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Abstract

Training a large dataset has become a serious issue for researchers because it re-

quires large memories and can take a long time for computing. People are trying to

process large scale dataset not only by changing programming model, such as us-

ing MapReduce and Hadoop, but also by designing new algorithms that can retain

performance with less complexity and runtime. In this thesis, we present implemen-

tations of incremental learning and online learning methods to classify a large traffic

light dataset for traffic light recognition.

The introduction part includes the concepts and related works of incremental

learning and online learning. The main algorithm is a modification of IMORL

incremental learning model to enhance its performance over our application’s learn-

ing process. Then we briefly discuss how the traffic light recognition algorithm

works and the problem we encounter during training. Rather than focusing on in-

cremental learning, which uses batch to batch data during training procedure, we

introduce Pegasos, an online style primal gradient-based support vector machine

method. The performance of Pegasos for classification is extraordinary and the

number of instances it uses for training is relatively small. Therefore, Pegasos is the

recommended solution to the large dataset training problem.
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Chapter 1

Introduction

This chapter introduces the overall picture of incremental learning - a machine learn-

ing paradigm where the learning progress is activated to make adjustment when a

batch of new examples emerges. It covers the motivation and background of incre-

mental learning research, the general mathematical formulation, current researches

that make significant contributions to the algorithm, and the objectives of using

incremental learning in our work. Also, it briefly covers some research works of

online learning - a typical machine learning technique when data becomes available

in a sequence.

1.1 Motivation

Incremental learning has became an attractive topic in academic research fields

such as artificial intelligent and data mining. It is more like the nature of human ac-

cessing and accumulating experience, associating current scenarios to past, making

decisions to solve problem and learning from new experiences. Apparently, people

tend to be good at summarizing and learning concepts from the past observations

and incrementally refining those concepts when a new observation comes in. This
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is a biological intelligent system to the artificial intelligence perspective. Incremen-

tal learning plays an important role in such biological intelligence research. The

framework of incremental learning is expected to close to the biologically learning

capability in the future.

In [2], two major issues that make human learn incrementally are: receiving

information sequentially; limited memory and manipulation energy. Those above

causes are very correlative with the serious data problem caused by large-scale dy-

namic stream data. Researchers in data mining perspectively focus on resolving

large scale data computing difficulty and storage problem. Hence, the incremental

learning method has become a potential solution to analyze large-scale streaming

data and summarize useful information from data in some situations. More specif-

ically, when the observations occur in a stream over time and the learning result

is desired to be known at any moment, incremental learning becomes very useful.

Besides, due to the unforeseeable characteristic of observations, it would be better

if the existing hypothesis can be updated while receiving the new observations. A

daily example for incremental learning is that when Apple Inc. releases a new ver-

sion of iPhone, people add a new subcategory for iPhone to their cognitive scope.

The recognition hypothesis is updated when this new instance is received.

1.2 Characteristics

One of the characteristics of incremental learning is that it does not necessarily

need to keep original data. A simple but representative example mentioned in [3]

is learning the mean of the observations from data stream. The ordinary way to

compute the mean is by definition, to calculate the sum of all observations and

then divide the result by the total number of observations. Assuming we have m
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observations, the mean of those values is M . When n new observations are received,

we have V denoted by the sum of those observations. Then, the new mean M ′

can be computed by Mm+V
m+n

. In this way, the computing cost is reduced and the

memory usage is much less since we only need to store the mean of old observations

and the number of observations. Incremental learning algorithm may not aggregate

the set of observations, but to modify the current knowledge. Besides, the result

of incremental learning should also have the same performance with accumulated

computation.

The distribution of stream data is unknown, which is contrast to the assumption

of some machine learning algorithms. Hence, the concern of concept drifting caused

by non-stationary environment is also a characteristic for some incremental learning

methods. This is because the uncertainty of new coming observations are influenced

by their previous observations. Therefore, it is really dangerous to combine current

knowledge and learning from new data because the distribution is conditionally

dependent on learner. Making the existing hypothesis adapt to new data in non-

stationary environment is a big challenge for incremental learning.

To emphasize the concept of incremental learning, [2] and [4] both give a clear

description of incremental learning approach:

1) the capability of learning and update knowledge with new batch of labeled or

unlabeled data.

2) preserve previously acquired knowledge.

3) generate, divide or merge categories or clusters if required.

4) change dynamically in non-stationary environment.
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Figure 1.1: General incremental learning framework, where t is denoted as a point
of time

1.3 Background

Rather than restricting with data sample size, incremental learning takes the ad-

vantage of learning from big data. In recent years, many approaches in machine

learning and data mining have integrated with the concept of incremental learn-

ing. Incremental learning algorithms and their architectures have been well studied.

Researchers have applied those algorithms to various application domains.

In order to realize the incremental learning ability over data flow, there are

two major types of learning algorithms [5]. Data accumulation strategy is the first

category of these approaches. It means that when a new data chunk comes in,
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the new hypothesis is developed by all the data chunks arrived so far. This kind

of methods applies previous hypotheses as the warm start to generate the new

hypothesis. The benefit is that the new hypothesis can be generated more quickly

when previous knowledge is introduced. The problem of data accumulation strategy

is the limitation of memory for storing data. It needs to create a new area to store

the data each time, which is not quite efficient in computation.

The other kind of incremental learning is called ensemble learning. The primary

thought of this strategy is to formulate a series of hypotheses along with the data

chunks and make a combination of this hypotheses to generate a unified hypothesis

to fit all the prediction of data. This strategy only needs to store all the hypotheses

generated in each moment and the previous data can be destroyed. The shortcoming

of this strategy is that the hypothesis generated by the current dataset can not

directly benefit to the dataset. It is because all the prediction is made by the final

decision hypothesis. The voting of the final hypothesis is a knowledge integration

process.

