOVA Comparing the Means of PDV among Literal 
and Inferential Questions 

 F (1,524) p-value 

Task Demand 85.17 < 0.005 

Question Type 11.12 < 0.005 

Interaction  0.43 0.52 

 

Table 4. 10 Descriptive Statistics and Pairwise Comparison between Means of PDV of Dif-
ferent Task Conditions 

 

 

 

 

 

 

Task Condition Question type Mean ± SD F(1,477) p-value 

Original Text 
Inferential 2.994 ±.004 

1.18 0.28 
Literal 2.998 ±.004 

Simplified Text 
Inferential 2.992 ±.003 

47.72 < 0.005 
Literal 3.007 ±.004 

Task Condition Question type Mean ± SD F(1,524) p-value 

 

Original Text 

Inferential .0060± .0002  

58.80 

 

< 0.005 Literal .0066 ± .0002 

 

Simplified Text 

Inferential .0041 ± .0001  

31.97 

 

< 0.005 Literal .0049 ± .0002 
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4.2.5 Exploratory Analysis  

As shown in part I of this study, examining pupil data in various time intervals is useful, and 

provides further information on the relation between pupillary responses and task condition. In 

addition, Fehrenbacher & Djamasbi (2017) showed that the way people distribute their effort 

over the decision time to complete a cognitive task varies within different time intervals. There-

fore, the objective of this exploratory study is to test whether we observe the same eye move-

ment pattern or user behavior when it comes to making decisions in answering questions about 

an original passage or its simplified version.  

I divided the interpolated time into three equal size portions of beginning, middle and end, and 

investigated the differences in the means of PD and PDV during these time intervals. As men-

tioned earlier in part I, because the task was not timed task duration was different among the 

participants, which resulted in different PD and PDV data points for each participant.  To stand-

ardize the number of PD and PDV values we used a cubic spline interpolation (McKinley & 

Levine, 2002). Therefore, the number of data points in each time interval is equivalent in the 

both task conditions (literal vs. inferential questions).  

Next, I performed two separate two-way ANOVAs. The first ANOVA tested whether PD dur-

ing answering the inferential question (PD-inferential) was significantly different between dif-

ferent text conditions during different time intervals (PD-inferential); and the second ANOVA 

tested the same effects on PD but this time during answering the literal questions (PD-literal).  

The results displayed in Table 4.10 show that, when answering inferential and literal questions, 

PD values for participants in the simplified text condition were not significantly different from 

PD values for participants in the original text condition during both inferential and literal ques-

tions. In other words, the results do not show a main effect for text type on PD-inferential 

(F(1,950)=0.13, p-value >0.05) as well as on PD-literal (F(1,1042)=3.42, p-value >0.05). The 

results however show that PD values were significantly different during the three time intervals 

(F (2,950) = 23.14, p-value <0.05). Furthermore, the results show that PD values were signifi-

cantly affected by the interaction between the text type condition and time interval divisions 

(F(2,950)=7.59, p-value <0.05) during the inferential question. Results also show that PD val-

ues were not significantly affected by the interaction between the text type condition and time 
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interval divisions during the literal question (F(2,1042)=0.58, p-value >0.05). Figure 4.9-a 

shows the pairwise comparison between PD of the original text condition and PD of the sim-

plified text condition during the three different time intervals and during inferential question. 

Results show that PD value during the simplified text condition is significantly different from 

PD value during the original text condition during the beginning and middle time intervals but 

not during the end time interval. An upward trend for PD values can be observed in both text 

conditions suggesting more intense cognitive activity at the end, when users were making de-

cisions. This figure also shows opposite trends, in different text conditions, in the beginning 

and the middle time intervals. 

Table 4. 6 Results of ANOVA for PD within different time intervals during inferential and 
literal questions 

 Inferential Literal 

 F p-value F p-value 

Task Demand 0.13 0.72 3.42 0.07 

Intervals 23.14 <0.005 28.30 <0.005 

Interaction  7.59 <0.005 0.58 0.56 

 

Figure 4.9-b shows the pairwise comparisons between PD-literal values in the original text 

condition, and PD-literal values in the simplified text condition during different time intervals. 

Results show that PD was not significantly different during any of the three intervals between 

the simplified and the original text conditions (PBeginning, PMiddle, PEnd > 0.05).  

(a) Inferential Question 

	

(b) Literal Question 
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Figure 4. 9 Average Values of PD during Three Different Time Intervals (Beginning, Middle, 
and End) and Two Task Conditions (Original vs. Simplified), and Two Different Question 

Types (Inferential vs. Literal) 
 

Next, I investigated the differences in the means of PDV during the three time intervals: be-

ginning, middle, and end.  As before, we conducted two separate two-way ANOVAs, one for 

PDV values captured during answering an inferential question (PD-inferential), and one for 

those collected during answering a literal question (PD-literal).  

The results of ANOVA and pairwise comparisons are indicated in Tables 4.11 and Figure 4.10 

for PDV during inferential and literal questions. As shown by the results, PDV is significantly 

different between simplified and original task conditions. PDV values are also significanlty 

different during different time intervals when answering an inferential question. There is also 

a significant interaction effect between task condition and time intervals during inferential 

questions.   

The results of ANOVA for literal questions were different from those obtained for the 

inferential questions. The results in Table 4.11 show that PDV values were significantly 

different between two task conditions, but they were not significantly different during the three 

time intervals. There was also no significant interaction effect (F(2,1044)=1.20, p-value >0.05) 

between task condition and time intervals. This suggests the significant effect of task condition 

on PDV did not depend on the time interval when answering literal questions. Results of the 

pairwise comparison in Figure 4.10-a indicate that, only during the last time interval.  

Table 4. 7 Results of ANOVA for PDV within Different Time Intervals during Inferential 
and Literal Questions 

 Inferential Literal 

F p-value F p-value 

Task Demand 59.03 <0.005 32.91 <0.005 

Intervals 26.25 <0.005 0.83 0.44 

Interaction  8.89 <0.005 1.20 0.30 
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PDV is not significantly different between original and simplified text conditions, but PDV is 

significantly different during the first and second time intervals (the beginning interval and the 

middle interval). A downward trend for PDV can be observed in both text conditions during 

answering inferential questions. The downward trend is more pronounced in the original text 

condition. At the end, when participants were making decisions, PDV values were quite simi-

lar. A downward trend for PDV can be observed in both text conditions during answering literal 

questions (Figure 4.10-b). There was a slight increase in PDV values in the middle of the orig-

inal text condition and a slight decrease in PDV in the middle of the simplified text condition. 

(a) Inferential Question 

	

(b) Literal Question 

 

Figure 4. 10 Average values of PDV during Three Time Intervals (Beginning, Middle and 
End), Two Different Task Conditions (Original vs. Simplified), and Two Different Question 

Types (Inferential vs. Literal). 
 

4.2.6 Conclusion and Discussion 

The main objective of this study was to test whether differences in task demand could be de-

tected via pupil data during a reading task.  Because pupil dilation and variation have been 

associated with cognitive activity, I hypothesized that pupillary responses were likely to reflect 

task demand in this study (simplified vs. original text conditions; and answering inferential vs. 

literal questions).  The results of ANOVA tests showed there was an overall significant differ-

ence in PD and PDV between the two text conditions and the two types of questions.  While 

the results showed an interaction effect between text conditions and question type for PD, no 
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interaction effect was observed for PDV.  These results support the hypotheses. I also con-

ducted exploratory ANOVA tests to refine the analyses.  I divided the task time into three 

intervals, and investigated PD and PDV values in each interval. Prior research indicated that 

studying PD and PDV during different time intervals could provide interesting insights for 

future pupillometry studies (Fehrenbacher & Djamasbi, 2017). Supporting the results of previ-

ous research, the results showed larger pupil dilation at the end of the decision period. These 

results also supported the finding of this prior research, which showed higher PD values were 

associated with lower PDV values.   

These results have important implications. First they show that PD and PDV can carry infor-

mation about task condition. It is important to note that both the task and task conditions in the 

previous study were different from the task and task conditions in this study. Hence, the results 

provide evidence for the robustness of pupillometry in IS research.  The results also show that 

examining pupil data in various time intervals during a decision task can provide valuable in-

sight about cognitive demand in a decision making task. For example, the results showed an 

upward trend for PD values during the decision time. The upward trend in pupil dilation for 

both inferential and literal questions at the beginning of decision periods suggests that partici-

pants were experiencing increased cognitive load at the beginning of the decision task (espe-

cially in the original text condition). The results also showed that during inferential question 

the difference in PDV values between text condition depended on the time interval of the 

decision task, they were signficatly different at the beginning and in the middle of the task but 

not signficantly different at the end.  This suggests that participants in the two different text 

conditions may have used different information processing strategies at the begining and in the 

middle of the task but used the same strategy at the end. Such findings suggest that PD and 

PDV can provide continuous measurement of cognitive load in a decision task. Future research 

is needed to examine these possibilities. Future studies can benefit from these findings which 

suggest calculating PDV as well as PD within different time intervals is likely to provide a 

more comprehensive understanding of cognitve load in cognitive tasks. In this study I looked 

at three different time intervals, however, future studies can explore whether breaking the total 

time into smaller intervals can improve understanding of user cognitve load.  
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As in any laboratory experiment, the results of this study are also limited to the setting and the 

task used. I used a single text passage. More text passages with varying level of complexity are 

needed to replicate the results.  The participants in the study were college students. Different 

participant groups with various demographics can help to test whether the results extend to other 

populations.  
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5 Study Three: Eye Movements and Reading Behaviour of 

Younger and Older Users 

In this section I conduct exploratory analyses to investigate the differences between generation 

Y and baby boomers in reading textual information online. The results of this research have 

been accepted for publication in the Proceedings of the HCI International Conference 2018. 