A series of incremental learning algorithms named after Learn++ is developed by

the idea of ensemble learning. Learn++ [6] is an algorithm for incremental training

of neural network pattern classifiers. The method of avoiding forgetting previous

acquired knowledge in this algorithm is that it ensures the data instances that are

misclassified by the current hypothesis have a higher probability of being sampled.

The final classification hypothesis output is a combination of a weighted majority

voting procedure. Learn++.MT [7] is a modified version of [6] and it solved the out-

voting problem when [7] was asked for learning newly added classes. Learn++.NC

[8] is designed for incremental learning new classes in data as well as keep previous

classification stable. This algorithm introduces a new voting procedure, dynami-

cally weighted consult and vote (DW-CAV). Learn++.MF [9] is also an ensemble
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classifier based algorithm with the ability of addressing the missing feature problem

by random selection of subspace. The majority voting mechanism can also be used

to classify those data instances with missing features. The imbalance of data class

size is one of the causes of non-stationary environment. Learn++.NSE [10] is de-

veloped to make the incremental learning procedure robust in such non-stationary

environment. [11] is more concentrated on resolving the concept drifting problem

in non-stationary environment.

[12] also proposed an ensemble incremental learning algorithm called IMORL. It

can adaptively learn new principles in video stream data, such as recognizing a new

objective with newly labeled image frame data. The majority voting mechanism is

quite similar to Learn++. [5] proposed a more general adaptive incremental learning

framework (ADAIN) and validated the efficiency of this framework. We will have

more descriptions and discussions on this method in the next chapter.

Besides the algorithms mentioned above, some other incremental learning ap-

proaches were proposed with different valuable ideas and structures. In [13], an

extended incremental principal component analysis (IPCA) combined with some

other classifiers models was proposed. It also introduced an extension of IPCA

which was called chunk IPCA. A semi-supervised incremental learning aproach was

presented in [14]. It proposed pattern based techniques which selected some unla-

beled data to enhance the performance of classification in semi-supervised learning.

[15] performed an online incremental learning method in semi-supervised learning.

The algorithm firstly generated a learning topology of data distribution without

prior knowledge, and then it uses a small amount of labeled data to generate nodes

and divisions of the learning topology to represent data classes. [16] presented a

survey of incremental learning using Hidden Markov Models (HMMs). It reviewed

existing technologies which can resolve the restrictions of using limited training data
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and prior knowledge in HMMs.

The term online machine learning often accompanies with incremental learning.

It is also used when data is in a sequential order. It updates the mapping after the

arrival of every new data point. The paradigm is really similar to incremental learn-

ing, so it is a point of confusion to call an algorithm incremental if its methodology

also responses to new observations. [3] said the criterion depends on whether the

result is the same that one would obtain when starting with all the observations

in hand. If yes, it is incremental. [5] said that online learning also addressed to

incremental learning. In order to draw a complete research background, selected

literatures with online learning will be mentioned below as references.

Researchers have studied a lot on the online versions of current machine learning

techniques. [17] discussed Passive-Agressive (PA) algorithm based online learning

approaches, which construct the new support vector machine (SVM) style hypoth-

esis that is close to the old hypothesis as well as meets a unit margin to new data

points. [18] proposed an online SVM structure named LASVM to solve classification

problem for very large dataset. The major contribution of this algorithm is the im-

provement of computational efficiency. After that, a series of LASVM was proposed,

such as LASVM-NC, SVM-G. [19] proposed an online algrothm named PEGASOS

for training SVM using training data in batchs or instance by instance. PEGASOS

is a state-of-the-art SVM classifier. This method decreases the iterations steps for

SVM training and fast converges to the solution under required accuracy. It can

significantly shorten the training time for large scale data, such as text classifica-

tion. In this work, we implement PEGASOS, Perceptron, Online Passive Agressive-1

and Online Independent SVM to solve the data training problem in our objective

detection system.

Besides online style SVM, incremental SVM has also been studied. Incremental
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SVM is applied to quickly update the model when a small number of instances is

added into the dataset. The previous SVM becomes a warm start to the new SVM.

The training time for the dataset with incremental data will be decreased. [20] also

validated that for incremental linear SVM, a warm start setting towards a high-order

optimization method for primal SVM formulations is more suitable than dual.

Other machine learning techniques also have online or incremental learning for-

mulations. For instance, [21] modified classification and regression trees (CART)

to incorporate data incrementally. In decision tree methods, ID3 (Iteractive Di-

chotomiser 3) is also a fundamental algorithm to generate decision tree towards

dataset. A family of incremental decision trees was invented based on ID3. It in-

cludes ID3’ [22], ID4 [22], ID5 [23], ID5R [24], ID6MDL and ITI [25]. Random

decision forest is another popular technique for classification and regression. It con-

structs a multitude of decision tress for training data and outputs the classification

result by calculating the mode or the mean of each tree’s prediction. An online

random forests algorithm was proposed by [26]. This algorithm is an extension of

offline random forests and it is able to learning from online training observations.

The authors used the ideas from online bagging, extremely randomized forests and

formulated an online decision tree growing procedure.