5.1 Introduction  

As discussed in the literature in chapter 2, Baby Boomers, born between 1946 and 1964 (age 

in 2017, 53 to 71) are the second largest generation in the U.S. Thus examining the reading 

behavior of older users and comparing it to those of younger users allows designers to better 

meet the needs of both user populations. Additionally, recent research calls for designing ad-

vanced systems that can respond to user needs in real time. To achieve this goal, various studies 

are needed to identify eye movements that can reliably detect user experience. To address this 

need, in this study we examined eye movement factors that are likely to reflect the overall 

reading experience of Baby Boomers and Generation Y. As presented in Chapter 2, fixation 

and saccade are two major eye movements that represent information processing behavior. 

Thus fixation and saccade metrics are extracted to investigate information processing during 

reading.  

An eye tracking study was conducted with 20 participants including 10 young generation and 

10 baby boomers.  The task required each participant to read a text passage about law and to 

provide answers to a set of questions about the passage, while the participants’ eye movements 

were recorded by a high speed eye-tracking device. The main objective of the study was to 

investigate a range of eye movement data that prove to be important in reading behavior and 

to examine whether these eye movements can reliably predict user age group and performance. 

This investigation not only facilitates a better understanding of the differences in reading be-

havior between the two generations but also contributes to research that aims at designing ad-

vanced systems. Identifying eye movement metrics that reliably predict a user’s age group can 
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help in designing adaptive systems that can respond to older and younger users appropriately 

in real-time. 

5.2 Methodology 

This section provides a brief review of the laboratory experiment that was conducted to col-

lect eye movement data used in this study. Furthermore, it provides details on the method 

used to process the eye-movement data captured from a number of participants who com-

pleted a cognitive task online.  

5.2.1 Experiment Design 

The task selected for this study included reading a passage and answering three questions about 

the passage. The passage was selected from a pool of GRE sample practice passages available 

on www.majortest.com. The topic of passage was about law and included 553 words. The pas-

sage yielded an overall readability score of 16.1 (Flesh-Kincaid grade level = 16.5, Gunning 

Fog Index = 20.1, Coleman-Liau Index = 9.7, SMOG Index = 15.8, Automated Readability 

Index = 18.1) which corresponded to a rather difficult reading level. As in prior research, the 

readability score was measured using the online tool: https://readable.io/text/.  Participants 

were recruited among college students and staff from a northeastern university at US. Of 20 

participants, ten were among young generation (age range of 18-30) and the other ten were 

baby boomers (age range 53-70). Each participant received a small incentive for their partici-

pation in the study. The eye tracker was calibrated for each participant before starting the task. 

This process requires participants to observe a moving dot on the eye-tracking screen. Tobii 

software version 3.4.5, and I-VT filter with 30°/sec saccadic velocity threshold was used to 

process raw gaze data into fixations and saccades. 

5.2.2 Data Preprocessing  

Studies suggests that older users are more “patient” than younger users when they view 

online material. They are likely to expend more cognitive effort when scanning a web page 

and tend to scan more areas on the web page (Chadwick-Dias et al., 2003; Djamasbi et al., 

2011). This difference in behavior is likely to be observed via saccadic eye movements when 
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processing textual information.  Willingness to expend more cognitive effort is likely to re-

veal itself in saccadic eye movements, which represent effort to move the eyes from one area 

of interest and refocus it on another area of interest. The list of saccadic eye movement met-

rics that we used in our study are displayed in Table 5.1.  

Table 5. 1 List of Eye Tracking Metrics 

 

  

Eye movement data obtained from the eye tracking software included the x and y-coordinates 

of the participant’s eye location on the screen (pixel), whether the eye movement was a fixation 

or saccade, and the duration of fixation or saccadic event in milliseconds. Additionally, the 

software provided the visual angle (measured in degree) that a gaze travel during a saccade 

(saccade amplitude). Table 5.2 displays the algorithm that we developed to calculate regressive 

and progressive saccades using x and y- coordinates of two consecutive fixation points. Ac-

cording to Rayner (2009) regressive saccades are backward saccades to a word or a line which 

were occurred earlier in the text, and hence they can be computed based on the positional in-

formation of consecutive fixations (Rayner, 1998; Rayner et al., 2006). I calculated regressive 

saccades as those in the opposite directions of reading (to the negative of x- and y-direction 

with respect to the top left corner of the screen delineated as x=0 and y=0).  

 

 

 

1 Regressive Saccade Count 
 

2 Progressive Saccade Count 

3 Average Saccade Duration 

4 Average Progressive Saccade Amplitude* 

5 Average Regressive Saccade Amplitude* 

*Saccade Amplitude (measured in degree) refers to 
the visual angle that a gaze travel during a saccade  
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Table 5. 2 Regressive and Progressive Saccade Tracking Procedure 
Locate the origin of the gaze x-y coordinate from eye-tracking system1.  
If 

  (absolute changes in Y values of the most recent consecutive gaze points (k-1 and 
k) is less than a predefined threshold,  ()$*+$*,

2,  
 

-./0, 1 − -./0,(1 − 1) =< ()$*+$*,     (1) 
 
t Then check for the changes in X values of those gaze points, 
8./0, 1 	&	8./0,(1 − 1), 

 
• If 8./0, 1 − 8./0, 1 − 1 < −()$*+$*,_<,.=,>>, 

3 
 

        (It indicates regressive saccade) 
 
• Else If 8./0, 1 − 8./0, 1 − 1 > 0  
 
       (it indicates progressive saccade) 
  ) 

Otherwise4    
(Check if the reader is looking at the point upper than its previous gaze or lower.  

• If 	-./0, 1 − -./0, 1 − 1 < −()$*+$*,,  
 
(It indicates regressive saccade) 

 
• If -./0, 1 − -./0, 1 − 1 > 0  

 
(It indicates progressive saccade) 
) 
End 

 

In this study, I was interested in examining overall page scanning behavior. Thus, I excluded 

shorter regressive saccades that are typically only three characters long (Rayner, 2009). 

																																																													
1 (The origin (0.,0) is on top left corner of the screen in Tobii X300, which means reading a text from left to right would return 

gaze points with increasing x values, and reading from top of the text down toward next lines would return gaze points with 
increasing y values) 

2 TH'CD'CE is the maximum pixel difference between each lines of the text on interface, which checks whether the reader is in 
the same line or went to a new line.  

3 TH'CD'CE_FEGHEII is number of pixels that include 3 letter character. This threshold is adopted from Reyner et al.  2009). 
4 the reader is reading from a different line: YGKLE k − YGKLE(k − 1) > TH'CD'CE 
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5.2.3 Regression Analysis  

To investigate whether the age group (i.e., Generation Y, Baby boomer) of the user can 

be detected during reading a passage online through saccadic eye-movements data, regression 

analysis was performed using the eye movements given in Table 5.1 as independent variables. 

Equation 1 shows the regression model used in this study. 

N(O) = P$
Q
$R" O$ + b,       (1) 

Where f(x) is a binary dependent variable:        N O =
1, 	TPTU	TVVWXY
0, UVZ[\	\X[XYP]^V[

  

O$ represents each of the eye metrics shown in table 1, and P$ are the coefficients corre-

sponding to each metric, and b is the intercept.  

Saccadic eye movements are representative of reading difficulty (Rayner, 1998), hence, 

I expected to detect a correlation between performance and saccadic metrics. To investigate 

this possibility, we used the following regression model. 

\(U) = _$
Q
$R" U$ + d,     (2) 

Where g(y) is refers to performance measured as the number of correct answers to three 

multiple choice questions. As in equation 1, U$ represents each of the eye metrics shown in 

table 2, and _$ are the coefficients corresponding to each metric.  

5.3 Results  

Mean and standard deviation of variables of interest are displayed in Table 5.3. As the values 

in Table 5.3 indicate, younger users on average had longer (in duration) and more saccadic eye 

movements. This behavior is consistent with previous research that suggests younger users, 

compared to older users, exhibit less patient viewing behavior (Djamasbi et al., 2011). The 

results also showed that older people had larger saccade amplitude, which indicates that to 

process the provided information their eyes traveled longer distances to scan the text. This eye 

movement behavior, consistent with previous research (Djamasbi et al., 2011), suggests a 

greater degree in willingness to expend cognitive effort to read textual information. 
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Table 5. 3Mean and Standard Deviation for the Eye Movement Variables for Each Age 
Group 

Eye movement Features Younger users Older users 
Regressive Saccade Count 124.3  106.9  
Progressive Saccade Count 480.7  455.7  
Avg. Saccade Duration (msec) 28.51 (±3.25) 25.50 (±3.23) 

Avg. Progressive Saccade Amplitude (degree) 3.65 (± 0.34) 4.20 ((± 0.34) 
Avg. Regressive Saccade Amplitude (degree) 4.94 (± 1.90) 5.06 (±1.26) 

	

Table 5.4 presents the results of regression analysis as modeled by equation 1. As the results 

show the two groups did not differ significantly in regressive saccades. However, the progres-

sive and regressive saccade amplitudes, as well as saccade duration and progressive saccade 

counts were significantly correlated with the age group of the users.  The results also show a 

stronger effect for the relationship between progressive and regressive saccade amplitudes and 

age of the users (as attested by the stronger p value and larger beta value).  These results suggest 

that saccadic eye movements may serve as a reliable predictor of users’ age group. 