For unsupervised learning, incremental clustering is also a research topic that

attracts people’s attention. [27] introduced an incremental hierarchical clustering

algorithm named GRIN, which was based on gravitational theory in physics. The

optimal parameter settings of GRIN are not really sensitive to the probability dis-

tribution of observations, so GRIN can perform high clustering quality to many

datasets. [28] proposed a fast incremental clustering algorithm. This algorithm is

based on distance measurement. It could change the radius threshold value of the

clusters dynamically. Besides, the final cluster number should be restricted to a
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certain level. [29] proposed an incremental clustering to analyze dynamic relational

dataset. It uses representative objects and the balanced search tree to accelerate

the learning process. The data only passes the model once. [30] proposed the first

incremental clustering algorithm. This algorithm is based on DBSCAN, which is a

powerful method to cluster data without specifying cluster number in advance. This

incremental algorithm could yield to the same result as DBSCAN. Adaptive reso-

nance theory (ART) is an unsupervised learning model which describes a number of

unsupervised neural network models. It consists of a comparison field, a recognition

field of neurons, a threshold parameter of recognition and a reset model. A revised

ART model was proposed in [31] in order to analyze mixed data and enhance the

effect on data clustering. [32] proposed a novel incremental approach to cluster in-

terval data. This algorithm is designed to capture the inherent uncertainty relative

to cluster analysis.

Incremental learning techniques have been used to solve many problems in sev-

eral application domains. In computer vision domain, object recognition is involved

with large scale datasets due to the demand of image information. [33] used IPCA

for online face recognition. In [34], it also used incremental linear discriminant

analysis (ILDA) for face recognition system. Based on ILDA and the generalized

singular value decomposition, authors developed GSVD-ILDA, which could deter-

mine the projection matrix in full space and reduce the computational complexity.

In object tracking, online learning is widely used. For instance, [35] proposed an on-

line tracking method that uses online SVM and an explicit feature mapping method

for updating the model. The experiment has shown that the proposed restoration

scheme could improve the robustness of the base tracker. [36] proposed a vision

based autonomous land vehicle (ALV) navigation approach associate with incre-

mental learning. The incremental learning procedure makes the learned knowledge
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of indoor environment could being utilized to update the model in each iteration.

Text mining is also an application field with large amount of data and high dimen-

sion features. Therefore, it is not really practical to train all the data at once. [37]

presented their academic work in incremental text document classification. This

system includes text feature learning and incremental perception learning process.

[38] used incremental learning technique to solve search problem in query database.

[39] performed a incremental machine learning approach to segment medical image

data. Also in medical research domain, [16] performed a new index oriented classi-

fication system for patient health surveillance. The method for analyzing the large

scale dataset is Bayes tree.

1.4 Problem Formulation

Incremental learning can be used in many problems and applications. In this section,

we only focus on classification problem with incremental learning approach because

it is the major problem we are facing in our training work. Therefore, let’s assume

a data instance which is {x, y}, where x is the feature in N dimension space and y

is the classified label along with instance x. Let’s also assume that data is a stream

in time sequence. A new batch of data Dt is received at time point t, and Dt−1 is

the previous data chunk at (t−1). For each data chunk Dt, the sampling procedure

of new observations follows a distribution Pt. It should be noted that not all the

incremental learning methods consider to use Pt in their framework. The hypothesis

of classification at t is denoted as ht. The final classification hypothesis is Hf . Hence,

we can generate incremental learning frameworks by these representatives.
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1.4.1 Data Accumulation Strategy

The first framework of incremental learning is data accumulation. Usually, Pt is not

necessary to be considered in data accumulation because all the data is used for

updating the new hypothesis ht. Concept drifting won’t be able to happen. The

dataset Dt is {D1, . . . , Dt} at each time t. The hypothesis set Ht is {h1, . . . , ht}.

The pseudo-code of this framework is shown in Figure 1.2.

Data Accumulation
(1) train h1 by D1

(2) for t← 2 to T do
Dt ← Dt−1 ∪Dt

train ht by D , Ht−1
Ht ← Ht−1 ∪ ht

(3) return Hf = hT

Figure 1.2: Data accumulation learning framework

1.4.2 Ensemble Learning Strategy

The second framework is ensemble learning strategy. It is widely used in incremental

learning research and in some online learning works. This method discards the

previous data when a new data instance or batch arrives. Therefore, in order to avoid

concept drifting, the new data should compare with the previous data under certain

methods. In order to enhance the weight of new observations, a proper probability

distribution is generated to re-sample the new data batch. The new hypothesis is

trained by the sampled data chunk. The final hypothesis is a combination of the

hypotheses generated in previous stages by a voting mechanism G. The general
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framework of this strategy is shown in Figure 1.3.

Ensemble Learning
(1) train h1 by D1, P1 = P (D1)
(2) for t← 2 to T do

Pt = F(Dt, Dt−1, Pt−1, ht−1)
Train ht by Pt, Dt

Ht ← Ht−1 ∪ ht
(3) Caculate Hf = G(Ht)
(4) Return Hf

Figure 1.3: Ensemble learning framework

1.5 Project Overview

In this work, we conduct two major projects related to incremental machine learning

and online learning techniques. The objective of implementing these methods is to

train the large dataset from our traffic light application.

The first project is inspired by the incremental learning structure proposed in

[12, 5]. The adaptive ensemble learning model in [12] is implemented with the

random forest classifier as the basic learner in our work. We also run this modified

model on the selected standard machine learning datasets for classification. The

performance of binary class classification under three test datasets turns out to be

better than the IMORL framework originally proposed in [12].

The second project is to use PEGASOS to solve the challenge of training the

large-scale traffic light dataset created in our laboratory. We also compare the

experimental results with some popular online learning algorithms.