Table 5. 4 Results of Regression Analysis for Different Age Groups as Dependent Variable 
and Eye Movements as Independent Variables 

 R2 = 0.87, Adj R2= 0.83 
 
Eye Movement Metric t-stat P-value Beta 
Regressive Saccade Count 1.27 0.22 -0.1 
Progressive Saccade Count 2.47 0.02 0.19 
Avg. Saccade Duration 2.14 0.04 0.12 
Avg. Progressive Saccade Amplitude 8.38 7.9E-7 -0.59 
Avg. Regressive Saccade Amplitude 5.88 3.9E-5 -0.40 

 

As mentioned earlier after reading the passage each participant was asked to provide answers 

to three questions about the passage. To further explore the differences between young gener-

ation and baby boomers we looked at the difference in performance of these two groups using 

two sample t-test. The results revealed no significant difference between the two age groups in 

performance. The results of the t-test support the results reported in Table 5.3, showing no 

significant differences in regressive saccades between the two groups. The observed behavior 

support previous research that showed while older adults were slower in cognitive processing, 

they performed relatively similar to younger adults.   
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I also investigated the relationship between eye movements and performance. In other words, 

I examined whether eye movements can be used to predict the reading comprehension perfor-

mance of users. To do so, I ran a regression on performance as the dependent variable and 

saccadic eye movement variables (Table 5.1) as independent variables. In the regression anal-

ysis, I used performance as a categorical variable with different values of (0, 1, 2, 3), where 

zero corresponds to no correct answers at all, and three corresponds to answering all the ques-

tions right. Since the performance of the two groups was not significantly different, we did not 

separate the two age groups. The results of regression analysis are shown in Table 5.5.  

Table 5. 5 Results of Regression Analysis for Performance as Dependent Variable and Eye 
Movements as Independent Variables  

R2 = 0.61, Adj R2= 0.15 
 
Eye Movement Metric t-stat P-value Beta 
Regressive Saccade Count 0.93 0.37 0.32 
Progressive Saccade Count 0.36 0.73 0.13 
Avg. Saccade Duration 0.02 0.99 -0.00 
Avg. Progressive Saccade Amplitude 0.42 0.68 0.13 
Avg. Regressive Saccade Amplitude 1.96 0.07 0.60 

	

As the results in Table 5.5 show none of the saccadic eye metrics were predictive of the task 

performance in the reading task. 

5.4 Fixation Analysis 

In the previous section I examined saccadic eye movements that may predict user age group 

and/or reading comprehension. In this section I looked at possible differences between the two 

user groups in regards to fixations. Note that consistent with prior research, fixations with du-

rations shorter than 100 ms were filtered out from the fixation data (Rayner, 2009). 

Figure 5.1 shows the heat map of aggregated gaze duration between the two groups of users, 

(a) for young generation and (b) for baby boomers. Green corresponds to minimum gaze dura-

tion, and red corresponds to maximum gaze duration (10.58 s in this heat map), which is the 

aggregation of gaze duration over all the participants who read the passage. The heat maps of 
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total gaze duration do not seem to reveal significant differences between the reading behaviors 

of the two groups of users.  

In addition to qualitative analysis using heat maps I also conducted a regression between dif-

ferent age groups as dependent variable and fixation eye metrics as independent variables. The 

result of regression analysis is given in Table 5.6. As the results show fixation metrics, such as 

average fixation duration and average fixation count, were not significantly correlated with the 

age group of the users.  

Table 5. 6 Results of Regression Analysis for Different Age Groups as Dependent Variable 
and Eye Movements as Independent Variables  

R2 = 0.033, Adj R2= 0.08 
 
Eye Movement Metric t-stat P-value Beta 
Fixation Count 0.44 0.66 0.05 
Average Fixation Duration -0.66 0.52 -0.08 

	

5.5 Discussion and Conclusion 

In this research, we examined the differences between young and old adults in online reading 

experience by comparing their eye movement behavior. Past research indicates that older 

adults are likely to expend more effort when processing information (Chadwick-Dias et al., 

2003; Djamasbi et al., 2011; Kemper et al., 2004; Rayner et al., 2006).  

Building on the previous research I examined whether differences between the two user groups 

reading textual information can be detected using their eye movements.  Because I was exam-

ining overall reading behavior (over the entire text passage) I expected to see differences in 

saccadic eye movements. The results show that saccadic eye movements (both regressive and 

progressive), as well as saccade duration and saccade counts in reading was a significant pre-

dictor of the user age group. The results extend previous literature in reading (Rayner, 1998, 

2009). First, in this study I focus on overall passage reading rather than sentence or word by 

word processes. Second, the results suggest that saccadic metrics may serve as a strong predic-

tor of users’ age group.  Third, the results indicate that average regressive saccade amplitude 

may serve as a predictor of reading comprehension. These findings have important implications 

for capturing online and/or screen reading experience of textual information. For example, it 
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can be used to examine the impact of text simplification on reading experience (Djamasbi et 

al., 2016).  

Fixation metrics such as fixation duration or fixation count were not significant in identifying 

the differences between the two age groups in our study. I also did not observe any major 

differences between the aggregated fixation duration of the participants on the passage, accord-

ing to Fig 5.1. This may be because in this study I focused on passage level reading experience 

and not on the sentence or word level analysis. For example, I did not consider the effect of 

word predictability or word frequency in fixation duration during reading. Additionally, the 

sample size was small; by expanding the sample size I may also see significant differences in 

fixation metrics between old and young users. 

The analysis examining the relation between performance and eye movement revealed that 

reading comprehension performance was not correlated with eye movements. It is likely that 

with a larger sample size the relationship between regressive saccade and performance would 

become stronger. 

Overall these findings are consistent with previous literature that have indicated that there are 

differences between young and old adults in online reading and web experience. For example, 

Rayner et al. (2006) investigated the differences between older and younger adults in reading 

and learned that older adults make more fixations, longer fixations and more regressions. I also 

saw significant differences between regressive saccadic eye movements among younger and 

older adults during reading (Table 5.4). Overall, the results showed that user population 

(younger vs. older) when they read textual information can be predicted using the eye move-

ment data. These results add to the previous research by investigating the eye movements that 

are representative of cognitive processing during online reading, and by focusing on the pas-

sage level reading rather than sentence level reading, and by comparing the reading behavior 

of younger and older adults on a relatively long and difficult text passage.  
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(a)   (a) Young Generation 

	

(b)   (b) Baby Boomers 

	

Figure 5. 1 Heat map of aggregated gaze duration – a comparison between (a) young genera-
tion and (b) baby boomers 

As in any other research our study is not without limitations. Such limitations, however, pro-

vide opportunity for directing future research efforts. For example, future studies, including 

some of our own planned experiments, are needed to test text passages with different content 

other than law to see whether similar results are obtained. Expanding population to a larger 

number can also help enhancing the generalizability of our results.  
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6 Study Four: Developing a Predictive Model for Reading 

Based on Age and Cognitive Load 

6.1 Introduction  

Reading interfaces are important in HCI research as they allow the users to interact with the 

computer interface in their normal language (Attar, 2016). Any improvement in reading inter-

faces can lead to better performance and comprehension in a wide variety of important tasks. 

The goal of this study is to develop two machine learning models that can be used to design a 

user profiling model based on age and cognitive load of the user during a reading comprehen-

sion task. The proposed approach consists of user characterization and user’s cognitive load 

measurement, while the user reads text. Figure 6.1 illustrates the proposed theoretical frame-

work. Eye tracking is used to collect user’s eye-movement while reading passages. The eye-

movement data is preprocessed and used to train two machine learning models, one for identi-

fying the user’s age characteristics (e.g., older vs. younger user) and one for detection of level 

of cognitive load (due to task condition) that user is experiencing while reading texts.  

 

Figure 6. 1 User Profiling Model Block Diagram 
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The discussed literature in chapter 2 suggests that 1) eye movements can be used to understand 

the cognitive processing during reading (section 2.3), and 2) there are differences between 

younger and older adults’ online reading and web experience (section 2.4). Taking the differ-

ences into account, the first research question is whether the age group of a user (younger/older) 

can be distinguished using a machine learning model of user’s eye-movements when they read 

textual information, and second question is whether the level of cognitive load can be also 

detected using another machine learning model using eye movement metrics.  

Eye tracking is used to collect user’s eye movements while reading passages. The raw eye-

movement data is preprocessed and used to detect the user’s task load (e.g., higher or lower 

extraneous cognitive load) as well as user’s age characteristics (younger vs. older user). De-

tecting user’s level of cognitive load, and user’s age characteristic is important because it can 

help research in adaptive user interfaces that can provide a personalized experience for indi-

vidual users. 

The machine learning models I developed in this study can automatically detect the following 

scenarios:  

Scenario A. User is older, and has a higher level extraneous cognitive load (or task load) 

Scenario B. User is younger, and has a lower level extraneous cognitive load (or task 

load) 

Scenario C. User is younger, and has a higher level extraneous cognitive load (or task 

load) 

Scenario D. User is older, and has a lower level extraneous cognitive load (or task load) 

The output of my model can be used in future studies that design adaptive textual interface to 

better address older and younger user needs. 

6.2 Methodology 

I designed an eye tracking study to collect eye movement data during reading. A passage se-

lection process was performed to select 2 passages with different topics for the study. The goal 
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was to adopt a subject-rating method to sort passages based on their level of difficulty. The 

following subsection provides details of the adopted passage selection process.  

6.2.1 Passage Selection Process 

Six passages with different topics were chosen from a GRE sample test practices online.5 To 

select the best passages for this study, I went through a systematic procedure. First I measured 

the readability score of each passage using the free online tool: https://readable.io/text/. Then I 

picked six passages with highest level of difficulty (highest readability score), and a moderate 

length (see figure A.1). The goal was to choose two passages among the six passages that not 

only had highest readability score, but were also rated by participants as the most difficult 

passages to read and understand. To obtain feedback on the passages difficulty level, I designed 

a moderated lab study, where 18 students (10 male, 8 female, age range between 22 to 31) were 

recruited to participate in the study. Each participant was assigned to read a set of four passages 

(randomly selected among six passages). The task included reading the passages, and rating 

the difficulty of the passage using the Subjective Mental Effort Questionnaire (SMEQ), which 

was used to subjectively measure how hard the participant found the passage to comprehend. 

SMEQ is a single item questionnaire with a rating scale from 0 to 150, which includes nine 

verbal extending from “Not at all hard to do” (just above zero) to “Tremendously hard to do ” 

(above 110) in their scale (Sauro & Lewis, 2012).	The study then followed with an interview 

session to gather more information about the overall reading experience of the passages. In 

particular, the participants were asked to rate the task difficulty from the scale of 1 to be easiest 

to do and 7 to be the hardest to do. The results of SMEQ scores and rating scores obtained 

during interviews are reported in Table 6.1.   

The criteria for choosing the most difficult two passages for the study was based on average 

SMEQ rating, and the interview ratings. Passages D and E which received the highest scores 

for SMEQ (66.11, and 70.22), highest rating (5.06 and 4.67) were selected among the six pas-

sages to proceed with. Passage D and E yielded overall readability scores of 16.1 and 16.4 

correspondingly, which both corresponded to a rather difficult reading level. Passage D was 

																																																													
5 www.majortests.com 
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about law and passage E was about Electric Shock Therapy (see Fig. 6.2).  The rest of passages 

are provided in Appendix A. 

 

 

Figure 6. 2 Passages Selected for the Study Based on Participants Subjective Rating 
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As mentioned earlier, one dimension of user profiling is cognitive load (Figure 6.1). Hence, to 

manipulate the level of cognitive load, the next step was to simplify passages D and E using 

plain language standards used in previous research (Djamasbi, et al., 2016-a) (Table 4.1). The 

original passages D and E are named OA and OB, and the simplified versions are named SA 

and SB in the rest of this section.  

Table 6. 1 Results of Subjective Rating and SMEQ for the Six Passages 

Passage  A B C D E F 

SMEQ Score 36.44 44.78 63.33 66.11 70.22 53.89 

Rating 3.56 4.11 4.50 5.06 4.67 4.50 
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Previous research has shown that simplifying passages using the plain language standards dis-

played in Table 4.1 decreases the level of cognitive load or task demand (Djamasbi, et al., 

2016-b). Simplifying using plain language rules reduced passage OA readability score from 

16.1 to 10 in SA and passage OB readability score from 16.4 to 11 in SB. 

Once the passages were selected and simplified using plain language rules, the next step was 

to design the eye-tracking study to collect participants’ eye-movement data during reading of 

the original and simplified versions of the two passages selected for this study.  

6.2.2 Eye Tracking Experiment Design  

A total of 136 participants were recruited to participate in the study, among which 80 were 

from a younger population (18 to 30 years old, mean age=23.5), and 56 were older adults (50-

70 years old, mean age=56), and 84 females and 52 males. Each participant received a small 

incentive for their participation in the study.  

Each participant was assigned to read two passages (one original, one simplified) on the screen. 

To eliminate the order bias, passages were presented to participants in a Latin square fashion, 

i.e., out of two original passages and two simplified passages, four pairs (OA-SB, SB-OA, OB-

SA, SA-OB) were created. To rate the mental effort spent in reading and comprehending the 

passage, after reading each passage, participants were asked to answer the SMEQ survey which 

was presented to the participant immediately after reading each passage. Participants were told 

they are required to answer questions about passages they read. This was to encourage careful 

reading of the passages. After administering of SMEQ, participants were asked to provide an-

swers to three questions about each passage. The passage was given to the participants for their 

references, on the left side of the screen that included the questions. Reading and decision 

making (e.g., selecting the correct answer to a question) are different cognitive activities. Be-

cause the focus of this study was user profiling during reading, only the eye movement during 

reading task was used for analysis.      

6.3 Data Analyses 

Eye tracking technology was used to collect the stream of eye movement data while the partic-

ipants were completing the reading task. The eye tracking software and hardware used in this 
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study is similar to the one used in the previous studies in previous chapters. The software was 

an updated version of Tobii Studio 3.4.5. I-VT filter with 30°/sec saccadic velocity threshold 

was used to identify fixations and saccades in the gaze stream. A set of eye-tracking metrics, 

or feature matrix was obtained and computed from eye-tracking raw recordings of gaze coor-

dinates, gaze duration and pupil dilation during fixation and saccade events.  The next section 

describes the details of how the eye movements feature matrix was computed.  

Of 56 older users who participated in the study, four did not calibrate well, or their gaze sam-

pling percentage was less than 80% (Kruger et al., 2013).  Of the 80 younger participants two 

students did not calibrate. Thus, the data from these six participants were removed from the 

data as suggested by Kruger et al., (2013) .  

6.3.1 Building of Eye-tracking Feature Matrix 

As mentioned earlier in section 2.3 eye movements such as fixation duration, fixation number, 

and number and duration of regressive and progressive saccades have been used by a number 

of researchers in the eye tracking-reading literature to understand the link between eye move-

ments and reading (Rayner, 1998; Ashby et al., 2005; Rayner 2009; Rayner and Pollatsek 2012; 

Campbell & Bovee, 2014). In this study, I used the eye movement measures reported in the 

previous research for building the feature matrix. I also added pupillary data to the feature 

matrix, which is further explained in the following section. The reason for adding the pupillary 

data is that my earlier studies showed this data was successful in detecting cognitive load.  

Each parameter was measured over the duration of the task (reading two text passages) com-

pleted by each participant in the study. Machine learning feature sets are often developed using 

statistical properties of fundamental parameters. Hence, basic statistical properties, such as 

mean and standard deviation, were calculated for each of the parameters.  

Fixation Features  

Tobii software provides raw gaze durations and gaze types (fixation/saccade) correspond to 

gaze event. Three features were extracted for fixation events. The average and standard devia-

tion of fixation durations, and total duration of all fixations were calculated. Since the passages 
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had different length, total fixation duration was divided by words count of each passage to 

obtain and standardized value for each participant’s fixation. Table 6.2 present the fixation 

features computed to be included in the feature matrix.  

 Table 6. 2 List of Fixation Metrics 

1 Total Fixation Duration 
2 Average Fixation duration (millisecond) 
3 STD of Fixation duration (millisecond) 

 

Saccadic Features  

Average and standard deviation of saccade duration, average and standard deviation of regres-

sive and progressive saccade durations as well as average and standard deviation of regressive 

and progressive saccade amplitude were calculated. Number of regressive and progressive sac-

cades and their ratio were also calculated. Table 6.3 illustrates all saccadic features calculated 

to be included in the study’s feature matrix.   