The rest of paper is organized as follows. Chapter 2 introduces the combined
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incremental learning method of [12] and random forest classification. The experi-

mental results are also included in Chapter 2. Chapter 3 discusses the traffic light

detection system, deep learning network and data features. Pegasos and the online

learning algorithms are introduced in Chapter 3. The implementation results are

also described in Chapter 3 as well. Then the conclusions and future works are

summarized and discussed in Chapter 4.
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Chapter 2

Classification by Adaptive

Ensemble Learning

In this chapter, we introduce a general Adaptive Incremental Learning framework

(ADAIN) and Random Forest (RF) classification method. We implement the first

two methods together and formulate a system with a relatively high performance for

classifying some benchmark testing datasets. The experimental results are presented

near the end of this chapter.

2.1 ADAIN

ADAIN is proposed by [5], which is motivated by the adaptive boosting methods in

[40, 41]. The aim of this method is to integrate knowledge from previous data to em-

phasize learning process in new data. The final decision of classification hypothesis

is made by integrate hypotheses generated in each incremental learning procedure.

In this framework, the weight distribution function Pt plays a key role to realize

the attribute of adaptiveness. Several computation steps are used to generate Pt
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at first. For initialization, the distribution function of the new data chunk Dt is

evaluated by the function:

P̂t−1 = ϕ(Pt−1, Dt−1, Dt) (2.1)

ϕ is called mapping function, which makes the linkage from the previous data and

knowledge to the new data chunk. ϕ can be customized to a suitable estimation

function.

The P̂t−1 still needs to be adjusted in order to describe the distribution of the

new data. The pseudo-error of ht−1 is calculated by:

εt−1 =
∑

j:ht−1(xj)6=yj

P̂t−1(j) (2.2)

where j is the index of instance {xj, yj} ∈ Dt, and j ∈ [1,m].

The scale of pseudo-error is:

βt−1 =
εt−1

1− εt−1
(2.3)

The pseudo-error measures how well the classification result of ht−1 to Dt per-

forms to each new instance. If an instance is misclassified by ht−1, it will gain a

higher weight in the distribution function Pt. Therefore, the decision boundary is

better adjusted by hard instances. The distribution function is finally determined

by:

P̂t(j) =
P̂t−1(j)

Zt

×


βt−1, forht−1(xj) = yj

1, forht−1(xj) 6= yj

(2.4)

where Zt is a normalization parameter to guarantee that Pt is a distribution.

Then, the new hypothesis ht is calculated by D′t, where D′t is generated by re-
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sampling Dt under distribution Pt,

After all the data chunks are processed, the final hypothesis is calculated by the

voting mechanism of ensemble learning:

Hfinal(x) = arg max
∑

t:hT (x)=y

log(
1

βt
) (2.5)

The mapping functions proposed in [5] are a multilayer perception neural network

(MLP) and support vector regression (SVR).

In [12], the mapping function ϕ is relative to distance map between Dt−1 and

Dt. The format of distance map is [I,Q], where I is the index of the closet point

to each instance in Dt from Dt−1 and Q is the Euclidean distance for that instance.

Suppose xj ∈ Dt, xi ∈ Dt − 1 and the feature dimension of x is n. Hence, the

distance map can be formulated:

DMji =

√√√√ n∑
k=1

(xjk − xik)2 (2.6)

Ij = arg min(DMji) (2.7)

Qj = min(DMji) (2.8)

Then, Q is scaled to update the distribution of P̂t:

Q̂ = 1− e−Q (2.9)

Qs = 1/eQ̂ (2.10)

The initial distribtuion p̂t is updated by Qs. This procedure is also able to pass
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the previous learning information to the new observations.

P̂t =
Pt−1(I)×Qs

Zt

(2.11)

The rest steps in [12] are similar to the ADAIN format. It uses ht−1 to test

the new data chunk and update P̂t to Pt by giving a higher weight to misclassified

instances. Through this adjustment procedure, the instances which are hard to learn

by the previous hypothesis is exaggerated and the new hypothesis is forced to the

decision boundary.

The hypothesis h in the previous works is Classification and Regression Tree

(CART). Here, we implement the Random Forest [42] classifier as the basic learning

processor in order to enhance the classification result of this framework. The new

implementation is called IMORL.RF in this paper.

2.2 Random Forest

Random forest is initially proposed by [42] in 2001. It is an ensemble learning

technique which can be used for classification, clustering, regression and survival

analysis. Here, we briefly introduce the classification procedure for random forest.

2.2.1 Single Decision Tree

Random forest algorithm is developed by multiple decision trees. The construction

of a decision tree is described as the following steps:

1) Assume training set D = d1, . . . , dn and the samples in each set is X = x1, . . . , xn,

then the input samples for decision tree are randomly selected in each sample set

with replacement.
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2) Set each training sample xj, j ∈ [1, n] has M features. When training the decision

tree, we randomly select m(m < M) features as the input features of the tree.

Then, we select the important feature in m for splitting. m is invariant when

constructing the decision tree.

3) The splitting process continues until all the samples in one node are in the same

class.

2.2.2 Random Forest Formulation

After generating t decision trees, random forest algorithm ensembles the outcomes

from decision trees as the final outputs of classification results. There are two ways

to integrate the classification results:

1) Set the mean of t decision trees.

2) The minority is subordinate to the majority.

Random forest method does not need cross validation to estimate the accuracy

of the classification result. The base estimator for random forest is called out-of-bag

(OOB). When constructing a decision tree, not all the samples are used for training.

Hence, the remaining samples can be used as testing instances to test this decision

tree. The proportion of this kind of testing samples can be customized. For each

sample x, we use the decision trees which don’t count this sample into training set to

estimate its class. The false estimation percentage is the OOB error for the random

forest.
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Figure 2.1: Random forest framework

2.3 Experimental Results

In this section, we compare the experimental performances with IMORL.RF and

the proposed adaptive learning systems in previous works. In order to have a more

valid comparison, we select two benchmark datasets from UCI machine learning

repository and one traffic light dataset generated by our laboratory. These datasets

are representative because their size and feature number are identical. The detailed
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attributes are listed below.