Table 6. 3 List of Saccadic Metrics 

1 Average Saccade Duration 
2 STD of Saccade Duration 
3 Average Regressive Saccade Duration 
4 STD of Regressive Saccade Duration 
5 Average Progressive Saccade Duration 
6 STD of Progressive Saccade Duration 
7 Regressive Saccade Count 
8 Progressive Saccade Count 
9 Regressive Saccade Count/Progressive Saccade Count 
10 Average Regressive Saccade Amplitude 
11 STD of Regressive Saccade Amplitude 
12 Average Progressive Saccade Amplitude 
13 STD of Progressive Saccade Amplitude 

 

Pupillary Features 

Tobii Studio software also provides raw pupil dilation data. I also calculated the Pupil Dilation 

Variation (PDV) or rate of change of pupil dilation by taking the temporal derivative of pupil 

dilation (see section 3.1).  I used pupillary data such as average and standard deviations of pupil 
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dilation and pupil dilation variation as suggested by study I in chapter 3. As shown in section 

4.1, when pupillary data including pupil dilation (PD) and pupil dilation variation (PDV) are 

separated during saccade and fixation, they provide invaluable information about cognitive 

effort during reading. Therefore, in this study, I separated the pupillary data during fixation and 

saccade. Time series analyses of pupillary data during a reading task in section 4.1 revealed 

that partitioning the time interval of reading into smaller intervals of beginning, middle and 

end, and analyzing pupillary data within each interval provides additional information about 

cognitive effort during reading. In this study, however, dividing the task time into smaller in-

tervals will result in three different values for each pupillary metrics which is not efficient for 

the classification task. Therefore, instead of time domain analyses I used frequency domain 

analyses of pupillary data by computing the power spectral density of pupillary data.  

Six frequency domain features were calculated from preprocessed pupil dilation and pupil var-

iation signals. Fast Fourier transform algorithm (Cooley & Tukey, 1965), and R package “spec-

tral” were used to calculate power spectral density (PSD) of pupil dilation and variation data. 

Spectral or frequency domain analysis in a nutshell is decomposition of a time series into un-

derlying sine and cosine functions of different frequencies, which allows us to determine those 

frequencies that appear particularly strong or important. The reader can refer to (Bloomfield, 

2000) for more information regarding frequency domain analysis. Area under the PSD curve 

(AUC) for both pupil dilation and pupil dilation variation were calculated and were used as the 

frequency domain features. Further, AUC was calculated for PSD during fixation and saccade 

separately. These features were then included in the feature matrix set. (Table 6.4). 

Table 6. 4 List of Pupillary Metrics 

1 Pupil Dilation PSD 
2 Pupil Variation PSD 
3 Pupil Dilation-Fixation PSD 
4 Pupil Dilation-Saccade PSD 
5 Pupil Variation-Fixation PSD 
6 Pupil Variation-Saccade PSD 
7 Avg. Pupil Dilation-Fixation 
8 Avg. Pupil Dilation-Saccade 
9 STD of Pupil Dilation-Fixation 
10 STD of Pupil Dilation-Saccade 
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11 Avg. Pupil Variation-Fixation 
12 Avg. Pupil Variation-Saccade 
13 STD of Pupil Variation-Fixation 
14 STD of Pupil Variation-Saccade 
15 Avg. Pupil Fixation/Avg. Pupil Saccade 
16 Avg. Pupil Variation Fixation/Avg. Pupil 

Variation Saccade 
 

Combined Ratio Features 

The results in chapter 3 showed that the ratio of pupil dilation during saccade to fixation was 

one of the most important metrics in the classification task (Table 3.7). Hence, in this study 

pupillary data were also combined to develop ratios that could provide additional insight. For 

example, the ratios of PD and PDV during saccade and fixations were calculated and added to 

the feature set (Table 6.4). The ratio of pupil dilation and variation during saccades and fixa-

tions reflect the distribution of cognitive effort during information search and information pro-

cessing.  

By putting together, the above features (Table 6.2 to 6.4), an eye-tracking feature matrix in-

cluding 33 features is obtained. Table 6.5 presents the total set of 33 eye-tracking metrics used 

in this study.  

Table 6. 5 List of Eye Movement Metrics used in the Reading Comprehension Study 

Eye Movements Eye Metrics (Features) 

Fixation 
 

Total Fixation Duration 
Avg. Fixation Duration 
STD Fixation Duration 

Saccade 
 

Avg. Saccade Duration 
STD Saccade Duration 
Avg. Regressive Saccade Duration 
STD Regressive Saccade Duration 
Avg. Progressive Saccade Duration 
STD Regressive Saccade Duration 
Avg. Progressive Saccade Amplitude 
STD Progressive Saccade Amplitude 
Avg. Regressive Saccade Amplitude 
STD Regressive Saccade Amplitude 
Regressive Saccade Count 
Progressive Saccade Count 
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Regressive Saccade Count/Progressive Saccade Count 

Pupil Dilation 
 

Pupil Dilation PSD 
Pupil Variation PSD 
Pupil Dilation-Fixation PSD 
Pupil Dilation-Saccade PSD 
Pupil Variation-Fixation PSD 
Pupil Variation-Saccade PSD 
Avg. Pupil Dilation-Fixation 
Avg. Pupil Dilation Saccade 
STD of Pupil Dilation-Fixation 
STD of Pupil Dilation-Saccade 
Avg. Pupil Variation-Fixation 
Avg. Pupil Variation-Saccade 
STD of Pupil Variation-Fixation 
STD of Pupil Variation-Saccade 

Combined Eye 
Movements 

Avg. Pupil Fixation/Avg. Pupil Saccade 
Avg. Pupil Variation Fixation/Avg. Pupil Variation Sac-
cade  
Avg. Fixation Duration/Avg. Saccade Duration 

 

The feature metrics computation and preprocessing used for this study were implemented in 

R version 3.4.2 on Windows 7, with Core i5 CPU and 3.30 GHz speed machine. I used R li-

braries such as “spectral” (Maintainer & Seilmayer, 2016) for frequency domain analysis of 

pupillary data, and “pracma” (Hans etal., 2018) to calculate the area under the curve of PSDs.  

6.3.2 Developing the Eye Tracking Machine Learning Models 

Two eye tracking machine learning models were developed in this study to solve the classifi-

cation problems: Age (younger/older user), and Cognitive Load (original/simplified text). The 

eye-tracking feature matrix including 33 eye-movement features shown in Table 6.5, was used 

to develop the model. Table 6.6 shows the feature matrix dimensions for the two classification 

tasks. 

Table 6. 6 Feature matrix used in Cognitive Load classification vs. Age Classifications 

 Cognitive Load Classification Age Classification 
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Number of subjects 
65 [OA] 
65 [OB] 
130 [OA_OB] 

65 [SA] 
65 [SB] 
130 [SA_SB] 

156 
[younger] 104 [older] 

Number of features 33 33 
 

Similar to what was used in Chapter 3 (section 3.2.7), the following three steps were adopted 

to develop the machine learning models:  

• Effective feature set for each classification task were chosen according to random forest vari-

able importance and a systematic feature selection approach. 

• Training dataset were built using a bootstrapping replacement process for each classification 

task.  

• Random Forest classifiers were applied on the corresponding test datasets.  

For more details of the above steps the reader can refer to Chapter 3, section 3.2.7. In this study, 

I used 200 number of bootstraps (Efron & Tibshirani, 1994), with a random forest classifier of 

maximum 100 number of trees.  

From Table 6.6 one can see that the classes for Cognitive load classifier is balanced (130 orig-

inal vs 130 simplified), however the classes are imbalanced for the Age machine learning task 

(156 young vs. 104 old).   

Below are reasons which leads to reduction in performance of machine learning algorithm us-

ing an imbalanced data set: Machine learning algorithms struggle with accuracy because of the 

unequal distribution in dependent variable since the assumption is the data set has balanced 

class distributions, which causes the performance of the classifier to get biased towards major-

ity class. Classifiers can have good accuracy on the majority class but very poor accuracy on 

the minority classes due to the influence that the larger majority class has on traditional criteria 

(Yıldırım, 2016). Researchers have generally used two kinds of solutions for data classifica-

tions dealing with imbalanced problems: solving in data level by re-sampling, and solving in 

algorithm level by using design sophisticated classification approaches, where the prior one is 
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mostly preferred (Yıldırım, 2016). The sampling techniques are mainly divided into two sub-

groups: under sampling and over sampling. Under sampling method removes examples from 

the majority class to make the data set balanced. This method tries to balance the distribution 

of class by randomly removing majority class samples. The drawback of under sampling 

method is that it can discard potentially useful information that could be important for classi-

fiers. Over sampling is a sampling approach which balances the data set by replicating the 

examples of minority class. The advantage of this method is that there is no loss of data as in 

under sampling technique. The disadvantage of this technique is that it may lead to over fitting 

and can introduce an additional computational cost if the data set is already fairly large but 

imbalanced (Yıldırım, 2016).  

In the present study to address the imbalanced classes for the Age classification task, I used an 

improved under sampling method by using a bootstrap based under sampling technique. The 

way this process works is in every bootstrapping, training data from 104 randomly chosen 

younger subjects is used along with the original 104 older subjects’ training set to train the 

random forest classifier. Due to 200 number of bootstraps, this way we can take advantage of 

all young subjects’ training data in building the classifier while making sure that balanced clas-

ses are used to perform the classification task.  

The machine learning algorithms used in this study were implemented in R version 3.4.2. I 

used R libraries such as ISLR (James et al., 2018), tree (Brian & Ripley, 2018), random forest, 

e1071(Meyer et al., 2017), and caret (Max et al., 2018).  