Dataset Feature Num. Instance Num. Class Num. Sample Ratio
Traffic Light 784 3000 2 2 : 1

Spambase 57 4601 2 1.54 : 1
Magic 10 19020 2 1.84 : 1

Table 2.1: Experiment datasets for incremental learning

In the experiments, we randomly order the observations in a dataset first and

split one half of the instances as the test data. The rest of data is cut into 20 chunks

to perform incremental learning procedure. The final accuracy is calculated by the

average accuracy of 20 runs on each dataset. For the first experiment, we compare

the performance between the simulation accuracy of IMORL and IMORL.RF.
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Dataset Method Average Accuracy p value H0

Traffic Light
IMORL 0.9371

5.8660e-11 Reject
IMORL.RF 0.9584

Spambase
IMORL 0.9052

2.9813e-10 Reject
IMORL.RF 0.9244

Magic
IMORL 0.8292

1.7177e-10 Reject
IMORL.RF 0.8533

Table 2.2: T-test and prediction accuracy

As shown in Table 2.2, the performance of IMORL.RF is better than IMORL.

In order to have a more comprehensive comparison of the experimental results gen-

erated by these two methods, the significance test is performed to compare the

accuracy of each 20 runs experiment on the same dataset.

Hotelling’s T-square statistic test (t-test) is a statistical hypothesis test to mea-

sure if the null hypothesis can be accepted. The test statistical data should follow

a normal distribution. We assume that our results for accuracy is under normal

distribution and the standard deviation σ is the same in order to perform the t-test.

The hypothesis we want to verify is that:

H0: the pairwise difference between two methods’ accuracy has µ = 0.

H1: the pairwise difference between two methods’ accuracy has µ > 0.

The data vector is the IMORL.RF’s accuracy vector minus IMORLs accuracy

vector. From the p value and the result of hypothesis test, it indicates that t-

test rejects the null hypothesis significantly at confidence level of 0.05. In other

words, the hypothesis that the prediction accuracy from IMORL.RF is better than

IMORL’s is tested to be accepted.
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Dataset Method Average Accuracy

Spambase
IMORL.RF 0.9244
ADAIN.MLP 0.9142 [5]
ADAIN.SVR 0.9120 [5]

Magic
IMORL.RF 0.8533
ADAIN.MLP 0.8549 [5]
ADAIN.SVR 0.8644 [5]

Table 2.3: Prediction accuracy comparison towards ADAIN series

Table 2.3 shows the comparison of prediction accuracy with IMORL.RF to

ADAIN.MLP and ADAIN.SVR. We can see that IMORL.RF’s prediction accuracy

is really close to ADAIN.MLP and ADAIN.SVR’s prediction accuracy. For spam-

base dataset, the performance of IMORL.RF reaches the best accuracy. And for

magic dataset, IMORL.RF also reaches a similar average accuracy to ADAIN. [5]

mentioned the reason that ADAIN has a better performance than IMORL is that

ADAIN has a stronger initial probability distribution formulation (support vector

regression and multilayer perception). Therefore, the usage of previous knowledge

from data is more comprehensive than IMORL. From our experiment, we present

that a superior base learner can also be used to improve the performance of IMORL.

We implement random forest instead of CART as the base hypothesis classifier and

the prediction accuracy towards bench mark datasets is increased significantly.

Let’s take a look at the prediction accuracy curve through the number of data

chunks involved in training procedure. In Figure 2.2, the x label means the number

of data chunks that have used to generate the group of hypotheses in time sequence.

The prediction accuracy is calculated by the ensemble hypotheses of n available

trained hypotheses. From Figure 2.2, we can say that IMORL.RF’s prediction

accuracy is higher than IMORL’s when receiving the same training data chunks.
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Figure 2.2: Prediction accuracy over number of data chunk
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Chapter 3

Large Dataset Training Problem in

a Traffic Light Recognition System

In this chapter, we first introduce the traffic light detection system proposed by our

group. The detection system is a deep learning network based automatic recognition

and classification system for traffic lights in video sequences.

It is the fact that image objective recognition problem is often hard to solve

because data feature is in high dimension. A good detection system should be

adaptive to detect traffic lights in high quality video streams, such as 1920 × 1080

resolution video stream. Moreover, it should detect small traffic light objects in the

frame. Therefore, in order to design a good recognition system with high detection

accuracy, not only the algorithms should be more complicated, our system also needs

a lot of training data with high dimension features. Hence, we introduce PEGASOS,

an online style SVM to solve the large dataset training problem in our traffic light

detection system.

We also show some experimental results to demonstrate the efficiency of Pegasos

for training the traffic light data. In addition, the comparison between Pegasos and
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other online learning algorithms will be provided.

3.1 Traffic Light Recognition System

3.1.1 System Overview

Traffic lights recognition is one of the topics in object recognition for intelligent

transportation system. The reason of studying automatic red traffic light detection

system is that it can be a useful assistance in case of driver’s carelessness at some

time. The main task of object recognition is finding and identifying objects in single

image or video sequence. People can see and know a lot of objects in a very short

time. The object might be scaled and rotated but human can recognize it quickly.

However, those changes bring enormous challenges for computer vision systems.

For example, as for red traffic light detection in daytime, the difficulty is that they

often have intricate backgrounds because of tree shadows and surrounding buildings.

Another difficulty is that they can be often confused with red tail lights of a car.

Many approaches have been implemented over the years in order to enhance

traffic light recognition system. A lot of researches have been conducted based on

the knowledge of image processing. For example, [43] introduced a system with a

color pre-processing module to enhance the difference of red and green regions to

recognize traffic light candidate. However, using the maximal/minimal localization

is not a good strategy because it is lack of flexibility. [44] detected traffic light based

on interest regions extraction. But the limit is that there are too many false positives

if the thresholds are not accurate. [45] applied HSV color space information and

then used Adaboosting for classification.

The common shortcoming is that those methods only use low level image features

like color, shape and gradient and therefore the total detection rate is relatively low.
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In visual recognition, deep learning network is a useful tool for image classification

and recognition because it generates high dimension features abstracted from data.

It can provide better feature for objects classification and recognition. Therefore, we

implement a deep learning network model: PCA network (PCANet) [46], to solve

traffic light problem.

Figure 3.1: Traffic lights recognition system workflow

3.1.2 Traffic Light Preprocessing: ROI Extraction

The red circle traffic lights in daytime are our recognition objects. We concentrate

on the traffic light with three lights in one column. It should have a red circle light

on the top, a yellow light in the middle and a green light at the bottom. First of
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all, we use color information to preprocess the images. We convert images RGB

value to HSV (Hue, Saturation, Value) color space and extract red color according

to the hue value thresholds. Then, an aspect ratio check is performed, which keeps

all red blobs passing the check as candidates of red lights. The threshold of aspect

ratio check is relatively loose because under different illumination conditions, the

hue values of red traffic lights change somehow. By this preprocessing process, we

obtain the candidates of traffic lights as many as we can.

Next, we follow the detection method proposed in [44] as the second step to

extract region of interest (ROI) extraction. This method assumes that ROI is cen-

tered at one of the lamps of a traffic light. Also, it assumes all traffic lights consist

of three lamps, red, yellow and green, with red light is on the top and at only one

of them switched on at a certain time instant. This method hasn’t consider other

configurations beyond our dataset, but it has the adaptiveness of detecting other

types of traffic lights by changing some template regions mentioned below.

By finding red blobs in each frame, we can get the locations of potential red

light candidates. Then, we locate the off yellow and off green light areas beneath

the red blobs. The two off lights are similar with each other but have obviously

different color with their surrounding background around them. Therefore, we use

the off yellow light area as ROIref to perform the template matching procedure. The

corresponding off green light area is ROIg. The result of template matching with

ROIref and ROIg is named as Rin. The corresponding ROI surrounding background

is called ROIout and the result of template matching with ROIref and ROIout is

recorded as Rout. Then, a threshold p is set as Rin/Rout. For each potential red

light candidate, if Rin/Rout < P , we say it is still a traffic light candidate.
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Figure 3.2: Traffic light image processing by ROI template matching

Figure 3.2 shows the template matching areas. The yellow rectangular area is

represent of ROIref . The green rectangular area is ROIg. The blue rectangular area

is ROIout.

The advantage of this method is that it is efficient for detecting traffic lights

in any size. However, the threshold is such a weak classifier that there are still a

great amount of false positive candidates. One can imagine that some false positives

are really like traffic light in dark background, for example, rear red lights of cars.

Therefore, we introduce deep learning network as the classifier for traffic light recog-

nition in next step. By training deep learning network using detected candidates,

we can extract higher level image features of traffic light. They are more reliable

than hand-crafted features such as HOG or SIFT.
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3.2 Classification Using PCAnet

We apply a two-stage cascaded classification system based on PCANet. [46] hopes

to find a simpler training process which also can adapt to process different tasks

and data types. The proposed PCANet comprises only basic data processing com-

ponents: cascaded principal component analysis (PCA), binary hashing, and block-

wise histograms. Specifically, the first two stage is PCA, which extracts image

features. The output stage is hashing and histogram, producing the nonlinear out-

put as the inputs features of Linear Support Vector Machine which trains a model

for predicting labels.

3.2.1 Feature Extraction

PCANet training is divided into three stages. The first two stages are very similar:

mean-removal, taking principle component analysis and convolution. The last step

is binarization for producing a nonlinear output and quantification by histogram.

We will describe PCANets training process step by step in the following paragraphs.

We conduct experiments for two PCA stages. First, we determine the window

size as k1 × k2 (k1, k2 are often set as 3,5,7 in pixel size ), then slide the filter

window to extract local features. After sliding m × n times, one image generates

m × n patches and each patch size is k1 × k2. Then we subtract the mean from

each patch on these m × n patches and obtain mean-removed patches. Finally,

single image feature extraction operation is completed. All the images should be

applied the same operations. For T images, we get a new matrix X and each column

represents a patch, including k1 × k2 elements and the total is T ×m× n columns.

For the first stage, PCANet uses principle component analysis and takes the first

L1 feature vectors as filters. Each column is rearranged by these L1 feature vectors
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(each column contains k1×k2 elements) as a patch. Equivalently, we get L1 windows

with the size of k1 × k2. Then, the Lth
1 filter output of the first stage applies 2D

convolution with each images. The boundary of each images is zero-padded before

convolving with the filter in order to make each new feature map having the same

size of original images.

The second stage is similar to the first stage. At the first stage, the input images

are the original image set. However, the second stage’s inputs are the results of the

first stage, which are the L1 × T feature maps. In the second stage, we extract L2

feature vectors, so the result of the second stage should have L1 × L2 × T feature

maps.