6.4 Results  

Two machine learning models were developed to detect user’s cognitive load (task condition: 

original vs. simplified passages) and age (young vs. old) using the methodology described 

above. In the followings, the performance of each machine learning model is discussed. As 

mentioned before, bootstrapping random forest classifier with 200 replications and maximum 

number of trees of 100 was used to develop the machine learning models. For details of the 

random forest algorithm and bootstrapping process, the reader can refer to Chapter 2 of the 

thesis.  
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6.4.1 Cognitive Load (CL) Classification Results 

As mentioned earlier each participant was randomly assigned to read two passages, one origi-

nal version and the other simplified. Four sequences were made from four passages (OA-SB, 

SB-OA, SA-OB, and OB-SA). Therefore, of 130 total participants each passage was read by 

65 participants (Table 6.6). 

A) Passages Subjective Rating and Performance Results 

I used two-sample t-test to verify whether the subjective SMEQ ratings of original and simpli-

fied versions of each passage were significantly different. Table 6.7 shows the average, STD 

and the results of t-test for SMEQ questions. As the results show participants rated passage OA 

to be significantly more difficult as compared to passage SA (63.69 vs. 46.62). Similarly, par-

ticipants rated passage OB to be significantly more difficult as compared to passage SB (49.03 

vs. 34.40). These results indicate that simplifying passages were effective in reducing the level 

of cognitive load in reading. 

Table 6. 7 Avg., STD and the Results of t-test for Subjective SMEQ Rating for Passages A 
and B  

 OA SA OB SB 
Mean 63.69 46.62 49.03 34.40 
STD 25.09 26.65 31.91 25.60 

p-value 0.0003 0.005 
 

Table 6. 8 Avg., STD and the Results of t-test for Performance for Passage A and B 

 OA SA OB SB 
Mean 1.00 1.05 0.85 0.83 
STD 0.85 0.96 0.83 0.74 

p-value 0.77 0.91 
	

To make sure that participants would be engaged in reading the passage they were instructed 

that they are provided with some questions about the passage after reading the passage. As 

mentioned earlier the eye movement data during this part (answering questions about the task) 

was not included in the analysis.  Nevertheless, the performance data can provide further in-

sight about the overall difficulty of text passages. Results of performance in Table 6.8 indicates 
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that both original and simplified version of the text were fairly difficult as evidenced by the 

mean number of correct answers. This is not surprising as the text was selected from the pool 

of GRE passages, and the ones with highest difficulty level were chosen for this study. To 

confirm that participants were engaged in reading, gaze videos of each participant was manu-

ally reviewed. This manual analysis showed that participants read the provided text carefully 

and that they were equally engaged in reading both original and simplified passages, even 

though the level of difficulty was different.  

B) Cognitive Load Classification Results 

To build the cognitive load machine learning model, feature selection and classification pro-

cesses were run three times with the following 3 settings.  

- Feature matrix with 33 features from participants who read passages OA and SA (33 by 

130 feature matrix related to passage A, with 65/65 original/simplified classes) 

- Feature matrix with 33 features from participants whom read passages OB and SB (33 by 

130 feature matrix related to passage B, with 65/65 original/simplified classes) 

- Feature matrix with 33 features from participants who read passages OA, OB, SA and 

SB (33 by 260 feature matrix related to both passage A and B, with 130/130 original/sim-

plified classes) 

Table 6.9 summarizes the above settings.  

Table 6. 9 Cognitive Load Classification Tasks and Settings  

 
CL Classification 

Task (1) 

CL Classification 

Task (2) 

CL Classification 

Task (3) 

Participants involved 
`aPbb	1: de	 65  

`aPbb	2: ie	(65) 

`aPbb	1: dj	 65  

`aPbb	2: ij	(65) 

`aPbb	1:
de	
dj	

	(130) 

`aPbb	2:
ie	
ij	

	(130) 

Feature Matrix Di-

mension 
33 by 130 33 by 130 33 by 260 
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Figures 6.3 to 6.5, and tables 6.10 to 6.13 demonstrates the results correspond to above three 

classification tasks.  

For the first classification task, where dataset from OA and SA readers were used to build the 

classifier, RF variable importance graph (Figure 6.3) shows that one of the frequency domain 

pupillary feature (area under the curve of PSD of pupil dilation variation) is the most discrim-

inative feature (importance value=7.67) in classifying eye movements of participants who 

read OA passage versus those who read SA passage.  



	
	

111	

 

Figure 6. 3 Variable Importance Plot for Passage A (Cognitive Load Classification Task) 
	

Using a similar systematic approach proposed in Chapter 3, four features with the highest var-

iable importance were chosen to build the OA-SA machine learning model (Table 6.10).  
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Table 6. 10 Selected Features for Cognitive Load Detection Model Using Passage A  

1 Pupil Dilation Variation PSD  

2 Pupil Dilation – Fixation PSD 

3 Avg. Regressive Saccade Duration 

4 Pupil Dilation PSD 

 

Figure 6.4 illustrates the performance of the OA-SA classifier built from the selected features 

(Table 6.10) against the number of trees. It can be observed that the performance of the clas-

sifier is about 79% with about 30 number of trees.  

 

Figure 6. 4 Random forest average accuracy vs number of trees for cognitive load detection 
model using passage A  

RF variable importance graph (Figure 6.5) in the second classification task, where dataset from 

readers of OB and SB were fed to the classifier, shows that average progressive saccade dura-

tion is the most discriminative feature (importance value of 8.10) in classifying the eye move-

ment data of participants who read OB and SB passages.  
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Figure 6. 5 Variable Importance Plot for Passage B (Cognitive Load Classification Task 2) 

Three features with the highest variable importance were systematically chosen to build the 

second (OB-SB) machine learning model (Chapter 3). Table 6.11 shows the 3 features selected 

for the classification task.  
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2 STD Progressive Saccade Duration 

3 Avg. Regressive Saccade Duration 

 

Figure 6.6 shows the performance of the OB-SB classifier built from the selected features 

(Table 6.11) vs. the number of tree. One can observe that the performance of the classifier is 

about 79% with about 20 number of trees. 

 

Figure 6. 6 Random forest average accuracy vs number of trees for cognitive load detection 
model using passage B  

 

RF variable importance graph in the third integrated classification task (Figure 6.8), where 

dataset from readers of both original passages (OA, OB) and readers of both simplified pas-

sages (SA, SB) were combined and used to train the classifier. The results in figure 6.7 show 

that area under the curve of PSD of pupil dilation signals and average progressive saccade 

duration are the most discriminative features (importance values of 8.33 and 6.06) in classify-

ing the eye movement data of participants who read original passages vs. simplified passages. 
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Figure 6. 7 Variable Importance Plot (Cognitive Load Classification Task 3) 
Five features with the highest importance values were systematically chosen to build the inte-

grated (OA-OB_SA-SB) machine learning model. Table 6.12 shows the five features selected 

for the classification task.  
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Table 6. 12 Selected Features for Cognitive Load Detection Model Using Passages A and B 
combined 

1 Pupil Dilation Variation PSD 

2 Avg. Progressive Saccade Duration 

3 STD Progressive Saccade Duration 

4 Avg. Regressive Saccade Amplitude 

5 Pupil Dilation-Fixation PSD 

 

The performance of the integrated machine learning model of cognitive load is shown in Fig-

ure 6.8. One can observe that the classifier has about 70% accuracy with more than 50 trees. 

 

Figure 6. 8 Random forest average accuracy vs number of trees for cognitive load detection 
model using passages A and B combined 

 

To investigate consistency and generalizability of feature sets in different scenarios I used the 

above selected features from OA-SA, OB-SB and integrated OA-SA_OB-SB models and built 

new models. The objective is, for example, if I use features from passage A (Table 6.10) and 

build a model using Passage B’s data how it affects the performance of classification. Table 
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6.13 summarizes all the performances. It can be observed that the selected feature set in inte-

grated machine learning model (OA-OB_SA-SB) is the most robust feature set in classifica-

tion, since it results in a more consistent performance when applied to different target datasets 

(Table 6.13). For example, when using selected features of OA-OB_SA-SB (from Table 6.12) 

model to classify users who read OA and SA passages, it results in classification performance 

of around 72% while using the selected features of OB-SB model for the same classification 

task results in 54% accuracy. Similarly, when using the selected features of OA-OB_SA-SB 

model to classify the users who read OB and SB passages the accuracy is 78%, while using the 

selected features of OA-SA for the same classification task results in an accuracy of 50%. 

These results suggest that using eye movement features of the combined passages data results 

in higher and more consistent performance when used to classify different passages. Therefore, 

one can conclude that using more number of passages may result in enhancing the classification 

performance and generalized eye-movement feature set.  

Table 6. 13 Performance of Cognitive Load Classifiers 

	
Features Selected from  

OA_SA OB_SB OAOB_SASB 

Target C
lasses 

OA vs. SA 79.45% 54.60% 72.49 % 

OB vs. SB 50% 79% 78% 

OAOB vs. SASB 62.50% 57.16% 70% 

 

Average and standard deviation of all the eye movement features used in building the feature 

matrix for cognitive load classification task are given in appendix A, in Tables A.1 and A.2.  

6.4.2 Age Classification Results  

Overall 78 young and 52 old subjects participated in the study, each read a pair of passages 

(OA/SB) or (OB/SA). As a result, 158 eye-movement recordings were collected from 
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younger participants and 104 data from older subjects. Table 6.14 shows how the passages 

distributed among younger and older classes. 