The output layer process is like the function below:

T l
i =

L2∑
l=1

2l−1H(I li ×W 2
l ) (3.1)

Each image convolves with L2 filters respectively, multiplies by a weight matrix

and is added together. H(?) is a Heaviside step function whose value is one for

positive entries and zero for otherwise. Ascending weights are corresponding to the

filter in the order of small to large. We partition the matrix into B blocks, so the

block matrix size is k1×k2×B. Then, the histogram for each blocks is computed and

the range of histogram is [0, 2L2−1]. And then, we concatenate all the B histograms

into one vector which is denoted as Bhisht(T
l
i ).

After this encoding process, the feature of each input image is then defined to

be a set of block-wise histograms as:

fi = [Bhisht(T
l
i ), . . . , Bhist(T

L1
i )]T ∈ R(2L2)L1B (3.2)
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Figure 3.3: PCAnet structure

3.2.2 SVM classification

In the proposed approach, the final of PCAnet concatenates to a linear SVM for

classifying PCAnet features. Due to the high volume data candidates for training,

we want to find a way to train the data but don’t necessarily store all the data in

memory for training. Hence, we consider online learning structure and we propose

to use Pegasos [19], a primal estimated sub-gradient solver for SVM to solve the

training data size problem. Pegasos is especially suitable to train SVM for large

scale dataset and has the similar speed and simplicity with online learning method.

Furthermore, it can reach to the accuracy of state-of-art SVM solvers.
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3.3 Pegasos

3.3.1 Introduction

For the primal formulation of SVM, assume a training dataset:

S = (xi, yi)
m
i=1 (3.3)

where xi ∈ Rn and yi ∈ {+1,−1}.

The soft margin with L2 regularization form is:

min
w

λ

2
||w||2 +

1

m

∑
(x,y)∈S

`(w; (x, y)) (3.4)

in this form, the bias b for standard SVM has been omitted. For here

`(w; (x, y)) = max{0, 1− y 〈w,x〉} (3.5)

〈w,x〉 is the inner product of w and x. `(∗) is called hinge loss in SVM.

For the objective function, an ε level accurate solution ŵ can be difined as:

f(ŵ) ≤ min
w

f(w) + ε (3.6)

This algorithm is based on simple stochastic sub-gradient descent. It means that

at each time, a training instance is sampled randomly from S. Then, the algorithm

takes a step with certain length to the oppose direction of gradient. After a number

of steps, it finds an ε level accurate solution ŵ then the iteration for randomly pick

examples is stopped.

The basic mathematical formulation of Pegasos is listed as follows. For initialize,
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w1 is randomized or set to 0. On iteration t, the random training instance is picked

as (xit , yit). Then current objective value is f(w; it).

The sub-gradient for f(w; it) is calculated as:

∇t = λwt −


yitxit , fory 〈w,x〉 < 1

0, for otherwise
(3.7)

when a sample’s classification result is true, it yields to zero loss, otherwise wt is

updataed to wt+1 ← wt− ηt∇t. Here, the step length is ηt = 1/(λt). After that, an

optional step can be taken:

wt+1 ← min

{
1,

1/
√
λ

||wt+1||

}
wt+1 (3.8)

where 1/
√
λ is the radius of the ball for admissible solutions.

Pegasos also can be applied to mini batch iterations, which means for iteration

t, we uniformly random pick k instances for training. The training subset is At ⊂ S

and |At| = k. The approximate objective function changes to:

f(w;At) =
λ

2
||w||2 +

1

k

∑
i∈At

`(w; (x, y)) (3.9)

Also, the sub-gradient function becomes:

∇t = λwt −
1

k

∑
i∈Ai

H(yi 〈w,x〉)yixi (3.10)

where H(yi 〈w,x〉) is one when y 〈w,x〉 < 1, otherwise it is 0. The update and the

step length is still same for wt+1.

Although Pegasos can implement k > 1, the main focus of this algorithm is

for k = 1. The computation process is suitable for sparsity feature vectors as
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well. Besides, we also can implement kernel functions on Pegasos. This is also an

attraction for Pegasos algorithm.

One should note that Pegasos shares a same feature with online learning, that is

for each iteration, it can use only one example for training. Many papers said that

Pegasos is in online style or online SVM. However, online learning algorithms also

have significant differet with it. For example, they don’t optimizing SVM’s objective

function directly. They have an online-to-batch conversion scheme. Therefore, the

solutions generated online learning algorithms don’t yield to the error level that

Pegasos can guarantee.

3.3.2 Computational Performance

[19] proves that the number of iterations for getting ε-solution is Õ(1/ε), which

is shorter than previous proposed stochastic gradient descent methods (SGD) for

solving SVM in Õ(1/ε2). The runtime of Pegasos is Õ(s/(λε)), where s denotes to the

average number of non-zero features in data vector. We also want to remark that the

state-of-art linear SVM solver - LibLinear[47] has the runtime of Õ(nd/(λε)), where

n is the number of training examples and d is the number of features. LibLinear is

a library for large linear classification. It has very good performance towards large

scale training problem. The coverage iteration number is O(log 1/ε), which is very

efficient. The performance of LibLinear and Pegasos are really comparative. One

may ask, except that Pegasos takes advantage of its online style, if it has better

performance in time or accuracy than Liblinear? Figure 3.4 shows the comparison

of SGD and LibLinear towards optimization accuracy and training time.