Table 6. 14 Age Classification Settings  

Classes 

`aPbb	1: -VZ[\XY	 156 →

de	(41)

dj	(37)

ie	 37
ij	(41)

 

`aPbb	2: daoXY	 104 →

de	(24)

dj	(28)

ie	 28
ij	(24)

 

Feature Matrix Dimension 33 by 260 

 

A) Passages Subjective Rating and Performance Results 

I used two-sample t-test to verify whether the subjective SMEQ ratings of original and simpli-

fied versions of each passage were significantly different among the two age groups. Table 

6.15 shows the average, STD and the results of t-test for SMEQ questions for passage A and 

Table 6.16 shows the same values for passage B. As the results show there is no significant 

differences in the rating of passages between older and younger participants for passage A. For 

the original version of passage B (OB), older adults’ rating of difficulty of the passage was 

significantly lower than younger users’ rating (Table 6.16 - 36.43 vs 58.57). These results sug-

gest that except for the original passage B, there was no significant differences between per-

ceived mental effort of older and younger adults in reading the passages.  

The comparison between older and younger adults’ performance results for passage A and 

passage B are shown in Tables 6.17 and 6.18. The results show that performance among the 

two age groups was not significantly different for passage A, while for passage B, older adults 

performed significantly better compared to younger users, for both conditions of text.  The 

results of readability scores for original passages A and B (16.1 and 16.4 respectively) showed 

that passage B was harder than passage A. This was the case even after simplification (reading 

score 10 for simplified A vs. 11 for simplified B). The results show that older people performed 
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better than the younger people for the harder text.  This difference facilitates the possibility to 

test the robustness of eye movements in predicting age regardless of differences between the 

two groups in perceived difficulty of the task and/or differences in performance.  

Table 6. 15 Subjective SMEQ Rating for Passage A (younger vs Older Adults) 

 OA SA 
 younger older younger older 

Mean 64.07 63.04 47.56 45.36 
STD 24.94 25.86 25.51 28.51 

p-value 0.87 0.74 
	

Table 6. 16 Subjective SMEQ Rating for Passage B (younger vs Older Adults) 

 OB SB 
 younger older younger older 

Mean 58.57 36.43 36.98 30.00 
STD 32.16 27.28 25.16 26.27 

p-value 0.005 0.29 
 

Table 6. 17 Performance – Passage A (Younger vs Older Users) 

 OA SA 
 younger older younger older 

Mean 1.00 1.00 0.89 1.25 
STD 0.77 0.98 0.96  0.93 

p-value 1 0.16 
 

Table 6. 18 Performance – Passage B (Younger vs Older Users) 

 OB SB 
 younger older younger older 

Mean 0.62  1.14 0.68 1.08  
STD 0.76  0.84 0.61 0.88  

p-value 0.01 0.03 
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B) Age Classification Results 

To build the age classification model, feature selection and classification processes were run 

on a feature matrix with original 33 features and two classes of 260 younger and older varia-

tions.  

Figures 6.9 and 6.10, and Table 6.19 demonstrates the results correspond to age classification 

model. RF variable importance graph (Figure 6.9) shows that standard deviation of regressive 

saccade duration is the most discriminative feature in classifying older and young users.  
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Figure 6. 9 Variable importance graph (Age Classifier) 
Six features with the highest variable importance were chosen to build (Young/Old) machine 

learning model (Table 6.19).  

Table 6. 19 Selected Features for Age Classification Model 

1 STD Regressive Saccade Duration 

2 Pupil Dilation PSD 

3 Avg. Regressive Saccade Duration 

4 Progressive Saccade Count 

5 Avg. Pupil Dilation -Fixation 

6 Avg. PD-Fixation/Avg. Pupil-Saccade 

 

The performance of the age machine learning model is shown in Figure 6.11. It can be ob-

served that the classifier has above 82% accuracy with about 60 trees. 

 

Figure 6. 10 Random Forest Average Accuracy vs. Number of Trees for Age Detection 
Model 
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6.5 Discussion 

Objective user profiling has been of interest of UX and HCI researchers since recent decade. 

Having access to user’s characteristics and mental effort during a task helps the task/interface 

developers to adaptively modify the content of the interface or task conditions to improve the 

user experience. The main goal of the present study was to obtain a better understanding of two 

major characteristics of user profiling (e.g. cognitive load and age) of users when reading a 

passage on computer screen. The results of the user profiling study suggest that eye-tracking 

technology when accompanied by machine learning models can be used to distinguish user’s 

extraneous cognitive load level and age population (e.g. younger vs. older adults).  

Results of cognitive load classification models indicate that frequency domain features of pupil 

dilation and pupil dilation variation along with duration of regressive and progressive saccades 

are the most important eye-movement features in predicting the task condition or user’s level 

of cognitive load when reading passages with different levels of difficulty. From the age clas-

sification task, it is concluded that frequency domain feature of pupil dilation as well as regres-

sive saccadic duration are the most important features to distinguish the age population of a 

user during a reading task. Time domain features, such as the ratio of pupil dilation during 

fixation to pupil dilation during saccade, were only found in the age classification task as one 

of the important features. Prior eye tracking/reading literature have used length, duration, and 

number of regressive and progressive saccades as well as number and duration of fixations to 

compare the reading behavior of older and younger adults (e.g., Coyne et al., 2002, Rayner et 

al., 2006) and cognitive load during reading (e.g., Rayner 2009, Rayner et al., 2012, Campbell 

et al., 2014). To the best of my knowledge, however, pupillary data have not been used in 

previous research. While the results of this study showed that power spectral density of pupil-

lary data are among the most important features in classification of younger and older adult’s 

eye movements as well as the level of cognitive load. To best of my knowledge, the frequency 

domain features of pupil dilation have not been used by researchers for cognitive load assess-

ment. Therefore, this study contributes to the related literature by using frequency domain fea-

tures. Using frequency domain features of eye movements facilitates a new direction for eye 

tracking and reading research.  
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7 Conclusion & Future Work 

Advances in technology make it possible to embed eye-tracking technology in computing de-

vices at affordable prices. The data produced holds a wealth of information to improve the 

understanding of user behavior and decision making. The advent of robust machine learning 

approaches provides an attractive opportunity to capitalize on this information. Hence, design-

ing machine learning predictive models using eye tracking is very likely to continue as a pro-

ductive line of research and development. Using eye movements to detect reactions to task 

demands is an important first step in designing interfaces that can more effectively respond to 

user needs based on their age and the level of cognitive effort they experience. 

Cognitive effort affects how people make decisions, including the potential adoption of a sys-

tem, and its effective use (Gregor & Benbasat, 1999; Payne et al., 1993). Detecting the cogni-

tive effort that a task demands can improve the design of adaptive user interfaces that can 

respond to user needs in real time. A first step in designing such responsive computerized tool 

is to build an advanced system that can detect cognitive load unobtrusively and automatically.  

In the first study of this dissertation (Chapter 3), grounded in the Adaptive Decision Making 

and eye tracking literature, I argued that task demand can be detected unobtrusively and auto-

matically via eye movement data. I developed an eye tracking machine learning model to test 

this assertion. The results showed that eye movements indeed carry information about cogni-

tive load and that pupil data, in particular the ratio of pupil dilation during saccades and fixa-

tions, was the most important predictor factor for task demand in a math problem solving task 

under time limit. Another novel finding of this study was that pupillary data when discrimi-

nated during fixation and saccade can provide invaluable insight about the relation between 

cognitive load and eye movements. Additionally, results of the study showed that the random 

forest machine learning system can predict task demand with approximately 70% accuracy. 

These results show that building such an advanced system is possible and is computationally 

practical.  

Being able to predict cognitive load of a user via eye movements and machine learning model 

in a math problem solving task, the next step was to assess cognitive load in a different task, 
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such as reading. The research question was whether differences in task demand could be de-

tected via pupillary data during a reading task. To address this research question, I designed 

study II (Chapter 4), and investigated whether reducing cognitive load of readers by simplify-

ing text passages can affect their pupillary data during reading and whether this effect re-

mained steady over different time intervals of reading. Time series analyses of pupillary data 

were performed and then were compared among the two groups of participants, one with 

higher task load (reading original text), and another one with lower task load (reading a sim-

plified version of text). The results showed that pupil dilation and pupil dilation variation were 

significantly different among two different task condition. Further, the results provided evi-

dence that examining pupillary data in various time intervals can provide additional infor-

mation for understanding cognitive load. Time series analysis of eye-tracking data is important 

because it provides a continuous measure of eye-movement data, which allows to examine 

moment by moment analysis of eye-movement data.  

The objective of the last study of the dissertation was to develop a user profiling framework 

for reading tasks based on two machine learning (ML) models. The proposed ML based pro-

filing process consists of user’s age characterization and user’s cognitive load detection. To 

this end, detection of cognitive load through eye-movement features was investigated during 

reading with different task conditions. Furthermore, relationship between user’s eye-move-

ments and their age population (e.g. younger and older adults) were carried out during the 

reading task. Tobii X300 eye tracking device was used in all the above mentioned studies to 

record the eye movement data from participants. Eye-movements were acquired from Tobii 

eye tracking software, and then were preprocessed and analyzed in R. Random forest classifier 

with bootstrapping was used to build machine learning models. The aggregated results of the 

studies indicate that machine learning once accompanied with a NeuroIS tool, like eye-track-

ing can be used to model user characteristics like age, and user mental states like cognitive 

load, automatically and implicitly with accuracy above chance (range of 70-92%).  