The above graph in Figure 3.4 shows how the test error drops when the opti-
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Figure 3.4: Comparison of Liblinear and SGD from [1]

mization accuracy increases. We can infer that after 0.0001, we reach the held-out

accuracy. Higher optimization accuracy after 0.0001 may be unnecessary. From the

bottom graph in Figure 3.4, at the efficient range of optimization accuracy, SGD

based algorithms have a shorter traning time than LibLinear. If the opimization

accuracy (tolerance ε) is set too high, SGD likely takes a long time in iterations for

convergence.
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3.4 Experimental Results

The attributes of our traffic light dataset with PCAnet features are shown in Ta-

ble 3.1. The total number of training data is 15,000. The number of testing data is

5,296. The original distribution of our data samples are in time series. Therefore,

we separate the last 20.9% data as the unseen testing data. The positive data is

the red circle traffic light and the negative data is the false detected object by the

preprocessing procedure and template matching processing. We can see that by the

image processing method, there are still a lot of potential candidates needed to be

classified. For PCAnet attributes, we set patch size as 7 × 7, number of filters as

8× 8, histogram block size as 7× 7 and block overlap ratio as 0.5.

Dataset
Train Test

Class Ratio Figure Size # Feature Sparsity
Pos Neg Pos Neg

Traffic Light 3210 11790 1133 4163 0.27 28× 28 73728 10.84%

Table 3.1: Traffic light dataset information

When using Pegasos to train the dataset, the first step is to randomly permute

the order of data instances. Then, training data is separated into 15 chunks and the

iteration is begin with the first data in chunk 1.

For our experiment, we perform the basic formulation of Pegasos (k = 1). It is

because despite that [19] said the framework could be suitable for k > 1, their main

argument were in the case of k = 1. Also, the training SVM doesn’t have variable

bias because an unregularized bias doesn’t have serious impact on the performance

accuracy.

Table 3.2 shows the evaluation test results using Pegasos for training. Precision
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and recall are calculated by the following equations:

precision =
true positives

true positves+ false positives
(3.11)

recall =
true positives

true positves+ false negatives
(3.12)

Dataset λ ε Num of iterations Precision Recall
Traffic Light 0.0001 0.01 3799 99.82% 99.1%

Table 3.2: Evaluation results of Pegasos

Our experiment is running on MATLAB R2014a. The computer has a i7-

4700MQ CPU with 2.40G Hz. The installed memory is 8.0 GB. Due to the limita-

tion of reading large scale data with MATLAB, we can not load all the data into

workspace and train a SVM model with Liblinear for comparison. Therefore, the

algorithm performance in time won’t be compared with Liblinear’s.

In Table 3.2, Pegasos only uses 3,799 instances to find the 0.01 level optimization

accuracy solution. The precision and recall values are extremely high, which valid

that PCAnet features are really good deep learning features for image classification

problem. Pegasos helps us to train large dataset in a more efficient way. For high

volume data, one does not need to evaluate how large the training set should be.

While running this algorithm, one does not need to load all the data into memory.

It is more feasible than dropping all the data into LibSVM or LibLinear.
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3.5 Online Learning Algorithms

3.5.1 Introduction

Online learning method uses data sequentially and for every moment it updates its

predictor as best hypothesis for the incoming data. PEGASOS and online learning

algorithm share some common features. First of all, both of them use only a single

example at each iteration. Second, they share the simplicity and computation speed.

Furthermore, some of online learning algorithms can also be viewed as using SGD

steps. However, one distinction should be notified is that Pegasos uses sampling

with replacement strategy while online learning does not. The main reason of using

Pegasos in our project is that it yeilds an ε-accurate solution which typical online

learning methods don’t necessarily guarantee.

There are two types of online learning models. The first is statistical learning

model, which assumes data instances are i.i.d. The second model is adversarial

model. It views learning procedure as a chess game and the objective is to mini-

mize the losses of a player versus the other. Here, we present three online learning

algorithms (Perceptron Learning, Online Passive Agressive-1[17] and Online Inde-

pendent SVM[48] ) for training our traffic light dataset, in order to compare their

performances of accuracy with Pegasos. All those online learning methods should

be categorized in statistical learning models.

3.5.2 Experimental Results

Table 3.3 shows experimental results of training and testing the traffic light dataset

by the online learning algorithms mentioned above. Here, the column of PA-1 shows

testing errors by Online Passive Agressive-1. The column of OISVM is representa-

tive of Online Independent SVM. We use 3,799 instances to perform online learning,
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which is the same number when Pegasos meets to 0.001 tolerance with 0.0001 reg-

ularized parameter. We can find that all the online learning algorithms have good

performance and OISVM gets the lowest error rate. This may demonstrates that

PCANet features are easily linear separable. Also, we can demonstrate these three

online learning algorithms are also suitable for training this large dataset. Figure

3.5 shows the average online errors during the training process of each algorithms.

The algorithms are implemented by DOGMA MATLAB toolbox [49].

Perceptron PA-1 OISVM Pegasos
Error 1 (Last Hyperplane) 0.0025 0.0025 0.0008 0.0023
Error 2 (Average Hyperplane) 0.0045 0.0021 - -

Table 3.3: Evaluation results of online learning algorithms

Figure 3.5: Average online error
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Chapter 4

Conclusions

In this thesis, we present two projects related to binary data classification. The

first project is an implementation of incremental learning technique. We propose to

modify the base learner of IMORL framework in order to enhance the performance

for object classification. The inspiration is to explore how the base learner can affect

the classification performances. We use random forest classifier instead of CART

and the results of classification have been improved. The second project is based on

the traffic light recognition system using deep learning network. From this system,

we obtain a lot of data for training and testing through video streams. Hence, we

implement Pegasos to solve the large dataset training problem. People intuitively

tend to use as mush as the amount of data they have for training, however, pegasos

gets the ε = 0.01 solution only within 4,000 data samples.

For future work, we want to attempt implementing Pegasos into data stream with

warm start at each stage to see if it is suitable for incremental learning. Furthermore,

multi-classification needs to be investigated beyond binary classification.
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