The results of this dissertation can be used in a more general framework to adaptively modi-

fying textual information to better serve the users mental and age needs. 

 



	
	

125	

Future Work 

This study can be enhanced to provide more robust and generalized machine learning models 

by doing the following enhancements: 

- Increased number of passages from a wide variety of topics (e.g., politics, history, sport, 

health, etc.). 

- Increased sample size with different demographics (e.g., people with different educa-

tional level or reading habits could be controlled for). This will likely improve the ro-

bustness of machine learning models.  

- More investigation in frequency domain as it has been done for other physiological 

signals (e.g., heart rate) would provide a better insight into how different frequency 

bands of eye-tracking signals might respond to different level of cognitive load or user’s 

characteristics.   

- Age characteristic can be expanded into more categories other than what was investi-

gated in this study (18-30 vs. 50-69). This would increase the personalization level and 

make the model more specific to user’s age group needs.  

- Other user characteristics such as proficiency level (e.g., native vs. non-native English 

readers) can be also modeled via a separate classification task. This would be beneficial 

since the ultimate goal of the user personalization task is to characterize users objec-

tively via their biometric and cognitive behaviors.  

- Using other NeuroIS technologies (e.g., EEG brain activity) besides eye-tracking would 

provide more reliable and richer bio-feedback that might increase the accuracy of the 

machine learning models. 

The above scenarios are suggested for the future studies that focus on the enhancement of user 

profiling models based on user’s needs and characteristics.   
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Figure A. 1 Passages Selected for the Passage Selection Process 
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Table A. 1 Mean and STD of Eye Movement Features Used for Cognitive Load Classifica-
tion for Passage A 

Eye Features 
 

OA (Mean ± STD) SA (Mean ± STD) 

Avg. Saccade Duration 
 

27.36 ± 3.12 
 

27.74 ± 3.08 
 

STD Saccade Duration 
 

17.35 ± 2.50 
 

17.30 ± 2.64 

Avg. Progressive Saccade Amplitude 
 

2.69 ± 0.56 
 

2.71 ± 0.59 

STD Progressive Saccade Amplitude 
 

2.53 ± 0.75 
 

2.54 ± 0.76 

Avg. Regressive Saccade Amplitude 
 

8.17 ± 2.15 7.40 ± 2.15 

STD Regressive Saccade Amplitude 
 

9.17 ± 1.42 8.49 ±1.69 

Regressive Saccade Count 
 

0.22 ± 0.10 0.22 ± 0.08 

Avg. Regressive Saccade Duration 
 

38.71 ± 2.91  36.63 ± 3.27 

STD Regressive Saccade Duration 
 

23.75 ± 2.44  22.75± 3.02 

Avg. Progressive Saccade Duration 
 

26.28 ± 2.16 26.45 ± 1.77 

STD Progressive Saccade Duration 
 

13.97 ± 5.94 12.63 ± 2.67 

Progressive Saccade Count 
 

 0.94 ± 0.33  0.89 ± 0.27 

Regressive Saccade Count/Progressive 
Saccade Count 
 

24.90 ± 8.50 25.53 ± 7.54 

Total Fixation Duration 
 

276.32 ± 112.80 279.97 ± 91.65 

Avg. Fixation Duration 
 

227.85 ± 24.04 232.37 ± 21.60 

STD Fixation Duration 
 

103.03 ± 20.88 101.55 ± 19.60 

Fixation Duration/ Saccade Duration  
 

8.45 ± 1.43 
 

8.50 ± 1.36 

Pupil Dilation PSD 
 

0.98 ± 0.40 1.85 ± 0.31 

Pupil Variation PSD 
 

1.56 ± 0.25 
 

1.55 ± 0.21 

Pupil Dilation –Fixation –PSD 
 5.90 ± 3.09 4.02 ± 3.13 

Pupil Dilation-Saccade-PSD 
 5.99 ± 3.1 5.39 ±3.08 

Pupil Variation-Fixation-PSD 
 0.60 ± 0.29 0.56 ± 0.28 
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Pupil Variation-Saccade-PSD 
 0.80 ± 0.38 0.77 ± 0.38 

Avg. Pupil Dilation-Fixation 
 2.80 ± 0.38 2.83 ± 0.38 

STD Pupil Dilation-Fixation 
 0.108 ± 0.034 0.112 ± 0.033 

Avg. Pupil Dilation-Saccade 
 2.80 ± 0.37 2.84 ±0.36 

STD Pupil Dilation-Saccade 
 0.114 ± 0.036 0.119 ± 0.37 

Avg. Pupil Variation-Fixation 
 0.039 ± 0.016 0.040 ± 0.016 

STD Pupil Variation-Fixation 
 0.054 ± 0.021 0.055 ± 0.021 

Avg. Pupil Variation-Saccade 
 0.043 ± 0.016 0.044 ± 0.016 

STD Pupil Variation-Saccade 
 0.062 ± 0.022 0.064 ± 0.022 

Avg. Pupil Dilation-Fixation/Avg. Pupil 
Dilation –Saccade 
 

0.99 ± 0.0025 0.99 ± 0.0026 

Avg. Pupil Variation-Fixation/Avg. Pu-
pil Variation –Saccade 
 

0.9157 ± 0.103 0.9156 ± 0.102 

	

Table A. 2 Mean and STD of Eye Movement Features Used for Cognitive Load Classifica-
tion for Passage B 

Eye Features OB (Mean ± STD) SB (Mean ± STD) 

Avg. Saccade Duration 
 

28.85 ± 3.47 
 

28.24 ± 3.08 
 

STD Saccade Duration 
 

18.25 ± 3.53 
 

17.41 ± 2.58 
 

Avg. Progressive Saccade Amplitude 
 

3.07 ± 0.77 
 2.95 ± 0.63 

STD Progressive Saccade Amplitude 
 

2.95 ± 0.93 
 2.65 ± 0.86 

Avg. Regressive Saccade Amplitude 
 8.01 ± 2.21 7.97 ± 1.98 

STD Regressive Saccade Amplitude 
 8.73 ± 1.50 8.82 ±1.55 

Regressive Saccade Count 
 0.26 ± 0.09 0.24 ± 0.09 

Avg. Regressive Saccade Duration 
 38.76 ± 4.11 40.35 ± 3.47 

STD Regressive Saccade Duration 
 25.23 ± 6.32 24.80 ± 3.11 

Avg. Progressive Saccade Duration 28.16 ± 1.84 25.22 ± 2.09 
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STD Progressive Saccade Duration 
 14.32 ± 5.04 12.50 ± 3.04 

Progressive Saccade Count 
 0.93 ± 0.3 0.93 ± 0.36 

Regressive Saccade Count/Progressive 
Saccade Count 
 

28.69 ± 9.37 26.78 ± 8.45 

Total Fixation Duration 
 291.59 ± 105.88 282.91 ± 79.89 

Avg. Fixation Duration 
 228.28 ± 20.06 223.78 ± 20.82 

STD Fixation Duration 
 101.75 ± 19.84 98.96 ± 19.32 

Fixation Duration/ Saccade Duration 
 8.03 ± 1.24 8.04 ± 1.31 

Pupil Dilation PSD 
 1.87± 0.31 1.80 ± 0.37 

Pupil Variation PSD 
 1.58 ± 0.22 1.54 ± 0.24 

 
Pupil Dilation –Fixation –PSD 
 0.82 ± 0.29 0.73 ± 0.28 

Pupil Dilation-Saccade-PSD 
 1.042 ± 0.45 0.89  ± 0.35  

Pupil Variation-Fixation-PSD 
 0.59 ± 0.23 0.52 ± 0.23 

Pupil Variation-Saccade-PSD 
 0.80 ± 0.38 0.69 ± 0.29 

Avg. Pupil Dilation-Fixation 
  2.86 ± 0.33  2.79 ± 0.36 

STD Pupil Dilation-Fixation 
 0.115 ± 0.03  0.105 ± 0.03 

Avg. Pupil Dilation-Saccade 
  2.86 ± 0.33  2.79 ± 0.36 

STD Pupil Dilation-Saccade 
  0.125 ± 0.39 0.112 ± 0.038 

Avg. Pupil Variation-Fixation 
  0.042 ± 0.013 0.039 ± 0.015 

STD Pupil Variation-Fixation 
  0.059 ± 0.021  0.053 ± 0.021 

Avg. Pupil Variation-Saccade 
 0.05  ± 0.01 0.42 ± 0..02 

STD Pupil Variation-Saccade 
 0.07 ± 0.021 0.06 ± 0.021 

Avg. Pupil Dilation-Fixation/Avg. Pupil 
Dilation –Saccade 
 

 1 ± 0.004 0.99 ± 0.002 

Avg. Pupil Variation-Fixation/Avg. Pu-
pil Variation –Saccade 0.93 ± 0.11 0.92 ± 0.09 
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Figure A. 2 Subjective Mental Effort Questionnaire  
	 	


